
A Vector Implementation
Based On RRB-Tree

for Rust

A confluently persistent vector
implementation for Rust

based on RRB-Tree

Araz Abishov

Thesis submitted for the degree of Master in
Informatics: Programming and Networks

60 credits

Institute of Informatics
Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2020





A Vector Implementation
Based On RRB-Tree

for Rust

A confluently persistent vector
implementation for Rust

based on RRB-Tree

Araz Abishov



c© 2020 Araz Abishov

A Vector Implementation
Based On RRB-Tree
for Rust

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Reading notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction 1
1.1 The Rust programming language . . . . . . . . . . . . . . . . . 2

1.1.1 Ownership and borrowing . . . . . . . . . . . . . . . . . 3
1.1.2 Memory management: the stack and the heap . . . . . . 5
1.1.3 Enums, structs and traits . . . . . . . . . . . . . . . . . 7
1.1.4 Cargo and crates . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Persistent data structures . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Persistence categories . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Achieving persistence . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Tries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Goals and contributions . . . . . . . . . . . . . . . . . . . . . . 12

2 Background 13
2.1 Radix balanced tree . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Radix search . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3 Push . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.4 Pop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Relaxed radix balanced tree . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Relaxed radix search . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Concatenation . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Transience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

v



vi CONTENTS

2.3.1 Guarantees and limitations . . . . . . . . . . . . . . . . . 28

3 Persistent vectors in Rust 29
3.1 Presentation of the project . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Configurability . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 The library APIs . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Memory layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1 Reference counting pointers . . . . . . . . . . . . . . . . 34
3.2.2 Structures, enumerations and cache locality . . . . . . . 35

3.3 Pay only for the features you use . . . . . . . . . . . . . . . . . 39
3.3.1 Transience as the language feature . . . . . . . . . . . . 40
3.3.2 Dynamic representation . . . . . . . . . . . . . . . . . . 42

4 Performance evaluation 47
4.1 Evaluation dimensions . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Time and space . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Measuring the runtime . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.1 Benchmarking frameworks for Rust . . . . . . . . . . . . 50
4.2.2 Configuration and input size . . . . . . . . . . . . . . . . 52
4.2.3 Garbage collection . . . . . . . . . . . . . . . . . . . . . 52

4.3 Parallel benchmarks and Rayon . . . . . . . . . . . . . . . . . . 52
4.3.1 Work splitting . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.2 Work distribution . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Measuring the memory footprint . . . . . . . . . . . . . . . . . . 55
4.4.1 Memory profiling tools . . . . . . . . . . . . . . . . . . . 56

4.5 Presentation of results . . . . . . . . . . . . . . . . . . . . . . . 57
4.5.1 Execution environment . . . . . . . . . . . . . . . . . . . 57
4.5.2 Running benchmarks . . . . . . . . . . . . . . . . . . . . 58
4.5.3 Verbose benchmark results . . . . . . . . . . . . . . . . . 59

5 Benchmarks and results 61
5.1 Sequential benchmarks . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.2 Updating . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.3 Pushing . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



CONTENTS vii

5.1.4 Popping . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.5 Appending . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.6 Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Parallel benchmarks . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.1 Adding elements of two vectors . . . . . . . . . . . . . . 77
5.2.2 Check if a word is a palindrome . . . . . . . . . . . . . . 79

5.3 Memory benchmarks . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.1 Building a vector . . . . . . . . . . . . . . . . . . . . . . 81
5.3.2 Updating and cloning a vector . . . . . . . . . . . . . . . 81

6 Conclusions and future work 85
6.1 Reflecting on contributions . . . . . . . . . . . . . . . . . . . . . 85

6.1.1 Balanced vs. relaxed . . . . . . . . . . . . . . . . . . . . 85
6.1.2 Pay only for the features you use . . . . . . . . . . . . . 86

6.2 Implementation state . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2.1 Supporting all operations of Vec . . . . . . . . . . . . . . 88
6.2.2 Improving the dynamic representation . . . . . . . . . . 88
6.2.3 Focus and display optimizations . . . . . . . . . . . . . . 90

6.3 Towards the library of persistent data structures for Rust . . . . 91

A RRB-tree algorithms 93
A.1 Rebalancing algorithm . . . . . . . . . . . . . . . . . . . . . . . 93

B Tail optimization for persistent vectors 95
B.1 Optimizing the push operation . . . . . . . . . . . . . . . . . . . 95
B.2 Optimizing the pop operation . . . . . . . . . . . . . . . . . . . 96
B.3 Adapting the update and radix search operations . . . . . . . . 96

Bibliography 105





Abstract
Rust is a multi-paradigm system programming language focused on perfor-
mance and reliability. Its rich type system offers memory and thread-safety
guarantees at compile-time.

Therefore, Rust forbids simultaneous sharing and mutation that sometimes is
a necessary and useful pattern. A way to mitigate this limitation in Rust is
to clone a value before sharing it. Naive cloning by copying, however, is an
expensive operation both in terms of memory and performance.

This thesis presents pvec-rs , a project that contributes a vector implemen-
tation with efficient clone operation that borrows ideas from persistent data
structures. The project explores novel approaches to optimize the vector’s
performance by leveraging Rust’s ownership and borrowing rules, as well as
aiming to provide a convenient, idiomatic interface familiar to developers. The
proposed optimizations are evaluated and discussed based on the results of se-
quential and parallel test suites.
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Chapter 1

Introduction

Rust is a modern, open-source programming language with a focus on memory
safety and performance. Its rich type system eliminates several classes of
bugs and makes the language powerful and expressive for building high-level
programs such as web servers and command-line interface applications. With
direct access to computer memory and hardware, Rust is an excellent language
for embedded and low-level programming as well.

However, due to the emphasis on memory safety, it is common to get errors
when building a Rust program, such as forbidden simultaneous sharing and
mutation. Often, such compile-time errors of that kind can be avoided by
better design, but sometimes, the best resolution is to clone the value before
sharing it. Naive cloning by copying, however, is an expensive operation both
in terms of time and space. Thus, resorting to it, especially for large-sized
collections might be inefficient.

Persistent data structures are data structures that provide access to all their
previous versions. Often, persistence is achieved through copying, and thus,
various data structure designs have been developed throughout the years to
optimize for this operation. For example, the standard library of the Scala pro-
gramming language1 provides a persistent vector implementation that demon-
strates good performance for all operations, including copying.

1https://www.scala-lang.org/

1

https://www.scala-lang.org/
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This thesis presents pvec-rs , a project that contributes a vector implemen-
tation with efficient clone operation that borrows ideas from persistent data
structures. The project explores novel approaches to optimize the vector’s
performance by relying on ownership and borrowing rules enforced by Rust,
as well as aiming to achieve a convenient, familiar interface to developers. The
proposed optimizations are evaluated and discussed based on the results of the
sequential and parallel tests.

In this chapter, we will look at the background for the pvec-rs project starting
with Section 1.1 for the Rust programming language, followed by Section 1.2
dedicated to persistent data structures and their classification. Finally, Sec-
tion 1.3 gives an overview of the contributions made in this project.

1.1 The Rust programming language
Rust is a relatively new programming language developed at Mozilla that fa-
vors reliability and performance. It is a statically typed language with type
inference, with high-level constructs such as closures, pattern matching, and al-
gebraic data types. At the same time, Rust gives the option to control low-level
details, such as memory management, without all the unsafety traditionally
associated with it.

Rust does not have a garbage collector and can be configured to exclude the
standard library, allowing it to be used for programming microcontrollers, op-
erating systems, and drivers, a domain that has been occupied mainly by
C/C++. It avoids the tradeoff between control and safety by statically check-
ing memory correctness at compile-time without introducing any runtime over-
head [14].

Rust’s advanced type system guarantees memory safety by enforcing ownership
and borrowing rules, making Rust a unique programming language that helps
to write fast, safe, and reliable software.

The project presented in the thesis, pvec-rs , contributes persistent vectors to
the Rust programming language. The following sections are a basic introduc-
tion to the relevant parts of Rust touched in this thesis. For a more in-depth
overview of the more advanced language features, see the Rust book [10].



1.1 The Rust programming language 3

1.1.1 Ownership and borrowing

Ownership Ownership is Rust’s most unique feature, and it enables Rust
to make memory safety guarantees without needing a garbage collector. Every
object allocated in Rust always has exactly one owner. Ownership can be
transferred from one function to another bymoving the object. Rust’s compiler
is capable of tracking these movements and identify the location where the
object is no longer used, or in Rust’s terminology, where it goes out of scope,
and generate code for destroying that object. To summarize:

• Each value in Rust has a variable that is called its owner.

• There can only be one owner at a time.

• When the owner goes out of scope, the value is dropped.

Borrowing Borrowing in Rust is the act of creating references to an object.
The compiler checks that references always go out of scope before the object
they are pointing to, returning an error if it does not, thus guaranteeing that
references will never be dangling pointers [14]. The borrowing rules are:

• At any given time, you can have either one mutable reference or any
number of immutable references.

• References must always be valid: they cannot outlive an object they are
pointing to, and they have to point to an object of a correct type.

Ownership and borrowing rules are demonstrated in Listing 1 taken from [7].
On line 2, a new vector is created and assigned to the vec variable. Since vec
owns the object, it is allowed to mutate it by pushing a value on line 3.

On lines 6 and 7, two references are created with the & operator. One of them
is borrowed by the borrow function, with the vec still being the owner. When
borrow returns, the reference goes out of the scope first, and then the same
happens to vecref a line later. The two references are a demonstration of the
possibility to simultaneously create more than one immutable reference to the
same object.

On line 10 a new mutable reference is created with the &mut operator. While
data is borrowed mutably, no other references can exist. When borrow_mut
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1 fn main() {
2 let mut vec = Vec::new();
3 vec.push(42);
4

5 { // Two references are created.
6 let vecref = &vec;
7 borrow(&vec);
8 // ^ Ref goes out of scope when borrow returns
9 } // vecref goes out of scope here

10

11 borrow_mut(&mut vec); // <- Lend ‘vec‘ mutably to ‘borrow_mut‘
12 take(vec); // <- Ownership transferred to ‘take‘
13 vec.push(37); // <- Error: use of moved value: ‘vec‘
14 }
15

16 fn take(mut my_data: Vec<i32>) {
17 my_data.push(99); // ‘my_data‘ is owner, can perform mutation
18 } // ‘my_data‘ goes out of scope and will be freed here
19

20 fn borrow(vec: &Vec<i32>) {
21 vec.push(10); // error: cannot borrow immutable borrowed ...
22 let element = vec.get(0); // Read is possible.
23 } // Borrowing ends, but ‘vec‘ continues to live in ‘foo‘
24

25 fn borrow_mut(vec: &mut Vec<i32>) {
26 vec.push(0); // Mutable borrow of ‘vec‘, can mutate.
27 }

Listing 1: Demonstrating ownership and borrowing rules

returns the reference goes of the scope.

When the function take is invoked the ownership to the vec object is trans-
ferred to the variable my_data. The move happens because take accepts the
object by value rather than by a reference. Compiler will error on attempt to
use vec after it has been moved on line 13.
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Unsafe Rust Rust has another language hidden inside it that does not en-
force memory safety guarantees: it is called unsafe Rust. Rust forces develop-
ers to find a safer solution to problematic code or mark it as unsafe and thus
highlight the code as a potential source of problems during future debugging.

The pvec-rs project is designed and implemented without using unsafe Rust
features to take advantage of all compile-time checks to minimize the risk of
introducing bugs.

1.1.2 Memory management: the stack and the heap

Programming languages such as Java, do not give direct control over the stack
and the heap memory, by abstracting them away from a developer. However,
systems programming languages like Rust, allow explicit control over memory
allocation on the stack or the heap.

By default, Rust allocates objects on the stack. The allocation is local to
a function call and is limited in size. The heap allocations, on the other
hand, have to be explicitly requested by the developer, and they are virtually
unlimited in size and globally accessible [10].

The following section gives an overview of how Rust supports heap allocation.

Smart pointers

Smart pointers are data structures that not only act as a pointer but also have
additional metadata and capabilities.

1 fn main() {
2 let b = Box::new(5); // <- 5 will be stored on the heap.
3 println!("b = {}", b);
4 } // <- Goes out of the scope.

Listing 2: Example of using the box pointer

Box The most straightforward smart pointer is Box<T> that allows storing
data on the heap rather than the stack.
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When the box pointer in Listing 2 goes out of the scope on line 4, the corre-
sponding heap allocation gets freed as well.

Rc or reference counting There are cases when a single object might have
multiple owners. For example, in graph data structures, multiple edges might
point to the same node, and that node is conceptually owned by all of the
edges that point to it. A node should not be cleaned up unless it does not
have any edges pointing to it [10].

1 fn main() {
2 let mut rc = Rc::new(Vec::new());
3 // ^ Wrapping the vec instance into rc pointer
4

5 Rc::make_mut(&mut rc).push(42);
6 // ^ Ref count is 1, push succeeds without cloning.
7

8 take(rc.clone()); // <- Ref count is incremented to 2.
9 Rc::make_mut(&mut rc).push(37); // <- Updating the original 'vec'.

10 } // <- 'rc' is decremented to 0 and dropped
11

12 fn take(mut my_rc: Rc<Vec<i32>>) {
13 println!("val={:?}", my_rc.get(0));
14 // ^ Reading values does not cause clone
15

16 Rc::make_mut(&mut my_rc).push(99);
17 // ^ Mutating the object with ref count of 2
18 // will clone the wrapped value and then update it.
19 } // ‘my_rc' is decremented to 0 and dropped.

Listing 3: Example of using the reference counting pointer

To enable multiple ownership, Rust has a type called Rc<T>, which is an ab-
breviation for reference counting. The Rc<T> type keeps track of the number
of references to a value that determines whether or not a value is still in use.
If there are zero references to a value, the value can be cleaned up without any
references becoming invalid.
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Listing 3 demonstrates how multiple ownership works using the Rc<T> pointer.
On line 2, a vector is created and wrapped into reference counting pointer
immediately. On the first call to Rc::make_mut method, the number 42 is
pushed onto the vector.

The rc variable is cloned before it is passed to take by value, causing the
reference count to be incremented to 2. It is important to note that the under-
lying vector object is not cloned until line 16, where Rc::make_mut function
clones the inner value to ensure unique ownership. When take is finished,
both my_rc and the newly copied vector go out of the scope and destroyed.

The execution continues on line 9, where main proceeds updating the vector.
In this case, Rc::make_mut is not causing a clone because the underlying vector
has only a single reference to it.

Note that Rc<T> is only for use in single-threaded scenarios. Arc<T> that
stands for atomic reference counting should be used in a multi-threaded envi-
ronment instead.

