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CHAPTER 1

Introduction

The Birch-Tate conjecture states that the following formula:

ζK(−1) = |K2(OK)|
|H0(K,Q/Z(2))|

holds up to a power of 2. Here K is a totally real numberfield, ζK is the
Dedekind zeta function and K2(OK) is the algebraic K2-group. The formula
was conjectured after Tate’s proof of the same formula for function fields, a proof
that heavily relied upon ideas of Weil’s solution to the Riemann hypothesis for
curves. The main idea of Weil was that the essential part of the zeta-function
is the determinant of the inverse Forbenius acting on the Jacobian of the curve.
Hence began the search for an analogue for the Jacobian in the number field
setting initiated by Iwasawa. This was the birth of what we today call Iwasawa-
theory, whose main conjecture would imply the Birch-Tate conjecture. The
main conjecture of Iwasawa-theory for totally real fields was proved by Andrew
Wiles in 1990 for odd primes p, and later in [rognes] for p = 2.

In a paper in 2008, Takao Yamazaki extended Somekawa K-theory to rings
of integers and proved that the more general formula:

L(X(T ),−1) = |KT (OK)|
|H0(K,X(T )⊗Q/Z(2))| ,

holds up to a power of 2. Here:

1. L/K is a finite extension of totally real fields.

2. T is a torus over K split by L and is assumed to admit motivic
interpretation.

3. X(T ) is the cocharacter group.

4. L(X(T ), s) is the Artin L-function attached to the Artin representation
X(T )⊗ C.

This thesis is for the most part an exposition of ideas comming together in this
formula. We focus especially on the function field case, because it is the easiest
one. Our main focus has been has been on the big picture, and relate concepts
coming form different areas in algebraic number theory. Our main theorem is
that we prove Yamazaki’s formula at the prime p = 2, i.e. extend Yamazaki’s
result.
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CHAPTER 2

Symbols

2.1 The general reciprocity law.

In the beginning of 20th-century, David Hilbert published 23 problems which
in his point of view was the biggest unsolved mystries in mathematics. Some of
the are now solved, some of them are partly solved and some of then are not
solved. In Hilbert’s opinion, the 8th problem which is the Riemann hypothesis,
was the most important one and it is considered far away from being solved.
On the other hand, the 9th problem was concering the quest for finding "the
most general reciprocity law", he considered to be "more special". Anyhow, the
9th problem is one of the solved problems and it is the topic of this section.

Quadratic reciprocity

A very interesting activity to do early in ones mathematical career is to think
about squares mod p. One need only elementary knowledge to comprehend the
stiking phenomena the quadratic reciprocity relation among prime numbers
yields. We start by considering two examples., i.e., Consider

(Z/11Z)∗ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

We then square every element and take mod 11. We get:

(Z/11Z∗)2 = {1, 4, 9, 5, 3, 3, 9, 4, 1}.

We also want to consider:

(Z/13Z)∗)2 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},

whose square is:

((Z/13Z)∗)2 = {1, 4, 6, 3, 12, 10, 10, 12, 3, 9, 4, 1}.

A pattern one spots immediately is the symmetry about the middle. That has
a trivial but nice explaination. Z/11Z can be written like:

Z/11Z = {1, 2, 3, 4, 5,−5,−4,−3,−2,−1},

so when we square all the numbers the minus sign does not matter.
Another pattern that is easy to spot is that the squares appear symmetrically

in Z/13Z, but not in Z/11Z. This is the case since 13 ≡ 1mod4, and 11 ≡ 3mod4.
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2. Symbols

We will later see that this corresponds to even and odd characters respectivly,
a crucial concept in Iwasawa-theory. We will now return to the general case
and look at how the patterns in squares mod p is captured formally.

The Frobenius map

The Frobenius map is one of the most important maps in all of number theory.
Although it is very classical, it plays a central role in modern mathematics. For
instance, "It governs class field theory like a king" [Neu99] and is essential in
the Weil conjectures and in Scholze’s perfectoid spaces, just to metion a few
topics where it occours.

For our purposes now, the Frobenius map is a field automorphism:

Z/pZ F−→ Z/pZ
a 7−→ ap

This map is obiously multiplicative:

F (ab) = F (a)F (b),

but it turns out that by the binomial formula combined that we take mod p,
makes this map additive also:

F (a+ b) = F (a) + F (b).

In our case the Frobenius map is the identity by Fermat’s little theorem.
Suppose we now ask the question whether a number a is a square mod p.

To formulate the question terms of algebra, we make the ring:

Z/pZ[x]
x2 − a

,

and ask if this ring splits. We pick a random element u +
√
a and apply the

Frobenius:

F (u+
√
av) = (u+

√
av)p = up + vp(

√
a)p = u+ vdp−1/2√a.

But what is ap−1/2? We apply the Frobenius yet again:

0 = ap − a = a(ap−1/2 − 1)(ap−1/2 + 1).

One of the three terms must be zero, and since (a, p) = 1 it must be one of the
last two. We put

(
a
p

)
= 1 if ap−1/2 = 1, and put

(
a
p

)
= 1 if ap−1/2 = −1.

The conclusion from the above is that the Frobenius map acts as the identity
incase a is a square mod p, and it acts as complex conjugation of it not.

Given a prime number p, we can associate to it the so called Legendre
symbol:

Z/pZ
( ·p )
−→ {−1, 1}

amod p 7−→
(
a

p

)
6



2.1. The general reciprocity law.

(
a
p

)
= 1 if a is a square mod p, and

(
a
p

)
= −1 if a is not a square mod p. At

first this might look strange, but already the next result shows the usefulness
of this tool:

Proposition 2.1.1.
(
·
p

)
is the unique character of order 2, i.e. it is

multiplicative.

Proof. There are only four cases to consider. (1) Let both a and b be squares
mod p. Then ab is a square mod p. Thus 1 · 1 = 1. (2) Let a be square and
b is not square mod p. Then ab is not a square mod p. Thus 1 · −1 = −1. (3)
Symmetric of (2). Same argument yields −1 · 1 =. (4) Suppose neither a nor b
are squares mod p. If we combine the facts that half of the integers mod p are
squares and multiplication with an element prime to p yields an automorphism
of Z/pZ, we see that ab must be a square mod p. Thus −1 · −1 = 1, and we
are done. �

Remark 2.1.2. To obtain the results above we remark that the assuption that
the field is finite is crucial. It yields symmetry and lets us make use of powerfull
couting arguments we otherwise would not have.

As we have seen above, the Legendre symbol
(
a
p

)
is easy to describe for

varying a. The dual problem, namely describing how it bahaves for varying p is
the subject of quadratic reciprocity.

Since the Legendre symbol is multiplicative and we have the fundamental
theorem of arithmetic, we have that:(

a

p

)
=
(
±1
p

)(
2
p

)(
q1

p

)
· · ·
(
qr
p

)
.

Hence we see that the problem reduces to three special cases: −1, 2 and for
an arbitrary prime p. We then state the quadratic reciprocity law, which was
conjectured by Euler and proven by the 21 year old Gauss.

Theorem 2.1.1. The Legendre symbol satisfies the following relations:(
p

q

)
= (−1)

p−1
2

q−1
2

(
q

p

)
(
−1
p

)
= (−1)

p−1
2 ,

(
2
p

)
= (−1)

p2−1
8 .

A more understandable way to state the first relation would be: Given that
p is a square mod q, then q is a square mod p unless both are congruent to 3
mod 4. That means that if we know what p is mod 4a, then we know what(
a
p

)
is. There are many proofs of these formulas. They are quite formal and

technical, and in my opinion not very conceptual. In addition, it will not be
that relevant for the thesis. However, showing the generalization of this theorem
using Hilbert symbols is both conceptual and very relevant as we will see later.
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2. Symbols

Definition 2.1.3. Let p be a prime number. We associate to it the Hilbert
symbol

(
a,b
p

)
. It is equal to 1 if:

ax2 + by2 = 1, has a solution inQp.

Otherwise it is −1.

Remark 2.1.4. It is subtle matter that the Hilbert symbols vanish on the complex
places and perhaps it is due to C∗ being connected. The vanishing seems to
equivalent to the fact that there are r2 + 1 cyclotomic extensions of a number
field or that the rank of the Iwasawa module X is r2. Anyhow, on Qp the
Hilbert symbol is a quadratic form, and over C all quadratic forms of the same
dimension are equivalent.

Theorem 2.1.2 (Hilbert).

1.
(
a,b
p

)
is symmetric and bimultiplicative.

2. If p is odd and (a, p) = 1, then
(
a,b
p

)
=
(
a
p

)vp(b)
.

3. The product formula:
∏
p

(
a,b
p

)
= 1

2.2 The K2 functor

A symbol on a field F is a bilinear map:

F ∗ × F ∗ ( , )−→ C

satisfying the relation (a, 1− a). A symbol on F factors through K2(F ) by the
universal property. We will take this as the definition in favour of the Steinberg
group one.

2.3 The norm residue symbol

Section 3.1 Let µm be them-th roots of unity in F ∗s and suppose (char(F ),m) =
1. Then we have short exact sequence:

0 µm F ∗s F ∗s 0m

Passing to Galois cohomology yields:

F ∗ F ∗ H1(Fs, µm) 0m

Hence we get an isomorphism:

F ∗/(F ∗)m H1(Fs, µm)'

8



2.3. The norm residue symbol

Using the cup product Section 3.1 we construct a symbol on F :

F ∗ × F ∗ F ∗/(F ∗)m × F ∗/(F ∗)m H1(F, µm)×H1(F, µm) H2(F, µ⊗2
m )

K2(F )

( , )

h̃1

δm×δm ∪

h1

If µm ⊂ F , then:

H2(F, µ⊗2
m ) H2(F, µm)⊗ µm Brm(F )⊗ µm= =

Thus, choosing a z ∈ µm, we have a symbol on F :

F ∗ × F ∗ h̃1−→ Brm(F )⊗ µm
(a, b) 7−→ (a, b)m ⊗ z

Thus we have obained a symbol on F with values in the the Brauer group
Br(F )m ⊗ µm.

