
QuaverSeries: A Live Coding Environment for Music
Performance Using Web Technologies

Qichao Lan
RITMO

Department of Musicology
University of Oslo

qichao.lan@imv.uio.no

Alexander Refsum Jensenius
RITMO

Department of Musicology
University of Oslo

a.r.jensenius@imv.uio.no

ABSTRACT
QuaverSeries consists of a domain-specific language and a
single-page web application for collaborative live coding in
music performances. Its domain-specific language borrows
principles from both programming and digital interface de-
sign in its syntax rules, and hence adopts the paradigm
of functional programming. The collaborative environment
features the concept of ‘virtual rooms’, in which performers
can collaborate from different locations, and the audience
can watch the collaboration at the same time. Not only is
the code synchronised among all the performers and online
audience connected to the server, but the code executing
command is also broadcast. This communication strategy,
achieved by the integration of the language design and the
environment design, provides a new form of interaction for
web-based live coding performances.

1. INTRODUCTION
Live coding, when used in a musical context, refers to a

form of performance in which the performers produce mu-
sic by writing program code rather than playing physical
instruments [4]. During the past decade, dozens of live cod-
ing languages have emerged.1 These languages run in var-
ious environments, such as the desktop, the browser, and
embedded systems (Raspberry Pi, BeagleBone, etc.). The
number of programming languages developed for live coding
can, in some ways, indicate that performers want to develop
their subjective language syntaxes tailored to their musical
expressions. Some examples of such new syntaxes are Tidal-
Cycles [18], ixi lang[11], Lich.js [6], and Mercury [17].

There have been some discussions about how live coding
languages relate to musical instruments [3], but relatively
little attention has been devoted to analysing how it is pos-
sible to ‘transduce’ electronic instrument knowledge to the
syntax design itself. That is, what types of symbols should
be used for what musical purposes, how should different ele-
ments be connected, and so on. Instead, the syntax in most

1See, for example, the TOPLAP overview here: https://
github.com/toplap/awesome-livecoding

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2019, December 4–6, 2019, Trondheim, Norway.

c© 2019 Copyright held by the owner/author(s).

live coding languages is mainly borrowed from other pro-
gramming languages. For example, the use of parentheses
is ubiquitous in programming languages, and it is adopted
in almost every live coding language. That is the case even
though live coding without the parentheses is (more) read-
able for humans [12].

Inheriting standard programming syntax may create dif-
ficulties for non-programmers who want to get started with
live coding. We have therefore been exploring how it is pos-
sible to design a live coding syntax based on the design prin-
ciples of digital musical interface design. This includes ele-
ments such as audio effect chains, sequencers, patches, and
so on. The aim has been to only create a rule by 1) bor-
rowing from digital musicians’ familiarity with the digital
interfaces mentioned above, or 2) reusing the syntax from
existing programming languages to help the parser to work.
The design principle is also aligned with the concept of er-
gomimesis, namely the ‘application of work processes from
one domain to another’ [13]. The goal of this principle is to
lower the learning curve of our language syntax, especially
for non-programmers.

The second aim of our current exploration is to develop
a live coding language that is usable for a larger group of
people. This can be seen as part of the trend of ‘musical
democratisation’ [8]. Our experience with running work-
shops for larger groups of university students or pupils in
schools is that software that needs to be installed locally
makes it much more difficult to get started making music
quickly. We, therefore, see browser-based interfaces as the
best solution for minimal setup time.

Finally, as part of our interest in exploring the blurring of
roles between performers and perceivers, we have also looked
at how it is possible to include the ‘audience’ in live coding.
An online deployment makes it possible to not only share
the code among performers, but it also makes it possible
for the audience to easily join into the online live coding
performance. This requires a delicate organisation of a stack
of web technologies.

In the current paper, our main research question is:

• How can web technologies influence the music interac-
tion between performers and the audience?

From this two sub-questions emerge:

• How can we design a live coding environment that
makes the audience part of the performance? How
should the environment be modified to meet this re-
quirement?

• How can we use knowledge from digital musical in-
strument design when developing the syntax of a live
coding language? What are the trade-offs that we have
to make to achieve this goal?

The paper starts with a background section in which we
introduce some related work. Section 3 presents the new
domain-specific language, elaborating on how the parser is
designed and its semantics. In Section 4, we describe the
interface design and explain the communication strategies
based on the Firebase real-time database. Finally, in Sec-
tion 5, we discuss how the environment fits the language
design, and how it experimentally changes the relation be-
tween performers and audience.

