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Abstract
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fine tuning learning rates) perform better than current state-of-the-art methods such as
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Keywords Automation of learning rates · Backtracking · Deep neural networks ·
Random dynamical systems · Global convergence · Gradient descent · Image
classification · Iterative optimisation · Large scale optimisation · Local minimum

Mathematics Subject Classification 65Kxx · 68Txx · 49Mxx · 68Uxx

B Tuyen Trung Truong
tuyentt@math.uio.no

Hang-Tuan Nguyen
hnguyen@axon.com

1 Matematikk Institut, Universitetet i Oslo, Blindern 0851, Oslo, Norway

2 Axon AI Research, Seattle, WA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00245-020-09718-8&domain=pdf
http://orcid.org/0000-0001-9103-0923


Applied Mathematics & Optimization

1 Introduction

In this section, we provide a non-technical overview of the important role and current
practices of Gradient Descent methods (GD) in optimisation, in particular in large
scale optimisation as in Deep Neural Networks (DNN), and some new features of our
main results in this paper.

One special feature of the modern society is the need of solving large scale opti-
misation problems quickly, stably, efficiently and reproducibly. One exemplar for this
is the development of Deep Learning, which has obtained spectacular achievements
recently. Among the most famous novelties, one can mention Alpha Go (the first com-
puter program that ever won human players, and in fact the best human players, in the
Game of Go) and new developments in self-driving cars. One important tool in Deep
Learning is DNN.

Roughly speaking, a DNN is a parametrised family f (x, θ), a composition of very
simple maps, aiming to approximate well a feature y. By choosing an explicit metric
to measure the difference between the prediction by the DNN f (x, θ) and the “ground
truth” y over a training set I , one gets a specific value of θ as one global minimum of
an associated optimisation problem. The special feature of this optimisation problem
is that it is large scale and non-convex. Here we illustrate with the task of recognising
hand written images from the dataset MNIST [26], which is an immense challenge
for the old paradigm of rule-based learning, but is considered only a simple exercise
for DNN. Below are some images from MNIST (see Fig. 1). Some of these pictures
are challenging even for a human being to classify.

TheDNNused for thisMNIST task is regarded as “small”, and needs “only” 11, 935
parameters. Modern state of the art DNN can easily have millions of parameters. With
this big size of optimisation problem, the only tool one could rely on are numerical
optimisation algorithms, serving to arrive closely to good local minima.

As great as it is, there are many serious concerns about the current practices in Deep
Learning such as it is very easily fooled and is still not safe. Since optimisationmethods
are an important part of the practice, improving optimisation methods promises to
improving the performance ofDeepLearning.Anumerical algorithm, to be universally
used in realistic applications such as in Deep Learning, should have good theoretical
justification (such as assurance of convergence to critical points and avoidance of
saddle points) as well as easy to implement and run in large scale optimisation, and as
such will help towards resolving the current deficits in the practices in Deep Learning
mentioned above. Our paper contributes to such algorithms. In this paper, wewill work
with real functionswhich are continuously differentiable. This is themost general class
that current techniques can be used in solving non-convex optimisation problems, and
therefore is flexible enough to adapt to many kinds of realistic applications.

1.1 A Brief Introduction to Gradient Descent Methods

Among many others, gradient descent (GD)—introduced in 1847 by Cauchy [10]—is
oneof the oldest,mostwell-knownandmost effective numerical optimisationmethods.
As suggested by the name, GD uses gradients of the functions which, by the chain
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Fig. 1 Some samples from the MNIST hand-written digit dataset . (Source: [26])

rule in multiple calculus, make computations with compositions of simple functions
as in DNN possible. (Second or higher order differential methods, such as Newton’s,
are more costly to implement on computers. Moreover, while Newton’s method has
better convergence rate than GD in the local setting—that is when we start close to
a minimum point—no general result on global convergence to a local minimum has
been proven for Newton’s method, and the method can diverge to infinity even for
functions with compact sublevels or converge to a saddle point.) The general form
for this approximation method GD is as follows. Let f : Rm → R be a C1 function
which we would like to minimise. Denote by ∇ f (x) the gradient (or derivative) of f .
We start from a random point z0 ∈ R

m , and then construct iteratively

zn+1 = zn − δn∇ f (zn), (1)

where δn > 0 are appropriately chosen. In the literature, it is common to call δn

learning rates or step sizes. The hope is that zn will converge to a (global) minimum.
The intuition is taken from the familiar picture one obtainswhen f is a convex function.
Note that z0 being random is important here: In Nesterov [30], one can find a function
in 2 variables and a specific choice of the point z0 for which any sequence as in (1),
if converges to a critical point at all, can only converge to a saddle point.
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The most known GD method is Standard GD, where we choose δn = δ0 for all n.
Hence, we start with a (randomly chosen) point z0 ∈ R

m and define the sequence

zn+1 = zn − δ0∇ f (zn). (2)

In reality, when doing actual computation on computers, one can only obtain the
values for gradients and other quantities within some errors. The inexact version of
GD, which is more suitable to realistic applications such as DNN, is as follows:

zn+1 = zn − δnvn, (3)

where we assume that vn is not too far from the gradient direction ∇ f (zn). There are
many ways to specify the condition of “not too far” (see e.g. [5,7]), here in this paper
we use the following common version: there are A1, A2 > 0 and 1 ≥ μ > 0 such that
for all n

A1||∇ f (zn)|| ≤ ||vn|| ≤ A2||∇ f (zn)||, (4)

< ∇ f (zn), vn > ≥ μ||∇ f (zn)|| × ||vn||. (5)

When μ = 1 we have that vn is parallel to ∇ f (zn) for all n, and thus recover the
general scheme for GD in (1). The geometric meaning of (5) is that the cosine of the
angles between ∇ f (zn) and vn are positive and uniformly bounded away from 0.

Remark If the starting point is not random, then the limit point (if exists) may be
a saddle point. One such example (by Nesterov, mentioned above) is f (x1, x2) =
2x21 + x42 − x22 , with the starting point z0 = (1, 0), here vn = ∇ f (zn) and δn > 0 is
arbitrary.

For ease of later reference, we denote byC1,1
L the set ofC1 functions f whose gradient

is globally Lipschitz with Lipschitz constant L , that is ||∇ f (x) − ∇ f (y)|| ≤ L||x −
y|| for all x, y ∈ R

m . It is worthy to remark that the class C1,1
L is not preserved

under small perturbations, even under the common technique of Lq regularisations
(or compensation) in DNN, for q �= 2.

1.2 What is the State-of-the-Art for Convergence of GDMethods?

From its origin, it has been an important theoretical task for GD methods (as well
as other iterative methods such as Newton’s) to ensure that the sequence {xn} in (1)
converges to a (global) minimum point. We now argue that from a practical viewpoint,
theoretical guarantee for convergence of the proposed algorithms are also as important.
For example, in practical DNN, even when one uses one of the iterative methods to
find minima, one cannot run the algorithm infinitely and must stop after a certain
finite time, say j0. Then one will use the trained value z j0 to make predictions for
new data. If convergence for the sequence {zn} is guaranteed, then it is reasonable that
next time when one (or another person) runs the training again (or when having new
training data incorporated), even if one does not stop at the same time j0, one will
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still receive similar predictions, and hence one has reproducibility and stability. On
the same token, if convergence is not guaranteed, then one can expect very different
results for different experiments.

While the research in GD is very extensive and has been conducted nearly 200
years (see classical works [2,11,12,16,37], and also some modern presentations [5,7,
8,32,38]), we can say that results prior to our work concern mostly on the convergence
of the sequence {∇ f (zn)} to 0. One can see easily that this is equivalent to having
only that any cluster point of {zn} is a critical point of f , and it is not equivalent
to (and weaker than) having that {zn} itself converges. One reason to explain is that
the previous work mostly concern the case of Standard GD, which does not have
good convergence property, and which can be cumbersome in many situations: for
example, if the function is not C1,1

L , or if the Lipschitz constant L is not known, or if
one works in a general manifold. In contrast, our recent works [44,46,47] show that
Backtracking GD has very good convergence properties and is very flexible to apply
to many settings, as well as works well and saves time in practical applications. So far,
one can say that Backtracking GD is the best theoretically guaranteed method among
all GD methods and other iterative methods such as Newton’s. More details will be
presented in Sect. 2.

1.3 What is New About this Paper?

This paper is extracted and developed from the more applied part (mainly, Sects. 3.1,
3.2 and 3.3 andSect. 4, togetherwith part of Sect. 3.4) of the preprint [47], togetherwith
the preprints [45,48]. We concentrate on algorithms with good theoretical justification
and work well practically on large scale optimisation such as in DNN. The more
theoretical part of Truong and Nguyen [47] will be published separately.

– We define and establish convergence of Backtracking versions of NAG and
Momentum (MMT). This is helpful, since NAG and MMT help to avoid bad
minima.

– We present a heuristic argument, based on Backtracking GD, to explain why Stan-
dard GD itself works so effectively as observed in practice. A practical implication
of this heuristic argument is that even though it may seem counterintuitive when
one first thinks about it—the running time of Backtracking GD (in particular Two-
way Backtracking GD) is not too much longer than the running time of Standard
GD (wheremanual fine-tuning or grid choice of learning rates is commonpractice).

– We define a new algorithm called Two-way Backtracking GD, by looking for
δ(xn+1) starting not from δ0 but only from δ(xn), and then increase or decrease
the learning rate depending on whether Armijo’s condition is satisfied. This helps
to save time.