The Hilbert symbol

The above construction is a cohomological reformulation of the classical Hilbert
symbol on a number field which we define locally for each place:

F ∗v /(F ∗v )n × F ∗v /(F ∗v )n µv

(
( , )

v

)
which is the generalization of the Hilbert symbol defined above on Qp. By local
class field theory and Kummer theory we obtain F ∗v /(F ∗v )n ' G(K(n

√
K∗)/K)

and F ∗v /(F ∗v )n ' Hom(G(K(n
√
K∗)/K), µv) respectively. The pairing is

canonical:

Hom(G(K(n
√
K∗)/K), µv)×G(K(n

√
K∗)/K)

(
( , )

v

)
−−−−−→ µv

(χ, σ) 7−→ χ(σ)

Putting all the local Hilbert symbols together, we get a global one:

K2(F )
∐
v n.c. µv

λ

Definition 2.3.1. A finite F -algebra A is called simple if the only bilateral ideals
of A are the whole algebra A or the trivial ideal {0}. An F -algebra is called
simple if F is the center of A.

9



2. Symbols

Every central simple F -algebra is isomorphic to the matrix algebra Mn(D)
where D is a skew field over F , where n and D is determined by A up to
isomorphism.

Definition 2.3.2. We say that two central simple algebras A and A′ are
isomorphic if their corresponding skew fields, D and D′ are the same.

Definition 2.3.3 (The Brauer group). The Brauer group Br(F) is the group
consisting of isomorphism classes of central simple algebras and where the tensor
product is the group operation.

Remark 2.3.4. Using norm and restriction arguments , on shows that the Brauer
group is a torsion group.

After having defined the Brauer group, we now return to our symbol. By
the universal property of K2 we have the norm residue homomorphism:

K2(F ) h1−→ Brm(F )⊗ µm
{a, b} 7−→ (a, b)m ⊗ z

(a, b)m is the element in Br(F ) represented by the central simple algebra:

F [α, β]
(αm − a), (βm − b), (βα− zαβ)

Proposition 2.3.5. Let a, b be elements in F ∗. Then the following statements
are equivalent:
{a, b} ∈ mK2(F ).
h1({a, b}) = 0.
(a, b)m = 0.
∃γ ∈ F (a 1

m ) such that N
F (a

1
m )/F

γ = b.

Proof. (1) =⇒ (2): Let {a, b} ∈ mK2(F ). Then {a, b} = m{r, s} for some
r, s ∈ F ∗. Then we have:

h1({a, b} = h1(m{r, s}) = mh1({r, s} = m(z ⊗ (a, b)m)) = 0.

The last equality follows since both groups µm and Brm(F ) has order m.
(2) =⇒ (3): By assuption we have:

0 = h1({a, b}) = z ⊗ (a, b)m.

Since z is a fixed root of unity, we must have: (a, b)m = 0. (3) =⇒ (4): This
is a classical result of Milnor [Mil72].
(4) =⇒ (1): Suppose ∃γ ∈ F (a 1

m ) such that N
F (a

1
m )/F

γ = b. then we once
again make use of the transfer maps ??:

{a, b} = {a,N
F (a

1
m )/F

(γ)} = N
F (a

1
m )/F

{a, γ} = mN
F (a

1
m )/F

{a 1
m , γ} ∈ mK2(F )

�

10



CHAPTER 3

Galois cohomology and K2

3.1 Galois cohomology

Definition of group cohomology

In this section we are following [Neu]. Group cohomology arises from a canonical
diagram:

. . . G×G×G×G G×G×G G×G G

The arrows are canonical projections:

Gn+1 di

−−−−−→ Gn

(σ0, . . . , σn) 7−→ (σ0, . . . , σ̂i, . . . , σn)

Let A be a G-module, in particular an abelian group that comes equipped
with a G-action. Let

Xn = Xn(G,A) = Homcont(Gn+1, A).

If x ∈ Xn, then

Gn+1 x
−−−−−→ A

(σ0, . . . , σn) 7−→ x(σ0, . . . , σn)

Xn gets an induced G-module stucture, i.e. a G-action:

Gn+1 σx
−−−−−→ A

(σ0, . . . , σn) 7−→ σx(σ−1σ0, . . . , σ
−1σn)

Which we observe is a conjugation of the elements of Xn by G:

Gn+1 Gn+1 A Aσ−1

σx

x σ

11



3. Galois cohomology and K2

The following diagram:

. . . G×G×G×G G×G×G G×G G

. . . A A A Aid id id id

shows how we obtain the diagram:

A X X2 X3 X4 . . .

To get a complex we form the differentials as alternating sums:

Xn−1 ∂n

−−−−−→ Xn

x 7−→
n∑
0

(−1)id∗i x

Proposition 3.1.1. The sequence

0 A X X2 X3 . . .∂0 ∂1 ∂2 ∂3

is exact.

Proof. By construction we have ∂n+1 ◦ ∂n = 0, because the alternating sums
cancel. Hence we have Im(∂n) ⊂ Ker(∂n+1

To prove exactness, we define the following maps:

Xn+1 Dn

−−−−−→ Xn

x(σ0, . . . , σn) 7−→ x(1, σ0, . . . , σn−1)

We combine this map with the differential to two get maps:

Gn+1
∂nDn−1(x)

−−−−−−−−−−→ A

x(σ0, . . . , σn) 7−→
n∑
i=0

(−1)ix(1, σ0, . . . , σ̂i, . . . , σn)

and

Gn+1
Dn∂n+1(x)

−−−−−−−−−−→ A

x(σ0, . . . , σn) 7−→ x(σ0, . . . , σn) +
n+1∑
i=1

(−1)ix(1, σ0, . . . , σ̂i, . . . , σn).

Hence

∂n ◦Dn−1 +Dn ◦ ∂n+1 = id.

If x ∈ Ker(∂n+1), then x = id(x) = ∂n ◦Dn−1(y) for some y ∈ Xn. Thus
exactness is proved. �
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3.1. Galois cohomology

The sequence in the proposition is an injective resolution of A, and is known
as the standard resolution. The family (Dn)n is called a contracting homotopy
of it.
With an injective resolution of the G-module A, we are now in shape to define
the associated cohomology groups. Analogously to sheaf cohomology where
we take the global sections functor on the injective resloution, we instead take
G-invariance. We let:

Cn(G,A) := Xn(G,A)G.
We easily see that ∂ ◦ ∂ = 0, since the alternating sums still cancel. Hence

we get a complex, called the homogeneous cochain complex:

C0(G,A) C1(G,A) C2(G,A) C3(G,A) . . .∂1 ∂2 ∂3 ∂4

The boundary maps are now

Definition 3.1.2. We define n-cocycles to be:

Zn(G,A) = Ker(Cn(G,A)→ Cn+1(G,A),

and n-coboundaries to be:

Bn(G,A) = Im(Cn−1(G,A)→ Cn(G,A)).

Finally we define the n-th cohomology group to be:

Hn(G,A) = Zn(G,A)/Bn(G,A).

For computational purposes one replaces the homogeneous cochain complex
above by the inhomogeneous cochain complex which we explain now. We
construct isomorphisms:

C0(G,A) '−→ C 0(G,A) = A

x(σ) 7−→ x(1)

Cn(G,A) '−→ C n(G,A)
x(σ0, . . . , σn) 7−→ x(1, σ1, σ1σ2, . . . , σ1 · · ·σn)

We obtain the inhomogeneous cochain complex:

C 0(G,A) C 1(G,A) C 2(G,A) . . .∂1 ∂2 ∂3

The boundary maps are:

C 0(G,A) ∂1

−→ C 1(G,A)
∂1a(σ) 7−→ σa− a

C 1(G,A) ∂2

−→ C 2(G,A)
∂2y(σ, τ) 7−→ σy(τ)− y(στ) + y(σ)

C 2(G,A) ∂3

−→ C 3(G,A)
∂3y(σ, τ, λ) 7−→ σy(τ, λ)− y(στ, λ) + y(σ, τλ)− y(σ, τ)

and so on.

13



3. Galois cohomology and K2

Profinite groups

Given a field K, we can associate a group to it, namely the absolute Galois
group G = Gal(K/K).

Some cohomological tools

Suppose we have a short exact sequence of topological G-modules:

0 A B C 0

This induce a short exact sequence among the inhomogeneous chain complexes
just defined:

0 C •(G,A) C •(G,B) C •(G,C) 0

By the sanke lemma we obtain a long exact sequence in cohomology:

. . . Hi(G,B) Hi(G,C) Hi+1(G,A) Hi+1(G,B) . . .

Norm and restriction

We have proved an analoguos result.

Lemma 3.1.3. Let E/F be a Galois extension of degree n with G = Gal(E/F ).
Then for any integer i and topological G-module M , we have isomorphisms:

K2(F ) ' (K2(L))G, andHi(F,M) ' (Hi(L,M))G.

Proof.

K2(L) (K2(L))G

K2(F )

NL/F RL/F
f

Hi(L,M) (Hi(L,M))G

Hi(F,M)

NL/F RL/F
f

We have that NL/F (RL/F (x)) = nx, and RL/F (NL/F (y)) =
∑
σ∈G σy. Thus

we see that both the kernel and cokernel of f are killed by n, and since (n, l) = 1
we have proved the statements. �

3.2 Results in group cohomology

Proposition 3.2.1. Let G be a profinite group and U is an open subgroup. Then
for every G-module A such that Ĥn(U,A) = 0, we have:

(G : U)Ĥn(U,A) = 0

Let H be an arbitrary closed subgroup of G. For every H-module A, we
consider the G-module:

IndHG (A) = {x : G→ A| x(τσ) = τx(σ)}.