2. BACKGROUND
Many existing live coding environments are installed lo-

cally and use the SuperCollider music programming lan-
guage as the sound engine [15]. With the advent of the Web
Audio API, there has been a shift towards developing live
coding environments with web technologies. In the follow-
ing, we will reflect on these two approaches to live coding.

2.1 Live coding with SuperCollider
SuperCollider consists of a programming language called

sclang and an integrated development environment (IDE).
In the IDE, users can boot an audio server (scsynth) in
the background, and write the code following the syntax
of sclang. The code, when executed, will be compiled into
Open Sound Control (OSC) messages, and sent to the sc-
synth server to control the music sequence. One typical
workflow in SuperCollider is to define the synthesiser archi-
tecture with the keyword SynthDef, and then play the Synth
in a SuperCollider music sequence (Pattern).

Several live coders have chosen to design their syntaxes
on top of SuperCollider. For instance, TidalCycles (Tidal)
is a domain-specific language written in the Haskell pro-
gramming language [18]. During live coding, the Tidal code
will be interpreted and sent as OSC messages to control
the sound engine called SuperDirt running in SuperCollider.
FoxDot follows a similar architecture but uses Python as
the host programming language [9]. Additionally, Troop is
a collaborative environment developed for both Tidal and
FoxDot, which allows users at the same network to co-edit
and share the code on the screen [10].

An inconvenience with the above-mentioned environ-
ments, relying on one or more programming languages in
addition to SuperCollider, is that it requires several steps
of installation. A more user-friendly solution, then, is Sonic
Pi, which is also built on SuperCollider audio engine, but of-
fers a single, complete installation package [1]. Even though
several OSes are supported, it does not currently run on
desktop Linux or Chrome OS. In our experience, this makes
it less ideal for schools. And for quick introductory work-
shops to live coding, we find that having to rely on software
installs is less than ideal. For such situations, a web-based
solution is more feasible and scalable.

2.2 Web-based live coding
Web-based or browser-based live coding environments

only require an up-to-date browser to get started with live
coding. With the rapid progress of the Web Audio API,
the sound synthesis possibilities and timing capabilities for

browser-based live coding have matured quickly. Two good
examples of this are the JavaScript-based Gibber environ-
ment [20], and the Lisp-style language Slang.js [21]. Al-
though the latter currently does not support collaboration,
its parser, written in Ohm.js, provides a valuable example for
our development. Another inspiration for us is from EarS-
ketch [16], a music producing environment mainly designed
for normal programming education, and its use of the Fire-
base real-time database pointed us in the direction of a col-
laborative live coding solution [23].

Some other web-based environments serve as interfaces for
other languages. Estuary is a system built for live coding
with Tidal in browsers [19]. It has several unique features:
collaboration in four different text fields, the support for
both SuperCollider and the Web Audio API, and so on.
Estuary makes it possible to live code together from different
locations, and has been shown to work reliably in cross-
continental live coding.

As can be summarised from the brief review of existing live
coding environments, the programming languages, syntaxes,
and interfaces are diversified. In our exploration, we have
been borrowing parts from many of these when designing
our syntax and environment.

3. LANGUAGE DESIGN
The syntax design of QuaverSeries is based on a func-

tional programming paradigm.2 The following sections will
describe its syntax and how Ohm.js and Tone.js have been
used to implement the parsing and semantics.

3.1 Note representation
The note representation is probably the element that is

varied the most among live coding languages. QuaverSeries
is based on the idea of a music sequencer. Our prototype
syntax looks like this:

60 _62 63 _64_65_ 66 _67_68_69

The sequence has only three elements: numbers, under-
scores and blank spaces. The numbers refer to MIDI notes,
with 60 being ‘middle C’. A blank space indicates a sep-
aration of individual notes, while an underscore denotes a
musical rest.

A sequence will always occupy the duration of a whole
note, and all the notes will be divided equally. To illustrate,
the one-line sequence above will be divided into four notes:
60, _62, 63_64_65_, and 66_67_68_69_, with each of them
occupying a quarter note length. Each note can be further
(equally) divided by the total number of MIDI notes and
rests. On the example above, _62 means that an eighth
MIDI note 62 will be played on the off-beat, after an eighth
rest. Likewise, 63_64_65_ means eighth note triplets.