1.1.3 Enums, structs and traits

Structs

1 struct Book {
2 author: String,
3 name: String
4 }

Listing 4: A basic Rust struct

Structs are the most common way to declare complex custom data types in
Rust. A struct, or structure, is a custom data type that lets you name and
package together multiple related values2.

Enums
2https://doc.rust-lang.org/book/ch05-00-structs.html

https://doc.rust-lang.org/book/ch05-00-structs.html
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1 struct Point(isize, isize);
2

3 enum Shape {
4 Rectangle {
5 p_1: Point,
6 p_2: Point
7 },
8 Triangle {
9 p_1: Point,

10 p_2: Point,
11 p_3: Point
12 }
13 };

Listing 5: A basic Rust enum

Enums or enumerations, are used to define a custom data type by enumerating
its possible variants, where each variant might have different data associated
with it. The size of an enum instance is equal to the maximum size of its
variants. For example, Shape::Rectangle will be allocated the same amount
of memory as Shape::Triangle, even though it contains only two points.

Traits

A trait is a language feature used to define a set of methods that implement
behavior. Moreover, they can be used to reuse behavior without reusing state
[16]. A distinct ability of traits is that they can be implemented outside of the
type declaration, including types that belong to other modules. Traits support
default function implementations, as well as inheritance. Listing 6 shows how
traits can be used to define the common contract between several data types.

Drop Dropping is the process of cleaning-up a value that goes out of the
scope in a Rust program. By default, the compiler generates code that au-
tomatically drops the value, but there is also a way to override the default
behavior by implementing the Drop trait. The Drop trait requires to imple-
ment one method named drop that takes a mutable reference to self.
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1 struct Email(String);
2 struct Tweet(String);
3

4 trait Message {
5 fn send();
6 }
7

8 impl Message for Email {
9 fn send() { /* sending email */ }

10 }
11

12 impl Message for Tweet {
13 fn send() { /* sending tweet */ }
14 }

Listing 6: A basic Rust trait

1.1.4 Cargo and crates

Cargo is the package manager for Rust. It manages Rust dependencies by
distributing, downloading, and compiling packages.

Rust packages are called crates. The package registry of the Rust community
is located at https://crates.io/.

Every crate, including pvec-rs , has a Cargo.toml configuration file that con-
tains feature flags, dependencies and their versions, and the crate metadata
such as name, version, and description.

1.2 Persistent data structures
Ephemeral data structures are standard data structures that do not keep the
history of their versions. Once an ephemeral data structure is modified, there
is no mechanism to go back to previous states. This behavior is typical for
collections provided by the standard library of modern general-purpose pro-
gramming languages.

https://crates.io/
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Persistent data structures, on the other hand, are set up in a different way
to allow access to any version, old or new, at any time [5]. Persistent data
structures were adopted in functional programming3 languages such as Scala4
and Clojure5.

1.2.1 Persistence categories

Persistent data structures are categorized based on the operations which they
offer over their versions:

• Partial persistence — Read-only access to any previous version of the
data structure with the ability to update only the newest one. The
versions are ordered linearly.

• Full persistence — Read and write operations are available for all ver-
sions. The versions are structured as a tree.

• Confluent persistence —Full persistence with the ability to merge several
previous versions into a single new one. The versions form a directed
acyclic graph [6].

• Functional persistence — This model takes its name from functional pro-
gramming, where objects are immutable. In comparison to the previous
models, it prohibits change of the internal representation of the data
structure [13].

1.2.2 Achieving persistence

While persistence can be achieved by copying, the cost of write operations
quickly becomes unacceptable. Functional programming languages that have
immutable data structures by design were at the forefront of the research for
a more efficient alternative.

Multiple data structure designs were proposed, often offering good performance
for particular operations with the focus on particular use cases. For example, a

3Functional programming is a programming paradigm where programs are constructed
by applying and composing functions.

4https://www.scala-lang.org/
5https://clojure.org/

https://www.scala-lang.org/
https://clojure.org/
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singly linked list guarantees O(1) performance for adding or removing elements
at the head, but suffers from the worst case O(n) random access operations.

1.2.3 Tries

Since most write operations modify only some parts of a data structure, a
complete copy is often unnecessary. A better approach is to use the similarity
between the new and old versions by sharing structure between them. For
example, instead of using a single memory block to represent a data structure,
it can be split into smaller pieces or nodes linked together as a tree. Since
modifications only apply to some nodes, the rest of them remain unchanged
and can be shared without copying.

Inspired by Bagwell’s paper Ideal Hash Trees [1], Rich Hickey pioneered the
first persistent vector to offer uniformly good performance across different op-
erations comparable to mutable vectors for the Clojure programming language.
Clojure’s vectors are fully persistent, as they allow us to read and write to all
versions.

A persistent vector is a bit-array mapped trie, or simply a "wide" tree with a
high branching factor. Thus, tries6 are very shallow, being at most 7 levels
deep when the branching factor is equal to 32, offering effectively constant
time for almost all operations. Wide nodes and shallow height help to improve
cache locality and to reduce cache misses.

Later, Bagwell and Rompf introduced relaxed radix balanced trees based on
the design of Clojure’s persistent vectors [2]. RRB-trees offer efficient con-
catenation and splitting, enabling vectors to be suitable data structures for
parallel processing. Later it became a foundation for parallel vectors in Scala’s
standard library [17].

The RRB-tree data structure is used to implement persistent vectors in pvec-
rs and is explored further in Section 2.2.

6Generally, a trie is a kind of a tree data structure used to store key-value pairs where
keys are usually strings.
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1.3 Goals and contributions
The purpose of this thesis is to explore and evaluate novel ideas proposed
by Nicholas Matsakis for optimizations that emerge at the intersection of the
unique Rust features and persistent data structures to contribute a persistent
vector implementation with excellent performance and idiomatic Rust inter-
face.

The thesis makes the following contributions:

• A persistent vector implementation based on RRB-tree with efficient
concatenation and splitting to make it a reasonable data structure for
parallel programming.

• An extension for the data parallelism library Rayon, combined with per-
sistent vectors for creating an efficient implementation of general-purpose
parallel vectors.

• Describing and implementing novel optimizations specific to Rust, specif-
ically dynamic representation and unique access optimizations.

• An extensive performance evaluation of the contributed persistent and
parallel vectors, as well as the effectiveness of the proposed optimizations.

Section 2.1 gives an overview of the RRB-tree data structure that serves as the
foundation for the persistent vector. In Chapter 3, the pvec-rs project, its
interface, and optimizations specific to Rust are presented in detail. Chapter 4
focuses on the performance evaluation of the persistent vector followed by a
chapter with results.



Chapter 2

Background

This chapter gives an introduction to the radix balanced tree and relaxed radix
balanced tree data structures that are used as the foundation for persistent
vectors:

• First, we will take a look at radix balanced trees, their organization, and
algorithms such as radix search and path copying that are used at the
core of all vector operations.

• Then we will proceed to an extension — relaxed radix balanced tree, which
enables efficient concatenation and splitting.

• Finally, we discuss the concept of transience and how it can be used to
improve the performance of persistent data structures.

2.1 Radix balanced tree
Radix balanced trees or RB-trees are m-ary trees that use integers as keys to
find values. The data structure was pioneered by Rich Hickey as the foundation
for the persistent vector implementation in Clojure [9].

RB-trees consist of nodes that reference subtrees or values. We will be referring
to the former and latter types of nodes as branch nodes and leaves correspond-
ingly. The number of subtrees and values in the node is configurable and is

13
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defined as m or the branching factor. The branching factor can be any number
that is a power of 2, allowing an efficient radix search implementation.

The higher the value of m, the wider and shallower the tree will be for the
given number of elements. From now on the height of a tree will be referred
to as h, where hmax is the upper boundary:

hmax = logm(n) (2.1)

When m is a large value, for example 32, the tree becomes shallow, and the
complexity of accessing values by traversing the tree from the root to a leaf
becomes effectively constant. For example, if the maximum value of 32 bit
signed integer is substituted for n in Equation (2.1) then hmax will never exceed
7 levels. Thus, due to its strong performance guarantees, RB-tree serves as a
solid foundation for a general-purpose persistent vector implementation.

In the following sections, we will take a look at RB-tree algorithms used to
implement vector operations1.

2.1.1 Radix search

The algorithm used to lookup values in RB-tree is called radix search. It
serves as a foundation for other operations that involve the tree traversal, such
as push, pop, and update.

Bit partitioning

Radix search accepts an integer key as an argument. It can be thought of as
a composite key, where each subkey is a sequence of bits. Conceptually, the
idea is to divide the key into bit blocks, where each block is an index, specific
to the tree level.

As demonstrated in Equation (2.2), the bit block size can be calculated from
the branching factor. It will be referred to as x or bits per level. When the
branching factor m is 16, x is 4, meaning that the subkey size is equal to 4
bits.

1For a formal definition of RB-tree, refer to [11]
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x = log2(m) (2.2)

Extracting subkeys

The number of subkeys within the search key depends on the number of tree
levels or h. For example, a search key addressing an element of the tree of
h = 3 and x = 2 will consist of 3 subkeys taking up 6 bits of space in total.

Subkeys are arranged in the order from the most to the least significant bits,
where the most significant block of bits is a key used to access the child node of
the root. Each following key is used to find a child node on the corresponding
tree level.

Let us consider an example of processing a key that addresses a value in the
tree of h = 3, m = 4 and x = 2.

5410 = 001101102 (2.3)

Since the tree height is three, we have three corresponding subkeys: 112, 012,
and 102. Let us assume that we are interested in extracting the subkey for the
child node on the second level that corresponds to the 012 bits.

The first step is to get rid of the bits following the subkey of our interest. The
logical right shift operation2 denoted as ≫, will push the specified number of
0s into a key k, where l is the level at which current node is located:

k ≫ ((l − 1) · x). (2.4)

Since the node from the example is located at l = 2 in the tree of x = 2, the
key k is shifted by 2 bits. The result of the operation is 000011012. As a result,
the "tail" of the key is truncated. The next step is to remove bits preceding
the subkey by masking them to 0 using the bitwise "and" operator.

2A logical right shift is a bitwise operation that shifts all the bits of its first operand to
the right by number of bits specified in the second operand.
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A bitwise "and" takes two equal-length binary representations and executes
the "and" operation for each pair of the corresponding bits. If both bits in the
compared position are 1, the bit in the resulting binary representation is 1;
otherwise, the result is 0. Here is an example, where the first and the second
operands are the key and mask respectively:

00001101 & 00000011 = 00000001. (2.5)

Only the last two bits of the mask are set to 1, meaning that all bits of the key
except the last two will be masked to 0. The result of the "and"-ing operation
will be the value of the subkey.

A mask is of the integer type and is calculated from the branching factor m:

mask = m− 1. (2.6)

If m is equal to 4, the maximum subkey value will be 3, which equals to
000000112.

10410 = 011010002

00 01 10 11

00 01 10 11

00 01 10 11

00 01 10 11

a b c d e f g h i j k l m n o p

Figure 2.1: Visualization of the radix search algorithm
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Figure 2.1 is an illustration of how radix search works. There is only a fraction
of the tree visualized in the example rendering values in the [92, 107] index
range.

The branching factor of the tree is 4, resulting in the subkey size of 2 bits. The
mask is equal to 3 or 00000011 in binary representation. For simplicity, the
index type is selected to be unsigned byte with a maximum capacity of 256.

The tree height in Figure 2.1 is 4. The goal is to lookup the value at the index
104, which is equal to 011010002. Listing 7 outlines the radix search algorithm.

The search starts by initializing the node and level variables to root and
height − 1 correspondingly. The for loop runs until the leaf node level is
reached, where each step towards it involves selecting a child node by using bit
shifting and masking. After exiting the loop, the function returns the value
from the leaf node. The runtime complexity of radix search is O(logm(n)).
1: function RadixSearch(root, key)
2: node ← root
3: for level ← rootheight - 1, 1 do
4: index ← (key ≫ (level · x)) & mask
5: node ← node[index]
6: index ← key & mask
7: return node[index]

Listing 7: Radix search algorithm

2.1.2 Update

The persistent update operation returns a new tree version that includes an
updated value, instead of mutating the original instance in-place as with
ephemeral data structures.

Path copying

When updating a RB-tree, the radix search algorithm is used to build a path to
the value. In order to avoid mutating the original tree instance, each node on
the path is copied. This process is called as path copying [15]. It is important
to emphasize that nodes that are not a part of the path are reused.



18 2.1 Radix balanced tree

The update operation performs the h copies of m sized nodes, where h is the
maximum height of the tree. As described in Equation (2.1), h is bound by
O(logm(n)), which results in O(m · logm(n)) complexity of the update opera-
tion.

For large branching factors m such as 32, the performance becomes effectively
O(1). For example, if the tree is full, where the number of all elements n is
bound by the maximum value of 32 bit integer3, h will be at most 7.

1: function Update(root, key, value)
2: newRoot ← Clone(root)
3: node ← newRoot
4: for level ← rooth - 1, 1 do
5: index ← (key ≫ (level · x)) & mask
6: newChildNode ← Clone(node[index])
7: node[index] ← newChildNode
8: node ← newChildNode
9: index ← key & mask
10: node[index] ← value
11: return newRoot

Listing 8: Path copying algorithm for RB-tree

From an implementation perspective, the difference between update and radix
search is that every visited node, including root, must be copied. The return
value is the root node for the new version of the tree.

2.1.3 Push

The push operation is used to add new values to the end of an RB-tree. It
employs path copying to preserve the original tree without changes. It accepts
the root node and new value as arguments and returns a new version of the
tree.

The RB-tree size is used as the search key. For example, if the tree size is 9,
a key for the new value will be 9. The size is incremented after the operation
completes.

32147483647
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Since the push operation adds new values, it has to manage the tree capacity.
Generally, there are two cases that require special handling:

• The case when a path to a leaf node includes branch nodes that are not
created yet. The solution is to generate missing nodes while descending
the tree.

• The situation when the tree size exceeds its capacity4 is known as root
overflow. It can be solved by adding a new level to the tree by creating a
new root node and setting the old one as the first child of the new root.

The complexity of the operation is O(m · logm(n)) as it traverses and creates
new nodes from the root to a leaf.

Listing 9 demonstrates how the tree capacity is calculated and managed.

2.1.4 Pop

The purpose of pop is to remove values from the end of an RB-tree. It ac-
cepts root as input and returns both a removed value and a new version of a
structure.

Pop is responsible for reducing the capacity of RB-trees when needed, including
the removal of empty branches and leaves. Similar to the update and the push
operations, it relies on the path copying algorithm to avoid modifying the
existing version of the tree.

Since RB-tree is a complete5 tree, all entries to the right of NIL must be absent
as well. As shown in Listing 10, checking if the first entry is NIL is sufficient.
If NIL, the empty child will be replaced with a NIL reference in the parent
node.

