

External Software Reuse

Software reuse by external developers in

public good software ecosystems

Terje Uglebakken

Thesis submitted for the degree of
 Informatics: Programming and System Architecture

60 credits

Department of Informatics

Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2020

II

III

External Software Reuse

Software reuse by external developers in public

good software ecosystems

Terje Uglebakken

2020

IV

© Terje Uglebakken 2020

External Software Reuse

http://www.duo.uio.no/

http://www.duo.uio.no/

V

Abstract

A software ecosystem consists of a shared software platform, where internal and external

developers interact to deliver software to customers. Software ecosystems are reliant on

external developers creating innovation for the software ecosystem to thrive. However, we lack

knowledge about how to attract external developers and how to enable them to innovate.

Research has shown that software reuse can increase productivity. This thesis explores how

external developers reuse software in a public software ecosystem, where resources may be

scarce and the aim is not revenue growth. The following research question is asked: What are

some factors that characterize software reuse by external developers in a public good software

ecosystem?

The Health Information Systems Programme (HISP) is a global network to strengthen health

information systems. One of their most important contributions is District Health Information

System 2 (DHIS2). Through the use of an Application Programming Interface (API),

developers can extend DHIS2 by creating web applications. HISP India is one of the nodes in

the HISP network which implements DHIS2.

In an Action Case research project, I have participated as a developer in the HISP India team

to implement the AMR Surveillance System based on DHIS2. I have created software packages

and other resources aimed at aiding the development of DHIS2 applications.

This thesis contributes to software ecosystem literature through factors that affect software

reuse by external developers in public good software ecosystems. The research has also lead to

practical contributions including DHIS2 applications and software packages to HISP India and

the HISP network.

Keywords: software reuse, software packages, software ecosystems, DHIS2

VI

VII

Acknowledgements

I want to thank my supervisor Sundeep Sahay and my co-supervisor Magnus Li for all their

insight. I also want to thank everyone in the DHIS2 Design Lab. Special thanks to Elisabeth,

Fredrik, Kristine, and Rebekka their help and companionship in India. I am eternally grateful

to everyone at HISP India for their hospitality. Finally, I want to thank everyone in the HISP

network who participated in the research.

Terje Uglebakken

University of Oslo

June 2020

VIII

IX

Table of Contents

List of Figures .. XI

List of Tables ... XII

Abbreviations .. XIII

1 Introduction .. 1

1.1 Motivation ... 1

1.2 Research Question ... 2

1.3 Thesis Structure ... 2

2 Background .. 4

2.1 HISP... 4

2.2 DHIS2 .. 5

2.3 India ... 7

2.4 AMR Surveillance System .. 8

2.5 Summary .. 8

3 Related Literature ... 10

3.1 Software Ecosystems ... 10

3.1.1 Actors in Software Ecosystems .. 10

3.2 Software Reuse .. 11

3.2.1 Design Infrastructure .. 12

3.2.2 Design Systems .. 13

3.3 Summary of Concepts ... 14

4 Methodology .. 17

4.1 Epistemology ... 17

4.2 Research Design .. 18

4.3 Methods ... 19

4.3.1 Data Collection ... 20

4.3.2 Analysis .. 24

4.4 Research Ethics .. 24

4.4.1 Data Protection ... 24

4.4.2 Research Outcomes .. 25

5 Results .. 26

5.1 DHIS2 Software Ecosystem .. 26

X

5.1.1 DHIS2 Apps ... 26

5.1.2 Customization in DHIS2 .. 28

5.2 DHIS2 App Design Infrastructure ... 28

5.2.1 Reusable Software .. 29

5.2.2 Software Reuse Tools ... 32

5.3 AMR Surveillance System .. 34

5.4 Software Reuse in HISP India ... 35

6 Analysis and Discussion ... 37

6.1 Factors Affecting External Software Reuse .. 37

6.1.1 Knowledge Dependencies .. 38

6.1.2 Software Reuse Tools ... 39

6.1.3 Internal to External ... 40

6.1.4 Self-reinforcement .. 41

6.2 App Development by External Developers ... 41

6.3 Reflections on the Research Process ... 42

6.3.1 Challenges .. 42

7 Conclusion .. 45

7.1 External Software Reuse Factors ... 45

7.2 Theoretical Implications and Future Research .. 46

7.3 Practical Implications .. 47

References .. 48

Appendix 1 AMR Surveillance System ... 56

XI

List of Figures

Figure 2-1: DHIS2 implanted as a HIS (from DHIS2, n.d.-b). Dark green = national. Medium

green = Indian state. Light green = pilot. ... 5

Figure 2-2: The DHIS2 dashboard app (version 2.34.0 from DHIS2, n.d.-c) 6

Figure 3-1: Levels and types of design (from Li & Nielsen, 2019) ... 13

Figure 3-2: A region built from a series of components (from Vesselov & Davis, 2019, p.15)

 .. 14

Figure 3-3: Interaction between actors through artifacts in software ecosystems 16

Figure 4-1: Field trips to India and important events in 2019 .. 18

Figure 4-2: Action case as a hybrid methodology (from Braa & Vidgen, 1999) 19

Figure 4-3: Field visit to a hospital using DHIS2 apps .. 21

Figure 4-4: The DHIS2 Application Platform Workshop .. 22

Figure 4-5: Group discussion during the Design Lab Workshop ... 23

Figure 5-1: Parts which make up DHIS2 apps (from McGee, 2019) 27

Figure 5-2: The DHIS2 header bar ... 29

Figure 5-3: A portion from the instructions to use a button in the DHIS2 Design System 33

Figure 6-1: Air Quality Index during November 2019 .. 43

XII

List of Tables

Table 3-1 Concepts related to software reuse by external developers in software ecosystems 16

Table 6-1: Themes and key findings .. 38

Table 7-1: Factors of software reuse by external developers in a public good software

ecosystem ... 46

XIII

Abbreviations

AC Action Case

AMR Antimicrobial resistance

AMRSS AMR Surveillance System

API Application Programming Interface

AQI Air Quality Index

AR Action Research

DHIS2 District Health Information Software 2

FOSS Free and Open-Source

HIS Health Information System

HISP Health Information Systems Program

ICMR Indian Council of Medical Research

IS Information System

NORAD Norwegian Agency for Development Cooperation

NSD Norwegian Centre for Research Data

SE Software Engineering

UI User interface

UiO University of Oslo

1

1 Introduction

Software platforms such as Googles’ Android, Apple’s iOS, and Microsoft’s Windows have

become juggernauts. The individual software projects built for a platform are not developed in

isolation. Software is shared and reused, forming software ecosystems (Bosch & Bosch-

Sijtsema, 2010; Jansen, Finkelstein, & Brinkkemper, 2009; Manikas & Hansen, 2013). Bosch

& Bosch-Sijtsema (2010) define software ecosystems as “a software platform, a set of internal

and external developers and a community of domain experts in service to a community of users

that compose relevant solution elements to satisfy their needs” (p. 68). The platforms mentioned

above all succeeded in enabling innovation from external developers for their platforms.

1.1 Motivation

It can be difficult for central actors such as platform owners or internal developers to anticipate

the needs of a heterogenous user-base (Bosch, 2009). Software ecosystems are reliant on

external developers providing innovations for the platform to thrive (Bosch, 2009). External

developers may also have better opportunities to utilize user participation, which is linked to

higher-quality software (Bosch, 2009). Although important, the participation of these actors has

received little research (van den Berk, Jansen, & Luinenburg, 2010, p. 134). The focus of this

thesis is to explore software reuse by external developers in public good software ecosystems,

in contexts where resources are limited.

The empirical case of the research is District Health Information Software 2 (DHIS2). DHIS2

is a health management information system platform. By utilizing its Application Programming

Interface (API), actors can develop web applications, hereby referred to as apps, that can be

installed in the system. DHIS2 is developed by the Health Information Systems Program (HISP)

at the University of Oslo (UiO). In recent years HISP UiO has put increasingly more effort into

developing reusable software and other related resources to encourage external developers to

create more apps for the DHIS2 software ecosystem. The HISP network includes other nodes

located in developing countries that implement DHIS2 and develop DHIS2 applications.

Through three field visits, I have participated and observed in HISP India, one of the oldest

nodes in the HISP network. During the fieldwork with a combined length of 15 weeks, as well

as remotely, I have been part of their team as a developer in one of their projects implementing

2

DHIS2. Also, I have helped HISP UiO develop reusable software and introduce them to HISP

India. Finally, I have been working as a teacher’s assistant in UiO master’s level course where

students develop DHIS2 applications.

1.2 Research Question

To address the gap in the literature as well as the practical problem in the HISP project the

following research question was formed: What are some factors that characterize software

reuse by external developers in a public good software ecosystem?

Software reuse refers to the use of software which is not created to be used directly by end-

users, but rather to be used by developers to create new software. Thus, software reuse does not

include modifying the source code of an existing software application in the context of this

thesis. External developers refer to software developers that are disconnected from where the

shared software platform is developed in the software ecosystem. Public goods are described

by Sahay (2019) as “those whose benefits cannot be confined to a single or a set of buyers, for

example, street names and a clean environment” (p. 1). This limits the research question to

software ecosystems which are not based on a goal of generating revenue.

I explore the research question by 1) investigating the DHIS2 software ecosystem and software

reuse by external developers in India, 2) by participating in the development of new software

packages for the DHIS2 software ecosystem and introducing these to external developers in

India.

By answering the research question, I hope to contribute to the software reuse literature, as well

as to software ecosystem literature which can be found in the field of both Information Systems

(IS) and Software Engineering (SE). Practically, it could help platform owners to design

reusable software and related tools for enabling innovation in software ecosystems. Finally, I

hope the results may aid the HISP project to empower the global south to develop innovative

solutions.

1.3 Thesis Structure

Chapter 2 - Background

3

Information about the context surrounding the empirical case of the research. This includes the

HISP network, the DHIS2 platform, a HISP India project I participated in, and India.

Chapter 3 - Related Literature

Fundamental theoretical concepts within software ecosystems. Concepts surrounding software

reuse are introduced including design infrastructure and design systems. The theoretical lens is

established.

Chapter 4 - Methodology

Describes how the research was conducted including the epistemological basis, research design,

and methods used for data collection and analysis. Concludes with ethical remarks.

Chapter 5 - Results

Presents data about the DHIS2 software ecosystem, reusable software and software reuse tools

for DHIS2 app development. Experiences from HISP India project implementing DHIS2 and

software reuse practices in HISP India is also described.

Chapter 6 - Analysis & Discussion

Analysis and discussion based on the results. Factors which characterize software reuse by

external developers in public good ecosystems are presented.

Chapter 7 - Conclusion

The research is summarized, and the research question is answered. Reflects on theoretical and

practical implications.

