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Introduction

Isogeny graphs are a type of graphs, where the vertices represent elliptic
curves and the edges represent isogenies. I will examine some of the
structures of these graphs in this thesis. It turns out that the majority
of the components of such a graph will be volcanoes, see Definition 4.5.
This has applications in cryptography and number theory, because many
algorithms are made more efficient by exploiting this structure. In most
elliptic curve cryptography one is dependent on computing an elliptic curve
with a given number of points over a fixed field. The complex multiplication
method in Remark 4.8 uses the volcano structure to compute such an elliptic
curve.

The first two chapters are background information about elliptic curves
and isogenies, where I have included the necessary definitions and results
that are needed to build the theory of chapter 3 and chapter 4. I have
used [8] as reference for most of the first two chapter. In chapter 3 I
will define, examine and derive some results about the isogeny graph. In
chapter 4 I will define what a p-volcano is and show that most of the
components of an p isogenous graph will be p-volcanoes. For these two
chapter, I have essentially used [9] as reference. In appendix A I have
listed some j-invariants of supersingular elliptic curves over finite fields
because I needed them to make some of the examples of the thesis. In
appendix B I have included some of the many isogeny graphs that I have
computed as examples. In appendix C I have included tables that show
some statistics of some isogeny graphs. In appendix D I have included code
snippets of Isogenic, which is the program I made in connection to this
thesis to compute the isogeny graphs and calculate the statistics.

I will construct the isogeny graphs using the modular polynomials,
see Theorem 3.1. Usually it is the other way around. As mentioned in
Example 3.1, the modular polynomials are calculated with the algorithm
from [2]. This algorithm uses the volcano structure of chapter 4 to construct
the modular polynomials. But all the results of chapter 4 in this thesis, are
based on the modular polynomials. To make the isogeny graphs without the
modular polynomials I would have to construct them using Velu’s formula,
see Section 2.5. As you can see from Example 2.1, it takes a lot of work
to construct only one isogeny. I would not have been able to make enough
isogeny graphs to study them as I wished to in this thesis if I had to
construct the isogeny graphs with Velu’s formula.
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Chapter 1

Elliptic Curves

Let K be a perfect field and K̄ an algebraic closure of K.

1.1 Weierstrass Equation

By a Weierstrass curve (w-curve) I will mean the solution set of a Weierstrass
equation, which in the projective space P2 is the equation

Y 2Z + a1XY Z + a2Y Z
2 = X3 + a3X

2Z + a4XZ
2 + a5Z

3, (1.1)

where a1, a2, a3, a4 and a5 ∈ K̄. The point O = [0, 1, 0] satisfies the equation
and is the unique point at the line at infinity.

One can get an equation with non-homogenous coordinates by substituting
x with X/Z and y with Y/Z,

y2 + a1xy + a2y = x3 + a3x
2 + a4x+ a5. (1.2)

The solution set of this equation plus the point at infinity is also then a
w-curve.

Definition 1.1. The w-curve is said to be defined over K when a1, a2, a3, a4, a5 ∈
K. Points P = (x, y) on a w-curve are said to be K-rational if x, y ∈ K.

1.2 Simpler Weierstrass Equation and Isomorphic
w-curves

Definition 1.2. Let C1 and C2 be w-curves. A morphism from C1 to C2 is a
map of the form

φ : C1 → C2, φ = [f1(x, y), f2(x, y)]

where each fi is on the form fi(x, y) = gi(x, y)/hi(x, y) where gi(x, y) and
hi(x, y) are polynomials in two variables and have the property that for
each P ∈ C1, hi(P ) 6= 0.

Definition 1.3. Two w-curves C1 and C2 are isomorphic if there are
morphisms φ1 : C1 → C2 and φ2 : C2 → C1 such that φ1 ◦ φ2 is the identity
map on C2 and φ2 ◦ φ1 is the identity map on C1.
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6 CHAPTER 1. ELLIPTIC CURVES

Theorem 1.1. If char(K) 6= 2, 3 then the w-curve in Equation (1.2) is
isomorphic to

y2 = x3 +Ax+B (1.3)

where A = −27((a21 + 4a3)2 − 24(2a4 + a1a2)) and B = −54(−(a21 + 4a3)3 +
36(a21 + 4a3)(2a4 + a1a2)− 216(a22 + 4a5))

Proof. The map

φ : C1 → C2, φ(x, y) =

(
x,

1

2
(y − a1x− a2)

)
(1.4)

from one w-curve to another, is a morphism:
Writing it as a linear transformation

φ(x, y) =

[
1 0

−1/2a1 1/2

] [
x
y

]
+

[
0
−a2

]
shows that it has an inverse

φ−1(x, y) =

[
1 0
a1 2

] [
x
y

]
−
[

0
−1/2a2

]
.

So there exists an morphism from the first w-curve (1.2) to the other (1.4)
that has an inverse.

The w-curves, C1 and C2, must hence be isomorphic. Therefore replacing
y with 1

2 (y − a1x− a2)1, which gives

y2 = 4x3 + (a21 + 4a3)x2 + (2a1a2 + 2a4)x+ 3a22 + 4a5, (1.5)

gives a simplified version of equation (1.2) (as long as the characteristic of
K is not 2).

By also assuming that the characteristic of K is not 3, one can simplify
further by replacing x with x−3(a2

1+4a3)
36 and y with y

108 ,2, which also is a
morphism with an inverse, giving the simpler Weierstrass equation in the
theorem.

Two w-curves that are isomorphic may be given by different Weierstrass
equations. But the following result narrows the possibilities.

Theorem 1.2. If two w-curves are defined by y2 = x3 + a1x+ b1 and y2 =
x3 + a2x+ b2 then they are isomorphic if and only if a2 = u4a1 and b2 = u6b1
for some u ∈ K \ {0}.

Proof. See [8] in the proof of Theorem 10.1, chapter III.10.

1Suggestion for this replacement was found in Silverman
2This replacement suggestion is also found in Silverman
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1.3 The Discriminant ∆

For each Weierstrass equation (1.1) there is a quantity, the discriminant
denoted ∆, defined as

∆ =− (a21 + 4a3)2(a21a5 + 4a3a5 − a1a2a4 + a3a
2
2 − a24)− 8(2a4 + a1a2)3

− 27(a22 + 4a5)2 + 9(a21 + 4a3)(2a4 + a1a2)(a22 + 4a5).

If the characteristic ofK is not 2 or 3 then the discriminant can be simplified
to

∆ = −16(4A3 + 27B2)

where A and B are as in Equation (1.3).

Definition 1.4. Let

F (X,Y, Z) = Y 2Z + a1XY Z + a2Y Z
2 −X3 − a3X2Z − a4XZ2 − a5Z3

Then the solution of F (X,Y, Z) = 0 is a w-curve. A point P at a w-curve, C,
is nonsingular if the Jacobi matrix of F (X,Y, Z) at P has rank 1.

Definition 1.5. An elliptic curve is a w-curve where all the points on the
w-curve are nonsingular.

Theorem 1.3. A w-curve given by a Weierstrass equation is an elliptic curve
if and only if ∆ 6= 0.

Proof. See [8], chapter III.1, Proposition 1.4a i).

1.4 The j-invariant

For each Weierstrass equation the j-invariant, denoted j, is defined as

j =
((a21 + 4a3)2 − 24(2a4 + a1a2))3

∆
.

If char(K) 6= 2, 3, then j is simplified to

j = −1728
(4A)3

∆
.

Where A is as in Equation (1.3).

It is called the j-invariant because it identifies isomorphism classes of
elliptic curves over K̄.

Theorem 1.4. Two elliptic curves are isomorphic over K̄ if and only if they
both have the same j-invariant.

Proof See [8], chapter III.1 b).

Theorem 1.5. Let j0 ∈ K̄. Then there exists an elliptic curve defined over
K whose j-invariant is equal to j0.

Proof See [8], chapter III.1 c).
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1.5 The Group Law

Theorem 1.6. Let E be an elliptic curve defined by Equation (1.1) and let
l ⊂ P2 be a line. Then l ∩ E consists of exactly three, not necessarily distinct,
points.

Proof. Since the degree of the Weierstrass equation is three, the line l
must intersect E at three points. This is a result of Bèzout’s theorem.

Now I will define an addition operation for points on an elliptic curve.

Definition 1.6. Let addition, denoted as +, on an elliptic curve E be defined
as the following. Let P,Q ∈ E and let l be the line through P and Q. If
P = Q then l is the tangent line of E at P . Because of the theorem above
this line will intersect at a third point on E, say R. Let l′ be the line through
R and O. This line will also intersect E at a third point. Denote this third
point by P +Q.

The algorithm for computing addition given points in affine coordinates
is given in the following theorem.

Theorem 1.7. Let E be an elliptic curve given by

E : y2 + a1xy + a2y = x3 + a3x
2 + a4x+ a5.

Let P1 = (x1, y1) ∈ E, then

− P1 = (x1,−y1 − a1x1 − a2). (1.6)

Let P1 = (x1, y1), P2 = (x2, y2), P3 = (x3, y3) ∈ E. If x1 = x2 and y1 + y2 +
a1x2 + a2 = 0, then

P1 + P2 = O.
Otherwise P1 + P2 = P3 where

x3 = λ2 + a1λ− a3 − x1 − x2
y3 = −(λ+ a1)x3 − ν − a2.

And where λ and ν are defined as following when x1 6= x2

λ =
y2 − y1
x2 − x1

ν =
y1x2 − y2x1
x2 − x1

.

If x1 = x2 then

λ =
3x21 + 2a3x1 + a4 − a1y1

2y1 + a1

ν =
−x31 + a4x1 + 2a5 − a2y1

2y1 + a1x1 + a2
.

Proof. See [8], chapter III.2., Group Law Algorithm 2.3.
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Theorem 1.8. The addition defined in Definition 1.6 has the following
properties

1. Let l be a line that intersects E at P,Q and R. Then (P +Q) +R = O.

2. P +O = P for all P ∈ E.

3. P +Q = Q+ P for all P,Q ∈ E.

4. (P +Q) +R = P + (Q+R) for all P,Q,R ∈ E.

Proof. See [8], chapter III.2., Proposition 2.2.

Theorem 1.9. The addition defined in Definition 1.6 together with O as
identity, makes E into an abelian group. Furthermore, If E is defined over
K, then

E(K) = {(x, y) ∈ K2 : y2 + a1xy + a2y = x3 + a3x
2 + a4x+ a5} ∪ {O}

is a subgroup of E.

Proof. The first statement follows from Theorem 1.8 2-4. The second
statement is true because the operations used in the Weierstrass equation
are field operations so that the result must also be in that field.

Example 1.1. Let K = F5 and let E be the elliptic curve

E : y2 + x3 + 3,

defined over K. To find out what the K-rational points besides O on E are,
I can check all the 25 candidates (x, y) where x, y ∈ F5. That gives me that

{O, (1, 2), (2, 1), (3, 0), (1, 3), (2, 4)}
are the K-rational points on E.