A root is redundant if it contains only a single child node, the case if the second
entry is NIL. The original root is demoted by replacing it with the first child
node, which becomes the new root.

4Capacity is the maximum number of elements a tree can accommodate.
5A complete m-ary tree is a tree that must be filled on every level except for the last

one. If the last level is partially filled, all nodes of the tree must be "as far left as possible".
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1: function Capacity(height)
2: return m � ((height - 1) · x)
3:
4: function Push(root, value)
5: newRoot ← NIL
6: if Capacity(rootheight) <= rootsize then
7: newRoot ← CreateNode
8: newRoot[0] ← Clone(root)
9: newRootheight ← rootheight + 1
10: else
11: newRoot ← Clone(root)
12: node ← newRoot
13: key ← newRootsize
14: for level ← newRootheight - 1, 1 do
15: index ← (key ≫ (level · x)) & mask
16: childNode ← node[index]
17: newChildNode ← NIL
18: if childNode = NIL then
19: newChildNode ← CreateNode
20: else
21: newChildNode ← Clone(childNode)
22: node[index] ← newChildNode
23: node ← newChildNode
24: index ← key & mask
25: node[index] ← value
26: newRootsize ← newRootsize + 1
27: return newRoot

Listing 9: Pseudocode for the RB-tree’s push operation

The pop operation traverses a tree and creates m new nodes. Hence, its
complexity is O(m · logm(n)).

2.2 Relaxed radix balanced tree
Relaxed radix balanced tree or RRB-tree is a confluently persistent data struc-
ture that extends RB-tree to support concatenation and splitting in O(log(n))
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1: function PopNode(node, key)
2: newNode ← Clone(node)
3: value ← NIL
4: if nodeheight = 0 then
5: index ← key & mask
6: value ← newNode[index]
7: newNode[index] ← NIL
8: else
9: index ← (key ≫ (newNodeheight · x)) & mask
10: value, childNode ← PopNode(newNode[index], key)
11: newNode[index] ← childNode
12: if newNode[0] = NIL then
13: return value, NIL
14: else
15: return value, newNode
16:
17: function Pop(root)
18: value, newRoot ← PopNode(root, rootsize - 1)
19: if newRoot[1] = NIL) then
20: newRoot ← newRoot[0]
21: return value, newRoot

Listing 10: Pseudocode for the RB-tree’s pop operation

rather than linear time without compromising the performance of other oper-
ations.

An invariant that RB-tree maintains is that all nodes except the right-most
ones have to be full. This enables a simple radix search implementation, but
on the other hand, makes efficient sub-linear concatenation impossible.

RRB-trees relax this constraint by allowing nodes to be partially full, and in-
troduce a rebalancing algorithm to ensure that the tree height does not exceed
the O(log(n)) bound to keep performance guarantees for other operations.

In this section, we will look at how RRB-trees work, specifically the concate-
nation algorithm and the relaxed variant of the radix search. For details of the
implementation of the split, relaxed push, and pop operations, please refer to
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the project source code6 or to [11].

2.2.1 Relaxed radix search

With relaxed RRB-tree constraints, there is no efficient way to calculate the
size of the subtree without additional metadata. Hence, the sizes array is
introduced to keep track of the subtree size. The sizes array ism elements long,
where each value represents the subtree size at the corresponding index. The
sizes table values are re-calculated when the subtree is modified, for example,
when concatenating or pushing new values.

When the radix search encounters a relaxed node, it compares the entire search
key against entries in the size table. A subtree contains the desired value if
the corresponding size table entry is bigger than or equal to the search key.
Before descending into a subtree and repeating the search step, the search key
is subtracted the size of the subtree.

When a balanced node is encountered, the search process falls back to the
balanced version of the radix search algorithm Section 2.1.1.

Since the tree traversal involves scanning an m long sizes array for every node
from the root to a leaf, the complexity of relaxed radix search is O(m·logm(n)).
In theory, the FindIndex function in Listing 11 can be replaced with binary
search resulting in slightly better O(log2(m) · logm(n)) performance. However,
it is nearly impossible to measure the difference for such small sized arrays,
as linear scan can be as fast if not faster due to its simplicity and CPU cache
locality7.

2.2.2 Concatenation

The concatenation algorithm used in this project is from [17], which produces
a slightly more balanced tree than the initially proposed version from [2]. It
achieves it by allowing the relaxed tree nodes to have m children instead of
m− 1.

6https://github.com/arazabishov/pvec-rs
7https://dirtyhandscoding.wordpress.com/2017/08/25/performance-comparison-linear-

search-vs-binary-search/

https://github.com/arazabishov/pvec-rs
https://dirtyhandscoding.wordpress.com/2017/08/25/performance-comparison-linear-search-vs-binary-search/
https://dirtyhandscoding.wordpress.com/2017/08/25/performance-comparison-linear-search-vs-binary-search/
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1: function FindIndex(sizes, idx)
2: candidate ←0
3: if candidate < m - 1 and sizes[candidate] <= idx then
4: candidate++
5: return candidate
6:
7: function RelaxedRadixSearch(root, key)
8: node ← root
9: idx ← key
10: for level ← rootheight - 1, 1 do
11: if nodesizes = NIL then
12: index ← (key ≫ (level · x)) & mask
13: node ← node[index]
14: else
15: sizes ← nodesizes
16: index ← FindIndex(sizes, idx)
17: node ← node[index]
18: if index != 0 then
19: idx ← idx - sizes[index - 1]
20: index ← idx & mask
21: return node[index]

Listing 11: Pseudocode of relaxed radix search

The algorithm consists of two stages: descending the tree, and then, merging
and rebalancing nodes. The time complexity of the presented concatenation
algorithm is O(m2 · logm(n)).
The recursive function in Listing 12 descends the tree by selecting the rightmost
node of the left tree and the leftmost node of the right tree. If one of the trees
is taller than the other, the function descends into a taller tree only until nodes
of both trees are at the same level.

When the bottom level with leaf nodes is reached, the function stops descend-
ing and starts merging and rebalancing nodes to ensure the O(logm(n)) bound
on the tree height.

The Rebalance function accepts three lists of nodes as arguments. The left
and right lists constitute all nodes of both trees at the given level except two:
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1: function Concat(leftNode, rightNode)
2: if leftNodeheight > rightNodeheight then
3: mergedNode ← Concat(leftNodelast, rightNode)
4: return Rebalance(leftNodeinit, mergedNode, NIL)
5: else if leftNodeheight < rightNodeheight then
6: mergedNode ← Concat(leftNode, rightNodefirst)
7: return Rebalance(NIL, mergedNode, rightNodetail)
8: else
9: mergedNode ← NIL
10: if leftNodeheight = 0 then
11: mergedNode ← Concat(leftNode, rightNode)
12: else
13: if leftNodeheight = 1 then
14: mergedNode ← Concat(leftNodelast, rightNodefirst)
15: else
16: mergedNode ← Concat(leftNodelast, rightNodefirst)
17: return Rebalance(leftNodeinit, mergedNode, rightNodetail)

Listing 12: Concatenation algorithm of RRB-tree

the rightmost node of the left tree and the leftmost node of the right tree.
Those two nodes are already rebalanced and passed as the middle argument.
Three lists are concatenated together into a single merged list.

The goal of rebalancing is to arrange the children of merged nodes in such a way
that all nodes except the rightmost branch are filled with values. When the
Rebalance function completes re-arranging nodes, it returns a new branch
containing rebalanced nodes. Pseudocode for rebalancing can be found in
Listing 23.

The rebalancing process is illustrated in Figures 2.2–2.5. Note, the presented
figures exclude parts of trees that are not important for conveying the idea to
preserve space.
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. . .. . .. . .

e f g h i ja b c d

. . .

o p q r s t u vk l m n w x y z

Figure 2.2: Illustration of the rebalancing algorithm at level 0

Concatenation starts at the bottom of the tree by merging the leaf nodes. The
result is a new rebalanced branch node with leaves that will be used when
rebalancing nodes at level 1.

. . .. . .. . .

e f g ha b c d i j k l m n

. . .

o p q r s t u v w x y z

Figure 2.3: Illustration of the rebalancing algorithm at level 1

Rebalancing at level 1 involves the left and right branch nodes together with
the newly created branch node from the previous step. The algorithm avoids
processing nodes where rebalancing is not beneficial. For example, in Figure 2.4
where the full nodes from the left-hand side tree are reused without rebalancing
them.



26 2.3 Transience

. . .. . .. . .

e f g h i j k la b c d m n o p u v w x y zq r s t

. . .

Figure 2.4: Illustration of the rebalancing algorithm at level 2

Figure 2.5 is the last step that rebalances the top-level nodes of the left and
right trees, producing a new root. If the root contains only a single child, its
child will be promoted to be the root to avoid unnecessary overhead.

. . .. . .. . . . . .

e f g h i j k la b c d m n o p q r s t u v w x y z

Figure 2.5: Illustration of the rebalancing algorithm: a rebalanced tree

The formal description and analysis of concatenation algorithm and its imple-
mentation is thoroughly presented in [11].

2.3 Transience
When modified, conventional persistent data structures always return a new
version that includes the change. It is a reliable and straightforward way to
ensure that existing versions are not changed, a behavior that is essential to
robust programs.
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However, there are scenarios when persistence is not useful, such as when
working with a collection in isolated environment like a pure function. For
example, building a new vector using the push operation creates a new version
on every call, immediately dismissing the previous one.

Even though persistent data structures minimize the cost of creating new ver-
sions by path copying, memory allocations are still very resource consuming.
Thus, transient data types were introduced to the Clojure programming lan-
guage to solve this problem.

Transience is an optimization that allows us to update persistent data struc-
tures in place without creating new versions in performance-critical code. Once
a transient data structure is constructed, it can be converted back to persistent
and safely shared.

1 (defn vecpersistent [n] ;; uses a persistent vector
2 (loop [i 0 v []]
3 (if (< i n)
4 (recur (inc i) (conj v i))
5 v)))
6

7 (defn vectransient [n] ;; uses a transient vector
8 (loop [i 0 v (transient [])]
9 (if (< i n)

10 (recur (inc i) (conj! v i))
11 (persistent! v))))

Listing 13: An example of working with transient and persistent vectors in
Clojure

As demonstrated in Listing 13, working with transient types requires special
syntax such as transient, conj!, and persistent!8.

8https://clojure.org/reference/transients

https://clojure.org/reference/transients
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2.3.1 Guarantees and limitations

Clojure ensures that transience does not violate the guarantees of persistent
data structures by enforcing the following rules:

• A transient vector created from a persistent one does not modify the
original version. The cost of creating a transient instance is O(1), as
well as transforming it back to persistent.

• Transients are confined to the thread they are created on, effectively
forbidding sharing between threads and eliminating the possibility of
race conditions.

• Transients are not allowed to be used after converting them back to
persistent to avoid indirectly modifying a persistent version.



Chapter 3

Persistent vectors in Rust

The purpose of this chapter is twofold: to present the pvec-rs project and to
discuss its unique design features in the context of Rust. First, we will take a
look at the project structure, the types offered by the library, and how it can
be configured.

Then, we will look at the design and optimizations of persistent vectors in
Rust and their specifics:

• First, we will take a look at the memory layout of RrbTree and how it
supports the implementation of cloning and path copying.

• Then, transience and dynamic representation optimizations will be in-
troduced in the context of Rust’s ownership and borrowing rules.

• At last, we will talk about thread-safety and the requirements for sharing
objects between threads.

3.1 Presentation of the project
The pvec-rs project consists of three crates:

• The library crate itself with the persistent vector implementation.

29
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• web-vis : a crate with web application for visualization of the data struc-
ture in the browser.

• benches-mem : The benchmarking crate for measuring the memory
footprint of persistent vectors. Its usage is described in detail in Chap-
ter 4.

The structure of the library is demonstrated in Figure 3.1. The pvec-rs
directory is the root of the library crate. The definition of RrbTree, RbVec,
RrbVec, and PVec are all located under the src folder. The benches and tests
folders are for runtime benchmarks and integration tests correspondingly.

pvec-rs

benches

benches-mem

src

tests

web-vis

Cargo.toml

- runtime benchmarks

- memory benchmarks

- the library source code

- integration tests

- visualization crate

- package manifest

Figure 3.1: The folder structure of pvec-rs

3.1.1 Configurability

The pvec-rs project can be configured using the feature flags described below:

small_branch Sets the branching factor used by RrbTree to 4.
arc Selecting the thread-safe version of the Rc pointer.
rayon_iter if specified together with the arc flag, provides the

parallel iterator implementation for Rayon.
serde_serializer pvec-rs provides the JSON1 serializer if specified.

Table 3.1: Feature flags for the library configuration
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By default, the branching factor used by the tree-based vector types is equal to
32. If small_branch flag is specified, the branching factor will be 4. This flag is
useful for integration testing to reveal issues with the re-balancing algorithm
earlier as the tree ends-up being significantly taller compared to using the
branching factor of 32.

To compile persistent vectors for use in multi-threaded environment Rust re-
quires to implement Send and Sync traits. When compiled with the arc fea-
ture flag, those traits will be automatically implemented for all vector types
enabling multi-threaded use cases.

To access the rayon ’s parallel iterator implementations, the library user has
to use both the arc and rayon_iter feature flags when including the library.

3.1.2 The library APIs

The pvec-rs project is a Rust library crate that offers several persistent vector
implementations listed below:

RbVec A persistent vector based on the balanced RrbTree.
RrbVec The RrbTree-based persistent vector implementation with ef-

ficient concatenation and splitting. Its underlying RrbTree in-
stance remains balanced unless concatenated or splitted, after
which it becomes relaxed.

PVec A vector that starts as the standard and switches to RrbVec
when cloned.

Table 3.2: Vector implementations provided by pvec-rs

RbVec and RrbVec are based on RrbTree. Both types implement the tail2
optimization and offer effectively constant push, pop, get, and get_mut oper-
ations, with the difference that RrbVec offers efficient append and split_off.
PVec, on the other hand, inherits performance properties of the underlying
representation that is either Vec or RrbVec.

All vectors provide methods with identical method signatures with the dif-
ference in how much each operation costs. The table below lists available

2See Appendix B for details on the tail optimization.
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functions and their complexity:

A vector function Vec RbVec RrbVec
fn push(&mut self, e: T)

1 logm(n) logm(n)
Appends an element to the back of a collection
fn pop(&mut self) -> Option<T>

1 m · logm(n) m · logm(n)
Returns the last removed value or None if vector
is empty.
fn get(&self, i: usize) -> Option<&T>

1 logm(n) logm(n)
Returns a reference to an element.
fn get_mut(&mut self, i: usize) ->
Option<&mut T> 1 m · logm(n) m · logm(n)

Returns a mutable reference to an element.
fn append(&mut self, v: &mut Vec<T>)

n n m2 · logm(n)
Concatenates two vectors by moving all values of
v into self, leaving other empty.
fn split_off(&mut self, at: usize) ->
Vec<T> n n m · logm(n)

Splits the collection into two at the given index.
fn len(&self) -> usize

1 1 1
Returns the number of elements in the vector.
fn is_empty(&self) -> bool

1 1 1
Returns true if the vector contains no elements.
fn into_iter(self) -> Iterator

n n n
Creates an iterator from self.
fn into_par_iter(self) ->
IntoParallelIterator n n n

Converts self into a parallel iterator. Note, it
requires the arc and rayon_iter feature flags.

