
Protecting User Privacy from Web
Tracking Threats

Øyvind Sikkeland

Thesis submitted for the degree of
Master in Informatics: Programming and System

Architecture
(Information Security)

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2020

Protecting User Privacy from
Web Tracking Threats

Øyvind Sikkeland

© 2020 Øyvind Sikkeland

Protecting User Privacy from Web Tracking Threats

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

Abstract

Web trackers are everywhere on the Internet today, and allows websites
to collect information about users in order to uniquely identify them,
and link recurring visits. Information about users’ browsing behaviour,
geographical location, details about their computer, and much more, can
be collected and potentially misused. This research aims to protect user
privacy from these web tracking threats.

This thesis describes the design and implementation of a protecting
framework. This system is implemented as a web browser extension, with
two main countermeasures. The first countermeasure relies on blacklists,
which contains signatures of known web trackers. When HTTP requests
are made by the browser, this approach detects the requests and matches
the URL in the request with signatures in the blacklist. If a match is
found, the request is cancelled and no further communication can be made
between the browser and the website. More importantly, the website is not
able to track the user. The second countermeasure is directed at cookies.
This approach detects domains that use cookies in a third-party context,
and based on the prevalence, potentially takes action and removes cookie
related headers from HTTP messages to these domains.

Testing showed that this tool blocked more web trackers than several
state of the art tools, but it was beaten by the Brave browser. A limitation
in this evaluation, was that the tools were tested on only 30 websites. A
bigger sample size could provide more conclusive results.

In conclusion, the tool accomplished its goal to protect user privacy
from many web tracking threats. However, web trackers are continually
improved and changed, which makes room for more research, and
potentially better countermeasures.

i

ii

Contents

1 Introduction 1
1.1 Motivation and Problem Statement 1
1.2 Thesis Content and Contribution 2
1.3 Research Questions . 2

2 Background 3
2.1 What is Web Tracking? . 3
2.2 First-Party and Third-Party Tracking 4
2.3 Web Tracking Techniques . 4

2.3.1 Stateful Tracking Techniques 5
2.3.2 Stateless Tracking Techniques 13

2.4 Tracking Types . 19

3 Web Tracking Protection Methods 23
3.1 Protection Methods . 23

3.1.1 Stateful Tracking Techniques 24
3.1.2 Stateless Tracking Techniques 27
3.1.3 Other Efforts to Defend Against Web Tracking 31

3.2 State of the Art Tools . 32
3.2.1 Ghostery . 34
3.2.2 Disconnect . 37
3.2.3 Firefox Content Blocking 37
3.2.4 Privacy Badger . 39
3.2.5 Brave Browser . 41

4 Design and Implementation 45
4.1 Architecture . 45
4.2 Design . 48

4.2.1 Method 1. A Blacklist-Based Approach 48
4.2.2 Method 2. Third-Party Cookie Protection 51
4.2.3 Do Not Track . 52

4.3 User Interface . 52
4.4 APIs . 54
4.5 Internal Components . 56
4.6 Implementation . 58

4.6.1 Blacklist-Based Approach 58
4.6.2 Third-Party Cookie Protection 63

iii

4.6.3 Do Not Track Header 66

5 Evaluation 69
5.1 Testing on Panopticlick . 69
5.2 Testing Against Common Trackers 70
5.3 Evaluation and Comparison with State of the Art 75
5.4 Comparison of Blacklists . 80
5.5 Runtime Evaluation . 81

6 Conclusion 85
6.1 Summary . 85
6.2 Research Limitations . 86
6.3 Future work . 86

iv

List of Figures

2.1 Third-party cookie-based tracking. Both the Onion and
CNN shows ads which connects to the same tracking
website (tracker.com). Figure taken from [14]. 7

2.2 Example of how cookie synchronization can work. 8
2.3 Example of how cookie synchronization can work. 8
2.4 Example of how cookie synchronization can work. 9
2.5 Example of information collected by fingerprintjs2. Finger-

print taken from my computer, on the website www.ddzero.net. 14
2.6 Third-party tracking script from Google Analytics loaded in

a first-party website. Figure taken from [101]. 20
2.7 Third-party advertising script from doubleclick.net embed-

ded in site1.com. Figure taken from [101]. 20
2.8 Third-party advertising network, admeld.com sets a cookie

which is shared with turn.com. Figure taken from [101]. . . . 21
2.9 Social widget (Facebook "like" button) embedded in site1.com

that is used to send a cookie back to facebook.com. Figure
taken from [101]. 22

4.1 Overview of browser extension components. Figure taken
from [30]. 47

4.2 Communication flow between a browser and a website
when the browser extensions intercept the request, but lets it
go through. 48

4.3 Communication flow between a browser and a website
when the browser extension cancels the request. 50

4.4 Popup (user interface) when visiting www.nytimes.com
after having visited 30 popular websites prior, to gain
knowledge about third-party tracking cookies. 53

4.5 The lifecycle of requests. Figure taken from [28]. 55
4.6 Overview of the internal structure of the extension, and the

interaction between the components. The arrows indicates
in which direction data flows. 56

5.1 Result of the tests on Panopticlick for each tool. 70
5.2 Visiting guleedsthesis.online with no defence systems on.

Screenshot of the HTTP requests made by the website. . . . 72
5.3 Visiting guleedsthesis.online with no defence systems on.

Screenshot of the cookie storage found in developer console. 73

v

5.4 Visiting guleedsthesis.online with trained cookie-protection
on. Screenshot of the cookie storage found in developer
console. 73

5.5 Visiting guleedsthesis.online with all protection mechanisms
enabled. Screenshot of the HTTP requests made by the website. 74

5.6 Visiting guleedsthesis.online with all protection mechanisms
enabled. Screenshot of the cookie storage found in developer
console. 74

5.7 Total number of unique-per-website trackers blocked for 30
websites. 78

5.8 Results of testing the cookie-protection approach. 78
5.9 Total number of unique-per-website trackers blocked for top

100 websites. 81
5.10 Average web page load times on 30 websites in the Tranco list. 83

vi

List of Tables

5.1 The 30 visited domains. 75

vii

viii

Preface

Acknowledgements

I would like to express my gratitude to my supervisor Dr. Nils Gruschka for
all his invaluable guidance, feedback and support throughout this project.
Thank you!

I would also like to thank Guleed Abdi for the great cooperation on the
topic of web tracking.

Lastly, I wish to thank my family for all the support, and for always
believing in me. A special thanks go to my dear Guri, for her continuous
support and encouragement throughout this process.

ix

x

Chapter 1

Introduction

1.1 Motivation and Problem Statement

The Internet is becoming a bigger and bigger part of everyone’s life. We
use it for everything from banking and shopping, to entertainment. We
give up a lot of our personal information to web services. Often volun-
tarily, e.g. by filling out a web form when creating an account or buying
something. However, much more information about us is gathered "un-
der the hood" and is completely transparent to users. Many people have
probably noticed when searching for something to buy, maybe a new pair
of shoes, and when they later go to their Facebook page, they are shown
advertisements for the exact same product they were previously searching
for. This is possible if websites are able to collect uniquely identifying in-
formation about users, that lets them link recurring visits - a process called
web tracking [103].

There are many available techniques to collect this information about
users, for instance analysis of IP headers, HTTP messages, and even using
JavaScript and Flash; often a combination of several techniques [20]. The
information collected can be IP addresses, details about the client’s operat-
ing system, browser and hardware, and even users’ geographical location
and browsing history [20].

Web tracking is mainly employed to display personalized advertise-
ments and product recommendations to users, however, research have
found that web tracking is used for more sinister purposes, such as price
discrimination [69]. In later years, web tracking has raised concerns in both
the general public and in the research community [103], and much research
has been conducted in the last decade to get an overview of the techniques
used to track Internet users, as well as how to protect against it. Several
defence tools have been developed to combat this rising issue and relies on
different protection mechanisms, however, this is an on-going battle. As
new tracking mechanisms are developed and employed, the countermeas-
ures must adapt as well.

The problem is that user privacy on the Internet is generally not re-
spected, and even though GDPR and the ePrivacy Directive [44] requires
websites to get users’ consent before using some tracking techniques, there

1

exists other tracking techniques that does not require consent by users and
are completely transparent. In order to protect user privacy, programs that
block or limit the ability of web tracking techniques are needed.

1.2 Thesis Content and Contribution

The topic of web tracking is divided into two theses, and partly involves
a cooperation between Guleed Abdi and Øyvind Sikkeland. The task of
this thesis is to analyze the most common methods used in web tracking
as well as the state of the art in protecting from web tracking in theory and
practice (e.g. Firefox, Disconnect, Ghostery). Further, a unified protecting
framework shall be developed, implemented and evaluated.

Abdi will research the state of the art existing web tracking methods,
survey the largest websites on the Internet today for what tracking tools
they use, and build a custom service to implement these trackers in order
to analyse how they work and what data is tracked.

My contribution is an overview of the most common web tracking
methods, including how they work and what kind of information they
gather about the user. Secondly, it presents different protection methods,
and pros and cons with these methods, as well as an analysis of how
the state of the art tools work. Further, the development of a protecting
framework and a following evaluation is conducted.

1.3 Research Questions

The thesis will elaborate on these research questions:

• What kind of countermeasures to web tracking exist today?

• How does the state of the art protection tools available to Internet
users today protect their privacy?

• A new defense tool - how does this compare to the state of the art?

2

Chapter 2

Background

2.1 What is Web Tracking?

Web tracking techniques were first developed to enhance the user exper-
ience when browsing the web. It’s used for user authentication and re-
membering login-information, shopping carts and similar [103], and also
to check browser configurations to, for instance, make a website fit a par-
ticular screen resolution. However, because this often involves gathering
information about users without their knowledge and consent, it has in
later years raised concerns about users’ privacy on the web both in the re-
search community and in the general public [103]. Using different tracking
techniques, which will be explained later in this chapter, a personal profile
can be created for each visitor. These profiles can be up to 100% accur-
ate, and be directly tied to an advertising network or sold to advertisement
companies.

Web tracking today is almost everywhere. Roesner et al. [101] found
in their research that there were at least one tracker monitoring each web-
site on the Alexa top 500 websites (but most of the times several trackers),
and they also found more than 500 unique trackers in the wild. Due to the
extent of web tracking today, information about users’ financial situation,
interests and shopping plans can be gathered, but also conclusions about
a users’ sexual orientation, health, political views and religious beliefs can
be drawn [65]. When the user logs into one of their private accounts, for
instance their Facebook account, this information can be linked directly to
their name. [65]

Some research have also found that web tracking is used for even more
sinister purposes. Research from 2014 [69] found that web tracking is used
for price discrimination. The researchers found that the price for a hotel
room, for instance, can be up to 20% different for different users, based
on the information the web service can gather from the client. They also
discovered that tracking techniques are used to alter search results on sites
like Google, based on the users’ browsing history and purchases, to make
the results more personalized. Surveillance by the government is also a
concern. NSA is collecting a lot of information, and this has been found to
also include unique user ID’s generated by third-party trackers as well as

3

geolocation information [72].

2.2 First-Party and Third-Party Tracking

There is a clear distinction between first-party and third-party tracking.
First off, a first-party website is a website directly visited by a user, while a
third-party website is an external site connected to the first-party in some
way, for instance by having elements embedded in the first-party website
as advertisement banners [68]. Tracking techniques used by a first-party
website are much more often used to enhance user experience. Cookies
can be used to save shopping carts or set the appropriate language, and
fingerprinting techniques can be used to change the appearance of the web
screen to fit the user’s screen resolution. In contrast, third-party trackers are
considered a huge threat to user privacy on the web. They are generally
connected to a vast amount of other websites and transparently gathers
information about a user across the web [20].

2.3 Web Tracking Techniques

Web tracking fundamentally relies on mechanisms that can identify visitors
and re-identify them on subsequent visits. This started out in 1994 when
Lou Montulli at Netscape [90] developed cookies. Clients and servers
communicate over the HTTP protocol which by itself is stateless. Therefore
they needed a mechanism to recognize when a user came back to visit a
website. The purpose behind this was to enhance the user experience by
letting the website know where a user left off when they left the website,
and then resume interaction at that point when they came back [110]. HTTP
cookies were thereby created, to allow the HTTP protocol to preserve state
information [110]. They were originally not intended for web tracking
purposes, but today they are the most common tracking method [43].

Cookies are limited in how much data they can store, and have evolved
immensely since 1994. Flash cookies were created and is set by the Flash
plugin. They can store much more data, circumvent browser privacy
settings and can be used to respawn deleted HTTP cookies [113]. In later
years, cookies have continued to evolve, and new storage mechanisms,
some introduced by HTML5, can be used to store state on a user’s device.
The evercookie [82] can be utilized to store the information in multiple
storages, and respawn those that are deleted.

In recent years we have also seen a rise in stateless tracking techniques
being used to track Internet users. Most of these techniques are also called
fingerprinting techniques, and is a collection of several methods to collect
information about users’ machine or browsing behaviour that does not
rely on storing any data on the user’s device. Instead, the information
is collected when a user visits a website and stored as a profile by the
web server. When the user re-visits, the information is again collected.
If everything matches a previously stored profile, the user has been re-
identified. If enough methods are combined, they can together potentially

4

make up a unique fingerprint [94]. Fingerprinting mainly relies on client-
side scripts, like JavaScript, and available APIs to gather this information,
but also information from HTTP messages are used to make up the
fingerprint. These methods were proposed by researchers as potential
privacy risks many years ago [95], and today they are widespread on the
Internet as an alternative to cookies.

2.3.1 Stateful Tracking Techniques

Stateful techniques needs to store state, basically some kind of data, on the
user’s device. This can be achieved in several ways, but the most common
method is cookies.

In this section we will look at common techniques to store state on
users’ devices, and methods to share this information back to the tracker,
or to other trackers.

Client-Side Storages

Stateful tracking techniques relies on utilizing client-side storages to store
data. Client-side state can include different things like audio and video,
but browser cookies are the most common form of tracking method. HTTP
cookies are stored in a file by the browser, and can be found in the browser
folder on the computer. But there are more storages that websites can use to
store state on clients’ machines. HTML5 introduced completely new client-
side storage mechanisms for browsers. Using the Web Storage API [124]
grants websites the ability to store data, like cookies. Most notably the
sessionStorage and localStorage. A JavaScript script running in the context of
a first-party or third-party website can easily store cookies in these storages
[20]. The session storage lets the website store data for the duration of the
page session, meaning as long as the browser is open [124]. This storage
limit is at most 5 MB, which can contain much more information than a
normal HTTP cookie. However, the local storage is the most used because
data stored there persists even when the browser is closed. The stored data
has no expiration data and can only be cleared with JavaScript or clearing
the browser cache or locally stored data [124].

The IndexedDB API [79] is another API that can be utilized to store
cookies. This provides the browser with a complete database system and is
generally used to store complex data. This storage mechanism isn’t widely
used for cookies, but has been found to play a role in evercookies, which is
explained in the section Evercookies.

Moreover, the Flash plugin introduces another storage mechanism
which lets websites that embed content set Local Shared Objects, also called
Flash cookies, on the client’s machine [113].

HTTP Cookies

HTTP cookies are small text files containing some information. They can
store up to 4 KB of data. These cookies are usually handled and stored by

5

the web browser. A web server can send cookies to a client using the HTTP
protocol with the Set-Cookie response header [104]. The client’s browser will
send the cookie back to the web server with the Cookie header [42]. Cookies
can also be set or read with JavaScript using the Document web API [54].
Using the document.cookie property a website can create, read and delete
cookies. This means that a client-side script and HTTP can work together
to handle cookies for a website. However, if the HttpOnly flag of a cookie
is set, client-side scripts cannot access the cookies set via HTTP [74].

A cookie must have a name and a value, but they can also contain more
attributes with information about the cookies expiration, domain and flags.
Cookies have many uses, but according to Mozilla [74] they have three
main purposes:

• "Session management

– Logins, shopping carts, game scores, or anything else the
server should remember

• Personalization

– User preferences, themes, and other settings

• Tracking

– Recording and analyzing user behavior" [74]

This research focuses on the tracking purpose of cookies.

When cookies are created, the creator can specify an expiration time as
mentioned above. If nothing is specified, the cookie is created as a session
cookie and will expire and be deleted when the client’s browser is closed.
However, browsers can use session restoring, which makes the session cook-
ies permanent. If an expiration date is specified, the cookie is also treated
as a permanent cookie [74].

An important part to HTTP cookies is that they are domain-specific [74].
This means that a cookie set by example.com cannot be sent to another do-
main, e.g. tracker.com. Cookies have a domain attribute that can be spe-
cified, and if left unspecified, the cookie can only be sent to that specific do-
main, excluding subdomains. If the domain attribute is set to example.com,
the cookie can also be sent to subdomains, like example2.example.com. This
helps with security and, in theory, privacy as well. The same-origin policy
[102] prevents cookies (and also other documents and scripts) from being
loaded from a third-party context into a first-party context, which means a
third-party tracker can not read cookies set by another first-party domain.
But trackers have found a way to circumvent this policy by "leaking" in-
formation, for instance in URLs. The mechanism called cookie synchroniza-
tion [98] will be explained more in detail later in this section.

HTTP cookies used for tracking usually have names like uid and userid
which contains a value that is unique for every user. There are several vari-
ations of these names, but an example of the prevalence of specifically the
uid cookie can be found here [121]. This search finds that uid has been
found as a third-party cookie on 128,418 websites with an average life span

6

Figure 2.1: Third-party cookie-based tracking. Both the Onion and CNN
shows ads which connects to the same tracking website (tracker.com).
Figure taken from [14].

of 213,393 days (as of 02/04/20). This indicates that HTTP cookies used for
tracking purposes is an extremely widespread method.

An example to illustrate how a third-party tracking service can gather
data about a user’s browsing behaviour and history across several websites
can be seen in Figure 2.1. Because of the same-origin policy, if a user visits
theonion.com which sets a cookie, a third-party domain tracker.com can not
see this cookie by default. The way around this is to let the third-party
domain (tracker.com) set the cookie. So we can see that if a user visits
theonion.com, which embeds an ad from the tracker.com domain, tracker.com
can set a unique cookie (in this example with an id=789) for the user. When
the user later visits cnn.com, which also embeds an ad from tracker.com, the
same cookie is sent back to tracker.com. The tracker now knows that the
user has visited both websites [14]. The tracker can store a browsing profile
for this user, and store their browsing history. They may also be able to
log what the user clicked on, how many times they visit each website and
how long they stayed on the sites. If a tracker is connected to enough
websites, they can potentially know everything about a user’s browsing
habits without they knowing anything about this. If the tracker is only
connected to "anonymous" websites, meaning where the user isn’t logged
in or shared their real name, the tracker only knows the user by the unique
identifier. However, if the tracker is also connected to e.g. Facebook, they
will know the user’s personal name as well as their browsing history [65].

Cookie Synchronization

Cookie synchronization, often shortened to cookie syncing, isn’t a tracking
mechanism by itself, but rather a method to circumvent the same-origin
policy and help trackers share stateful information, like cookies [98]. Track-
ers that are connected to different tracking networks will create different
unique identifiers for users. This is a problem for advertising companies if
their ads aren’t embedded by many websites. Using the cookie synchron-
ization technique, it’s possible for different trackers to share their unique

7

user identifiers and synchronize these, in order to have the same unique
user identifiers, that allows both companies to track users across even more
websites [98]. To illustrate how this technique could work in practice, let’s
look at an example below. The idea for this example and illustration is
provided in [98].

Step 1 is illustrated in Figure 2.2. The user visits site1.com that embeds
a tracking script from tracker1.com. To load this script, a request is made
by the browser to tracker1.com. A response is sent to the user’s browser
containing a Set-Cookie header with a cookie value 123.

Figure 2.2: Example of how cookie synchronization can work.

Step 2 is illustrated in Figure 2.3. The user visits another website, site2.com,
that embeds a tracking script from another tracker, tracker2.com. The user
gets another cookie value for this website, 456.

Figure 2.3: Example of how cookie synchronization can work.

Step 3 is illustrated in Figure 2.4. This is where the synchronization
between tracker1.com and tracker2.com happens. The user visits another
website, site3.com, that embeds a tracking script from tracker1.com, but
not tracker2.com. Therefore, tracker2.com wouldn’t know that the user
visits site3.com. However, when the user’s browser makes a request to
tracker1.com, this site responds with redirect request, which forces the user’s
browser to make a request to tracker2.com. This request can be constructed
with a custom URL containing several parameters, that can include both
the user’s unique cookie for tracker1.com and information about site3.com.
tracker2.com now knows that the user they know by cookie value 456 has
visited site3.com, and they learn that the user tracker1.com knows by cookie
value 123 is the same user as they know by the cookie value 456 [98].

After step 3 is completed, the two trackers can perform back-end data
merges [98].

8

Figure 2.4: Example of how cookie synchronization can work.

Cookie synchronization was first observed in use in 2012 [20], and
research has found that its usage is extremely widespread today. Roesner
et al. [101] observed a "large number of cookie leaks" [101] in their analysis in
2012. Later research done by Papadopoulos et al. [98] in 2019 found that
157 out of the top 200 websites are connected to third-parties which are
involved in cookie synchronization with at least one other party. They are
also capable of reconstructing 62-73% of a user’s browsing history.

Supercookies

Supercookies originally referred to cookies with only a top-level domain
(e.g. .com) and were not domain-specific (e.g. google.com) [7]. This was a
huge privacy and security concern because it meant that cookies not set by
example.com could be sent to it from any .com domain. Most browsers now
block supercookies by default by using the Public Suffix List [100], which
makes these types of cookies not much of a concern anymore.

Today, supercookies generally refer to something else. They can be
described as techniques or procedures that encompass three different
mechanism [24, 41]:

• Collecting information about users in various ways. This can
include both stateful and stateless methods.