4

2 Background

The context surrounding the software ecosystem behind the empirical case the research project

is described in this chapter. First, with the history and the current form of the HISP network

with a focus on HISP India and HISP UiO, where most of the data was gathered. Then the

DHIS2 platform is outlined. The chapter also includes background information on India and

HISP India projected I participated in.

2.1 HISP

The Health Information System Program (HISP) started in postapartheid South Africa during

the 1990s (Braa & Hedberg, 2002). It was founded by activists in the antiapartheid movement.

The goal was to develop a Health Information System (HIS) supporting the district level of the

health sector.

District Health Information Software (DHIS) was developed and implemented in South Africa

in 1998 (Braa, Monteiro, & Sahay, 2004). After spreading to other countries in the global south,

an international version of DHIS was released (Titlestad, Staring, & Braa, 2009). While the

software itself was open source, it used the proprietary database system Microsoft (MS) Access.

Also, users needed to have MS Windows and MS Office. In 2004 the development of DHIS2

started at the University of Oslo (UiO) (Braa & Sahay, 2017).

HISP is a network consisting of ten HISP nodes in the global south, along with HISP UiO

located in Oslo (Nielsen, 2019). Members in the HISP nodes include health professionals,

software developers, students, researchers, and others. Some HISP nodes are linked directly to

universities, while others are independent organizations. An international PhD program and

several master’s programs in developing countries have been funded through the HISP network

(Titlestad et al., 2009). Additionally, several courses at the Department of Informatics of UiO

involve HISP in some way.

The development of DHIS2 is funded by donors such as the Norwegian Agency for

Development Cooperation (Norad), PEPFAR, and the Global Fund. DHIS2 is not used by HISP

UiO for revenue growth, but rather as a public good. The other HISP nodes do not receive

funding through the funding of the DHIS2 development and are financially independent of

5

HISP UiO. They are largely sustained through contracts with governmental and non-

governmental organizations.

HISP India was involved when DHIS2 was first piloted in India in 2006 (Titlestad et al., 2009).

It is a non-profit organization with the main office in a city right outside New Delhi. HISP India

has around 30 employees. Two of their six developers can be considered senior developers with

many years of experience in the organization. The majority of the other employees are health

information experts. The rest include administrative workers and system administrators.

2.2 DHIS2

HISP considers DHIS2 a public good, derived from the aim “to support local management of

health care delivery and information flows in selected health facilities, districts, and provinces,

and its further spread within and across developing countries.” DHIS2 was originally designed

as a HIS to report and analyze aggregated health data. It has since then evolved to track patient-

wise data. DHIS2 is mostly implemented in the global south, where resources can be scarce

(Msiska & Nielsen, 2018, p. 399). Figure 2-1 displays where DHIS2 is implemented as a HIS.

Figure 2-1: DHIS2 implanted as a HIS (from DHIS2, n.d.-b). Dark green = national. Medium green = Indian

state. Light green = pilot.

DHIS2 is a generic system, in that it can be used for many purposes. Lately, it has even been

used outside the health domain, in the education sector in Gambia and Uganda. DHIS2 cannot

6

be used out-of-box. Implementers must configure its metadata. Implementing DHIS2 does not

necessarily involve any software development. It is not uncommon for implementers to use

DHIS2 exclusively by exclusively configuring metadata. This implementation approach has a

low cost associated with it, due to not needing software developers. For some use cases, there

have also been released preconfigured metadata packages. HISP has released the COVID-19

Surveillance Digital Data Package (DHIS2, n.d.-a) and the World Health Organization has

released configuration packages for several use-cases (World Health Organization, n.d.).

The DHIS2 platform has a modular architecture. The backend of DHIS2 is written in Java. It

supports multiple database systems, although only use with PostgreSQL is officially

documented. The frontend consists of several apps. These communicate with the backend

through an API using the REST architectural style. The API is a module which allows systems

to access and manipulate data in the backend. HISP UiO maintains the DHIS platform and a

series of bundled apps, which are preinstalled in DHIS2. For this reason, the bundled apps can

be considered to be part of the platform itself. A screenshot of the Dashboard app, a bundled

apps which acts as the default “home” app can be seen in figure 2-2. Major versions of DHIS2

are released about two times a year.

Figure 2-2: The DHIS2 dashboard app (version 2.34.0 from DHIS2, n.d.-c)

7

DHIS2 is Free and Open-Source (FOSS). It is licensed with the permissive BSD 3-Clause

license, which has minimal restrictions on the use and distribution of the software. This license

allows anyone to access, alter, republish, and profit monetarily from the source code. The

bundled apps and other software maintained by HISP UiO are typically also permissively

licensed. This allows implementers of DHIS2 to modify and replace the bundled apps.

The DHIS2 API is can be accessed through network requests, allowing external developers to

create their apps, which can be installed in the system. There is also the DHIS2 App Hub, where

third-party apps can be published, allowing others to install them in their DHIS2 instance.

Several Android applications and resources for creating them also exist for DHIS2. However,

the DHIS2 Android software ecosystem is not covered in this thesis.

2.3 India

The Republic of India became an independent nation in 1947. The country split into India and

Pakistan, while Bangladesh later became independent of Pakistan. Territorial disputes have

since then led to several wars with Pakistan. India shares its borders with Pakistan, China,

Nepal, Bhutan, Bangladesh, and Myanmar. There are several hundred languages spoken in

India. Each state in India has one or more official languages. Hindi is spoken by the majority

of the population, while English is often used for business in some areas. The largest religion

in India is by far Hinduism, but Islam also has a substantial presence. Christianity, Sikhism,

Buddhism, Jainism, and other religions are present.

As of 2019, India is the second-most populous country in the world (United Nations, 2019, p.

12). It currently has about 1,37 inhabitants (18 % of the global total) and has been projected to

surpass China as the world's most populous country around the year 2027 (United Nations,

2019, p. 12). India has in recent years had one of the fastest-growing economies in the world

(International Monetary Fund, 2019, p. 5). However, the economic growth has slowed down,

unemployment is high, and labour force participation has decreased (International Monetary

Fund, 2019, p. 5).

In the 1980’s India softened its restrictive IT policies, leading to better availability of computers

in the country (Subramanian, 2006, p. 38). Moreover, the new policies helped in slowing down

the “brain drain” (Subramanian, 2006, p. 38) or “body-shopping”, where India lost many IT

8

experts to the United States and Europe (Nicholson, Sahay, & Heeks, 2018, p. 532). Since then,

the IT and software development sectors have been among the fastest-growing sectors in India

(D’Mello, 2005, p. 7; Garg & Varma, 2008). However, the authors state:

Recent trends and studies exhibit that the lack of adequately trained professionals will

be a major roadblock in sustenance and further growth of this industry in India. This lacuna

is a direct result of poor Software Engineering (SE) education and training infrastructure in

the country. (Garg & Varma, 2008, p. 110)

2.4 AMR Surveillance System

Antimicrobial resistance (AMR) is the ability of microorganisms to develop partial or complete

immunity to antimicrobial drugs. It is among the recently published thirteen health challenges

for the next decade by the World Health Organization (2020, January 13). A review

commissioned from the United Kingdom government from 2014 estimates that AMR could

cause 10 million deaths by 2050 if no preventative action is taken (O’Neill, 2014).

In 2013 the Indian Council of Medical Research (IMCR) launched the Antimicrobial Resistance

Surveillance and Research Network for the “purpose of strengthening surveillance and

rationalizing exploratory research” (Indian Council of Medical Research, n.d.-a). ICMR

developed a web-based system to enter and analyze AMR data. ICMR was happy about the

system and considered it “user-friendly” (Indian Council of Medical Research, n.d.-b).

However, ICMR had ambitions for the system to be used across all of India and internationally.

In 2018 ICMR and HISP India started a project to develop a new system, based on the DHIS2

platform, to replace IMCR’s existing system. The decision to migrate to a DHIS2 based system

was motivated by arguments that the platform architecture of DHIS2 would make further

development of the system more sustainable. This system became known as the AMR

Surveillance System (AMRSS).

2.5 Summary

HISP is a global network of researchers and practitioners where the goal is to strengthen Health

Information Systems. The main output of the network is the DHIS2 platform. It is a public

good, used mainly in the global south. DHIS2 has a modular architecture and its API supports

9

the development of apps. India is a developing country with a large and growing software

sector. AMRSS is a HISP India project based on the DHIS2 platform.

10

3 Related Literature

This thesis aims to explore the role of software reuse in enabling innovation by external

developers in public good software ecosystems. To do so, it is necessary to clarify exactly what

is meant by software ecosystems. Concepts related to software reuse in software ecosystems

are also introduced, including design infrastructure, design systems, and software packages.

The chapter ends with a summary of the concepts used as the theoretical lens for the research.

3.1 Software Ecosystems

In the context of this thesis, software ecosystems are collections of software that evolve together

through a common software platform. Specifically, software ecosystems consist of “a software

platform, a set of internal and external developers and a community of domain experts in service

to a community of users that compose relevant solution elements to satisfy their needs” (Bosch

& Bosch-Sijtsema, 2010, p. 68).

A typical reason for a product to evolve into a software ecosystem is that the amount

functionality that the users need is not feasible to develop without contribution from external

developers (Bosch, 2009, p. 111; van den Berk et al., 2010, p. 127). Similarly, the mass

customization trend where single users or groups of users want something specifically tailored

to them (Bosch, 2009, p. 111). Again, with a large heterogeneous user group, it is difficult for

an organization to deliver products on this scale. External developers contribute to the

ecosystem by developing extensions, or apps. However, the apps which are useful to large

amounts of users can be absorbed into the platform (Bosch, 2009, p. 111). Thus, external

developers can also contribute indirectly to the platform itself, by apps being platformized

(Bosch, 2009, p. 111).

3.1.1 Actors in Software Ecosystems

Actors and their interaction are an important part of software ecosystems (Manikas & Hansen,

2013, p. 1300). The orchestrator, the niche player, and the customer are three common actors

referred to in the software ecosystem literature (Manikas & Hansen, 2013, p. 1301).

The orchestrator runs the platform of the ecosystem and manages the ecosystem. Others often

refer to the orchestrator as the platform owner. Orchestrators can develop strategies to keep the

11

software ecosystem health by maximizing the profitability of other actors in the ecosystem

(Jansen et al., 2009, p. 187). As an example, how should the platform be open to external actors?

Strategies for opening up a platform include using a permissive open source licensing and by

open APIs (Alsbaugh, et al., 2009; Jansen et al., 2009, p. 188).

External developers, which this thesis uses as the term for niche players, add new apps to the

platform. The apps are an important part of the software ecosystem as they have a major

influence on the platform’s success. Policies and strategies from the orchestrator enable and

constrain niche players. Apple enforces a strict approval policy for apps entering the iOS App

Store to assure quality. “Choosing the right balance between quality and innovation is vital for

ecosystem health” (van den Berk et al., 2010, p. 130). Software ecosystems both need to attract

external developers and maintain the quality of the software created by external developers.