Now I want to add all the points using the addition defined in Definition 1.6,
using the algorithms from Theorem 1.7 and the results from Theorem 1.8.
According to Theorem 1.8 adding whichever point P to O you get O. To add
(1, 2) with itself I will use the algorithms from Theorem 1.7. Comparing E
to the affine Weierstrass equation from Equation (1.2) gives,

a1 = 0, a2 = 0, a3 = 0, a4 = 0, a5 = 3.

According to Equation (1.2), if x1 = x2, which in the case where I want to add
the point (1, 2) to itself is true, then I have to first check if y1+y2+a1x2+a2 =
0.

y1 + y2 + a1x2 + a2 = 2 + 2 + 0 + 0 = 4 6= 0.

Now the algorithm from Theorem 1.7 says that (1, 2) + (1, 2) = (x3, y3),
where

x3 = λ2 + a1λ− a3 − x1 − x2
= λ2 − 1− 1

= λ2 − 2,

y3 = −(λ+ a1)x3 − ν − a2
= −(λ)(λ2 − 2)− ν
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where, when x1 = x2,

λ =
3x21 + 2a3x1 + a4 − a1y1

2y1 + a1

=
3 ∗ 12 + 2 ∗ 0 + 0− 0

2 ∗ 2

= 3 ∗ 41 = 2 mod 5.

ν =
−x31 + a4x1 + 2a5 − a2y1

2y1 + a1x1 + a2

=
−13 + 0 + 2 ∗ 3− 0

2 ∗ 2 + 0 + 0

=
0

4
= 0.

So

(1, 2) + (1, 2) = (λ2 − 2,−λ(λ2 − 2)− ν)

= (2,−4)

= (2, 1).

Now I want to add (2, 1) to (3, 0). The algorithm from Theorem 1.7 says that

(2, 1) + (3, 0) = (λ2 + a1λ− a3 − x1 − x2,−(λ+ a1)x3 − ν − a2)

where, when x1 6= x2,

λ =
y2 − y1
x2 − x1

=
0− 1

3− 2

= −1 = 4 mod 5,

ν =
y1x2 − y2x1
x2 − x1

=
1 ∗ 3− 1 ∗ 0

3− 2

= 3

So

(2, 1) + (3, 0) = (42 − 2− 3,−4(42 − 2− 3)− 3)

= (−4,−4) = (1, 3).

When adding (2, 1) and (2, 4), the algorithm says that if x1 = x2 as here,
then I have to check if y1 + y2 + a1x2 + a2 = 0

y1 + y2 + a1x2 + a2 = 1 + 4 + 0 + 0 = 0

So
(2, 1) + (2, 4) = O
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Using the algorithm to calculate P1 + P2 for all P1, P2 ∈ E/K, except when
P1 6= P2 and P2 6= P1 because addition is commutative according to 3. in
Theorem 1.8, gives the result,

O +O = O
O + (1, 2) = (1, 2)

O + (2, 1) = (2, 1)

O + (3, 0) = (3, 0)

O + (1, 3) = (1, 3)

O + (2, 4) = (2, 4)

(1, 2) + (1, 2) = (2, 1)

(1, 2) + (2, 1) = (3, 0)

(1, 2) + (3, 0) = (2, 4)

(1, 2) + (1, 3) = O
(1, 2) + (2, 4) = (1, 3)

(2, 1) + (2, 1) = (2, 4)

(2, 1) + (3, 0) = (1, 3)

(2, 1) + (1, 3) = (1, 2)

(2, 1) + (2, 4) = O
(3, 0) + (3, 0) = O
(3, 0) + (1, 3) = (2, 1)

(3, 0) + (2, 4) = (1, 2)

(1, 3) + (1, 3) = (2, 4)

(1, 3) + (2, 4) = (3, 0)

(2, 4) + (2, 4) = (2, 1).

As one can see the K-rational points on E are closed under the addition
defined in Definition 1.6. Setting up the addition table for the K-rational
points of E, see Table 1.1, shows that the 6 K-rational points of E is the
cyclic, abelian group of 6 elements, which is isomorphic to Z/6Z.

+ O (1,2) (2,1) (3,0) (1,3) (2,4)
O O (1,2) (2,1) (3,0) (1,3) (2,4)
(1,2) (1,2) (2,1) (3,0) (2,4) O (1,3)
(2,1) (2,1) (3,0) (2,4) (1,3) (1,2) O
(3,0) (3,0) (2,4) (1,3) O (2,1) (1,2)
(1,3) (1,3) O (1,2) (2,1) (2,4) (3,0)
(2,4) (2,4) (1,3) O (1,2) (3,0) (2,1)

Table 1.1

Theorem 1.10. Let E be an elliptic curve. The equations in the algorithm
from Theorem 1.7 define morphisms

+: E × E → E, (P1, P2) 7→ P1 + P2 (1.7)
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− : E → E, P 7→ −P (1.8)

Proof. See [8], chapter III.3., Theorem 3.6.



Chapter 2

Isogenies

Definition 2.1. Let E1 and E2 be elliptic curves. An isogeny from E1 to E2

is a morphism that sends the identity of E1 to the identity of E2.

By φ : E1 → E2, φ = {O} I will mean the isogeny that sends all points of
E1 to the identity element of E2.

Definition 2.2. Two elliptic curves E1 and E2 are isogenous if there exists
an isogeny φ 6= {O} from E1 to E2.

Definition 2.3. An isogeny is said to be defined over K if its coefficients
are in K.

Theorem 2.1. Let φ : E1 → E2 be an isogeny. Then φmust be either constant
or surjective.

Proof. See [8], chapter II.2., Theorem 2.3.

Theorem 2.2. Let φ : E1 → E2 be an isogeny. Then ker φ must be a finite
group.

Proof. See [8], chapter III.4., Corollary 4.9.

2.1 Degree of an Isogeny and Separable Isogenies

Let K(E) be the function field of E over K.
Let E1 and E2 be elliptic curves defined over K and let φ : E1 → E2 be a

non-constant isogeny defined over K. I will define φ∗ : K(E2)→ K(E1) as

φ∗f = f ◦ φ.
ThenK(E1) will be a finite extension of φ∗(K(E2)). For proof see [8], chapter
II.2., Theorem 2.4. Now I can define what the degree of an isogeny should
be.

Definition 2.4. Let φ : E1 → E2 be an isogeny defined over K. If φ is
constant then define the degree of φ to be

deg φ = 0.

Otherwise define the degree of φ to be

deg φ = [K(E1) : φ∗K(E2)].

13
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Definition 2.5. An isogeny is defined to be separable when the field
extension K(E1)/φ∗K(E2) is separable.

Theorem 2.3. Let φ : E1 → E2 be an isogeny. If φ is separable, then

#ker φ = deg φ.

Proof. See [8], chapter III.4., Theorem4.10c).

Theorem 2.4. Let E1, E2 and E3 be elliptic curves defined over K , let
φ : E1 → E2 and ψ : E1 → E3 be isogenies defined over K, where ψ is
separable, and let ker(φ) ⊂ ker(ψ). Then there exists a unique isogeny
λ : E2 → E3, that is defined over K, such that ψ = λ ◦ φ.

Proof. See [8], chapter III.4., Corollary 4.11.

2.2 Two Relevant Isogenies

The following is an example of an isogeny.

Definition 2.6. For eachm ∈ Z define the multiplication-by-m-map [m] : E →
E by

[m](P ) = P + · · ·+ P

where P is added to itself m times, if m > 0. For m < 0 set

[m](P ) = [−m](−P ).

And if m = 0 set
[0](P ) = O.

Theorem 2.5. The multiplication-by-m-map is an isogeny and it has degree
equal to m2.

Proof. The group law operation on elliptic curves is a morphism according
to theorem (1.8) and so by induction adding P to itself m times will also
be a morphism. And O is sent to O. Hence the map is an isogeny. For
proof of the degree of the multiplication-by-m-map see [8], chapter III.4,
the discussion at page 69.

Theorem 2.6. The multiplication-by-m-map is separable if and only if
char(K) - m.

Proof. See [9], lecture 6, Theorem 6.24.

Definition 2.7. Let m ∈ Z and m ≥ 1. The m-torsion subgroup of E,
denoted E[m], is the set of points of E of order m.

E[m] = {P ∈ E : [m]P = O}

The kernel of the multiplication-by-m-map is the m-torsion subgroup.

Theorem 2.7. Let m ∈ Z such that char(K) - m, then

E[m] ∼= Z/mZ× Z/mZ.
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Proof. See [8], chapter III.6, corollary 6.4.

Another example of an important isogeny, that I will use in this thesis,
is the Frobenius map. Which fixes the K-rational points of an elliptic curve
and sends the other points to other points at the same curve.

Definition 2.8. Let K = Fq be a finite field with q elements. The qth-power
Frobenius map is the map

φ : E → E

where
φ(X,Y ) = (Xq, Y q).

Theorem 2.8. The Frobenius map fixes the K- rational points on the elliptic
curve:

xq = x for any x ∈ Fq

yq = y for any x ∈ Fq

Proof. This is true because of Fermat’s little theorem.

Theorem 2.9. The Frobenius map is an isogeny.

Proof. See [8].

2.3 The Dual Isogeny

Theorem 2.10. Let φ : E1 → E2 be a non-constant isogeny with degree m.
Then there exists a unique isogeny φ̂ : E2 → E1 such that φ̂ ◦ φ = [m].

Proof. See [8], chapter III.6., Theorem 6.1.

Uniqueness in the theorem is not uniqueness up to isomorphism.

Definition 2.9. The unique isogeny in Theorem 2.10, denoted by φ̂, is
called the dual isogeny of φ if φ 6= [0]. If φ = [0] then the dual isogeny of φ is
set to be φ̂ = [0] as well.

Theorem 2.11. Let φ : E1 → E2 be an isogeny and let deg φ = m. Then

1.
φ̂ ◦ φ = [m] on E1

and
φ ◦ φ̂ = [m] on E2

2. Let ψ : E2 → E3 be another isogeny. Then

ψ̂ ◦ φ = φ̂ ◦ ψ̂

3. Let λ : E1 → E2 be another isogeny. Then

λ̂+ φ = λ̂+ φ̂
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4. For all m ∈ Z,
[̂m] = [m]

5. deg φ̂ = deg φ

6. ˆ̂
φ = φ

Proof. See [8], chapter III.6., Theorem 6.2.

2.4 End(E) and Aut(E)

Let the set of isogenies between two elliptic curves E1 and E2 be denoted
by Hom(E1, E2) and define addition between isogenies as

(φ+ ψ)(P ) = φ(P ) + ψ(P ). (2.1)

Where + in the right hand side of the equation is the addition of elliptic
curves as defined in Definition 1.6. This will be a new morphism. And
φ = {O} is also a isogeny. From this follows:

Theorem 2.12. Hom(E1, E2) given with addition as defined in (2.1) is a
group with {O} as the identity element.

Proof. See [8]

Let E1 = E2. Then composing isogenies in Hom(E,E) is allowed, so
define multiplication between isogenies as

(φψ)(P ) = φ(ψ(P )). (2.2)

Let End(E) = Hom(E,E).