14



3.3. Tate theorems

If [G : H] is finite, then

IndHG (A) = ⊕ni=1σiA, σi ∈ G/H.

When A is a G-module, then we have a canonical isomorphism:

IndHG (A)
'

−−−−−→Map(G/K,A)
x(σ) 7−→ y(σH) = σx(σ−1)

Proposition 3.2.2.

Hn(G, IndGA) = 0, for all n > 0.

Proposition 3.2.3 (Shapiro’s lemma). Let H be a closed subgroup of G and A
an H-module. Then we have canonical isomorphisms:

Hn(G, IndHG (A)) ' Hn(H,A), for all n ≥ 0.

3.3 Tate theorems

Let lim←µli = Zl(1) be the Tate module. We can tensor this module with itself
with the following rule:

Zl(n)⊗ Zl(m) = Zl(n+m).

It is a topological G-module and as a topological group we want it to be finitely
generated as a Zl-module with a linear G-action. Let T be a topological G-
module. As a topological group it is finitely generated free Zl-module with a
linear G-action.The next proposition is very useful, and its proof is elementary
reasoning in homological algebra.

Proposition 3.3.1. The group Hn(G,Zl(n)) contains no non-zero subgroup
which is l-divisible.

0 Zl Ql Ql/Zl 0

Tensoring this sequence by the Tate module lim←µli = Zl(1), we get:

0 Zl(n) Ql(n) Ql/Zl(n) 0

We see that Zl(n) is an open compact subgroup of the finite dimensional vector
space Ql(n). Since Ql/Zl(1) = lim→µli we see that it is a discrete divisible
l−primary torsion group.

Proposition 3.3.2. We have an exact sequence:

0 ker(δ) Hn−1(G,Ql/Zl(n)) Hn(G,Zl(n)) coker(δ) 0δ ,

in which:
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3. Galois cohomology and K2

3.3.2.1. ker(δ) is the maximal divisible subgroup of Hn−1(G,Ql/Zl(n)).

3.3.2.2. im(δ) is the torsion subgroup of Hn(G,T ).

Proof. Since Hn−1(G,Ql(n)) is divisible, its image = ker(δ) is divisible too. By
the previous proposition Hn(G,Zl(n)) has no nonzero divisible subgroup, so all
all divisible subgroups in Hn(G,Ql/Zl(n)) must be in ker(δ). This settles (1).

We pick an element x ∈ Hn(G,Ql/Zl(2)) and represent it by a cocycle:

Gn−1 Q/Z(n)f

Since Ql/Zl(n) is discrete, we know that the inverse images of the points will
be an open cover of Gn−1. But G is profinite, hence compact, and therefore
we only need the inverse images of finitely many points to cover all of Gn−1.
This means that f takes only finitely many values. Combined with the fact
that Ql/Zl(n) is a torsion group, it follows that Hn(G,Zl(n)) is a torsion group.
Additionally, im(δ) is the kernel of a map into a torsion free divisible group
Hn(G,Q(n)). Thus all the torsion in Hn(G,Zl(n)) is in im(δ). �

The universal continuous symbol

When we constructed the norm residue homomorphism, we took Galois
cohomology of the exact sequence:

0 µl F ∗s F ∗s 0l ,

and combined with the cup-product we made a symbol on the form:

F ∗/(F ∗)l × F ∗/(F ∗)l H2(F, µ⊗2
l )

K2(F )/lK2(F )

hl

We will now modify the situation above to construct a continuous symbol on F .
We start by making the following machine:

0 µl F ∗s F ∗s 0

0 µl2 F ∗s F ∗s 0

...
...

...
...

...

0 µli F ∗s F ∗s 0

0 µli+1 F ∗s F ∗s 0

...
...

...

l

l

l2

l 1

l l 1

l

li

l 1

l

li+1

l 1

l l 1

16



3.3. Tate theorems

Taking the limit of this diagram, we obtain the exact sequence:

0 Zl(1) lim←F
∗
s F ∗s 0

We take Galois cohomology and obtain the boundary map:

H0(F, F ∗s ) = F ∗ H1(F,Zl(1))δ

Using the cup-product we make the map:

F ∗ × F ∗
δ×δ

−−−−−→ H1(F,Zl(1))×H1(F,Zl(1))
∪

−−−−−→ H2(F,Zl(2))
(a, b) 7−→ (δa, δb) 7−→ δa ∪ δb

We get:

F ∗ × F ∗ H2(F,Zl(2))h̃

We want to show that this map factors through K2(F ), i.e. we must show that
h̃ is a symbol. The fact that this map is bilinear follows from the definition of
the cup-product and that δ is a group homomorphism. The Steinberg relation
is more subtle, but turns out to hold:

Theorem 3.3.1. h̃ induces a unique group homomorphism:

K2(F )
h

−−−−−→ H2(F,Zl(2))
{a, b} 7−→ δa ∪ δb

Proof. By Proposition 3.3.1 it is enough to show that all elements on the form
NE/F (δa∪ δ(1− a)) for a ∈ E∗, where E/F is a finite extension, are l-divisible.
We make the polynomial f(x) = xl − a which splits into irreducibles

∏
i fi(x)

which again linear factors (x−ai), where ai’s live in the finite extensions E(ai)/E.
By the definition of the cohomological transfer we get NEi/E(1− ai) = fi(x).
Evaluating f(x) at 1 yields:

1− a =
∏
i

fi(x) =
∏
i

NEi/E(1− ai).

We now combine the equation above with nice properties of δ and the cup-
product:

δa ∪ δ(1− a) = δa ∪ δ(
∏
i

NEi/E(1− ai)) =
∑
i

δa ∪ δ(NEi/E(1− ai)).

Because of the commutativity of the diagram for any finite extension E/F :

E∗ H1(E,Zl(1))

F ∗ H1(F,Zl(1))

NE/F

δ

NE/F

δ

,

17



3. Galois cohomology and K2

combined with the projection formula for the transfer, we have:∑
i

δa ∪NEi/Eδ((1− ai)) =
∑
i

NEi/E(δREi/Ea ∪ δ(1− ai),

This becomes:∑
i

NEi/E(ali ∪ δ(1− ai) =
∑
i

lNEi/E(δai ∪ δ(1− ai).

We conclude that any element in NE/F (δa∪ δ(1−a)) is l-divisible, hence 0. �
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3.3. Tate theorems

A fundamental diagram

Suppose µl ⊂ F and pick a z ∈ µl. We have:

µl ⊗ F ∗
γ

−−−−−→ K2(F )
z ⊗ a 7−→ {z, a}

µl ⊗ F ∗
i'

−−−−−→ µl ⊗H1(F, µl) = H1(F, µ⊗2
l )

z ⊗ a 7−→ z ∪ δa

Again i is an isomorphism because of Hilbert 90.
Suppose µl * F . We then have to modify the maps above E = F (µl), and

make the diagram:

H1(F, µ⊗2
l ) (µl ⊗ E∗)G K2(F )[l]

H1(E,µ⊗2
l ) µl ⊗ E∗ K2(E)[l]

RE/F

i' γ

RE/F

iE '
γE

We know that i is an isomophism.

A fundamental diagram

All the main players introduced so far fit together in a commutative diagram:

(µl ⊗ E∗)G K2(F ) K2(F ) K2(F )/lK2(F )

H1(F, µ⊗2
l ) H2(F,Zl(2)) H2(F,Zl(2)) H2(F, µ⊗2

l )

i'

γ

h

l

h h1'

δ l

(3.1)

The next results follow as a diagram chase of diagram (3.3).

Theorem 3.3.2. ker(h) = K2(F )l−div and coker(h) is l-torsion free.

Corollary 3.3.3. K2(F )[l∞] H2(F,Zl(2))Tors H1(F,Ql/Zl(2))/div' '

It is a fact that

K2(F ) = ⊕(l,char(F ))=1K2(F )[l∞],

so we have a cohomological description of K2(F ).

Theorem 3.3.3. Both rows in the diagram are exact.

Definition of K2(OF,S)
Let S be a finite set of places of F , including the archemedian ones. Let OF,S
be the ring of S-integers in F . We identify it with the kernel of a map induced
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3. Galois cohomology and K2

by tame symbols.

0 K2(OF,S) K2(F )
∐
v/∈S k(v)∗ 0dS

(3.2)

Remark 3.3.4 (Important). There is a well known theorem of Garland using
Riemannian geometry and harmonic forms, showing that K2(OF,S) is finite. It
is therefore a trival remark that K2(F ) is an extension of finite cyclic groups
by a finite group. In the light of Corollary 3.3.3 and Proposition 3.3.1 it is a
torsion group with no nonzero divisible subgroup.

Results involving K2(OF,S)

Let S be a finite set of places of F , including the archemedian ones and the
ones above l in the number field case. Let Sc denote the complex places, and
there are r2 of them.