As can be seen from the examples above, we create the
syntax rule by referring to the musical sequencer, and add
extra programmability to the syntax using the dividing al-
gorithm invented in TidalCycles [18]. One direct influence
here is that we form a left-to-right typing flow. For the sake
of consistency, this flow is kept in other parts of the syntax
design as well. Hence, there is no pairing symbol such as
parentheses and quotation marks in the syntax.

The sequence can then be connected to a sound generat-
ing module using the double greater-than sign (») which is

2https://github.com/chaosprint/QuaverSeries

Figure 1: An example of an Ohm.js parsing tree. The hierarchy from top to bottom mainly includes: Piece,
Block, Chain, Func, etc. In this example, the one-line code makes a Piece. This Piece contains one Block,
and the Block is a Track rather than a comment. This Track can be further divided into a function reference
name (funcRef) and a function chain (Chain). The function chain will be parsed using left recursion, and
the semantics definition is written in JavaScript using Tone.js.

prevalent in programming languages, e.g. C++. In Qua-
verSeries, it indicates a signal chain flow, from left to right:

loop 20 20 20 20 >> membrane >> amp 0.8

The one-line code above will create a ‘flat four’ kick drum
sequence using the oscillator function (membrane), and with
an amplitude of 0.8 (amp). This syntax style naturally leads
to the choice of using a functional programming paradigm.

3.2 Functional programming
Functional programming languages are prevalent in musi-

cal applications, such as the above mentioned Tidal. Over-
tone is another functional live coding language, following
the syntax of Clojure, a dialect of Lisp language [2]. In a
functional programming language, everything is a function
in the mathematical sense. For example, for the function y
= f(x), x refers to the independent variable, y refers to the
dependent variable, and f refers to the transformation. In a
similar manner, to express an electronic music signal flow,
we can, for example, write the pseudo code:

(lpf (square 440 1) 1000 1)

Here the square function, followed by 440 and 1 means a
square wave oscillator function with two parameters as in-
dependent variables (inputs): frequency and amplitude. In
this example, lfp is the abbreviation of low-pass filter, and
refers to another function that receives three parameters:
the audio signal for filtering, the cut-off frequency, and the
Q-value. A pair of parentheses is here used to wrap the func-
tion that is passed to the next function as its input. This is
typical in functional programming languages such as Lisp.

The same synthesis architecture can be rewritten in an
object-oriented programming style as:

osc = Square (440, 0.8)
osc.connect(LPF(30, 1500))

Here Square refers to a class with a constructor. When
the constructor is called, an instance will be created, and
we can save it as in a variable called osc. The instance can
call its methods predefined in the class.

Both functional and object-oriented programming
paradigms have both pros and cons. But since we have

chosen to start our syntax with a sequencer as the main
defining element, we have found it most practical to use
functional programming in the syntax design.

In the one-line functional programming code mentioned
above, loop, followed by a sequence of MIDI numbers is the
first function. When followed by membrane, the function on
the left should become the frequency parameter of membrane,
with an implicit conversion from MIDI notes to frequency.
The amp is a function that sends the audio signal generated
by the function chain to the audio interface, with a sound
level scaling of 0.8. The equivalent Lisp-style would be:

(amp (membrane (loop 20 20 20 20) 0.8))

3.3 Parsing
The parser in QuaverSeries is built from scratch with the

help of Ohm.js. This requires to first program in its domain-
specific language, describing how the parser should act (see
Appendix B). The parser will generate a parsing tree, iden-
tifying the structure of the code (see Figure 1). An example
of the QuaverSeries syntax may help to explain how it works:

bpm 120

~bass: loop 30 _ _33 _
>> sawtooth >> adsr 0.04 0.3 0 _
>> lpf ~cutoff_freq 1
>> amp 0.1

~cutoff_freq: lfo 8 300 3000

The whole Piece in this example can be divided into dif-
ferent Block(s), with each Block containing at least one func-
tion separated by an empty line. The first line is a function
for setting the tempo of the piece (120 beats per minute).
All the function names are typed in lower case, with an op-
tional underscore in between.