Theorem 2.13. The two operations isogeny addition defined in equation
(2.1) and composing isogenies as the multiplication defined in equation (2.2)
makes End(E) into a ring.

Proof. See [8]

Let Aut(E) denote the set of the invertible elements of End(E).

Theorem 2.14. Aut(E) is a group.

Proof. See [8]

End(E) is therefore called the endomorphism ring of E and Aut(E) is
called the automorphism group of E.

Theorem 2.15. Let E/K be an elliptic curve. If j(E) 6= 0 and j(E) 6= 1728
then Aut(E) consists of only two elements. The identity automorphism
id : E → E where id(P ) = P and the automorphism − : E → E where
−(P ) = −P . When char(K) 6= 2 and char(K) 6= 3 and if j(E) = 0 #Aut(E)= 6
and for j(E) = 1728 #Aut(E)= 4. If char(K) = 2 and j(E) = 0 = 1728 then
#Aut(E) = 24. If char(K) = 3 and j(E) = 0 = 1728 then Aut(E) = 12.

Proof. See [8], chapter III.10., Theorem 10.1. and the proof of Theorem
10.1.
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2.5 Constructions of Isogenies (Velu’s Formula)

Theorem 2.16. Let E1 be an elliptic curve and let G ⊂ E1 be a finite
subgroup of E. Then there exists a unique elliptic curve E2 and a separable
isogeny φ : E1 → E2 such that

ker φ = G.

Proof. See [8], chapter III.4., Proposition 4.12.

If two isogenies are constructed for a fixed subgroup G of E, then
they have the same kernel equal to G. Which means that they must be
isomorphic. Hence φ from the above theorem is unique up to isomorphism.

I will now show how to construct isogenies using Velu’s formula. See [12].
Let char(K) 6= 2, 3. Let E1 be an elliptic curve and choose G a subgroup of
E1. Then by Theorem 2.16 there exists a unique elliptic curve, let me call it
E2, and an isogeny φ : E1 → E2, such that its kernel isG. Velu’s formula will
construct an isogeny with G as the kernel explicitly as a rational function
and give the Weierstrass equation of E2. The following are the steps.

1. Choose an elliptic curve, E1, on simple Weierstrass form.

E : y2 = x3 + ax+ b (2.3)

2. Choose a subgroup G of E1 with odd order.

3. Because G is a group, if P ∈ G then −P ∈ G as well. Partition G−{O}
into G+ and G− where P ∈ G+ if and only if −P ∈ G−. Now for each
point P ∈ G+ calculate the quantities

gxP = 3x2P + a, gyP = −2yP ,

vP = 2gxP , uP = (gyP )2,

v =
∑

P∈G+

vP , w =
∑

P∈G+

uP + xP vP .

4. Now the isogeny φ : E1 → E2 will be

φ(x, y) =

x+
∑

P∈G+

vP
x− xP

− uP
(x− xP )2

, y −
∑

P∈G+

2uP y

(x− xP )3
+ vP

y − yP − gxP gyP
(x− xP )2


5. where E2 is

E2 : y2 = x3 + (a− 5v)x+ (b− 7w).

Remark 2.1. Because I have simplified some by writing the equation
for the elliptic curve on simple Weierstrass form, the field K can not
have characteristic 2 or 3 with this method. Also, I have done some
simplifications so that the algorithm can be as simple as the steps above,
and a consequence of that is that the order of the chosen subgroup G can
not be an even number. To see how to construct an isogeny when char(K)
is 2 or 3 or when the order of G is even, see [12].
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Example 2.1. Let K = F5 be the finite field with 5 elements. Let E1 be

E1 : y2 = x3 + 1 (2.4)

Then there are 6 F5-rational points onE1. {O, (0, 1), (0, 4), (4, 0), (2, 2), (2, 3)}.
This set must be a group by Theorem 1.9. I found the F5-rational points
of E1 by checking all the possibilities (x, y) where 0 ≤ x ≤ 5 and 0 ≤ y ≤ 5.
Hence, for F5 there were only 25 coordinates to check. For bigger fields
there exists algorithms to do this.

Now I will have to choose a subgroup of this group. The order of a
subgroup must divide the order of group. Hence the nontrivial possibilities
are of order 2 or 3. The identity O must be in the group. Then choosing
freely the next point, (0, 1). To make a subgroup I must then also include
−(0, 1). To find out which point that is, i will use the algorithm defined in
Equation (1.6) from Theorem 1.7, which gives

−(0, 1) = (0,−1)

= (0, 4).

Now G = {O, (0, 1), (0, 4)} is a subgroup. This will be the kernel of the
isogeny I am constructing. Now I will partition G − O into G+ = {(0, 1)}
and G− = {(0, 4)}. Now I can calculate the four quantities from step 3
above. There is only one point in G+, (0, 1). Hence

gxP = 0, gyP = −2,

vP = 0, uP = 4,

v = 0, w = 4.

And the isogeny φ : E1 → E2 will be

φ(x, y) =

(
x− 4

x2
, y − 8y

x3

)
.

Where E2 is
E2 : y2 = x3 + 3.

There are 6 F5-rational points on E2, {O, (3, 0), (1, 2), (1, 3), (2, 1), (2, 4)}.
This is the group from Example 1.1 seen in Table 1.1. The subgroup G of
F5-rational points on E2 has the cosets G and {(2, 2), (2, 3), (4, 0)}. φ will
send the points of G to O and the points of {(2, 2), (2, 3), (4, 0)} to (3, 0).



Chapter 3

Isogeny Graphs

In this chapter I will define a type of graph that will show which elliptic
curves that are isogenous, by making the vertices of the graph represent
elliptic curves and the edges represent isogenies.

3.1 The N -Isogeny Graph GN(Fq)

First I will introduce a polynomial in Z[X,Y ], that will actually give the
j-invariants of elliptic curves that are isogenous by a certain type of isogeny,
as its zeros.

By a cyclic isogeny I will mean an isogeny where the kernel is a cyclic
group. By a N-isogeny I will mean an isogeny with N elements in the
kernel.

Theorem 3.1. There exists a polynomial, ΦN (X,Y ) ∈ Z[X,Y ], for N ∈ Z,
that is symmetric in X and Y with degree N + 1 in both X and Y , such that
the following holds. For all j1, j2 ∈ K, ΦN (j1, j2) = 0 over K if and only if j1
and j2 are the j-invariants of elliptic curves defined over K that are related
by a cyclic isogeny of degree N defined over K.

Proof. See [9], lecture 21.

I will call the polynomial from Theorem 3.1, the N-modular polynomial.
Remark 3.1. It makes sense to look at ΦN (X,Y ) over K because the
coefficients of ΦN (X,Y ) are in Z and there is a ring homomorphism from Z
to any field K. By a coefficient c of ΦN (X,Y ) in K, I will mean the image of
c by the unique ring homomorphism from Z to K, sending 1 to the identity
element of K.
Remark 3.2. The j-invariants do not determine the elliptic curves uniquely.
If K is algebraically closed the j-invariants determine the elliptic curves
uniquely up to isomorphism. If K is not an algebraically closed field, then
there may be two (or more) different elliptic curves over K that have the
same j-invariants but that are not isomorphic over K. I will discuss this
further in Section 3.3.
Remark 3.3. The pair (j1, j2) does not determine a cyclic isogeny uniquely
either, not even up to isomorphism. In Section 3.2 I will discuss the

19
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requirements needed for the pair to define an isogeny uniquely up to
isomorphism.

I will now define a type of graph for each N ∈ Z and each finite field
K. Let the vertices of the graph be the elements of K = Fq. Because
of Theorem 1.5 each element in Fq is the j-invariant of an elliptic curve
defined over K. Let the edges be all pairs (j1, j2) between vertices j1, j2 ∈ Fq

if there exists an cyclic N -isogeny, defined over K, from an elliptic curve
with j-invariant equal to j1 to an elliptic curve with j-invariant equal to j2.

But first I will define what the multiplicity of a zero of ΦN (X,Y ) should
be.

Definition 3.1. Let the multiplicity of a root (j1, j2) of ΦN (X,Y ) be the
multiplicity of j2 as a root of ΦN (j1, Y ) = ΦN (Y ).

Remark 3.4. I could have just as well defined the multiplicity of (j1, j2)
as the multiplicity of j1 as a root of ΦN (X, j2). Of course if j2 is a root of
ΦN (j1, Y ), then j1 is a root of ΦN (X, j2) and because ΦN (X,Y ) is symmetric
in X and Y , if j2 is a root of Φ′N,X=j1

(Y ) then j1 is a root of Φ′N,Y=j2
(X).

Hence, the multiplicity of j2 as a root of ΦN (j1, Y ) is the same as the
multiplicity of j1 as a root of ΦN (X, j2).

Definition 3.2. Let K = Fq be a finite field and let N ∈ Z. The N -
isogenious graph GN (K) is the directed graph with the vertex set equal to
Fq and edges (j1, j2), present with multiplicity, where j1, j2 ∈ K, will be the
zeros of φN (X,Y ).

Each vertex will represent the j-invariant of (several) elliptic curves
defined over K and because of Theorem 3.1 the zeros (j1, j2) of ΦN (X,Y )
will give the edges.

The dual isogeny ensures that ΦN (j1, j2) = ΦN (j2, j1). So, if (j1, j2) is
an edge in the graph then (j2, j1) is also an edge on the graph. If the
multiplicity of (j1, j2) is also the same as the multiplicity of (j2, j1) then
I will represent both directed edges with one undirected edge. However,
there may be graphs where there are pairs of vertices j1, j2 where the
multiplicity of (j1, j2) is not the same as the multiplicity of (j2, j1). Between
such vertices there will be drawn directed edges. I will explain more how
this can happen later in this chapter.

Example 3.1. Choosing N = 3 and q = 7, I want to draw the graph G3(F7).
The vertices will be the set Fq = {0, 1, 2, 3, 4, 5, 6}. The edges are the the
zeros of Φ3(X,Y ) in F7. The polynomial Φ3(X,Y ) itself can be found at [7]
where it is calculated based on the algorithms from [2].
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Φ3(X,Y ) = 1855425871872000000000X + 1855425871872000000000Y

− 770845966336000000XY + 452984832000000X2

+ 452984832000000Y 2 + 8900222976000X2Y + 8900222976000XY 2

+ 2587918086X2Y 2 + 36864000X3 + 36864000Y 3

− 1069956X3Y − 1069956Xy3 + 2232X3Y 2 + 2232X2Y 3

−X3Y 3 +X4 + Y 4

= X + Y + 2XY + 6X2 + 6Y 2 + 6X2Y + 6XY 2 + 5X2Y 2 + 5X3

+ 5Y 3 +X3Y +XY 3 + 6X3Y 2 + 6X2Y 3 + 6X3Y 3 +X4 + Y 4 mod 7

Φ3(X,Y ) = 0 mod 7

(X,Y ) ∈ {(0, 0), (0, 3), (2, 2), (3, 0), (4, 5), (5, 4), (6, 6)}

To find the multiplicity of (0, 0) I will find the multiplicity of 0 in Φ3(0, Y ),
according to Definition 3.1.