The customer is the actor who acquires and uses the apps in the software ecosystem. This can

be a person or an organization.

3.2 Software Reuse

The architecture of a software platform, which can include reusable software, has a role for the

orchestrator’s management of external developers in a software ecosystem (van den Berk et al.,

2010). This section presents the literature used for software reuse. Specifically, software

“designed to be reused and to provide functionality to other software projects” (Haefliger, von

Krogh, & Spaeth, 2008, p. 180), in contrast to software which can be used by end-users directly.

Also, two highly relevant concepts related to software reuse for the empirical case are

introduced; design infrastructure and design systems.

It has been argued that reusing software can improve productivity (Banker & Kauffman, 1991)

and reduce defects (Basili, Briand, & Melo, 1996; Lim, 1994; Mohagheghi, Conradi, Killi, &

Schwarz, 2004), even to the extent of reducing the cost and time to market by a factor of ten or

more (Schmid & Verlage, 2002, p. 50).

However, the act of developing and maintaining reusable software is not free (Lim, 1994), and

is an investment that may or may not be successful (Barns & Bollinger, 1991). There are also

possible negative aspects of reusing software. Some risks include “security vulnerabilities,

license violations, and breaking changes” (Eghan, Alqahtani, Forbes, & Rilling, 2019, p. 1109).

12

The most famous example of software reuse gone wrong is perhaps the Heartbleed vulnerability

in OpenSSL (Carvalho, DeMott, Ford, & Wheeler, 2014). Another example is the “leftpad

incident” which caused issues for many popular services such as Facebook and Netflix

(Hejderup, van Deursen, & Gousios, 2018, p. 101). The incident was caused by the removal of

a version of a software package, which consisted of just three lines of code. Many developers

reuse trivial software packages, believing they are well tested, despite it often not being the case

(Abdalkareem, Oda, Mujahid, & Shihab, 2020).

Barns & Bollinger (1991) view reusable software as a subset of reusable work products. As

examples of reusable work products, the article mentions requirements specifications, designs,

code modules, documentation, test data, and customized tools (p. 14). Fischer (1987) argues

that software reuse tools are necessary for developers to understand software components and

how to use them. Fischer (1987, p. 71) states: “Knowing about the existence of components is

not trivial, especially as the number of components grows. And if you do find a potentially

useful component, you must determine how it must be used and combined with the other

components. You must understand its functionality and its properties [...].” Lim (1994, p. 27)

points to a lack of tools for reuse to cause decreased productivity when reusing work.

Software packages are reusable software which published, making it available for other actors.

One way of distributing software packages is through a package manager. Many programming

languages have a package manager. For instance, npm for JavaScript and PyPI for Python.

These package managers can be considered platforms which form software ecosystems. While

package managers may make software packages easily available, selecting the most appropriate

software package is not a trivial task (Mili, H., Mili, F., & Mili, A., 1995; de la Mora & Nadi,

2018).

3.2.1 Design Infrastructure

Li & Nielsen (2019) introduced a framework to analyze generic software from a design

perspective. They argue that design often happens at two levels. First, generic-level design,

which is “the design process unfolding during the development of the generic software

product”. Secondly, implementation-level design, which unfolds “during the implementation

of the generic software product”. Design infrastructure is the technical and social resources that

can be used to customize the product during implementation-level design. Examples of these

resources include APIs, documentation, software packages, and training.

13

Figure 3-1: Levels and types of design (from Li & Nielsen, 2019)

Li & Nielsen (2019) argues that designers at the generic level should focus on the meta-usability

of the product. That is, to provide a good design infrastructure for the implementers of the

product. Creating extensions of the software in the form of apps may be one solution to mitigate

the usability problems we see in generic software (Li, 2019a; Li, 2019b). However, this option

has its own set own challenges such as requiring programming competence and maintaining the

software (Li, forthcoming). The difference in terms of resources needed between implementing

software with configuration alone and by customization with code can be large, a transition

sometimes referred to as the customization cliff (Czarnecki et al., 2006). Design systems have

been suggested as an example of a tool that may lower the resources needed to develop apps

and to help strike a balance between generic functionality and usability (Li, 2019a; Li, 2019b).

3.2.2 Design Systems

Vesselov & Davis (2019) describe design systems as “a series of documented elements,

components, and regions that include both design and front-end guidelines” (p. 16). Figure 3-2

as a whole, is an example of such a region. The region contains multiple components, like

buttons. The buttons, in turn, contains labels and borders, or elements. This way of breaking

down a user interface (UI) into smaller building blocks is similar to atomic design as introduces

by Frost (2016). In atomic design, these building blocks are described as atoms, molecules, and

organisms.

14

Figure 3-2: A region built from a series of components (from Vesselov & Davis, 2019, p.15)

Component libraries, which is the term this thesis uses to refer to software packages of UI

modules of varying sizes, are perhaps the most important product of a design system.

Component libraries are extremely popular. As of January 2020, the most popular of the myriad

of component libraries that exist, Bootstrap, is the sixth most forked and starred repository in

GitHub. Frost (2016) points to development speed and design consistency being two of the

most important perceived benefits. On the other hand, different products may look too generic

if they use the same components, the size of the package may lead to worse performance, and

the time spent modifying or customizing the components may outweigh the gains you get from

using the component library in the first place. Vesselov and Davis (2019, pp. 25-50) also look

to speed and consistency. Used as an example, you can make changes across multiple pages or

products when you make a change to a single component. This is the essence of the DRY (Don’t

Repeat Yourself) principle (Hunt & Thomas, 2000).

Apart from the component library, a design system typically includes what is often referred to

as a style guide (Vesselov & Davis, 2019, pp. 15-16). While a component library itself should

include documentation of how to use the components and how to create new ones, a style guide

documents design principles. These principles are guidelines for how the products should work

and look. For example, you may define which colours you should use or how to communicate

with the user.

Both Frost (2016) and Vesselov & Davis (2019, pp. 25-50) stresses the importance of getting

buy-in from all the important actors. Frost (2016) says that even though third parties have

limited influence on design systems due to being outside the organization, they are in a good

position to provide a perspective that is hard for insiders to have.

3.3 Summary of Concepts

This section summarizes the central concepts used as the theoretical lens for this thesis. Table

3-1 describes concepts related to software reuse by external developers in software ecosystems.

15

Software ecosystem Internal and external developers creating software based on

a shared software platform for customers

Shared software platform The shared software system apps are based on

Orchestrator The actor in the software ecosystem which manages the

software ecosystem

Internal developers The actors that develop the shared software platform. The

orchestrator often includes internal developers.

External developers The actors that develop apps for the software ecosystem.

The orchestrator does not include external developers.

Customers The actors that acquire or uses apps in the software

ecosystem.

Software reuse Software that is designed to be reused to develop new

software, rather than designed for end-use

Software package Reusable software that is published

Software reuse tools Resources that help developers understand and use reusable

software

Design infrastructure The technical and social resources that are used to

implement software

Design system A documented UI component library and a style guide

16

Atomic principles Reusing smaller UI components to create larger UI

components. The UI components are organized into atoms,

molecules, and organisms.

UI component library Reusable software, often a software package, that includes

UI modules of varying sizes

Style guide Documentation of design principles for how software

should look and work

Table 3-1 Concepts related to software reuse by external developers in software ecosystems

Figure 3-3 visualizes the interaction between actors through artifacts in a software ecosystem.

The orchestrator manages the software ecosystem. They also maintain the shared software

platform through their internal developers. Internal developers also manage the design

infrastructure for software reuse. That is, the reusable software and the tools that help

developers understand and use it. The external developers develop apps using the software

platform and the design infrastructure for software reuse. Customers acquire and use the apps.

Figure 3-3: Interaction between actors through artifacts in software ecosystems

17

4 Methodology

This research project aims to explore the role of resources in the fringes of software ecosystems.

DHIS2, HISP India, and wider HISP network served as the empirical case for the research. I

researched this by investigating the DHIS2 software ecosystem, and by creating and introducing

resources to HISP India. This chapter details the methodology behind how this was done. The

chapter begins by clarifying the epistemological basis of the research. Then, how the research

was designed and how it evolved. Later, methods used during data collection and analysis are

described. The chapter concludes with some ethical remarks.

4.1 Epistemology

Clearly defining one’s philosophical assumptions when doing research is crucial, as it “affects

every aspect of the research process, from how the evidence is collected to how the results are

interpreted” (Atkins & Sampson, 2002, p. 102). Despite being important, it is often neglected

(Checkland & Holwell, 1998, pp. 14, 17). Similarly, “we are all biased by our own background,

knowledge and prejudices to see things in certain ways and not others” (Walsham, 2006, p.

321). For these reasons, I will discuss the epistemological stance this research project is based

on. In other words, the assumptions of what knowledge is, and how to obtain it (Hirschheim,

1985, p. 10).

This research project is based on interpretive metaphysical assumptions. Interpretivism is a

view where knowledge is socially constructed by human actors (Walsham, 1995, p. 376). Both

researchers and subjects are affected by their subjective preconceptions. As a consequence,

objective data cannot be collected. Knowledge is generated by understanding social interaction.

Thus, to generate knowledge “researchers need to engage in the social setting investigated and

learn how the interaction takes place from the participants’ perspective” (Chen & Hirschheim,

2004, p. 201).

IS research has since the 90’s been more accepting of interpretive literature, after a long

dominance of positivism (Chen & Hirschheim, 2004; Walsham, 1995). A notable sign of this

change was when MIS Quarterly call for papers based on interpretive methods in 1993

(DeSanctis, 1993, p. vii). Hirshheim (1985, p. 10, 32) argues that because IS are socio-technical

systems, the IS literature benefits from epistemological pluralism. Interpretivism and studying

18

systems development in a socio-technical manner (Bansler, 1988) speaks to me as a researcher

on a personal level.

4.2 Research Design

The aim of the research began broadly, by studying how HISP India implemented DHIS2 to fit

local needs. The research design evolved through an iterative approach, which is common for

qualitative research (Greenhalgh & Taylor, 1997, p. 740). The first field trip to India, lasting

four weeks, was used to identify problems HISP India faced developing DHIS2 apps. The eight

months between the first and second field trip was used to narrow down the research theme,

formulate a research question, and plan for how data was to be collected and analyzed. An

overview of the field trips to India and important events in 2019 is visualized in figure 4-1.

Figure 4-1: Field trips to India and important events in 2019

Prior to the first field trip, I had already agreed to participate to implement in one of HISP

India’s projects. This made me a highly involved researcher. I also argue that interventions,

where resources were introduced to the organization, was a better approach to answering the

research question, rather than more passive methodologies. Thus, Action Research (AR) was

chosen as the methodology. I was also inherently biased towards following AR by being part

of the overarching HISP project, where many research projects are based on AR. The HISP

project in itself can be viewed as a single AR project (Braa et al., 2004). Still, why would an

inexperienced researcher attempt to use a methodology in an untested field? In addition to being

appropriate for the research question, I also valued that AR has acceptance in several contexts

relevant to my case. AR is widely used in the IS literature. Baskerville & Wood-Harper argues

that “IS seems to be a very appropriate field for the use of action research methods” (1998, p.