Table 3.3: A table of methods supported by persistent vectors

The complexity of operations is expressed using the Big O notation. The O(1)
value was substituted by 1 for brevity.

The characteristics of the RbVec and RrbVec operations are effectively constant
given that m = 32, and the input size n is bound by the maximum capacity
of the 32-bit integer resulting in logm(n) < 7.
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Core and bulk operations Operations that interact with a single value,
such as push, pop, and get, will be referred to as core operations. Operations
that work with multiple values will be referred to as bulk operations, such as
append, split, and iterators.

Iterators

Iterators3 are a powerful alternative to for loops that offer a variety of operators
for processing collection elements.

The foundation of iterators for pvec-rs vectors is the RrbTree iterator imple-
mentation that presents a tree as a collection of leaf nodes. Instead of reading
individual values using the radix search, the tree iterator returns the entire
leaf node. Vector iterators cache the node and read values from it until it is
exhausted, after which they request the next node from the tree iterator, min-
imizing the number of the tree-traversals and improving performance. This
optimization can be thought of as the generalization of the tail optimization
described in Appendix B.

Parallel iterators

Parallel iterators process collection elements on multiple threads. The parallel
iterator implementation for pvec-rs is based on the data parallelism frame-
work rayon , and can be enabled using the arc and rayon_iter feature flags.
Compared to sequential iterators, the parallel ones do not guarantee the de-
terministic order of processing values.

The library documentation can be found at: https://docs.rs/pvec/.

3.2 Memory layout
To define persistent vectors in Rust, we first need to understand how different
parts of the data structure can be represented in the computer memory, and
which Rust constructs are the most suitable for this purpose.

3https://doc.rust-lang.org/std/iter/trait.Iterator.html

https://docs.rs/pvec/
https://doc.rust-lang.org/std/iter/trait.Iterator.html
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The foundation of a confluently persistent vector is RrbTree, with additional
fields such as a tail, size, and height. RrbTree consists of infinitely nested
nodes, which form a directed acyclic graph4 in memory.

As the persistent vector can be arbitrarily large, the Rust compiler is not able
to measure its size during compilation. Hence, the memory allocation on the
stack is not possible without additional constraints, such as the fixed vector
capacity.

In fact, the Rust compiler will abort the compilation if a recursive data type5
definition is encountered. A recursive data type is a type that contains itself,
such as a tree node. The solution is to use dynamic memory allocation instead
of static. Rust offers a particular type of pointers for this purpose known as
smart pointers6, such as Box, Rc, etc.

As RrbTree employs structural sharing, several tree instances might point to
the same sub-tree. In other words, one node can be referenced by several
parent nodes simultaneously. Even though Box enables recursive types, it does
not allow shared ownership of the underlying value. A smart pointer that
supports a notion of shared ownership is known as Rc or reference counting
pointer.

3.2.1 Reference counting pointers

In a nutshell, a reference counting pointer allows shared ownership of the object
wrapped into it. Every time a potential owner needs a reference to the value,
the pointer itself is cloned instead of the underlying object. The reference
count is incremented on each clone, and decremented when a pointer goes
out of the scope. If the reference count reaches zero, the underlying value is
destroyed.

4A directed acyclic graph is a data structure that consists of nodes connected with di-
rected edges, in which moving from node to node by following edges will never lead to the
same node again.

5https://doc.rust-lang.org/book/ch15-01-box.html#enabling-recursive-types-with-box
es

6See Section 1.1.2 for more details.

https://doc.rust-lang.org/book/ch15-01-box.html#enabling-recursive-types-with-boxes
https://doc.rust-lang.org/book/ch15-01-box.html#enabling-recursive-types-with-boxes
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Copy-on-write semantics

Rust’s Rc conforms to the ownership and borrowing rules that are enforced
during runtime rather than compile-time. It allows shared immutable access
to the value as well as regular reference does, and permits unique mutable
access only if other references do not exist.

The Rc::make_mut method allows us to safely acquire a mutable pointer to
the value regardless of the reference count. If there are no other pointers to
the value, then Rc::make_mut immediately returns a mutable reference. Oth-
erwise, it clones the inner value to a new allocation to ensure unique ownership
and then returns a reference to it. This behavior is known as copy-on-write.

Path copying

When updating the tree, the path leading from the root node to the affected
leaf is copied to preserve the original tree from changes. The copy-on-write se-
mantics of Rc is the foundation for the path copying algorithm implementation
in RrbTree.

Rust permits updating objects only through mutable references. To update
a value in the tree, one has to acquire a mutable reference to each node that
forms a path to the value. Since nodes are decorated with Rc pointer, a safe
way to acquire a mutable reference is by calling the Rc::make_mut method.
If the tree has been cloned prior to the update, this call will copy each node
while descending from the root to the leaf node, effectively performing path
copying.

3.2.2 Structures, enumerations and cache locality

With the knowledge of how Rc helps to manage the memory and its semantics
we can move on to the definition of the RrbTree node using the following Rust
constructs:

• Structures or structs are used to define a custom data type that lets you
package together multiple related values.

• Enumerations or enums allow to define a type by enumerating its possible
variants.
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Conceptually, the RrbTree consists of three node types: a balanced branch
node, a relaxed branch node, and a leaf. Depending on the tree level, branch
nodes reference either other branch nodes or leaves. Thus, the node definition
has to be generic over the child node type.

Rust does not support inheritance in structs. It does, however, provide alter-
native ways of defining data types that are conceptually related: enumerations
and trait objects7.

Trait objects are objects that share common behavior by implementing the
same interface. The main advantage of trait objects is their extensibility.
Enums, on the other hand, cannot be extended with more variants outside of
their declaration. Since tree nodes are an implementation detail of persistent
vectors and are not expected to be extended, enums were favored over trait
objects.

Each enum variant can have a different set of fields. Hence, the enum size
is capped by its largest variant to guarantee that all variants can be used
interchangeably.

Defining RrbTree nodes in Rust

We can finally bring everything together using structs and enums in combina-
tion with Rc to define the RrbTree node. Listing 14 presents the structure as
it is in the library.

Each node type has received its own struct definition. An eagle-eyed reader
will notice that the Node enum in Listing 14 could have been declared in a
more concise way by having the node fields defined directly within the variant.
Even though it seems to be a more intuitive approach, it comes at a hidden
cost.

The enum size and the cache locality As illustrated in Figure 3.2, enu-
merations take up as much space as their largest variant8. If the node fields

7https://doc.rust-lang.org/book/ch17-02-trait-objects.html
8The illustration contains a subset of containers from the Rust container cheat sheet:

https://docs.google.com/presentation/d/1q-c7UAyrUlM-eZyTo1pd8SZ0qwA_wYxmPZV
OQkoDmH4.

https://doc.rust-lang.org/book/ch17-02-trait-objects.html
https://docs.google.com/presentation/d/1q-c7UAyrUlM-eZyTo1pd8SZ0qwA_wYxmPZVOQkoDmH4
https://docs.google.com/presentation/d/1q-c7UAyrUlM-eZyTo1pd8SZ0qwA_wYxmPZVOQkoDmH4
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1 #[cfg(feature = "arc")]
2 type SharedPtr<T> = Arc<T>;
3

4 #[cfg(not(feature = "arc"))]
5 type SharedPtr<T> = Rc<T>;
6 // ^ SharedPtr<T> is a type alias that is assigned either Arc<T> or
7 // Rc<T> depending on the thread-safety requirements and configuration.
8

9 enum Node<T> {
10 RelaxedBranch(SharedPtr<RelaxedBranch<T>>),
11 Branch(SharedPtr<Branch<T>>),
12 Leaf(SharedPtr<Leaf<T>>),
13 }
14

15 struct RelaxedBranch<T> {
16 children: [Option<Node<T>>; BRANCH_FACTOR],
17 sizes: [Option<usize>; BRANCH_FACTOR],
18 len: usize,
19 }
20

21 struct Branch<T> {
22 children: [Option<Node<T>>; BRANCH_FACTOR],
23 len: usize,
24 }
25

26 struct Leaf<T> {
27 elements: [Option<T>; BRANCH_FACTOR],
28 len: usize,
29 }

Listing 14: Definition of the RrbTree node

were declared within the enum variants directly, the enum size would be equal
to the size of RelaxedBranch, resulting in the balanced tree reserving as much
space as if it was relaxed.

The more space nodes use, the more expensive the memory allocations are.
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ptr

Rc<T>

strong weak T

tag A

enum {A, B, C}

tag B

tag C

ptr 4/8 bytes

size 4/8 bytes

T User defined type

allocation Heap allocation

Figure 3.2: The memory layout of Rust containers

Also, bigger nodes are more likely to not fit into the CPU cache lines, negatively
impacting the performance even more.

To avoid the unnecessarily large memory footprint of the Node enum, the
decision was made to extract the node fields into structs as demonstrated in
the Listing 14. By wrapping the struct instances into a smart pointer such as
Rc, we explicitly move the allocation of the node to the heap.

The size of the Rc pointer is independent of the type it encapsulates. Hence,
the size of the Node enum boils down to the size of the enum tag, the weak
and strong reference count fields of Rc, and the actual pointer to the heap.

This, in turn, means that the Node enum variants will be equally sized, taking
as little space as possible. When compiling the library for a machine with the
64-bit CPU architecture, the enum size is 16 bytes, where 8 bytes are reserved
for the enum tag, and 8 bytes for the reference-counted pointer.

Figure 3.3 visualizes how the enum and struct definitions of the RrbTree node
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ptr 4/8 bytes

size 4/8 bytes

T User defined type

allocation Heap allocation

tag Rc<RelaxedBranch<T>>

enum Node

tag Rc<Branch<T>>

tag Rc<Leaf<T>>

strong weak children sizes len

strong weak children len

strong weak elements len

Figure 3.3: The memory layout of the RrbTree node

are arranged in memory.

3.3 Pay only for the features you use
The pvec-rs project draws inspiration from one of the Rust key design features
— zero-cost abstractions. In this section, we will look at how PVec follows
that design principle by offering optimizations such as transience and dynamic
representation, without sacrificing Rust’s safety guarantees.
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3.3.1 Transience as the language feature

Popular persistent collection libraries in other languages, such as immutable-js9
for JavaScript, or collections in the standard library of Scala10, often provide
an interface that is different from the interface of the standard data structures.

As demonstrated in Listing 15, instead of updating the vector in-place, the
operation returns a new instance that contains the change. When a collection
is set up like that, the library can guarantee that the original vector will stay
unmodified, eliminating the whole class of bugs such as race conditions.

This, in turn, means that every modification will cause a copy. For example,
in a pure function where vector processing is scoped strictly to the function
body, there is no risk of introducing a race condition, and therefore, no need to
create new copies. A solution to this problem was first introduced in the Clo-
jure programming language in the form of transient data types. A transient,
persistent vector is a vector that is persistent but can be updated in-place
without generating unnecessary copies11.

Rust’s compiler, however, eliminates race conditions by forbidding simulta-
neous mutation of value by enforcing ownership and borrowing rules. The
ownership rule essentially means that an object can be owned only by a sin-
gle entity at a time. Borrowing rules state that any number of immutable
references can be created given that there is no mutable references existing.
Furthermore, if a mutable reference exists, Rust ensures that it is the only
unique reference.

This leads us to the question of whether the traditional persistent collection
interface is needed in Rust. The short answer is no because the compiler pro-
tects developers from common mistakes. Nicholas Matsakis, the lead engineer
of the Rust compiler, elaborated why in Rust persistent vectors can have an
ordinary interface in his blog12.

9https://immutable-js.github.io/immutable-js/
10https://docs.scala-lang.org/overviews/parallel-collections/overview.html
11See Section 2.3 for more details.
12http://smallcultfollowing.com/babysteps/blog/2018/02/01/in-rust-ordinary-vectors-

are-values/

https://immutable-js.github.io/immutable-js/
https://docs.scala-lang.org/overviews/parallel-collections/overview.html
http://smallcultfollowing.com/babysteps/blog/2018/02/01/in-rust-ordinary-vectors-are-values/
http://smallcultfollowing.com/babysteps/blog/2018/02/01/in-rust-ordinary-vectors-are-values/
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Unique access as transience

Unique access as a term stems from the fact that in Rust, a mutable reference
to an object must be unique. By leveraging this guarantee, persistent vectors
in Rust can have a conventional mutable interface without sacrificing safety.

1 fn main() {
2 let vec_1 = immutable_api(42);
3

4 let vec_2 = mutable_api(42);
5 let mut cloned_vec_2 = vec_2.clone();
6 // ^ increments the reference count, but no copying yet
7

8 cloned_vec_2.push(34);
9 // ^ an attempt to update the tree with rc > 1

10 // triggers the path copying algorithm
11 }
12

13 fn immutable_api(size: usize) -> PersistentVec<usize> {
14 let mut vec = PersistentVec::new();
15 for i in 0..size {
16 vec = vec.push(i); // <- creates a new instance on every push
17 }
18 vec
19 }
20

21 fn mutable_api(size: usize) -> PersistentVec<usize> {
22 let mut vec = PersistentVec::new();
23 for i in 0..size {
24 vec.push(i); // <- new instances are not created
25 }
26 vec
27 }

Listing 15: The persistent and conventional interfaces of vectors

As demonstrated in mutable_api in Listing 15, the conventional interface
allows to update the vector in-place without creating copies.
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This is possible because of the conditional copy-on-write semantics of Rc point-
ers that are used at the core of RrbTree. If the reference count is at most one,
Rc::make_mut will not copy the underlying value but rather update it in-place.

When cloned on line 5, the reference count of the root node of the underlying
RrbTree is incremented by one. The path copying algorithm is executed only
when trying to mutate the cloned instance on line 8, leaving the original vec_2
unmodified.

Path copying that is delayed to the first update means that the clone operation
is effectively free in cases when a vector is cloned and shared for read-only
purposes.

Transience in Clojure is different Transience in Clojure13 is not identical
to the unique access optimization in Rust. These are the main differences:

• In Clojure, transient vectors are confined to the thread they are created
on. Therefore, they cannot be modified on another thread. Persistent
vectors in Rust can be safely moved between threads as long as the
ownership and borrowing rules are followed.