Φ3,X=0(Y ) = Y 4 + 5Y 3 + 6Y 2 + Y mod 7

Φ′3,X=0(Y ) = 4Y 3 + Y 2 + 5Y + 1 mod 7

Φ′3,X=0(0) = 1 6= 0 mod 7

Thus, the multiplicity of (0, 0) is 1. Similarly, to find the multiplicity of
(0, 3) I must find the multiplicity of 3 in Φ3(0, Y ).

φ3,X=0(Y ) = Y 4 + 5Y 3 + 6y2 + Y

φ′3,X=0(Y ) = 4Y 3 + Y 2 + 5Y + 1

φ′3,X=0(3) = 0 mod 7

φ′′3,X=0(Y ) = 5Y 2 + 2Y + 5

φ′′3,X=0(3) = 0 mod 7

φ′′′3,X=0(Y ) = 3Y + 2

φ′′′′3,X=0(3) = 4 6= 0 mod 7

So the multiplicity of (0, 3) is 3. Now I want to find the multiplicity of
(3, 0). To do so I must find the multiplicity of 0 in φ3(3, Y ).

φ′3,X=3(Y ) = 4Y 3 + 4Y 2 + 4

φ′3,X=3(0) = 4 6= 0

So (3, 0) has multiplicity 1.
Calculate the remaining edges in similar fashion.
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(0, 0) with multiplicity 1
(0, 3) with multiplicity 3
(2, 2) with multiplicity 1
(3, 0) with multiplicity 1
(4, 5) with multiplicity 1
(5, 4) with multiplicity 1
(6, 6) with multiplicity 4

Thus, the graph of G3(F7) will be as in Figure 3.1.

G3(F7)

0

1
2

3

4

5
6

1
3

1
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11

4

Figure 3.1: This is the 3-isogeny graph where the
vertex set is the set of elements of F7

Figure 3.1 shows a drawing of graph G3(F7). There are 7 vertices, which
are the j-invariants of elliptic curves. and some vertices have edges between
them and some vertices dont. 1

3.2 Edges Representing Isomorphism Classes of
(Cyclic) Isogenies

If choosing N such that char(K) - N then the kernel of a cyclic isogeny with
N elements will be a separable isogeny by Theorem 2.6. Two separable
isogenies are isomorphic if they have the same number of elements in
the kernel. Therefore if char(K) - N , the multiplicity of an edge (j1, j2)
will be the number of isomorphism classes of isogenies that exist between
elliptic curves having j1 and j2 as j-invariants. The other graphs where
char(K) | N are graphs where the edges still represent the existence of an
isogeny between some elliptic curves having those vertices as j-invariants,
but the multiplicities no longer represent the number of isomorphism
classes of isogenies.

1Remember when I have drawn single undirected edges there are actually 2 edges between
the vertices. For example from vertex 4 to vertex 5 there is one directed edge. And one directed
edge from 5 to 4.
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If also choosing N to be a prime, then an isogeny of degree N will have a
kernel of N elements. And a finite group with a prime number of elements
must be a cyclic group. Therefore, when N is a prime, the cyclic isogenies
are all the isogenies of degree N .

3.3 Vertices Representing Isomorphism Classes of
Elliptic Curves

As discussed in Remark 3.2, each element in a finite field K is the j-
invariant of an elliptic curve by Theorem 1.5. Since K is not algebraically
closed, Theorem 1.4 does not apply. Hence there may be two or more elliptic
curves having the same j-invariant, and therefore are isomorphic over K̄,
but that are not isomorphic over K. For a j ∈ K, let E be an elliptic curve
such that its j-invariant is j. I will call the set of all elliptic curves that are
isomorphic to E for Twist((E,O)/K).

Theorem 3.2. Assume that char(K) 6= 2, 3 and let

n =


2 if j(E) 6= 0, 1728,

4 if j(E) = 1728,

6 if j(E) = 0.

Then Twist((E,O),K) is canonically isomorphic to K∗/(K∗)n.

Proof. See [8], chapter X.5, proposition 5.4 and corollary 5.4.1.

Corollary 3.1. Let K = Fq be a finite field where q 6= 2, 3. For each element
j ∈ Fq such that j 6= 0, 1728 mod q, there are two isomorphism classes of
elliptic curves over K that have j as their j-invariants.

Proof. Since j 6= 0, 1728 mod q, n = 2 in Theorem 3.2. And so

Twist((E,O)/K) = K∗/(K∗)2 = Z/2Z.

There are two elements in Z/2Z.

Even though there are two different elliptic curves having the same
j-invariant this does not pose a problem for the definition of isogeny graphs
and the results about them in this chapter because of the following results.

Theorem 3.3. Let E1 be an elliptic curve, defined over K = Fq, and let E2,
also defined over K = Fq, be another elliptic curve with the same j-invariant
as E1. Then there is an Fq-rational isogeny of degree p from E (to some other
elliptic curve) if and only if there is an Fq-rational isogeny of degree p from
E2.

Proof. See [4].

Theorem 3.4. Let E1 be an elliptic curve, defined over K = Fq, and let E2,
also defined over K = Fq, be another elliptic curve with the same j-invariant
as E1. Then

End(E1) ∼= End(E2)

Proof. See [4].
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3.4 Some Expected Structures in the N -Isogenous
Graph

Example 3.2. When looking at Figure 3.2, the graph of G2(F7) shows that
there exists an isogeny of degree 2 from an elliptic curve with j-invariant
equal to 2 to an elliptic curve with j-invariant equal to 0. Let’s call it
φ : E(2) → E(0). From G3(F7) shown in Figure 3.3 one can see that there
exists an isogeny of degree 3 from an elliptic curve with j-invariant equal to
0 to an elliptic curve with j-invariant equal to 3. I will call this isogeny for
ψ : E(0)→ E(3). If two such isogenies exists, I can compose the isogenies
to a new cyclic isogeny ψ ◦ φ : E(2)→ E(3). For each point P ∈ (ψ ◦ φ)(E2),
#ψ−1(P ) = degψ = 3. And for each point Q in φ(E2), #φ−1(Q) = 2. Hence
deg(ψ ◦ φ) = 2 · 3 = 6. Hence this isogeny must exist as an edge in the
graph of G6(F7) where the edges represent isogenies of degree 6. Looking
at this graph in Figure 3.4 shows that there indeed exists an edge between
the vertices 2 and 3. The same applies to any other cyclic isogenies from
different N -isogenous graphs over the same finite field, not only for 2 and 3.
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Figure 3.2: This is the
2-isogeny graph where
the vertex set is the
elements of F7
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Figure 3.3: This is the
3-isogeny graph where
the vertex set is the
set of elements of F7
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Figure 3.4: This is the
6-isogeny graph where
the vertex set is the
set of elements of F7

Actually, all isogenies can be decomposed into a composition of isogenies
of prime degree as in Example 3.2.

Theorem 3.5. Let E1 and E2 be elliptic curves over K and let φ : E1 → E2

be a separable isogeny that is defined over K. Then

φ = φ1 ◦ · · · ◦ φk ◦ [m]

where φ1, . . . , φk are isogenies with a prime degree defined over K.

Proof. Let the degree of φ be d = pe11 · · · pekk where pi are primes. Because
φ is separable, its kernel is a group with d elements. This group has
subgroups Z/piZ for each pi that divide d. Because of Theorem 2.16
there exist isogenies, φi, with these groups as kernels. Now for each i,
ker(φi) ⊂ ker(φ), and so Theorem 2.4 says that there must exist a unique
isogeny λ defined over K, such that φ = λ◦φi. Hence φ must be composed of
at least k isogenies, all of which have prime degree. Now let m be the largest
integer such that E[m] ⊂ ker(φ). Then there must be some isogeny with
E[m] as kernel by Theorem 2.16. Of course the multiplication-by-m-map
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has E[m] as its kernel. Then φ must be composed of ψ ◦ [m] for some isogeny
ψ.

Example 3.3. For every power of prime q, there is also the Frobenius
endomorphism on elliptic curves defined over the finite field Fq. Recall that
the identity element is here O = [0, 1, 0]. So to find the kernel of a Frobenius
map I have to solve the equations xq = 0 and yq = 1. The solutions are all
(0, w) such that w is the q-th root of 1. Since there are q q-th root of 1, there
must be q elements in the kernel of the Frobenius map.

Endomorphisms are represented in the N -isogenous graph as self-loops.
Therefore, due to the existence of the Frobenius endomorphism, the graphs
of Gq(Fq) are expected to have self-loops for all its vertices. The figures
Figure 3.5-Figure 3.7 below shows examples of such graphs, which indeed
agree with the observation.
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Figure 3.5: This is the
2-isogeny graph where
the vertex set is the
elements of F2
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Figure 3.6: This is the
5-isogeny graph where
the vertex set is the
set of elements of F5
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Figure 3.7: This is the
7-isogeny graph where
the vertex set is the
set of elements of F7

3.5 Number of Edges from a Given Vertex

Theorem 3.6. Let E/K be an elliptic curve with j-invariant not equal to 0
or 1728 and let p 6= char(K) be a prime. The number of isomorphism classes
of isogenies defined over K from E is either 0, 1, 2 or p+ 1.

Proof. See [9].

Theorem 3.7. Let K be a finite field. Let E1 and E2 be elliptic curves
defined over K. If End(E1) ∼= End(E2), then the number of isomorphism
classes of isogenies from E1 are the same as the number of isomorphism
classes of isogenies from E2.

Proof. See [4]

Looking at the N -isogenous graphs in the examples so far, some vertices
have undirected edges between them while some have directed edges from
them. The existence of the dual isogeny ensures that if there exists an
edge (j1, j2) then there must exists an edge (j2, j1). From the earlier
discussion, when char(K) - N the multiplicity of the edges represents
isomorphism classes of isogenies. But there is no guarantee that the
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number of isomorphic isogenies from an elliptic curve E1 to an elliptic
curve E2 is the same as the number of isomorphic isogenies from E2 to E1.

Theorem 3.8. Let E1 and E2 be elliptic curves. If j(E1) = 0 and j(E2) 6= 0
or j(E1) = 1728 and j(E2) 6= 1728, then there exist isogenies φ : E1 → E2

and ψ : E1 → E2 that are different but isomorphic, but such that their dual
isogenies φ̂ : E2 → E1 and ψ̂ : E2 → E1 are not isomorphic.

Proof. Let φ : E1 → E2 be an isogeny such that ker(φ) 6= {O} and let
λ : E2 → E2 be an automorphism. The kernel of an automorphism consists
of O only. Therefore composing λ with φ in the following order will make
the kernel remain as the kernel of φ,

ker(λ ◦ φ) = ker(φ).