• Utilizing different storage mechanisms. Depending on the client,
this can include browser storages, Flash cookie storages, and many of
the storages introduced by HTML5.

• Helping to respawn other cookies. Supercookies are mainly used to
respawn zombie cookies. This generally refer to deleted HTTP cookies
that are respawned after deletion.

The most widespread supercookies today are Flash cookies and evercook-
ies. They will be elaborated on below.

9

Flash Cookies/Local Shared Objects

Flash cookies were first identified in 2009 [20], and were the strongest state-
ful tracking technique after the basic HTTP cookies. They are similar to
HTTP cookies in that they can be used by websites to collect information
about users. Flash cookies were originally created with users in mind -
just like with HTTP cookies. They are utilized to enhance user experience
by storing user preferences, volume of Flash videos, save data from Flash
games among other things [113]. They are stored on clients’ computers as
local shared objects, which is the technical term of the Flash cookie. This is a
text file that is created by the Adobe Flash plugin. When a website embeds
a Flash element, for instance an advertisement banner, a request is made
by the client’s browser for this resource, and the text file (cookie) is sent to
the client. Websites can embed Flash elements from third-parties as well,
allowing the Flash cookie to track users cross-site. When they are used for
tracking purposes, they contain a name and a value, where the value is
unique for each user. Flash cookies used in web tracking were found to
often have the name uid or userid, and contain a value of 16 or 32 bits [113].

What makes the Flash cookie particularly threatening, is the super-
cookie mechanisms. They are far more persistent than HTTP cookies and
can contain up to 100 KB of information, compared to HTTP cookies’ 4 KB
limit [113], and they have no expiration date by default. Flash cookies are
stored in users’ local file system, the Flash storage, where browsers have no
control. If users have enabled browser privacy settings, such as automatic-
ally clearing browser cache and history on browser exit, it has no effect on
the Flash cookie. The fact that Flash cookies are stored on the client’s local
file system, makes it possible for the cookie to track user’s across different
web browsers as well.

Another use of Flash cookies is to act as a backup for HTTP cookies.
If a website set both an HTTP cookie and a Flash cookie with the same
name and value on a user’s machine, and the user clears their browser
cookie storage, the Flash cookie can respawn the HTTP cookie [113]. This
is very problematic and a significant privacy concern for users who do do
not wish to be tracked and deletes HTTP cookies stored by their browser, as
they are still being tracked by the Flash cookie which respawns the HTTP
cookie [113]. Flash cookies were also found to be able to track users in
private browsing mode [113]. All of these mechanisms combined makes the
Flash cookie a type of supercookie, and more effective in web tracking than
HTTP cookies.

Soltani et al. [113] surveyed the websites on the Alexa top 100 list in
2009, and Ayenson et al. [10] performed a follow-up study in 2011. In 2009
they found that 54 out of 100 websites used Flash cookies, and a total of
281 Flash cookies were found. In 2011, the numbers had dropped signi-
ficantly. Only 37 websites used Flash cookies at all, with a total number
of 100 cookies. This indicates that Flash cookies are decreasing in use. A
reason for this is that Flash usage by websites have dropped from being
used on 28.5% of websites in 2011, to only 4.9% in 2018 [38]. Both research
papers [10, 113] also studied the prevalence of respawning HTTP cookies

10

using Flash cookies. In 2009, they found that 6 out of the top 100 websites
utilized this technique, while the numbers had dropped to only 2 out of
the top 100 websites in 2011. This indicates that respawning HTTP cookies
using Flash cookies isn’t a widespread technique.

Evercookies

Evercookies [82] were created and presented by Samy Kamkar in 2010,
and often referred to by researchers as a type of supercookie. Evercookie
is a JavaScript API to produce extremely persistent cookies. Evercookie
works by storing cookie information in many different types of storage
mechanisms, which includes HTTP cookies and ETags1 [56], web history
and cache, Flash cookie storage, HTML5 storages, and even storing the
cookies as RGB values which can be read back out using HTML5 Canvas
tag [82]. If the user clears some of these storages, the evercookie will
recreate the deleted cookies in these storages. This means that the
evercookie only needs to be present in one storage to recreate the cookie
in all storages. If Flash Local Shared Object, the Silverlight Isolated Storage
or specific Java mechanisms are available, the evercookie can reproduce in
other browsers on the same client machine [82]. This makes the evercookie
exceedingly difficult to remove by users. However, in some clients, some
of these storage mechanisms might not be supported, which renders the
evercookie less effective.

The survey performed in 2011 by Ayenson et al. [10] was the first study
which found the use of browser cache and HTML5 storage mechanisms
as evercookies by websites in the wild. However, they discovered that
only two websites out of the Alexa top 100 were respawning any cookies
(one of them used both Flash cookies, browser cache and HTML5 storage
mechanisms for respawning).

In 2014 another study were conducted by Acar et al. [3] to detect
the use of evercookies and respawning. In this study, they only tried to
detect the use of Flash evercookie; meaning, in the cases where the Flash
cookie storage mechanism were used to respawn other cookies. They
analysed the top 200 popular websites and found that 10 of these utilized
Flash evercookies to respawn other cookies. They also ran the automated
analysis on the top 10,000 websites and found 33 different Flash cookies,
which were used to respawn more than 175 HTTP cookies on 107 of
the websites. Even though many storage mechanisms are used by the
evercookie, it’s likely that most utilize Flash cookies because they have a
big advantage compared to the others: Flash cookies can be shared between
different browsers who make use of the Adobe Flash plugin.

In the same study conducted by Acar et al. [3], the researchers also did
another interesting discovery. One of the storage mechanisms evercookie
can utilize is the HTML5 IndexedDB [78], but this was the first report of
IndexedDB being used as an evercookie vector. The number of websites
that used this was very small, however, with only 20 out of the top 100,000

1The ETag is a HTTP response header with caching capabilities and can be misused in
web tracking.

11

websites.
Because of the privacy concerns and difficulty in removing evercookies,

this has gotten some attention in the media. In 2011 the analytics company
KISSmetrics was sued because of their alleged use of supercookies and
respawning techniques to track people, and finalized the settlement of a
class-action lawsuit in 2013 [45].

Cache-Based Tracking Techniques

Previously in this chapter, we looked at various storages that are used to
store state, such as cookies. Caches are smaller types of storages, mainly
used to store temporary data that are accessed regularly to shorten the
processing time. However, caches can also be used to collect information
about users.

The most common method is misusing browser’s web cache to gain
knowledge about what websites users visit [20]. Here is an example of how
this works: the web cache stores certain web elements in order to avoid
having to download them again to shorten the loading times. If a website
embeds an advertisement in the form of an image, this image is stored in
users’ web cache. On subsequent visits, trackers can check whether this
image is downloaded again or not. If it’s not, the tracker knows that the
user’s browser has cached it before. If the same advertisement is present on
many websites, the tracker can detect which websites the user has visited
[20]. There are mainly three techniques used to exploit the web cache:

• Embedding identifiers in cached documents: Websites can force the user
to request a particular HTML page. Within this HTML page, a unique
identifier can be stored, for example in an HTML div property. When
this page is cached, the identifier can be read by the website. If a
tracking company have this HTML page embedded in large numbers
of websites, the result is that all these websites can access the unique
identifier from the user’s web cache [20].

• Loading performance test: JavaScript can be used to measure the load
time of different objects. If a website has an image, this is loaded and
placed in the cache by the browser. On subsequent visits, a script can
measure the time it takes for this image to load. If it’s cached, the load
time will be significantly shorter than if it’s not. In this way, a tracker
can detect whether a user has visited the website before [20].

• Entity Tags (ETags) and Last-Modified HTTP headers: When an object is
first loaded by the browser, the HTTP header contains these fields:
Last-Modified, ETag, Cache-Control and Expires. It has been found
that the Last-Modified and ETag fields can be used to store unique
identifiers which are then cached by the browser. These fields accept
random strings, and is of sufficient size to store a unique identifier.
When a user’s browser has cached an object like this, and then visits
the website later, the browser sends two different HTTP headers that
contains the values from the Last-Modified and ETag header fields.

12

The web server checks whether these values are outdated or not,
and if they are not, the server responds with an HTTP 304 Not
Modified status. If they are outdated, the website responds with a
new document [20]. Using this method, a website can store unique
identifiers in browser’s web cache, and track users.

2.3.2 Stateless Tracking Techniques

Stateless tracking techniques refer to techniques that does not need to store
data on users’ device. Most of the techniques that falls under this category,
are also called fingerprinting techniques. These can be seen as a group or
collection of several different methods. They are less intrusive and harder
to defend against than stateful techniques, because they do not need to
store any information on the device [14]. These methods gather different
kinds of data, such as user and device specific settings and configurations
in order to make a unique fingerprint for that device. This means that in-
stead of, for instance, checking a cookie, the tracker will have to check each
method used for making the fingerprint each time the user visits the web-
site in order to re-identify the user. This process is completely transparent
to the user, and web services that use these techniques are not required to
notify the user [103]. This means the user has not given their consent, and
therefore a serious privacy threat. Even if the user could know, there is no
simple way of op-ting out [94].

Client-side scripts like JavaScript have access to different APIs with
read access to several operating system and browser settings/configura-
tions, which means tools are easily available for generating fingerprints.
Java and Flash is also utilized for making fingerprints. This means that if
a user disables Java or Flash, but in particular JavaScript, in their browser,
they can somewhat limit these tracking techniques, but will render most
of the web unusable. However, it still isn’t enough to prevent passive fin-
gerprinting [20]. Passive fingerprinting doesn’t rely on any code to be ex-
ecuted, instead it’s about observing the details in web requests, and make
the fingerprint based on those characteristics.

An open-source library called fingerprintjs2 [57] is a popular script that
websites can use to fingerprint its users. It can collect a lot of information
about a user, which are used to create a hash that acts as the fingerprint.
The collected information is illustrated in Figure 2.5 when used on my own
computer (the fingerprint test can be conducted on www.ddzero.net).

This section will further elaborate on the available stateless techniques.

HTTP Referer Header

The HTTP referer request header [75] can be used as part of a fingerprint.
Because it doesn’t need any code to be executed, it falls under the passive
fingerprinting categories. If a user clicks on a link, the referer header will
contain the address of the website the user was on when they clicked the
link. This is mostly used for analytics, logging or optimized caching, but
also used for tracking purposes, as well as leaking information [76]. The

13

Figure 2.5: Example of information collected by fingerprintjs2. Fingerprint
taken from my computer, on the website www.ddzero.net.

14

URL that is included in the referer header can also contain more inform-
ation, using the GET technique to append information like search terms
and login, and it can even be used to leak user identifiers and e-mail ad-
dresses [20]. Hence, if a user visits a website which embeds elements from
a third-party tracker, an identifier (for instance a cookie) can be sent to the
third-party along with the e-mail address appended in the referer header.
An example of how this could look like is demonstrated by Krishnamurthy
et al. [84], when a user visits sports.com which requests elements from the
tracking service doubleclick.net:

GET http://ad.doubleclick.net/adj/...
Referer: http://submit.SPORTS.com/...?email=jdoe@email.com
Cookie: id=35c192bcfe0000b1... [84, p. 4]

User-Agent String

The User-Agent [123] is a string that contains characteristics about the cli-
ent’s machine. An example of a user agent string (from my computer using
Google Chrome) is:

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/80.0.3987.149 Safari/537.36

The components of this string are:

• Mozilla/5.0: indicates that the browser is Mozilla-compatible [123].

• (Windows NT 10.0; Win64; x64): describes the native platform the
browser is running on [123], in this case Windows.

• AppleWebKit/537.36: is the platform the browser is using [123].

• (KHTML, like Gecko): is added on Chrome or Chromium-based
engines for compatibility reasons [123].

• Chrome/80.0.3987.149 Safari/537.36: describes the browser version,
and Safari is added on Chrome or Chromium-based engines for
compatibility reasons [123].

With all this information, developers can create more dynamic websites
that work well and is tailored to specific browser and operating system
details. However, this information can be misused for web tracking
purposes and can play a role in the making of a fingerprint [20]. There
are two ways a web service can gather clients’ user-agent: (i) via the HTTP
User-Agent header [123]. This header is automatically sent to the website
when a web browser makes a HTTP request to it, or (ii) via JavaScript [46].
Using client-side scripts and the window.navigator [129] property a website
can collect the user-agent string in this way as well.

15

Web Beacon

Web beacons [109], also called web bugs, is a stateless tracking technique,
but is not used as part of a fingerprint. Web beacons are typically
implemented as tiny images, often 1x1 pixels in size, making them invisible
to the human eye [130]. This is a known technique used by scammers who
send out phishing e-mails, to verify that an e-mail is valid [109]. The beacon
will make a request back to the sender if the recipient has opened the mail.

Web beacons have become increasingly popular in web tracking as
well, and can be used in the same way, by tracking whether users has
opened a web page or not [12]. It also has another usage, which shares
similarities to cookie synchronization. The beacon, or image, can be used
to leak or share sensitive information by being embedded on a website,
which makes the user’s browser forced to make a request to it. The request
to the beacon’s URL can include URL parameters, to leak cookie values,
or other sensitive information, that can potentially include gender, age, zip
code and other demographics [109], which is valuable information to an
analytics company.

Canvas Fingerprinting

HTML5 introduced a new element, called <canvas>. Within the element’s
area, graphics can be drawn. There are two main ways to draw these
graphics. The first is using the Canvas API [21]. This API exposes an
interface called CanvasRenderingContext2D [22], that allows developers to
mainly draw 2D graphics. The second method is using the WebGL API
[125]. WebGL allows developers to create interactive 2D and 3D graphics,
but not all browsers support this API. The CanvasRenderingContext2D also
includes a method called fillText() that can be used to draw text inside the
<canvas> element. This text can also be further customized using CSS [20].

In 2012, Mowery and Shacham [91] presented a research paper that
showed the possibility of using the methods explained above to create
unique fingerprints for users. In order to create the fingerprint, data from
the <canvas> element needs to be collected. This can be done in several
ways, but these researchers [91] mainly identified two ways. First, the Can-
vasRenderingContext2D exposes a method called getImageData() [23]. This
method returns an ImageData object, which contains the pixel data from
the figure inside the <canvas> element [23]. These pixels are represented as
RGBA values, as integers [91]. The second method to collect <canvas> data,
is to use the method toDataURL() [73], that is a part of the HTMLCanvasEle-
ment itself. This method returns a data url, that contains the Base64 encod-
ing of an image from the whole <canvas> element [91].

The reason why the data collected from the graphics can be used as fin-
gerprints, is because the way the graphics are drawn differ from browser to
browser, and often depends on "the operating system, installed fonts, graphics
card and its drivers, and the browser itself, due to font rasterization, anti-aliasing,
smoothing, API implementations, and the physical display" [20, p. 1488]. The
data that is collected is hashed to produce a unique fingerprint for users.

16

This fingerprinting technique can be used together with other finger-
printing techniques to make the likelihood of uniquely identifying a user
even higher, but it’s also very strong by itself and can be used as the
only fingerprinting technique. Mowery and Shacham [91] stated that this
method is fast and consistent, because the same details about the browser
and operating system will always produce the same result, and it can be
used without users knowledge.

Canvas fingerprinting is a widely used fingerprinting technique. In
2014, Acar et al. [3] performed the first study of real-world canvas fin-
gerprinting practices. In their research they studied the Alexa top 100,000
websites looking for instances of canvas fingerprinting, and found a 5%
prevalence, indicating that (at the time) canvas was the most common fin-
gerprinting method ever studied.

The five following sub sections about fingerprinting are categorised in
the same way as Bujlow et al. [20] have categorised them.

Network Fingerprinting

Network fingerprinting involves information about the network for users
and can be used as part of a fingerprint. One of the easiest methods in this
category is observing HTTP messages. From HTTP messages, a website can
see the users’ global network address [20]. From the HTTP Accept Header
[70], a website can detect the use of a proxy server. If the proxy is set in the
browser, Flash applets can be used to circumvent the proxy, and detect the
real IP address of the user [20].

Various network tools exist, for instance the SpeedOf.Me API [114], that
can gain information about the network of the user, such as download and
upload speed, latency, jitter and the user’s hostname using JavaScript.

Using open databases or JavaScript with API’s, such as IPinfo [80],
a website can collect information based on the user’s IP address. The
network relevant information includes the user’s hostname and Internet
service provider.

Location Fingerprinting

Location fingerprinting involves information about the location (both
technical and geographical) of the user [20]. As mentioned in the network
fingerprinting section, the global network address of users can be observed
in HTTP messages. IPinfo, mentioned in last section, can also extract
information about users’ location. This includes the city and country the
user resides in, as well as their timezone, postal code and geolocation
information provided in coordinates [80].

Device Fingerprinting

Device fingerprinting involves the collection of system information. By
combining several of these data points, the likelihood of uniquely identi-

17

fying devices is high. Acar et al. [2] identified several system attrib-
utes that can be used as part of a device fingerprint. These include the
device’s screen size, versions of installed software and the list of installed
fonts. Websites can use JavaScript and the navigator [129] property to collect
some of this information. A navigator [92] object can be retrieved by using
window.navigator. This object contains information such as the user agent
string, list of plugins installed in the browser, platform of the browser,
mime-types supported by the browser, languages known by the user and
much more [92].

The device fingerprint is generally computed by concatenating several
of these values and hashing them. Mayer [88] measured the uniqueness of
a device by creating a fingerprint consisting only of information collected
by the navigator property, specifically information about the screen, plu-
gins and mime-types. He discovered that by concatenating and hashing
these values resulted in the ability to uniquely identify over 96% of all the
browsers in his tests.

Operating System Instance Fingerprinting

The fingerprinting techniques in this category collects information about
the operating system of users. This often includes the architecture and
version of the operating system, which both can be collected with Flash
and JavaScript [20]. In JavaScript, developers can use navigator.oscpu which
returns a string containing the users’ operating system [92]. The system
language in use can be detected with navigatorLanguage.language and a
list of languages known by the operating system can be detected with
navigatorLanguage.languages [92].

A list of users’ installed fonts can also be collected using JavaScript, as
shown in [106]. Users’ screen width, height, color depth and pixel depth
can be easily collected using Javascript and the window.screen property [81].
The screen color and screen resolution can also be collected with Flash [62].
Flash can also detect the audio capabilities of users, as well as if users have
allowed access to camera and microphone, if the system supports printing
and if read access to hard drives are allowed [62].

Browser Related Fingerprinting

These fingerprinting techniques collects information about users’ web
browser. A common technique is the user-agent string that was explained
earlier in this chapter. The navigator property discussed in previous sections
can also be used to collect information about the browser. Apart from this,
Unger et al. [122] identified CSS and HTML5 features that can be used
to collect browser information that can be used as part of the fingerprint,
without relying on the user-agent string. They found three methods
related to CSS that can be used, namely CSS properties, CSS selectors and
CSS filters. Browsers implement these differently, and by looking at the
differences between them, a particular browser version can be detected
[20]. When it comes to fingerprinting based on HTML5, Unger et al. [122]

18

found that the implementation details of HTML5 within different browsers
varies, and by looking at these details, a browser could be identified. They
also found that by looking at the order of HTTP headers in browsers, it’s
possible to determine the particular browser in use. For example, the order
of HTTP headers are opposite in Internet Explorer and Chrome [122].

2.4 Tracking Types

Web tracking is generally performed to keep track on users as they browse
a particular website, how long they stay on the site, what they click on
and similar actions, but also to follow them around the web and collect
information about their browsing behaviour on several websites.

Roesner et al. [101] evaluated the tracking ecosystem and investigated
tracking properties, and divided trackers into five different classifications
or types. This is valuable research and helps us understand who employs
trackers and why, as well as to understand how they work at a higher level.
The five following sub sections describes the tracking types that Roesner et
al. [101] found.

Third-Party Analytics

Third-party analytics are external analytics tools or engines that offer these
type of services to websites that wish to have its traffic analyzed. Google
Analytics are among the most popular engines for this purpose. Websites
that wish to utilize these services from Google Analytics, receives a library
in the form of a script that is embedded on their website. When a user visits
the website, the script sets a cookie. Because the script runs in the website’s
own context, the cookie is a first-party cookie with that website’s domain,
thereby circumventing third-party cookie protection mechanisms. This
means that Google Analytics cannot read this cookie by default. However,
analytics engines like Google Analytics, often rely on a form for cookie
sharing technique, to leak the cookie back to google-analytics.com. Because
the cookie is not owned by google-analytics.com, users will have different
cookie values on different websites, which prevents Google Analytics from
tracking the user cross-site [101].

An example of this process is shown in Figure 2.6. The website site1.com
utilizes these type of services from Google Analytics, and embeds the
tracking script on their website. This script sets a cookie, and then makes
a request to google-analytics.com which contains custom URL parameters, to
include the cookie value and send it back home.

Third-Party Advertising

Targeted advertisement is perhaps the biggest usage of web tracking.
Multiple advertising companies exist, but Google’s Doubleclick network
is among the biggest. Websites can host ads provided by, for instance,
doubleclick.net, and embed these on their website as an image or iframe.
When a user visits a website that embeds these ads from doubleclick.net, a

19

Figure 2.6: Third-party tracking script from Google Analytics loaded in a
first-party website. Figure taken from [101].

cookie will be set for that user. The biggest difference between this tracking
type and third-party analytics, is that this cookie is a third-party cookie
in this context, and is owned by the advertising network. This allows
doubleclick.net to track users cross-site, as the same cookie is automatically
included in all requests made to doubleclick.net, even if the user visits
another website, as long as the website embeds ads from doubleclick.net
[101].

An example of this process is shown in Figure 2.7. site1.com hosts an
ad from doubleclick.net and embedded as an iframe. When a user visits
site1.com, a request is made to doubleclick.net to load the ad, which sets a
unique cookie for that user. The cookie is owned by doubleclick.net.

Figure 2.7: Third-party advertising script from doubleclick.net embedded
in site1.com. Figure taken from [101].