• Calling any method on a transient vector after it transitions back to
persistent is prohibited and will cause an exception in Clojure. In Rust,
there are no special restrictions imposed on vectors.

• To initialize a transient collection in Clojure, one has to use special syn-
tax such as the transient function, or persistent! to convert a tran-
sient instance back to persistent.

3.3.2 Dynamic representation

A unique property of PVec is that it features an interface identical to the
standard vector, contrary to the conventional persistent interface that is sig-
nificantly different.

If two vector types have identical interfaces, they can be used interchangeably
without any additional changes made to the program. Hence, it becomes

13https://clojure.org/reference/transients

https://clojure.org/reference/transients
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possible to dynamically choose a vector type depending on the context and
performance requirements.

The dynamic representation explores this idea by using both standard and the
tree-based vectors to ensure the best possible performance, depending on the
situation.

Deciding when to switch the representation

Standard vectors are very fast in almost all operations due to their efficient,
hardware friendly design. Exceptions are operations that rely on copying,
such as concat, split, and clone. Tree-based vectors, on the other hand, offers
effectively O(1) clones and good all-around performance.

To take the best of both worlds, a vector can start as standard vector and
when it is cloned, it will be transformed into a tree-based one. Essentially,
by switching the representation only when cloning, we offset the cost of using
trees until they are beneficial14. This optimization fits into the overall "Pay
only for the features you use" idea, as it prevents the user from paying the
abstraction cost until it is used.

Switching the representation

Essentially, a persistent vector type PVec, can be backed by two different vector
types at runtime. It starts as Vec, and then switches to the RrbVec on the
first clone. The process of switching from one vector type to another is called
spilling, as it maps a contiguous chunk of memory into smaller pieces that are
used as leaf nodes to build RrbVec.

14Nicholas Matsakis proposed a variation of this idea as future work in his blog: http://
smallcultfollowing.com/babysteps/blog/2018/02/01/in-rust-ordinary-vectors-are-values/

http://smallcultfollowing.com/babysteps/blog/2018/02/01/in-rust-ordinary-vectors-are-values/
http://smallcultfollowing.com/babysteps/blog/2018/02/01/in-rust-ordinary-vectors-are-values/
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1 struct PVec<T>(Representation<T>);
2

3 enum Representation<T> {
4 Flat(Vec<T>),
5 Tree(RrbVec<T>),
6 }

Listing 16: Memory layout of PVec

PVec has two representations: Flat that is using Vec, and Tree that is backed
by RrbVec. The initial capacity of both representations is equal to the branch-
ing factor of 32 by default.

Spilling happens by converting the flat vector into an iterator of sub-arrays
that are 32 elements wide and pushing them directly onto RrbTree as leaf
nodes. If the last chunk is smaller than 32, then it will be used as the tail for
the new RrbVec. See Figure 3.4 that visualizes the transition.

One could have considered splitting up the original vector into chunks and
reusing them instead of copying. Unfortunately, heap allocators do not have
a mechanism for safely splitting an existing allocation into smaller ones. The
Rust’s allocator interface15 reflects this limitation by exposing functions that
allow allocating and freeing memory but no subdivision of existing allocations.

Additionally, the cost of spilling needs to be paid only once, and will be amor-
tized by O(1) consequent clones.

15https://doc.rust-lang.org/std/alloc/struct.System.html

https://doc.rust-lang.org/std/alloc/struct.System.html
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Figure 3.4: Switching the vector representation





Chapter 4

Performance evaluation

The Big O notation is a useful theoretical tool for reasoning about scalability
and performance, and by design, it does not consider factors such as execution
environment. It disregards constant factors as they are not significant for the
growth rate of functions. It also does not consider the architecture of the CPU
and of the memory [4], which indeed influence performance. Furthermore, the
same applies to software, such as operating systems, schedulers, virtual ma-
chines, et cetera. Hence, often algorithms, which are expected to be equally
fast based on O, may differ substantially in performance when evaluated ex-
perimentally.

Thus, in this chapter, I will introduce a methodology for the experimental
performance evaluation of RrbVec, PVec, and their variants, in comparison to
implementations from ImVec and Rust’s standard library. We will look at:

• First, identifying directions for performance comparisons.

• Then a methodology for collecting reliable measurements.

To begin with, I will present the focus areas.

47
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4.1 Evaluation dimensions
To evaluate the efficiency of the proposed optimizations, we need to test various
tree-based vectors, such as RbVec, RrbVec, and PVec. Implementations from
ImVec and the standard library will be evaluated as well. All vector variants
are specified in Section 4.1.

Vec A vector implementation from the Rust’s standard library
RbVec The RbTree-based vector implementation
RrbVec The RrbTree-based vector implementation
PVec The RrbTree-based vector implementation with dynamic rep-

resentation
ImVec The RrbTree-based vector implementation from the third

party library im-rs1

Table 4.1: A table of vector implementations

4.1.1 Time and space

There are two main dimensions for evaluation: time and space.

Runtime benchmarks are categorized by the scope of what they test: individual
operations and overall performance:

1. The first category evaluates vector operations in isolation. These tests
will be executed on a single thread, and thus, will be referred to as
sequential benchmarks from now on.

2. Tests that replicate common use cases that involve more than one op-
eration and exercise the vector as the whole belong to the second cate-
gory. They will be executed in a more complex environment on multiple
threads and will be referred to as parallel benchmarks.

Space or memory benchmarks are designed to:

1. Measure the memory overhead of the tree-based vectors.
1Both ImVec and PVec use RrbTree at its core. It has been developed independently in

parallel to PVec at the time of writing this paper: https://crates.io/crates/im.

https://crates.io/crates/im
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2. Evaluate whether structural sharing helps to reduce the memory foot-
print.

4.1.2 Objectives

The objectives are the questions that we will address when reviewing bench-
mark results. They apply both to the runtime and memory tests.

Balanced vs. relaxed vectors

As instances of RrbTree are generally not perfectly balanced and involve the
use of size tables for the radix search, they are expected to be somewhat slower
compared to RbTree instances in core operations. The goal is to measure the
overhead induced by the relaxed nodes if present at all.

Before each benchmark run, an instance of RrbVec will be prepared by con-
catenating small vectors together. The number of the relaxed nodes is affected
by the vector size.

Dynamic representation

A substantial advantage of the tree-based vectors is that they are cheap to
copy. Other operations, however, are faster for Vec due to its optimal memory
layout. Dynamic representation offers a strong performance based on Vec until
the vector is cloned, switching its representation to RrbVec.

Ideally, PVec should demonstrate the same performance of the type that rep-
resents it. The goal is to measure the PVec performance in practice and to
check if it adds overhead over the types used as its representations: Vec and
RrbVec.

Unique access

While RrbVec performs well as a persistent data structure, it can perform even
better when persistence is not required. An example is a function creating and
returning an instance of RrbVec, where all versions except the returned one
are disregarded.
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Luckily, the persistent vector implementation presented in this project takes
advantage of Rust’s compiler capabilities of tracking object aliasing. Thus,
it avoids redundant copying on mutation if the given object is uniquely ac-
cessed. This behavior is similar to transience in the Clojure’s persistent vector
implementation [11], but not entirely identical.

In Rust, non-transient, persistent behavior can be enforced by cloning the
object before performing a mutation. The objective is to measure the cost of
using the clone operation in the persistent vector.

4.2 Measuring the runtime
Experimental performance evaluation introduces a set of unique challenges.
For instance, depending on the workload, operating systems may allocate more
resources for demanding tasks, by reducing runtime for others [8]. Such non-
deterministic behavior may lead to profiling results that vary from run to run
significantly.

Benchmarking frameworks were introduced to solve this problem. They are
designed to get stable measurements by executing the same test thousands of
times. Some of them, such as criterion for Haskell2 and Rust3, JMH for Java4,
and ScalaMeter for Scala5, introduce statistical methods for the detection and
elimination of exceptionally different runs, known as outliers.

4.2.1 Benchmarking frameworks for Rust

There are several benchmarking frameworks available for Rust, and unfortu-
nately, none of them has reached a stable release yet. However, some of them
are being actively used in the Rust community and have proven to produce
reliable results.

There are several criteria which a suitable framework has to meet:
2https://hackage.haskell.org/package/criterion
3https://crates.io/crates/criterion
4https://openjdk.java.net/projects/code-tools/jmh/
5https://scalameter.github.io/

https://hackage.haskell.org/package/criterion
https://crates.io/crates/criterion
https://openjdk.java.net/projects/code-tools/jmh/
https://scalameter.github.io/
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• Collecting multiple samples where each sample consists of multiple runs
to ensure consistent results.

• Detection and elimination of outliers.

• A way for setting up a benchmark before each run.

• A way for preventing compiler optimizing benchmark code away.

• An option to measure execution time without drop6.

Rust’s benchmark tests

Rust’s testing framework provides an experimental feature7 that enables de-
velopers to write test benchmarks. Those benchmarks are executed thousands
of times until results are stabilized. Also, it provides a black-box function8
which is opaque for the compiler.

However, Rust’s testing framework does not detect and eliminate anomalies.
It also does not provide APIs for setup routines, which makes it impossible to
create benchmarks that rely on preconditions.

Criterion for Rust

Criterion for Rust is a powerful and statistically rigorous tool for profiling code.
It features outlier elimination, setup routines, and is capable of generating
graphs using gnuplot9. At the moment of writing, it is the only framework
that has an option to avoid the timing of drop.

It is compatible with the stable release of the Rust compiler. Thus, Criterion
was chosen as a benchmarking framework for this project.

6See Section 1.1.3 for an introduction to drop.
7At the moment of writing in May 2020, benchmarks are available only in the nightly

build of Rust.
8Black box function contains inline assembly instructions, which compiler cannot make

any assumptions about. Hence, it prevents the compiler from optimizing the code, which
otherwise would be considered "dead" or unused.

9http://www.gnuplot.info/

http://www.gnuplot.info/
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Alternatives

Other less popular frameworks, such as bencher 10 and easybench11, were not
considered due to the lack of features necessary for the experiments, such as
setup routines, optional measurement of drop outlier detection, et cetera.

4.2.2 Configuration and input size

All tree-based vector implementations, such as RbVec, RrbVec and PVec were
configured to use a branching factor of 32, as it provides the best tradeoff for
the performance of both read and write operations [2].

Each benchmark was executed against a range of input arguments. The input
range is specified on the case by case basis depending on the benchmark.

For this project, for each input argument, Criterion is configured to capture
10 samples. The number of runs per sample is determined dynamically by the
library to achieve optimal execution time.

4.2.3 Garbage collection

One of the design goals for this project was to avoid using experimental and
unsafe Rust language features. Hence, pvec-rs , relies on the memory manage-
ment means provided by the Rust’s standard library only, such as Rc. Other
automatic memory management mechanisms such as third-party garbage col-
lectors were left out for future work.

Threadsafe reference counting Parallel benchmarks will be evaluated us-
ing only Arc pointers, as Rust’s compiler forbids passing non-threadsafe types
between threads, such as Rc.

4.3 Parallel benchmarks and Rayon
Unlike the sequential benchmarks that measure operations in isolation, the
parallel benchmarks time the whole experiment, including several vector op-

10https://crates.io/crates/bencher
11https://crates.io/crates/easybench

https://crates.io/crates/bencher
https://crates.io/crates/easybench
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erations and the framework used to parallelize the work.

This is an acceptable tradeoff, as the objective is to evaluate the overall per-
formance. Additionally, we also want to check whether the relaxed append
and split of RrbVec have a positive performance impact.

Data parallelism frameworks, such as Rayon12, Cilk13, and Scala’s parallel
collections14, split the work into smaller chunks to facilitate parallelism. Thus,
data structures with fast split and append operations are critical for optimal
performance for such frameworks.

In this section, we will take a look at how to configure Rayon and review how
it distributes the work across threads.

Rayon Rayon is a data parallelism library for Rust that helps to turn sequen-
tial code into parallel one with as little work as possible. Loops and iterators
are often used to process collections sequentially. Rayon, on the other hand,
offers a potentially more efficient alternative to them in the form of paral-
lel iterators. It takes advantage of modern processors, by dividing the work
between available cores as long as it is beneficial.

1 // sequential iterator
2 vec![1, 2, 3]
3 .into_iter()
4 .for_each(|x| println!("{}", x));
5

6 // rayon's parallel iterator
7 vec![1, 2, 3]
8 .into_par_iter()
9 .for_each(|x| println!("{}", x));

Listing 17: An example of using sequential and parallel iterators
12https://crates.io/crates/rayon
13http://supertech.lcs.mit.edu/cilk/
14https://docs.scala-lang.org/overviews/parallel-collections/overview.html

https://crates.io/crates/rayon
http://supertech.lcs.mit.edu/cilk/
https://docs.scala-lang.org/overviews/parallel-collections/overview.html
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Parallel iterators The convenience of Rust iterators is in the provided oper-
ators that are called combinators. Combinators can be chained and combined,
allowing a developer to perform complex manipulations of iterators safely and
efficiently.

Combinators provided by parallel iterators are similar to the iterator ones
but entirely identical. As iterators process values sequentially, there is a set
of combinators that expect values to be emitted in a particular order. As
the parallel iterators are designed to process data in any order, inherently
sequential combinators are not applicable. Thus, Rayon might not be a suitable
solution for algorithms relying on the sequential order of execution.

Another requirement for parallel iterators is that the type of values it works
with have to implement the Send trait. Therefore, using non-threadsafe types
such as Rc in combination with Rayon is prohibited.

4.3.1 Work splitting

1 2 3 4 5 6 7 8 9 10 11 12
12

6 6

3 3

2 1

1 1

Vector

Figure 4.1: Visualization of work splitting in Rayon

At the core, Rayon relies on the fork-join15 pattern for dividing and distributing
the work between threads.

When a parallel iterator receives values from a collection like a vector, Rayon
attempts to repeatedly divide the work into chunks among threads until the
chunk is small enough for a single thread. For an example, see Figure 4.1.

A method that splits the work is rayon::join, and it accepts two closures16.
15The fork-join pattern was pioneered in 1963 [12], and was popularized by the Cilk project

[3]
16Rust’s closures are functions that can be saved in a variable or passed as arguments to

other functions.
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Its usage is demonstrated in Listing 18.

Next, Rayon decides whether it is beneficial to parallelize the work by evalu-
ating the factors such as the number of available threads, the split factor 17,
and the workload. If the problem is small enough, it is solved sequentially.
Otherwise, it is subdivided further. When both closures finish working, the
results are combined and returned to the caller.

1 rayon::join(
2 || do_something(...),
3 || do_something_else(...)
4 );

Listing 18: An example of using Rayon’s join

By default, the thread number allocated by Rayon is equal to the number of
cores available in the system. To observe how the thread number affects the
performance, Rayon’s thread pool will be configured to work with 2, 4, and 8
threads.