Hence λ ◦ φ is isomorphic to φ. Let λ̂ ◦ φ be the dual isogeny of λ ◦ φ and φ̂
the dual isogeny of φ. Then

λ̂ ◦ φ = φ̂ ◦ λ̂

where λ̂ : E2 → E2 and φ̂ : E2 → E1. In this order, the kernel of φ̂ ◦ λ̂
is not automatically the same as the kernel of φ̂. Hence λ̂ ◦ φ might not
be isomorphic to φ̂. This implies that if there are different amount of
automorphisms on one elliptic curve E1 than on another E2, then the
number of isomorphic isogenies from E1 to E2 will be different than the
number of isomorphic isogenies fromE2 toE1. Since there are two automorphisms
on elliptic curves where the j-invariant is not equal to 0 or 1728 and more
than two automorphisms on an elliptic curve where the j-invariant is 0 or
1728, see Theorem 2.15, the number of isomorphic isogenies from E1 to E2

can only differ from the number of isomorphic isogenies from E2 to E1 if
j(E1) = 0 and j(E2) 6= 0 or if j(E1) = 1728 and j(E2) 6= 1728.

Hence the multiplicities, representing the number of isomorphism
classes of isogenies, of one edge in GN (K) can be different from the edge
in the opposite direction. Therefore the edges where there is not the same
number of isomorphism classes of isogenies one way as in the opposite
direction will have directed edges with different multiplicity. Whereas the
edges that have the same multiplicity in both directions, will not need to be
directed on the figures.

Theorem 3.9. Let E1 and E2 be two elliptic curves with j-invariants j1
and j2 respectively. If j1 = 0 and j2 6= 0, then the edge (j1, j2) will have
multiplicity 3 and the edge (j2, j1) will have multiplicity 1 in GN (K). If
j1 = 1728 and j2 6= 1728 then the edge (j1, j2) will have multiplicity 2 and
(j2, j1) will have multiplicity 1 in GN (K).

Proof. See [9]



Chapter 4

Isogeny Volcanoes

In this chapter I will study the isogeny graphs more and illuminate some of
its structure.

In the succeeding I will not only assume that char(K) - N , but that N
is a prime. Hence the N -isogenous graph will be called the p-isogenous
graph. K will be a finite field with a prime number of elements. And so I
will examine the structure of the p-isogenous graph over Fq for primes p
and q.

4.1 Supersingular and Ordinary Components

Let a path be a sequence of directed edges between vertices, such that the
end vertex of one edge is the start vertex of the next. Then let a connected
subgraph of the isogeny graph be a subgraph where there is a path from
each vertex to every other vertex. I will now partition each isogeny graph
into connected subgraphs. I will call each such subgraph a component of
the Gp(Fq) graph.

The kernel of the multiplication-by-q-map is E[q]. Since q is prime, the
number of elements in E[q] is either q or 1. So either

E[q] ∼= Z/qZ (4.1)

or
E[q] ∼= {0}. (4.2)

Consequently the elliptic curves can be distinguished into two cases.

Definition 4.1. The elliptic curves where the kernel of the multiplication-
by-q map is isomorphic to Z/qZ are called ordinary elliptic curves and the
elliptic curves where the kernel of the multiplication-by-q map is trivial are
called supersingular elliptic curves.

Theorem 4.1. Let φ : E1 → E2 be an isogeny. Then E1 is supersingular
if and only if E2 is supersingular. And E1 is ordinary if and only if E2 is
ordinary.

Proof. See [9], lecture 14, Theorem 14.1

27
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Because of Theorem 4.1, the vertices in the components of the p-isogeny
graph will either all be j-invariants of supersingular elliptic curves or
ordinary elliptic curves. Accordingly, I will call the components where all the
vertices are j-invariants of supersingular elliptic curves for supersingular
components and the components of the graph where all the vertices are
j-invariants of ordinary elliptic curves for ordinary components.

To see which j-invariants are vertices of supersingular components see
Appendix A. To categorize which components of Gp(Fq) are ordinary in the
examples below, I will check if a vertex in the component is supersingular
or not over Fq.

Example 4.1. Over F23 the j-invariants of supersingular elliptic curves
are 0, 3, and 19 (see Appendix A). In G2(F23) all three are vertices in the
same (and only) supersingular component shown in Figure B.27. This is not
always the case. Over F53 the j-invariants of supersingular elliptic curves
are 0, 46 and 50. In G2(F53) there are two supersingular components. They
are shown in Figure 4.2 and Figure 4.3.

G2(F23)− C0

0

3

19
3

1
1

2

Figure 4.1: This
is a supersingular
component of the
2-isogeny graph where
the vertex set is the
elements of F23

G2(F53)− C0

046

3

1

Figure 4.2: This
is a supersingular
component of the
2-isogeny graph where
the vertex set is the
set of elements of F53

G2(F53)− C10

50

Figure 4.3: This is
another supersingular
component of the 2-
isogeny graph where
the vertex set is the
set of elements of F53

Remark 4.1. Some post quantum cryptography systems have been proposed
given by hard problems based on the supersingular components.

1. Given two vertices, finding a sequence of isogenies between the two
vertices in a supersingular component of the isogeny graph is hard.
Which makes computing isogenies between two supersingular elliptic
curves a hard problem.

2. Computing the endomorphism ring of a supersingular elliptic curve.

3. Computing the maximal order (see Definition 4.2) isomorphic to the
endomorphism ring of a supersingular elliptic curve.

[3] proposed a PQC hash function which is based on the hard problem of
finding a sequence of n-isogenies for a small prime n between supersingular
elliptic curves. There are also key exchange protocols based on the above
hard problems. See [6] and [5]. There are signature schemes, see [13] and
public key encryption systems, see [6]. There are also public key encryption
algorithm and key encapsulation mechanism, based on these hard problems,
that is per today in the second round of NIST post-quantum cryptography
standardization competition. See [1].
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4.2 Horizontal and Vertical Edges

Definition 4.2. Let K be a Q-algebra that is finitely generated over Q. An
order of K is a subring R of K that is finitely generated as a Z-module and
satisfies R⊗Q = K.

Definition 4.3. Let the Endomorphism algebra End0(E) be defined as

End0(E) = End(E)⊗Q.

Theorem 4.2. If E is an ordinary elliptic curve, then End0(E) = K is an
imaginary quadratic field.

Proof. See [9], lecture 14, Theorem 14.5.

For each m ∈ Z there is a multiplication-by-m isogeny. If these are the
only isogenies from E to itself, then End(E)∼= Z. But over fintite fields Fq,
the Frobenius endomorphism πE is an example of an isogeny that is not in
Z. Therefore Z[πE ] ⊆ End(E). One says that E has complex multiplication
when End(E) is not Z. The following theorem shows which possibilities
there are for End(E) to be.

Theorem 4.3. Let E/K be an elliptic curve over a finite field K = Fq. The
Endomorphism ring, End(E), of E is one and only one of the following

1. an order in an imaginary quadratic field

2. an order in a quaternion algebra

Proof. For 1. see theorem 14.5 and for 2. see theorem 14.18, lecture 14
in [9].

As explained in Theorem 4.3 there are two possibilities for End(E) when
E is defined over a finite field. The following theorem show another way one
could define ordinary and supersingular that has to do with the relationship
between E being an ordinary or supersingular elliptic curve and End(E).

Theorem 4.4. Let K be a finite field and let E be an elliptic curve defined
overK. Then E is ordinary if and only if End(E) is an order in an imaginary
quadratic field.

Proof. By the definition of order in Definition 4.2 and the definition
of endomorphism algebra in Definition 4.3 End(E) must be an order in
End0(E). And by Theorem 4.2, End0(E) is an imaginary quadratic field.
Thus, End(E) is an order in an imaginary quadratic field.

Theorem 4.5. Let φ : E1 → E2 be an isogeny between ordinary elliptic
curves. Then

End0(E1) ∼= End0(E2).

Proof. See theorem 23.3 from [9].

The following theorem show that there are more to know about the
relationship between endomorphism rings of E1 and E2 other than that
both are orders in the same imaginary quadratic field.
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Theorem 4.6. Let φ : E1 → E2 be an isogeny of degree p between ordinary
elliptic curves E1 and E2 and let End(E1) ∼= O1 and End(E2) ∼= O2, where
O1 and O2 are orders in the endomorphism algebras of E1 and E2. Then the
following three are the only possibilities for O1 and O2.

1. O1 = O2

2. [O1 : O2] = p

3. [O2 : O1] = p

Proof. Since E1 and E2 are ordinary elliptic curves, then End0(E1) =
End0(E2) by Theorem 4.5, is an imaginary quadratic field by Theorem 4.2.
By Theorem 4.4, both End(E1) = O1 and End(E2) = O2 are orders in
imaginary quadratic fields, and so they must both be the orders in the same
imaginary quadratic field.

Now, let α : E1 → E1 be an isogeny. Then α ∈ End(E1), and let it be
represented as α ∈ O1. And let β : E2 → E2 also be an isogeny. Then
β ∈ End(E2). And let β be the equivalent element in O2. Now the isogeny
φ̂ ◦ β ◦ φ is in End(E1), represented by pβ ∈ O1. And the isogeny φ ◦ α ◦ φ̂ is
in End(E2). Represented by pα ∈ O2. So for each α ∈ O1, pα is in O2. And
for each β ∈ O2, pβ is in O1.

Definition 4.4. Let φ : E1 → E2, O1 and O2 be as in Theorem 4.6. By
the theorem there are three possibilities for O1 and O2. So φ can be
distinguished by what the relation between the orders are. I will call
φ horizontal if O1 = O2 and vertical if φ is not horizontal. the vertical
isogenies can be further distinguished into two types. I will call φ descending
if [O1 : O2] = p and I will call φ ascending if [O2 : O1] = p.

Theorem 4.7. Let E be an elliptic curve defined over K such that its
endomorphism ring is isomorphic to an order in an imaginary quadratic
field. Then there are 0 or 1 ascending p-isogenies from E depending on
whether p - [OK : O] or not, where OK is maximal order in End0(E).

Proof. Lemma 23.6 of lecture 23 from [9]

Theorem 4.8. Let E1 be an ordinary elliptic curve where End(E1) ∼= O,
then the number of (isomorphism classes of) isogenies φ : E1 → E2 where
End(E2) ∼= O is either 0, 1 or 2.

Proof. See chapter 25 of [4].
Remark 4.2. The number of (isomorphism classes of) isogenies from E1 in
Theorem 4.8 are still as in Theorem 3.6 but the number of isogenies from
E1 to an elliptic curve with the same endomorphism ring are 0, 1 or 2. The
other isogenies from E1 will vertical isogenies.

4.3 p-Volcanoes

Definition 4.5. Let Gp(Fq) be the p-isogenous graph with the vertex set
equal to Fq where q is prime. A p-volcano inGp(Fq) is a connected, undirected
subgraph, that allows self-loops and multi-edges, whose vertices are partitioned
into one or more levels V0, . . . , Vd such that the following hold:
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1. The subgraph on V0 (the surface) is a regular graph of degree at most
2.

2. For i > 0, each vertex in Vi has exactly one edge to a vertex in level
Vi−1. These are the only edges in the graph except for the edges in V0.

3. For i < d, each vertex in Vi has degree p+ 1.

Where the degree of a vertex j will be the number of roots of Φp(j, Y ) counted
with multiplicity. And the degree of a regular graph will be the degree of
any of its vertices.