Theorem 3.3.4. Let µl ⊂ F . Then there is an exact sequence:

0 µl ⊗ Pic(OF,S) K2(OF,S)/lK2(OF,S)
(∐

v∈(S−Sc) µl

)
0

0

Proof. For v /∈ S there are isomorphisms:

k(v)∗/(k(v)∗)l ' (k(v)∗)l ' µl

There is a diagram with exact top row:

(K2(F ))l
∐
v/∈S µl K2(OF,S)/lK2(OF,S) K2(F )/lK2(F )

∐
v/∈S µl

µl ⊗ F ∗ µl ⊗ IS µl ⊗Brl(F )
(∐

v/∈Sc
µl
)

0

dS

h1 'γ =

'

pr

This induces the exact sequence:

0 µl ⊗ IS/(µl ⊗ F ∗) K2(OF,S))/lK2(OF,S)) (
∐
v/∈Sc

µl)0
∏
v/∈S µl 0

After identification on the left hand side with the Picard group and shortening
of the sequence on the right we get:

0 µl ⊗ Pic(OF,S) K2(OF,S)/lK2(OF,S)
(∐

v∈(S−Sc) µl

)
0

0

�

Theorem 3.3.5. The kernel of γ in the diagram in Section 3.3 has order lr2+1
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3.3. Tate theorems

Proof. We set S just large enough such that Pic(OF,S) = 0. We have:

0 ker(γOF,S
) ker(γ) 0

0 µl ⊗O∗F,S µl ⊗ F ∗ µl ⊗ IS 0

0 (K2(OF,S))l (K2(F ))l
∐
v/∈S µl 0

coker(γOF,S
) 0 0

γOF,S
γ =

From the diagram we see that ker(γOF,S
) = ker(γ) and that ker(ker(γOF,S

) is
surjective. Thus we get:

0 ker(γ) µl ⊗O∗F,S (K2(OF,S))l 0

�

Theorem 3.3.6.

H1(F,Zl(2)) ' Zr2
l ×H

0(F,Ql/Zl(2)) ' Zr2
l × Z/lmZ.

Proof. The proof of this is also a diagram chase in diagram (3.3). We have
isomorphisms:

H1(F,Zl(2))/lH1(F,Zl(2)) ' kerδ ' ker(γ),

where the first isomorphism is trivial and the other follows since h is injective
by Corollary 3.3.3 and diagram (3.2). The last group has order lr2+1 by the
theorem just proved. That takes care of the free part. The torsion part comes
from H0(F,Ql/Zl(2)) by Proposition 3.3.2. �

Theorem 3.3.7. There is a commuting diagram:

0 (Q/Z)r2 H1(F,Q/Z(2)) K2(F ) 0

0 (Ql/Zl)r2 H1(F,Ql/Zl(2)) H2(F,Zl(2))

h

δ

Proof. We can sumarize most results so far in a diagram:

0 ker(g) H1(F,Q/Z(2)) K2(F )[l∞] 0

0 (Ql/Zl)r2 H1(F,Ql/Zl(2)) H2(F,Zl(2))Tors 0

h'

δ

Because of the fact that the functor Hi(F, ·) commutes with direct sums, we
have the claim. �
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3. Galois cohomology and K2

We arrive at an important result for us.

Corollary 3.3.5. If F is a function field or a totally real number field, we have
an isomorphism:

H1(F,Q/Zl(2)) K2(F )'
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CHAPTER 4

Birch-Tate conjecture for function
fields

4.1 Curves over finite fields

A very old question i mathematics is the following: Given a polynomial
f(x) = anx

n + an−1x
n−1 + . . . + a1x + a0 in Z[x], does it exist an integer

b such that f(b) = 0? A slight generalizion of the problem arise if we consider
the polynomial ring

Z[x1, . . . , xn]
(f1 · · · fr)

and we ask if there exits a n-tuple of integers (b1, . . . , bn) such that all the fi’s
vanish? The questions stated above are several tousands of years old and has
turned out to be notoriously difficult to answer. However, introducing ideas
form algebraic geometry makes the second question somewhat attackable.
We first assume that one of the fi’s is a prime number p. This simplifies matters
considerably since the integers Z are of course far more mysterious that the
field Z/pZ. We also let another fj be of the form xq − x, where q = ps. The
ring in question now looks like:

Fq[x1, . . . , xn]
(f1 · · · fr)

,

where Fq is the unique finite field with q elements. We then glue such rings
together to form a scheme X, and put assumptions on it to make it more
manageble:

Definition 4.1.1 (Assumptions RH).

1. dim(X) = 1, i.e. we force the residue fields to be finite. This is because
we at this point want to study curves.

2. X is smooth, i.e. ΩX|Spec(Fq) is a locally free sheaf.

3. We have an embedding X Pm for some m >> 0, i.e. X is
projective.

4. X should be geometrically connected. That means that X(C) is connected
as a topological space.
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4. Birch-Tate conjecture for function fields

Divisors and linbundles

Definition 4.1.2. We define Pic0(F ) to be the kernel of the canonical map:

Pic(X) div−→ Z
OX(D) 7−→ deg(D)

It is a well known fact in algebraic geometry that there for smooth schemes
is an equivalense between these for categories [Ott20], p.229:

{Weil Divisors} {Cartier divisors} {Invertible sheaves} {Line bundles}

Geometry of the curve

In this section we add the assumption that X is hyperelliptic. This is just
a temporarily assumption to make our discussion more explicit. The ring of
integers is on the form

Z/pZ[x, y]
f(x, y)

on the affine charts. Picture of a hyperelliptic curve ??.

X(Fq), X(R), X(C).

Rational points of the variety

X Spec(Fq)

Spec(Fq)

Remark 4.1.3. We remark that determining the existence of a real solution is
very easy. One just finds two n-tuples α and β such that f(α) > 0 and f(β) < 0
and then argue by the mean value theorem from Calculus that there must be
atleast one zero in between.

The Weil-zeta function

Definition 4.1.4. Let X be a scheme over Spec(Z). Let X0 be the set of closed
points such that the corresponding residue fields k(x) are finite. We define the
zeta-function to be:

ζX(s) =
∏
x∈X0

1
1− |k(x)|−s

To make calculations simpler it is normal to work with "the other" zeta-function:

Z(X, t) =
∏
x∈X0

1
1− tdeg(x)

Remark 4.1.5. The two functions are equal up to a variable change, Z(X, q−s) =
ζX(s).
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4.1. Curves over finite fields

The next theorem was one of the big motivations for Andre Weil when he
introduced zeta functions for schemes of finite type over finite fields and the
statement in the theorem is quite spectacular. It is basically saying that the
zeta function is determined by the sequence (X(Fq), X(Fq2), X(Fq3), . . .) and
vica versa.

Theorem 4.1.1.
Z(X, t) = exp

∑
m≥0

|X(Fqm)|
m

tm

Proof.∑
m≥1

|X(Fqm)|
m

tn =
∑
m≥1

∑
d|m add

m
tm =

∑
d≥1

ad
∑
e≥1

tde

e
=
∑
d≥1

ad log 1
1− td

= log
∏
d≥1

(
1

1− td

)ad

= log
∏
x∈X0

1
1− tdeg(x) .

Here, ad are the number of points with degree d. �

Remark 4.1.6. Even though the proof is a short explicit computation, we observe
that each step is quite nontivial. The proof relies on powerful theorems in
Calculus regarding the log function and summing geometric series, but also the
Frobenius map really shines. We see that the assumption that X lives over a
finite field is essential.

The zeta function of simple schemes

In this section we study the zeta function for some easy schemes. The sequence
(X(Fq), X(Fq2), X(Fq3), . . .) can be determine if the scheme is simple enough,
and hence by Theorem 4.1.1 we can determine the zeta function.

X = Spec(Fqa)

We must first determine |X(Fqr )|. An element in X(Fqr ) is by the Section 4.1
a map Spec(Fqr )→ X such that the following diagram commutes:

X Spec(Fqr )

Spec(Fq)

By contravariance among rings and affine schemes in algebraic geometry, we
have:

|X(Fqr )| = HomSpec(Fq)(Spec(Fqa),Spec(Fqr )) = HomFq (Fqa ,Fqr ) = a.

Z(X, t) = exp

∑
m≥1

|X(Fqm)|
m

tm

 = exp

∑
i≥1

a

ai
tai

 = exp

∑
i≥1

(ta)i

i


= exp

(
log
(

1
1− ta

))
= 1

1− ta .
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4. Birch-Tate conjecture for function fields

X = A1
Fq

Determining |X(Fqr )| is equivalent to determine |HomFq
(Fq[t],Fqr )|. The last

group has order qr, because thats the number of different substitutions for the
variable t. Thus:

Z(X, t) = exp

∑
m≥1

|X(Fqm)|
m

tm

 = exp

∑
m≥1

qm

m
tm


= exp

(
log
(

1
1− qt

))
= 1

1− qt .

in the same way we calculate:

Z(AnFq
, t) = 1

1− qnt

Remark 4.1.7 (Motivic behaviour of the zeta function). For the next calculation
we need to exploit a property of the zeta function which follows from
Theorem 4.1.1. Since the zeta function is determined by the number of rational
points it has over the finite fields Fqr , it is an obivous remark that it must satisfy
a Mayer Vietoris property. This means that if X is on the form X = U

⋃
V ,

i.e. decomposable into two disjoint subvarieties U and V , then we have that:

Z(X, t) = Z(U, t)Z(Y, t).

X = P1
Fq

We know that P1
Fp

= A1
Fp
∪ {∞}. Thus:

Z(P1
Fq
, t) = Z(A1

Fq
)Z(Spec(Fq), t) = 1

(1− qt)(1− t) .

Additionally, since PnFp
= AnFp

∪ Pn−1
Fq

, It follows that:

Z(PnFq
, t) = Z(AnFq

)Z(Pn−1
Fq

, t)

= Z(AnFq
)Z(An−1

Fq
, t)Z(Pn−2

Fq
, t)

= 1
(1− qnt)(1− qn−1t) · · · (1− t) .

We have the next theorem by using the Riemann-Roch theorem.

Theorem 4.1.2 (Rationality of the zeta function). Let X be a curve satisfying
the conditions in Definition 4.1.1. Then the zeta function is rational, i.e.

Z(X, t) ∈ Q(t)

In particular it is on the form:

Z(X, t) = f(t)
(1− qt)(1− t)

where f(t) is a polynomial of degree 2g.
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4.1. Curves over finite fields

Proof. The proof presented here is based upon [Sam].