4.3.2 Work distribution

Ideally, tasks split between threads take the same amount of time to process.
Unfortunately, this is often not the case, resulting in poor utilization of re-
sources. To fairly distribute the work, Rayon attaches a work queue to each
thread. A thread keeps processing the queue until it becomes empty. When the
queue is empty, a thread can steal work from another thread. This technique
is known as work-stealing.

4.4 Measuring the memory footprint
This section presents the methodology used to evaluate the memory footprint
of both the tree-based and flat vector types. The benchmark suite is expected
to measure the overall memory footprint of the vector, including the stack and
the heap memory.

17The split factor is defined by the minimum and the maximum size of the work chunk.
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4.4.1 Memory profiling tools

As of the time of writing, there is no established practice or a framework for
measuring the memory usage tailored towards Rust.

However, the operating systems already provide profiling tools for measuring
memory usage. These tools should provide reliable results, as the memory
footprint of the process does not change as much between runs. Hence, it
should be sufficient to run each test once.

Two approaches were considered:

• Measuring heap allocations by retrieving statistics from the system allo-
cator.

• Capturing the memory usage of the process when running the benchmark
application.

Allocation tracking

The first option is not ideal because it only evaluates the heap memory usage.
Additionally, a custom memory allocator such as jemallocator 18 is required
to access statistics. Using a non-default allocator in tests also means that
benchmarks will not accurately reflect the performance in production applica-
tions.

Process benchmarking

Benchmarking by measuring the process footprint allows to capture both the
stack and the heap usage, and it does not depend on any special Rust debug or
allocator features. This, in turn, means that the benchmarks can be optimized
as if they were compiled for the production use, putting them as close as
possible to real use cases.

Implementation A new pvec-memory crate is introduced to pvec-rs that
includes an application for executing the memory benchmarks. Its responsi-
bilities are to configure, run, and collect the test results. It will be referred to
as memory bencher from now on.

18https://crates.io/crates/jemallocator

https://crates.io/crates/jemallocator
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The memory bencher contains a list of tests, input sizes, and vector types.
It executes benchmarks by running them through the command line program
called time, which outputs information about the process, including the max-
imum amount of memory used in bytes. The memory bencher finds this value
in the maximum resident set size field in the output of time.

The program code occupies a part of the process memory and needs to be
accounted for. The bencher measures the footprint of the program without
running any tests and then subtracts it from the benchmark results.

The time utility included in macOS is different from the GNU19 variant, that
comes with more options and outputs the maximum resident set size in kilo-
bytes instead of bytes. The memory bencher was only executed on macOS and
required changes to support other platforms.

4.5 Presentation of results
The measurements are done in a number of samples that can be configured.
For this project, the number of samples is set to ten. Each sample consists of
one or typically more iterations of the routine. The elapsed time between the
beginning and the end of the iterations, divided by the number of iterations,
gives an estimate of the time taken by each iteration.

As measurement progresses, the number of iterations per sample increases. The
presented graphs use the mean measured time for each function. Additionally,
benchmarks were configured to avoid the timing of the execution of drop.

4.5.1 Execution environment

All benchmarks were executed on a computer with an octa-core processor with
hyper-threading support, 32GB of DDR4 RAM, and 1TB solid-state drive.
The operating system is macOS Catalina 10.15.4, with the stable Rust compiler
version 1.42.0.

19https://www.gnu.org/software/time/

https://www.gnu.org/software/time/
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CPU 2,3 GHz 8-Core Intel Core i9.
RAM 32GB DDR4, 2400MHz.
Disk 1TB SSD.
OS macOS Catalina v10.15.4.
Rust v1.42.0.
Criterion v0.3.1
im-rs v14.0.0.

Table 4.2: Hardware and software specification used for benchmarking

4.5.2 Running benchmarks

The benchmarks can be compiled and executed using Rust’s package manager
named cargo. By default, sequential benchmarks are executed against the non-
threadsafe variant of a persistent vector. To select the threadsafe variant, the
user can pass the arc feature flag, as demonstrated in Listing 19. A particular
benchmark can be specified by name as an argument to cargo.

1 # benches of the non-threadsafe implementation
2 cargo bench
3

4 # benches of the threadsafe implementation
5 cargo bench --features=arc

Listing 19: Executing sequential benchmarks

To execute parallel benchmarks, the user needs to pass both the arc and
rayon_iter feature flags:

1 cargo bench --features=arc,rayon_iter

Listing 20: Executing parallel benchmarks

Criterion can also generate HTML reports that include charts created by gnu-
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plot20. Results can be found in the pvec-rs/target/criterion directory, and
if gnuplot is available, the HTML report will be located at report/index.html.

For more information on available options and parameters for Criterion, please
consult the library documentation21.

Memory benchmark results

Memory benchmarks produce consistent and reproducible results. Hence it is
enough to execute them only once. Due to the differences in how time works
on different operating systems, macOS is the only platform supported by the
memory bencher at the moment. Listing 21 demonstrates how to execute the
tests:

1 # navigate to the benches-mem crate
2 cd benches-mem
3

4 # execute the script that invokes
5 # cargo to compile and run benchmarks
6 # in the release mode
7 sh benches.sh

Listing 21: Executing memory benchmarks

The generated report is located in the pvec-rs/target/release/report di-
rectory, and it is subdivided into folders, each named after the benchmark.
Each folder contains csv22 files, where each file is name after the evaluated
vector type. The report file contains two columns corresponding to the input
size and the memory footprint in bytes.

4.5.3 Verbose benchmark results

Verbose benchmark results are published separately due to the number and
the size of the report files. They include additional data, such as:

20http://www.gnuplot.info/
21https://docs.rs/criterion/0.3.1/criterion/
22Comma-separated values.

http://www.gnuplot.info/
https://docs.rs/criterion/0.3.1/criterion/
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• Mean, median, and the standard deviation values per benchmark run.

• Violin plots demonstrating the stability of results.

The violin plots reveal how stable the measurements are. The wider the violin
is, the more significant is the difference between timings of collected samples.

The benchmark reports are published in two configurations: with a non-
threadsafe23 and a threadsafe24 reference counting pointers.

23https://abishov.com/pvec-rs/reports/rc/report/index.html
24https://abishov.com/pvec-rs/reports/arc/report/index.html

https://abishov.com/pvec-rs/reports/rc/report/index.html
https://abishov.com/pvec-rs/reports/arc/report/index.html


Chapter 5

Benchmarks and results

In this chapter, we will define our sequential, parallel, and memory bench-
marks, and then evaluate the results of executing them. The overall perfor-
mance will be discussed, as well as the impact of the following optimizations:

• The effect of RrbTree relaxation on performance of all vector operations.

• The performance impact of the unique access optimization.

• The effectiveness of the dynamic representation.

Reading notes Implementations postfixed with (r) in the figure legends
were configured to use the relaxed RRB-tree in the benchmark. (s) stands
for standard and will be applied only to PVec when the flat representation is
used. If not specified, the balanced RB-tree is used.

5.1 Sequential benchmarks
Each benchmark described in this section focuses on a particular operation of
a vector. To avoid ambiguous results, each test exercises only one operation
at a time. Operations that modify a vector instance, such as push, will have a
complementary version of the benchmark, which also uses the clone operation.
It is necessary to compare the path copying and naive algorithm used in the
tree-based and standard vectors correspondingly.

61
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The following operations were evaluated for vector implementations:

Indexing Accessing vector values.
Updating Updating existing values.
Pushing Adding new values to the end of a vector.
Popping Removing values at the end of a vector.
Appending Concatenating values of one vector to another.
Splitting Slicing one vector into two at a given position.

Table 5.1: Operations evaluated in the sequential benchmarks

Benchmark structure Some benchmarks depend on preconditions. For
example, to test indexing, we first need to create a vector with values. Since
building a vector instance is not a part of that test, it happens in the setup
routine. Hence, benchmarks with preconditions are executed in two steps: the
setup and the actual test.

Benchmarking dimensions Every benchmark for a core operation is pa-
rameterized over the vector size. By providing different arguments, we can
observe how the performance of vectors is affected in response. This is espe-
cially insightful for the tree-based implementations, where the size of the vector
influences the height of the tree, which has a negative impact on performance.
The output of a benchmark for a given size is the mean runtime in ms.

Results This section contains performance numbers for the non-threadsafe
vector implementations.

5.1.1 Indexing

In this section, we will define benchmarks for accessing values that model the
most common ways of working with vector:

• Sequentially accessing values by index and iterator.

• Accessing values at randomly generated indices.
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Use cases listed above address two objectives: first, how much overhead re-
laxed nodes of RrbTree introduce, and second, the efficiency of the dynamic
representation in PVec.

The indexing benchmarks share the same setup routine for generating a vector.
Balanced tree-based vectors are created by pushing 64-bit integers, while the
relaxed types are generated by concatenating vectors together.

The vector size is passed as an argument and falls into the range of [20, 1M].

Figures for the index operation are separated by sequential and random access,
where the sequential benchmark results are subdivided into index and iterator
figures.

Index sequentially

The benchmark loops over an array of [0, N) indices, and reads values from a
vector at the given position. Only immutable references to values are acquired.

Iterators consume the tree-based vectors by chunks, rather than by individual
values. They also take ownership of values instead of borrowing them.
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Figure 5.1: Benchmarking results of index sequentially and iterator
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Results As expected, Vec shows the best results in this test. As it is repre-
sented by a contiguous chunk of memory, it takes full advantage of CPU cache
locality. Besides, its structure is not affected by the method used to build it,
whereas RbTree and RrbTree based vectors are.

Both balanced and relaxed ImVec variants are slower in comparison to RrbVec
in the [100, 1M] input range by a factor of 2.06. For smaller inputs, RrbVec
it is slightly faster by a factor of 1.18.

Balanced vs. relaxed The difference between RbVec and RrbVec becomes
noticeable as the problem size grows. The balanced variant is faster than the
relaxed one by a factor of 2.68 in the [100, 1M] input range. This is expected
because RrbVec introduces relaxed nodes, which rely on the size tables to
compute the path to the value.

This, however, is not the case for small problem sizes in the [0, 100] range,
for which the concatenation algorithm produces a balanced tree. Hence, both
balanced and relaxed vectors demonstrate similar performance in that range.

Dynamic representation PVec switches its internal representation from
the standard vector to RrbVec as soon as cloned. This is evident from the plot
Figure 5.1, where PVec is 4.21 faster than RbVec, but slower than Vec by a
factor of 1.75.

Iterator

Results of the iterator benchmarks show approximately ten-fold improvement
in performance over sequential indexing. This is expected, as iterators read
the contents of the tree by chunks rather than by index.

Vec shows the best results, with a difference of 1.98 on average compared to
PVec, and 9.12 in relation to RrbVec. ImVec is 1.47 ahead of RrbVec in the
[20, 100] range.

Balanced vs. relaxed As iterator does not use size tables for index calcu-
lation for RrbVec, it performs identically well compared to RbVec. The same
applies to ImVec.
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Index randomly

In this benchmark, values will be read at random positions. Thus, it is quite
likely that tested values will be located far apart in memory, potentially causing
a cache miss. Additionally, results show whether the performance degenerates
with randomness, as it would with linked lists, for example.
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Figure 5.2: Benchmarking results of indexing randomly

By iterating N times, a value is accessed at random index, which is generated
within the [0, N) range by using the rand crate1. According to the rand
documentation, generated indices are uniformly distributed. The number gen-
erator is explicitly seeded to produce the same stream of randomness between
runs.

1A Rust library for random number generation: https://crates.io/crates/rand

https://crates.io/crates/rand


66 5.1 Sequential benchmarks

Results A noticeable difference compared to the sequential benchmark is
that the performance gap between PVec and Vec is reduced from 1.76 to 1.14.
The reason why Vec has lost its advantage is because of the frequent cache
misses on access to random memory locations.

Balanced vs. relaxed RbVec outperforms RrbVec by 1.90 in the [100, 1M]
range. Both RrbVec and ImVec are equally fast with insignificant marginal
differences.

Dynamic representation It is clear that PVec, when flat, is marginally
slower compared to Vec. The performance difference remains consistent over
the input range at 1.75.

5.1.2 Updating

There are two dimensions in which the update operation is evaluated. The
first one is the order in which vector values are updated: sequentially and
randomly. The second dimension introduces the clone operation to measure
the cost of copying:

• Sequentially, with and without clone.

• At random positions, with and without clone.

The setup routine for all benchmarks is identical. As for the index benchmarks,
it generates both balanced and relaxed variants of the tree-based vectors. The
type of inserted values is an unsigned 64-bit integer.

The vector size is determined by the benchmark argument. The problem size
domain for tests using clone is [20, 20 k], and [20, 100 k] range for benchmarks
without clone.

The cost of naive cloning vs. path copying The path copying algorithm
of RbTree enables cheap copies. PVec takes advantage of that by switching from
the flat to the tree-based representation when cloned. Hence, the objectives
are:

• Compare the performance of naive and path copying algorithms.
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• Evaluate the efficiency of dynamic representation in PVec.

The overhead of relaxed nodes in RrbTree Relaxed nodes are more
expensive to clone because of the size tables. Also, RrbTree is not perfectly
balanced as RbTree, potentially causing taller trees. The results reveal if there
is measurable overhead in practice.

Extending benchmarks with the clone operation The test keeps track
of the cloned instance in a variable to ensure that at least two objects exist
simultaneously when the update is executed. This is necessary because Rc
pointers clone the underlying value on mutation only when the reference count
is bigger than one. Thus, a clone must be present in the scope to enforce path
copying.

Update sequentially

The test function iterates over vector at indices in the [0, N) range, acquiring
a mutable reference to the value and incrementing it.

20 100 1 k 10 k 100 k

0.01µs

0.1µs

1µs

0.01

0.1

1

10

Vector size (log scale)

M
ea
n
ti
m
e
(l
og

sc
al
e)

[m
s]

Update sequentially

Vec RbVec RrbVec (r) PVec (s)
PVec PVec (r) ImVec ImVec (r)

100 1 k 10 k

0.01µs

0.1 µs

1 µs

0.01

0.1

1

Vector size (log scale)

M
ea
n
ti
m
e
(l
og

sc
al
e)

[m
s]

Update sequentially and cloning

Figure 5.3: Benchmarking results of updating values sequentially
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Results The standard vector is the fastest in the sequential updates test,
with the closest runner-up being PVec with the mean difference of 2.32. When
cloned, however, tree-based types, such as RbVec, start outperforming the
standard vector after surpassing the 4 k size. The difference grows quickly,
reaching 7.45 at the size of 20 k. It demonstrates how well path copying scales
when cloning large data structures.