19

90). Also, AR can be based on interpretivism (Goldkuhl, 2012b, p. 142; Klein & Myers, 1999,

p. 69; Walsham, 2006, p. 321).

AR is practised in many different ways in IS (Baskerville & Wood-Harper, 1998; Elden &

Chisholm, 1993). Therefore, it is crucial to specify how the AR methodology is used. This

research was designed with the principles for canonical AR in mind (Davison, Martinsons, &

Kock, 2004). The research methodology later evolved to be more similar to that of Action Case

(AC) (Vidgen & Braa, 1997; Braa & Vidgen, 1999). It should be noted that Vidgen & Braa

(1997) positions AC as a hybrid methodology based on AR and a case study, not as a type of

AR. This is illustrated in figure 4-2. However, Goldkuhl (2012a) argues that “AR endeavours

are intervention oriented cases studies” (p. 64) in reference to AC as an example of AR.

Baskerville & Wood-Harper (1998) notes that “a substantial portion of the action research

published in the IS field may have been mischaracterized as case research” (p. 105) while

arguing for wider acceptance of variety within AR.

Figure 4-2: Action case as a hybrid methodology (from Braa & Vidgen, 1999)

The cause of what lead to the methodology evolving to be more in line with AC was the

postponement of the development of an app. Interventions were planned to involve a HISP

India developer during the creation of this app. Due to this, the research project ended up

comprising of interventions of smaller scale and to the intervention phases being shorter. Both

are factors that differentiate AC from AR (Vidgen & Braa, 1997, p. 538).

4.3 Methods

20

This research project utilized methodological triangulation (Thurmond, 2001), where multiple

methods were used for data collection and analysis. Also, data collection was done on multiple

sites. Otherwise known as data triangulation (Thurmond, 2001). Triangulation types were used

to increase the validity of the findings. While the main group of interest was the HISP India

developer, I argue that the inclusion of HISP UiO developers and university students enriched

the research. The university students added perspective to what developers with limited

knowledge about certain technologies could produce. In contrast, the HISP UiO team provided

data from an expert’s point of view.

This section is divided into methods used during data collection and analysis. It should be noted

that this research project cannot be stringently dived into phases of data collection and analysis.

Instead, these phases intersected. This is also true for the presented methods. I would, for

example, say that the interviews involved analysis.

4.3.1 Data Collection

Participant Observation

Most of the time during the field trips were spent working together with HISP India employees

involved with the AMRSS project at their main office. This involved writing code, attending

meetings, analyzing existing solutions, gathering requirements, and collecting feedback. My

involvement also continued remotely in-between field trips. Despite noticeable cultural

differences, they were welcoming to the extent that I felt like I was part of their team. I joined

HISP members to visits in the field relevant to the AMRSS project. A picture taken from a

hospital piloting AMRSS can be seen in figure 4-3.

21

Figure 4-3: Field visit to a hospital using DHIS2 apps

I also made contributions to the globally used DHIS2 related software packages in the form of

code and by creating issues. This gave me insight into how these could be used and how outside

parties could make contributions. It also helped mature the software packages to be used in the

UiO course and HISP India.

Interviews

Countless unstructured interviews were held at the HISP India office. Some of these resembled

“friendly conversation with no predetermined focus” (Crang & Cook, 2007, p. 60). Other times

the interviewees were approached with the goal of data collection. These interviews were

mostly held where others could listen in at, for instance at the lunch table. Additionally,

unstructured interviews were also held at the HISP office in Oslo where the participants were

developers from HISP India visiting developers from other HISP nodes, researchers, and other

people involved in the HISP project.

Two semi-structured interviews were held with HISP India developers. One with a senior

developer with more than five years of experience in the organization, The other, a developer

with less than a year of experience. The audio was not recorded in the first interview as the

interviewee was unconformable with the recording. Detailed notes were taken during the

interview, and it was transcribed from memory as soon as it was over. I was more familiar with

22

the second interviewee, and less concerned that the act of recording would affect the interview

negatively, such as causing “the interviewee less open or less truthful” (Walsham, 2006, p.

232). A third semi-structured interview was also held with a senior developer from the HISP

UiO team.

Workshops

Several workshops have been part of the data collection. These workshops had sessions of

discussions that were similar to what you would expect of group interviews.

The DHIS2 Application Platform Workshop was held by me, a HISP UiO developer, and a

member from the DHIS2 Design Lab. All six of the local HISP India developers participated.

The goal behind the workshop, which lasted two days, was to introduce new resources for

developing DHIS2 apps and to get feedback from the HISP India developers. The workshop

consisted of presentations, live coding sessions, and discussions. Pictures from the workshop

can be seen in figure 4-4.

Figure 4-4: The DHIS2 Application Platform Workshop

23

As a member of the DHIS2 Design Lab, I was also involved in the DHIS2 Design Workshop

held in New Delhi. The topic was implementation-level design. Specifically, different ways of

implementing DHIS2 and techniques for doing so. A picture from a group discussion is

displayed in figure 4-5.

Figure 4-5: Group discussion during the Design Lab Workshop

Another workshop was organized through the DHIS2 Design Lab, where the topic was Design

Systems. Two architects behind a design system used in a multinational company and key

contributors to a design system for DHIS2 from HISP UiO attended. Teacher’s assistant from

a UiO course, where students develop DHIS2 apps, also attended.

Finally, a workshop was held in Oslo related to the HISP India project I contributed to. Health

domain experts and technical experts from around the world gathered for discussions. A

prototype for a DHIS2 app created with the help of new DHIS2 software packages was

presented.

Document Reviews

The documentation of DHIS2 along with its related software packages and the software itself

was studied. This was also done for software developed by HISP India. Both the HISP UiO and

HISP India host their software on GitHub. Additionally, much of the HISP UiO team’s

24

correspondence is public on GitHub. Emails from participants in a HISP India project and chat

messages were also analyzed.

4.3.2 Analysis

Hermeneutics

Hermeneutics was used as a method for analysis. The hermeneutic circle (Myers, 2004, pp.

107-109), one of the principles of the method, was heavily utilized in the research project. This

principle refers to a constant alternation between understanding an object as a whole and

understanding its parts. Understanding parts leads to understanding the whole, and vice-versa.

Similarly, the method was used to understand the problem of the research project and its parts.

Several times in the research project misunderstandings were clarified which later changed my

holistic perspective of the research problem.

Thematic Analysis

Thematic analysis (Braun & Clarke, 2006) was used to identify and analyze themes in the data.

Data was organized in a spreadsheet with codes assigned to it. Braun and Clarke (2006) describe

the inductive approach to thematic analysis as being data-driven, where the themes are “not be

driven by the researcher’s theoretical interest in the area or topic” (p. 83). The research question

was already defined, and themes were related to the research question. Thus, thematic analysis

was done through a theoretical approach, as described by Braun and Clarke (2006, p.84). The

factors presented in chapter six and seven are derived from interpreting the themes.

4.4 Research Ethics

4.4.1 Data Protection

The Norwegian Centre for Research Data (NSD) was notified about the research project. NSD

assessed it to be in accordance with the requirements of data protection legislation. Participants

in the semi-structured interviews signed a consent form assessed by NSD. As required, the

consent form included details of the research project and their data protection rights. As for

other forms of participation, such as through the workshops, HISP India was aware of the

research done through the DHIS2 Design Lab. HISP India has participated in several HISP

25

research projects, including several master theses. Some HISP India members are themselves,

researchers. Thus, the organization was more familiar with the nature of research than what a

researcher may find in other contexts.

4.4.2 Research Outcomes

I have aimed to identify a real-world problem impacting the HISP India developers, attempted

to alleviate it through interventions. In words of Bang (2018, May 3): “Research with the

people.” The participants of HISP have given me a considerable amount of their time. Some of

it through participation in the AMRSS project where we worked together towards our goal.

While some of it, like in interviews, mainly served to aid this research. Besides, I’ve received

a considerable amount of help from HISP India for accommodation for the field trips.

Through my involvement as a software developer, I have given practical contributions to HISP

India. I have also provided tools and knowledge through my participation and interventions

related to reusable software for DHIS2 app development. Though I have certainly learned much

from the HISP India developers.

It is challenging to assess to what degree the theoretical outcomes are helpful to HISP India. I

do consider it plausible this research may have a positive impact on the DHIS software

ecosystem, and thus be an indirect contribution to HISP India. Giving a voice to the external

developers in the DHIS2 software ecosystem has been one of the goals of the research.

26

5 Results

This chapter presents the results of the research. It starts by describing the DHIS2 software

ecosystem and how apps can be developed within it. Then the DHIS2 design infrastructure for

software reuse by external app developers is outlined with experiences of how it has been used.

Later, software reuse in AMRSS (a HISP project I participated in) is described. The chapter

ends with software reuse practices in HISP India.

5.1 DHIS2 Software Ecosystem

DHIS2 has evolved from being a proprietary desktop-based software to be a modular app-based

software platform. HISP UiO is putting increasingly more resources into creating resources

which makes it easier to create apps for the platform for both internal and external developers.

Over 30 apps are maintained by HISP UiO. These are the bundled apps, which come

preinstalled with DHIS2. Because the four latest versions of DHIS2 are supported, four versions

of each app are regularly maintained with updates. Some of the bundled apps have their origin

from external developers in other HISP nodes. For example, the DHIS2 dashboard app

displayed in figure 2-2 was inspired by a similar solution created by HISP India. The DHIS2

App Hub stores apps which can be installed to a local DHIS2 instance. However, there is no

documented process for how an external developer can submit an app to be added to it.

5.1.1 DHIS2 Apps

Figure 5-1 illustrates the parts which make up a DHIS2 app, where the application category

represents the parts that are unique to each app. DHIS2 apps have a lot in common such as,

shared UI components, language handling, API calls, and authentication. Yet many of the

common parts are handled by the apps themselves, often in different ways. For example, the

apps do not all use the same software packages to build the apps. The team saw this as a major

opportunity to reduce their workload and decided to develop several software packages and

complementary resources to address this.

27

Figure 5-1: Parts which make up DHIS2 apps (from McGee, 2019)

HISP UiO also started actively promoting new software packages to external developers. The

software packages were not only reasoned to improve productivity internally, but also improve

app development productivity for external developers. One HISP UiO developer stated that

instead of waiting for HISP UiO to add functionality to the DHIS2 core platform, external

developers could instead implement it faster themselves. A HISP India employee explained that

they had largely stopped making requests to HISP UiO for new features. The HISP India

employee stated that: “It may not even be implemented. And even if it does, it may take three

years to be implemented.”