Third-Party Advertising with Popups

This tracking type is generally aimed at users who have blocked all third-
party cookies in their browser settings, or are using privacy tools that limit
the use of third-party cookies. Because most cookies set by advertisers are
third-party cookies, this method circumvent these countermeasures in a
way that forces them into a first-party context. When a user visits a website
that is connected to an advertising network, the website will open a popup

20

window containing an ad. This way the user has been forced to visit this
website containing the ad in a first-party context, so the ad can set a "third-
party" cookie in a first-party manner [101].

Third-Party Advertising Networks

An advertising network usually consists of a large collection of advertisers.
These networks keep track of users as they browse the web, and each
will normally have their own unique identifier for users. However, these
networks can collaborate and share their unique user identifiers to other
advertising networks, to collect more information about them. This can
be done if a website embeds an ad from one network, which in turn,
makes a request for another advertising network. A form of cookie cookie
synchronization/sharing technique is used here, where users’ unique
identifier is leaked by sending it as a URL parameter with the request.

We can observe how this works in Figure 2.8. http://site1.com embeds an
ad inside an iframe element from admeld.com. When a user visits site1.com,
admeld.com sets a unique cookie for that user. After this, admeld.com can
instruct the browser to make a new request to turn.com, and include the
cookie value as a URL parameter [101]. The unique identifier (cookie) has
now been synchronized between the two advertising networks.

Figure 2.8: Third-party advertising network, admeld.com sets a cookie
which is shared with turn.com. Figure taken from [101].

Third-Party Social Widgets

Social widgets generally refer to social media buttons, such as the Facebook
Like button, Twitter Share button and Google +1 button. The buttons are
usually embedded on various websites as third-party web elements. They
work by using cookies. When a user visits a website that embed one of
these buttons, a request is made to that website, which also sets a cookie
for that user. This means that this method can be used as a third-party
tracker without the user even interacting with the button. If a user has
received a cookie from Facebook in this way, and later visits facebook.com

21

Figure 2.9: Social widget (Facebook "like" button) embedded in site1.com
that is used to send a cookie back to facebook.com. Figure taken from [101].

directly, a first-party cookie will be set, and can be merged with the third-
party cookie, allowing Facebook to track the user across websites.

An example of this process is shown in Figure 2.9. The website
http://site1.com embeds a Facebook Like button in form of a script by using
an iframe element. When the user visits site1.com, a request is made to
Facebook, which responds with a third-party cookie [101].

22

Chapter 3

Web Tracking Protection
Methods

In this chapter we will look at various protection methods that can be
employed to limit or block the web tracking techniques discussed in
chapter 2, as well as discuss their pros and cons. In section 3.2 we will look
at the state of the art protection tools that are available to Internet users to
see how they choose to approach this problem.

3.1 Protection Methods

Private Browsing Mode

The first countermeasure we look at is the private browsing mode. Most web
browsers generally have a private browsing mode, that is implemented with
more privacy and security features. Aggarwal et al. [5] studied private
browsing mode in Firefox, Safari, Chrome and Internet Explorer (however,
Internet Explorer is not relevant anymore). The main purpose behind this
mode is not directly tied to web tracking, nevertheless, it does provide
some protection. The study looked at different browsing features that
set states, where the relevant features for web tracking is history, cookies,
HTML5 local storage and the browser’s web cache. They did three studies:

• If a user browse the web in public mode, then switches to private
mode, are the different states accessible in private mode?

• If a user browse the web in private mode, then switches to public
mode, are the different states accessible in public mode?

• If the user browse the web in private mode, are the different states
accessible at any point later in the same session?

In their first study [5], they discovered that states set in the four features
mentioned above, were not accessible in Firefox and Chrome, but were
accessible in Safari.

In the second study [5], they found that the states were not accessible in
any of the three browsers.

23

In the last study [5], they discovered that cookies, HTML5 local storage
and the browser’s web cache actually were accessible in the three browsers
at some point later in the session, but not the history.

This means that using private browsing mode can act as a defence
against some web tracking techniques. Optimally, users should commit
to only using private browsing mode, but it’s not ideal. In situations they
really want to not be tracked, they can use the private browsing mode,
but remember to close and re-open the browser before going back to the
normal public mode. This will prevent websites from setting cookies while
in private mode. If the website does have a cookie on the client’s machine,
at least it won’t be sent to the website while in private mode, so they won’t
be able to track these visits. The evercookie will also be rendered less
effective, as the local storage is not accessible.

Using private browsing mode is therefore an easy-to-use method to
prevent some form of web tracking.

3.1.1 Stateful Tracking Techniques

In this section, we will look at the stateful tracking techniques explained in
chapter 2, and potential countermeasures to each of them.

HTTP Cookies

HTTP cookies have a number of possible countermeasures. Third-party
cookies are the most common tracking method, but first-party cookies are
also used by analytics engines, like Google Analytics. The most standard
way to defend against these cookies is to outright block all of them.
This can easily be done in most browsers. For example; Google Chrome
has settings to block all third-party cookies, and both Firefox and Brave
Browser has settings to block either first- or third-party cookies (or both).
However, Roesner et al. [101], found that with these settings on, only
Firefox actually blocks both the setting and the reading of cookies. Chrome,
Safari and Internet Explorer blocks only the setting of third-party cookies.
This means that a website directly visited by the user (e.g. Facebook.com),
can set a cookie in a first party context, and when the user later visits
another website that embeds trackers from Facebook, the cookie is sent
back to Facebook [101]. Using this method will therefore only block third-
party cookies if the user never directly visits the domain that set them.

Blocking all cookies will prevent web tracking attempts, but it will
also break many websites, as most websites rely on cookies to provide
functionality.

Users can also go into their browser settings and clear the cookie
storage, for example every time they close the browser. This way they
will be tracked throughout a browser session. But on their next session,
websites won’t be able to link their last visit to the new one, as the cookie
values will be different, as long as HTTP cookies are the only way they
track the users. However, this is obviously not an optimal solution, but
does provide some kind of protection nevertheless.

24

Cookies can also be removed by developers of web browser extensions.
By using the webRequest API [28], developers can look into the headers and
strip away specific ones, like cookie related headers. This works pretty
much the same way as the available settings within the browser itself, but
with an extension, it is possible to develop solutions that remove cookies
based on some conditions, such as how many times a particular domain
sets cookies or the contents of the cookie, which likely will yield a better
result than blocking all of them by default.

Cookie Sharing and Synchronization

To be able to share cookie values and/or synchronize them with the back-
end, cookies have to be set. The basic countermeasure will be to block all
third-party cookies [3], as this will prevent these identifiers being set. But
again, this is not an optimal solution.

Another solution is to analyse all HTTP traffic, and inspect all URLs
by checking their URL parameters. If a value is seen in a URL parameter
that potentially could be a unique value, this can be stripped away from
the URL before the request is sent from the browser, however, this solution
would likely suffer false positives according to Acar et al. [3].

An improvement of the solution above, is to compare values appended
to a URL, as a URL parameter, and check whether this value exist as a
cookie value currently stored by the browser. However, this solution would
likely suffer from false negatives [3].

If cookies have already been set and can be sent to the corresponding
domain, it’s impossible to prevent the back-end servers to synchronize the
cookies between them.

Apart from these potential countermeasures, it doesn’t seem that any
other currently exist. Most privacy-related tools will focus on blocking
tracking related web resources that set cookies, or just block the cookies
themselves.

Flash Cookies

For websites to set Flash cookies, the Flash plug-in needs to be enabled in
the web browser. Therefore, potentially the best defence is to disable Flash
on all websites by default [20], which will disable Flash cookies from being
set at all. However, seeing as some web services require the use of Flash,
this is not the most optimal countermeasure.

Flash exposes some settings to users that lets them have some control
over the cookies that are set. Users can manually go into the settings and
limit the size of the cookies that are set, all the way down to minimum of 10
KB [60]. This will make the cookie just 2.5 times the size of a normal HTTP
cookie. Users can also manually enable a setting that prevents these types
of cookies from being set in a third-party manner [60], thereby limiting its
tracking potential substantially, seeing as most tracking is performed by
websites embedding third-party tracking content.

A browser extension called BetterPrivacy [13] implemented a counter-

25

measure to Flash cookies. Instead of intercepting and trying to prevent
them from being set, this approach revolves around automatically scan-
ning the folders where the local shared objects are stored, and then deleting
them when the browser is closed. However, this still lets the cookie track
the user for as long as the browser is opened. Therefore the user should
close and re-open the browser regularly. Unfortunately though, it doesn’t
seem like the extension is supported anymore, however, the countermeas-
ure approach itself is still valid.

Evercookies

The evercookie relies on multiple storage mechanisms to store data. Acar
et al. [3] proposed a few countermeasures to evercookies:

• Clearing storages: In chapter 2.3.1 I listed some of the possible
storages that the evercookie can utilize. Having a program that
checks all these storages and simultaneously clear all of them could
get rid of the evercookie. However, this solution have a potential
weakness. Let’s look at an example where two people uses the same
computer, but different browsers. The evercookie has stored state in
both browsers’ storage, as well as in the Flash storage. If one of them
clears their storages, the Flash cookie will also be removed from the
computer. But when the other person opens their browser, it still
exists in that browser storage. This, in turn, can respawn the cookie in
the other locations, such as back into the Flash storage. When the first
person opens their browser again, the Flash cookie can respawn the
previously deleted cookie from the browser storage [3]. This scenario
is a little specific, and for most people, might not be a problem.

• Disabling storages: The researchers [3] found that users can disable
some of the storages altogether, such as the Flash storage, but
they also found that localStorage, IndexedDB and canvas cannot
be disabled, because they’re often used for core functionality. This
solution will therefore not provide enough protection.

Bujlow et al. [20] also proposed some countermeasures to evercookies.
This mainly revolves around disabling the functionality that the evercookie
utilize, such as:

• Partially disallowing cookies and Flash cookies.

• Disabling JavaScript, Flash, Java and Silverlight.

• Frequently clearing all caches, or just browser caches if the above is
disabled.

Disabling all these functionalities will severely limit the usability of the
web, and are therefore not good solutions.

The developer of evercookie, Kamkar, stated that during his testing,
the only current available method to completely stop this technique from
functioning was by using Private Browsing in Safari [82].

26

Cache-Based Tracking Techniques

In order to limit the web tracking potential of misusing users’ web cache,
the browser can be configured in a way to clear the browser cache on
every browser exit. This will prevent tracking over time, but not during
a particular browser session. Apart from this, it seems that disabling
JavaScript is the only effective countermeasure [20].

3.1.2 Stateless Tracking Techniques

Stateless tracking techniques are generally very difficult to defend against.
Most data points used as part of a fingerprint discussed in chapter 2 relies
on JavaScript and web APIs. Many of these are read-only properties, which
means they’re not intended to be spoofed (return false values).

In general, the best defence against fingerprinting is to entirely block
JavaScript, and potentially Flash and Java [20], as this will prevent finger-
printing scripts to execute and collect information. However, passive fin-
gerprinting from HTTP messages, and collecting information from users’
IP address is still possible. Users can use Tor Browser or anonymous web
proxies as a countermeasure to this [20]. However, blocking Flash, Java and
in particular JavaScript, will render most of websites unusable in today’s
Internet, so better solutions against fingerprinting is needed.

An approach that have been deployed by multiple privacy tools, is to re-
move functionality and scripts that are known to be performing web track-
ing. This approach will be explained more in detail in section 3.2. Apart
from that, Mozilla released a blog post [59] where they talked about coun-
termeasures to fingerprinting and the future of this field. In their opinion,
the primary ways is to either block parties that is involved in fingerprinting
(as mentioned above), or change or remove APIs that can be used to col-
lect this information [59]. In the foreseeable future, this will likely involve
both.

Another potential approach proposed by researchers focuses on ran-
domization. By adding small random changes, such as noise, to attributes
that are used as part of a fingerprint every time a script tries to collect this
information, the fingerprint will be different, meaning the tracker might
not be able to link recurring visits by the same user. Some of these pro-
posed randomization strategies will be explained below.

Randomizing browser objects. Research conducted by Laperdrix et
al. in 2017 [85] focused on an approach to add randomness to attributes
that are used as part of a fingerprint. Their aim was to break the stabil-
ity of fingerprints to prevent websites from being able to link two visits by
the same client. Their first solution was implemented within the Firefox
browser, where they modified the source code in the ParseColor function
of the CanvasRenderingContext2D class. This function is used to draw the
colors on a canvas image. As we saw in chapter 2, the data extracted from
the canvas element is unique to different clients. By modifying this func-
tion, the researchers were able to add random color modifications. This

27

means that every time the user visits a website that use canvas fingerprint-
ing, the fingerprint will be different. Secondly, the researchers modified
the AudioContext API [9], that is used for audio processing. However, it
has also been found to play a part in fingerprinting, as details of the audio
processing varies between systems. The researchers altered some of the
functions that decide the volume of audio processed by this API, by up to
0,001 seconds. This would make the resulting fingerprint hash different.

Lastly, the researchers [85] looked at some of the JavaScript objects, such
as the navigator and screen discussed in chapter 2. In another research paper
by Nikiforakis et al. [94], they found that the properties of these objects
are listed differently based on the "browser families, versions of each browser,
and, in some cases, among deployments of the same version on different operat-
ing systems" [94, p. 548]. Laperdrx et al. [85] used this information to
modify the Firefox source code to change the enumeration order for these
objects, and add a random order for each combination. They tested these
three solutions on a few common fingerprinters such as Fingerprintjs2 and
Maxmind. They used vanilla Firefox as a benchmark, where Fingerprintjs2
collected the same fingerprint on every browser visit, while with the coun-
termeasures enabled, Fingerprintjs2 were deceived and tricked into treating
every new browser visit as a new fingerprint. They did the same testing
on Maxmind, with the same result. These results show that even adding
small noises to fingerprintable attributes can potentially protect users’ pri-
vacy from these types of threats.

Randomizing fonts and plugins. The randomization approach was
also investigated in another research paper by Nikiforakis et al. [95]. In
this research, they focused on randomizing the fonts and plugins of the
browser. These attributes are often used as part of fingerprints. The
solution they implemented for fonts, was directed at three attributes: off-
setHeight, offsetWidth and getBoundingClientRect. These attributes defines
the height, width, and size and the position of HTML elements, respect-
ively. The researchers implemented three different policies for how to ran-
domize these attributes, which all were tested. Instead of returning the real
values, they would either return zero, a random value between 0 and 100,
or ± 5% noise, depending on the policy in use.

Their implementation for randomizing plugins, defines a probability of
hiding certain entries in the plugin list in the browser. Their approach relies
on either returning a value of 0 or hiding a certain amount of the plugins
in this list.

The researchers [95] tested these solutions on some common finger-
printers, such as fingerprintjs2, BlueCava and PetPortal. The results were
that the strongest policies they implemented does indeed prevent all finger-
printing based on font or plugin attributes, while causing minimal break-
age of websites on the Alexa top 1,000 websites.

The problem with the randomization approaches above, is that they
need to be implemented directly into a browser, or by modifying the source
code of a browser, unlike most protection tools that are implemented as
browser extensions. The first approach was implemented in Firefox, while

28

the second was originally implemented in the Chromium browser. In or-
der for these approaches to be successful and usable by the general pub-
lic, the developers behind these browsers needs to adopt these solutions.
Otherwise, a separate browser needs to be created. Recently, some of these
randomization approaches were adopted and implemented in a new main-
stream browser, the Brave Browser, which we will look at in the next section.

Below we will look at the Tor browser, which is the most complete
browser when it comes to fingerprinting protection, and it implements 30
specific fingerprinting defences [116].

Tor Browser

Tor is a browser that is built on Firefox, but with some modifications, and
a more heavy focus on security and privacy, especially when it comes to
user anonymity. Their goal is for users to be able to browse the web
anonymously. The browser implements many security solutions, and
when it comes to web tracking it blocks third-party trackers and ads, as
well as clearing cookies and browsing history on each browser exit [118].
These solutions definitely improve user privacy significantly. But more
interestingly, is how they defend against fingerprinting. Their aim is to
make every Tor user look the same [118]. Below we will look at some of the
countermeasures Tor employs.

User-agent and HTTP headers. Tor forces all users to expose the same
user-agent and certain HTTP headers, such as Accept-Language and Accept-
Charset, to websites [116]. This will make every Tor user appear the same.

Plugins. Instead of solutions proposed by Nikiforakis et al. that focus
on randomization, Tor just disables all plugins, but keeps a setting to enable
Flash in case users need it [116]. This approach will prevent fingerprinting
based on plugins.

Canvas. Instead of completely blocking the Canvas element or
introducing noise, their approach detects all read requests to the Canvas
API and asks the user for permission before allowing a website to use this
API [116]. If the user doesn’t allow it, Tor will return an empty image from
the canvas functions [3]. According to Acar et al. [3], this is currently the
best countermeasure to canvas-based fingerprinting. Another research by
Mowery and Shacham [91] also concluded that requiring user approval for
canvas-related data is the best countermeasure, because adding noise could
aid in uniquely identifying a user. This is because the tracker could make
several measurements on the same user, and notice that the fingerprint is
different each time.

Local network fingerprinting. Tor prevents websites from collecting
the local IP address and associated network information to websites [116].
This is done by using proxies and disabling specific APIs.

Fonts. Tor’s solution to prevent fingerprinting based on fonts, relies on
excluding system fonts altogether. Instead, Tor comes with a predefined
list of available fonts [116]. This way, all Tor users will have the same font
fingerprint.

Desktop resolution. In order to make users’ screen resolution similar,

29

Tor automatically resizes all new browser windows to a 200x100 pixel
multiple, based on the desktop resolution. The window size is also capped
at 1000x1000 pixels [116]. In addition, Tor recommends users to not use the
browser in full screen mode, to reduce the uniqueness of this fingerprinting
method.

Operating system type fingerprinting. Tor identified that at least
two HTML5 features are implemented differently based on the operating
system and hardware of the client, namely the Network Connection API and
Sensor API. Tor’s solution is to disable these APIs in the browser [116].

User-Agent String

As previously discussed, the user-agent string can be used as part of a fin-
gerprint. Seeing as the main purpose of this technique is to provide a better
browsing experience, it’s difficult to efficiently defend against this without
damaging websites. However, there are two main methods to remove or
limit its web tracking potential. The positive is that this can be done in a
browser extension using JavaScript and the webRequest API, instead of hav-
ing to modify browser source code.

The first method is to simply remove the string altogether [28]. It’s auto-
matically sent to websites with HTTP headers when a request is made, but
it can be stripped away. This is generally not a good solution though, be-
cause the website won’t be able to recognize the operating system, browser
and versions, and will make the website look worse and not optimized.

The second method revolves around changing the user-agent string.
Using the code example provided in [28], one can also change the string
before sending it to the website. This idea could work, but the difficulty
lies in generating a more generic string that will make the user less unique,
but at the same time, enough people need to use the same exact string to
gain crowd anonymity. This concept means that you need a group of people
of sufficient size to use the same thing, and the website won’t be able to
distinguish between them. This is the idea Tor uses.

Let’s look at an example: the user agent-string example provided in
chapter 2, Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36, is a normal string.
One could remove the versions, for instance changing Chrome/80.0.3987.149
to Chrome/80, and similar for the other components. But if there is only one
user doing this, they will be just as, if not more, unique. Therefore, to get
the most optimal result, a solution like this should be implemented directly
into browsers or an extension that many people use.

Changing the value of this string before it’s sent to the website also
helps prevent the website from collecting the string via JavaScript, as the
navigator.userAgent returns the value of the string sent with HTTP headers
[93].

The web tracking part of the user-agent string might soon be history
though, as Google announced in early 2020 a plan to phase out user-agent
strings in Chrome [39].

30

HTTP Referer Header

As seen in chapter 2, this method can be used for both tracking and
optimization purposes. It basically has two countermeasures, which are
similar to those for the user-agent string.

The entire string can be removed in an extension using JavaScript and
the webRequest API. This prevents two possible issues: (i) preventing the
website to see which website the user was on when they clicked a link
redirecting them to the website, and (ii) prevents the possibility of leaking
extra information in the header, such as users’ e-mail address or other
sensitive information.

The above solution will also remove the legit purposes of the header, so
instead of removing it completely, it can be changed. Before the header
is sent to the website, a program can check its content and strip away
anything that is not the exact domain of the website the user was on,
to limit its "information leaking" potential, but still letting it perform its
optimization tasks. It’s therefore a trade-off between privacy and efficient
browsing.

3.1.3 Other Efforts to Defend Against Web Tracking

Do Not Track

Do Not Track (DNT) [53] is an optional HTTP header that was originally
proposed in 2009 by Soghoian et al. [112]. The header lets users express if
they want to be tracked or not. The DNT header can be sent to websites
together with other HTTP headers. It has two different values, where 0
means that the user consents to being tracked, while the value 1 means that
they don’t want to be tracked.

In theory this is great, but there are no legal requirements for websites
to honor the DNT system. This means that the DNT signal works on some
sites that choose to honor it, although it won’t help on others. Much work
has been done to try and make the DNT system an industry standard, but
it hasn’t led to anything conclusive yet.

Removal of Third-Party Cookies

In early 2020, Google Chrome announced that they are going to focus
more on privacy in the coming years. Third-party cookies have become
so widespread, and threatens user privacy, which results in many users
outright blocking all third-party cookies. This prevents most advertisement
companies from making money, and at the same time, forces them to
implement fingerprinting techniques, which is more difficult to protect
against. Chrome is therefore shifting towards an Internet landscape
without third-party cookies. By the end of 2022, these cookies will be
phased out in Google Chrome [36].

This is a great initiative to improve user privacy, but it remains to
be seen if new and improved tracking techniques will emerge, or if this
actually ends up in favor of Internet users.