Remark 4.3. From the first look it might seem like 1. in Definition 4.5 is
contradicting to 3. in terms of the degree of the vertices of V0, but 1. says
that the vertices of the subgraph V0, has degree at most 2. Thus, the edges
from vertices in V0, that are not in the subgraph V0 are not counted in 1.
While in 3. the vertices of Vi for i < d are seen as vertices of the whole
graph.

Proposition 4.1. Subgraphs of isogeny graphs that are regular graphs
of degree at most two are volcanoes of depth d = 0. Such graphs can
be categorized into one of the following types of regular graphs. A graph
consisting of

1. one single vertex with no edges, which I will call a trivial component,

2. one vertex with one or two self-loops,

3. two vertices with one or two edges between them or

4. a cyclic graph with three or more vertices.

Proof. A regular graph of degree at most two is a connected, undirected
graph. Partitioning a regular graph of degree at most two into one level
V0 makes the graph satisfy 1. Because d = 0 requirement 2. and 3. from
Definition 4.5 are always also true.

Example 4.2. Figure 4.4 shows a component of G2(F3). It consists of a
vertex and a self-loop. So this is a regular graph of degree 1. Figure 4.5
shows a component ofG2(F7) consisting of two vertices and an edge between
them. This is a regular graph of degree 1. Figure 4.6 shows a component
of G3(F23). It consists of three vertices, where each vertex has two edges
to two vertices. This is a regular graph of degree 2. Figure 4.7 shows
a component of G3(F59). It consists of a regular graph of degree 2. By
Proposition 4.1 these four components are volcanoes of depth 0.

G2(F3)− C1

2

Figure 4.4: Component of G2(F3)

G2(F7)− C1

45

Figure 4.5: Component of G2(F7)
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G3(F23)− C2

12

21

15

Figure 4.6: Component of G3(F23)

G3(F59)− C5

24

58

22

39

Figure 4.7: Component of G3(F59)

Example 4.3. Figure 4.8 shows a component of G2(F17). If partitioned into
V0 = {10} and V1 = {6, 1}, then d = 1 and V0 consists of one vertex with one
self-loop, which is a regular graph of degree one. So requirement 1. from
Definition 4.5 is satisfied. 6 ∈ V1 has exactly one edge and it is to vertex 10
∈ V0 and 1 ∈ V1 has exactly one edge which goes to 10 ∈ V0. Which means
that 2. from Definition 4.5 is also satisfied. There is only one level such that
i < d = 1, V0. From 10, which is the only vertex in V0, there is an edge to
vertex 6, one edge from 10 to vertex 1 and one edge from 10 to itself vertex
10. Which means that the degree of each vertex in Vi for i < d, which is just
the vertex 10, is 3 = 2 + 1 = p+ 1. Thus, requirement 3. from Definition 4.5
is also satisfied. Hence the component of G2(F17) drawn in Figure B.18 is a
3-volcano.

G2(F17)− C1

1

10

6

Figure 4.8: Component of G2(F17)

Example 4.4. There are two components of G2(F53) that are 2-volcanoes
of depth 2. These are ordinary components. Look at Figure 4.9 and
choose V0 = {17}, V1 = {7} and V2 = {1, 35}. For Figure 4.10, choose
V0 = {39}, V1 = {8, 22, 42} and V2 = {5, 11, 12, 13, 14, 40}.
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G2(F53)− C1

1

35

17

7

2

Figure 4.9: Component of G2(F53)

G2(F53)− C3

5

39

840

42

11

12

13 14

22

Figure 4.10: Component of
G2(F53)

Example 4.5. The following are two examples of 2-volcanoes that have
depth 3. These are ordinary components. In Figure 4.11 choose V0 =
{120}, V1 = {163}, V2 = {95, 99} and V3 = {36, 58, 150, 227}. In Figure 4.12,
choose V0 = {332}, V1 = {301}, V2 = {235, 280} and V3 = {48, 62, 297, 336}.

G2(F233)− C21

99

36

163

227

150

120

58

952

Figure 4.11: Component of
G2(F233)

G2(F337)− C18

297

235

332

301

48

336

280

62

2

Figure 4.12: Component of
G2(F337)

Example 4.6. Supersingular components can also be volcanoes. Figure 4.13
and Figure 4.14 show two examples. Figure 4.13 shows a 3-volcano of depth
1, with V0 = {41} and V1 = {50}. Figure 4.14 shows a 3-volcano of depth 2,
with V0 = {100}, V1 = {65} and V2 = {36, 8}.

G2(F61)− C11

4150 2

Figure 4.13: Component of
G2(F61)

G2(F139)− C4

8

65

36

100 2

Figure 4.14: Component of
G2(F139)
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Theorem 4.9. Each ordinary component of the p-isogeny graph Gp(Fq),
excluding the components that contain the 0 or the 1728 vertices, is a p-
volcano.

Proof. The vertices in ordinary components represent j-invariants of
elliptic curves where the only automorphisms are 1 and −1 according to
Theorem 2.15. Therefore as explained in Section 3.5 all edges (j1, j2) will
have the same multiplicity as (j2, j1). Hence the graph of these components
do not need to be directed.

Because of Theorem 4.5, the endomorphism rings of all the elliptic
curves in the component will be orders in the same imaginary quadratic
field. The levels in a p-volcano will be the vertices that are j-invariant of
elliptic curves having the same endomorphism rings.

Choosing a subgraph of an ordinary component where all the vertices
are j-invariant of elliptic curves that have isomorphic endomorphism rings,
will be a regular graph because of Theorem 3.7. This regular graph must
have degree 0,1 or 2 due to Theorem 4.8. Hence requirement 1. from
Definition 4.5 is satisfied in all ordinary components.

Which level Vi a j-invariant is going to be in, is determined by the p-adic
valutaion of the conductor of [OK : O]. (See [9] for details). By Theorem 4.7
every j-invariant of an elliptic curve that have isomorphic endomorphism
rings and its conductor divisible by p has maximum one ascending p-isogeny
from it. Hence requirement 2 from Definition 4.5 is satisfied.

It follows from Theorem 3.6 and Theorem 4.7 that there can only be one
isogeny from the vertices in level d, hence requirement 3 from Definition 4.5
is satisfied.

4.4 Applications

Theorem 4.9 is the base for many algorithms used in cryptography and
number theory. I will briefly mention some of the algorithms. In the core of
some of these algorithms is an algorithm that finds the vertices in level Vd.
Level Vd is called the floor in many algorithms.
Remark 4.4. The idea behind finding the floor algorithm is that you start
with a vertex j in an ordinary component of Gp(Fq). Then by Theorem 4.9
the component must be a p-volcano, lets say of depth d. By the definition of a
p-volcano then, either the degree of the vertex j is 1 or p+1. If deg j = 1 then
j ∈ Vd if deg j = p + 1, then j /∈ Vd. So pick first an ordinary j-invariant.
If this is not a vertex already on the floor, the algorithm will make a
sequence of vertices that leads to the floor. Given a modular polynomial
Φp(X,Y ) over Fq, each step of this algorithm will have an expected time
of O(p2M(m) + M(mn)m), where M(m) is the time it takes to multiply two
m-bit integers and m = logq. See [11] for details of the algorithm and proof
of the time consumption. there is also a slightly modified version of this
algorithm in [11], which finds the shortest path to the floor.
Remark 4.5. The two algorithms in Remark 4.4 which are based on the
theory of this thesis can be used to make a Las Vegas algorithm to identify
supersingular j-invariants. See section 3.2 in [11]. This algorithm will
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(m2) expected time, where m = logq. The best known Las Vegas algorithms
without this theory has an expected running time of (m4) according to [11].
Remark 4.6. To compute the endomorphism rings of elliptic curves over
Fq is usually hard and the running time for such an algorithm usually is
exponential in logq. But because of Theorem 4.6 one can use horizontal
isogenies to compute the endomorphism rings. See [11] for details. Under
the assumption of the General Riemann Hypothesis, this algorithms will
have a sub-exponential running time. For details and proof of these claims
see section 3.3 of [11].
Remark 4.7. Using the finding floor algorithms which are based on the
volcano structure again, [11] has proposed an algorithm that can compute
Hilbert class polynomials. The Hilbert class polynomials are important
in the complex multiplication method in Remark 4.8 below, which is an
important algorithm in elliptic curve cryptography.
Remark 4.8. The complex multiplication method is a method to construct
an elliptic curve with a given number of rational points over a fixed field.
This method is extensively used in elliptic curve cryptography and elliptic
curve primality proving.

Let EllO = {j(E) : E/Ks.t.End(E) ∼= O} and let the Hilbert class
polynomial, HD(X), be defined by

HD(X) = Πj∈EllO(C)(X − j).

Start with an equation
DV 2 = 4q − t2. (4.3)

where q is prime. Then let j be any root of HD(X), except 0 or 1728. Now
set

k =
j

1728− j mod q.

Then the curve
y2 = x3 + 3kc2x+ 2kc3 (4.4)

has j-invariant j for any nonzero c ∈ Fq. So pick c = 1. According to
Corollary 3.1 there are two elliptic curves with the same j-invariant. One
must have order q + t+ 1 and the twist must have order q − t+ 1. Choose
a random point on the elliptic curve. To check which one it is, just pick a
random point at the elliptic curve and multiply by either q+ t+1 or q− t+1.
If you get the identity element O then that is the order, if not then the other
one is the order. For proof and details see section 3.4 of [11].

The part of this method that is dependent on the theory of this thesis
is the computation of the Hilbert class polynomials. The algorithm for
computing the Hilbert class polynomials is heavily based on the volcano
structure of the components because the finding floor algorithms are used
in two of the critical steps. Under the General Riemann Hypothesis this
algorithm runs in quasi-linear expected time in size of HD(X). See section
3.4 of [11] and [10].
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4.5 Statistics and Findings

In Appendix C I have calculated some statistics for isogeny graphs for some
pairs of p and q. In the next remarks I will comment the findings.
Remark 4.9. Looking at the tables in Appendix C, we observe that the
number of isogenies in an isogeny graph Gp(Fq) will roughly be the same
size as Fq. This is more visible when looking at the isogeny graphs with the
bigger fields Table C.7-Table C.10.
Remark 4.10. Looking at the number of components, the number of ordinary
components and the number of supersingular components in Table C.1-
Table C.6, shows that most of the components are ordinary components and
there are very few supersingular components.
Remark 4.11. The number of components seem to be about half of the
number of isogenies. This is again, also more visible looking at the tables
for the bigger fields, Table C.7-Table C.10. This means, that in average
there is about 2 isogenies per component. That is not many enough to
make volcanoes of big depth. Also comparing the number of components to
the number of non-trivial components, shows that most of the components
are trivial-components. From looking at looking at Table C.10, about 70%
of all the components are trivial components. Therefore, if one pick an
ordinary j-invariant, which, because of Theorem 4.9, will be a volcano, and
wishes to make a path to the floor of the volcano, as one would want in
the applications above, the probability for the path to be longer than 1, is
low. It would be interesting to find exactly what the probability is to get
volcanoes of certain depths for pairs of p and q.