Z(X, t) = exp

∑
m≥1

|X(Fqm)|
m

tn

 =
∏
x∈X

1
1− tdeg(x) =

∏
x∈X

∑
n≥0

tdeg(x)n

= (1 + tdeg(x1) + t2 deg(x1) + · · · )(1 + tdeg(x2) + t2 deg(x2) + · · · ) · · ·

=
∑

D∈Div(X)

tdeg(D) =
∑

L∈Pic(X)

|P(Γ(X,L ))|tdeg(L )

=
∑

L∈Pic(X)

qh
0(L ) − 1
q − 1 tdeg(L )

=
∑

0≤deg(L )≤2g−2

qh
0(L ) − 1
q − 1 tdeg(L ) +

∑
2g−1≤deg(L )

qh
0(L ) − 1
q − 1 tdeg(L ).

We observe that the first summand is going to be on the satifactory form. We
continue to work with the second summand:∑
2g−1≤deg(L )

qh
0(L ) − 1
q − 1 tdeg(L ) =

∑
2g−1≤deg(L )

qdeg L +1−g − 1
q − 1 tdeg(L )

= |Pic0(X)|
∑

2g−1≤n

qn+1−g − 1
q − 1 tn

= |Pic
0(X)|

q − 1

q1−g
∑

2g−1≤n
(qt)n −

∑
2g−1≤n

tn


= |Pic

0(X)|
q − 1

(
q1−g (qt)2g−1

1− qt −
t2g−1

1− t

)
= f(t)

(1− qt)(1− t) .

We see that f(t) has degree 2g and we are done �

An observation to make in the proof is that the zeta function is essentially a
power series where we are summing over the degree of line bundles. There is a
symmetry among line bundles over a X within the degree intervall 0 to 2g − 2
which is expressed in famous theorem of Serre:

Theorem 4.1.3 (Serre duality). Let X be a smooth projective variety of
dimension n and let D be a Cartier divisor on X. Suppose ω is the canonical
divisor on X. Then:

dim(Hi(X,OX(D))) ∼= dim(Hn−i(X,OX(ω −D))).

Serre duality enable us to express Z(X, 1
qt ) in terms of Z(X, t) giving rise

to a functional equation for the zeta function:

Theorem 4.1.4 (The functional equation of the zeta function). Given the
assuptions of ??, we have:

Z(X, 1
qt

) = q1−gt2−2gZ(X, t)
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4. Birch-Tate conjecture for function fields

Proof. See ?? for the details. �

Remark 4.1.8. We make a pause just to gather the information in the two last
theorems and make a non-trivial remark. We see that the zeta function is on
the following form:

Z(X, t) = f(t)
(1− t)(1− qt) = 1

(1− t)(1− qt)
∏

0≤i≤2g
(1− ωit),

where f(t) is a polynomial of degree 2g and the ωi’s are its complex zero’s. By
the functional equation we have:

f( 1
qt )

(1− 1
qt )(1−

1
t )

= t2−2gq1−gf(t)
(1− t)(1− qt) .

Thus t2gqgf( 1
qt ) = f(t), or more explicitly:∏

1≤i≤2g
(t− ωi) = q−g

∏
1≤i≤2g

(1− ωit).

Remark 4.1.9. There are two canonical permutations on the set of roots of the
zeta function. The first one arises because of the following. Both sides of the
equation above have obiously the same vanishing points: The left hand side
and the right hand side have (ωi

q )i and ( 1
ωj

)j as roots respectivly. Thus the
map ωj 7→ q/ωj = ωi will be a permutation of the roots. We therefore have:

ωiωσ(i) = q,

for some σ ∈ S2g. The other permutation is complex conjugation. Since the
zeta function is a rational polynomial, the roots comes in complex conjugate
pairs. A natural question to ask is if these two permutations are the same.
Since the norm is invariant under a galois action, the question is whether or
not the second permutation changes the norm or not. The answer is that that
the two permutations coincide because of the following deep fact:

Theorem 4.1.5 (The Riemann hypothesis for curves). Given a curve X
satisfying ??, then

|ωi| =
1
2

To set up the machinery to prove this theorem will take us to far astray
into intersection theory that will not be relevant for the rest of the thesis. We
therefore once again refer to ?? for a proof.

4.2 Using etale cohomology

So far we have discussed three properties of the zeta function for a curve over a
finite field: Rationality, functional equation and the Riemann hypthesis. These
properties where conjectured by Emil Artin in his PhD-thesis, where he was
studiying the relationship between function fields and number fields. Helmut
Hasse proved them in the case of elliptic curves, and later Andre Weil proved
them for curves of any genus [Wei49]. A very beautiful idea of Andre Weil was
to count the rational points of the curve by letting the Frobenius automorphism
act on the Jacobian variety. Before we get into these ideas we review quicly
etale cohomology and some of its features.
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Etale cohomology

In the end of the paper "Numbers of solutions of equations in finite fields" [Wei49],
some conjectures where presented stating that rationality, functional equation
and Riemann hypothesis where true for a variety of any dimension over a finite
field. These became known as "the Weil conjectures". Many mathematicians
tried to extend Weil’s proof by letting the Frobenius act on some cohomology
group. It then became apperent that the current algebraic geometry and its
cohomology theories where not satisfactory developed. The search began for a
"Weil cohomology theory", i.e. a cohomology theory that would be suited for
proving the Weil conjectures. Grothendieck extracted axioms that had to be
fullfilled by such a theory, like Künneth-formula, Poincare duality and Lefschetz
trace formula. The latter is the essense in the idea of Weil of counting points
and we are going to use it later.

Lefschetz trace formula

Theorem 4.2.1 (Lefschetz fixed-point formula). Let X be a smooth projective
variety of dimesion n over an algebraically closed field. Let X X

φ be a
regular map. Then we have the following formula for the intersection product:

Γφ ·∆ =
2n∑
i=0

(−1)iTr(φ|Hi
et(X,Ql).

Proof. [milne] �

Let now X be a smooth projective variety of dimension n. A consequence
of the Lefschets trace formula is that to count the number of rational points of
X over Fq, we take some sort of Euler characteristic of X. The reason for this
is that when we count points on a variety, we do it the following way:
Suppose for simplicity that X =

⋃m
i=1 Ui is a finite cover of X by affine charts

in the Zariski topology. Now, we first count all the points in this union. But
then we have counted the intersections twice, so we must subract this. Then
we need to add the tripple intersections and so on. To summarize:

|X(Fq)| =
m⋃
i=1
|Ui(Fq)| −

⋃
i=1
|Ui ∩ Uj(Fq)|+

⋃
i=1
|Ui ∩ Uj ∩ Uk(Fq)| − . . .

+(−1)n−1|U1 ∩ . . . ∩ Un(Fq)

Since the Ui’s are open in the Zariski topology, the dimension drops by one
from one summand to the other. The relation to the Euler characteristic is
clear.

Etale cohomology

The cohomology groups appearing in Theorem 4.2.1 are the etale cohomology
groups, and here we give a very brief discussion of them. They are constructed
analogous to the ordinary sheaf cohomology groups in algebraic geometry, using
cech cohomology. The big difference is that instead of using the Zariski topology,
one uses the etale topology. This topology is a Grothendieck topology, which
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4. Birch-Tate conjecture for function fields

means that the topology is defined from what the open covers
⋃
i Ui are of a

space X. In the Zariski topology, all the Ui’s are open immesions of X, but in
the etale topology we say that there should be an etale map:

Ui Xetale ,

which means unramified and smooth.
The basic idea is that there are many more open sets in the etale topology. In
the Zariski topology, all open sets U X are dense. In the etale topology
on the other hand, the opens U Xetale can have dimension less than X, and
intuition from the Euclidean topology is useful. The consequence of more open
sets is that the cohomology theory captures much more information regarding
algebraic cycles on X, and hence makes it suitable for the study of algebraic
varieties.
The by far most used cohomology theory in this thesis is Galois cohomology.
Therefore, what will be of most importance with respect to the etale cohomology,
is its relation to Galois cohomology.

Relation to Galois cohomology

In this section we let F be any global field and we will state some results
regarding relations between the etale and Galois cohomology with respect to F
and its ring of integers OF . We start by making the identification [Kol02]:

H1(F, µ⊗nlm ) H1
et(F, µ⊗nlm )=

A very useful tool in etale cohomology available is the Soule’s exact
localization sequence:

Proposition 4.2.1. [Sou79]

0 H1
et(OF [ 1

l ], µ
⊗n
lm ) H1

et(F, µ⊗nlm ) ⊕vH0
et(k(v), µ⊗n−1

lm ) H2
et(OF [ 1

l ], µ
⊗n
lm ) . . .

where v runs over the finite places of v.

Corollary 4.2.2. If n 6= 1, then we have an isomorphism:

H1(OF [ 1
l
],Zl(n)) ' H1(F,Zl(n))

Proof. The isomorphism follows after passing to the projective limit as above
and noting the vanishing of H0

et(k(v),Zl(n− 1)). �

To explain the leftmost group in the sequence, we pick as usual an l prime
to char(F ) and let Ωl

F denote the maximal algebraic extension of F , that is
unramified outside l and infinite primes. We let GlF = Gal(ΩlF /F ).

H∗(GlF , µ
⊗n
lm ) H∗et(OF [ 1

l ], µ
⊗n
lm )'

The group on the right hand side is etale cohomology of the scheme
spec(OF [ 1

l ]) with values in the etale sheaf µ⊗nlm . This group is roughly explained
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4.2. Using etale cohomology

above. Another rough description with closer analogy to Galois cohomology ??
is the following: let

µ⊗nlm I0 I1 I2 I3 . . .d0 d1 d2 d3

be an injective resolution of the sheaf µ⊗nlm , which always exists [Voe05]. Pick
an open U ⊂ spec(OF [ 1

l ]) and evaluate the exact sequence of sheaves on it. We
obtain a complex:

I0(U) I1(U) I2(U) I3(U) . . .d0 d1 d2 d3

analogous to the complex in ??. Taking ker(dn)/im(dn−1) yields the n-th
cohomology group Hn

et(U, µ⊗nlm ).