– In commonversions ofGDso far, learning rates δn are usually bounded fromabove,
which may make the process to converge to bad critical points or to slow down
the convergence, since when zn is close to a critical point z the change zn+1 − zn

is bounded by ||∇ f (xn)|| which is small. We will define an Unbounded Back-
tracking version where learning rates, for example, are bounded by ||∇ f (xn)||−γ

for some constant 0 < γ < 1 when ||∇ f (xn)|| becomes small so that Armijo’s
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condition is satisfied, and show that the good properties we see above are pre-
served. We illustrate (both theoretically and experimentally) that the performance
of Unbounded Backtracking GD can be sharply different (compared to the usual
Backtracking GD) depending on whether {zn} converges to a non-degenerate or
degenerate critical point.

– We thenmake someother improvements (including a hybrid betweenBacktracking
GD and Standard GD) on the algorithms, with sufficient theoretical justifications,
and implement into DNN. Our algorithm is automatic, and do not use manual fine-
tuning or grid search. Plus, on CIFAR10 and CIFAR100 on several common DNN
architectures, its performance is better than popular algorithms such as Adam,
SGD, Momentum, and so on.

– We also note that while in this paper we concern only C1 functions, the results
presented here are applicable also to more general functions. In fact, as discussed
in the more theoretical part of Truong and Nguyen [47], the results can be applied
for continuous functions whose gradient is not globally defined, provided we can
use the Fundamental Theorem of Calculus, such as under the more general setting
of Lebesgue’s integration and differentiation. For example, this is the case if f is
continuous onRk , and there is a closed set A ⊂ R

k of Lebesgue measure 0 so that
f is C1 on Rk\A, and ∇ f is locally bounded near A.

– In real life applications, it is important that an algorithm is as most theoretically
justified, reliable, reproducible and explainable as possible, besides good exper-
imental results. The main message of this paper is that, even though now not
popular, it is worth to test and implement more Backtracking GD.

Remark After both versions of the preprint [47] were posted on arXiv, a preprint by
other authors [49]was postedwhere similar implementations inDNNandexperimental
results have been obtained and where convergence for a version of Backtracking GD
for the mini-batch setting (under the assumption that the cost function f is strongly
convex and is a sum of convex functions fi whose gradients are in C1,1

Li
, and that fi

has only one critical point which is the same as the global minimum of f ). Note that
the mini-batch setting considered in Vaswani et al. [49] is not the same as the usual
setting of Stochastic GD.

Plan of the paper In Sect. 2, we provide a brief review of main theoretical results in
Truong and Nguyen [47] which we will base on to develop new algorithms, together
with major convergence results in previous literature by other authors. In Sect. 3, we
propose new methods for large scale optimisation together with convergence results
and proofs, as well as some heuristic arguments. In Sect. 4 we present experimental
results. Accompanying source codes for the experiments in Sect. 4 are available at
the following GitHub link Nguyen [31]. Section 5 presents conclusions and some
directions for future work.

2 Overview and Comparison of Previous Results

The first subsection recalls our recent general convergence result for Backtracking GD
which we will base on to develop new algorithms and results in Sect. 3. The second
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subsection provides a brief review of previous work on convergence of GDmethods, to
help readers avoiding the confusion between heuristics and more rigorously justified
algorithms.

2.1 A General Convergence Result for Backtracking GD

We recall first the so-called Armijo’s condition, for some 0 < α < 1 and some
x, y ∈ R

m (the main case of interest is when y = x − σ∇ f (x)):

f (y) − f (x) ≤ α < ∇ f (x), y − x >, (6)

here < ., . > is the standard inner product in Rm .
Now we introduce inexact Backtracking GD applicable for all C1 functions f :

R
m → R, aiming for realistic applications such as DNN.
Inexact Backtracking GD Fix A1, A2, δ0 > 0; 1 ≥ μ > 0 and 1 > α, β > 0. We

start with a point z0 and define the sequence {zn} by the following procedure. At step
n:

(i) Choose a vector vn satisfying A1||∇ f (zn)|| ≤ ||vn|| ≤ A2||∇ f (zn)|| and <

∇ f (zn), vn >≥ μ||∇ f (zn)|| × ||vn||. (These are the same as conditions (4) and
(5) for Inexact GD.)

(ii) Choose δn to be the largest number σ among {δ0, δ0β, δ0β
2, . . .} so that

f (zn − σvn) − f (zn) ≤ −ασ < f (zn), vn > . (7)

(This is Armijo’s condition (6).) As in Lemma 3.1 in Truong and Nguyen [47], we
can choose δn to be bounded on any compact set K on which ∇ f is nowhere zero.

(iii) Define zn+1 = zn − δnvn .

When vn = ∇ f (zn) for all n, Inexact Backtracking GD reduces to standard Back-
tracking GD (aslo known as Armijo’s rule in the literature). In this case, we can choose
A1 = A2 = μ = 1.

We recall that a point z∗ is a cluster point of a sequence {zn} if there is a subsequence
{znk } so that limk→∞ znk = z∗. The sequence {zn} converges if and only if it has one
and only one cluster point. It has been known that any cluster point of the sequence
{zn} in the Backtracking GD is a critical point of f , see e.g. Proposition 1.2.1 in
Bertsekas [5]. The following result, Theorem 2.7 in Truong and Nguyen [47], is the
main theoretical result we will base on to develop new algorithms later in this paper.

Theorem 2.1 Let f : Rm → R be a C1 function and let zn be a sequence constructed
from the Inexact Backtracking GD procedure.

(1) Either limn→∞ f (zn) = −∞ or limn→∞ ||zn+1 − zn|| = 0.
(2) Assume that f has at most countably many critical points. Then either

limn→∞ ||zn|| = ∞ or {zn} converges to a critical point of f .
(3) More generally, assume that the set of critical points of f contains a bounded

connected component A. Let B be the set of cluster points of the sequence {zn}. If
B ∩ A �= ∅, then B is connected and B ⊂ A.
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The assumption in part 2 of Theorem 2.1 is satisfied by all Morse functions. We
recall that a C2 function f is Morse if all of its critical points are non-degenerate.
This condition means that whenever x∗ ∈ R

m is a critical point of f , then the Hessian
matrix ∇2 f (x∗) = (∂2 f /∂xi∂x j )i, j=1,...,m(x∗) is invertible. All critical points of a
Morse function are isolated, and hence there are at most countably many of them.
Moreover, note that Morse functions are dense. In fact, given any C2 function g, the
function f (x) = g(x)+ < a, x > is Morse for a outside a set of Lebesgue’s measure
0, by Sard’s lemma. More strongly, by using transversality results, it can be shown
that the set of all Morse functions is preserved under small perturbations.

The statement of (3) here is equivalent to that of (4) of Theorem 2.1 in Truong and
Nguyen [47], but stated in a form more convenient to apply.

In case f is real analytic (or more generally satisfies the Losjasiewicz gradient
condition), then without the assumption that f has at most countably many critical
points, [1] also showed that the sequence {zn} either diverges to infinity or converges.
However, the real analytic assumption is quite restrictive.

In practical applications, wewould like the sequence {zn} to converge to aminimum
point. It has been shown in Dauphin et al. [13] via experiments that for cost functions
appearing in DNN the ratio betweenminima and other types of critical points becomes
exponentially small when the dimension m increases, which illustrates a theoretical
result for generic functions Bray and Dean [9]. Which leads to the question: Would in
most cases GD converge to a minimum?Wewill see that because it is indeed a descent
method, Backtracking GD answers the above question in affirmative in a certain sense.
For the sake of clarity, we formalise the notion of “a non-minimum critical point”.

Generalised saddle point Let f be a C1 function and let z∞ be a critical point of
f . Assume that f is C2 near z∞. We say that z∞ is a generalised saddle point of f if
the Hessian ∇2 f (z∞) has at least one negative eigenvalue.

If z∞ is a non-degenerate critical point of f , then it is a minimum if and only if
all eigenvalues of the Hessian ∇2 f (z∞) are positive. Hence in this case we see that a
critical point of f is a minimum if and only if it is not a generalised saddle point. See
next subsection for a discussion about avoidance of saddle points.

2.2 Comparison to PreviousWork

In this subsection we provide a review of convergence results known in the literature.
This is a brief version of Sect. 3.4 in Truong and Nguyen [47].

In classical work, starting from the influential paper [2], to prove convergence for
both Standard GD and Backtracking GD, it is assumed that f is in C1,1

L , the learning
rate δ is of order 1/L , f has compact sublevels (that is, all the sets {x : f (x) ≤ b}
for b ∈ R are compact), and the set of critical points of f is bounded and has at
most countably many elements. See e.g. Proposition 12.6.1 in Lange [25], and see
e.g. Appendix C.12 in Helmke and Moore [19] for analog results for gradient flows
(solutions to x ′(t) = −∇ f (x(t))). Both the assumptions that f is in C1,1

L and δ is
small enough are necessary for the conclusion of Proposition 12.6.1 in Lange [25],
even for very simple functions, as shown by Examples 2.14 (for functions of the form
f (x) = |x |1+γ , where 0 < γ < 1 is a rational number) and 2.15 (for functions which
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are smooth versions of f (x) = |x |) in Truong and Nguyen [47]. In contrast, for these
examples, Backtracking GD always converges to the global minimum 0.