Proposition 4.2. Following table shows the number of p-volcanoes of depth
d = 2 and d = 3 in Gp(Fq) for 2 ≤ p ≤ 7 and 2 ≤ q ≤ 293.

2 ≤ q ≤ 293 d=2 d=3
p = 2 55 6
p = 3 5 0
p = 5 0 0
p = 7 0 0

There are no volcanoes of depth larger than 3 for 2 ≤ p ≤ 7 and 2 ≤ q ≤
293.

Proof. I checked this manually by computing all the isogeny graphs for
p and q as in the proposition, and counting. There are too many graphs
to include in the thesis but they were all computed using the code in
Appendix D
Remark 4.12. It makes sense that there are less p-volcanoes of high depth
for bigger p in the same range of primes q, because as mentioned in
Remark 4.9 the number of isogenies in each Gp(Fq) is almost q, but for
larger p, the degree of the vertices of p-volcanoes are p+ 1 and so for bigger
p there are more edges (isogenies) needed for each p-volcano of the same
size.



4.6. FURTHER STUDIES 37

Proposition 4.3. p-volcanoes in Gp(Fq) can at most have depth q − 1.

Proof. Follows from Definition 4.5, of p-volcano: There can maximum be
q vertices in a subgraph of Gp(Fq). If one wants to make a 2-volcano with
maximum depth then there must be a vertex in each level. And that is by
definition a 2-volcano of depth q − 1.
Remark 4.13. In p-volcanoes for p > 2, there must be more than one vertex
in most of the levels to satisfy requirement 3 of Definition 4.5 about the
degree of the vertices. Therefore, the depth must be even less then q − 1.
Also, the proof of Proposition 4.3 assumes that there are q vertices in the
p-volcano, this can only happen if all of Gp(Fq) is connected. But as seen
in the graphs of Figure B.1-Figure B.55 and the statistics of Table C.1-
Table C.10, there are no isogeny graphs where that happens, and actually
isogeny graphs are made out of many components, much more than one.
Hence, the highest depth of a p-volcano in Gp(Fq) must probably be much
less than q − 1.

4.6 Further Studies

As mentioned in Section 4.5 there are few p-volcanoes of high depth. From
the discussions from Section 4.2 and the proof of Theorem 4.9 it looks
like the depth of the p-volcano, a j-invariant is a part of, is dependent
on the endomorphism ring of the elliptic curve with that j-invariant. It
would be interesting to count and make statistics on which j-invariants are
more often part of p-volcanoes of high depth and give an estimate for the
probability of p-volcanoes with given depths d for pairs p and q.





Appendix A

Table of j-Invariants of
Supersingular Elliptic Curves
over Fp

In the following table I have listed j-invariants of supersingular elliptic
curves over finite fields with a prime number of elements. Ranging from
2 ≤ p ≤ 293.

First I used the fact that 0 is the j-invariant of a supersingular elliptic
curve over Fp if and only if p = 2 mod 3 and 1728 (mod p) is the j-invariant
of a supersingular elliptic curve if and only if p = 3 mod 4. See [8], in the
proof of theorem 4.1, chapter V.

The other j-invariants of supersingular elliptic curves over Fp I found
by calculating the roots of the polynomial

Hp(t) =

(p−1)/2∑
i=0

(
(p− 1)/2

i

)2

ti

over Fp, see [8] theorem 4.1b), chapter V.

39



40
APPENDIX A. TABLE OF j-INVARIANTS OF SUPERSINGULAR

ELLIPTIC CURVES OVER Fp

p j p j

2 0 131 0, 25=1728 (mod 131), 10, 28,
31, 50, 62, 82, 94, 113

3 0=1728 (mod 3) 137 0, 22, 78, 136

5 0 139 60=1728 (mod 139), 8, 36, 44,
65, 100

7 6=1728 (mod 7) 149 0, 12, 30, 62, 68, 74, 103

11 0, 1=1728 (mod 11) 151 67=1728 (mod 151), 29, 101,
124, 143, 148, 150

13 5 157 79, 134, 150
17 0, 8 163 98, 127

19 18=1728 (mod 19), 7 167 0, 58=1728 (mod 167), 15, 27,
30, 59, 89, 112, 131, 132, 151

23 0, 3=1728 (mod 23), 19 173 0, 17, 24, 42, 85, 102, 159

29 0, 2, 25 179 0, 117=1728 (mod 179), 22, 35,
61, 112, 120, 121, 140, 171

31 23=1728 (mod 31), 2, 4 181 36, 64, 146, 173, 175

37 8 191
0, 9=1728 (mod 191), 16, 41, 46,
55, 66, 106, 107, 138, 150, 169,
176

41 0, 3, 28, 32 193 42, 169
43 41, 8 197 0, 22, 72, 120, 131

47 0, 36=1728 (mod 47), 9, 10, 44 199 136=1728 (mod 199), 8, 40, 61,
64, 90, 98, 140, 147

53 0, 46, 50 211 40=1728 (mod 211), 28, 82, 114,
148, 198

59 0, 17=1728 (mod 59), 15, 28, 47, 48 223 167=1728 (mod 223), 49, 128,
193, 195, 210, 221

61 9, 41, 50 227 0, 139=1728 (mod 227), 30, 110,
114, 132, 147, 160, 191, 201

67 53=1728 (mod 67), 66 229 27, 60, 93, 172, 214

71 0, 24=1728 (mod 71), 17, 40, 41,
48, 66 233 0, 11, 85, 177, 183, 187

73 9, 56 239
0, 55=1728 (mod 239), 68, 105,
107, 113, 185, 192, 193, 214,
215, 217, 218, 225, 235

79 69=1728 (mod 79), 15, 17, 21, 64 241 8, 28, 64, 93, 216, 240

83 0, 68=1728 (mod 83), 17, 28, 50,
67 251

0, 222=1728 (mod 251), 4, 24,
30, 35, 64, 101, 139, 185, 199,
207, 213, 232

89 0, 6, 7, 13, 52, 66 257 0, 30, 115, 121, 139, 198, 223,
249

97 1, 20 263
0, 150=1728 (mod 263), 31, 37,
55, 85, 107, 108, 110, 141, 149,
184, 208

101 0, 3, 21, 57, 59, 64, 66 269 0, 5, 92, 111, 122, 142, 189, 197,
199, 200, 215

103 80=1728 (mod 103), 23, 24, 34, 69 271 102=1728 (mod 271), 23, 47, 69,
98, 125, 141, 148, 202, 236, 240

107 0, 16=1728 (mod 107), 47, 72, 81,
94 277 61, 195, 244

109 17, 41, 43 281 0, 5, 48, 84, 90, 109, 130, 133,
249, 252

113 0, 54, 72, 99 283 30=1728 (mod 283), 21, 60, 78,
122, 251

127 77=1728 (mod 127), 73, 95, 125,
126 293 0, 48, 88, 89, 124, 127, 141, 212,

243

Table A.1
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Examples of Isogeny Graphs

This appendix contains figures showing isogeny graphs Gp(Fq) for primes
2 ≤ p ≤ 11 and 2 ≤ q ≤ 11, such that q - p.
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Isogeny graphs where q ≥ 13 will be complex, so I will present the graphs
component by component. Figure B.13 - Figure B.16 show the non-trivial
components of G2(F13).
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Figure B.17-Figure B.20 show non-trivial components of G2(F17).
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Figure B.21-Figure B.26 show non-trivial components of G2(F19).
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Figure B.25
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Figure B.26

Figure B.27-Figure B.32 show non-trivial components of G2(F23).
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Figure B.32

Figure B.33-Figure B.38 show non-trivial components of G2(F29).
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Figure B.36
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Figure B.39-Figure B.46 show non-trivial components of G2(F31).
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G2(F31)− C6
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Figure B.47-Figure B.55 show non-trivial components of G2(F37).
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G2(F37)− C3

412

Figure B.50
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Appendix C

Tables of Statistics

In this chapter I have collected some of the statistics that I have calculated
for Gp(Fq). I have calculated all the statistics using the program Isogenic
which I made in connection with this thesis. See Appendix D for more
information. Each table shows statistics for a fixed p which will determine
which modular polynomial is used. For Table C.1-Table C.6, the following is
an explanation of what statistics that is included.

1. In the first columns I have listed prime numbers q that represent
which finite fields Fq the isogeny graphs use as its vertex set. In this
way the isogeny graph Gp(Fq) will be fixed for each row of the tables.

2. In the second column I have calculated the number of isomorphism
classes of isogenies that exist between elliptic curves with j-invariants
as elements of Fp. This will be the same as the number of directed
edges counting with multiplicity of Gp(Fq).

3. In the third column I have calculated the number of components of
Gp(Fq).

4. In the fourth column I have calculated the number of non-trivial
components of Gp(Fq).

5. In the fifth column I have calculated the number of ordinary components
of Gp(Fq).

6. In the sixth column I have calculated the number of supersingular
components of Gp(Fq).

Remark C.1. Of course, because of Theorem 4.1, the number of ordinary
components (the number in the fourth column) plus the number of supersingular
components (the number in the fifth column) must be equal to the number
of components (the number in the third column).
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p = 2
q

Number
of
isogenies

Number
of
components

Number
of non-
trivial
components

Number
of
ordinary
components

Number
of super-
singular
components

5 7 4 2 3 1
7 9 5 3 4 1
11 13 8 4 7 1
13 17 8 4 7 1
17 21 10 4 9 1
19 23 12 6 11 1
23 25 14 6 13 1
29 35 16 6 15 1
31 35 18 8 17 1
37 39 21 9 20 1
41 49 21 7 20 1
43 45 25 11 24 1
47 51 26 10 25 1
53 55 29 11 27 2
59 67 32 12 31 1
61 65 33 13 31 2
67 69 38 16 37 1
71 77 39 15 38 1
73 77 38 14 37 1
79 81 44 18 43 1
83 87 45 17 43 2
89 97 45 15 43 2
97 101 50 18 49 1
101 109 52 18 49 3
103 107 55 21 54 1
107 109 58 22 56 2
109 111 58 22 56 2
113 115 59 21 57 2
127 129 68 26 67 1
131 139 69 25 67 2

Table C.1
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p = 2
q

Number
of
isogenies

Number
of
components

Number
of non-
trivial
components

Number
of
ordinary
components

Number
of super-
singular
components

137 139 71 25 69 2
139 143 75 29 73 2
149 155 77 27 74 3
151 153 81 31 80 1
157 161 81 29 79 2
163 165 87 33 86 1
167 171 88 32 87 1
173 177 90 32 86 4
179 185 94 34 92 2
181 185 94 34 92 2
191 197 101 37 100 1
193 195 99 35 98 1
197 199 102 36 99 3
199 203 105 39 104 1
211 213 113 43 111 2
223 227 117 43 116 1
227 231 119 43 116 3
229 233 118 42 115 3
233 235 119 41 116 3
239 245 125 45 124 1
241 245 123 43 120 3
251 259 130 46 127 3
257 261 130 44 126 4
263 265 138 50 137 1
269 277 137 47 132 5
271 275 143 53 142 1
277 279 143 51 141 2
281 287 142 48 138 4
283 287 148 54 146 2
293 297 150 52 145 5