We then denote:

H∗et(O[ 1
l
],Zl(n)) = lim←H

∗
et(O[ 1

l
], µ⊗nlm ),

and
H∗et(O[ 1

l
],Ql/Zl(n)) = lim→H

∗
et(O[ 1

l
], µ⊗nlm ).

We then know from ?? that:

H1
et(OF [ 1

l
],Zl(n))Tors ' H1

et(OF [ 1
l
],Q/Zl(n))/div,

where mod div means taking modulo the maximal divisble subgroup.
For the sheaf Gm, the first cohomology groups are known [Mil]:

H0
et(O[ 1

l
],Gm) ' Gm(OF [ 1

l
]) = OF [ 1

l
]∗

H1
et(O[ 1

l
],Gm) ' Cl(OF [ 1

l
])

H2
et(O[ 1

l
],Gm) ' Br(OF [ 1

l
]).

Finally, we need to discuss the relation between cohomology of the curve X
and the localized ring of intergers OF [ 1

l ] of the function field F above. We have
a diagram:

OF [ 1
l ] F

(F[t])l F(t)

Here, OF [ 1
l ] sits as the integral closure of F[t] in F . The presence of infinite

primes in OF [ 1
l ] are not shared by X. Fortunately, the localization sequence

enables us to calculate the difference:

0 H1
et(X,Ql/Z(n)l) H1(OF [ 1

l ],Ql/Zl(n))

⊕v|∞H0(Fv,Ql/Zl(n− 1)) H2
et(X,Ql/Zl(n)) 0
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4. Birch-Tate conjecture for function fields

From [Kol02] p.203 we have

H0(Fv,Ql/Zl(n− 1)) = N(v)n−1 − 1.

Since the cohomology groups we deal with here are finite, we have
isomorphisms Section 4.2

Hi
et(OF [ 1

l
],Ql/Zl(n)) ' Hi+1

et (OF [ 1
l
],Zl(n)). (4.1)

We use this isomorphism to prove:

H2
et(OF [ 1

l
],Ql/Zl(n)) ' H3(OF [ 1

l
],Zl(n)) = 0, (4.2)

where the last equality follows sinceX is a curve and by the localization sequence
this cohomology group is an extension of the cohomology group of X by torsion.

Etale cohomology agrees with ordinary cohomology

[Mil] Let X be a smooth complete curve of genus g, then

H1(X(C),Z) = Z2g,

but since π(X) is profinite, its discrete quotients are finite. Hence :

H1
et(X,Z) = Homcrossed(π(X),Z) = 0.

However, with finite coefficients the story is exactly what we where looking for:

H1(X(C),Z/nZ) ' (Z/nZ)2g ' H1
et(X,Z/nZ).

Weil’s theorem in cohomological language

We need an elemtrary result from linear algebra:

Lemma 4.2.3. Suppose ϕ : V → V is an endomorhism of a finite dimensional
vector space. The characteristic polynomial of ϕ is by definition:

Pϕ = det(1− tϕ|V ).

Then we have the equality:

log
(

1
Pϕ(t)

)
=
∞∑
m=1

Tr(ϕm|V ) t
m

m

We know return to the zeta function for function fields and attack it with
the machinery of etale cohomology just introduced:

Theorem 4.2.2. Let X be a smooth (nonsingular ??) projective variety of
dimension n. Then the zeta function has the following form:

Z(X, t) = P1(t) · · ·P2n−1

P0(t) · · ·P2n(t) ,

where the Pi’s are on the form:

Pi(t) = det(1− tF |Hi
et(X,Ql))
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4.2. Using etale cohomology

Proof.

Z(X, t) = exp

∑
m≥1

|X(Fqm)|
m

tn


= exp

∑
m≥1

∑i=2n
i=0 (−1)iTr(F |Hi

et(X,Ql))
m

tn


=

2n∏
i=0

exp

 2n∑
m≥1

Tr(Fm|Hi
et(X,Ql)tm

m

(−1)i

=
2n∏
i=0

(
det(1− tF |H1

et(X,Ql)) · · · det(1− tF |H2n−1
et (X,Ql))

det(1− tF |H0
et(X,Ql)) · · · det(1− tF |H2n

et (X,Ql))

)
= Z(X, t) = P1(t) · · ·P2n−1

P0(t) · · ·P2n(t) .

�

Remark 4.2.4. The cohomology groups are the one’s desribed above

The case of curves

Let X be are usual curve over Fq satisfying ??. The theorem above specializes
to :

ζX(s) = det(1− q−sF |H1
et(X,Ql))

det(1− q−sF |H0
et(X,Ql))det(1− q−sF |H2

et(X,Ql))

ζX(1− n) = det(1− qn−1F |H1
et(X,Ql))

det(1− qn−1F |H0
et(X,Ql))det(1− qn−1F |H2

et(X,Ql))
Thus in our case:

ζX(−1) = det(1− qF |H1
et(X,Ql))

det(1− qF |H0
et(X,Ql))det(1− qF |H2

et(X,Ql))

One prime at the time

We have so far obtained two expressions (Remark 4.1.8) for the zeta function
attached to X. We therefore equate the two:

det(1− qn−1F |H1
et(X,Ql))

det(1− qn−1F |H0
et(X,Ql))det(1− qn−1F |H2

et(X,Ql))
=
∏

0≤i≤2g(1− ωiqn−1)
(1− qn−1)(1− qn)

We "secretly" know that the cohomology group in the numerator on the left
hand side is the Jacobian variety for X, and we want to show it. We therefore
do the trick one always does with the Jacobian: we look at its l-primary part.
We now state some results that are basically consequences of the relation
between Galois and etale cohomology. First we extend the result ??:

H1
et(X,Ql/Zl(n)) ' H1

et(X,Ql/Zl(n))Γ = ker(1− qn−1F |H1
et(X,Ql/Zl(n)).
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4. Birch-Tate conjecture for function fields

There is therefore a reformulation of Section 4.2 where we only look at the
prime l:

ζX(1− n) ∼l
|H1

et(X,Ql/Zl(n))|
|H0

et(X,Ql/Zl(n))||H2
et(X,Ql/Zl(n))| . (4.3)

The Birch-Tate conjecture for function fields

We want to show the Birch-Tate conjecture for the function field F , so the first
thing we must do is to define the zeta function attached to it.

Definition 4.2.5.

ζF (s) =
∏

p finite

1
(1−N(p)−s) .

If we add the contribution of the infinite primes of F , we get the equality:

ζX(1− n) = ζF (1− n)
∏
p|∞

1
(1−N(p)n−1) .

This is analagous to how the completion of Riemann- and Dedekind zeta function
concern adding the contribution from the infinite places. We have the theorem:

Theorem 4.2.3.

ζF (1− n) ∼l
|H2

et(OF [ 1
l ],Zl(n))|

|H0(F,Ql/Zl(n))

Proof. The proof is a straight forward computation using several results gathered
so far. By Equation (4.3):

ζF (1− n) = ζX(1− n)
∏
p|∞

(1−N(p)n−1) ∼l
|H1

et(X,Ql/Zl(n))|
|H0

et(X,Ql/Zl(n))||H2
et(X,Ql/Zl(n))| (1−N(p)n−1)

=
(1−N(p)n−1)−1|H1

et(OF [ 1
l ],Ql/Zl(n))|

|H0
et(OF [ 1

l ],Ql/Zl(n))||H2
et(OF [ 1

l ],Ql/Zl(n))|
(1−N(p)n−1) Proposition 4.2.1

=
|H1

et(OF [ 1
l ],Ql/Zl(n))|

|H0
et(F,Ql/Zl(n))| =

|H2
et(OF [ 1

l ],Zl(n))|
|H0(F,Ql/Zl(n)) Equation (4.1), Corollary 4.2.2, Equation (4.2)

�

Relation to K-theory

In this section we are going to relate the result to K-theory. This could have
been done by making use of the Quillen-Lichtenbaum conjecture:

Theorem 4.2.4. The etale Chern characters induces an isomorphism for
i = 1, 2:

K2n−i(OF )⊗ Zl Hi
et(OF [ 1

s ],Zl(n))'
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4.2. Using etale cohomology

This isomorphism is a consequence of the famous Bloch-Kato conjecture.
However, we do not need to make use of such extremely powerful results that
are far beyond the scope of this thesis, because we are primarily interested in
K2. We will now show that the Quillen-Lichtenbaum conjecture is true for K2,
using tools already introduced.
We first make a definition.

Definition 4.2.6.

H1
et(OF ,Q/Z(2)) =

∏
l

H1
et(OF ,Ql/Zl(2)),

H2
et(OF ,Z(2)) =

∏
l

H1
et(OF ,Zl(2)),

where l runs though all prime numbers. Let Sl be the set of infinite places of F
and all places above l. We set:

K2(OF ) =
∏
l

K2(OF,Sl
).

From the last theorem the next result is plain:

Corollary 4.2.7.

ζF (1− n) = |H
2
et(OF ,Z(n))|

|H0(F,Q/Z(n))
Theorem 4.2.5 (The Birch-Tate conjecture/theorem (Function fields)).