Concerning the issue of saddle points, [27,34] proved the very strong result that
for f in C1,1

L and δ < 1/L , there exists a set E ⊂ R
k of Lebesgue measure 0 so that

for z0 ∈ R
k\E , if the sequence {zn} is constructed from Standard GD converges, then

the limit is not a saddle point. The main idea is that then the map x �→ x − δ∇ f (x)

is a diffeomorphism, and hence we can use the Stable-Center manifold theorem in
dynamical systems (cited as Theorem 4.4 in Lee et al. [27]). For to deal with the case
where the set of critical points of the function is uncountable, the new idea in Panageas
and Piliouras [34] is to use Lindelöff lemma that any open cover of an open subset of
R

m has a countable subcover. Note that here the convergence of {zn} (more generally,
one can assume only that the sequence eventually belongs to a small enough open
neighbourhood of a generalised saddle point—but this assumption could be difficult to
make precise in practice if one does not know details about the function) is important,
otherwise one may not be able to use the Stable-Center manifolds. However, for
convergence of {zn}, one has to use results about convergence of Standard GD (such
as Proposition 12.6.1 in Lange [25]), and needs to assume more, as seen from the
functions f (x) = |x |1+γ in the previous paragraph. Avoidance of saddle points for
diminishing learning rates scheme is also available now [35]. Theorem 2.3 in Truong
and Nguyen [47] addresses an affirmative answer to a weak version of avoiding saddle
points. Note also that as we mentioned in the Introduction—based on results and
ideas in Truong and Nguyen [47]—new versions of Backtracking GD are proposed
in Truong [44] and shown to be able to avoid saddle points, under assumptions more
general than those required byLee et al. [27], Panageas and Piliouras [34]) for Standard
GD. Furthermore, extensions to the infinitely dimensional Banach space setting are
available in Truong [46].

There are other variants of GD which are regarded as state-of-the-art algorithms in
DNN such as MMT and NAG (mentioned in the Introduction and with more details in
Sect. 3.1), Adam, Adagrad, Adadelta, and RMSProp (see an overview in Ruder [38]).
Some of these variants (such as Adagrad and Adadelta) allow choosing learning rates
δn in some complicated manners. However, as far as we know, convergence for such
methods are not yet available beyond the usual setting such as in Proposition 12.6.1
in Lange [25].

Stochastic GD is the default method used to justify the use of GD in large scale
optimisation and with randomness, which goes back to Robbins and Monro, see [7].
The most common version of it is to assume that we have a fixed cost function F (as
in the deterministic case), but we replace the gradient ∇κ F(xn) by a random vector
vn (here the random variables are points in the dataset, see also Inexact GD), and then
show the convergence in probability of the sequence of values F(xn) and of gradients
∇F(xn) to 0 (in application in the mini-batch setting the random vector vn will be
an approximation of ∇κ FIn (κn)). However, the assumptions for these convergence
results (for F(xn) and ∇F(xn)) to be valid still require those in the usual setting as
in Proposition 12.6.1 in Lange [25], in particular requiring that f ∈ C1,1

L and the
learning rate is small compared to 1/L . In the case where there is noise, the following
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additional conditions on the learning rates are needed [37]:

∑

n≥1

δn = ∞,
∑

n≥1

δ2n < ∞. (8)

These conditions are commonly known as Diminishing learning rates in the literature,
and the best result in this direction is contained in Bertsekas and Tsitsiklis [6], where
the condition

∑
n≥1 δ2n < ∞ is replaced by the weaker one: limn→∞ δn = 0, but

where we consider only point wise convergence for ∇ f . In the general case, then
(8) is needed, and it is generally not an optimal choice since if the sequence {xn}
converges to a point at which ∇ f is locally Lipschitz, then we can choose δn to be
uniformly bigger than 0, see Subsect. 3.2 for a more detailed discussion. Convergence
of {xn} itself is only proven when the cost function is strongly convex. By the row for
SGD in Table 2 on CIFAR10 with Resnet18, one sees that when learning rates become
smaller than a threshold, then the validation accuracy becomes worse, which serves
as an indication that diminishing learning rates scheme could perform not very well
in practice.

When using GD in large scale optimisation, even when the underlying function F
is in C1,1

L , it may be difficult to obtain a good lower bound estimate for the Lipschitz
constant L . Hence it can be difficult to obtain a good choice for the learning rate δ0.
This is more so with the mini-batch practice. The common practice in DNN is to man-
ually fine-tune learning rates, grid search or some other non-rigorous heuristics [32].
However, this practice is very time-consuming (especially when working with large
datasets and/or complicated architectures) and depending toomuch on the researcher’s
experience. In contrast, Backtracking GD is automatic.

Remarks Recently, there are some work estimating the global Lipschitz constant L for
the gradient of cost functions coming from some specific DNN architectures, see [15,
40]. Besides what mentioned in the previous paragraphs, here we note a couple more
remarks. First, even if ∇ f is globally Lipschitz continuous with Lipschitz constant
L , the local Lipschitz constant L(x) for ∇ f near a critical point x may be much
smaller than L , and hence using the learning rate δ0 in the order of 1/L may be too
small compared to what allowed 1/L(x). To this end, we note that Backtracking GD
can obtain good upper estimates for the local Lipschitz constant L(x), see Sect. 3.2.
Beyond this, recall that a DNN is only an attempt to approximate an unknown function,
which may not be in C1,1

L , it is wise to work with as most general cost function as
possible.

Wolfe’s method Wolfe’s method is very close to Backtracking GD, originating from
Wolfe [51]. In the modern literature, Wolfe’s conditions are the following

f (zn − δnvn) − f (zn) ≤ −c1δn < ∇ f (zn), vn >,

< ∇ f (zn − δnvn), vn > ≤ c2 < ∇ f (zn), vn >,

for some fixed constants 1 > c2 > c1 > 0. The first condition is exactly Armijo’s
theorem (condition (iii) in Wolfe’s paper). The second condition is only a half of
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condition (iv) in Wolfe’s paper. It has been shown that if f is a C1 function which
is bounded from below, then a positive δn can be chosen to satisfy these Wolfe’s
conditions. Moreover, if f is in C1,1

L and vn satisfies condition (i) in Inexact GD, then
a result by G. Zoutendijk shows the convergence of ∇ f (zn) to 0. For more details,
the readers can consult [33]. Therefore, under the assumptions mentioned above (that
is f is in C1,1

L , bounded from below, and vn satisfies condition (i) in Inexact GD), by
combining with Remark 2.2 in Truong and Nguyen [47], we can prove conclusions of
Theorem2.1withArmijo’s rule replaced byWolfe’s conditions.As far aswe know, this
convergence result has not been known before our work. Recently, Wolfe’s conditions
are implemented in DNN [29]. The paper [4] shows that Wolfe’s method fails even
for such simple functions as f (x1, . . . , xk) = a|x1| + ∑

j≥2 x j , if the constant a is
big enough.

3 NewGradient Descent Algorithms in Large Scale Optimisation

Here we present new algorithms, aiming at better implementations and performances
in large scale optimisation, and prove their theoretical properties.

3.1 BacktrackingVersions of MMT and NAG

While saddle points are in general not a problem for both Standard GD and Back-
tracking GD (see Sect. 2), it is not rare for these algorithms to converge to bad local
minima. MMT and NAG (see e.g. [38]) are popular methods designed to avoid bad
local minima.

For the standard version of MMT, we fix two numbers γ, δ > 0, choose two initial
points z0, v−1 ∈ R

m and use the following update rule:

vn = γ vn−1 + δ∇ f (zn),

zn+1 = zn − vn .

The standard version of NAG is a small modification of MMT: we fix again two
numbers γ, δ > 0, choose two initial points z0, v−1 ∈ R

m , and use the update rule:

vn = γ vn−1 + δ∇ f (zn − γ vn−1),

zn+1 = zn − vn .

If γ = 0, both MMT and NAG reduce to Standard GD. While observed to work
quite well in practice, the convergence of these methods are not proven for functions
which are not in C1,1

L or not convex. For example, the proof for convergence of NAG

in Sect. 2.2 in Nesterov [30] requires that the function f is in C1,1
L and is moreover

strongly convex. (For this class of functions, it is proven that NAG achieves the best
possible convergence rate among all gradient descent methods.) Therefore, it is seen
that convergence results for these methods require even stronger assumptions than that
of Standard GD, see Subsect. 2.2.
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Here, inspired by the Inexact Backtracking GD, we propose the following back-
tracking versions of MMT and NAG, whose convergence can be proven for more
general functions. As far as we know, these backtracking versions are new.

Backtracking MMT We fix 0 < A1 < 1 < A2; δ0, γ0 > 0; 1 ≥ μ > 0 and
1 > α, β > 0, and choose initial points z0, v−1 ∈ R

m . We construct sequences {vn}
and {zn} by the following update rule:

vn = γnvn−1 + δn∇ f (zn),

zn+1 = zn − vn .