Updates are slower for ImVec compared to RrbVec by 2.47 on average. When
cloned, however, the difference is less significant, varying mostly in the range
of [20, 400].

Balanced vs. relaxed Relaxed nodes and size tables associated with them
were expected to have a negative impact on the performance when copying.
Though, the numbers in the clone test do not confirm that assumption. How-
ever, if updated without cloning, RrbVec is slower than RbVec by 1.33.

Dynamic representation When updating a vector, PVec is faster than
both variants of RbVec by a factor of 2.22 on average. It is, however, slower
than Vec, even though the standard vector is used as a representation. It is
expected that PVec will introduce some overhead, as essentially, it introduces
an additional abstraction layer.

Update randomly

The test function contains a loop, which is executed N times. In the loop body,
value is updated by incrementing it, at the index that is randomly generated
in the [0, N) range.

Results As with indexing, when values are updated randomly rather than
sequentially, the performance gap between the Vec and PVec became as small
as 1.11 due to the frequent cache invalidations caused by random access. Other
than that, there are no significant distinctions.

5.1.3 Pushing

The push operation is evaluated by populating an empty and existing vectors.
Both tests are also extended with the clone operation.
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Figure 5.4: Benchmarking results of updating values randomly

The overhead of relaxed nodes in RrbTree The push operation is respon-
sible for increasing the vector capacity. While the vector capacity calculation
for RrbTree relies on the size tables, for RbTree, it is sufficient to know the
level of the node and the branching factor. Additionally, instantiating relaxed
nodes implies the allocation of size tables. All these factors combined are ex-
pected to make RrbTree’s push slower compared to RbTree. Thus, there is a
dedicated benchmark that uses prebuilt, RrbTree, and RbTree based vectors
to evaluate the difference.

Extending benchmarks with the clone operation To force PVec to
switch from Vec to RrbVec, several preconditions have to be met, including
the reference count being bigger than 1. Hence, the benchmarks above are
extended to use clone, in the same way as for benchmarks of the update oper-
ation. Beyond the evaluation of PVec, the results are expected to reveal how
tree-based vectors stack up to Vec. The input range for benchmarks using
clone is [20, 40 k].

Benchmarks are divided into two use cases:

• Building a new vector from scratch by pushing values into it.
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• Pushing values into an existing vector, both balanced and relaxed.

Both benchmarks are extended using the clone operation.

Building a vector

As vector is built from scratch in this benchmark, there is no need for a setup
routine. The test function runs a loop over the [0, N) range of indices, and
pushes the index as a value into a vector. The problem size range is [20, 1M].
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Figure 5.5: Benchmarking results of push

Results When building a vector in the [20, 100] range, tree-based types are
slightly faster than Vec, as they take advantage of the tail optimization.

ImVec is almost as fast as RbVec with a difference of 1.18. When cloned,
however, RbVec outperforms it by a significant amount of 3.61.

In the cloning benchmark, persistent vectors once more demonstrate how ef-
fective they are when copied, by RbVec being faster than Vec by a staggering
factor of 12.85.
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Dynamic representation Overall, PVec is the fastest vector, mostly due
to the combination of using Vec with the pre-allocated space2 for small sizes.
Closer to the end of the size range, Vec and PVec align in performance with
an average difference of 1.27.

When cloned, PVec is losing only to RbVec by insignificant 1.35, demonstrating
the effectiveness of the dynamic representation.

Adding values to an existing vector

The push operation does not produce relaxed nodes in balanced trees. Hence,
there is no way to evaluate the impact of relaxation in the benchmark of
building a vector from scratch. Thus, in this benchmark, values are added to
an existing vector, where vector can be both balanced and relaxed depending
on the setup routine.

Objectives of the benchmark are:

• Check the cost of the complex sub-tree capacity and index computation.

• Measure the overhead of using size tables when cloning relaxed nodes.

The setup routine generates a vector of the fixed size of N and passes it to the
test function. The balanced, RbTree-based vector is created by pushing val-
ues directly into it, while the RrbTree-based one, is created by concatenating
several vectors together. Once a vector is created, the test function pushes N
values onto it.

Results Even though size tables increase the node size in RrbTree and add
complexity to the implementation, both relaxed and balanced trees show nearly
identical performance in this test.

When push is called repeatedly, even for relaxed nodes, only balanced nodes
are added to the tree. Eventually, all new nodes at the end of the tree, except
the root, will be balanced. Thus, there is nearly no overhead of running push
over a relaxed RrbVec in the given benchmarks.

2PVec is initialized to the capacity of branching factor, that is 32 in the test configuration.
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Figure 5.6: Benchmarking results of adding values to an existing vector

5.1.4 Popping

The pop operation manages the vector capacity as well as push. For Vec, it
means shrinking the array and copying elements over. For tree-based vectors, it
implies de-allocating nodes and reducing the height of the tree when necessary.

The benchmark is divided into two tests, namely pop and pop clone. The
first test calls pop repeatedly in the loop until the vector is emptied, with the
problem size range of [20, 60 k].

In the second benchmark, each pop operation will be followed by a clone.
Both tests include balanced and relaxed vector types, which are prepared in
the setup routine. The problem size range is [20, 40 k].

The overhead of relaxed nodes in RrbTree Lowering the height of RrbTree
involves the tree capacity calculation using size tables, that comes at an ad-
ditional cost. Thus, this test includes both balanced and relaxed variants of
vectors.
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Figure 5.7: Benchmarking results of popping values

Results In the test without clone, ImVec is slightly faster than RbVec and
RrbVec by 1.29. The difference between balanced and relaxed trees is only 1.02,
showing that the cost of managing the relaxed tree capacity is not expensive.

PVec is the second fastest vector with Vec being 1.99 faster on average. When
cloned, PVec switches the representation and becomes as fast as RbVec.

On the other hand, ImVec is the slowest tree-based vector when cloned, but
still faster than Vec, especially for large sizes.

5.1.5 Appending

The append operation merges contents of one vector into another. One of the
advantages of RrbTree is the relatively low cost of append, that is O((m2 ·
logm(n)), in comparison to O(max(a, b)) of Vec. The objective is to confirm
this assumption experimentally.

Naive vs. relaxed append algorithm The RbTree-based vector uses a
naive concatenation algorithm that moves values from one vector to another.
RrbTree, on the other hand, merges and re-balances two trees, which is faster
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in theory. Due to the hardware design specifics, this might not be true for all
vector sizes. Thus, benchmarks will reveal how different algorithms perform
depending on the size of concatenated vectors.

Appending vectors The setup routine prepares a collection of vectors,
where each consecutive vector is bigger than the previous. The total size
of all prepared vectors adds up to the problem size N . The benchmark is
parameterized over the vector size, which will be in the [20, 1M] range.

Each vector is created by a combination of append and push operations. This
way PVec and RrbVec will be forced to use RrbTree for internal representation,
while RbVec will remain balanced. Vec remains flat and does not depend on
the type of operation used to add values to it.

The benchmark function iterates over generated vectors and appends them
into a vector defined as a local variable.

Results Based on the results, the naive copying of Vec is the fastest con-
catenation algorithm up to the problem size of 40 k. However, after surpassing
40 k it quickly degenerates and loses to RrbVec by a factor of 6.53, with a
maximum difference of 12.85 for the size of 1M.

Even though not for all input sizes, we can see that RrbVec’s concatenation
algorithm scales better and eventually outperforms Vec.

ImVec catches up to Vec only at the size of 400 k, still being slower than RrbVec
by a factor of 1.29 at that point.

Balanced vs. relaxed For the input size up to 2 k, RbVec and RrbVec
show similar results. The simplicity of naive concatenation used by RbVec is
sufficient to be as fast as RrbVec due to the small problem size.

This, however, drastically changes after the 2 k size, where RbVec continu-
ously degrades, showing the worst results among all vectors. The performance
difference between RbVec and RrbVec at the size of 1M is staggering 145.59.

As for PVec, it follows the curves of Vec and RrbVec because of the dynamic
representation, as expected.
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Figure 5.8: Benchmarking results of appending vectors

5.1.6 Splitting

The split operation slices a vector into two parts at the given index. The
RrbTree’s algorithm theoretically can achieve good performance by avoiding
unnecessary copying. However, due to its complexity, it might be outperformed
by naive copying for small-sized vectors.

Splitting vectors The test itself anticipates a prepared vector, which is
generated in the setup routine. To evaluate both balanced and relaxed variants,
it generates them either by using appending or pushing. The vector sizes are
within [128, 200 k].

Once a vector is generated, the benchmark function enters the loop with the
condition that the vector needs to contain more than 64 elements. In the loop,
a vector is split at index 64, the result of which is assigned back to a variable.
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Figure 5.9: Benchmarking results of splitting vectors

Essentially, a vector is being truncated at the front by 64 elements, until it is
small enough for the loop to exit.

Results The performance advantage of Vec over RrbVec is 3.24 up to the
size of 20 k, after which it degrades and gets slower than ImVec and RrbVec
by 5.95. The difference is more significant for RbVec at the factor of 65.65 for
the size of 400 k.

5.2 Parallel benchmarks
The benchmarks were executed against Vec and vectors from pvec-rs , where
RbVec, RrbVec, and PVec were compiled with the threadsafe reference counting
pointer – Arc.
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At the time of writing, ImVec does not implement the IntoParallelIterator
trait, and therefore, is not included in the parallel benchmarks.

The benchmarks were parameterized over two dimensions: the vector size and
the number of threads. To see whether parallelism is beneficial, each bench-
mark has an analogous, sequential implementation used as the baseline.

The results are discussed from the perspective of:

• Scalability of the tree-based vectors.

• The impact of the relaxed append and split operations.

The results are presented in the form of a three-dimensional graph, where the
x and y-axis correspond to the problem size and number of used threads, while
z stands for the mean runtime.

5.2.1 Adding elements of two vectors

Given two equally sized vectors of integers, the test function adds values at
the corresponding indices and returns a new instance of a vector with results.
The benchmark is subdivided into three steps:

1. Transform two vectors into a single sequence of value pairs by merging
their parallel iterators.

2. Add values of the emitted key-value pair into a single integer.

3. Reduce individual sums into a vector of results.

The setup routine prepares two vectors of integers in the [0, N] problem size
range.
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Figure 5.10: Adding elements of two N sized vectors parallelized on K number
of threads

Results RbVec and RrbVec show nearly identical results in sequential bench-
marks. This is expected, as append and split operations that create relaxed
nodes were not used. Hence, RrbVec remains balanced throughout the test,
and is backed by the same representation of RrbTree as RbVec. Both vari-
ants are consistently slower compared to Vec, with a difference of 3.2-3.5 on
average.

When executed in parallel, RrbVec starts outperforming RbVec at the size of
1024 elements. The reason why difference becomes apparent after surpassing
that size is that the concatenation algorithm used in this project produces
balanced RbTree when the height of the tree does not exceed two levels. With
the branching factor of 32, the capacity of the tree of two levels is equal to
1024.
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As the vector size grows, Rayon performs more slices to achieve optimal vector
size per a single thread. This, in turn, results in a higher number of concate-
nations necessary to combine execution results. Since RbVec has the naive
implementation of append and split, its performance degrades with the input
size growth. The difference in execution time, depending on size, falls into the
factor of 1.0-2.3 range.

To keep available threads busy, Rayon divides the available pool of work into
smaller pieces. Hence, the growing number of threads increases the perfor-
mance gap between RbVec and RrbVec even further, as split and append are
used more frequently. In the test with 2, 4, and 8 threads, RbVec is slower
than RrbVec by a factor of 1.0-2.3, 1.0-2.8, and 1.1-2.12 correspondingly.

Even though RrbVec’s append and split operations are faster for large-sized
vectors, Vec showed the best results in all tests. It is important to keep in mind
that appends and splits constitute only a small number of all operations used
in this test. Operations such as push and get, which were extensively used in
this benchmark, are still faster for Vec. Thus, the closest runner up – PVec,
is slower by a factor of 1.8-1.9 and 1.6-1.7 in the sequential and 4-threaded
parallel benchmarks correspondingly.

The effect of parallelism The sequential variant of the benchmark outper-
formed all subsequent parallel tests. This can be explained by the overhead
induced by the distribution of work between multiple threads, which outweighs
the benefits of solving a relatively simple problem in parallel. It is an acceptable
trade-off, as the purpose of the benchmark is to observe how different vectors
perform compared to each other, rather than tuning the parallel benchmark
for optimal performance.

5.2.2 Check if a word is a palindrome

The benchmark checks whether a word is a palindrome and annotates it with
a boolean flag. As input, we are using a list of English words consisting only
of alphabetic characters. The computation stages are the following:

1. Transform the given vector of words into a parallel iterator.
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2. Return a tuple of the word and the flag indicating if the word is a palin-
drome.

3. Reduce the results to a new instance of a vector of tuples.

The benchmark setup The dictionary file contains 370103 words. The
benchmark is parameterized over the number of threads and words. The data
is loaded into memory only once, and before each run, the setup routine copies
N words and passes them to the test as a vector.

10 k
100 k

300 k

1248

0

10

20

30

Vector size (log scale)Number of threads (log scale)

M
ea
n
ti
m
e
(l
og

sc
al
e)

[m
s]

Check if a word is a palindrome on K number of threads

Vec

RbVec

RrbVec (r)

PVec (s)

PVec (r)

Figure 5.11: Check if a word is a palindrome on K number of threads

Results As expected, RbVec and RrbVec are equally fast in the sequential
test, as both of them are represented by a balanced RbTree. When the bench-
mark is parallelized, RrbVec gains advantage due to its efficient slice and con-
catenation operations. The difference between variants grows along with the
increasing count of threads. Specifically, it is 1.5-2.0 for the test run with two
threads, and 1.7-2.5 for four threads.
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The increase in the thread number causes a higher number of vector splits
and concatenations. Thus, the bigger the problem size and the thread number
is, the more advantages RrbVec provides, demonstrating performance results
comparable to Vec.

The effect of parallelism The performance gap between the sequential and
parallel runs closes with the thread number increasing, and it is less noticeable
compared to Section 5.2.1. It is due to the palindrome check being complex
enough to benefit from parallelizing the work.

5.3 Memory benchmarks
The goals for the memory tests are the following:

• Measure the memory footprint of the tree-based and standard vectors.

• Evaluate the effectiveness of the structural sharing when cloning a vector.

5.3.1 Building a vector

This benchmark is expected to reveal the memory overhead of using a tree
instead of the contiguous memory block as its height, and the node count
grows. Given the size N as a parameter, this benchmark builds a vector by
pushing N values into it. The problem size range is [6 k, 2M].

Results The tree-based vectors use the amount of memory proportional to
their size. The RbVec and PVec types, however, consistently use 2.2 times more
memory compared to Vec. On the other hand, ImVec shows excellent results
reviling Vec with a marginal difference of 1.18 on average.