31

Removal of Flash

In 2017, Adobe announced plans to deprecate Flash [61]. This is scheduled
to happen by the end of 2020. This means that content that relies on Flash
must migrate to other technologies. For privacy, it means that Flash cookies
will no longer be a threat. Additionally, the evercookie will be left with less
available storage mechanisms.

Silverlight End of Support

Silverlight provides storage mechanisms that the evercookie can utilize.
Microsoft announced end of support for Silverlight, which is scheduled to
happen in October 2021 [108]. This will leave the evercookie with even less
available storage mechanisms. The evercookie can replicate cross-browser
if Flash, Silverlight or a few Java mechanisms are available, so without
Flash and Silverlight, this ability will be limited.

3.2 State of the Art Tools

In the last decade we have seen a rise in various privacy tools being
developed to be able to effectively block web tracking. The state of the
art protection tools we have today is Ghostery [66], Disconnect [52], Firefox
Content Blocking (only available on Firefox) [58], Privacy Badger [99] and
a new browser called Brave [16]. These tools and browsers are the most
popular among Internet users as well as the most mentioned in research
papers and studies. However, other privacy tools also exist, both those
developed by researchers, but also those developed by the community. The
tools we will look at share the same goal; to block web trackers, preferably
without breaking website functionality. They also share a secondary goal,
to speed up website load time. Because there exists so many different
tracking mechanisms, most tools focuses on a more general approach to
block trackers instead of focusing on countermeasures that only applies
to each one. They are often divided into a blacklist-based approach or an
algorithmic approach.

In this section we will explore these tools to see how they deal with
web trackers and what kind of customization options they provide to their
users. We will also look at how easy they are to use for internet users
who might not have any prior knowledge of web tracking and Internet
in general.

Blacklist-Based Approach

Most of the tools we will look at below relies on some form of blacklist or
ruleset to determine what to block. There are many publicly available lists
that tools can use. EasyList [55] is the most known and is maintained by a
handful of community members. Many other lists can be found here [11].
EasyList maintains multiple lists that are used by various ad blockers and
privacy tools;

32

• EasyList, a list that removes ads, empty web frames resulting from
blocked ads, images and objects [55].

• EasyPrivacy, a list that focuses on removing all web tracking,
including web bugs, tracking scripts and information collectors [55].

• EasyList Cookie List, a list that removes cookie banners, GDPR overlay
windows and some other privacy-related notices [55].

• Fanboy’s Social Blocking List, a list that removes social widgets (e.g.
Facebook like button and Twitter share buttons) that can be used to
track users [55].

• Fanboy’s Annoyance List, a list that blocks social media content and
other annoyances, such as pop-up windows [55].

The various blacklists are structured differently, but they all contain
something that should be blocked. For example, the EasyList contains
thousands of entries that are one of these rules:

• Network rules, that are either a URL or parts of a URL that is a known
tracker and should be blocked [17].

• Element rules, that specifies page elements to hide [17].

• Exception rules, that specifies exceptions to a rule; even if the resource
should be blocked, it won’t be blocked if it falls under this rule [17].

An example of some of entries in the EasyPrivacy list is;

&trackingserver=
-analitycs/ga.
google-analytics
track-re01.com

If we look at the third rule, for instance, this should match any URL
where google-analytics is included, such as www.example.com/google-analytics
and cancel HTTP requests to this website. Browser extension can utilize a
functionality provided by Chrome called Match Patterns [47] to match any
URL pattern that contains this rule.

Disconnect, a privacy tool we will look at in section 3.2.2, have their
own open-source list that can be found on their GitHub page [48]. These
are structured differently than EasyList and only contains domain names
of known domains that are associated with web tracking.

The blacklist-based approach works thanks to the webRequest API [28].
This lets developers modify or cancel HTTP requests before any more
information is exchanged with the website. This approach is therefore
generally safe. Lets assume a website employs multiple web tracking
techniques. If a privacy tool focuses on detecting and blocking web
tracking techniques one by one, and actually fails on properly blocking one

33

of them, the website could still be able to track the user. When the request
to the URL itself is cancelled, no information is exchanged and no script
can run to collect information about the user.

These approaches generally have a few weaknesses. Only known
trackers can be classified as such and added to the blocking lists. Trackers
can change their URLs, which means the list has to be updated to reflect this
change [65]. This approach will therefore always lag behind the trackers,
but if it’s updated regularly it shouldn’t take long before the new tracker is
added to the blocking list.

Secondly, developers sometimes add tracking code (either intentionally
or unintentionally) to originally non-tracking scripts [128]. In this case,
blacklists might include this script and thereby break website functionality.
If the developers later change the script to not collect any information that
is regarded as a tracking attempt, the script will likely stay in the blacklist.
Therefore every entry in the list should be assessed every once in a while
to confirm that it’s still used for tracking purposes [131].

Another weakness identified by Yu et al. [131] is the fact that most
blocking lists contain (at least partially) second-level domains (e.g. example
in case of example.com). In this case the whole domain will be blocked.
Tracking scripts in those domains may only be implemented in specific
sub-domains or in a specific URL path. The problem comes if this domain
also provide important functionality to a website. This will then cause the
website to break in certain areas, and users might whitelist (if this option
is implemented in the defence tool) the whole domain, which renders the
blocking list useless for that domain.

Lastly, a problem identified in a study conducted by Brave [17] that
mainly applies to huge lists, such as the community maintained EasyList,
is the fact that it’s growing steadily over time, as more rules are added
than removed. This leads to a build-up of potentially stale rules (rules that
are old and either doesn’t block anything anymore, or block domains that
no longer poses a privacy threat), and no effective way of identifying and
removing these. This eventually leads to an increased size of the list and
over time, a bigger performance cost of running it [17].

Algorithmic Approach

An alternative to the blacklist-based approach is an algorithmic one. Some
tools, like Privacy Badger that we will look at in section 3.2.4, implements a
series of algorithms to try and identify and block trackers without relying
on a blacklist. These solutions can differ a lot between the tools, and will
be further elaborated on in the appropriate sections.

3.2.1 Ghostery

Ghostery calls itself a Privacy Ad Blocker. As mentioned above, it’s goals
are to limit (or ideally block) all web tracking, ads and to speed up web-
site loading [66]. As of August 2016, if we exclude the pure ad blockers
like Adblock Plus [4], Ghostery has the biggest userbase with a combined

34

3,686,040 users on Firefox and Chrome. Ghostery first came out in 2010,
but was bought by the German company Cliqz International GmbH in 2017.
It is implemented as a web browser extension, mostly using JavaScript. It is
available in most browsers today, including Firefox, Chrome, Opera, Safari
and Edge. It is also available on mobile for iOS and Android.

Ghostery has an extensive user interface with many options and
configuration settings. When first installed, Ghostery will present which
third-party trackers it detects, but not automatically block them. The user
has to configure it themselves, which seems to be too much to ask for the
average Internet user. Leon et al. [87] studied the usability of several
privacy protection tools, including Ghostery, and found that two out of
the five Ghostery users thought they had enabled the extension to block
trackers, while in reality, they had not.

Ghostery’s user interface shows how many trackers are blocked and/or
modified and the page load time. It also has a Detailed View tab where users
can see detailed information about the trackers Ghostery has detected.
Users can click the Trust Site button to whitelist a page, which will remove
all anti-tracking mechanisms for that website or Restrict Site to blacklist a
page, which will enable all anti-tracking mechanisms for that website.

Ghostery mainly works by using a blacklist-based approach to stop
trackers. This means that it relies on a list that contains the urls (or parts of
urls) that is known to perform web tracking. As of April 2020, this library
consists of more than 4500 trackers from more than 2600 companies [63].
When an HTTP request is made to a website, Ghostery monitors the call
and matches them with the entries in the blacklist. If there is a match, the
call will be cancelled before any more information can be exchanged [71].

Generally all blacklist-based approaches relies on how good the
blacklist is, which also applies to Ghostery. Ghostery relies on a centralized
approach to create the blocking rules [89]. This means that the company
behind the tool maintain and curate the blocking rules. Ghostery’s blacklist
is heavily formatted and copyrighted, so no one else can use it.

However, when Ghostery was acquired by Cliqz, some of the privacy
mechanisms that Cliqz use was integrated into Ghostery. Cliqz [40] is
a browser and search engine with privacy features built into it. Cliqz
used an algorithmic approach to protect against web tracking, and this is
the solution that was integrated into Ghostery as an optional feature to
supplement the blacklist-based approach. This anti-tracking system [115]
relies on observing HTTP requests and looking for different conditions.
The system is divided into two subsystems;

1. Cookie Protection. This method checks whether the user interacts
with a particular web resource that, in turn, relies on third-party
cookies. If the user doesn’t interact with it, the cookies associated
with this resource is blocked. Otherwise, the resource is temporarily
whitelisted, to allow the use of cookies to make sure the functionality
is usable, and the page doesn’t break. [115].

2. Unsafe Data Removal. This system attempts to evaluate whether a

35

request contains data that is "unsafe" or "safe". This is a difficult task.
If they find that the data sent contains uniquely identifying data for
that user, they will remove the data before the request is sent to the
website. Their algorithm for this solution has four steps [115];

"1. Analyse the URL, headers and postdata of the request.

2. Tokenise this data into key-value pairs.

3. Evaluate the safeness of each key-value pair.

4. If there are unsafe values, remove the data from the request." [115]

Ghostery maintains a type of library that contains values that cannot
be unique identifiers, which is continually updated automatically when
Ghostery users browse the web. The evaluation of the safeness of key-value
pairs is done by detecting values that cannot be unique identifiers, and re-
moving all other data. This solution protects users right away, and in most
cases will remove uniquely identifying information from the requests [115].

Ghostery mainly has three different anti-tracking mechanisms to
further customize the tool;

• Enhanced Anti-Tracking

– This is the name of the algorithmic anti-tracking mechanism
adopted from Cliqz and can be turned on or off.

• Enhanced Ad Blocking

– Seeing as Ghostery is a privacy ad blocker, enabling this feature
will also block ads.

• Smart Blocking

– This feature will try to optimize page performance while still
blocking trackers. This involves automatically blocking slow
or non-secure trackers, but allow trackers that may break on
popular websites when blocked [64].

Merzdovnik et al. [89] performed a large-scale study of tracker-blocking
tools in 2017. Ghostery was one of the tools they analyzed. They ran a
crawler on 191,492 websites and found that Ghostery performed better than
both Disconnect and Privacy Badger, with a success on 179,068 out of the
191,492 websites.

Ghostery’s aim with combining a blacklist-based approach and an
algorithmic one, aims at reducing website-breakage by not having a too
strict blacklist, and instead of having the algorithms block data from
being sent, they only strip away uniquely identifying information. This
is therefore a compromise; to keep website functionality intact while still
protecting user privacy.

36

3.2.2 Disconnect

Disconnect’s mission is to make it easier for people to exercise their right to
privacy [52]. Their goal is to block trackers and speed up website loading.
Disconnect is implemented as a web browser extension, like Ghostery, and
is available on most browsers, like Chrome, Firefox, Safari and Opera and
more. It is also available on mobile. As of August 2016, Disconnect had a
total of 1,062,870 users on Firefox and Chrome, second to Ghostery [89].

Disconnect’s user interface is quite minimalistic with fewer configura-
tion settings than Ghostery. However, Disconnect is easier to use for the
average Internet user because no configuration is needed, and most track-
ers are blocked by default. On the top of the dropdown menu there are
buttons to block or unblock Facebook, Google and Twitter for easy con-
figuration for those popular websites. They also have a button for whitel-
isting websites which will turn off blocking mechanisms for that website,
and blacklisting button for blocking all requests to that website. Further,
Disconnect divids trackers into four categories; advertising, analytics, social
and content. Clicking any of these, users can see what company is trying
to track them and how many requests they make. There is also a checkbox
used for easy blocking or unblocking.

Disconnect mainly relies on a similar blacklist-based approach as
Ghostery, but their internal ruleset is different. Disconnect’s lists are open
source and can be found on their GitHub page [48]. Disconnect’s database
of trackers are maintained by crawling popular websites and looking for
third-party requests, which are then categorized as one of the four categor-
ies mentioned above [111].

This is the underlying way Disconnect block trackers, but the free ver-
sion of Disconnect consists of two features;

• Private Browsing

– This feature blocks invisible websites that attempts to track
user’s search and browsing history, as well as visualizing this
process [20].

• Private Search

– This feature lets users use search engines without allowing them
to track their searches and can be found here [51].

Disconnect has an extensive premium version [50] which comes with
more features for better privacy. This includes an optional full VPN which
can mask IP addresses and encrypt all data.

The survey by Merzdovnik et al. [89] (mentioned under section 3.1.1
Ghostery) also included Disconnect. It performed well, close to Ghostery’s
results, with a success on 176,659 out of the 191,492 websites.

3.2.3 Firefox Content Blocking

Mozilla have had a big focus on privacy lately, and improved their pri-
vacy options considerably by implementing a set of settings they call Con-

37

tent Blocking [58]. The big difference to other privacy tools, is that content
blocking is built into the Firefox browser, and is not some extension that has
to be downloaded separately. Firefox Content Blocking is basically using
the same underlying methods to block trackers as the previous discussed
tools. They rely on monitoring HTTP traffic, and requests to known third-
party tracking domains are cancelled if they match an entry in their black-
lists [83]. Firefox relies on blacklists provided by Disconnect, which makes
these two tools somewhat similar [58]. Disconnect has what Mozilla calls a
level 1 and level 2 list. Both of these can be enabled by the user in Firefox
Content Blocking settings to block more trackers.

Firefox Content Blocking also provide defence against third-party cook-
ies, however, it’s very strict. Users can choose to block all third-party cook-
ies and/or all first-party cookies.

In January 2020 Mozilla wrote a blog post where they announced a col-
laboration with Disconnect, mainly in order to provide better protection
against fingerprinters [59]. This collaboration involves letting Firefox use
Disconnect’s blacklist for fingerprinters, and Mozilla helps them to classify
domains as fingerprinters. This is done by crawling the web and looking
for scripts with fingerprinting signatures. If we look at Disconnects GitHub
[49] we can see that the fingerprinting script mentioned in chapter 2 figure
2.3, called fingerprintjs2, is used by many of the known fingerprinters.

Firefox classifies trackers as cookies, fingerprinters and cryptominers so
the user can easily choose what they want to block. Content Blocking has
three different settings [58];

• Standard

– Standard is the basic setting and the default if the user doesn’t
customize it. Standard mode blocks social media trackers (e.g.
Facebook like button and Twitter share button), third-party
cookies, cryptominers and fingerprinters which are known, but
only in private browsing window [58].

• Strict

– Strict blocks everything that the standard mode blocks, but in
every browsing window. However, they warn that it could affect
functionality (basically block legit scripts or cookies) on some
websites [58].

• Custom

– Custom mode lets the user choose what they want to block,
based on the classifications. This means the user can choose to
only block fingerprinters and cryptominers, for instance. They
can also choose which browsing windows they want to block
trackers in, and also if they want to block all third-party or first-
party cookies [58].

38

Firefox Content Blocking also lets the user send a Do Not Track (DNT)
signal to known trackers or all websites to let the website know that the
user does not wish to be tracked.

3.2.4 Privacy Badger

Privacy Badger [99] is another tool that can be installed in browsers. It is
implemented as a browser extension like Ghostery and Disconnect, and
is available on Chrome, Firefox, Opera and Firefox for Android. It is
developed by the Electronic Frontier Foundation (EFF) and first released
in 2014. Although EFF states that they like Ghostery and Disconnect
(and similar products), they weren’t exactly what they were looking
for [99]. They wanted a program that didn’t rely on blacklists, but
rather an algorithmic approach, that would analyze web resources before
determining to block it or not. [99].

Privacy Badger works by observing all third-party requests, whether
they are used to load images, ads or other necessary functionality, and
logs all of this, along with the website the user directly visits (the first-
party). If they find that third-party requests are sent to the same domains
when visiting different first-party websites three times, they will be blocked
[99]. EFF states that Privacy Badger looks for tracking techniques such
as "uniquely identifying cookies, local storage "supercookies", first to third party
cookie sharing via image pixels, and canvas fingerprinting." [99].

They also state that if third-party HTTP requests goes out to what they
recognize as important website functionality (such as images, embedded
maps or stylesheets) they will allow the connection to those third-parties,
but remove cookies and referer headers from being sent [99].

Privacy Badger is the first tool we look at that tries to detect and prevent
fingerprinting (without using a blacklist). Most fingerprinting techniques
are very difficult to block, and EFF states that that is an ongoing project. The
fingerprinting they try to detect is canvas fingerprinting, that we looked
at in section 2.3.2. Privacy Badger looks for the use of the HTML canvas
element within websites, and treat these as tracking attempts [107].

When it comes to the local storage "supercookies", the way Privacy
Badger treats this as a tracking attempt is by looking at how many read
or writes the script makes to a third-party local storage [107].

It is generally difficult to distinguish if a cookie is used for tracking or
legit purposes, but Privacy Badger tries a method where they look for more
information that is exchanged with the cookie. If they think the cookie
contain enough information to uniquely identify a user, it will treat it as a
tracking cookie [107].

Cookie sharing is a technique that was explained in chapter 2 under
Web Beacon. Privacy Badger tries to detect this technique by running three
checks for every third-party request [107]:

1. As we saw in chapter 2, web beacons are often used to share cookie
values or other unique identifiers, where the values can be included
in a request URL. Therefore, Privacy Badger first look for requests

39

that originate from a small image (often 1x1 pixel) [107].

2. The unique identifiers are included in the URL as a parameter, so
the second check is to see if the image request URL contains extra
information [107].

3. Lastly, it checks for first-party cookies, and compare parts of these
cookies (at least 8 characters) with the query arguments in the URL
parameter [107].

If all three conditions are true for a request, it’s treated as a cookie sharing
attempt and this information will be logged. Potentially, Privacy Badger
will take action.

In 2012, Roesner et al. [101] developed and implemented an extension
called ShareMeNot [105]. The goal of this extension was to defend against
tracking via social media widgets (see chapter 2.4). By default, these wid-
gets can act as trackers using third-party cookies, even when a user doesn’t
interact with it. The extension worked by removing cookies in the requests
made by the widgets, unless the user actually clicks it. This is different than
other solutions which outright remove the buttons from websites. In 2014,
this extension was no longer supported as a stand-alone extension, and its
functionality was incorporated into Privacy Badger [20].

Privacy Badger comes fully configured out of the box, so it’s very easy
for amateurs to use. It has a simple user interface, which shows how many
potential trackers it has detected. We’re also shown all trackers in a list,
along with a slider. The user can move these sliders to adjust how Privacy
Badger deals with each tracker. If the slider is all the way to the left, the
tracker is completely blocked. If the slider is in the middle, Privacy Badger
treats it as a necessary element for website functionality, and will allow it,
but block cookie and referer headers. If the slider is to the right, the tracker
will be allowed to execute. The user interface also shows the user which
third-party elements it finds that might be a tracker, but has not yet learned
to block. If the user knows this is a tracker, they can drag the slider to block
the element before Privacy Badger learns it is a tracker.

When using Privacy Badger for the first time, it won’t know what
to block so it lets all trackers execute. This is definitely a weakness,
although, over time it will learn what to block. This is an interesting
alternative to the blacklist-based approaches, but according to the study
performed by Merzdovnik et al. [89] Privacy Badger suffers from a lot
of false positives. They trained the program with the Alexa top 1,000
and then ran an evaluation. As we saw with Ghostery and Disconnect,
they performed quite well. However, Privacy Badger caused 28.56% of all
websites to fail to load (they experienced time-outs). This is the weakness
of an algorithmic approach. The study concluded that this method showed
promising results, and future research should focus on better methods
to detect whether blocking a certain element will break functionality of
websites.

40

3.2.5 Brave Browser

Brave is developed by Brave Software and originally came out in 2016,
but with few features, and plans for privacy protecting features in the
future. It wasn’t until 2019 that Brave really became known, when they had
implemented new techniques to protect user privacy. The browser is based
on the Chromium web browser [37] and is available on Windows, macOS,
Linux, Android and iOS. Because privacy was a concern for the developers
of Brave, they had the chance to develop Brave with a privacy-focused
mindset from the beginning. This lets developers incorporate protecting
measures more efficiently than having a browser extension to do it. Brave
comes fully configured with privacy settings on when first installed, which
makes it an easy and good browser to use for amateurs.

Along with all the other privacy tools we have looked at, Brave
advertises a faster load time of web pages, specifically 3x to 6x faster than
Chrome and Firefox [18]. Brave comes with multiple security and privacy
features. The features relevant to privacy are [18];

• Ad blocking

• Fingerprinting prevention

• Cookie control

• HTTPS upgrading

• Block scripts

• Send "Do not track" with browsing requests

Brave, like the other tools we have looked at, relies on some form of
blacklists. However, they try to improve on this solution and add more
techniques on top of that. A known problem with blocking trackers is
that websites, or at least some functionality on the site, may break. This
is because JavaScript code that performs the tracking might be "baked"
into the main functionalities of a website, either by accident or intent by
the developers to make privacy tools choose between allowing the user
to visit the website (and also be tracked) or to break the website [128].
Brave attempts to implement solutions to remove this concern altogether,
with a technique they call resource replacement [128]. The technique works
by replacing code that makes a request to a third-party tracker with
customized code that still makes a network request, but not to the tracking-
code [128].

For ad blocking Brave uses blacklists (or filter lists as they call it) [19]. In
their lists there are network and cosmetic rules. The network rules basically
makes up the blacklist; they specify which URLs should be blocked. A URL
can include a third-party tracking script (for example in the form of an ad)
by, for instance, using the iframe HTML element. When this is blocked,
the area where the ad should have been is now empty white space. Brave
attempts to remove this space by using cosmetic rules to hide these empty
areas to make the website look better. [126]. One of the ways Brave achieves

41

the fast page loading times is due to their ad blocking optimization. They
implemented a new engine in Rust, with a new algorithm that optimizes
the use of the blacklists to achieve a 69x faster page load than the current
engine [19].