Here the values γn and δn are chosen in a two-step induction as follows.
Algorithm for Backtracking MMT:
Step 1 Choose σ = 1, γ ′ = γ0, δ′ = δ0 and vn = γ ′vn−1 + δ′∇ f (zn) and

zn+1 = zn − σvn .
Step 2 If condition (i) for InexactBacktrackingGD is not satisfied, update γ ′ ← γ ′β

and update vn and zn+1 correspondingly.
Step 3 Iterate Step 2 until condition (i) for Inexact Backtracking GD is satisfied. At

that stage, obtain γ ′
n and δ′

n .
Step 4 If condition (ii) in Inexact Backtracking GD is not satisfied, update σ ← σβ

and update vn and zn+1 correspondingly.
Step 5 Iterate Step 4 until condition (ii) in Inexact Backtracking GD is satisfied. At

that stage, obtain σn . Then choose γn = σnγ ′
n and δn = σnδ′

n .
Backtracking NAG The update rule is similar to that for Backtracking MMT. We

need only to take care that the term γ appear also in the argument for ∇ f .
If γ0 = 0, both BacktrackingMMT and Backtracking NAG reduce to Backtracking

GD. We have the following result for the convergence of these versions.

Theorem 3.1 Let f : Rm → R be in C1. Let {zn} be a sequence constructed by either
the Backtracking MMT update rule or the Backtracking NAG update rule.

(1) Either limn→∞ f (zn) = −∞ or limn→∞ ||zn+1 − zn|| = 0.
(2) Assume that f has at most countably many critical points. Then either

limn→∞ ||zn|| = ∞ or {zn} converges to a critical point of f .
(3) More generally, assume that all connected components of the set of critical points

of f are compact. Then either limn→∞ ||zn|| = ∞ or {zn} is bounded. Moreover,
in the latter case the set of cluster points of {zn} is connected.

Proof In fact, our new algorithms satisfy conditions for Inexact Backtracking GD,
hence Theorem 2.1 can be applied to yield the desired conclusions (each part of
Theorem2.1 implies the corresponding part with the same numbering in Theorem3.1).
Indeed, this can be seen verbatim for parts 1 and 2. For part 3: in this case, if we do
not have limn→∞ ||zn|| = ∞, then the cluster points of {zn} must meet one connected
component of the set of critical points of f , and by our assumption here such a
component is compact. Hence, all conditions for applying part 3 in Theorem 2.1 are
satisfied, and we obtain the desired conclusion. ��

Through many experiments, even if the critical points of the function f are non-
isolated, it seems that part 3 of Theorem 3.1 (and similarly part 3 of Theorem 2.1) can
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bemade stronger into saying that either limn→∞ ||zn|| = ∞ or {zn} converges, just like
part 2, but we have no proof yet. For theoretical support, we recall the discussion after
the statement of Theorem 2.1 if f is real analytic (or more generally satisfies the Los-
jasiewicz gradient condition). Like in the case of Backtracking GD as in Theorem 2.1,
we see that a pathological scenario—not covered by part 3 of Theorem 3.1—when {zn}
contains both a bounded and an unbounded subsequences can only happen if either:
(a) the set of critical points of f has an unbounded connected component; or (b) the
learning rates δn are unbounded. While if there are no constraints on the learning rates
then it is easy to construct such pathological examples, we will in Subsect. 3.1 show
that if the learning rates are allowed to grow but constrained by ||∇ f (xn)||−1 and by
Armijo’s condition, then good properties as in Theorems 2.1 and 3.1 are preserved.
Further, Theorem 3.5 puts an upper bound, at least for Morse’s functions, on learning
rates in Armijo’s condition if we want the constructed sequence to converge. We will
also argue heuristically that Armijo’s condition and the backtrackingmanner of choos-
ing learning rates seem to be enough to prevent the mentioned pathological scenario
even for functions which are not Morse.

3.2 A Heuristic Argument for the Effectiveness of Standard GD

This subsection is developed fromSection 2.4 in Truong andNguyen [47].We also add
further remarks on rate of convergence for Backtracking GD and that Backtracking
GD can obtain good upper estimates for local Lipschitz constants of the gradient ∇ f ,
even for functions not in C1,1

L .
Let us consider a function f : Rm → R of class C1, a number δ0 > 0 and a point

z0 ∈ R
m . For simplicity, assume also that f has only at most countably many critical

points (which is the generic case), and ∇ f is locally Lipschitz at every critical point
of f (a reasonable assumption). By Theorem 2.1, if the sequence {zn} in (7) does not
contain a sequence diverging to ∞, then it will converge to a critical point z∞ of f .
That ∇ f is locally Lipschitz near z∞ implies that δ( f , δ0, z) > 0 uniformly near z∞.
Therefore, since δ( f , δ0, z) takes values in the discrete set {βnδ0 : n = 0, 1, 2, . . .},
it is contained in a finite set. (Note The argument until this point is not heuristic, but
rigorous.) Hence the number δ∞ := infn=1,2,... δn > 0. Therefore, the Standard GD
with learning rate δ0 = δ∞ should converge.

Our experiments with the data set CIFAR10 and CIFAR100 and various different
architectures,more details in the next subsection and Sect. 4, show that this argument is
also verified for the practice of using mini-batches in DNN. If ∇Fh(κh) approximates
well∇F(κh) and δ(Fh, δ0, κh) approximates well δ(F, δ0, αh), then Theorem 2.1 can
be applied to justify the use of (Inexact) Backtracking GD in DNN.

Convergence rate If ∇ f is locally Lipschitz continuous (but not necessarily glob-
ally Lipschitz continuous, for example f can be C2 ), then when the sequence {xn}
converges to a critical point x∗, it follows that for learning rates obtained from Back-
tracking GD we have δ(xn) ≥ βα/L(x∗) and hence we obtain the same convergence
rate as in the classical paper [2].

Upper bound estimates for local Lipschitz constants Assume as in the previous
paragraph that ∇ f is locally Lipschitz continuous and the sequence {xn} converges
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to a critical point x∗. Then it is intuitive (and confirmed by experiments on simple
functions) that actually δ(xn) is in the order of α/L(x∗), and hence L(x∗) is in the
order of 1/δ(xn). See also Theorem 3.5 for a close relation between the Hessian of the
function at a non-degenerate critical point and learning rates in Armijo’s condition.

3.3 Two-Way Backtracking GD

In this subsection we present a modification of Backtracking GD which aims to save
time and computations. We know that if zn converges to z∞, and δ0 ≥ δn > 0 are
positive real numbers so that f (zn −δn∇ f (zn))− f (zn) ≤ −αδn||∇ f (zn)||2 for all n,
then f (z∞ − δ∞∇ f (z∞)) − f (z∞) ≤ −αδ∞||∇ f (z∞)|| for δ∞ = lim supn→∞ δn .
Moreover, at least forMorse functions, the previous subsection shows that all the values
{δn} belong to a finite set. Therefore, intuitively we will save more time by starting
for the search of the learning rate δn not from δ0 as in the original Backtracking GD,
but from the learning rate σ = δn−1 of the previous step, and allowing increasing σ ,
and not just decreasing it, in case σ satisfies inequality (7) and still does not exceed
δ0. We call this Two-way Backtracking GD.

Algorithm for choosing δ(zn) in Two-way Backtracking GD:
Step 1: choose σ = δn−1.
Step 2: If σ does not satisfy (7), then update σ ← βσ until Armijo’s condition (7)

is satisfied.
Step 3: If, on the other hand, σ satisfies (7) then:
Step 3.1: If σ/β > δ0, then STOP, and choose δ(zn) = σ .
Step 3.2: If, on the other hand, σ/β ≤ δ0, then update σ ← σ/β.
Step 3.2.1: Iterate Step 3.2 until σ/β > δ0. Then STOP, and choose δ(zn) = σ .
Theorem 2.1 can be used to justify that this procedure should also provide con-

vergence for the sequence {zn}. In fact, we have the following result concerning
convergence for Two-way Backtracking GD, under assumptions (the same as those
required in Theorem 1.3 in Truong [44] about avoiding saddle points) including the
case where f is in C2 or C1,1

L .

Theorem 3.2 Let f : Rk → R be a C1 function. Assume that there are continuous
functions r , L : Rk → (0,∞) such that for all x ∈ R

k , the gradient ∇ f is Lips-
chitz continuous on B(x, r(x)) with Lipschitz constant L(x). Then all conclusions in
Theorem 2.1 are satisfied for the sequence {zn}.
Proof As observed in the proof of Theorem 2.1 (see statement in the previous section)
in Truong and Nguyen [47], the key is to prove the following two statements:

(i) If K ⊂ R
k is a compact set, then infn: zn∈K δ(zn) > 0. This is satis-

fied under our assumption, since in fact it can be checked that δ(zn) ≥
min{β/L(zn), βr(zn)/||∇ f (zn)||, δ0} and hence

δ(zn) ≥ inf
z∈K

min{β/L(z), βr(z)/||∇ f (z)||, δ0}

for all n, and that all functions r , L, ||∇ f || are continuous, and r , L > 0. Then
we have that any cluster point of {zn} is a critical point of f .
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(ii) supn δ(zn) < ∞. This is satisfied automatically since by construction δ(zn) ≤ δ0
for all n. ��
The next example illustrates the advantage of Two-way Backtracking GD, in the

deterministic case, compared to the Standard GD and the pure Backtracking GD.

Example 3.3 (Mexican hats) The Mexican hat example in Absil et al. [1] is as follows
(see Equation 2.8 therein). In polar coordinates z = (r , θ), the function has the form
f (r , θ) = 0 if r ≥ 1, and when r < 1 it has the form

f (r , θ) =
[
1 − 4r4

4r4 + (1 − r2)4
sin

(
θ − 1

1 − r2

)]
e−1/(1−r2).

For this function, [1] showed that if we start with an initial point z0 = (r0, θ0), where
θ0(1 − r20 ) = 1, then the gradient descent flow (r(t), θ(t)) (solutions to x ′(t) =
−∇ f (x(t))) neither diverges to infinity nor converges as t → 0.