By having external developers use the software packages, HISP UiO also hoped that it would

improve the software and the documentation. Which in turn would make it easier for HISP UiO

to onboard new developers. Finally, HISP UiO saw this as an opportunity to create a more

connected community, where the external developers were not working in isolation. The new

28

software packages were also mandatory to use for students in a UiO course during the fall of

2019. The students found many issues with the documentation and the software packages,

which help improve the software packages and the tools for using them.

5.1.2 Customization in DHIS2

Implementing DHIS2 does not necessarily involve developing new apps. Existing apps are

often customized and replaced by developers who are not the original author. HISP UiO hosts

their DHIS2-related source code publicly on GitHub, with permissive FOSS licensing. HISP

India also hosts its source code publicly on GitHub, although most repositories lack a license.

This is also true for HISP Uganda and HISP Tanzania. Committing to “free and open source

software and standards” is one of the guiding principles for the HISP network (Nielsen, 2019,

April 27). However, without an explicit license, reusing source code is not legally possible.

As a result of the FOSS nature of platform DHIS2, external developers may alter, or “fork”,

software assets in the ecosystem to fit their own needs. This is something that the HISP India

developers often do. As of February 2020, 27 of the 171 repositories hosted in HISP India’s

organization on GitHub are forks of repositories developed by the HISP UiO. HISP India is

frequently forced to customize the platform core because government-mandated security audits

find security issues. HISP India considers customizing the platform core as an undesired

approach. The reason being that the code base is very complex. Also, over the years as they are

doing fewer changes to the platform core they are losing more and more familiarity with the

codebase. For small changes, HISP India often customizes the bundled apps. As with the core,

this means that HISP India has to maintain the apps themselves if they want to use them with

new releases of DHIS2. Another issue is that the apps are sometimes completely rebuilt by the

HISP UiO, which you then may not be able to use. As one developer said: “We don’t want to

spend time on something that will be absolute in the next version.”

As described in section 2.2, DHIS2 can also by configuring metadata and using the bundled

apps. This implementation approach is often favoured in HISP India. Other approaches are

usually only considered when the bundled apps do have the necessary functionality.

5.2 DHIS2 App Design Infrastructure

29

5.2.1 Reusable Software

Legacy Software Packages

Over the years, the HISP UiO team has developed many software packages. While they were

created primarily for internal use, they were published publicly on npm, a package manager for

JavaScript. Two prominent software packages, D2 and D2-UI, have been deprecated and

replaced by new software packages.

D2 was used for DHIS2 data management inside the app and to make it easier to exchange data

through DHIS2 API network requests.

D2-UI was made to ensure visual consistency between the bundled apps. D2-UI is a UI

component library. It includes small components such as buttons and larger components such

as advanced tables. The components are based on Material-UI, a component library inspired by

Google’s design system, Material Design. The dependency on Material-UI created some

challenges due to the lack of control. For example, the component used for picking the date

and/or time was discontinued by Material-UI. This an important component in the DHIS2

ecosystem, and quite advanced as DHIS2 supports many other calendars than just the Gregorian

calendar.

Component Library

The DHIS2 component library is available through a software package. It has replaced D2-UI.

Some components are simple, like buttons. Other components are complex and include

functionality to exchange data through the DHIS2 API, like the DHIS2 header bar displayed in

figure 5-2.

Figure 5-2: The DHIS2 header bar

The HISP India developers were introduced to the component library in January 2019. At this

point, the component library was not officially released. However, it did include the most

important components such as the DHIS2 header bar. The component library was also used in

apps that I developed together with HISP India for the AMRSS project. Except for these apps,

30

the component library has seen little use in HISP India. The major concerns were the lack of

support for their JavaScript framework of choice and the fact that it was not yet widely used by

the HISP UiO developers in the bundled apps. The component library was released as

production-ready March 2019.

Application Platform

In 2019 HISP UiO began developing a series of software packages, which would later be known

as the DHIS Application Platform. As illustrated in figure 5.2, a lot of the parts which make up

a DHIS2 app are common. The DHIS2 Application Platform was designed a unified framework

to develop DHIS2 apps by handling these parts and automate when it was possible.

A new software package to handle API calls using modern React features was made. This

replaced the old D2 software package. Another software package was made to handle

bootstrapping a new DHIS2 app, starting up the app for development, testing the app, and

building the app. Other common features were also handled by software packages such as

authentication, translation, and error handling.

The software packages, including the DHIS2 component library, were added as dependencies

to the DHIS2 Application Platform. Thus, new apps bootstrapped with the DHIS2 Application

Platform have the software packages as dependencies. It was released as production-ready in

August 2019. The software packages are implemented using the React JavaScript framework.

This means that developers who wish to use them are forced to use React. The HISP India

developer uses the Angular JavaScript framework for the vast majority of their apps.

In October 2019 the DHIS2 Application Platform Workshop was held at the HISP India main

office. The workshop was held by the DHIS2 Design Lab and one of the main HISP UiO

developers behind the DHIS2 Application Platform, while the HISP India developers attended.

The workshop included presentations, live coding sessions, discussion, and assignments where

the HISP India developers spent two days developing small applications using the DHIS2

Application Platform.

The HISP India developers were largely positive about the new way of developing apps. One

major reason was that it made tedious pain points trivial, such as bootstrapping an application

and the header bar implementation. As one of the developers said: “The header bar itself is

reason enough to use it [the DHIS2 Application Platform]”. Another developer who had made

31

a new app a month earlier had trouble with the header. He had accidentally used an older version

of the header bar which was inconsistent with the header bar used in the other app used on the

DHIS2 instance. When he realized this, he attempted to upgrade to a newer version. However,

due to a lack of documentation and breaking changes, he eventually gave up on upgrading. The

header bar has been changed at many points by HISP UiO, causing HISP India developers to

have to upgrade to newer versions. A common practice is to contact HISP UiO when they have

issues with the header bar and share pieces of code internally. HISP India has projects where

several years old versions of DHIS2 are in production. Therefore, a universal implementation

of the header bar is not currently possible for HISP India.

The component library also lacked some commonly used UI components such as complex data

tables and inputs for date and time. D2-UI has commonly used components that are not yet

implemented in the new component library.

The developers also liked how much of the UI was “taken care of”. Writing CSS is avoided as

much as possible at HISP India. However, the team had concerns with the amount of spacing

in UI components and that apps would not be able to fit as much information on the users’

screens.

As was the case at the earlier component library introduction, usage by the HISP UiO was a

major talking point. Several of the HISP India developers stressed multiple times the

importance of the HISP UiO team themselves to use the DHIS2 Application Platform for their

apps, both because they liked having the UI of their apps being consistent with the bundled

apps and because it would imply that the DHIS2 Application Platform would be stable and

would continue to be maintained. At this time, the DHIS2 Application Platform was used for

one of the bundled apps, though several were in the process of being ported over. Also, many

apps used the component library at this point.

The incompatibility with Angular was also discussed. The majority of the DHIS2 Application

Platform is built using React features and must be used with React. As a result, it is not

technically feasible to use most of the features a rewrite of the software packages. HISP UiO

uses the React JavaScript framework for the apps they develop, after switching from AngularJS.

While the HISP UiO developers knew that the HISP UiO used React, they were not aware that

HISP UiO had decided to stick with React for a long time. Still, the developers expressed that

having to learn React would not be a dealbreaker. When discussing how this issue would affect

32

new developers, one developer noted: “I don’t think it’s a problem that new developers will

have to use React when they use the app platform. They have to adapt.” The team expressed

that they would use the DHIS2 Application Platform for all new DHIS2 apps.

The documentation was also found to be insufficient. The documentation for the UI components

consisted solely of demos of the components. These demos are also used for tests, which caused

the code to not always work outside of the test environment. This issue also occurred for

students using the UI components in a course at UiO. New documentation has since then been

added.

One developer was concerned with the number of dependencies. He had previous experience

with one of the dependencies where it alone would cause the load time to be too large when he

used it in an app. This is particularly important to keep in mind due to DHIS2 largely being

used in developing countries where the infrastructure may be lacking.

5.2.2 Software Reuse Tools

Design System

In 2019 the DHIS2 Design System was made. It consists of two parts. First, principles for how

DHIS2 apps should look and work. Examples of principles include how information should be

presented to users, and which colours and icons should be used in various situations. The second

part of the design system is components intended to ensure visual consistency and to allow

developers to use more time “on building a positive user experience” (Cooper, 2019a). The

components on the Brad Frost’s Atomic Design principles (Frost, 2016). Meaning that

components are built using atoms, which are small components such as buttons. By combining

atoms, you can create molecules, which are larger components such as menus. Finally, by

combining atoms and molecules, you can create even larger organisms. The DHIS2 header bar

displayed in figure 5-2, which the design system states is mandatory for all apps, is an example

of an organism.

All components include instructions for how it should be used. The button, for example, has

information when to use the various button types. A screenshot from some of the instructions

for using the button can be seen in figure 5-3. Additionally, there is a section encouraging

feedback and contribution, with instruction on how to do so.

33

Figure 5-3: A portion from the instructions to use a button in the DHIS2 Design System

Developer Portal

Late in 2018, HISP UiO made the DHIS2 Developer Portal as a centralized hub for DHIS2 app

developers. It contains a list of upcoming events, a blog, links to documentation, and guides.

The blog is mainly used to introduce new reusable software and announcing major updates to

them. However, few articles have been posted in 2020. Developers in HISP India were unaware

of the portal’s existence.

DHIS2 Developer Documentation

The official DHIS2 Developer guide consists of 348 pages. However, only 5 pages are

dedicated to app development. The rest is documentation for the API and integration with R (a

statistical computing environment and programming language). There is no information nor

links to any of the DHIS2 software packages. The official DHIS2 web page does, however,

have a link to the DHIS2 GitHub organization and to a repository, which is used as a discussion

board for the HISP UiO. In the front page of this repository, there is a link to the DHIS2

Developer Portal.

DHIS2 Design Lab Guides

The DHIS2 Design Lab Guides, a website with resources for getting started with React and

DHIS2 app development was made by me for use by students in a UiO course. While it was

designed to be used by both the students and external developers, it did not see much use by the

HISP India developers.

34

Academies

Multiple DHIS2 Academies are held every year to spread capacity globally. Attendees receive

certifications and training in implementing DHIS2. There are academies of specialized topics,

such as server administration and data quality. However, the academies have not focused much

on topics related to the development of apps. Many of these are hosted by HISP UiO, but the

goal is for the academies to be increasingly organized by other HISP nodes independent of

HISP UiO (Sahay, 2019, p. 7). Additionally, there is the DHIS2 Online Academy which

provides fundamentals in DHIS2. Due to the COVID-19 pandemic, many of the planned

academies for 2020 have been postponed or cancelled. To combat this, more digital and online

academies are in the works, including one for app development which can be completed

individually like the DHIS2 Online Academy.