Each function is typically followed by the function ele-
ments (funcElem). For example, the adsr function has four
parameters, i.e. the attack, decay, sustain and release of an
audio envelop. The usage of the underscore is flexible. Apart
from its usage in the note representation (to denote a rest),
an underscore can also be used as a Python-style placeholder

to keep the default value of a parameter. For instance, the
adsr function has a value of zero for the sustain parameter,
which means that there is no need to write the release value.
Hence, we can use an underscore to represent the release.

The second block demonstrates a concept called reference.
With a tilde-prefix (∼), a function name becomes a refer-
ence that can link two signal chains with one signal chain
modulating a parameter of the other. In the example above,
the cut-off frequency of the low-pass filter is modulated by
a low-frequency oscillator (lfo). Hence, to keep the consis-
tency, it is suggested users add a reference at the beginning
of every function chain.

3.4 Semantics
The semantics part of QuaverSeries defines how the code

should be executed after being parsed. In Ohm.js, the pars-
ing and semantics definitions are separated. Thus after the
parser reads through the code and identifies several valid
functions, Ohm.js needs further instructions on how to deal
with these functions. For instance, when the parser detects
a number, the parser will return the number as a string char-
acter. It is therefore necessary to write the semantic action
as a JavaScript function that converts the string to a float in
JavaScript, so that it can be used for numerical operations.

The semantics definition of QuaverSeries is written with
Tone.js, a JavaScript audio and sound synthesis library
based on the Web Audio API [14]. Currently, the functions
are categorised into three parts: control, effect and synth. In
the semantics definition, each function is organised into dif-
ferent tracks. Each track has its attributes, including note,
synth, and effect.

Once a run message is received, the parser will read
through the whole page, and convert every function to
Tone.js code based on the semantics definition. For instance,
when the loop function is detected, a Tone.js Sequence in-
stance will be created. Likewise, if a synth function is iden-
tified, a Tone.js Synth instance will be created. If audio
effects are found, the relevant Tone.js effect instances can
be created. Finally when the amp is detected, the connect
method of the Synth instance will be called to connect all
the effects, with the amplifier (Tone.Master) at the end of
the effect list.

As a summary, when the run command is given, the parser
will read through the whole page and identify the func-
tions. Next, semantics action will be executed by construct-
ing Tone.js instances and calling their methods. The update
command also reads the whole page, and updates each node
that is playing, although it will first be effective at the be-
ginning of the next bar.

4. ENVIRONMENT DESIGN
Collaboration has been an important motivation when de-

veloping the Quaverseries live coding environment.3 The
aim is to create a web application that live coders can use
to collaborate in different virtual rooms, and where the au-
dience can go to a particular room to watch an ongoing per-
formance, albeit with a different level of access (see Figure
2).

4.1 Collaboration support
3https://quaverseries.web.app

Figure 2: The QuaverSeries interface prototype.
The syntax highlight has been implemented as a Ace
editor theme. The buttons (Run, Update and Stop) are
mapped to the keyboard shortcuts Command/CTRL +
Enter, Shift + Enter, and Command/CTRL + Period(.),
respectively. The keyboard shortcut Command/CTRL +
Slash(/) is for commenting out lines of code, which
can be useful for muting a track during the perfor-
mance.

Tools and algorithms such as Firebase and Operational
Transformation have made the implementation of real-time
code sharing much more approachable than it was only some
years ago [5]. Firepad is an open-source tool that mainly
uses Firebase realtime database and Operational Transfor-
mation algorithm. Thus, it provides a solution for synchro-
nising code and sharing the cursor position between clients.
In QuaverSeries, Firepad is used to share the code, while
a customised strategy is designed to broadcast the related
run and update commands to every client connecting to the
database, including both the performers’ and the audience
members’ clients. In this way, a live coder can control the
sound running in all the browser clients. This is a similar
strategy to what can be found in the Hydra synth, an envi-
ronment developed for sharing visuals in the browser [7].

In the server database, two entries are storing the states of
the run and update. Hence, once a user sends the run com-
mand by clicking the button or using the keyboard short-
cut, the value of the entry run in the database will be set
to the Boolean value true. As each client connecting to the
database has its monitoring function for the value, once the
Boolean value true is detected, each client will execute a rel-
evant handling function. This function will do two things:
1) execute the code in the editor, 2) set the run entry back
to the Boolean value false. Here is an example to illustrate
this in pseudo code:

the server
if Server get "run":

send "run" to every client

the client
if Client get "run":

execute Music Code

the interface

if Button "run" is pressed:
sent "run" to Server

The principle of update is almost the same as run. The
only difference is that update is used to renew the piece while
the music is already on, that is, to calculate the current time
and schedule what to play from the beginning of the next
bar.