5.3.2 Updating and cloning a vector

The test builds a new vector of size N , runs a loop from 0 to N , clones a vector,
and updates a value at the given index. All cloned instances are accumulated
in another vector to observe how well structural sharing helps to save memory.
The vector sizes are in [1 k, 60 k] range.
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Results The results demonstrate the strongest advantage of the tree-based
vectors – the ability to preserve memory by structural sharing. The tree-
based vectors show similar results, with ImVec being slightly ahead of PVec by
consuming 0.71 less memory. PVec and ImVec are slightly more than a 100MB
large at the peak size. On the other hand, Vec does not scale well, consuming
more than ten gigabytes of memory at the benchmark input of 60 k.





Chapter 6

Conclusions and future work

In this final chapter, I will look at the state and future of the pvec-rs project,
and how the ideas explored in this thesis can be continued further.

6.1 Reflecting on contributions
This project explores and blends ideas at the intersection of persistent data
structures and unique features of Rust to contribute a vector implementation
that delivers good performance for all operations, including clone. It makes
pvec-rs a viable alternative in applications where the fast clone operation is
critical.

The list of vectors includes RbVec, RrbVec, and PVec, all of which are based
on RrbTree.

6.1.1 Balanced vs. relaxed

The advantage of the relaxed RbTree is the fast appends and splits. RrbVec
demonstrates significantly better performance for those operations compared
to RbVec, and even outperforms Vec for the large-sized vectors.

Frameworks for parallelism, such as rayon , take advantage of multiple threads
by dividing the work between them. Vectors are subdivided by using the split
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operation, after which the results are collected back by concatenating them.
Therefore, RrbTree’s fast append and split operations are critical for achieving
good performance in parallel use cases.

The overhead of relaxation is present in other operations, but it is not signifi-
cant enough to outweigh the benefits. Also, constraints are relaxed only when
append or split is used, meaning that one does not have to pay the cost of the
abstraction before using it.

6.1.2 Pay only for the features you use

The project draws inspiration from one of the Rust key features – zero-cost ab-
stractions. As demonstrated in Chapter 5, PVec starts as an ordinary, standard
vector that delivers great performance for the core operations. When cloned,
it employs a technique introduced in this project named spilling, which tran-
sitions the vector from the flat to the tree-based representation. When tran-
sitioned to a balanced RrbVec, PVec offers practically O(1) performance for
all operations, including cloning, enabling patterns that extensively rely on
copying.

Dynamic representation Tree-based vectors are very cheap to clone, but
their core operations, even though very fast, do not match the performance of
the standard vector due to the nuances of hardware architecture. The dynamic
representation aims to offset this cost by using standard vector, switching to
the tree-based representation only when cloned.

Results show that dynamic representation effectively improves the performance
of all PVec operations, except appending and splitting for large-sized vectors,
where tree-based vectors have an advantage. However, since PVec is essentially
an additional abstraction layer, it introduces a marginal overhead over the pure
variants of its representations – Vec and RrbVec.

Unique access In the paper Improving RRB-Tree Performance through
Transience [11], the author mentions that the correct use of transient data
types can be checked during compile-time in languages that use linear types
[18], such as Rust.
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This project implements unique access optimization, that is somewhat similar
to transience, but is not entirely the same. For example, transients in Clojure1
are created by calling a special function – transient, and converted back to
persistent using persistent!. Transient types are also thread-local in Clojure,
meaning that they cannot be modified outside of the thread where the transient
was created.

In Rust, a vector can be considered transient when it is accessed through a
mutable reference without calling a special function such as transient. The
Rust’s compiler ensures that the mutable reference is unique and that the
operation is safe. With that knowledge, the program can proceed to update
vector in-place without creating copies – transitively. Rust also allows moving
objects between threads, so a vector instantiated on one thread can be updated
on another.

The unique access optimization ensures that the data structure can be mutated
in-place only when it is safe. If a vector is cloned before being updated,
copy-on-write semantics of Rc will enforce path-copying leaving the original
untouched.

Benchmarks for mutative operations, such as push, pop, and update that in-
cluded tests with and without clone showed that updating a data structure
in-place was noticeably faster.

Additionally, a "mutable" interface for PVec that makes unique access opti-
mization possible, also makes the API of PVec identical to Vec and conventional
to Rust.

Idiomatic, ergonomic Rust interface The idiomatic and convenient in-
terface of pvec-rs , identical to the standard one, simplifies the library’s inte-
gration into existing codebases. A side effect of this design is that both types
of vectors can be used interchangeably in a generic manner. For example, the
vector type can be substituted during compile-time using feature flags without
changing the source code.

Thread-safety is also an optional feature that can be enabled when compiling.
This way, developers do not have to pay the cost of using the parallel vector

1https://clojure.org/reference/transients

https://clojure.org/reference/transients
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features in sequential applications.

6.2 Implementation state
While the pvec-rs core outlined in the thesis is complete, some features and
optimizations were left out of the scope. This section describes features and
ideas that can be explored further.

6.2.1 Supporting all operations of Vec

The API surface of the pvec-rs does not expose the same set of methods as
the standard vector does. Available methods are listed in Section 3.1.2.

Having efficient appending and splitting allows us to implement several other
operations, such as inserting or deleting an element at any index. The complex-
ity of these operations is bound by the complexity of the discrete operations
used to implement them. Thus, uniform performance characteristics across
core operations are critical for achieving good all-around performance for the
general-purpose vector.

For example, element insertion at the given index can be implemented by
splitting the vector at the given index, pushing a new element into the left
sub-vector, and then concatenating two sub-vectors back together.

Therefore, the operations that can be implemented by combining or re-using
core operations were intentionally left as future work due to the time con-
straints.

6.2.2 Improving the dynamic representation

Automatically switching to the flat representation A distinct feature
of PVec is the ability to start as a standard vector and then switch to RrbVec
when cloned. However, there is no mechanism to switch back to the flat
representation, for example, when all cloned instances are destroyed.

One way to achieve this is by flattening the RrbTree into a standard vector
when the underlying tree is not shared with any clones. One could use Rust’s
destructors to observe when PVec clones go out of the scope. The challenge is
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to be able to say when the tree is not shared anymore. A brute force approach
would be traversing the tree and counting references, but obviously, it is very
in-efficient.

An annotated example of this optimization in use is provided in Listing 22.

1 let mut vec_1 = PVec::new();
2 // ^ start as a standard Vec
3

4 for i in 0..512 {
5 vec_1.push(i);
6 }
7

8 vec_1 = vec_1.clone();
9 // ^ force switch to RrbVec

10

11 let vec_2 = vec_1.clone();
12 { // <-- moving vec_2 to the new scope
13 vec_2
14 } // <-- vec_2 goes out of the scope and is
15 // destroyed, vec_1 switches back to standard Vec
16

17 // execution continues

Listing 22: An example of switching back to the flat representation

Starting as an array allocated on the stack The flat vector representa-
tion is efficient because of its cache-friendly memory layout. Since the vector
size is not known at the compile-time, it is allocated on the heap. In compari-
son to the stack, heap allocation is more complex and expensive as it requires
the memory allocator to track and manage allocated blocks of memory. Ad-
ditionally, heap-allocated objects are more likely to cause cache invalidation,
as CPU will have to reach a memory segment that potentially is located far
outside of its caches.

In an attempt to improve the cache locality properties of the standard vector,
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authors of the smallvec2 library introduced a vector implementation that
stores a certain number of elements on the stack, and falls back to the heap
for larger sizes.

The dynamic representation can be extended with the new representation type
that allocates vector on the stack. The vector first will be allocated on the
stack, then spill to the heap when exceeding a certain size threshold, and
switched to RrbVec when cloned.

One has to be cautious in implementing this optimization. Internally, PVec is
backed by the Representation enum, and in Rust, the enum size is bounded
by its largest variant. The variant that holds the stack-allocated buffer will
quickly supersede Flat and Tree representations if set to be sufficiently large,
increasing the overall memory footprint of PVec.

6.2.3 Focus and display optimizations

The notion of focus was introduced in Scala’s immutable vector implemen-
tation and was further studied in [17]. Instead of keeping track only of the
vector tail, the focus is generalized to work with the leaf node, which was
last modified. The basis for this is the principle of spatial locality, a heuristic
that assumes that collocated elements are more likely to be accessed one after
another.

Since the vector has to be thread-safe, focus either has to be modified when
the vector itself is modified or to be protected from the concurrent access. The
latter comes at additional performance and maintenance costs.

Display is a way to keep track of the entire tree branch, from the root to a
leaf, where a leaf is the focused node. Introducing display to RrbTree requires
additional coordination when the tree is modified.

Limitations of Rust The strict ownership and borrowing rules introduce
additional complexity in implementing the display. It is forbidden to acquire
and keep mutable references to the node and its children simultaneously. That

2https://docs.rs/smallvec/1.2.0/smallvec/

https://docs.rs/smallvec/1.2.0/smallvec/
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is a necessary property for display, which essentially is a stack of pointers to
nodes that form a path from the root to the leaf nodes.

Alternatively, rather than keeping a stack of mutable pointers, one could use
Rc. The side effect of this choice is that ownership of Rc demands to clone.
This, in turn, increments the reference count. When the reference count is
bigger than one, any attempts to acquire a mutable pointer will result in the
clone of the underlying value. Since display and focus are updated only when
the vector itself is modified, it will result in path-copying every time.

The second option is to use the interior mutability pattern in Rust, or RefCell.
RefCell is a container that enforces compile-time rules of the borrow checker
at runtime. Offsetting these checks helps to implement the display, but also
adds overhead to every other operation, as all tree nodes have to be decorated
with RefCell.

Even though display and focus seem to optimize some specific use cases po-
tentially, the additional implementation complexity could cause more bugs
and harm performance of other operations making RrbTree less efficient as a
general-purpose data structure.

Especially in Rust, the options listed above require either using the unsafe
subset of the language features, sacrificing the simplicity, and possibly the
reliability and performance. Adding focus and display to RrbVec is therefore
left as future work.

6.3 Towards the library of persistent data struc-
tures for Rust

Vector is only one of many other general-purpose data structures provided by
the Rust standard library, such as LinkedList, HashMap, HashSet, and others.
The ideas discussed in this thesis can be used to implement persistent variants
of those data structures. For example, the hash array mapped tries [1] can be
used as a foundation for HashMap.

In fact, there are other projects that implement persistent collections for Rust
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today, such as imrs3 and rpds4. Even though they do not offer the same op-
timizations and interface as pvec-rs , they are a viable alternative for someone
who needs a wider selection of persistent data structures today.

3https://docs.rs/im/14.3.0/im/
4https://docs.rs/rpds/0.7.0/rpds/

https://docs.rs/im/14.3.0/im/
https://docs.rs/rpds/0.7.0/rpds/


Appendix A

RRB-tree algorithms

A.1 Rebalancing algorithm
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1: function Rebalance(left, middle, right)
2: height ← Max(leftheight,middleheight,rightheight)
3: root, subtree, node ← CreateNode(height)
4: for mergedNode in left + middle + right do
5: if nodelen = 0 and mergedNodelen == m then
6: CheckSubtree(root, subtree)
7: subtree[subtreelen] ← mergedNode
8: subtreelen++
9: else
10: for childNode in mergedNode do
11: if nodelen = m then
12: CheckSubtree(root, subtree)
13: subtree[subtreelen] ← node
14: subtreelen++
15: node[nodelen] ← childNode
16: nodelen++
17: CheckSubtree(root, subtree)
18: if nodelen != 0 then
19: subtree[subtreelen] ← node
20: subtreelen++
21: if subtreelen != 0 then
22: root[rootlen] ← subtree
23: rootlen++
24: return root
25:
26: procedure CheckSubtree(root, subtree)
27: if subtreelen = m then
28: root[rootlen] ← subtree
29: rootlen++

Listing 23: Rebalancing algorithm for RRB-tree



Appendix B

Tail optimization for persistent
vectors

In practice, changes are often applied to the end or tail of the data structure.
The stack is designed for such use cases, by offering the O(1) performance for
the push and pop operations. Even though RRB-tree has similar performance
characteristics, its push and pop implementations include pesky constant fac-
tors in the form of radix search and path copying algorithms.

The tail optimization is intended to offset this cost by reducing the count of
the RRB-tree accesses. Instead of adding or removing elements one by one,
changes are batched in the array of size m. This array could be thought of as
a leaf node that will be attached to the tree only when it is full.

B.1 Optimizing the push operation
As demonstrated in Listing 24, the new value is set into a cloned tail at the
tailsize position. Since the tail is the rightmost leaf node, its size can be used
as an index for the new value. If the tail is full, it is pushed into the tree and
replaced with an empty tail.
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1: function Push(vec, value)
2: newTail ← Clone(vectail)
3: newTail[tailsize] ← value
4: newTailsize ← tailsize + 1
5: newRoot ← vecroot
6: if newTailsize = m then
7: newRoot ← Push(vecroot, newTail)
8: newTail ← CreateNode
9: return CreateVec(newRoot, newTail)

Listing 24: Tail optimization for persistent vector’s push operation

B.2 Optimizing the pop operation
Since a tail might contain values, pop has to remove them first before modifying
the RRB-tree. If the tail is empty, it will be replaced with the rightmost leaf
of RRB-tree. See Listing 25 for detailed steps.

1: function Pop(vec)
2: newTail ← Clone(vectail)
3: newRoot ← NIL
4: value ← newTail[newTailsize - 1]
5: newTailsize ← newTailsize - 1
6: if newTailsize = 0 then
7: newRoot, newTail ← Pop(vecroot)
8: else
9: newRoot ← vecroot
10: return CreateVec(newRoot, newTail)

Listing 25: Tail optimization for the persistent vector’s pop operation

B.3 Adapting the update and radix search op-
erations

Changes for both update and radix search are very similar, with the difference
that update has to ensure that the original version of vector stays unmodified.
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The radix search implementation has to take into account that some of the
values can be in the tail. A value is located within the tree if the key is less
than the tree size. In this case, the search process is delegated to RRB-tree.
Otherwise, the index for value in the tail is calculated by subtracting the tree
size from the key.

1: function Update(vec, key, value)
2: root ← vecroot
3: tail ← vectail
4: if key < rootsize then
5: newRoot ← Update(root, key, value)
6: return CreateVec(newRoot, tail)
7: else
8: newTail ← Clone(tail)
9: newTail[key - rootsize] ← value
10: return CreateVec(root, newTail)

Listing 26: Using the tail optimization in the update operation

1: function RadixSearch(vec, key)
2: root ← vecroot
3: tail ← vectail
4: if key < rootsize then
5: return RrbTreeRadixSearch(root, key)
6: else
7: return tail[key - rootsize]

Listing 27: Using the tail optimization in the radix search operation
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