Annual Conference

HISP UiO has arranged the DHIS2 Annual Conference (formerly known as the Expert

Academy) seven times. The aim is to gather the community, share experiences, and announce

new features. Participants include implementers, developers, partners, donors, politicians, and

health experts. In 2019 the DHIS2 Apps Competition was introduced, where apps made by

developers from around the world were promoted. The first public presentation about the

DHIS2 Application Platform was also held at the 2019 DHIS2 Annual Conference.

5.3 AMR Surveillance System

My primary involvement in the AMRSS project was in the data-entry module in AMRSS.

DHIS2 already had a bundled app for this need. I argued, along with other members of the

DHIS2 Design Lab, that while using the bundled app would reduce cost, it would be worth it

to develop a new app tailored for AMRSS. It was argued that going from ICMR’s tailored data-

entry module to a generic app, would not be a good experience for the users. A screenshot of

the app can be seen in appendix 1.

Several other apps were also developed for AMRSS. Following the literature stating that

software reuse can increase productivity, two software packages were developed by me and

published. First, a software package containing new UI components based on the DHIS2 Design

System was made. Existing components in the DHIS2 UI component library were reused to

35

create new UI components. The software package requires using React. The component library

from the DHIS2 Design System was used in the development of AMRDE, despite the

component library lacking many components. This was done because the DHIS2 component

library was not yet released as ready for production, and thus lacked some important

components. Secondly, a software package to handle DHIS2 API network requests. The DHIS2

Application Platform was not yet released and did not provide this functionality. It does not

require use with React. Most of the functionality of these software packages have since been

covered DHIS2 reusable software.

Three apps made for the AMRSS were made without using the DHIS2 Design System. These

were later remade using the DHIS2 Design System by the request of a project coordinator. The

project coordinator stated that once the customer had seen apps made with the DHIS2 Design

System, an app without a different UI was not acceptable for the users.

5.4 Software Reuse in HISP India

The HISP India developers largely share code by hosting source code on GitHub and later reuse

it in a copy/paste manner. Only one of the developers has published software packages to a

package manager for reuse in the team. These software packages are only used by the publisher,

although a previous member of the team used to use them.

D2-UI has not seen much use in HISP India. Developers from HISP India consider D2-UI to

be difficult to use, due to poor documentation. They have mainly used it for advanced

components which are time-consuming to develop. A senior developer stated that he had only

ever used three of the components in D2-UI.

HISP India has decided to use the DHIS2 Application Platform for all new apps. However, the

team often try to find existing apps and adapt them, rather than creating new apps. The decision

on which approach to take when HISP India implements DHIS2 is based on what is least time-

consuming. Concerning how the developers chose which UI component library to use, a

developer commented: “It’s just based on familiarity, basically. Those choices are not fixed by

the team. It’s up to you what you want to use.” The developers have to deliver products in a

short timeframe. A developer that made two apps for a project in two weeks described: “If I

said something would take several days, they would forget and come the next day to ask about

it.”

36

A template app has also been made by the team. It includes some of the software packages

included in the DHIS2 Application Platform. It also has the software packages created in the

AMRSS as dependencies. The template app as a starting point for their new apps, instead of

bootstrapping apps with the DHIS2 Application Platform. The DHIS2 UI component library

has been used to some extent, but not exclusively. Other UI component libraries have been used

in conjunction, including components which are included in the DHIS2 component library.

37

6 Analysis and Discussion

The DHIS2 software ecosystem has served as the case to answer the following research

question: What are some factors that characterize software reuse by external developers in a

public good software ecosystem?

What follows is an analysis and discussion based on field visits to HISP India and my

participation in HISP UiO. First, the factors which address the research question is presented.

Then, a discussion on app development by external developers in the software ecosystem. The

chapter ends with reflections on the research process.

6.1 Factors Affecting External Software Reuse

HISP UiO has for many years developed and published software packages and other resources

for internal use. While these were published with permissive licensing, they were not designed

to be used by external developers. This shifted to some in 2019 when HISP UiO developers

started developing and promoting new resources and sought feedback from external developers

in the DHIS2 software ecosystem. From this, a design infrastructure for software reuse has

emerged.

However, there has been little participation from external developers before the release of the

resources. There are some mismatches from how HISP UiO designed the resources, and how

external developers work in HISP India.

Table 6-1 presents a summary of the themes and key findings based on a thematic analysis of

the results presented in chapter 5. These themes are described as factors which characterize

software reuse by external developers in subsequent sections.

Themes Key findings

Knowledge dependencies The requirement of the React framework hampered

software reuse

38

Use of unfamiliar syntax in code examples has hampered

software reuse

Software reuse tools Poor or a lack of documentation has hampered software

reuse

Developers were not aware of key resources in the design

infrastructure for software reuse

Internal to External Reusable software was designed to mitigate problems in

HISP UiO, which are not key problems in HISP India

A large amount of padding in the DHIS2 Design System

was not appropriate

A large dependency in a software package had caused

problems with long loading times

Software package usage by internal developers gave

external developers the impression that it was stable and

would continue to be maintained

Self-reinforcement The use of the DHIS2 Design System lead to the request of

apps being remade using the DHIS2 Design System

Highly reusable UI components enabled the development

of new reusable UI components

Table 6-1: Themes and key findings

6.1.1 Knowledge Dependencies

39

Several of the key DHIS2 software packages require using the React JavaScript framework,

which HISP India has limited experience with. While the HISP India developers do not see this

as a dealbreaker, having to learn how to use a new JavaScript framework along with these new

resources, does increase the complexity. HISP India has been unable to reuse software for the

apps made with other JavaScript frameworks.

Similarly, the documentation for using the software packages has code with modern JavaScript,

which was not appropriate for external developers. HISP India had issues understanding some

of the examples encountered. Some popular software packages outside of the DHIS2 software

ecosystem opt to have example code with older syntax in addition to modern syntax. Another

option to deal with this may be through capacity building, such as with the planned DHIS2

Academies for app developers.

Mitigating cost of development is a major reason why developers reuse software (Haefliger et

al., 2008). If the cost of learning to reuse the software is high, then third party developers may

not perceive it to be worth it to use it. Reusable software is only an advantage when the gains

outweigh the costs (Barns & Bollinger, 1991).

6.1.2 Software Reuse Tools

The D2 (data manager and API wrapper) and D2-UI (a UI component library) were extensively

used internally in HISP UiO before they were deprecated. Yet, they saw very little use in HISP

India. D2-UI was rarely used for anything other than the DHIS2 header bar, which is deemed

mandatory for all apps. The documentation was a major reason for this. The quality of

documentation is an important factor for developers when they look to use software packages

(de la Mora & Nadi, 2018).

It also is difficult for external DHIS2 developers to stay informed about the resources available

for them. There is no information about any resources in the official DHIS2 documentation for

developers. The DHIS2 Application Platform is a single software package, but it is also a

framework for developing apps. It includes several software packages, which means developers

must learn to use several software packages to fully take advantage of it. Fragmented

documentation has been found to stagger developers learning how to use software packages

(Robillard & DeLine, 2011). The DHIS2 Developer Portal can potentially mitigate this

problem. However, it is already showing signs of a lack of updates, despite being relatively

40

new. Moreover, the HISP India developers were not aware of the portal’s existence. The

communication internally within the HISP UiO developer is naturally closer than the

communication with external developers. External developers are more reliant on software

reuse tools.

While HISP UiO has focused a lot on capacity building for DHIS2 overall, little has been done

specifically for apps development. However, HISP UiO is showing signs that this will change

in 2020. The Web App Development Academy and the Web App Development Workshop are

both planned for the summer of 2020.

Resources in the design infrastructure for software reuse such as the DHIS2 Application

Platform and the DHIS2 Design System require experience with modern JavaScript syntax and

a specific JavaScript framework. However, little effort has been put into the barrier of entry that

the knowledge dependencies cause. Furthermore, it has not been clear to the external developers

that HISP UiO intends to stick with their choice of JavaScript framework for a long time.

The DHIS2 Design System allowed new components to be developed for the AMRSS. Its

documentation for how UI components should be designed and the style guide principles enable

the new components to respect the consistency of the UI of each app.

6.1.3 Internal to External

The reusable software was created to mitigate challenges in HISP UiO. Namely that 1) they

were overburdened by having to maintain many apps over several years, and 2) common

problems were solved differently in the apps. This made it difficult for developers to move from

working on one app to another. The situation is different in HISP India. They are a smaller

team. It is not uncommon for a developer to work alone on an app. And they do not maintain

the apps for as long as HISP UiO does. The challenges that the reusable software was designed

to mitigate in HISP UiO, are not the same in HISP India.

The new software packages have issues in contexts with limited infrastructure. The component

library uses a large amount of padding, making it less fitting for users with low-resolution

screens. Some of the components have a “dense” option, which alleviates this. Secondly, the

DHIS2 Application Platform has a large dependency which can cause a large amount of loading

when the internet is slow.

41

The developers in HISP UiO are far away from most of the external developers and end-users

in the DHIS2 software ecosystem. Without close participation, it is challenging to design

reusable software for such different contexts. Designing reusable software for internal use, and

later promoting it for external developers is problematic.

As the rate of use of the DHIS2 software packages increased internally in HISP UiO, so did the

external developers’ confidence in the software packages. This raises questions about how easy

it would have been for the HISP UiO to include the external developers earlier in the

development process. While it can be argued that early participation of external developers

during the design of reusable software, it may be challenging for the orchestrator to accomplish.

6.1.4 Self-reinforcement

Not every app in AMRSS was initially made using the DHIS2 Design System. However, a

project coordinator considered it necessary to remake apps using the DHIS2 Design System.

Also, the Atomic Design principles (Frost, 2016) made the DHIS2 Design System components

highly reusable. This made it possible to use existing components to develop new components,

while still respected the DHIS2 Design System principles.

These findings imply that software reuse from design systems enable further software reuse. In

other words, self-reinforced software reuse.

6.2 App Development by External Developers

Developing new apps is not the only approach to implementing DHIS2. HISP India tends to

opt for configuration whenever possible. Additionally, HISP India developers look for existing

apps and customize them to fit their needs. New apps are generally only made when the bundled

apps do not meet essential requirements and when there are no external apps which have similar

functionality to what they need. The implementation approach is largely based on what is less

time-consuming.

HISP UiO’s goal of having more of the innovation in the DHIS software ecosystem coming

from external developers is ambitious. Developing new apps require a lot of human capacity.

Reusing software have shown to increase productivity (Barns & Bollinger, 1991; Basili et al.,

1996; Lim, 1994; Mohagheghi et al., 2004, Schmid & Verlage, 2002, p. 50). The DHIS2

42

software packages thus have the potential to make the app development approach less time-

consuming. However, these resources must be tailored to fit the need of the external developers

and more should be done to enable the external developers to have the necessary tools and

knowledge to use them. Additionally, HISP UiO must be mindful about the potential drawbacks

from reusing software (see Eghan et al., 2019).