ζF (−1) = |K2(OF )|
|H0(F,Q/Z(2)) |

Proof. Let S as above and recall the exact sequence from Equation (3.2):

0 K2(OF,S) = K2(OF ) K2(F )
∐
v/∈S k(v)∗ 0dS

On the other hand we have the localization sequence:

0 H1
et(OF ,Q/Z(2)) H1

et(F,Q/Z(2)) ⊕vH0
et(k(v),Q/Z(1)) 0

Making use of the identification of etale and Galois cohomology and a
theorem of Tate Corollary 3.3.5, we obtain a commutative diagram:

0 K2(OF ) K2(F )
∐
v/∈S k(v)∗ 0

0 H1
et(OF ,Q/Z(2)) H1

et(F,Q/Z(2)) ⊕vH0
et(k(v),Q/Z(1)) 0

' '

Hence the leftmost map is an isomorphism which gives us:

K2(OF ) H2(OF ,Z(2))'

By Corollary 4.2.7 we are done. �
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4. Birch-Tate conjecture for function fields

the l-primary part of the Jacobian

To state the next result we need set up some elementrary Iwasawa theory. Let
F be the function field to X and suppose it contains µp. We let F∞ = F (µp∞)
and let X∞ = Gal(M/F∞), where M is the maximal abelian extension. Since
H1 in Galois cohomology can be interpreted as crossed homomorphism and
that Γ = Gal(F∞/F ) = Zp acts trivially on X∞ gives us the isomorphism:

H1
et(X,Ql/Zl(n)) ' Hom(X∞,Ql/Zl(n)).

We will introduce Iwaswa theory later and use the fact that F is a function
field to prove the following:

Hom(X∞,Ql/Zl(n)) ' Jl(n− 1).

Since we have:
|(Jl(n− 1))Γ| = |ker(1− qn−1F |Jl)|,

we draw the conclusion that:

Corollary 4.2.8.

ζX(1− n) ∼l
|ker(1− qn−1F |Jl)|

|H0
et(X,Ql/Zl(n))||H2

et(X,Ql/Zl(n))|

We do as above Theorem 4.2.3 and pass to the number field analog setting.
Taking the product over all l, gives us the correct value of the zeta function.
What we will need from all this is:

Corollary 4.2.9.

ζF (−1) = (J(1))G

|H0
et(F,Ql/Zl(2))|

Remark on H0(F,Q/Z(2))
W2(F ) := H0(F,Q/Z(2)).

The largest integer m such that Gal(F/F ) acts trivially on µm × µm.

H0(F,Q/Z(2)) = (Q/Z(2))G.

Ql/Zl = µl → µl2 → µl3 → . . . = lim→µli

H0(F,Ql/Zl(2)) = (Ql/Zl(2))G = (lim→µli ⊗ lim→µli)G.

|H0(F,Ql/Zl(2))| is the largest integer m such that F (µm) is contained in a
composite of quadratic extensions of F .

W2(F ) = µ(F )2
∏

[E:F ]=2

(
µ(E)
µ(F )

)
.
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4.3 Yet another point of view

Let us recall the situation for the convinience of the reader. Let X a smooth
projective geometrically connected curve over Fq. We associate to X = Fq ⊗X
its Jacobian variety, a g-dimesional variety that has the structure of an algebraic
variety as well as an abelian group. The l-primary part of the Jacobian Jl has
a simple group theoretical structure:

Jl = (Ql/Zl)2g.

We recall the geometric Frobenius, whose action on an affine chart of X in our
hyperelliptic case looks like:

Fq[x, y]
f(x, y)

Fg

−−−−−→ Fq[x, y]
f(x, y)

(x, y) 7−→ (xq, yq)

The arithmetic Frobenius F is the one relavant for us and it is the inverse of the
geometric one. The graph of this map ΓF defines an algebraic correspondence
on X because the Frobeinus automorphism is finite of degree q. This can be
summarized in a diagram:

ΓF ⊂ X ×X

X X

pidpF

pF ◦p−1
id
∈CorFq (X,X)

Finite correspondences between varieties are the arrows in Voveodsky’s category
DM . An algebraic correspondence of a curve induces an automorphism of its
Jacobian, thus also on its l-primary part:

(Ql/Zl)2g (Ql/Zl)2gM(F )
,

where M(F ) is the associated matrix acting on the Ql/Zl-vector space. By the
discussion above Corollary 4.2.8, we have that the characteristic polynomial
char(M(F )) can be identified with the numerator in Corollary 4.2.8. Before we
finish the function field case we combine the discussion of M(F ), Corollary 4.2.8
and Section 4.1 to state:

Corollary 4.3.1.

char(M(F ))(1− n) = ζX(1− n) · ζP1
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4.4 The Birch-Tate conjecture: Tate’s proof

Unramified means surjective transfer

Theorem 4.4.1. Given a tower of fields K L M . Then one has:

∆M/K = ∆[M :L]
L/K NL/K∆M/L.

Corollary 4.4.1. If the extension L/K is unramified, then the norm map NL/K
is surjective.

Proof. Let a ∈ K be any element. The corresponding ideal (a) corresponds to
finitely genereated OK-module which admit a Z-basis:

(a) = Zα1 + . . .+ Zαn.

To such a basis we may associate a discriminant

d(α1, . . . , αn) = det((σiαj))2.

We can make a tower like the above such that

∆M/K = d(α1, . . . , αn).

Since the extension L/K is unramified, ∆L/K = 0. From the theorem above we
have:

∆M/K = NL/K∆M/L.

Hence we see that the norm map NL/K is surjective. �

4.5 Birch-Tate: Function field case

We are now going to attack this theorem yet again, but without the heavy
machinery of etale cohomology. The proof we here present is based upon the
one in [Tat]: The first ever published proof of the theorem. This proof is entirely
different in nature, because we do all primes at once. Not just one at the time
as we did in Section 4.2. The set up for this proof is basically the same as it
was when we proved the Weil conjectures for curves over finite field, but we
repeat it here for the convinience of the reader.
Suppose X is a curve over a finite field Fq and let F be its function field. For
simplicity we put some mild restriction on the genus such that the function
field is on the following simple form on affine charts:

Fq(x, y)
f(x, y) .

We want to pass to the algebraic closure X of X, which we obtain by a cartesian
diagram:

F F

Spec(Fq) Spec(Fq)
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We see that the Galois group G(F/F ) is just G(Fq/Fq). The latter group is
easily calculated to be Ẑ. We then see that we can interpret F∗q as the group of
roots of unity µ of Fq. We then recall the class group sequence for a number
field K introduced:

0 O∗ K∗ JK ClK 0 .

This sequence has a direct translation to the function field case for our field F :

0 µ F D ClF 0 ,

where we us the letter D for the divisor group since we want to use the J for
something else.
The next step is crucial and it is yet another brilliant idea of Tate. We tensor
the sequence above with the roots of unity µ, to obtain the exact sequence:

0 Tor(µ,ClF ) µ⊗ F µ⊗DF µ 0 .

The exactness above is justified by the following lemma:

Lemma 4.5.1. JF is divisible.

Proof. Let [a] be a degree 0 class in the class group. Since F contains all roots
of unity, we can move the ideal in the tower of field extensions degree n upwards
for any n. Because (n, p) = 1, the extension will be unramified and thus the
norm map is surjective Corollary 4.4.1. This means that there is a class [b] of
degree 0 such that [a] = N(R([b]), where N and R are the norm and restriction
respectivly. As we know that composing the two in this order is equivalent as
to multiply by n ??, we are done. �

Corollary 4.5.2. µ⊗ ClF = µ

Proof. We have by ?? an exact sequence:

0 JF ClF Z 0 .

Tensoring by µ and using the previous lemma, we get the isomorphism:

µ⊗ ClF µ'

�

Now is a good time to recall the exact sequence for K2(F ) for :

0 K2(OF ) K2(F )
∐
v∈Pln.c.(F ) µv coker(λF ) 0λ

Here is a nice fact:
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Theorem 4.5.1. There is a commuting diagram:

0 Tor(µ,ClF ) µ⊗ F µ⊗DF µ 0

0 K2(OF ) K2(F )
∐
v∈Pln.c.(F ) µv coker(λF ) 0

' ' ' '

λ

in which the vertical arrows are isomorphisms.

Theorem 4.5.2. The following diagram commutes and the vertical arrows are
isomorphisms:

0 (Tor(µ,ClF ))G (µ⊗ F )G (µ⊗DF )G (µ)G

0 (K2(OF ))G (K2(F ))G (
∐
v∈Pln.c.(F ) µv)

G (coker(λF ))G

0 K2(OF ) K2(F ) ⊕v∈Pln.c(F )µv coker(λ)

' ' ' '

'

λ

' ' '

Thus we have:

K2(OF ) ' Tor(µ,ClF )G ' Tor(µ, JF )G = J(1)G

. Combined with Corollary 4.2.9:

ζX(−1) = (J(1))G

|H0
et(X,Ql/Zl(n))||H2

et(X,Ql/Zl(n))| .

Thus:

Corollary 4.5.3.

ζF (−1) = |K2(OF )|
|H0(F,Ql/Zl(2))|
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4.6 A short note on Artin L-functions

Before we present SomekawaK-theory, we give a short note on Artin L-functions.
They capture the essence of class field theory and were begining of the Langlands
program. The theory behind the Artin L-function is vast, and we only need a
small fraction of it to be able to proove our main theorem. Therefore we will
be brief and informal.

Dirichlet L-functions

One of the most important functions in all of mathematics is the Riemann zeta
function:

ζ(s) =
∑
n

1
ns

which has been an object of study by leading mathematicians in all generations
ever since Euler introduced it in the 18th century. A generalization of this
function is the Dirichlet L-function:

L(χ, s) =
∑
n

χ(n)
ns

,

where χ is a Dirichlet character:

(Z/nZ) C∗χ
,

Example 4.6.1. If χ = 1, then:

L(χ, s) = ζ(s),

so we see that it is indeed a generalization of the Riemann zeta function.
Another example is the Legandre symbol

(
p

)
we discussed. Since they are

multiplicative, they have the right to be called Dirichlet characters.