How does the system work in terms of stability? Fortu-
nately, the transmission of only code between clients makes
it possible to run the system over connections with very lim-
ited bandwidth. Furthermore, since the system is based on
looped sequences, and an updating strategy per bar, allows
for a considerable network delay without necessarily influ-
encing the final musical result. This system design can, of
course, be problematic if an update message is sent at the
end of a bar. Still, the worst-case scenario is a one-bar offset
among different locations. In our real-world testing so far,
however, this has not been a problem in practice.

4.2 Live coding democratisation
Musical democratisation—in the sense of making music

available to larger audiences—has been a growing trend ever
since the invention of the phonograph [22]. Up until now,
live coding has been an activity practised by relatively few.
This is not only because it has been technically difficult to
get started, but also because the community has been com-
parably small, and access to venues has been limited. Web-
based live coding may help to address both of these prob-
lems, at the same time making it easier to provide access for
online performances to get started.

QuaverSeries is a novel music streaming solution in that
it does not stream audio or video but rather focuses on code
streaming. Thus, instead of watching the audio/video of a
performer’s screen, the audience can enter a virtual room,
watch new code appear on the screen, and have the musi-
cal sound rendered locally in the user’s own browser. The
audience can unidirectionally receive the run and update
message from the server. This makes it possible to stop the
rendering of music in the local browser at any time without
influencing any other instances running on the machines of
other performers or audience members.

The main difference between the performer and audience
modes is that in the latter the code is not editable. Techno-
logically speaking, though, every audience has the complete
instrument locally, with the performers triggering the code.
Thus every audience member could be seen as a collaborator
and parttaker in the musicking.

5. CONCLUSION
In this paper we have presented the three parts of Qua-

verSeries: 1) a new domain-specific language, 2) an interface
to edit and run the code, and 3) a new way of collaborating
using ‘virtual rooms.’

The environment draws extensively on new web technolo-
gies, utilising the power of local rendering in the user’s
browser thanks to the advance of the Web Audio API. This
makes it possible to easily and quickly share live coding with
lots of people, hence allowing the audience to become ‘active
participants’ in a live coding session. Sharing only code be-
tween users makes it possible to create a collaborative envi-
ronment with low network bandwidth. To minimise the risk
of delay in the network, we have employed two strategies:

1) transmitting only code, and 2) calculating the updating
based on musical bars. The trade-off of this approach, how-
ever, is that it also limits the musical possibilities of the
system.

At the moment, the system is based on looped sequences
only, resulting in beat-based music. Still, we have found
that it is possible to create fairly complex musical results by
adding multiple layers in the code. In future development,
our first priority is to explore how it is possible for the au-
dience to participate more in online performances. One ap-
proach is to build a chatting system in which the audience
can write their own code, and propose this code to the per-
formers. It would be up to the performer whether to accept
the proposed code or not, similar to the way a fork works in
the git version control system (such as used on GitHub).

QuaverSeries is currently at a prototype stage. It is fully
functional, and we have explored it in a number of jam ses-
sions. The aim now is to test it more in different performance
contexts. We also plan to perform a more systematic user
study, to understand more about how it works for beginning
live coders.

6. ACKNOWLEDGMENTS
This work was partially supported by the Research Coun-

cil of Norway through its Centres of Excellence scheme,
project number 262762 and by NordForsk’s Nordic Uni-
versity Hub Nordic Sound and Music Computing Network
NordicSMC, project number 86892.

7. REFERENCES
[1] S. Aaron. Sonic pi–performance in education,

technology and art. International Journal of
Performance Arts and Digital Media, 12(2):171–178,
2016.

[2] S. Aaron and A. F. Blackwell. From sonic pi to
overtone: creative musical experiences with
domain-specific and functional languages. In
Proceedings of the first ACM SIGPLAN workshop on
Functional art, music, modeling & design, pages
35–46. ACM, 2013.

[3] A. F. Blackwell and N. Collins. The programming
language as a musical instrument. In PPIG, page 11,
2005.

[4] N. Collins, A. McLean, J. Rohrhuber, and A. Ward.
Live coding in laptop performance. Organised sound,
8(3):321–330, 2003.