Table C.2
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p = 3
q

Number
of
isogenies

Number
of
components

Number
of non-
trivial
components

Number
of
ordinary
components

Number
of super-
singular
components

5 6 5 2 4 1
7 12 5 4 4 1
11 14 9 3 8 1
13 20 8 6 7 1
17 20 13 4 12 1
19 28 11 8 10 1
23 28 16 4 15 1
29 34 20 5 19 1
31 44 16 11 15 1
37 42 21 13 20 1
41 48 28 7 27 1
43 46 24 14 22 2
47 56 30 6 29 1
53 56 34 7 33 1
59 70 38 8 37 1
61 72 32 20 30 2
67 68 37 20 35 2
71 84 44 8 43 1
73 78 40 23 38 2
79 92 40 24 37 3
83 88 51 9 50 1
89 94 57 12 56 1
97 100 53 29 51 2
101 110 62 11 61 1
103 110 54 31 50 4
107 112 64 10 63 1
109 116 58 33 55 3
113 114 71 14 70 1
127 136 65 37 61 4
131 144 78 12 77 1

Table C.3
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p = 3
q

Number
of
isogenies

Number
of
components

Number
of non-
trivial
components

Number
of
ordinary
components

Number
of super-
singular
components

137 138 83 14 82 1
139 150 71 40 67 4
149 154 88 13 87 1
151 164 77 44 72 5
157 162 82 44 79 3
163 164 87 46 85 2
167 178 95 11 94 1
173 178 100 13 99 1
179 186 106 16 105 1
181 190 94 52 90 4
191 204 111 15 110 1
193 198 101 54 99 2
197 202 113 14 112 1
199 214 101 57 95 6
211 218 110 60 105 5
223 230 116 63 110 6
227 232 130 16 128 2
229 238 119 65 115 4
233 236 137 20 136 1
239 254 135 15 134 1
241 250 125 68 120 5
251 262 145 19 144 1
257 258 151 22 150 1
263 274 151 19 150 1
269 276 156 21 155 1
271 288 137 76 129 8
277 284 142 75 139 3
281 284 164 23 163 1
283 286 147 77 141 6
293 298 163 16 162 1

Table C.4
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p = 5
q

Number
of
isogenies

Number
of
components

Number
of non-
trivial
components

Number
of
ordinary
components

Number
of super-
singular
components

7 12 6 3 5 1
11 18 8 4 7 1
13 18 11 5 10 1
17 28 13 6 12 1
19 30 12 6 11 1
23 40 15 6 14 1
29 42 20 10 19 1
31 46 20 10 19 1
37 38 28 10 27 1
41 58 27 13 26 1
43 48 29 9 27 2
47 76 28 9 27 1
53 58 36 11 34 2
59 82 34 14 33 1
61 72 39 19 38 1
67 72 44 12 42 2
71 98 41 17 40 1
73 74 51 15 49 2
79 96 45 19 44 1
83 106 47 10 45 2
89 104 54 24 53 1
97 98 66 18 64 2
101 120 61 27 60 1
103 116 63 16 60 3
107 122 64 15 60 4
109 118 66 30 65 1
113 118 72 17 69 3
127 138 77 18 73 4
131 162 73 29 72 1

Table C.5
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p = 5
q

Number
of
isogenies

Number
of
components

Number
of non-
trivial
components

Number
of
ordinary
components

Number
of super-
singular
components

137 144 86 20 84 2
139 154 79 33 78 1
149 164 87 37 86 1
151 168 85 35 84 1
157 160 101 24 99 2
163 166 101 21 99 2
167 206 90 16 87 3
173 184 105 23 100 5
179 198 101 41 100 1
181 192 105 45 104 1
191 224 105 41 104 1
193 196 123 28 121 2
197 202 123 27 119 4
199 216 112 46 111 1
211 224 116 46 115 1
223 232 132 24 126 6
227 250 126 20 120 6
229 234 132 56 131 1
233 242 143 30 139 4
239 278 129 49 128 1
241 250 138 58 137 1
251 280 138 54 137 1
257 270 153 29 148 5
263 296 142 21 136 6
269 280 152 62 151 1
271 286 149 59 148 1
277 278 170 32 167 3
281 302 157 63 156 1
283 292 164 26 159 5
293 304 171 29 164 7

Table C.6
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p = 2
q

Number
of
isogenies

Number
of
components

Number
of non-
trivial
components

1009 1011 509 173
1013 1017 512 174
1019 1025 521 181
1021 1025 517 177
1031 1037 528 184
1033 1035 520 176
1039 1043 535 189
1049 1057 526 176
1051 1053 541 191
1061 1067 536 182

Table C.7

p = 3
q

Number
of
isogenies

Number
of
components

Number
of non-
trivial
components

1009 1014 516 265
1013 1016 551 44
1019 1028 548 38
1021 1030 519 267
1031 1046 555 39
1033 1038 526 269
1039 1054 525 272
1049 1054 583 58
1051 1058 534 274
1061 1064 581 50

Table C.8
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p = 5
q

Number
of
isogenies

Number
of
components

Number
of non-
trivial
components

1009 1018 549 213
1013 1016 568 63
1019 1044 534 194
1021 1028 556 216
1031 1066 543 199
1033 1034 603 87
1039 1058 551 205
1049 1062 558 208
1051 1062 557 207
1061 1066 570 216

Table C.9

p = 2
q

Number of
isogenies

Number of
components

Number
of non-trivial
components

10007 10009 5053 1717
10009 10013 5014 1678
10037 10041 5037 1691
10039 10041 5089 1743
10061 10067 5049 1695
10067 10069 5090 1734
10069 10073 5057 1701
10079 10087 5090 1730
10091 10097 5091 1727
10093 10097 5064 1700

Table C.10





Appendix D

Source Code

This appendic shows parts of the source code for the calculations of the
isogeny graphs.

polynomial.py

from sympy import ( degree , d i f f , symbols )

( x , y ) = symbols ( ' x y ' )

c lass Polynomial :
" " "

Polynomial
" " "
def __ in i t__ ( se l f , n , p , l i s t s ) :

s e l f . p = p
s e l f . n = n
s e l f . l i s t s = l i s t s
s e l f . zeros = None
s e l f . m u l t i p l i c i t i e s = None
( x_ l i s t , y_ l i s t , c _ l i s t ) = s e l f . l i s t s
tmp_mod_poly = 0
for i in range ( len ( x _ l i s t ) ) :

tmp_mod_poly += ( c _ l i s t [ i ]%p)* x **( x _ l i s t [ i ] ) * y **( y _ l i s t [ i ] )
i f x _ l i s t [ i ] != y _ l i s t [ i ] :

tmp_mod_poly += ( c _ l i s t [ i ]%p)* y **( x _ l i s t [ i ] ) * x **( y _ l i s t [ i ] )
s e l f . mod_poly = tmp_mod_poly

def make_l ist_of_roots ( s e l f ) :
n = s e l f . n
p = s e l f . p
s e l f . zeros = [ ]
f or i in range ( p ) :

f o r j in range ( p ) :
i f s e l f . eval_mod_poly ( i , j ) % p == 0:

s e l f . zeros . append ( ( i , j ) )
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marshal .dump( s e l f . zeros , open ( f i lepath , 'wb ' ) )
return s e l f . zeros

def f ind_mul t ip l i c i t y_o f _ roo t s ( se l f , xval , yval , p ) :
m u l t i p l i s i t e t = 0
polynomial_in_y = s e l f . eval_only_x ( xval , p )
i_counter = 0
for i in range ( degree ( polynomial_in_y ) ) :

der ivat ive_of_po ly = d i f f ( polynomial_in_y , y , i ) % p
evaluation_of_polynomial = der ivat ive_o f_po ly . subs ( y ,

yval ) % p
i_counter = i
i f evaluation_of_polynomial == 0:

m u l t i p l i s i t e t = m u l t i p l i s i t e t + 1
else :

break
return m u l t i p l i s i t e t

isogeny_graph.py

import networkx as nx

def list_components ( roots ) :
G = nx . Graph ( roots )
a d j _ l i s t s = { }

f or c l in nx . connected_components (G) :
a d j _ l i s t s [ l i s t ( c l ) [ 0 ] ] = [ ]
f o r k in c l :

a d j _ l i s t s [ l i s t ( c l ) [ 0 ] ] = a d j _ l i s t s [ l i s t ( c l ) [ 0 ] ] + [ ( k , m)
for m in G. adj [k ] . keys ( ) ]

f o r key in a d j _ l i s t s . keys ( ) :
a d j _ l i s t s [ key ] = zeros_ex_duals ( a d j _ l i s t s [ key ] )

return [ a d j _ l i s t s [ key ] for key in a d j _ l i s t s . keys ( ) ]

def count_components ( l i s t _ o f _ r o o t s , l ist_of_components , p ) :
number_of_components = len ( l ist_of_components )
ver t i ces_ in_roots = [ ]
[ ver t i ces_ in_roo ts . extend ( [ root [ 0 ] , root [ 1 ] ] )
f o r root in l i s t _ o f _ r o o t s ]
f or ver t i ce in range ( p ) :

i f ver t i ce not in ver t i ces_ in_roots :
number_of_components = number_of_components + 1

return number_of_components

def count_isogenies ( l i s t _ o f _ r o o t s , l i s t _ o f _ m u l t i p l i c i t i e s ) :
number_of_isogenies = 0
for root in l i s t _ o f _ r o o t s :

number_of_isogenies = number_of_isogenies
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+ l i s t _ o f _ m u l t i p l i c i t i e s [ l i s t _ o f _ r o o t s . index ( root ) ]
return number_of_isogenies

def is_supersingular ( given_component , p ) :
j_in_given_component = [ ]
[ j_in_given_component . extend ( [ root [ 0 ] , root [ 1 ] ] )
f o r root in given_component ]
i f any ( j in j_in_given_component for j in supersingulars [ p ] ) :

return True
else :

return False

def count_ordinary_volcanoes ( components , p ) :
volcanoes = 0
ordinary_vert ices = [ ]
f o r component in components :

i f not is_supersingular ( component , p ) :
volcanoes = volcanoes + 1
[ ordinary_vert ices . extend ( [ root [ 0 ] , root [ 1 ] ] )
f o r root in component ]

f or j in range ( p ) :
i f j not in supersingulars [ p ] :

i f j not in ordinary_vert ices :
volcanoes = volcanoes + 1

return volcanoes

def count_supersingular_components ( components , p ) :
number_of_ss_components = 0
ss_ver t i ces = [ ]
f o r component in components :

i f is_supersingular ( component , p ) :
[ s s_ver t i ces . extend ( [ root [ 0 ] , root [ 1 ] ] ) f o r root in component ]
number_of_ss_components = number_of_ss_components + 1

for j in supersingulars [ p ] :
i f j not in ss_ver t i ces :

number_of_ss_components = number_of_ss_components + 1
return number_of_ss_components
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