For their fingerprinting prevention, Brave removes the widespread
canvas and WebGL APIs from third parties by default [127]. This
prevents third-parties from fingerprinting users with these methods, but
will also break legit website functionality that relies on third-party scripts
that utilize these methods. Brave recently further improved on their
fingerprinting prevention by implementing a technique they call fingerprint
randomization [127]. This is based on the work done by Nikiforakis et al [95].
and Laperdrix et al. [85] that was explained in section 3.1.2. According
to Brave [127], this is the first time approaches based on randomization
have been implemented in a mainstream browser. Brave’s implementation
of this technique attempts to remove the possibility for websites to link
recurring visits by randomizing some of the values fingerprinters will
gather. By adding subtle randomization to some of these values on every
new browser session, the client will look unique on subsequent visits to the
same website [127]. These randomization solutions are currently available
in Brave Nightly, which is a version intended for testing. The plan is to
implement these randomization techniques in the main browser version
by the end of 2020.

The cookie control feature lets the user choose which types of cookies to
allow. By default, Brave allows all first-party cookies and blocks all third-
party cookies. This feature is implemented with three options that can be
chosen on a site-by-site basis: [15]:

• "Cross-site cookies blocked: Accepts 1st party cookies and blocks any others
on the site.

• Cookies blocked: Blocks all cookies, both 1st and 3rd party on the site.

• All cookies allowed: Accepts both 1st and 3rd party cookies on the site." [15]

The HTTPS upgrading feature tries to use HTTPS on every website if it
knows it’s supporting it. This will force an encrypted connection [15]. Some
websites may default to HTTP (unencrypted connections) but this feature
fixes that problem. The feature is based on the tool HTTPS Everywhere [77]
that is a collaboration project between the Electronic Frontier Foundation
(EFF) and The Tor Project.

The block scripts feature [15] is an advanced feature which users has to
be careful with using. By default, Brave allows websites to run JavaScript.
With this feature enabled, JavaScript will be blocked, but users can choose
to fine-tune this setting and specify exactly which scripts to allow or block.
Most of the web relies on JavaScript today, so disabling scripts to run will
break websites.

The send "Do not track" signal feature [15] can be turned on or off, but
won’t impact the user experience in any way. It’s sent along with other
HTTP headers to websites to let the client express their wish to be tracked

42

or not. Some websites choose to honor this signal, but there are no require-
ment for them to do so.

Not a lot of research has been done on Brave because the browser
is fairly new, and most of the privacy features have been implemented
recently. But Leith et al. [86] conducted a study in February 2020 on
browser privacy, by assessing the privacy risks regarding back-end data
exchange. They evaluated the back-end services used by Brave, Chrome,
Firefox, Safari, Edge and Yandex with a focus on privacy. They found
that Brave (with default settings) did not transfer any persistent data to
back-end services when the browser was closed and re-opened, and they
did not find any use of identifiers which allows tracking of IP address
over time. Brave was the only browser where both of these criteria were
true. Based on this privacy perspective, they concluded that Brave has
the best privacy, followed by Chrome, Firefox and Safari which shared
second place. Because Brave was developed with the intent of having better
privacy for users and all of these privacy features "baked" into the browser,
it comes as no surprise that they beat the other browsers where privacy was
an afterthought.

43

44

Chapter 4

Design and Implementation

This chapter describes the design and implementation of a system to
protect user privacy against web tracking threats.

4.1 Architecture

This system was developed with two goals in mind:

• The main goal is to block as many web trackers as possible.

• The secondary goal is to prevent breaking important website func-
tionality. This is a trade-off between protecting user privacy and us-
ability.

Similar programs used to protect against web tracking has another
important goal that they also focus on, which is to speed up web page load
time. This has not been a goal for me, because it’s not a part of the project,
and it is not intended to be used by the public in its current state.

Web Browser Extension

Most web browsers today are extensible, which means they can be exten-
ded to perform more tasks than originally implemented in the browser.
Developers are free to develop programs (browser extensions) to further
customize the browser in many ways. Some examples include changing
color, fonts and text on websites, measure load time of websites, block cer-
tain web elements from loading and much more [25].

This system is implemented as a web browser extension. This choice
was made because in order to block tracking scripts and other tracking
techniques, we need to easily get access to browser components and com-
munication between the browser and the Internet. A browser extension can
roughly be looked at as a middle-man between the browser and the Inter-
net. Using the appropriate APIs, an extension can inspect communication
between the browser and Internet and take appropriate action to prevent
undesired data being received by the browser, and thereby reaching the cli-
ent’s computer.

45

The extension is developed for the Google Chrome browser and
tested for version 81.0.4044.138. Extensions work similarly between most
browsers, so porting it to another is not too much work. It was developed
for Chrome due to the simple fact that it appeared slightly easier to learn
than for other browsers such as Firefox.

Before delving into how the system works, it is important to understand
the basic concepts of how browser extensions work. Extensions consists of
multiple components [30]:

• Manifest: The manifest file is a JSON-formatted file named mani-
fest.json. Every extension must have this file. It contains important
information regarding the extension, such as defining files as back-
ground, content or popup scripts, as well as to give the extension
permissions to use different APIs [34].

• Background scripts: Background scripts are JavaScript files that
contain source code. These scripts are executed when the extension is
turned on (or the browser is opened) and then goes idle until some of
the code is needed. Only background scripts can do API calls (except
for calls to the storage API), so code from the background is usually
fired when a content or popup script sends a message and asks for
it, or if the background script contains some code related to network
requests. Those will execute automatically when a network request
is made [33].

• Content scripts: Content scripts are also JavaScript files that contain
source code. These scripts run in the context of a web page. This
means that every time a web page is loaded or refreshed, these will
run. They make use of the Document Object Model (DOM) to read
and change details about web pages [31].

• Popup scripts: Popup scripts are also JavaScript files that contain
source code. These scripts are used to display information in the
popup window of the extension, and should open when the user
clicks the extension icon in the web browser [32].

These are the main components of an extension, but the popup.js file
usually have an associated HTML and CSS file to customize the popup
window. Some extensions can also have background scripts as HTML
instead of JavaScript. An extension can also utilize multiple scripts of
the same type to divide certain parts of the program in different files. As
mentioned, background scripts are the only scripts that can do API calls. If
a content or popup script wants to do that, they have to use the message
passing functionality [35] to send messages to notify the background
scripts. The runtime.sendMessage or tabs.sendMessage lets scripts send one-
time messages (small variations in the code depending on if you send
from a background to a content or vice versa) to another script. Long-
lived connections are also possible, using runtime.connect or tabs.connect

46

Figure 4.1: Overview of browser extension components. Figure taken from
[30].

a channel can be opened between two scripts to let them communicate
several messages between them. There is also one more way content and
popup scripts can communicate with background scripts, by storing values
in local storage using the chrome.storage API [29], which lets the background
script read these values later. The storage API is the only API accessible by
content and popup scripts.

In Figure 4.1 we can see an overview of the components in an extension,
where the envelope icon represents how the scripts can communicate using
message passing.

Programming Language

Browser extensions are built on web technologies, like HTML, CSS and
JavaScript [25]. This means the programming language used is in this
extension is JavaScript. JavaScript is a client-side language, which means
the script is executed on the client side. The language is used for most of
the web, to create websites and much more. In chapter 2, we also saw that
JavaScript is the preferred language used for tracking scripts, because of
this reason, and also because it has many available web APIs. Seeing as
JavaScript is the only available language to create browser extensions with,
it was the default choice of language. Some HTML is also used, specifically
for the user interface.

47

Figure 4.2: Communication flow between a browser and a website when
the browser extensions intercept the request, but lets it go through.

Communication Flow

The normal communication flow between a browser and a website, where
the browser is using the extension that intercept the communication
between them is observed in Figure 4.2. The browser (client) and the
website (server) communicates with HTTP messages, and these specific
messages are the ones we want to observe and inspect.

We see that the browser makes an HTTP request to example.com, which
is temporarily paused within the extension before it determines how to deal
with it. If the request is deemed okay, the extension will let it go through.
A response is sent back from example.com, and again, paused within the
extension. If the response is also deemed okay, it will go through and reach
the web browser.

4.2 Design

The task of this project is to protect user privacy against web trackers. In
order to effectively do this, I need to implement a program that blocks a
wide array of tracking techniques. In chapter 2 we saw that there is a vast
amount of tracking techniques available. I discovered that HTTP cookies
are the most widespread method. Supercookies, such as Flash cookies, are
not that widespread. I also discovered a wide array of fingerprinting tech-
niques in use, and in chapter 3, I found out that most of these have no or
limited effective defences against them. With these discoveries in mind,
I decided to implement two main protection methods which will be ex-
plained below.

4.2.1 Method 1. A Blacklist-Based Approach

A blacklist (or blocking list) contains the signature of known trackers.
This can be domain names, full URLs, parts of URLs, paths that applies
to multiple domains, IP addresses and more. These signatures are
often related to scripts or images, where the scripts can contain various

48

fingerprinting techniques or the use of more advanced cookie techniques
(such as the evercookie, that relies on a JavaScript API), while the images
can be used as advertisement banners to set cookies, or as pixels to share
or leak sensitive information, such as cookie values.

The idea with using a blacklist is to prevent/block all forms of web
tracking from a particular resource or URL, but it also blocks all other
content from that particular resource from being loaded into the browser.
This have both positive and negative impacts. The positive is that if a
tracker use both a known and an unknown tracking technique, both will
be blocked. The negative is that if the same script is mainly used to provide
important website functionality, and a side-effect of the script is to collect
information, or the developers intentionally added tracking code into the
script, the creators of the blacklist needs to evaluate whether to add this
into the blacklist or not. This could be a difficult decision, and is a trade-off:
privacy vs. usability. Other strengths and weaknesses with this approach
were discussed in section 3.2.

There are many available blacklists to use. I decided to implement two
different ones. The EasyPrivacy list provided by EasyList, and Disconnect’s
lists which are also used by Firefox and Microsoft Edge. There is some
overlap between the lists, but it will provide more protection using both
compared to just one of them. EasyPrivacy contains around 16,000 entries
(as of April 2020), while Disconnect’s list contains roughly 6,000 entries,
but it’s hard to count them. EasyPrivacy includes full URLs, parts of URLs,
paths that can apply to multiple domains and IP addresses. Disconnect’s
lists contains only domains (e.g. example.com). Their services.json file
contains domains that acts as third-party trackers on some website, but
provide core functionality to other websites. An example from this list is:

"Twitter": {
"https://twitter.com/": [

"ads-twitter.com",
"tweetdeck.com",
"twimg.com",
"twitter.com",
"twitter.jp"

]
}

In this case, these domains should be registered as trackers, and third-party
requests to these should be cancelled. However, the five domains specified
below https://twitter.com/ provides core functionality to twitter.com, and
should therefore be whitelisted (and not blocked) when a user directly
visits twitter.com.

Disconnect’s entities.json file also contains domains that should be
registered as trackers, and have third-party requests to them cancelled.
However, it specifies organizations, and other domains that are part of the
same organization below it, which should be whitelisted for that specific
organization [119]. An example is:

49

"365Media": {
"properties": [

"aggregateintelligence.com"
],
"resources": [

"365media.com",
"aggregateintelligence.com"

]
}

In this example, 365Media is an organization that owns both 365media.com
and aggregateintelligence.com. In this case, if the user visits 365media.com that
makes a request to aggregateintelligence.com, this should not be cancelled.

I chose these lists because EasyPrivacy is the biggest and most known
list created by community members. It should cover many web tracking
threats. Ad blocking tools such as uBlock Origin relies on EasyList’s EasyList
to block ads. This tool has a big user base, and seems to be very successful.

I also chose Disconnect’s list. This is because I believe it has a bigger
potential to correctly categorising trackers. Both Disconnect and Mozilla
are working on this list. It would also be interesting to compare them,
basically comparing the community to these companies.

The blacklists are read by the extension, where a function reads
each entry and sends them through an appropriate function for string-
manipulation to add specific patterns that Chrome extensions can recog-
nize. After that, the entries will be placed in a list. The tool observes all
third-party HTTP requests and checks if a pattern in the list matches the
URL in an HTTP request. If it does, and it’s not whitelisted, the request
will be cancelled and no information with the website can be exchanged.
If it doesn’t match, the request will go through as normal. We can observe
this behaviour in Figure 4.3 and compare to the communication flow if the
URL is not blocked in Figure 4.2. If example.com is in the list, the request is
cancelled and example.com doesn’t even receive the request. More import-
antly, example.com is not able to track the user at all.

Figure 4.3: Communication flow between a browser and a website when
the browser extension cancels the request.

50

An important part of this solution is to not block first-party requests.
Many legit domains such as youtube.com that many users visit directly is
also used to track users in a third-party context. This domain is included
in some lists. Therefore, I let all first-party requests go through, while only
blocking third-party requests if they’re in the blacklists.

With regards to the secondary goal specified in section 4.1, there’s not
much I can do to prevent breaking website functionality if a resource
is incorrectly placed in either of the blacklists. However, the choice
to only block third-party requests and not first-party requests, will let
users directly visit potential tracking sites and prevent these from being
unreachable.

4.2.2 Method 2. Third-Party Cookie Protection

By using the blacklist, many fingerprinters, web beacons and advanced
cookie mechanisms are blocked. However, HTTP cookies are so wide-
spread and practically present on every website. Blacklists can’t include
all of these, as that would prevent many requests to legit third-parties to
be loaded. Hence, I also developed a method to prevent most third-party
tracking cookies based on their prevalence. Websites can set cookies with
the Set-Cookie HTTP header and read previously set cookies with the Cookie
HTTP header. By observing HTTP messages, we can look into the headers.

This protection method removes cookie and referer headers from HTTP
messages if the tool has seen the same domain attempting to set or read
cookies in a third-party context on three different websites the user directly
visits. I got the idea for this solution from Privacy Badger [99]. While Pri-
vacy Badger will block any tracking attempt (whether it is a script, image,
fingerprinter etc.) if it has seen it on three different websites, this solution
will only block cookies, while leaving the other tracking methods for the
blacklist.

Lets assume example.com is a popular website and embeds trackers from
tracker.com that use third-party cookies for this purpose. When a user vis-
its example.com, this approach now observes tracker.com setting or reading
cookies in a third-party context. The tool now knows tracker.com is a third-
party tracker on one website, and stores information about this. If the user
later visits another popular website, example-second.com, that also embeds
trackers from tracker.com, this approach will again observe this and notice
that tracker.com is a third-party tracker on two different websites. When
this happens the third time, this approach will take action and deny this
domain from setting or reading cookies ever again.

When a domain is registered as "cookie-blocked", it will be added to a
list that is checked every time an HTTP message comes through. If it’s in
this list, it will loop through its headers and add every header that is not
cookie or referer related into a new list. This new list is returned to the
website, and does not contain the cookies. Referer headers are removed
because they can be used to create a fingerprint, and to leak information
(see section 2.3.2).

51

Another design decision that was made for this solution is to not
"cookie-block" the whole domain if only a subdomain is observed using
cookies. It is normal for websites to rely on third-parties for functional-
ity such as authentication, user login, comment sections and much more.
Assume example.com is a popular website that provides both important
functionality and a tracking service to other websites. It has two subdo-
mains, func.example.com to provide functionality and track.example.com to
provide the tracking service. The tool will end up only removing cookies
from track.example.com, and not from the whole domain (example.com). This,
again, comes down to a trade-off: privacy vs. usability, and is directly tied
to the secondary goal specified in section 4.1. Sometimes the same domains
or subdomains are used for both services, in that case, this approach may
end up breaking parts of the website. Unfortunately, I don’t have a good
solution to prevent this.

4.2.3 Do Not Track

The Do Not Track header (see chapter 3.1.3) is an optional header that can
be sent to websites to let the user express if they want to be tracked or not.
Some websites honor this initiative, but I don’t know which. The header is
therefore automatically sent to all websites. This is done by appending the
new header DNT=1 before sending the headers to a website.

4.3 User Interface

I created a user interface to let the user see how many trackers are actually
blocked, and how many domains have been categorised as using tracking
cookies and have been blocked from setting them. This interface is easily
accessible by clicking the extension icon in the top right corner of the
browser. In Figure 4.4 we can see how the popup window looks. I visited 30
popular websites to let the extension gain knowledge about domains that
set third-party tracking cookies, and then visited www.nytimes.com. We can
see that nytimes.com embed five different trackers that have been blocked.
Clicking the button "Show all trackers" the user can see the full URL of the
five blocked trackers. In case a website embed multiple trackers from the
same domain, the simple list will just say "3 different tracker(s) from this
domain:", but clicking the "Show all trackers" lets the user see all of them.

Below "Showing all cookie blocked domains:" the user can see the
domains that the extension has blocked from setting and reading cookies.
These domains will be blocked from setting third-party cookies on all
websites the user directly visits.

52

Figure 4.4: Popup (user interface) when visiting www.nytimes.com after
having visited 30 popular websites prior, to gain knowledge about third-
party tracking cookies.

53

4.4 APIs

chrome.webRequest

The extension mainly relies on the webRequest [28] API for observing and
intercepting HTTP messages. If we look at Figure 4.5 we can see a set of
events that follows the lifecycle of web requests. The onBeforeRequest is fired
when a request is about to occur, before any TCP connections are made with
the website [28]. This is the event that lets us cancel a request and is used if
the requests match an entry in the blacklist.

The onBeforeSendHeaders event is also fired when a request is about
to occur, but after the first headers have been created [28]. This is
where the extension check for the Cookie and referer headers, as those will
automatically be prepared if there is a cookie on the client’s computer
where the cookie-domain is equal to the request’s domain. The Do Not
Track header is also added to the rest of the headers here.

The event onHeadersReceived is the next important event, as this is fired
every time the extension receives an HTTP response [28]. This is where
the extension checks for Set-Cookie headers, and where applicable, remove
these before they can reach the web browser.

In order for the extension to know which website the user currently
visits (the first-party), this can also be known by utilizing the webRequest
API. The first event that is fired, onBeforeRequest, also contains the type of
the resource. If the request is type main_frame, it means that the request
happens in the main frame, meaning the website the user directly visits.
This is important to know as early as possible for two reasons: (i) so the
extension doesn’t block the request even if it is in the blacklist (this would
block users directly visiting youtube.com for example), and (ii) for the
correct first-party domain to be stored with the cookie information.

chrome.runtime

The runtime API [27] is used for various things, but in this extension I utilize
the sendMessage and onMessage parts of the API. Because the popup script
can’t access variables and data within the background scripts, this data has
to be sent with messages between them. When the user clicks the popup
button, messages are sent to the background script asking for this data. The
background script receives this message and sends a response containing
the appropriate data. The popup script receives this data and shows it in
the popup window.

chrome.extension

The extension API [26] is also used for various things, but in this extension
only the getURL part is used. This lets the extension request local files (in
this case the blacklists, which are .txt or .json files) and read them.

54

Figure 4.5: The lifecycle of requests. Figure taken from [28].

55

Figure 4.6: Overview of the internal structure of the extension, and the
interaction between the components. The arrows indicates in which
direction data flows.

4.5 Internal Components

This extension consists of a few scripts where each have their own
responsibilities that is explained below. In Figure 4.6 we can also see an
overview of the components and the interaction between them. The arrows
indicate which direction data flows and between which components.

background.js

This is the main script that is loaded first. It is defined in the manifest.json
file to be a background script. This script has three main responsibilities:

• The easyprivacy.txt list is loaded, each entry is sent through an
appropriate pattern matching function, and then placed in a list.
After this, a listener for the onBeforeRequest is created. The script is
now observing all HTTP requests and determining if their domain is
in the list.

• The script also observes requests looking for cookie-related headers.
A part of this algorithm includes creating objects of type CookieInfo

56

that is within cookies.js and using its functions to determine whether
to "cookie-block" a domain or not. To inspect headers, this script uses
the onBeforeSendHeaders and onHeadersReceived events of the API.

• Sending messages using the message passing functionality that in-
cludes information about what trackers are blocked, and what do-
mains are "cookie-blocked" to the popup.js script.

services_list.js

This is the second script to load, and is also defined in the manifest.json file
to be a background script. This script has mainly one responsibility:

• The services.json file is loaded (which is one of the two blacklists
provided by Disconnect), and the rest of the process is similar to the
process in background.js. The difference is that Disconnect’s lists are
formatted differently than EasyPrivacy’s list, so new functions are
needed. Extra code is also needed to be able to whitelist some of the
entries. A new onBeforeRequest listener and function is created. The
reason I chose to use two separate ones, is because it would be easier
to enable or disable one of the lists at a time, so comparing them in
the next chapter would be easier.

entities_list.js

This is the next script to load, and is also defined in the manifest.json file to
be a background script. This script has one responsibility:

• The entities.json file is loaded (which is the second blacklist provided
by Disconnect), each entry sent through a pattern matching function,
and then added in the same list as the entries in services.json. Extra
code is also needed to be able to whitelist some of the entries. No
new listener for onBeforeRequest is created, as it will use the same as
in services_list.js. This is because I wanted to merge the Disconnect
lists and treat them as one.

cookies.js

This is the next script to load, and is defined in the manifest.json file to be
a background script. Although it doesn’t need to be as no API calls are
made here, it is easier, because background scripts can easily share data and
use functions defined in another background script. This script is used to
store information about cookies, domains and their prevalence. It contains
a class CookieInfo, and background.js creates objects of this type and utilize
its functions to store information, and then store these objects in a list. A
CookieInfo object is created for every third-party domain that is observed
attempting to set or read cookies. Its responsibilities are therefore:

• Storing information about third-party domains, first-party domains
associated with a third-party domain, and the number of first-party

57

domains. It provides functions for background.js to check how many
first-party domains are associated with a specific third-party domain,
and to add new first-party domains to an existing third-party domain.

popup.html

This script is defined in the manifest.json file to be a popup file. It is loaded
every time the user clicks the extension icon. Its responsibilities are:

• To add buttons and some text in the popup window.

popup.js

This script is not defined in the manifest.json file, but it provides functional-
ity to popup.html. It is loaded every time the user clicks the extension icon.
Its responsibilities are:

• Sending messages to the background script every time it is opened
to ask for information about blocked trackers and "cookie-blocked"
domains. These are stored in data structures inside the file. It contains
functions to add listeners for the buttons seen in the popup window
and to show the appropriate data when the button is clicked.