The goal of more innovation from the external developers also raises an ethical consideration

for HISP UiO, being the orchestrator of the DHIS2 software ecosystem. The HISP nodes are

closer to the end-users, allowing for more user participation during software development. The

HISP nodes are also in a better position to developed tailored software. Both these factors are

argued to be linked to higher-quality software. It can be argued that external app development

is good for the platform, as innovative apps that are useful in many settings can be platformized

by the orchestrator, absorbing the functionality into the platform. However, developing new

apps is the most expensive approach to implement DHIS2. Is it in the best interest for the

external developers to develop more apps?

6.3 Reflections on the Research Process

As with all interpretive research, careful considerations should be made in trying to apply the

results from this research to another setting. The factors which characterized software reuse in

the public good software ecosystem which served as the research’s empirical case, may not

apply to software ecosystems where the aim is to generate revenue.

6.3.1 Challenges

Research Role

While the HISP India employees knew I was there as a researcher on a field trip, their perception

of my role change over time. Early during the first field trip, I was perceived as a HISP UiO

internal developer from HISP UiO. On one occasion, a HISP India employee with more

experience with DHIS2 than I did, asked me highly technical questions about one of the bundled

apps developed by HISP UiO. Later, as I participated in the AMRSS project I was perceived

more as one of them, an external developer in the software ecosystem.

43

My role as a researcher did change on some occasions, not just their perception. During the

workshops involving software reuse, as took on the role of a contributor to reusable software

developed by HISP UiO. It was also clear to me that I took on a role as a researcher looking in

from the outside during the semi-structured interview. The signing of a consent form made the

setting far more formal. I found my role as a highly involved researcher to a challenging.

Air Pollution

The Air Quality Index (AQI) is used by the United States Environmental Protection Agency is

used to monitor air quality (AirNow, n.d.). A value below 50 or below is considered good,

where there is little or no risk of health problems. A value of over 300 is considered hazardous,

where everyone is likely to be affected. New Delhi and the area surrounding area, where most

of the field trips were spent, is one of the areas in the world with worst air pollution. The air

pollution became particularly bad in November, during the last field trip. As seen in figure 6-

1, most areas reached a maximum of 999 AQI. Schools and factories were shut down, planes

were diverted, and traffic limitations were implemented. During this period, I stayed away from

the HISP India office. This resulted in some research activities being cancelled.

Figure 6-1: Air Quality Index during November 2019

44

COVID-19

The COVID-19 epidemic did not reach India before well after the last field trip. It did however

cause UiO to shut down. Thus, I no longer could rely on low threshold questions for members

of HISP UiO. It also made it harder to reach HISP India employees, due to the shutdown of

business in the country. However, as the epidemic started late in the research process, I only

consider it to have had a moderate effect on the research.

45

7 Conclusion

This thesis is the result of an Action Case research project exploring software reuse by external

developers in a public good software ecosystem. Through a software platform, software

ecosystems can deliver products to large and heterogeneous groups of users. This is achieved

by enabling external developers to create more innovations than what is feasible for a single

organization. A prerequisite for a thriving software ecosystem is to attract and enable innovation

by external developers.

The empirical case of the thesis is the DHIS2 software ecosystem. Reusable software, in the

form of software packages, and tools for using them has been developed by me and HISP UiO

(the orchestrator of the software ecosystem). Based on research showing that reusing software

increases productivity, new software packages have been introduced to external developers in

HISP India and experiences of using existing software packages among the external developers

have been investigated. Furthermore, I have been involved in a HISP India project as a

developer and I have been a teacher’s assistant in a UiO course where students develop DHIS2

apps using software packages.

The theoretical contribution of this thesis is to the software ecosystem literature. By analyzing

DHIS2 software packages and work practices of external developers in the software ecosystem,

four factors which characterize software reuse by external developers in public good software

ecosystems have been identified. These factors are displayed in table 7-1.

Practical contributions have been given to HISP India in the form of software packages and

DHIS2 apps. Reusable software and tools for software reuse have been contributed to the

DHIS2 software ecosystem.

7.1 External Software Reuse Factors

Knowledge dependencies Software reuse by external developers is hampered by the

knowledge needed to use it

46

Software reuse tools Resources are necessary to enable software reuse by

external developers

Internal to External Reusable software designed for internal use may not be fit

for external developers

Self-reinforcement Software reuse from design systems may encourage more

software reuse

Table 7-1: Factors of software reuse by external developers in a public good software ecosystem

Software packages in the public good software ecosystem have knowledge dependencies. In

other words, the knowledge that is needed to use the reusable software. Knowledge about the

React JavaScript framework is a prerequisite to using the DHIS2 Application Platform and the

component library of the DHIS2 Design System. This increases the cost of reuse by external

developers. The gains of reusing software must be higher than the cost. Software reuse tools,

such as documentation and capacity building, can decrease the cost of reusing software by

alleviating knowledge dependencies. Reusable software should be designed together with

external developers to ensure they fit with the external developers’ context. This can be

challenging to do when reusable software evolves from being used by internal developers to be

promoted to external developers in a software ecosystem.

7.2 Theoretical Implications and Future Research

The findings of this research support Fischer’s (1987) view that tools are importing for software

reuse. More research is needed on how to design these tools. More research is also needed to

understand how to approach the move from internal reusable software to promoting them

externally in software ecosystems. Other research could investigate if other reusable software,

which is not derived from design systems, also encourages more software reuse.

As this research is based on the interpretive paradigm, no “objective truth“ can be claimed about

the results and the application of the findings to other software ecosystems. Other research

could explore how the findings relate to other software ecosystems and wider context.

47

As there are planned actions to continue to expand the infrastructure surrounding software reuse

by external developers in the DHIS2 software ecosystem, future research could revisit the theme

of this thesis. It would be especially interesting to follow how software reuse practices may

change in HISP India.

The motivation behind this thesis is based on an assumption that software reuse by external

developers in a public good software ecosystem is desirable. Other research could investigate

if this is true, for whom it may be desirable, or what the positive and negative aspects are.

Additionally, research could be done on what the implications are for HISP UiO’s goal of more

app development by external developers.

7.3 Practical Implications

The factors presented in this thesis has implications for practitioners in software ecosystems,

especially for orchestrators and designers of reusable software. Careful considerations should

go into what knowledge dependencies the reusable software has. If external developers do not

have the prerequisite knowledge, then this increases the cost of reusing software. External

developers weigh the cost of reusing software against the benefits. Thus, a high cost can be

balanced by designing highly useful reusable software. Alternatively, tools for software reuse

can be used to close the knowledge gap. This research reaffirms the importance of

documentation and capacity building for software reuse, and the negative consequences of a

lack of user-participation.

48

References

Abdalkareem, R., Oda, V., Mujahid, S., & Shihab, E. (2020). On the impact of using trivial

packages: An empirical case study on npm and PyPI. Empirical Software Engineering,

25(2), 1168-1204. doi:10.1007/s10664-019-09792-9

AirNow. (n.d). AQI Basics. Retrieved from https://www.airnow.gov/aqi/aqi-basics/

Atkins, C., & Sampson, J. (2002). Critical appraisal guidelines for single case study research.

ECIS 2002 Proceedings, 15, 100-109. Retrieved from

https://www.researchgate.net/publication/221407453_Critical_Appraisal_Guidelines_f

or_Single_Case_Study_Research

Bang, A. (2018, May 3). Research, for whom? India Development Review. Retrieved from

https://idronline.org/putting-people-heart-research/

Banker, R., & Kauffman, R. (1991). Reuse and productivity in integrated computer-aided

software engineering: An empirical study. MIS Quarterly, 15(3), 375-401.

doi:10.2307/249649

Bansler, J. (1988). Systems development in Scandinavia: Three theoretical schools. Office

Technology and People, 4(2), 117-133. doi:10.1108/eb022657

Basili, V., Briand, L., & Melo, W. (1996). How reuse influences productivity in object-

oriented systems. Communications of the ACM, 39(10), 104-116.

doi:10.1145/236156.236184

Baskerville, R., & Wood-Harper, A. T. (1998). Diversity in information systems action

research methods. European Journal of information systems, 7(2), 90-107.

doi:10.1057/palgrave.ejis.3000298

Barns, B., & Bollinger, T. (1991). Making reuse cost-effective. IEEE Software, 8(1), 13-24.

doi:10.1109/52.62928

van den Berk, I., Jansen, S., & Luinenburg, L. (2010). Software ecosystems: A software

ecosystem strategy assessment model. Proceedings of the Fourth European

Conference on Software Architecture, 127-134. doi:10.1145/1842752.1842781

49

Bosch, J. (2009). From software product lines to software ecosystems. Proceedings of the

13th International Software Product Line Conference, 111–119.

doi:10.5555/1753235.1753251

Bosch, J., & Bosch-Sijtsema, P. (2010). From integration to composition: On the impact of

software product lines, global development and ecosystems. The Journal of Systems &

Software, 83(1), 67-76. doi:10.1016/j.jss.2009.06.051

Braa, J., & Hedberg, C. (2002). The Struggle for District-Based Health Information Systems

in South Africa. The Information Society, 18(2), 113-127.

doi:10.1080/01972240290075048

Braa, J., Monteiro, E., & Sahay, S. (2004). Networks of Action: Sustainable Health

Information Systems across Developing Countries. MIS Quarterly, 28(3), 337-362.

doi:10.2307/25148643

Braa, J. & Sahay, S. (2017). The DHIS2 Open Source Software Platform: Evolution Over

Time and Space. In Celi, L. A. G., Fraser, H. S., Osorio, J. S., Paik, K., & Nikore, V.

(eds), Global health informatics: principles of eHealth and mHealth to improve

quality of care. Cambridge: MIT Press. Retrieved from:

https://www.researchgate.net/publication/316619278_The_DHIS2_Open_Source_Soft

ware_Platform_Evolution_Over_Time_and_Space

Braa, K., & Vidgen, R. (1999). Interpretation, intervention, and reduction in the

organizational laboratory: a framework for in-context information system research.

Accounting, Management and Information Technologies, 9(1), 25-47.

doi:10.1016/S0959-8022(98)00018-6

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research

in Psychology, 3(2), 77-101. doi:10.1191/1478088706qp063oa

Carvalho, M., DeMott, J., Ford, R., & Wheeler, D. A. (2014). Heartbleed 101. IEEE Security

& Privacy, 12(4), 63-67. doi:10.1109/msp.2014.66

Checkland, P., & Holwell, S. (1998). Action research: its nature and validity. Systemic

practice and action research, 11(1), 9-21. doi:0.1023/a:1022908820784

50

Chen, W., & Hirschheim, R. (2004). A paradigmatic and methodological examination of

information systems research from 1991 to 2001. Information systems journal, 14(3),

197-235. doi:10.1111/j.1365-2575.2004.00173.x

Cooper, J. (2019a). DHIS2 Design System. Retrieved June 1, 2020, from

https://github.com/dhis2/design-system/blob/master/readme.md

Cooper, J. (2019b). Button. Retrieved June 1, 2020, from https://github.com/dhis2/design-

system/blob/master/atoms/button.md

Crang, M., & Cook, I. (2007). Doing Ethnographies. London: SAGE Publications.

doi:10.4135/9781849208949

Davison, R., Martinsons, M. G., & Kock, N. (2004). Principles of canonical action research.