[5] C. A. Ellis and C. Sun. Operational transformation in
real-time group editors: issues, algorithms, and
achievements. In Proceedings of the 1998 ACM
conference on Computer supported cooperative work,
pages 59–68. Citeseer, 1998.

[6] T. Hoogland. Mercury: a live coding environment
focussed on quick expression for composing,
performing and communicating. 2019.

[7] O. Jack. Livecoding networked visuals in the browser.
https://github.com/ojack/hydra, 2019.

[8] D. Kim-Boyle. Network musics: Play, engagement and
the democratization of performance. Contemporary
Music Review, 28(4-5):363–375, 2009.

[9] R. Kirkbride. Foxdot: Live coding with python and
supercollider. In Proceedings of the International
Conference on Live Interfaces, 2016.

[10] R. Kirkbride. Troop: A collaborative tool for live
coding. In Proceedings of the 14th Sound and Music
Computing Conference, pages 104–9, 2017.

[11] T. Magnusson. ixi lang: a supercollider parasite for
live coding. In Proceedings of International Computer
Music Conference 2011, pages 503–506. Michigan
Publishing, 2011.

[12] T. Magnusson. Code scores in live coding practice. In
TENOR 2015: International Conference on
Technologies for Music Notation and Representation,
volume 1, pages 134–139. Institut de Recherche en
Musicologie, 2015.

[13] T. Magnusson. Sonic writing: technologies of material,
symbolic, and signal inscriptions. Bloomsbury
Academic, 2019.

[14] Y. Mann. Interactive music with tone. js. In
Proceedings of the 1st annual Web Audio Conference.
Citeseer, 2015.

[15] J. McCartney. Rethinking the computer music
language: Supercollider. Computer Music Journal,
26(4):61–68, 2002.

[16] S. McCoid, J. Freeman, B. Magerko, C. Michaud,
T. Jenkins, T. Mcklin, and H. Kan. Earsketch: An
integrated approach to teaching introductory
computer music. Organised Sound, 18(2):146–160,
2013.

[17] C. McKinney. Quick live coding collaboration in the
web browser. In NIME, pages 379–382, 2014.

[18] A. McLean. Making programming languages to dance
to: live coding with tidal. In Proceedings of the 2nd
ACM SIGPLAN international workshop on Functional
art, music, modeling & design, pages 63–70. ACM,
2014.

[19] D. Ogborn, J. Beverley, L. N. del Angel, E. Tsabary,
and A. McLean. Estuary: Browser-based collaborative
projectional live coding of musical patterns. In
International Conference on Live Coding (ICLC)
2017, 2017.

[20] C. Roberts, G. Wakefield, M. Wright, and
J. Kuchera-Morin. Designing musical instruments for
the browser. Computer Music Journal, 39(1):27–40,
2015.

[21] K. Stetz. Slang: An audio programming language
built in js. https://github.com/kylestetz/slang, 2018.

[22] T. D. Taylor. The commodification of music at the
dawn of the era of “mechanical music”.
Ethnomusicology, 51(2):281–305, 2007.

[23] A. Xambó, P. Shah, G. Roma, J. Freeman, and
B. Magerko. Turn-taking and chatting in collaborative
music live coding. In Proceedings of the 12th
International Audio Mostly Conference on Augmented
and Participatory Sound and Music Experiences,
page 24. ACM, 2017.

APPENDIX
A. TECHNICAL STACK

The following table lists the main dependencies of Qua-
verSeries, and their current version number.

Dependencies Version
React.js 16.2.8
Ohm.js 0.15.0
Tone.js 13.4.9
Material-ui 1.0.0
Firebase 7.0.0
Firepad 1.5.3
Ace 1.4.6

B. PARSER
This is how the parser of QuaverSeries is currently set up.

Quaver {

Piece = Piece #"\\n"? #"\\n"? #"\\n"?
Block −−stack

| Block

Block = comment | Track

comment = "//" c+

c = ~"\\n" any

Track = funcRef? ":"? Chain

Chain = Chain ">>" Func −− stack
| Func

Func = funcName listOf <funcElem ,
separator >

funcElem = para | funcRef

para = para subPara −− combine
| subPara

subPara = number | "_"

number = "−"? digit∗ "." digit+ −−
fullFloat

| "−"? digit "." −− dot
| "−"? digit+ −− int

funcRef = "~" validName

funcName = validName

validName = listOf <letter+, "_">

separator = ","? space
}