4.6 Implementation

This section goes through some of the key implementation details.

4.6.1 Blacklist-Based Approach

Extensions are very limited in terms of how much access to local files they
have. In order to read in the blacklists, we have to make a GET request to
the files, using XMLHttpRequest (XHR).

The extension uses three different blacklists and all of them are
structured differently. In order to properly load them and be able to
match URLs in HTTP requests, I had to add patterns to them that Chrome
extensions recognize.

Pattern Matching

The Match Patterns [47] functionality is used in the blacklist solution. This
lets us add specific patterns before, in the middle of, or after an entry in the
blacklist to match a URL.

• We can add *:// to match both http and https.

• We can add * that acts as a wildcard. This can be used at the start
of the hostname to match any subdomain for a given domain, it can
replace the hostname altogether to match any domain, or after the
domain to match any path. It can also be used anywhere in the path.

58

A problem with the EasyPrivacy list and my implementation was that
a few entries (around 25 out of the 16,000) is specified with a * in the
middle of the hostname, e.g. www.example.*.second-example.com. Accord-
ing to Chrome and match patterns, this is not allowed. I later found out
that other tools that utilize these types of lists rely on regular expressions
to match patterns, in order to circumvent this restriction. I noticed this too
late, and decided to stick with my original implementation. This means
that those 25 entries in this list is not working.

A couple of simple examples from the EasyPrivacy blacklist can be:

mixpanel_tracker.
abcstats.com

In order to properly pattern match these entries, we can alter and
change them to this:

:///*mixpanel_tracker.*

This will now match any domain that uses http and https, and includes
mixpanel_tracker. anywhere in the path. For the next entry, we can do this:

://abcstats.com/

This will now match all paths in the abcstats domain.

The entries in EasyPrivacy are categorised by what patterns should
be added. The entries have a specific character as first and/or second
character to specify this. They can start with:

• &

• -

• .

• /

• ;

• =

• ?

• _

• ||

This means that when the list is loaded and read, every first and/or
second character is checked. If they match one of these, the entry will be
sent to an appropriate function to add correct patterns and remove the first

59

and/or second character, among other things.
When this process is done and the finished entries are added in the list,

a listener has to be set that listens for HTTP messages, like here:

function setListener_easyprivacy(){
chrome.webRequest.onBeforeRequest.addListener(

blockTrackers,
{urls: easyprivacyList},
["blocking"]

);
}

easyprivacyList is a list that contains all the entries with correct pattern
matching and "blocking" means that the tool can intercept HTTP messages
and cancel or redirect them. blockTrackers is the function where the
cancelling happens, and is defined like this:

function blockTrackers(details){
let type = details.type;
let url = details.url;
let url_hostname = getHostnameFromRegex(url);
let currUrl_hostname = getHostnameFromRegex(currUrl);

if(type == "main_frame" || url_hostname.includes
(currUrl_hostname)){

return {cancel: false};
} else{

blockedUrls.push(url_hostname);
blockedUrlsFull.push(url);
return {cancel: true};

}
}

The function parameter details contains much information about the re-
quest. For example, we can get the URL by calling details.url. We can also
see the request type. If it is main_frame, it means it is the URL the user
visits directly and shall not be cancelled. The same applies if the request
goes out to a subdomain of the current URL. For instance: if the user vis-
its example.com that makes a request to func.example.com that provides some
kind of functionality, this is technically a third-party request. Therefore I
also check that the request doesn’t include the current URL’s domain. Oth-
erwise, the function returns cancel: true, which means the request is to be
cancelled before leaving the browser.

In order to get the current URL (the URL the user is currently visiting), a
similar function is created earlier in the code. It checks whether the request
is main_frame, and sets the variable currUrl to be details.url in that case. This
way the current URL is updated every time the user visits a new page.

blockedUrls and blockedUrlsFull contains information about the trackers
that are blocked on the current website, there is also a check here to check

60

whether the tracker is already in the lists or not. The lists are then sent to
popup.js (this process is further explained in the section Sending Information
to popup.js).

Disconnect’s lists are a bit different. The entries are read and pattern
matched similarly to the function for EasyPrivacy. Every entry is added
to match the whole domain, any subdomain, and any path, and added
to a list. A listener similar to the function for EasyPrivacy is also set, to
listen for HTTP requests. However, the whitelisting part adds some more
complexity. During the process of reading the services.json file and pattern
matching the entries, the function also looks for domains that have other
domains below it, specified as their "whitelisted domains". These domains
are added to a map as the key. The function then looks for the domains
that are supposed to be whitelisted for that particular domain, and adds
these to a list. When all the correct domains have been added to this list,
it’s added to the map as a value. For instance, using the example provided
in section 4.2.1, twitter.com and the five domains specified below it is added
to the list of trackers with correct patterns. But twitter.com is also added to
the map as a key. It’s corresponding value will be a list containing the five
domains specified below it.

The process for the entities.json file is executed after the tool has finished
handling the services.json file. Its process is similar, but also have some
differences: when the function finds an organization, it checks the entries
specified as part of this organization to see if the organization’s name is in
one of the domains. If it is, it checks whether this domain already exist
in the map as a key. If it does, the rest of the domains that are part of this
organization is added to the value list of that key, because they’re supposed
to be whitelisted for that domain. If the domain doesn’t exist as a key in the
map, it gets added to the map, similarly to how its done for the services.json
file. Last, if an organization’s name is not included in any of the domains
specified as part of this organization, I can’t know the organization’s main
domain, and therefore this part won’t be implemented. Luckily, though,
this only the case for a small portion of the list.

The function that either cancels a request or not, is defined like this:

function blockServicesAndEntities(details){
let details_url = details.url;
let details_type = details.type;
let url_hostname = getHostnameFromRegex(details_url);
let currUrl_hostname = getHostnameFromRegex(currUrl);

if(details_type == "main_frame" ||
url_hostname.includes(currUrl_hostname)){
return {cancel: false};

} else{
let cancelRequest = checkWhitelisting(details_url);

if(cancelRequest){

61

blockedUrls.push(url_hostname);
blockedUrlsFull.push(details_url);

}
return {cancel: cancelRequest};

}
}

The first part of this function is similar to that of easyprivacy. If the request
is to a website the user directly visits, or the request is a subdomain of it, it
won’t be cancelled.

The variable cancelRequest contains a boolean value, true or false, that is
returned by the function checkWhitelisting(). details_url is the current request
URL to be checked. If the return value is true, it means the request shall
be cancelled, and the blocked URLs are added to the same lists as in the
function for easyprivacy. If the value is false, it means that the request is
whitelisted and won’t be blocked. The function checkWhitelisting is defined
like this:

function checkWhitelisting(url){
let list = [];

for(let key in map){
if(currUrl.includes(key)){

list = map[key];
break;

}
}

for(let i = 0; i < list.length; i++){
let element = list[i];
if(url.includes(element)){

return false;
}

}
return true;

}

This function first checks if the current URL is specified in Disconnect’s lists
with whitelisted domains below it, by checking if the current URL exists in
the map as a key. If it does, list is set to be the key’s value in the map, the
list of whitelisted domains.

The second loop checks whether or not the requested URL includes
one of the whitelisted domains. If it does, the function returns with false,
indicating that the requested URL shall not be blocked. Otherwise, the
function returns true, and the request will be cancelled.

Sending Information to popup.js

background.js and popup.js can’t communicate directly, and popup needs
to know about the current URL (the URL the user is currently on) and

62

what trackers are blocked on this URL, in addition, an option to show the
full URL of a tracker is also given to the user. As previously stated, the
current URL is already known in the variable currUrl. In the code examples
above, we can see that the blocked URL’s hostname is pushed to a list
blockedUrls. The complete URLs are added to another list, blockedUrlsFull.
The information of blocked trackers in these lists only applies to one
website. These lists are cleared in the same function that sets the current
URL, in order to only show blocked trackers on the current website.
When this information is ready it can be sent to popup.js using message
passing. Because the popup script is only loaded whenever the user clicks
the extension icon, popup.js has to send a message to background.js and ask
for this information when that happens. This can be done in the following
way:

chrome.runtime.sendMessage({greeting: "currurl"},
function(response){

currUrl = response.farewell;
document.getElementById("currurl").innerHTML = currUrl;

});

greeting is the name of the message that is sent. It can be seen as a
variable holding a value. The value is the string "currurl", to indicate to
background.js that popup.js wants to know the current URL. The variable
currUrl is set to response.farewell, which is the value of the variable farewell
that is received as the response to this message. The last part of the
code interacts with the popup.html to show this information in the popup
window.

The background.js script listens for message events, and responds like
this:

chrome.runtime.onMessage.addListener(
function(request, sender, sendResponse){

if(request.greeting == "currurl"){
sendResponse({farewell: currUrl});

}
}

);

In this case, the currurl message is received to let background.js know
this is the information popup.js wants. It sends a response containing the
currUrl variable, that holds the current URL.

The same logic applies when sending the lists of blocked trackers as
well, by using multiple one-time messages.

4.6.2 Third-Party Cookie Protection

For this method, I need two listeners, one to listen for incoming HTTP
headers and one for checking outgoing HTTP headers before they go out.
The listener checking outgoing headers is set like this:

63

chrome.webRequest.onBeforeSendHeaders.addListener(
onBeforeSendHeaders, { urls: ["http://*/*", "https://*/*"] },
[’requestHeaders’, ’extraHeaders’, ’blocking’]

);

The other listener is similar, but using the onHeadersReceived event in-
stead. These listeners also uses the pattern matching functionality to make
them work on every website. I need to specify requestHeaders or response-
Headers to get access to the headers, extraHeaders is needed in the newer
versions of Chrome (from version 72 and onwards) to get access to cookie
and referer headers. blocking is needed to, again, be able to modify the
headers. The listener specifies the function onBeforeSendHeaders which is
where the cookie and referer removal happens.

The onBeforeSendHeaders function is defined as follows:

function onBeforeSendHeaders(details){
let url = details.url;
let url_hostname = getHostnameFromRegex(url);
let currUrl_hostname = getHostnameFromRegex(currUrl);

if(!url_hostname.includes(currUrl_hostname)){
for(let i = 0; i < details.requestHeaders.length; i++){

if(details.requestHeaders[i].name.toLowerCase()
=== "cookie"){

addUrls(url_hostname);
break;

}
}

}

isInCookieBlocklist(url_hostname, function() {
// check if the domain is in the cookie-blocked list,
// with a callback

});

if(isInList){
let newHeaders = [];
for(let i = 0; i < details.requestHeaders.length; j++){

if(details.requestHeaders[i].name.toLowerCase()
!== "cookie" &&
details.requestHeaders[i].name.toLowerCase()
!== "referer"){

newHeaders.push(details.requestHeaders[i]);
}

}
return {

requestHeaders: newHeaders

64

}
} else{

return {
requestHeaders: details.requestHeaders

};
}

}

As discussed in the design section, if a subdomain sets cookies, I only
block the subdomain, and not the whole domain from setting or reading
cookies. Therefore I grab the hostname (which will also include the sub-
domain) from a regular expression function. I only focus on third-party
cookies, so I need to make two checks before registering the domain as us-
ing tracking cookies: make sure that the domain is not the first-party, and
secondly, make sure that it actually sets or reads cookies. If both of these
are true, the function addUrls, which starts the algorithm to register the do-
main as using tracking cookies, is called with that domain as input.

The function isInCookieBlocklist is called to check if the request domain
is "cookie-blocked", and sets a boolean variable isInList to be true in that
case. If the value is true, the function will create a list called newHeaders
and loop through all the headers. Headers have a name and a value. If the
header name is not cookie or referer, the header will be pushed to this new
list. This way the cookie and referer headers are removed. The newHeaders
list is then returned and sent to the website. If isInList is false, the function
will just return the headers normally.

The function onHeadersReceived that deals with incoming headers,
works the same way. The only difference is that instead of looking for
and removing cookie and referer headers, the function removes set-cookie
header. This is the header that is used to set cookies on the client’s com-
puter.

As mentioned, the addUrls function is used to register domains as using
tracking cookies, and determines if a domain (or subdomain) shall be
"cookie-blocked" or not. cookies.js contains a class CookieInfo that is created
for every third-party domain. It’s initialized with a constructor that takes
input a third-party domain and a first-party domain (current URL), and
initializes a list of first-party domains with this appended to it. The class
has three functions:

• getTpdomain() that returns the third-party domain associated with this
object.

• checkIfDomainExists(firstpartyDomain) which returns true if the input
domain is in this local first-party list.

• addDomain(firstpartyDomain) that uses the above function to check if
it has seen this domain before. Otherwise it’s appended to the list. If
the list of first-party domains now contains 3 elements, this function
returns 1. Otherwise it returns 0.

65

The addUrls function in the background.js script is defined like this:

function addUrls(url){
if(cookieInfoList.length == 0){

cookieInfoList.push(new CookieInfo(url, currUrl));
} else{

let i = checkIfTpExists(url);
if(i >= 0){

let u = cookieInfoList[i].addDomain(currUrl);
if(u == 1){

let tpdomain = cookieInfoList[i].getTpdomain();
if(!checkIfCookieBlocked(tpdomain)){

cookieBlockedDomains.push(tpomain);
}

}
} else{

cookieInfoList.push(new CookieInfo(url, currUrl));
}

}
}

The cookieInfoList contains objects of CookieInfo and the cookieBlockedDo-
mains list contains the "cookie-blocked" domains in a string format.

The function takes input a third-party domain (url), and if this is the
first time the extension is run, the list of objects is empty. If it is, an object is
created with the third-party’s domain and the current URL’s domain. Oth-
erwise, a check is made to see if this third-party domain has already been
observed. The checkIfTpExists function loops through the cookieInfoList and
returns the location in the list where this object is, as an integer (i). If it
doesn’t exist, i will be -1 and the if-check is false. An object is thereby cre-
ated for this third-party domain. If it exists, the tool now knows the location
in the list stored in variable i. It then attempts to add the current URL to
this third-party by calling its function addDomain. If addDomain returns 1, it
means this third-party is seen on three different first-parties and should be
blocked. Otherwise, it returns 0. So the tool checks if this variable (u) is 1.
If it is, it grabs its third-party domain in a string format and adds it to the
list of cookie blocked domains if it’s not already in the list.

In order for the user interface to show users which domains that are
registered as "cookie-blocked", it asks background.js for this information as
well when the popup button is clicked, and is then sent to the popup script.
This works using the message passing functionality, similar to how it was
explained in section 4.6.1.

4.6.3 Do Not Track Header

This header is pushed to the list containing all other headers in the function
onBeforeSendHeaders, like this:

66

details.requestHeaders.push({name: "DNT", value: "1"});

If a domain is "cookie-blocked", this header is pushed to the newHeaders
list instead.

67

68

Chapter 5

Evaluation

This chapter investigates how well my tool and the state of the art works.

5.1 Testing on Panopticlick

The first part of the evaluation is testing the tools on a website called
Panopticlick [97]. This website is a research project and created by the
Electronic Frontier Foundation (EFF). The goals of the project are to
discover tracking techniques and test privacy protecting tools [1]. The
website creates environments to simulate how real trackers work, and
observes if the browser manages to stop the tracking attempts. Multiple
tracking domains are created as third-party trackers, and requests to these
domains are made. This website can be visited with any of the tools
enabled. When the test button is clicked, the website runs five tests:

• "Is your browser blocking tracking ads?

• Is your browser blocking invisible trackers?

• Does your blocker stop trackers that are included in the so-called “acceptable
ads” whitelist?

• Does your browser unblock 3rd parties that promise to honor Do Not Track?

• Does your browser protect from fingerprinting?" [97]

The first test creates a visible ad that is used for tracking purposes, and
tries to set a cookie. If the ad is blocked, the test is passed [1].

The second test creates a web beacon that is not visible. If the request to
this resource is blocked, the test is passed [1].

In the fifth test the uniqueness of the browser is tested. Panopticlick
uses different fingerprint techniques to gather a total of 14 data points
about the browser and client’s machine. Based on this information, it
checks whether the user is unique compared to other Internet users’
configurations [1]. If the uniqueness is above a certain threshold, the test is
passed.

I enabled each tool and tested them on the website one by one. The

69

Figure 5.1: Result of the tests on Panopticlick for each tool.

results can be seen in Figure 5.1. It seems that blocking the tracking
attempts in test 1 and 2 is easy for all tools, except for Ghostery. Strangely
enough, it scored no on the second test. It’s hard to understand why seeing
as Ghostery scores very high on studies conducted in previous research.
I can see two potential reasons why this is: (i) the simulated tracking
isn’t behaving close enough to how real trackers behave, or (ii) Ghostery’s
blacklist is too lenient, and their algorithmic approach (enhanced anti-
tracking) doesn’t recognize this as a tracking attempt (this could be related
to (i)).

Apart from this, every tool blocks ads even if they are in the acceptable
ads whitelist. Ads that are not considered intrusive or annoying, does not
perform third-party tracking and abide by a certain standard, are placed in
this whitelist [6].

Privacy Badger is the only tool that checks whether a domain honors
the Do Not Track policy, and disables anti-tracking on these domains.

When it comes to fingerprinting, this result shows unfortunate, but
not surprising results. None of the tools are able to create a non-unique
browser fingerprint. This demonstrates the difficulty in this problem.

5.2 Testing Against Common Trackers

A part of the collaboration work between Guleed Abdi and me was for him
to set up a website with some web tracking techniques implemented, and

70

for me to test how well my tool perform on this website. Abdi set up a
website called www.guleedsthesis.online with three trackers implemented:

• Facebook Pixel

• Google Analytics

• IPinfo

Facebook Pixel is Facebook’s analytics tool. It can be implemented on
websites to collect data from users to optimize ads, more effectively be able
to hit targeted audience for future ads and remarket to people who already
visited the website [117]. The tracking techniques used by Facebook Pixel
is first- and third-party cookies, as well as a form of cookie sharing tech-
nique. This is implemented as a tiny image, and adds cookie information
to its URL parameters.

Google Analytics is the most common analytics engine used to analyse
traffic. How Google Analytics works was explained in section 2.4 (Tracking
Types). Google Analytics is often used together with Google Tag Manager.
Google Tag Manager allows developers to add marketing tags (code snip-
pets or tracking pixels) to a website. The data gathered by Google Tag Man-
ager is shared with Google Analytics. This process uses the same idea as
Facebook Pixel, by leaking cookie information back to google-analytics.com
by making requests to a tiny image, and including cookie information in its
URL parameter [67].

IPinfo (ipinfo.io [80]) is a service that can be used to collect data from
users’ IP address. This information includes hostname, city, region, coun-
try, geolocation (coordinates), postal code, timezone of the user. It can also
find information about a user’s internet service provider [80]. IPinfo main-
tains an API that can be used with several programming languages.

I visited www.guleedsthesis.online with no defence systems turned on.
The IPinfo method was able to gather all the information mentioned above.

If we look at Figure 5.2 we can see that the website makes HTTP re-
quests to multiple scripts. Four of them are associated with Facebook (one
with name fbevents.js and three with initiator fbevents.js) and two requests
to google-analytics.com (one with name analytics.js and one with initiator
analytics.js) as well as one request to googletagmanager.com (the one with
name js?id=UA-163988424-1). There is also one request to ipinfo.io (name
json).

If we look at Figure 5.3 we can see all the cookies that are set with their
associated domain. Facebook sets a lot of cookies in a third-party man-
ner, as well as one first-party cookie with name _fbp and domain guleed-
sthesis.online. Google Analytics can be implemented without the usage of
third-party cookies, which is done in this case. This means it only sets first-
party cookies, that we can see in Figure 5.3. The three cookies with name
_gid, _ga and __utma are Google Analytics cookies. If we look further into
the HTTP requests and cookies, we can observe how the first-party cookies
are leaked back to either Facebook or Google Analytics. Lets again look at

71

Figure 5.2: Visiting guleedsthesis.online with no defence systems on.
Screenshot of the HTTP requests made by the website.

Figure 5.2. We can see three requests to a gif-type resource. Two of these
are associated with Facebook, while one is from Google Analytics. These
gifs are the tracking pixel, implemented as an image and the way they leak
the first-party cookies back to Facebook or Google Analytics. The full URLs
which sends these cookie-values back to their home is too long, but here is
a shortened example:

https://www.google-analytics.com/r/collect?v=&_gid=1140343996.1588167820
In this example we can see that the value for the cookie _gid in Figure 5.3
is the same as the value in the URL parameter for the request to google-
analytics.com.

I then ran three tests on his website with different functionality of my
tool enabled or disabled.

Test 1

For this test I turned off the blacklist functionality and only kept the third-
party cookie protection method on, but without training it beforehand.
Without training the tool first, it doesn’t know about any domains that use
tracking cookies. The results were therefore the same as without using any
countermeasures, which was no surprise.

72

Figure 5.3: Visiting guleedsthesis.online with no defence systems on.
Screenshot of the cookie storage found in developer console.

Test 2

For this test I again turned off the blacklist functionality and only kept the
third-party cookie protection method on. However, this time I trained it
beforehand on the top 100 websites in the Tranco list [120]. This let the tool
observe many third-parties attempting to set or read cookies and register
many domains as using tracking cookies.

The results were that IPinfo could still gather data about my computer
and network. This is because IPinfo doesn’t use cookies.