We have run many experiments with Standard GD, pure Backtracking GD and
Two-way Backtracking GD for random choices of initial values z0’s. We found that
in contrast to the case of the continuous method, all these three discrete methods do
converge. Here is an explanation: For the continuous method, the gradient descent
flow (r(t), θ(t)), with an initial point z0 on the curve θ(1− r2) = 1 will get stuck on
this curve, while for the discrete methods right after the first iterate we already escape
this curve.

For this Mexican hat example, we observe that Two-way Backtracking GD works
much better than Standard GD and pure Backtracking GD. In fact, for the case where
z0 = (r0, θ0) satisfies sin(θ0) < 0, for a random choice of initial learning rate Standard
GD needs many more iterates before we are close to the limit point than Two-way
Backtracking GD, and pure Backtracking GD needs more total time to run and less
stable than Two-way Backtracking GD.

In other experiments, we see that the performance of Backtracking GD and Two-
way Backtracking GD are almost identical, while the time spent for Backtracking GD
is about double (or more) that of time to run Two-way Backtracking GD. Thus, this
confirms our intuition that Two-way Backtracking GD helps to save time.

3.4 Unbounded Backtracking GD

Here we define a version of Backtracking GD where learning rates {δn} are allowed
to be unbounded, and prove the corresponding convergent results. Remark that
Unbounded versions of Inexact Backtracking GD, Backtracking Momentum and
Backtracking NAG can also be defined similarly, together with corresponding conver-
gent results. We will also discuss on a more general setting where Armijo’s condition
is kept but with no constraints on how big the learning rates can grow.

Unbounded Backtracking GD Let f be a C1 function. Fix 0 < α, β < 1 and
δ0 > 0. We choose δ(x) as in the Backtracking GD procedure. Fix a function h :
(0,∞) → (0,∞) such that limt→0 th(t) = 0.We choose δ̂(x) any function satisfying
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δ(x) ≤ δ̂(x) ≤ h(||∇ f (x)||)} and Armijo’s condition f (x − δ̂(x)∇ f (x)) − f (x) ≤
−αδ̂(x)||∇ f (x)||2, for all x ∈ R

k . Choose a random point x0. The update rule for
Unbounded Backtracking GD is as follows:

xn+1 = xn − δ̂(x)∇ f (x).

We have the following result, which is a generalisation of Theorem 2.1 in Truong
and Nguyen [47]. Likewise, its Inexact version is a generalisation of Theorem 2.1.

Theorem 3.4 Assume that f is C1, and {xn} is a sequence constructed by the
Unbounded Backtracking GD procedure. Then:

(1) Any cluster point of {xn} is a critical point of f .
(2) Either limn→∞ f (xn) = −∞ or limn→∞ ||xn+1 − xn|| = 0.
(3) Assume that f has at most countably many critical points. Then either

limn→∞ ||xn|| = ∞ or {xn} converges to a critical point of f .
(4) More generally, assume that the set of critical points of f has a bounded connected

component A. Let B be the set of cluster points of {xn}. If B ∩ A �= ∅, then B is
connected and B ⊂ A.

Proof (1) Let K be a compact set for which inf x∈K ||∇ f (x)|| > 0. Then
inf x∈K δ̂(x) ≥ infx∈K δ(x) > 0, the latter can be shown as in Truong and Nguyen
[47]. Having this property, we can prove as in Truong and Nguyen [47] (see [5])
that any cluster point of {xn} is a critical point of f .

(2) By Armijo’s condition we have

f (xn+1) − f (xn) ≤ −αδ̂(xn)||∇ f (xn)||2

for all n. Hence either limn→∞ f (xn) = −∞ or limn→∞ f (xn) exists as a finite
number. In that case, summing over n, we obtain the well-known estimate (see
[36]):

∑

n

δ̂(xn)||∇ f (xn)||2 < ∞.

In particular, limn→∞ δ̂(xn)||∇ f (xn)||2 = 0. (In fact, the latter fact can be derived
directly, using only that limn→∞( f (xn+1) − f (xn)) = 0. This will be used in the
proof of Theorem 3.8 below).
For any ε > 0, we consider 2 sets: C1(ε) = {n ∈ N : ||∇ f (xn)|| ≤ ε} and
C2(ε) = {n ∈ N : ||∇ f (xn)|| > ε}. For n ∈ C1(ε), using the assumption that
limt→∞ th(t) = 0 and that δ̂(xn) ≤ h(||∇ f (xn)||), we obtain that

||xn+1 − xn|| = δ̂(xn)||∇ f (xn)|| ≤ h(||∇ f (xn)||)||∇ f (xn)||,

must be small when ε is small.
For n ∈ C2(ε), we have

||xn+1 − xn|| = δ̂(xn)||∇ f (xn)|| ≤ δ̂(xn)||∇ f (xn)||2/ε,
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which—for a fixed ε > 0—is small when n large enough, because limn→∞ δ̂(xn)

||∇ f (xn)||2 = 0.
Combining these estimates, we obtain: limn→∞ ||xn+1 − xn|| = 0.

3) and 4) follows from 1) and 2) by using the real projective space Pk as in Truong
and Nguyen [47], by using a result on convergence in compact metric spaces in
[3]. ��

If we assume that the sequence {zn} converges, then limn→∞ ||zn+1 − zn|| = 0,
and hence limn→∞ δn||∇ f (zn)|| = 0. Thus the condition limt→0 th(t) = 0 is best
possible if we want the process to converge. (On the other hand, if one chooses δn too
small, so to make the condition limn→∞ δn||∇ f (xn)|| = 0, then the limit point—if
exists—may not be a critical point.)

If zn is near a critical point z∞ where the gradient is very flat, for example ∇ f is
Lipschitz continuous near z∞ with a very small Lipschitz constant L(z∞), then the
update zn+1 = zn −δn∇ f (zn) is very small when δn is bounded. However, herewe can
take δ̂(zn) in the order of 1/L(z∞), which is big, and make big steps and maybe can
escape the point z∞ and go to another better critical point. (Of relevance is the Capture
Theorem in Bertsekas [5] which asserts that if z0 is close enough to a local minimum
and the learning rates are bounded, then the sequence zn+1 = zn − δn∇ f (zn) cannot
escape z0.)

One way to make a discrete construction of Unbounded Backtracking GD is as
follows. At Step n, we choose δ̂(zn) by starting with δ = δ0. If δ does not satisfy
Armijo’s condition, then we reduce it by a factor of β as in the basic version of
Backtracking GD. On the other hand, if δ does satisfy Armijo’s condition, we multiply
it by 1/β while Armijo’s condition and δ ≤ h(||∇ f (zn)||) are both still satisfied. δ̂(zn)

is the final value of δ. This construction is similar to Two-wayBacktrackingGD,where
the only differences are that in Two-way Backtracking GD we start with δ = δ(zn−1),
and we bound δ not by h(||∇ f (zn)||) but δ0. In addition to Theorem 3.2, this similarity
between Two-way Backtracking GD and Unbounded Backtracking GD together with
Theorem 3.4 provide more support to the convergence of Two-way Backtracking GD
in general.

The condition δn(x) ≤ h(||∇ f (zn)||) in Unbounded Backtracking GD is a way to
constrain the learning rate, and as we explained covers all possibilities. The second
condition in Wolfe’s conditions also serves the same purpose of constraining the
learning rate, but is not known to cover all possibilities, and currently can only work
well for C1,1

L functions.
Next, we will present theoretical and experimental results as well as heuristic argu-

ments which complement the discussions and results presented so far. First is a result
in a more general setting which as a simple consequence roughly says that in case
of convergence to a non-degenerate critical point then the behaviour of Unbounded
Backtracking GD and the usual Backtracking GD are similar (and this also applies
for Wolfe’s method), for example when the cost function is Morse. Then experiments
are presented to illustrate this result, as well as that Unbounded Backtracking GD and
Backtracking GD can perform sharply different in case of convergence to a degenerate
critical point. Finally, we present a heuristic argument showing that if learning rates
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are chosen in the backtracking manner and so that Armijo’s condition is satisfied, then
the pathological scenario mentioned in Subsect. 3.1 could be prevented.

Theorem 3.5 Fix 0 < α < 1. Choose a sequence of positive numbers δn and define
a sequence xn+1 = xn − δn∇ f (xn). Assume that Armijo’s condition f (xn+1) ≤
f (xn) − αδn||∇ f (xn)||2 is satisfied for all n, and that the sequence {xn} converges
to a non-degenerate critical point x∞. To avoid triviality, we assume moreover that
∇ f (xn) �= 0 for all n. Then for every ε > 0, there is nε so that for all n ≥ nε we have

αδn ≤ 1

2
(||∇2 f (x∞)|| + ε) × (||∇2 f (x∞)−1|| + ε)2.

Proof Fix ε > 0. We have that { f (xn)} decreases to f (x∞). Hence, by Armijo’s
condition we have

0 ≤ f (xn+1) − f (x∞) ≤ f (xn) − f (x∞) − αδn||∇ f (xn)||2,

for all n. Therefore, for all n, we have αδn||∇ f (xn)||2 ≤ f (xn) − f (x∞).
By Taylor’s expansion for f near x∞, using that f isC2 and noting that∇ f (x∞) =

0, we have (here o(.) is the small-O notation)

f (xn) − f (x∞) = 1

2
< ∇2 f (x∞)(xn − x∞), xn − x∞ > +o(||xn − x∞||2)

≤ 1

2
||∇2 f (x∞)|| × ||xn − x∞||2 + o(||xn − x∞||2).