Information systems journal, 14(1), 65-86. doi:10.1111/j.1365-2575.2004.00162.x

DHIS2. (n.d.-a). COVID-19 Surveillance Digital Data Package. Retrieved from

https://www.dhis2.org/covid-19

DHIS2. (n.d.-b). DHIS2 In Action. Retrieved from https://www.dhis2.org/inaction

DHIS2. (n.d.-b). DHIS 2 play. Retrieved from https://play.dhis2.org/

DeSanctis, G. (1993). Theory and research: Goals, priorities, and approaches. MIS Quarterly,

17(1), vi-viii.

D’Mello, M. (2005). “Thinking Local, Acting Global”: Issues of Identity and Related

Tensions in Global Software Organizations in India. Electronic Journal of Information

Systems in Developing Countries, 22(1), 1-20. doi:10.1002/j.1681-

4835.2005.tb00140.x

Edwards, R., & Holland, J. (2013). What are the practicalities involved in conducting

qualitative interviews? In What is Qualitative Interviewing? (The 'What is?' Research

Methods Series, pp. 65–76). London: Bloomsbury Academic.

doi:10.5040/9781472545244

51

Eghan, E., Alqahtani, E., Forbes, S., & Rilling, S. (2019). API trustworthiness: An ontological

approach for software library adoption. Software Quality Journal, 27(3), 969-1014.

doi:10.1007/s11219-018-9428-4

Elden, M., & Chisholm, R. F. (1993). Emerging varieties of action research: Introduction to

the special issue. Human relations, 46(2), 121-142. doi:10.1177/001872679304600201

Fischer, G. (1987). Cognitive View of Reuse and Redesign. IEEE Software, 4(4), 60-72.

doi:10.1109/ms.1987.231065

Frost, B. (2016). Atomic design. Retrieved from https://atomicdesign.bradfrost.com/table-of-

contents/

Garg, K., & Varma, V. (2008). Software Engineering Education in India: Issues and

Challenges. 2008 21st Conference on Software Engineering Education and Training,

110-117. doi:10.1109/cseet.2008.36

Goldkuhl, G. (2012a). From action research to practice research. Australasian Journal of

Information Systems, 17(2), 57-78. doi:10.3127/ajis.v17i2.688

Goldkuhl, G. (2012b). Pragmatism vs interpretivism in qualitative information systems

research. European journal of information systems, 21(2), 135-146.

doi:10.1057/ejis.2011.54

Greenhalgh, T., & Taylor, R. (1997). How to read a paper: papers that go beyond numbers

(qualitative research). BMJ, 315(7110), 740-743. doi:10.1136/bmj.315.7110.740

Haefliger, S., von Krogh, G. & Spaeth, S. (2008). Code Reuse in Open Source Software.

Management Science, 54(1), 180-193. doi:10.1287/mnsc.1070.0748

Hejderup, J., van Deursen, A., & Gousios, G. (2018). Software ecosystem call graph for

dependency management. Proceedings of the 40th International Conference on

Software Engineering, 101-104. doi:10.1145/3183399.3183417

Hirschheim, R. (1985). Information systems epistemology: An historical perspective.

Research methods in information systems, 13-35. Retrieved from

52

https://www.researchgate.net/publication/242501681_INFORMATION_SYSTEMS_E

PISTEMOLOGY_AN_HISTORICAL_PERSPECTIVE

Indian Council of Medical Research. (n.d.-a). About Us. Retrieved April 14, 2020, from

http://iamrsn.icmr.org.in/index.php/about

Indian Council of Medical Research. (n.d.-b). AMRSN Network. Retrieved April 14, 2020,

from http://iamrsn.icmr.org.in/index.php/amrsn/amrsn-network

International Monetary Fund. (2019). India: 2019 Article IV Consultation-Press Release;

Staff Report; Staff Statement and Statement by the Executive Director for India.

Retrieved from https://www.imf.org/en/Publications/CR/Issues/2019/12/23/India-

2019-Article-IV-Consultation-Press-Release-Staff-Report-Staff-Statement-and-

Statement-48909

Jansen, S., Finkelstein, A., & Brinkkemper, S. (2009). A sense of community: A research

agenda for software ecosystems. 2009 31st International Conference on Software

Engineering - Companion Volume, 187-190. doi:10.1109/icse-

companion.2009.5070978

Klein, H. K., & Myers, M. D. (1999). A set of principles for conducting and evaluating

interpretive field studies in information systems. MIS Quarterly, 23(1), 67-93.

doi:10.2307/249410

Li, M. (2019a). An Approach to Addressing the Usability and Local Relevance of Generic

Enterprise Software. Selected Papers of the IRIS, Issue Nr 10 (2019). Retrieved from

https://aisel.aisnet.org/iris2019/3

Li, M. (2019b). Making Usable Generic Software - The Platform Appliances Approach.

Workshop on “Platformization in the Public Sector”. Twenty-Seventh European

Conference on Information Systems (ECIS2019), Stockholm-Uppsala, Sweden.

doi:10.13140/rg.2.2.11381.83687

Li, M. (forthcoming). Facilitating Design During Generic Enterprise Software

Implementation. Research paper in review.

53

Li, M., Nielsen, P. (2019). Making Usable Generic Software. A Matter of Global or Local

Design? Tenth Scandinavian Conference on Information Systems (SCIS2019), Nokia,

Finland. Retrieved from https://aisel.aisnet.org/scis2019/8/

Lim, W. (1994). Effects of reuse on quality, productivity, and economics. IEEE Software,

11(5), 23-30. doi:10.1109/52.311048

Manikas, K. (2016). Revisiting software ecosystems Research: A longitudinal literature study.

The Journal of Systems & Software, 117, 84-103. doi:10.1016/j.jss.2016.02.003

Manikas, K., & Hansen, K. (2013). Software ecosystems – A systematic literature review.

The Journal of Systems & Software, 86(5), 1294-1306. doi:10.1016/j.jss.2012.12.026

McGee, A. (2019). DHIS2 Application Platform [presentation]. Retrieved from

https://developers.dhis2.org/2019/07/what-is-this-app-platform/

Mili, H, Mili, F, & Mili, A. (1995). Reusing software: Issues and research directions. IEEE

Transactions on Software Engineering, 21(6), 528-562. doi:10.1109/32.391379

Mohagheghi, P., Conradi, R., Killi, O., & Schwarz, H. (2004). An empirical study of software

reuse vs. defect-density and stability. Proceedings. 26th International Conference on

Software Engineering, 282-291. doi:10.5555/998675.999433

de la Mora, F., & Nadi, S. (2018). An Empirical Study of Metric-based Comparisons of

Software Libraries. Proceedings of the 14th International Conference on Predictive

Models and Data Analytics in Software Engineering, 22-31.

doi:10.1145/3273934.3273937

Msiska, B., & Nielsen, P. (2018). Innovation in the fringes of software ecosystems: The role

of socio-technical generativity. Information Technology for Development, 24(2), 398-

421. doi:10.1080/02681102.2017.1400939

Myers, M. D. (2004). Hermeneutics in information systems research. In Mingers, J.,

Willocks, L. P., (eds), Social Theory and Philosophy for Information Systems (pp.

103-128). Chichester, Wiley.

54

Nicholson, B., Sahay, S., & Heeks, R. (2018). Global sourcing and development: New

drivers, models, and impacts. Information Systems Journal, 28(3), 532-537.

doi:10.1111/isj.12188

Nielsen, P. (2017, April 27). HISP Groups. Retrieved from

https://www.mn.uio.no/ifi/english/research/networks/hisp/hisp-groups.html

O'Neill, J. (2014). Antimicrobial Resistance: Tackling a crisis for the health and wealth of

nations. Retrieved from https://amr-

review.org/sites/default/files/AMR%20Review%20Paper%20-

%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20n

ations_1.pdf

Robillard, M., & DeLine, P. (2011). A field study of API learning obstacles. Empirical

Software Engineering, 16(6), 703-732. doi:10.1007/s10664-010-9150-8

Sahay, S. (2019). Free and open source software as global public goods? What are the

distortions and how do we address them? Electronic Journal of Information Systems in

Developing Countries, 85(4), n/a. doi:10.1002/isd2.12080

Schmid, K., & Verlage, M. (2002). The economic impact of product line adoption and

evolution. IEEE Software, 19(4), 50-57. doi:10.1109/ms.2002.1020287

Subramanian, R. (2006). India and Information Technology: A Historical & Critical

Perspective. Journal of Global Information Technology Management, 9(4), 28-46.

doi:10.1080/1097198X.2006.10856431

Thurmond, V. A. (2001). The point of triangulation. Journal of nursing scholarship, 33(3),

253-258. doi:10.1111/j.1547-5069.2001.00253.x

Titlestad, O., Staring, K., & Braa, J. (2009). Distributed development to enable user

participation; multilevel design in the HISP network. Scandinavian Journal of

Information Systems, 21, 27-50. Retrieved from

https://www.researchgate.net/publication/315741117_Distributed_development_to_en

able_user_participation_Multilevel_design_in_the_HISP_network

55

United Nations. (2019). World Population Prospects 2019: Highlights. Retrieved from

https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf

Vesselov, S., & Davis, T. (2019). Building Design Systems. Berkeley: Apress.

doi:10.1007/978-1-4842-4514-9

Vidgen R., Braa K. (1997) Balancing Interpretation and Intervention in Information System

Research: The Action Case Approach. In: Lee A.S., Liebenau J., DeGross J.I. (eds)

Information Systems and Qualitative Research (pp. 524-541). Boston: Springer.

Walsham, G. (1995). The emergence of interpretivism in IS research. Information systems

research, 6(4), 376-394. doi:10.1287/isre.6.4.376

Walsham, G. (2006). Doing interpretive research. European journal of information systems,

15(3), 320-330. doi:10.1057/palgrave.ejis.3000589

World Health Organization. (2020, January 13). Urgent health challenges for the next decade.

[Press release]. Retrieved from https://www.who.int/news-room/photo-story/photo-

story-detail/urgent-health-challenges-for-the-next-decade

World Health Organization. (n.d.). WHO Configuration Packages for DHIS2. Retrieved from

https://who.dhis2.org/documentation/index.html

56

Appendix 1 AMR Surveillance System

The AMR Surveillance System uses the DHIS2 platform. Several of the bundled apps are used,

primarily to visual data. Several apps were developed by reusing software by me and HISP

India for other purposes. A screenshot of one of these apps, the AMR Data Entry app, can be

seen below.

Screenshot of a form in the AMR Data Entry app