When it comes to Google Analytics and Facebook Pixel, the same HTTP
requests that we observed in Figure 5.2 still took place. However, Facebook
Pixel and Google Analytics are very common analytics engines and are
utilized by many websites, so these were registered by the tool as tracking
attempts. We can see the result in Figure 5.4. All third-party cookies
were removed, which thereby removes their ability to track us cross-site.
Unfortunately, though, my cookie protection method does not focus on
first-party cookies, so we can see that Google Analytics were able to set
three cookies (__utma, _gid and _ga) and Facebook one cookie (_fbp).

Figure 5.4: Visiting guleedsthesis.online with trained cookie-protection on.
Screenshot of the cookie storage found in developer console.

73

Test 3

For the last test I turned on the blacklist functionality, and thereby using the
tool to its full potential. If we take a look at Figure 5.5 we can see that three
HTTP requests were cancelled/blocked before they could go out. These
requests were to googletagmanager.com, connect.facebook.net and ipinfo.io. Be-
cause these were blocked, no information could be collected by IPinfo. Fur-
ther, no requests to Google Analytics could be made (it relies on googletag-
manager.com to respond first) and no further request went to Facebook. In
Figure 5.6 we can now see that the cookie storage is empty and no cookies
could be set by either of the tracking services.

Figure 5.5: Visiting guleedsthesis.online with all protection mechanisms
enabled. Screenshot of the HTTP requests made by the website.

Figure 5.6: Visiting guleedsthesis.online with all protection mechanisms
enabled. Screenshot of the cookie storage found in developer console.

Conclusion

The conclusion based on these tests is that my tool provides full protection
and protects users’ privacy when users visit websites that utilize analytics
services from Google Analytics and Facebook Pixel, as well as those
websites that utilize services from the IPinfo API.

74

5.3 Evaluation and Comparison with State of the Art

This section presents an experiment that involves running the tool on
multiple websites. Because we can’t possibly know how many trackers are
connected to a website, the best metric to use is to compare it with similar
tools.

Setup

This experiment consists of running my tool, Ghostery, Disconnect,
Privacy Badger, Firefox and Brave on the same websites. My tool,
Ghostery, Disconnect and Privacy Badger were tested on Google Chrome.
Unfortunately I couldn’t find a way to automate these tests, where the
amount of blocked trackers for each of the tools were saved automatically.
This is therefore a manual experiment. For this reason, I picked 30 websites
out of the top 70, that were chosen from the Tranco list of top 1 million
websites. There are three reason for not picking exactly the top 30 websites:

• Some websites didn’t respond.

• None of the protection tools discovered any trackers on some of the
websites.

• Some of the websites are whitelisted by default by some of the tools,
and therefore didn’t block any trackers. I thought it would be more
fair to choose websites where every tool blocked at least one tracker.

The 30 domains can be observed in Table 1.

mozilla.org flickr.com ebay.com github.com
goo.gl msn.com dropbox.com okezone.com
amazon.com linkedin.com apple.com bit.ly
yahoo.com fandom.com adobe.com doubleclick.net
taobao.com vk.com imgur.com quizlet.com
vimeo.com pinterest.com giphy.com jd.com
weibo.com reddit.com wordpress.com yelp.com
google-analytics.com amazonaws.com

Table 5.1: The 30 visited domains.

The experiment is done by disabling all other extensions, and just
enabling the one to currently test. Browsing history and browser cache
is deleted between testing each tool.

Configuration of Each Tool

Most of the tools have multiple settings and configuration options to
determine the strictness or aggressiveness of the anti-tracking mechanisms,
so it’s important to check these settings. Below are the settings chosen for
each tool:

75

• Ghostery is tested with all countermeasures enabled.

• Disconnect exists as a free and premium version (which comes
with more features), but I have tested the free version and all its
countermeasures are enabled.

• Firefox Content Blocking is set to custom with all anti-tracking
mechanisms enabled.

• Privacy Badger has all countermeasures enabled. Because Privacy
Badger isn’t as good out of the box and needs to be trained to perform
on par with the others, I first trained it on the top 100 websites.

• Brave is tested with the following settings enabled:

– Block cross-site trackers.

– Block cross-site fingerprinting.

– Disallow social media tracking.

– Block cross-site cookies. The only available options here is to
either block all cookies, accept all cookies, or only block third-
party cookies, so I chose the latter.

My tool relies on a blacklist, and an algorithmic approach to cookies.
Because the cookie-protection approach doesn’t know of any tracking
cookies by default, it needs to be trained. This is done similarly to how
I trained Privacy Badger, by first visiting the top 100 websites in the Tranco
list, and then do the testing on the 30 websites. If we look back at Figure
4.5, we see that the event where the cancelling of requests happen, is before
the event that deals with HTTP headers, such as cookie headers. Because of
this, if a tracker that rely on HTTP cookies is specified in a list, the request
will be cancelled before the tool can detect the use of cookies. I therefore
did two tests with my tool:

• Test 1 is conducted with both blacklists enabled, as well as after
having trained the tool on the top 100 websites.

• Test 2 is conducted by disabling both blacklists, to get a better view
of how the cookie-protection method performs. The tool is trained on
the top 100 websites prior to this test also.

Definition of one Tracker

I noticed that on some websites, my tool cancels requests to tens or
hundreds of URLs, while the other tools doesn’t. For this reason, I looked
more into how I should measure the number of trackers that it and the
other tools block. I made three decisions regarding this:

1. If two or more blocked trackers’ URL is 100% equal, I treat it as one
tracker.

2. If two or more blocked trackers’ domain is equal, but the path of the
URL is different, I treat them as different trackers.

76

3. If two or more blocked trackers’ URL is equal, but their URL
parameters are different, I treat them as different trackers. This is because
even though the domain and most of the path is the same, one can be used
to leak a cookie value in its URL parameter, while the other can be used to
leak other sensitive information (such as the user’s e-mail address).

Results Test 1

The results of the first test can be seen in Figure 5.7. As we can see, most of
the tools block roughly the same amount of trackers, with Disconnect being
a little low, my tool a little higher, and Brave with a great result.

Disconnect and Firefox are utilizing the same blacklists, so one could
assume they should block about an equal amount of trackers. However,
Firefox also intercept cookies from non-blacklisted websites. This could
potentially be the reason they stop a little more trackers.

Brave is stopping a lot of trackers, but they do have more anti-tracking
mechanisms than other tools. They also block all third-party cookies in my
test, so their blocking might be too aggressive. However, none of the state
of the art tools visibly broke any of the tested websites.

When it comes to my tool, it does show promising results. The tool
observed a total of 5 domains or subdomains that were registered as using
tracking cookies after it had been trained on the top 100 websites. During
the testing, 176 of the stopped tracking attempts came from cancelled
requests by the blacklists. The remaining 7 tracking attempts were via
cookies, and these were stripped away by the cookie-protection method.

Results Test 2

The results after test 2 can be observed in Figure 5.8. After having trained it
on the top 100 websites, 627 unique domains or subdomains were observed
attempting to set or read cookies. In addition, 60 of these were registered
as "cookie-blocked", because they were observed using cookies in a third-
party context on at least 3 different websites.

During the testing on the 30 websites, 166 unique-per-website domains
or subdomains were stopped from setting or reading cookies. These
domains attempted to read or set cookies multiple times, though, reaching
about 1,000 tracking attempts in total, which all were stopped.

I couldn’t see any visible breakage to websites by having these
cookies removed, but it could be the case if I tested some of the
functionality, such as log-ins. However, the vast amount of cookies
that were removed came from known tracking and analytics domains,
such as google-analytics.com, googletagmanager.com, amazon-adsystem.com,
facebook.com, scorecardresearch.com and ib.adnxs.com.

77

Figure 5.7: Total number of unique-per-website trackers blocked for 30
websites.

Figure 5.8: Results of testing the cookie-protection approach.

78

Discussion and Conclusion

During test 1 with my tool, one website completely broke (www.bit.ly).
I found out that this website relies on a third-party (cloudfront.net) to
provide most of the functionality to the website, such as images, scripts,
html and css files. cloudfront.net is specified in the EasyPrivacy list as a
tracker, so this domain is likely used for both purposes. This shows one of
the weaknesses by using a blacklist, especially if the blacklist is too strict.

Another weakness with my tool is that cookies used for legit pur-
poses by websites potentially gets removed. For example, cookies from
gstatic.com were registered as tracking cookies. This domain uses cook-
ies both for advertising/tracking, and to increase performance and reduce
bandwidth for Google domains.

One of my assumptions going into the development and implementa-
tion of this tool, was that the blacklists wouldn’t include as many trackers
relying on HTTP cookies as they did. Again, this is because HTTP cookies
are so widespread and practically present on every website, and more often
than not, used to provide important functionality. However, test 1 and 2 in-
dicates that most domains that utilize HTTP cookies are indeed included in
these blacklists, which was a little surprising. This means that the cookie
protection approach turns out to be close to redundant, as long as the tool
also rely on these blacklists. However, it did work pretty well by itself,
stopping tracking attempts by 166 domains, which is close to the result of
test 1, with all countermeasures enabled. No websites visibly broke either,
which is an improvement from test 1.

Because EasyPrivacy broke one website, I suspect that the blacklist is
too strict. When it comes to cookies, an improvement could be made to this
approach, by finding a way to distinguish between cookies based on their
usage, to prevent cookies with legit purposes from being removed. Overall
the tool performed well, but I think using a less strict blacklist along with
an algorithmic approach to detect more forms of tracking than just HTTP
cookies, could yield a better result. The difficulty lies in how to determine
whether a web request is made for tracking purposes or not, and where to
draw the threshold. As always, it’s a trade-off between privacy and usabil-
ity.

On most websites, the different tools found roughly (± 50%) the same
amount of trackers. However, I had some interesting results on a couple of
websites. For example, on msn.com, my tool stopped 17 trackers, Firefox 10
and Ghostery 1. Another example is on adobe.com, where my tool stopped 3
trackers and Firefox stopped 30 trackers. I don’t have a good conclusion as
to why the tools show this big difference on some websites. I also noticed
that the amount of blocked trackers can vary from day to day, even on
the same website with the same tool. This applies to all the tools. This
inconsistency combined with only 30 tested websites can make the results
of this test somewhat inaccurate. However, I still think it shows a good
indication of the potential of each tool.

It seems that a pure blacklist based approach, like Disconnect use, is a
little weak, especially as they only rely on their own blacklists. Ghostery’s

79

supplement of an algorithmic approach, enhanced anti-tracking, seems to
provide a better result, actually the same as Firefox, that combines blacklist
and third-party cookie blocking. Privacy Badger that purely relies on an
algorithmic approach, shows that this can potentially indeed compare to
the other tools. Brave’s combination of multiple methods seems to be
the better tool, though, however, a more thorough evaluation should be
conducted to produce a more conclusive result.

5.4 Comparison of Blacklists

This section presents an experiment that compares the EasyPrivacy
blacklist and the two blacklists provided by Disconnect. It’s interesting
to see the differences between the two lists, because EasyPrivacy is
maintained by the community, while the other lists are maintained by
Disconnect in collaboration with Mozilla.

Setup

As mentioned in chapter 4, I combined the two lists provided by
Disconnect into one. The source code of the tool is created in a way so
one list can easily be enabled while the other is disabled, and the other
way around. The experiment consists of having one of them enabled at a
time, then running an automated test on the top 100 websites in the Tranco
list. In order to automate the test, every domain is read by the tool from
the text file and placed in a list. Using the chrome.tabs API, it’s possible
to update the current browser tab to load a new web page. A counter is
incremented every time a new page is opened, to grab the next domain
from the list containing the top 100 websites. I created a content script, that
sends a message to background.js 10 seconds after a website is loaded, to
let background.js know it’s time to increment the counter, and open the next
web page. I specified 10 seconds because it allows the websites to fully
load. I define a tracker the same way as in section 5.3 (Definition of one
Tracker).

Results and Conclusion

The results can be seen in Figure 5.9. Out of the 100 websites, 6 didn’t
respond, so the results are from the 94 other websites. EasyPrivacy blocked
a total of 607 trackers on these 94 websites, and visibly broke two websites
that relied on cloudfront.net to provide functionality, as we also saw in
section 5.3. The tool blocked tens of requests made to these websites
from cloudfront.net, but I removed these from the total amount of blocked
trackers because it was obvious they were used to provide images and
scripts with core website functionality, and were not trackers.

Disconnect’s lists showed a decent result, with 489 blocked trackers.
This is a good result, considering all the whitelisted domains that are
included in this list. No websites visibly broke, which is another positive
result.

80

Figure 5.9: Total number of unique-per-website trackers blocked for top 100
websites.

Overall it seems that EasyPrivacy is the better blacklist when it comes
to the amount of blocked trackers. But I’m a bit concerned whether the
blacklist might be too strict or not, because two websites broke. This list
does come with a section of whitelisted domains that can be implemented.
This should work similarly to how it works with Disconnect’s list.
However, the exact domains that provided the functionality that got
blocked, doesn’t exist in the whitelist section. Therefore, I conclude that
a better method for discovering broken websites and potentially whitelist
them is needed.

Disconnect and Mozilla seems to be more careful when classifying
trackers, as they blocked fewer than EasyPrivacy, probably to limit website
breakage, as that is a very important goal. They also seem to more correctly
classify tracking domains, and appropriately whitelist domains where
needed, if the domain could be used for both functionality and tracking
purposes. EasyPrivacy did block more trackers, but choosing which is the
overall better list, comes down to how important limiting website breakage
is.

5.5 Runtime Evaluation

An important goal of all the tools I have looked at is to reduce the web
page load time. This makes sense, as most users wants a faster browsing
experience, which makes them more likely to use one of these tools. The

81

reason why the load time should be lower with these tools installed, is
because they remove certain web elements on websites from loading.
Basically, less things have to load.

Setup

This experiment was conducted on the same 30 websites as the evaluation
in section 5.3. I first visited all websites without using any extensions to
get a benchmark the other tools in theory should beat. This test, the test
for my tool, Ghostery, Disconnect and Privacy Badger were done in Google
Chrome.

To precisely measure the page load time I used extensions. In Chrome
and Brave I used Page load time [96]. This doesn’t exist in Firefox, so for that
browser I used app.telemetry Page Speed Monitor [8]. I visited each page with
each tool twice, while clearing the browser cache in between, and between
testing each tool, as that influences the load time significantly.
I read that some other factors can influence the time it takes for websites to
load, so this is some information about the computer and network where
the tests were conducted:

• Desktop running Windows 10.

• Connection: Ethernet.

• Network speed: 80/80 mbps.

• CPU: Intel Core i7-8700k @ 3.70GHz (4.7 GHz Turbo).

• GPU: GeForce GTX 1070 Ti.

• RAM: 16GB DDR4 2666 MHz.

Result

The results of these tests can be seen in Figure 5.10. Default is without any
extensions, and the red line makes it visibly easier to see if the other tools
are lower or higher than that benchmark.

We can see that the result is indeed a reduction in load time when using
these tools compared to using none. An interesting observation is that
Privacy Badger is a little bit slower than the others, which might indicate
that a pure algorithmic approach makes more calculations and therefore
increase the web page load time slightly.

My tool performed worse than the others, which really comes as no
surprise. I did not focus on fast and efficient code as that was not the goal
of this program. I can definitely see at least one factor as to why it is slower,
and that is related to how the blacklists are implemented. When I looked
more into the technical details of other tools’ implementation, I noticed that
they rely on regular expressions to match patterns. This method is faster
than adding the patterns to the strings.

Ghostery, Disconnect and Firefox’s blacklists are smaller in size than

82

Figure 5.10: Average web page load times on 30 websites in the Tranco list.

the ones implemented in my tool, however, Brave implements several
huge lists, so this doesn’t seem to be a significant factor when it comes
to page load time. Both Brave’s and Firefox’s protection mechanisms are
implemented directly into the browser (compared to the other tools that
are implemented as extensions), but it doesn’t look like this makes the load
times noticeably faster either, as Firefox was on average 0.03 and Brave 0.04
seconds faster than Ghostery and Disconnect.

A weakness with the evaluation is the fact that only 30 websites were
visited, and only two visits on the same website with the same tool.
Although it does provide some indication as to how the tools perform, a
more thorough evaluation could be beneficial.

83

84

Chapter 6

Conclusion

6.1 Summary

This research aimed to protect user privacy on the Internet by limiting
or blocking web tracking techniques, to prevent them from collecting
uniquely identifying information about users and potentially misusing
it. In order to understand how this could be done in practice, a
literature review were performed to get an overview of the web tracking
techniques currently in use. Secondly, countermeasures were researched.
Both potential countermeasures proposed by researchers, those already
implemented in various tools, as well as certain things users themselves
can do. Furthermore, an analysis of the state of the art tools were
performed, to understand how these tools limit web tracking in order to
protect users’ privacy. Privacy oriented browsers were found to have a
higher potential to block web tracking than browser extensions, because
many tracking techniques rely on access to APIs and browser functions
that can be turned off or changed within a browser’s source code. In
contrast, most protection tools are developed as browser extensions, that
have a very limited access to the browser itself, and to the client’s local
system. Therefore, these tools often rely on blocking lists that contain
signatures of known trackers, and intercepts and cancels requests going out
to these. This will completely remove all tracking from that resource, but
the problem is that the resource needs to be known to be a tracker before
it can be classified as such. Some extensions have tried an algorithmic
approach, to determine if a resource is a tracker or not, such as Privacy
Badger. However, the methods aren’t perfect, and previous research has
shown it suffers from more false positives than others. In my testing,
however, this approach performed just as well as other tools that rely on
blacklists.

My main contribution was the development and implementation of a
protecting framework to block these web trackers and thereby protecting
users’ privacy. This tool was implemented as a browser extension in Google
Chrome, relying on two different blacklists to block most known web
trackers. In addition, an algorithmic approach to detect which domains use
third-party cookies, and subsequently strip away cookie-related headers

85

from HTTP messages to these domains based on their prevalence, was
implemented. No other tool I could find rely on both these blacklists as
well as using a similar approach to stop cookies.

In order to test how well the tool keep users’ privacy protected, it
was tested and compared to the state of the art. We saw that my tool
blocked more trackers than all the other tools that are implemented as
browser extensions, only beaten by the Brave browser. This was a great
result, however, I also identified some weaknesses to my tool. First, the
EasyPrivacy blacklist appeared to be too strict, breaking 1 out of the 30
tested websites. Secondly, cookies used for legit purposes ended up being
treated as tracking cookies. Some of these weaknesses could be addressed
in future work.

Overall, the tool performed well, and accomplished its goal: by
blocking web trackers, users’ privacy is protected.

6.2 Research Limitations

This research has potential limitations. First, the EasyPrivacy blacklist
couldn’t be fully implemented. The implementation is missing 0,16% of
the entries. This is because Match Patterns doesn’t allow certain patterns
that already existed in the list. Potential ways to overcome this limitation
is to use regular expressions when implementing the pattern matching
functionality. Overall, though, because as many as 99,84% of the entries
were successfully implemented, it most likely wouldn’t impact the test
results significantly.

Another limitation is that Disconnect’s entities.json file couldn’t be
properly fully implemented. It’s therefore missing some of the trackers,
and potential whitelisted entries. Potential ways to correctly implement
these parts, is to have a data structure containing the name of organizations
as specified in the list, and their main domain, and check this data structure
during the process of reading the file. This way, the function will always
know the main domain of every organization. I don’t think this would
have impacted the test results in any significant way, seeing as most entries
in this file were implemented.

Last, the evaluations were conducted on relatively few websites. For a
better and more conclusive result, the evaluations should be conducted on,
for example, the top 100,000 websites.

6.3 Future work

The approaches implemented in my tool can be improved upon, specific-
ally with regards to the limitations identified in the above chapter. The
cookie-protection method can be improved in two ways: (i) by analysing
each cookie and identifying what their usage is, to prevent cookies with
legit purposes from being removed, and (ii) stopping cookies on a cookie-
by-cookie basis, instead of on a domain-by-domain basis. When it comes
to the weaknesses of the blacklists, specifically broken websites caused by

86

EasyPrivacy, there isn’t a whole lot that can be done, as we just have to trust
that the list is correct.

Future work in this general research field could take several paths. I
think researchers should focus on stateless techniques, such as fingerprint-
ing, in the coming years. Seeing as these techniques are easy to use and
more transparent to users than stateful techniques, they will likely con-
tinue to evolve and grow in use. The best ways to combat these techniques,
seems to be by implementing countermeasures directly into browsers, such
as Tor and Brave. This gives more flexibility and more options when it
comes to potential countermeasures.

When it comes to stateful techniques, much work has been conduc-
ted to find and implement countermeasures to these, in particular normal
third-party cookies. Because many tracking services (e.g. Google Analyt-
ics) now set first-party cookies, future work could attempt to address this
issue, without relying on blacklists and without having to block all first-
party cookies.

Finally, protecting user privacy from web tracking threats can also be
done through policies and regulations, such as GDPR and the ePrivacy
Directive, or other systems such as Do Not Track. Researchers and con-
cerned citizens should continue to promote countermeasures like these in
the future, to hopefully make them better.

87

88

Bibliography

[1] About Panopticlick. https : / / panopticlick . eff . org / about (visited on
18/05/20).

[2] Gunes Acar et al. ‘FPDetective: Dusting the web for fingerprinters’.
In: Nov. 2013, pp. 1129–1140. DOI: 10.1145/2508859.2516674.

[3] Gunes Acar et al. ‘The Web Never Forgets: Persistent Tracking
Mechanisms in the Wild’. In: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’14. Scotts-
dale, Arizona, USA: ACM, 2014, pp. 674–689. ISBN: 978-1-4503-2957-
6. DOI: 10.1145/2660267.2660347. URL: http://doi.acm.org/10.1145/
2660267.2660347.

[4] Adblock Plus. https://adblockplus.org/ (visited on 15/04/20).