Hence, if n is large enough then f (xn)− f (x∞) ≤ 1
2 (||∇2 f (x∞)||+ε)×||xn −x∞||2

By Taylor’s expansion for ∇ f near x∞, using again that f is C2 and noting that
∇ f (x∞) = 0, we have

∇ f (xn) = ∇2 f (x∞)(xn − x∞) + o(||xn − x∞||).

Hence, multiplying both sides with ∇2 f (x∞)−1, when n is large enough, we get
||xn − x∞|| ≤ (||∇2 f (x∞)−1|| + ε)||∇ f (xn)||.

Putting together all the above estimates and cancelling the term ||∇ f (xn)||2 at the
end, we obtain finally:

αδn ≤ 1

2
(||∇2 f (x∞)|| + ε) × (||∇2 f (x∞)−1|| + ε)2,

for large enough values of n, as wanted. ��
This result says roughly that in case of convergence to a non-degenerate critical

point, then the performance of Unbounded Backtracking GD and of the usual Back-
trackingGDare similar. SinceWolfe’s condition includesArmijo’s condition, the same
applies toWolfe’s condition. On the other hand, in case of convergence to a degenerate
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critical point, then the performance of Unbounded Backtracking GD and Backtrack-
ing GD can be sharply different. Below are some experimental results illustrating this
comment.

The setups are as follows. We choose α = 0.5 for Armijo’s condition.
For the usual Backtracking GD, we choose β = 0.7 and δ0 = 1.
For Unbounded Backtracking GD: we choose β = 0.7 and δ0 = 1 as in the usual

Backtracking GD. We choose the function h(t) = δ0 if t > 1, and h(t) = δ0/
√

t if
t ≤ 1. For the readers’ convenience, we recall here the update rule for Unbounded
Backtracking GD: At step n, we start with δ = δ0. If δ does not satisfy Armijo’s
condition, then we reduce δ by δβ until it satisfies Armijo’s condition, hence in this
case we proceed as in the usual Backtracking GD. On the other hand, if δ does satisfy
Armijo’s condition, then we increase it by δ/β while both Armijo’s condition and
δ ≤ h(||∇ f (xn)||) is satisfied. We choose δn to be the final value of δ, and update
xn+1 = xn − δn∇ f (xn).

We will stop when either the iterate number is 106 or when the gradient of the point
is ≤ 10−10.

Example 3.6 We look at the function f (x, y) = x3sin(1/x) + y3sin(1/y) and
start from the initial point z0 = (4,−5). After 10 steps, both algorithms
Backtracking GD and Unbounded Backtracking GD arrive at the same point
(0.09325947,−0.09325947) which is very close to a non-degenerate local minimum
of the function.

Example 3.7 We look at the function f (x, y) = x4 + y4 and start from the ini-
tial point z0 = (0.1, 15). This function has a degenerate global minimum at (0, 0).
After 106 steps, Backtracking GD arrives at the point (0.00111797, 0.00111802) with
learning rate 1. On the other hand, only after 89 steps, Unbounded Backtracking
GD already arrives at a better point (0.00025327, 0.00025327) with learning rate
90544.63441298596 much bigger than 1.

Finally, we present a heuristic argument showing that Armijo’s condition and back-
tracking manner of choosing learning rates could prevent the pathological scenario
mentioned at the end of Subsect. 3.1. More precisely, we use the following update
rule: it is like the update rule for the discrete version of Unbounded Backtracking GD
mentioned above, except that we do not constrain δ by any function h(||∇ f (zn)||). The
pathological scenario is that the constructed sequence {zn} contains both a bounded
and an unbounded subsequence, and the bounded subsequence converges to a critical
point z∞. Since as mentioned, modifications of Backtracking GD in Truong [44,46]
can avoid saddle points,we expect thatwith the above update rule the sequence {zn} can
also avoid saddle points. Then the point z∞ is expected to be a local minimum. There
is expected a small open neighbourhood U of z∞ for which minz∈∂U f (z) > f (z∞).
Now, the backtrackingmanner of choosing learning rates is expected to have this effect:
if z ∈ U is very close to z∞, then the choice of δ(z) - since at most will be increased by
β at a time and must keep the value of the function not increased—will not be enough
to allow the resulting point z − δ(z)∇ f (z) to escape U . (Since ||∇ f (zn)|| is very
small, it is expected that if δ′ is the largest positive number so that zn −δ′∇ f (zn) stays
in U , then the next value δ′/β is expected to make zn − δ′∇ f (zn)/β stay close to ∂U ,
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which will force f (zn − δ′∇ f (zn)/β) > f (zn)—a condition prohibited by Armijo’s
condition.) Therefore, we expect that if there is a sequence {zn j } converging to z∞,
then the whole sequence {zn} must be bounded, and the above pathological scenario
cannot happen. It would be good if the above heuristic argument can be rigorously
shown at least for C2 cost functions.

3.5 Some Remarks About Implementation of GD in DNN

In this section we mention some issues one faces when applying GD (in particular,
Backtracking GD) to the mini-batch practice in DNN, and also the actual implemen-
tations of mini-batch backtracking methods for GD, MMT and NAG.

3.5.1 Rescaling of Learning Rates

Since the cost functions obtained fromdifferentmini-batches are not exact even though
they may be close, using GD iterations many times can accumulate errors and lead to
explosion of errors. If we use the backtracking method for a mini-batch, the obtained
learning rate is only optimal in casewe continue the trainingwith thatmini-batch. Even
if we take the average of the learning rates frommany batches, using directly this value
in GD can cause a lot of noise from covariance between batches. This phenomenon
has been observed in practice, and the method of rescaling of learning rates has been
proposed to prevent it, in both Standard GD [24] and Wolfe’s method [29]. The main
idea in these papers is that we should rescale learning rates depending on the size of
mini-batches, and a popular choice is to use a linear dependence. Roughly speaking,
if δ is a theoretically good learning rate for the cost function of full batch, and the ratio
between the size of full batch and that of a mini-batch is ρ = k/N (where N = the
size of full batch and k = the size of a mini-batch), then this popular choice suggests
to use instead the learning rate δ/ρ.

Here, we propose a new rescaling scheme that the bigger learning rate δ/
√

ρ should
also work in practice. Our justification comes from the stochastic gradient update rule
with Gaussian noise [23]:

zn+1 = zn − δn

(
∇ f (zn) + r√

N

)
, (9)

where r is a zero mean Gaussian random variable with covariance of ∇ f (zn) from
whole population of samples. The updating term δn(∇ f (zn) + r√

N
) bears a random

variable noise δn
r√
N
. In case of mini-batching, this noise is δn

r√
k
. If we want to

maintain the noise level of mini-batch similar to that of full batch, we can simply
rescale δn by a factor 1/

√
ρ. One can notice that using δ/ρ in (9) has the effect of

trying to make the training loss/accuracy of using small mini-batch the same as that
of using larger mini-batch or full batch after each epoch. This is not essential because
what we really need is fast convergence and high accuracy for stochastic optimising,
not full batch imitation. A larger learning rate such as δ/

√
ρ can help to accelerate the

convergence while still keep low noise level. Smith and Topin [42] demonstrated that
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networks trained with large learning rates use fewer iterations, improve regularisation
and obtain higher accuracies. We have checked with experiments, see below, that this
new rescaling scheme works well in practice.

3.5.2 Mini-batch Backtracking Algorithms

While being automatic and having a stable behaviour, Backtracking GD is still not
popular compared to Standard GD, despite the latter requiring a lot of efforts for
manually fine-tuning.

One reason is that when using Backtracking GD for a mini-batch, we obtain a
learning rate which is good for this mini-batch but not for the full batch, as mentioned
in the previous Subsection. We have resolved this by using rescaling of learning rates.

Another reason is that Backtracking GD, needing more computations, is much
slower than Standard GD. We can resolve by using Two-way Backtracking GD.

Combining the above two ideas, we arrive at a new method which we call Mini-
batch Two-way Backtracking GD (MBT-GD), if we regard Backtracking GD as a
learning rate finder for Standard GD. The precise procedure is as follows. We only
need to apply Backtracking GD a small number of times (say, tens) at the beginning
of the training process or periodically at the beginning of each epoch, for several
first mini-batches, take the mean value of these obtained learning rates and rescale
to achieve a good learning rate, and then switch to Standard GD. The cost for doing
this is very small or negligible in the whole optimising process. We can also apply
the same idea to obtain Mini-batch Two-way Backtracking MMT (MBT-MMT) and
Mini-batch Two-way Backtracking NAG (MBT-NAG).

The above idea is compatible with recent research [50,52], which suggests that
traditional GD as well as MMT and NAG with a good learning rate can be on par or
even better than Adam and other adaptive methods in terms of convergence to better
local minima. The common practice in Deep Learning to find good learning rates is
by manually fine-tuning, as mentioned above. OurMini-batch Two-way Backtracking
methods can be used to automatically fine-tune learning rates. Below we describe
briefly the details of our mini-batch methods MBT-GD, MBT-MMT and MBT-NAG.

For MBT-GD, we simply compute an optimal learning rate at the beginning of the
training process by applying Backtracking GD to several mini-batches (e.g 20 − 50
mini-batches), take the mean value of obtained learning rates with rescaling justifica-
tion and use it in Standard GD for next training iterations. This method is inspired by
cyclic learning rates ([41]) and fastai learning rate finder [14,28] (both require manual
interference for the learning rate schedule in training model or selecting optimal learn-
ing rate), but uses instead backtracking line search method (and hence is automatic).
The recommended value for the hyper parameter α is 10−4, which means that we
accept most of descent points but use scaling justification to reduce noise effects. This
will give larger workable learning rates to accelerate speed and improve regularisa-
tion, which is good according to Smith and Topin [42]. We keep using this learning
rate value for Standard GD until the training gets stuck (e.g. no loss decreasing in
5 consecutive epochs), at which time we then switch to Backtracking GD as in the
beginning but now with α = 0.5. Using larger α when being near local minima gives
us learning rates of appropriate size to guarantee convergence (otherwise, if learning
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rate is too big, then we can leave the critical point, see Example 2.15 in Truong and
Nguyen [47]).

The above procedure roughly means that we will run Backtracking GD only a very
small fraction of times, and most of the time will run the Standard GD. The following
is a theoretical justification for the above procedure. To see the relevance, we note that
when we use mini-batching, the mini-batch sizes are fixed by a number N . A version
for Two-way Backtracking GD and Backtracking NAG and Backtracking Momentum
can also be stated.

Weak-coercive A function f is weak-coercive if whenever { f (xn)} decreases to a
finite number and lim infn→∞ ||∇ f (xn)|| > 0, then {xn} is bounded.

The common activation functions in Deep Learning such as sigmoid and ReLU are
both weak-coercive. If f is a function bounded from below, then its regularisations
f + ε||x ||q , for some constants ε, q > 0, are all coercive. Note that cost functions
in DNN are usually bounded from below, and the practice of regularisation is very
common in DNN.

Theorem 3.8 Let f : Rk → R be C1 function. Fix a positive integer N. Given an
initial point x0 ∈ R

k . Assume that we construct a sequence xn+1 = xn − δn∇ f (xn)

so that for every n we have f (xn+1) ≤ f (xn).

(1) Assume that for every n, either δn is constructed using Backtracking GD, or δn =
δn−1, and at least one of δn, δn+1, . . . , δn+N is updated using Backtracking GD.
If f is weak-coercive, then all conclusions of Theorem 2.1 are satisfied for the
sequence {xn}.

(2) Fix M > 0. Assume that for every n, either δn = δn−1 or δn is the largest
number in {βnδ0 : n = 0, 1, 2, . . .} which is ≤ min{δ(xn), M/||∇ f (xn)||} and
satisfies Armijo’s condition, where δ(xn) is the one constructed from Backtracking
GD. Moreover, assume that for every n, at least one among δn, δn+1, . . . , δn+N

is constructed by the latter procedure. Then all conclusions of Theorem 2.1 are
satisfied for the sequence {xn}.

Proof (1) The proof of the theorem is similar to that of Theorem 3.2, by observing that
since { f (xn)} is decreasing, if a subsequence {xnk } converges, limk→∞ f (xnk ) > −∞
and δnk are all updated by theBacktrackingGDprocedure, then limk→∞ ∇ f (xnk ) = 0.
Indeed, assume otherwise, then by passing to a subsequence, we can assume that
lim infk→∞ ||∇ f (xnk )|| > 0, and hence by the weak-coercivity we have that {xnk }
is bounded. Then since the learning rates δnk ’s are updated by Backtracking GD, it
follows that limk→∞ ∇ f (xnk ) = 0.

For every converging subsequence {xnk }, we construce another subsequence {xn′
k
}

where n′
k ≤ nk is the largest number for which δ(xn′

k
) is updated by Backtracking GD

rule. Then passing to a subsequence again if necessary, we can as in the first paragraph
to assume that

lim
k→∞ ∇ f (xn′

k
) = 0.

We now illustrate the proof in two cases: nk = n′
k + 1 for all k, or nk = n′

k + 2 for
all k. The general case is similar.
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Case 1 nk = n′
k + 1 for all k. In this case, since xn′

k
converges, δnk is bounded,

limk→∞ ∇ f (xn′
k
) = 0, and xn′

k
= xnk+1 = xn′

k
+ δn′

k
∇ f (n′

k), it follows that {xn′
k
}

converges to the same point as {xnk } and hence

lim
k→∞ ∇ f (xnk ) = lim

k→∞ ∇ f (xn′
k
) = 0.

Case 2 nk = n′
k + 2 for all k. We will show again that {xn′

k
} is bounded and

then can proceed as in Case 1. Assume otherwise that limk→∞ ||xn′
k
|| = ∞, we

will obtain a contradiction. Indeed, since xn′
k+1 = xn′

k
− δn′

k
∇ f (xn′

k
), it follows that

limk→∞ ||xn′
k+1|| = ∞ also. Since xnk = xn′

k+2 = xn′
k+1 − δn′

k+1∇ f (xn′
k+1) con-

verges, it follows that limk→∞ ||∇ f (xn′
k+1)|| = ∞, and hence by weak-coercivity we

must have that {xn′
k1+1} is bounded, which is the desired contradiction.

(2) In this case, when we choose {xn′
k
} from {xnk } as in 1) for a convergent subse-

quence {xnk }, then
||xn′

k
− xnk || ≤ M N ,

and hence the sequence {xn′
k
} is bounded. Now using that ∇ f (x) is a continuous

function, it can be checked like in the case of Backtracking GD that if K is a compact
set for which infn:xn∈K ||∇ f (xn)|| > 0, then infn:xn∈K δn > 0. Then we can proceed
like in (1). ��
Remark 3.9 The assumption in (2) of Theorem 3.8 can be easily implemented in prac-
tice in DNN. Note that the condition covers all possible cases if we want the sequence
{xn} converges, since then limn→∞ δn||∇ f (xn)|| = 0. It is basically the usual Back-
tracking GD procedure, the only difference is that here we bound the learning rate by
M/||∇ f (x)|| and not by δ0. Its meaning is that when ||∇ f (x)|| is too big, then we
should take learning rate smaller than δ0. On the other hand, when n very big then δn

chosen this way is the same as the learning rate chosen from the usual Backtracking
GD, the reason being that then xn is close to a critical point and hence M/||∇ f (x)|| is
bigger than δ0. The assumption in (2) is like Backtracking GD with some more local
inputs aside from Armijo’s condition, very much like the algorithm used in Theorem
1.3 in Truong [44].

A special case of part (2) of Theorem 3.8 is when supx∈Rk ||∇ f (x)|| < ∞. In this
case, if we choose M = δ0 supx∈Rk ||∇ f (x)||, then the construction of the sequence
{xn} in (2) is the same as that in (1). This special case is very much relevant to
the current DNN architectures. Indeed, the assumption that ||∇ f || is bounded from
above of part (3) is satisfied for common activation functions such as sigmoid, tanh,
ReLU, max, softmax, linear functions and so on. Hence, by the chain rule in calculus,
this assumption is also satisfied for compositions of such functions. Since a DNN
architecture is currently constructed with such functions between layers, this part (3)
applies for all output maps h of such DNN. If we assume for example that the output
map h is also bounded, then part (3) can be applied also to the cost function of the
DNN.

For MBT-MMT and MBT-NAG, we use the same method to compute the optimal
learning rate, but now at the beginning of every epoch (or after some fixed iterations
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of Standard GD) in order to take advantage of momentum accumulation which is the
strong point of MMT and NAG. As in the case of MBT-GD, it is also recommended to
use α = 10−4 in most of the training process until the training gets stuck (e.g. no loss
decreasing in 5 consecutive epochs), at which time we then switch to use α = 0.5 and
turn off momentum, too. This can help accelerate the convergence at the early stages
of the training and takemore care about the descent near local minima at later stages of
the training. This is very similar to the methods of learning rate warming up and decay,
see an illustration in Subsect. 4.1. We also note that when doing experiments, we do
not really follow the precise definition of Backtracking MMT and Backtracking NAG
as in Sect. 2, which is complicated and which we will explore in more detail in future
work. For the experiments here, we use the following simplified algorithm: fix the
value of γ to 0.9 (as commonly used in practice) and choose δn by Backtracking GD.
That is, we seek to find good learning rates in the standard MMT and NAG algorithms
by using Backtracking GD. The intuition is that as Backtracking GD can find good
learning rates for Standard GD, it can also find good learning rates forMMT andNAG.
The experiments, see below, verify this speculation.

For the hyper-parameter β, we could use any value from 0.5 to 0.95. By the very
nature of backtracking line search, it is intuitive to see that a specific choice of β does
not affect too much the behaviour of Backtracking GD. For the sake of speed, we
use β = 0.5 and the number of mini-batches to apply backtracking line search (at
the beginning of training or each epoch) to be 20. This can help the training speed of
MBT-MMT and MBT-NAG to be about 80%− −99% of the training speed of MMT
and NAG, depending on the batch size. The trade-off is inexpensive since we do not
need to do manually fine-tuning of learning rate (which takes a lot of time and effort).

It is worthy to note that the above settings for MBT-GD, MBT-MMT and MBT-
NAG are fixed in all experiments in this section and hence all obtained results come
from entirely automatic training without any human intervention.