[5] Gaurav Aggarwal et al. ‘An Analysis of Private Browsing Modes in
Modern Browsers’. In: Sept. 2010, pp. 79–94.

[6] Allowing acceptable ads in Adblock Plus. https : / / adblockplus . org /
acceptable-ads (visited on 25/05/20).

[7] Dennis Anon. How cookies track you around the web and how to stop
them. https : / / privacy . net / stop - cookies - tracking/ (visited on
08/06/20).

[8] app.telemetry Page Speed Monitor. https://addons.mozilla.org/en-US/
firefox/addon/apptelemetry/ (visited on 09/03/20).

[9] AudioContext - Web APIs. https://developer.mozilla.org/en-US/docs/
Web/API/AudioContext (visited on 04/06/20).

[10] Mika D Ayenson et al. ‘Flash Cookies and Privacy II: Now with
HTML5 and ETag Respawning (July 29, 2011)’. In: July 2011. URL:
https://pdfs.semanticscholar.org/42cf/18892910afd15b0d6872f16384a7bb6cf915.
pdf.

[11] Collin M. Barrett. FilterLists. https : / / filterlists . com/ (visited on
21/04/20).

[12] Lilian Besson. How to use Google Analytics with a beacon image. https:
//perso.crans.org/besson/beacon.en.html (visited on 08/06/20).

[13] BetterPrivacy. https : / / betterprivacy . en . softonic . com/ (visited on
15/05/20).

89

[14] Nataliia Bielova. ‘Web Tracking Technologies and Protection Mech-
anisms’. eng. In: Proceedings of the 2017 ACM SIGSAC Conference on
computer and communications security. CCS ’17. ACM, 2017, pp. 2607–
2609. ISBN: 9781450349468.

[15] Brave - How do I use Shields while browsing? https://support.brave.com/
hc/en-us/articles/360022806212-How-do-I-use-Shields-while-browsing-
(visited on 20/04/20).

[16] Brave - Secure, Fast & Private Web Browser. https://brave.com/ (visited
on 15/04/20).

[17] Brave - The Mounting Cost of Stale Ad Blocking Rules. https://brave.
com / the - mounting - cost - of - stale - ad - blocking - rules/ (visited on
21/04/20).

[18] Brave | Features. https://brave.com/features/ (visited on 20/04/20).

[19] Brave Improves Its Ad-Blocker Performance by 69x with New Engine
Implementation in Rust. https : / / brave . com / improved - ad - blocker -
performance/ (visited on 20/04/20).

[20] Tomasz Bujlow et al. ‘A Survey on Web Tracking: Mechanisms,
Implications, and Defenses’. eng. In: vol. 105. 8. IEEE, 2017,
pp. 1476–1510.

[21] Canvas API - Web APIs. https://developer.mozilla.org/en-US/docs/
Web/API/Canvas_API (visited on 05/04/20).

[22] CanvasRenderingContext2D. https : //developer .mozilla . org/en - US/
docs/Web/API/CanvasRenderingContext2D (visited on 05/04/20).

[23] CanvasRenderingContext2D.getImageData(). https://developer.mozilla.
org/en-US/docs/Web/API/CanvasRenderingContext2D/getImageData
(visited on 05/04/20).

[24] Claude Castelluccia and Arvind Narayanan. ‘Privacy considera-
tions of online behavioural tracking’. In: (2012). URL: https://www.
enisa . europa . eu / publications / privacy - considerations - of - online -
behavioural-tracking.

[25] Chrome - What are extensions? https : / / developer . chrome . com /
extensions (visited on 04/05/20).

[26] Chrome API - chrome.extension. https : / / developer . chrome . com /
extensions/extension (visited on 05/05/20).

[27] Chrome API - chrome.runtime. https : / / developer . chrome . com /
extensions/runtime (visited on 05/05/20).

[28] Chrome API - chrome.webRequest. https : / / developer . chrome . com /
extensions/webRequest (visited on 21/04/20).

[29] Chrome APIs: chrome.storage. https : //developer . chrome . com/apps/
storage (visited on 09/06/20).

[30] Chrome Extension Overview. https : / / developer . chrome . com /
extensions/overview (visited on 04/05/20).

90

[31] Chrome Extensions: Content Scripts. https ://developer .chrome.com/
extensions/content_scripts (visited on 09/06/20).

[32] Chrome Extensions: Getting Started Tutorial. https://developer.chrome.
com/extensions/getstarted (visited on 09/06/20).

[33] Chrome Extensions: Manage Events with Background Scripts. https://
developer . chrome . com / extensions / background _ pages (visited on
09/06/20).

[34] Chrome Extensions: Manifest File Format. https ://developer . chrome .
com/extensions/manifest (visited on 09/06/20).

[35] Chrome Extensions: Message Passing. https://developer.chrome.com/
extensions/messaging (visited on 09/06/20).

[36] Chromium Blog - Building a more private web: A path towards making
third party cookies obsolete. https : / / blog . chromium . org / 2020 / 01 /
building-more-private-web-path-towards.html (visited on 20/04/20).

[37] Chromium Web Browser. https : / / www . chromium . org/ (visited on
20/04/20).

[38] Catalin Cimpanu. Flash Used on 5% of All Websites, Down From 28.5%
Seven Years Ago. https://www.bleepingcomputer.com/news/software/
flash-used-on-5-percent-of-all-websites-down-from-285-percent-seven-
years-ago/ (visited on 13/03/20).

[39] Catalin Cimpanu. Google to phase out user-agent strings in Chrome.
https ://www.zdnet . com/article/google - to - phase - out - user - agent -
strings-in-chrome/ (visited on 17/05/20).

[40] Cliqz. https://cliqz.com/download (visited on 27/04/20.

[41] John D. Cook. Supercookies. https://www.johndcook.com/blog/2019/
02/08/supercookies/ (visited on 16/03/20).

[42] Cookie Header. https://developer.mozilla.org/en-US/docs/Web/HTTP/
Headers/Cookie (visited on 30/03/20).

[43] Cookies, Fingerprinting & Co. https : / / cliqz . com / en / magazine /
cookies- fingerprinting- co- tracking-methods- clearly- explained (visited
on 30/03/20).

[44] Cookies, the GDPR, and the ePrivacy Directive. https://gdpr.eu/cookies/
(visited on 03/06/20).

[45] Wendy Davis. KISSmetrics Finalizes Supercookies Settlement. Me-
diaPost. https : / / www . mediapost . com / publications / article /
191409/kissmetricsfinalizes - supercookies - settlement .html (visited on
17/03/20).

[46] Detecting User-Agent with JavaScript. https://developer.mozilla.org/en-
US/docs/Web/HTTP/Browser_detection_using_the_user_agent
(visited on 03/04/20).

[47] Developer Chrome - Match Patterns. https ://developer .chrome.com/
extensions/match_patterns (visited on 21/04/20).

91

[48] Disconnect Blacklists Github. https : / / github . com / disconnectme /
disconnect-tracking-protection (visited on 16/04/20).

[49] Disconnect GitHub. https : / / github . com/disconnectme / disconnect -
tracking - protection / blob / master / descriptions . md (visited on
17/04/20).

[50] Disconnect Premium. https : / / disconnect . me / help \ #what - is -
disconnect-premium (visited on 16/04/20).

[51] Disconnect Search. https : / / search . disconnect . me/ (visited on
16/04/20).

[52] Disconnect. (2019). https://disconnect.me/ (visited on 15/04/20).

[53] Do Not Track. https : //www.w3 .org/TR/tracking - dnt/ (visited on
23/03/20).

[54] Document.cookie. https ://developer .mozilla .org/en-US/docs/Web/
API/Document/cookie (visited on 30/03/20).

[55] EasyList. https://easylist.to/ (visited on 21/04/20).

[56] ETags. https : / / developer .mozilla . org / en - US / docs /Web /HTTP/
Headers/ETag (visited on 23/03/20).

[57] fingerprintjs2. https : / / github . com/Valve / fingerprintjs2 (visited on
05/04/20).

[58] Firefox - Content Blocking. (2019). https : / / support .mozilla . org / en -
US/kb/content-blocking (visited on 15/04/20).

[59] Firefox 72 blocks third-party fingerprinting resources. https : / / blog .
mozilla .org/security/2020/01/07/firefox- 72- fingerprinting/ (visited
on 17/04/20).

[60] Flash - Global Storage Settings Panel. http://www.macromedia.com/
support/documentation/en/flashplayer/help/settings_manager03.html
(visited on 15/05/20).

[61] Flash & The Future of Interactive Content. https://theblog.adobe.com/
adobe-flash-update/ (visited on 07/05/20).

[62] flash.system Capabilities - AS3. https : / / help . adobe . com / en_US /
FlashPlatform/reference/actionscript/3/flash/system/Capabilities.html
(visited on 27/05/20).

[63] Ghostery - FAQ: How many trackers. (2019). https : //www.ghostery.
com/faqs/many-trackers-ghostery/ (visited on 16/04/20).

[64] Ghostery - What is Smart Blocking? https://www.ghostery.com/faqs/
what-is-smart-blocking/ (visited on 16/04/20).

[65] Ghostery Study - Tracking the Trackers. (2019). https://www.ghostery.
com/study/ (visited on 24/03/20).

[66] Ghostery. (2019). https://www.ghostery.com/ (visited on 15/04/20).

[67] Google Analytics: Tracking Code Overview. https://developers.google.
com / analytics / resources / concepts / gaConceptsTrackingOverview
(visited on 12/06/20).

92

[68] Y. Haga et al. ‘Building a scalable web tracking detection sys-
tem: Implementation and the empirical study’. In: vol. E100D. 8.
Maruzen Co., Ltd., 2017, pp. 1663–1670.

[69] Aniko Hannak et al. ‘Measuring Price Discrimination and Steering
on E-Commerce Web Sites’. In: Proceedings of the 2014 Conference on
Internet Measurement Conference. IMC ’14. Vancouver, BC, Canada:
Association for Computing Machinery, 2014, pp. 305–318. ISBN:
9781450332132. DOI: 10 .1145/2663716 .2663744. URL: https : //doi .
org/10.1145/2663716.2663744.

[70] Header Field Definitions. https : / /www .w3 . org /Protocols / rfc2616 /
rfc2616-sec14.html (visited on 06/04/20).

[71] How does Ghostery work? https://www.ghostery.com/faqs/how-does-
ghostery-work/ (visited on 16/04/20).

[72] How the NSA piggy-backs on third-party trackers. http : / / cyberlaw .
stanford.edu/publications/how-nsa- piggy- backs- third- party- trackers
(visited on 21/03/20).

[73] HTMLCanvasElement.toDataURL(). https://developer.mozilla.org/en-
US / docs /Web /API /HTMLCanvasElement / toDataURL (visited on
05/04/20).

[74] HTTP cookies. https://developer.mozilla.org/en-US/docs/Web/HTTP/
Cookies (visited on 30/03/20).

[75] HTTP Referer header. https://developer.mozilla.org/en-US/docs/Web/
HTTP/Headers/Referer (visited on 03/04/20).

[76] HTTP Referer header: privacy and security concerns. https://developer.
mozilla .org/en-US/docs/Web/Security/Referer_header :_privacy_
and_security_concerns (visited on 03/04/20).

[77] HTTPS Everywhere. https://www.eff.org/https-everywhere (visited on
20/04/20).

[78] Indexed Database API 2.0. https : / / www . w3 . org / TR / IndexedDB/
(visited on 18/03/20).

[79] IndexedDB API. https://developer.mozilla.org/en-US/docs/Web/API/
IndexedDB_API (visited on 23/03/20).

[80] ipinfo.io - The Trusted Source for IP Address Data. https : // ipinfo . io/
(visited 29/04/20).

[81] JavaScript Window Screen. https : / / www . w3schools . com / js / js _
window_screen.asp (visited on 27/05/20).

[82] Samy Kamkar. Evercookie. https ://samy.pl/evercookie/ (visited on
21/03/20).

[83] Georgios Kontaxis and Monica Chew. ‘Tracking Protection in
Firefox For Privacy and Performance’. In: CoRR abs/1506.04104
(2015). arXiv: 1506.04104. URL: http://arxiv.org/abs/1506.04104.

93

[84] Balachander Krishnamurthy, Konstantin Naryshkin and Craig E.
Wills. ‘Privacy leakage vs. protection measures: the growing discon-
nect’. In: In Web 2.0 Workshop on Security and Privacy. 2011, pp. 2–11.

[85] Pierre Laperdrix, Benoit Baudry and Vikas Mishra. ‘FPRandom:
Randomizing Core Browser Objects to Break Advanced Device
Fingerprinting Techniques’. In: June 2017, pp. 97–114. ISBN: 978-3-
319-62104-3. DOI: 10.1007/978-3-319-62105-0_7.

[86] Douglas J. Leith. Web Browser Privacy: What Do Browsers Say When
They Phone Home? 2020. Available online: https://www.scss.tcd.ie/
Doug.Leith/pubs/browser_privacy.pdf.

[87] Pedro Leon et al. ‘Why Johnny Can’t Opt out: A Usability Evalu-
ation of Tools to Limit Online Behavioral Advertising’. In: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems.
CHI ’12. Austin, Texas, USA: Association for Computing Machinery,
2012, pp. 589–598. ISBN: 9781450310154. DOI: 10 . 1145 / 2207676 .
2207759. URL: https://doi.org/10.1145/2207676.2207759.

[88] J. R. Mayer. “Any person... a pamphleteer” Internet Anonymity in the
Age of Web 2.0. https://jonathanmayer.org/publications/thesis09.pdf
(visited on 26/05/20).

[89] G. Merzdovnik et al. ‘Block Me If You Can: A Large-Scale Study
of Tracker-Blocking Tools’. In: 2017 IEEE European Symposium on
Security and Privacy (EuroS P). Apr. 2017, pp. 319–333. DOI: 10.1109/
EuroSP.2017.26.

[90] Lou Montulli. Lou Mountulli and cookies. http://www.montulli.org/lou
(visited on 30/03/20).

[91] Keaton Mowery and Hovav Shacham. Pixel Perfect: Fingerprinting
Canvas in HTML5. Available online: https ://hovav.net/ucsd/dist/
canvas.pdf (visited on 05/04/20).

[92] Navigator - Web APIs. https://developer.mozilla.org/en-US/docs/Web/
API/Navigator (visited on 26/05/20).

[93] Navigator userAgent Property. https : / /www .w3schools . com / jsref /
prop_nav_useragent.asp (visited on 17/05/20).

[94] N. Nikiforakis et al. ‘Cookieless Monster: Exploring the Ecosystem
of Web-Based Device Fingerprinting’. In: 2013 IEEE Symposium on
Security and Privacy. May 2013, pp. 541–555. DOI: 10.1109/SP.2013.
43.

[95] Nick Nikiforakis, Wouter Joosen and Benjamin Livshits. ‘PriVaric-
ator: Deceiving Fingerprinters with Little White Lies’. In: May 2015,
pp. 820–830. DOI: 10.1145/2736277.2741090.

[96] Page load time. https://chrome.google.com/webstore/detail/page-load-
time/fploionmjgeclbkemipmkogoaohcdbig (visited on 09/03/20).

[97] Panopticlick - Is your browser safe against tracking? https://panopticlick.
eff.org/ (visited on 18/05/20).

94

[98] Panagiotis Papadopoulos, Nicolas Kourtellis and Evangelos Marka-
tos. ‘Cookie Synchronization: Everything You Always Wanted to
Know But Were Afraid to Ask’. In: The World Wide Web Conference.
WWW ’19. San Francisco, CA, USA: Association for Computing Ma-
chinery, 2019, pp. 1432–1442. ISBN: 9781450366748. DOI: 10 . 1145/
3308558.3313542. URL: https://doi.org/10.1145/3308558.3313542.

[99] Privacy Badger. https://privacybadger.org/ (visited on 15/04/20).

[100] Public Suffix List. https://publicsuffix.org/ (visited on 13/03/20).

[101] Franziska Roesner, Tadayoshi Kohno and David Wetherall. ‘Detect-
ing and Defending against Third-Party Tracking on the Web’. In:
Proceedings of the 9th USENIX Conference on Networked Systems Design
and Implementation. NSDI’12. San Jose, CA: USENIX Association,
2012, p. 12.

[102] Same-origin policy. https://developer.mozilla.org/en-US/docs/Web/
Security/Same-origin_policy (visited on 02/04/20).

[103] Iskander Sanchez-Rola et al. ‘The web is watching you: A compre-
hensive review of web-tracking techniques and countermeasures’.
In: Logic Journal of the IGPL 25.1 (2017), pp. 18–29. ISSN: 1367-0751.

[104] Set-Cookie Header. https://developer.mozilla.org/en-US/docs/Web/
HTTP/Headers/Set-Cookie (visited on 30/03/20).

[105] ShareMeNot. http : / / sharemenot . cs . washington . edu/ (visited on
16/05/20).

[106] Remy Sharp. How to detect if a font is installed (only using JavaScript).
https ://remysharp .com/2008/07/08/how- to- detect - if - a - font - is -
installed-only-using-javascript/ (visited on 27/05/20).

[107] Sharpening Our Claws: Teaching Privacy Badger to Fight More Third-
Party Trackers. https://www.eff.org/deeplinks/2019/07/sharpening-
our - claws - teaching - privacy - badger - fight - more - third - party - trackers
(visited on 17/04/20).

[108] Silverlight End of Support. https://support.microsoft.com/en-ca/help/
4511036/silverlight-end-of-support (visited on 25/05/20).

[109] Lindsay Simpkins et al. ‘A Course Module on Web Tracking and
Privacy’. In: Proceedings of the 2015 Information Security Curriculum
Development Conference. InfoSec ’15. Kennesaw, Georgia: ACM, 2015,
10:1–10:7. ISBN: 978-1-4503-4049-6. DOI: 10.1145/2885990.2886000.
URL: http://doi.acm.org.ezproxy.uio.no/10.1145/2885990.2886000.

[110] Janice C. Sipior, Burke T. Ward and Ruben A. Mendoza. ‘Online
Privacy Concerns Associated with Cookies, Flash Cookies, and Web
Beacons’. In: Journal of Internet Commerce 10.1 (2011), pp. 1–16. DOI:
10.1080/15332861.2011.558454. eprint: https ://doi .org/10.1080/
15332861.2011.558454. URL: https://doi.org/10.1080/15332861.2011.
558454.

[111] Kirk W. Smith. Privacy Tools Index. https://www.kwsnet.com/privacy-
tools.html (visited 27/04/20).

95

[112] Christopher Soghoian. The History of the Do Not Track Header. http:
//paranoia.dubfire.net/2011/01/history-of-do-not-track-header.html
(visited on 23/03/20).

[113] Ashkan Soltani et al. ‘Flash Cookies and Privacy’. In: (Aug. 2009).
URL: https://ssrn.com/abstract=1446862.

[114] SpeedOf.Me API. https://speedof.me/api.html (visited on 06/04/20).

[115] Techblog: How We at Cliqz Protect Users from Web Tracking. https ://
cliqz .com/en/magazine/how-we- at - cliqz - protect - users - from-web-
tracking (visited on 27/04/20).

[116] The Design and Implementation of the Tor Browser. https://2019.www.
torproject.org/projects/torbrowser/design/\#fingerprinting- linkability
(visited on 26/05/20).

[117] The Facebook Pixel. https : / / en - gb . facebook . com / business / learn /
facebook-ads-pixel (visited on 12/06/20).

[118] Tor Project - Browse Privately. https://www.torproject.org/ (visited on
25/05/20).

[119] Tracking Prevention in Microsoft Edge (Chromium). https : / / docs .
microsoft.com/en-us/microsoft-edge/web-platform/tracking-prevention
(visited on 09/06/20).

[120] Tranco - A Research-Oriented Top Sites Ranking Hardened Against
Manipulation. https://tranco-list.eu/ (visited on 27/04/20).

[121] UID cookie name. https://cookiepedia.co.uk/cookies/UID (visited on
02/04/20).

[122] Thomas Unger et al. ‘SHPF: Enhancing HTTP(S) session security
with browser fingerprinting’. In: Sept. 2013, pp. 255–261. DOI: 10 .
1109/ARES.2013.33.

[123] User-Agent. https://developer.mozilla.org/en-US/docs/Web/HTTP/
Headers/User-Agent (visited on 03/04/20).

[124] Web Storage API. https://developer.mozilla.org/en-US/docs/Web/
API/Web_Storage_API (visited on 23/03/20).

[125] WebGL: 2D and 3D graphics for the web. https://developer.mozilla.org/
en-US/docs/Web/API/WebGL_API (visited on 05/04/20).

[126] What’s Brave Done For My Privacy Lately? Episode #2: Third-Party
Cosmetic Filtering. https : / / brave . com/whats - brave - done - for - my -
privacy-lately-episode2/ (visited on 20/04/20).

[127] What’s Brave Done For My Privacy Lately? Episode #3: Fingerprint
Randomization. https://brave.com/whats-brave-done-for-my-privacy-
lately-episode3/ (visited on 20/04/20).

[128] What’s Brave Done For My Privacy Lately-Episode #1: Web Resource
Replacements (replacing tracking code with privacy-preserving code that
keeps sites working well). https://brave.com/whats-brave-done-for-my-
privacy-lately-episode1/ (visited on 20/04/20).

96

[129] Window.navigator - Web APIs. https://developer.mozilla.org/en-US/
docs/Web/API/Window/navigator (visited on 03/04/20).

[130] Akira Yamada, Masanori Hara and Yutaka Miyake. ‘Web Tracking
Site Detection Based on Temporal Link Analysis and Automatic
Blacklist Generation’. eng. In: Information and Media Technologies 6.2
(2011), pp. 560–571. ISSN: 1881-0896.

[131] Zhonghao Yu et al. Tracking the Trackers. 2016. Available online: https:
/ / static . cliqz . com /wp - content / uploads / 2016 / 07 / Cliqz - Studie -
Tracking-the-Trackers.pdf.

97