Remark 3.10 Nowadays, in most of modern DNN, there are dropout and batch nor-
malizations layers designed to prevent overfitting and to reduce internal covariate
shift [22,43]. When using Backtracking GD for these layers, more cares are needed
than usual, since non-deterministic outcomes of weights can cause unstability for our
learning rate fine-tuning method. After many experiments, we find that some specific
procedures can help to reduce the undesired effects of these non-deterministic out-
comes. For dropout layers, we should turn them off when using Backtracking GD and
turn them on again when we switch to Standard GD. For batch normalizations, we
need to make sure using the training/testing flags in a consistent way to obtain the
right values for Condition (7) and avoid causing non-deterministic and unstable.

4 Experimental Results

In this section we illustrate the effectiveness of the new methods with experiments
on the benchmark CIFAR10 and CIFAR100 (image) datasets, using various state-of-
the-art DNN models Resnet18 [17], MobileNetV2 [39], SENet [20], PreActResnet18
[18] andDensenet121 [21], showing that—while being automatic—they are better than
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Fig. 2 Learning rate attenuation using Two-way Backtracking GD on (a)Mexican hat function (b) Resnet18
on a dataset contains 500 samples of CIFAR10 (full batch)

current state-of-the-art methods such as MMT, NAG, Adagrad, Adadelta, RMSProp,
AdamandAdamax, see [38].We also verify the heuristic argument proposed in Sect. 3.

4.1 Experiment 1: Behaviour of Learning Rates for Full Batch

In this experiment we check the heuristic argument in Subsect. 3.2 for a single cost
function. We do experiments with Two-way Backtracking GD for two cost functions:
one is the Mexican hat in Example 3.3, and the other is the cost function coming from
applying Resnet18 on a random set of 500 samples of CIFAR10. See Fig. 2. It appears
that for the Mexican hat example, Two-way Backtracking GD stablises to Standard
GD in only 6 iterates, while for CIFAR10 stabilising appears after 40 iterates.

4.2 Experiment 2: Behaviour of Learning Rates for Mini-Batches

In this experiment we check the heuristic argument in Subsect. 3.2 in the mini-batch
setting. We do experiments with MBT-MMT and MBT-NAG for the model Resnet18
on CIFAR10 and CIFAR100. See Fig. 3. Obtained learning rates behave similarly to
the common scheme of learning rate warming up and decay in Deep Learning. The
significant decrease of learning rates in the figure is a consequence of changing α from
1e−4 to 0.5, see description in Section 3.5.2 for detail. The experiment also indicates
that MBT-NAG stabilises better.
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Fig. 3 Learning rate attenuation using Two-way Backtracking GD in the mini-batch setting on Resnet18
on a CIFAR10, b CIFAR100

Table 1 Stability of Averagely-optimal learning rate obtained from MBT-GD across 9 different starting
learning rates (LR) ranging from 10−6 to 100 and 7 different batch sizes from 12 to 800

LR 100 10 1 10−1 10−2 10−3 10−4 10−5 10−6

12 0.0035 0.0037 0.0037 0.0040 0.0046 0.0040 0.0038 0.0036 0.0038

25 0.0050 0.0051 0.0051 0.0058 0.0049 0.0048 0.0052 0.0057 0.0044

50 0.0067 0.0067 0.0065 0.0060 0.0067 0.0061 0.0066 0.0070 0.0075

100 0.0111 0.0101 0.0093 0.0104 0.0095 0.0098 0.0098 0.0099 0.0085

200 0.0140 0.0143 0.0137 0.0147 0.0125 0.0130 0.0135 0.0122 0.0126

400 0.0159 0.0155 0.0167 0.0153 0.0143 0.0174 0.0164 0.0166 0.0154

800 0.0153 0.0161 0.0181 0.0188 0.0170 0.0190 0.0205 0.0154 0.0167

Applied using Resnet18 on CIFAR10. (α = 10−4, β = 0.5)

4.3 Experiment 3: Stability of Learning Rate Finding Using Backtracking Line
Search

In this experiment, we apply MBT-GD to the network Resnet18 on the dataset
CIFAR10, across 9 different starting learning rates (from 10−6 to 100) and 7 dif-
ferent batch sizes (from 12 to 800), see Table 1. With any batch size in the range,
using the rough grid β = 0.5 and only 20 random mini-batches, despite the huge dif-
ferences between starting learning rates, the obtained averagely-optimal learning rates
stabilise into very close values. This demonstrates that our method works robustly to
find a good learning rate representing the whole training data.

4.4 Experiment 4: Comparison of Optimisers

In this experiment we compare the performance of our methods (MBT-GD, MBT-
MMT and MBT-NAG) with state-of-the-art methods, on the CIFAR10 dataset with
Resnet18. See Table 2. We note that MBT-MMT and MBT-NAG usually work much
better than MBT-GD, the explanation may be that MMT and NAG escape bad local
minima better. Since the performance of both MBT-MMT and MBT-NAG are 1.29%
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Table 2 Best validation accuracy after 200 training epochs (batch size 200) of different optimisers using
different starting learning rates (MBT methods which are stable with starting learning rate only use starting
learning rate 10−2 as default)

LR 100 10 1 10−1 10−2 10−3 10−4 10−5 10−6

SGD 10.00 89.47 91.14 92.07 89.83 84.70 54.41 28.35 10.00

MMT 10.00 10.00 10.00 92.28 91.43 90.21 85.00 54.12 28.12

NAG 10.00 10.00 10.00 92.41 91.74 89.86 85.03 54.37 28.04

Adagrad 10.01 81.48 90.61 88.68 91.66 86.72 54.66 28.64 10.00

Adadelta 91.07 92.05 92.36 91.83 87.59 73.05 46.46 22.39 10.00

RMSprop 10.19 10.00 10.22 89.95 91.12 91.81 91.47 85.19 65.87

Adam 10.00 10.00 10.00 90.69 90.62 92.29 91.33 85.14 66.26

Adamax 10.01 10.01 91.27 91.81 92.26 91.99 89.23 79.65 55.48

MBT-GD 91.64

MBT-MMT 93.70

MBT-NAG 93.85

Italic: Best accuracy of the optimiser in each row. Bold: Best accuracy of all optimisers

Table 3 (Models and datasets) Accuracy of state-of-the-art models after 200 training epochs

Dataset CIFAR10 CIFAR100

Optimiser MBT-MMT MBT-NAG MBT-MMT MBT-NAG

Resnet18 93.70 93.85 68.82 70.78

PreActResnet18 93.51 93.51 71.98 71.53

MobileNetV2 93.68 91.78 69.89 70.33

SENet 93.15 93.64 69.62 70.61

DenseNet121 94.67 94.54 73.29 74.51

Bold: Best accuracy on each dataset

and 1.45% above the best performance of state-of-the-art methods, it can be asserted
that our methods are better than state-of-the-art methods.

4.5 Experiment 5: Performance on Different Datasets andModels and Optimisers

In this experiment, we compare the performance of our new methods (without any
change in settings andhyper-parameters) on different datasets andmodels.We see from
Table 3 that our automatic methods work robustly with high accuracies across many
different architectures, from light weight models such asMobileNetV2 to complicated
architecture as DenseNet121.

5 Conclusions

In this paper we reviewed the important role of gradient descent methods in DNN and
previous work on GD, concerning convergence and avoidance of saddle points for
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modifications of Backtracking GD, in both finite and infinite dimensions. Then, we
propose newgradient descent algorithms (includingBacktrackingMMT,Backtracking
NAG, Two-way Backtracking GD and Unbounded Backtracking GD) in large scale
optimisation. The theoretical advantage of our newmethods is that convergence can be
proven for most C1 functions, and it can be also used to provide better convergence of
Wolfe’s method. Unlike other common versions of GD, Unbounded Backtracking GD
allows learning rates to be unbounded. There is also a similarity between Unbounded
Backtracking GD and Two-way Backtracking GD, and depending on whether the
convergence to a non-degenerate or degenerate critical pointswhich the performanceof
UnboundedBacktrackingGDand the usual BacktrackingGDcan be similar or sharply
different.We provided a heuristic argument showing that in the long run, Backtracking
GD should stabilise to a finite union of Standard GD processes. We also discuss about
convergence rate for Backtracking GD and that Backtracking GD can obtain good
upper bounds for local Lipschitz constants of the gradient ∇ f . Local conditions such
as Armijo’s are also easier to adapt to general settings such as manifolds than global
conditions such as C1,1

L .
Our algorithms (with sufficient theoretical justifications) provide a very good auto-

matic fine-tuning of learning rates. In fact, experiments with theMNIST and CIFAR10
data sets show that the new methods are better than current state-of-the-art methods
such as MMT, NAG, Adagrad, Adadelta, RMSProp, Adam and Adamax. The experi-
mental results show that the new methods work very stably, and it seems that among
all methods, the new method MBT-NAG usually has the best stable behaviour and
performance.

There are many interesting and worthy followup questions. For example, to prove
theoretical results in more general settings (such as more general functions or for
constrained optimisation). The readers can see someof these in Section 5 ofTruong and
Nguyen [47]. Here is one questionwhich is of foremost usefulness: To find a stochastic
treatment of Backtracking GD, in the same way as Stochastic GD is for Standard GD.
Note that Armijo’s condition is not treated in the current version of Stochastic GD, and
the fact that δ( f , δ0, x) is not continuous (Example 2.17 in Truong and Nguyen [47])
may make it challenging to treat. Since Backtracking GD is more adaptive to data sets,
stable and automatic, we speculate that it will be useful in resolving challenges such
as adversarial images.
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