The main attribute about these functions is their motivic behaviour, by
which we mean the following: Given a character group G, the L-function (the
"molecule") splits into its "atoms":

L(G, s) =
∏
χ

L(χ, s).

Suppose we have a cyclotomic extension Q(µp)/Q. As a topological space,
this is just p points on the unit circle in the comlpex plane equipped with a
structure map down to spec(Q). All these points exept for the point 1 will
be non-trivial Dirichlet characters and will have Dirichlet L-funtions attached
to them. The character 1 corresponds to the Riemann zeta function as in
the example above.Hence informally, we have a character group. We have a
splitting:

L(Q(µp)) = ζ(s)
∏
χ

L(χ, s).

As a corollary of this very splitting one proves the famous theorem of Dirichlet
on primes in arithmetic progressions.
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Dedekind and Hecke

One could write the Riemann zeta function in a visually nicer way for an
algebraic number theorist:

ζQ(s) =
∑
a∈JQ

1
ns
,

where we are summing ideals. It is then clear that to any number field one can
associate its Dedekind zeta function:

ζK =
∑
a∈JK

1
NK/Q(a) .

We can now do the same as above and attach characters to obtain the Hecke
L-function:

L(K,χ, s) =
∑
a∈JK

χ(a)
NK/Q(a) ,

where the characters are the Hecke characters:

J f/P f C∗χ

These characters do more or less exactly the same for a number field K as the
Dirchlet characters do for Q: They associate to each element in the ideal group
a value on the unit circle in the complex plane. But the a big difference is that
a Hecke character breaks up into a finite and an infinite part, as a number
field consists of finite and infinite places. The letter f is the conductor of the
character, J f means that we look at ideals prime to f. The anology to the
Dirichlet character is that we look at all places in Z prime to p:

Z (Z/pZ)∗ C∗χ

It is well known that the zeta- and L-functions introduce so far admit a
meromorphic continuation to the complex plane, and have a functional equation.
For Hecke L-series this has been proven analytically by Hecke himself, and Tate
reproved it in his thesis using ideas of his supervisor Emil Artin.

Artin L-series

Attached to a Galois extension we have the Artin L-series:

L(L/K,χ, s) =
∏

p∈JK

1
det(1− χ(ϕP)N(p)(−s)|V IP
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4.7 Milnor K-theory

Recall the definition of the Milnor ring of a field.

Definition 4.7.1. Let F be any field. Consider the tensor algebra
Tn(F ) = F ⊗Z . . .⊗Z F . We make a relation among the symbols:

{a1, . . . , an|ai + aj = 1}

called the Steinberg relation. The Milnor n-th Milnor K-group is defined to be
the tensor algebra above modded out by the Steinberg relation, i.e.:

KM
n (F ) = F ⊗Z . . .⊗Z F

({a1, . . . , an}|ai + aj = 1)

Some fundamental results

Lemma 4.7.2. Let F be a field. The following relations are immediate in the
Milnor ring:

4.7.2.1. {a,−a} = 0.

4.7.2.2. {a, b}+ {b, a} = 0.

4.7.2.3. {a, a} = {−1, a}.

Proof. Let a ∈ F ∗. The assuption that F is a field yields the relation
−a = 1−a

1−a−1 . Hence:

{a,−a} = {a, 1− a
1− a−1 } = {a, 1− a} − {a, 1− a−1} = {a−1, 1− a−1} = 0.

This proves (1), and by using it we show (2)and (3):

0 = {ab,−ab} = {a,−a}+ {a, b}+ {b, a}+ {b,−b} = {a, b}+ {b, a}.

{a, a} = {−1, a}+ {−a, a} = {−1, a}.

�

Proposition 4.7.3. Let F ∗ = (F ∗)m. Then Kn(F ) is m-divisible

Proof. Let {a1, . . . , an} be a symbol in KM
n (F ). Pick one of the ai’s. By

assumption there exists an αi such that ai = αmi . The artihmetic in the Milnor
ring yields:

{a1, . . . , ai, . . . , an} = {a1, . . . , α
m
i , . . . , an} = m{a1, . . . , αi, . . . , an} ∈ KM

n (F ).

�

Corollary 4.7.4. If F is algbraically closed, then Kn(F ) is uniquely divisible.

Proposition 4.7.5. Let F be a finite field. Then Kn(F ) = 0 for all n ≥ 2.

43
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Proof. It suffices to prove the statement for KM
2 (F ). Let {a, b} be a symbol

and let θ be a generator for F . Then {a, b} = {θl, θk} = lk{θ, θ}, hence it
suffices to show that {θ, θ} = 0. It follows from 4.7.2 (2) that 2{θ, θ} = 0. If
char(F)=2, then F ∗ has order 2m − 1. Thus

0 = (2m − 1){θ, θ} = −{θ, θ} = {θ, θ}.

If char(F ) 6= 2, then there are exactly (pm − 1)/2 squares and (pm − 1)/2
non-squares. The map α → 1 − α cannot take all non-squares into squares
because 1 is not in its image. Hence there must exist som odd k and l such that
θk = 1− θl. Hence for som r ∈ N we have:

0 = {θk, θl} = lk{θ, θ} = (2r + 1){θ, θ} = {θ, θ}.

This finishes the proof. �

Fundamental maps between the Milnor K-groups

For any field extension L/F , the canonical base change gives us a homomor-
phism:

KM
n (F ) KM

n (L)
jL/F

We now define "the boundary" homomorphism, also known as the local symbol.
It is very technical but it plays a fundamental role in theory. We fix some
notation. - F ; discrete valuation field with v being its valuation.
- Ov; the ring of integers.
- Uv; the group of units.
- F̄v; the residue field.
- Let ᾱ ∈ Fv be the image of α ∈ Ov.

Skal skrive ut detaljer her
F ∗ × . . .× F ∗ KM

n−1(F̄v)

KM
n (F )

∂

In degree 2, it is the tame symbol:

F ∗ × F ∗ → KM
1 (F̄v) ' µn

The two maps just defined have nice properties when appering thogether.
We have the fundamental

Theorem 4.7.1 (Bass-Tate). There is a split exact sequence:

0 KM
n (F ) KM

n (F (X)) ⊕v 6=v∞KM
n−1(F (X)v) 0

jF (X)/F ⊕∂

where v runs over all non-arcimedean places of F (X).

Transfer maps, so called "other way" maps, show up in many parts of
mathematics and play a prominent role for example in the theory of motives.
Among the Milnor K-groups they are called norm maps, beacuse in degree 1
they coincide with the classical norm maps defined in algebraic number theory.
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Recall that thm 1.8 above states that a certain sequence is exact when we let v
range over all finite places. Let now v range over all places.

0 Kn(F ) Kn(E) ⊕vKn−1(F (v)) 0
jE/F ⊕∂v

Note that this sequence is exact everywhere except at the last term. We have
that ∂v∞jE/FKn(F ) = 0.
For every place v we introduce the norm map:

Kn(F (v)) Kn(F )Nv

, where Nv∞ is the identity. The norm maps should extend the sequence above
and make it exact:

0 Kn(F ) Kn(E) ⊕vKn−1(F (v)) Kn−1(F ) 0
jE/F ⊕∂v ⊕Nv

Another way to introduce the norm map is to state the following theorem:

Theorem 4.7.2. There exists a unique family of natural homomorphisms

KM
n (k′) KM

n (k)
Nk′/k

associated to with finite field extensions k′/k such that Nk/k = id and such that
the reciprocity formula holds: Let k(t) be the field of rational functions in one
variable over a field k. Then, for all x ∈ KM

∗ (k(t), the Weil reciprocity formula
holds: ∑

v

Nk(v)/k(∂v(x)) = 0

, where v rages over all discrete valuations of k(t) that are trivial on k.

In degree 0, the norm map Nk′/k is multiplication by the degree [k′ : k].
The formula in the theorem states that for every f ∈ k(t)∗:∑

v

[k(v) : k]v(f) = 0.

Since k[t] is a unique factorization domain, we have

f = lead(f)
∏
v 6=v∞

πv(f)
v .

Thus: the formula is statisfied:∑
v

[k(v) : k]v(f) =
∑
v 6=v∞

deg(πv)v(f)+[k(v∞) : k]v∞(f) = deg(f)−deg(f) = 0.

In degree 1, we have the classical norm map from algebraic number theory. Let
x ∈ k′. Multiplication by x gives us the diagram:

k′ k′

k k

x

x|k
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Since k′/k is finite, we can observe what multiplication by x does to the basis
of k′ as a k-vector space. Hence we can associate a matrix to the top horisontal
map in the diagram. The norm is by definition the determinant of this matrix.
In this situation we have seen that ∂v is the tame symbol. Thus the statement
in the teorem becomes equivalent to the Weil reciprocity formula:∏

v

Nk(v)/k((f, g)v) = 1.

Proposition 4.7.6. Composition KM
n (F ) KM

n (F (X)v) KM
n (F )j

|[F (X)v :F ]|

Nv

Theorem 4.7.3 (Bass-Tate-Kato). Let L/F be a finite extension. Then there
exists a unique norm map:

KM
∗ (L) KM

∗ (F )
NL/F

with the following properties:

1. NL/K = Nα1,...,αn , for L = F (α1, . . . , αn).

2. It is functorial. Given M/F in L/F we have:

NL/F = NM/F ◦NL/M .

3. In degree 0 it is multiplication by the degree, and in degree 1 it is the
classical norm map from algebraic number theory.

4. NL/F ◦ jL/F = |[L : F ]|.

5. Let L1/F be a Galois extension containing L/F . Then

jL1/F ◦NL/F = m
∑

σi

where m = insep[L : F ] and

KM
∗ (L) KM

∗ (L1)σi

are induced by the embeddings of L into L1.

6. If σ is an automorphism of L over F , then NL/F ◦ σ = NL/F , where
KM
∗ (L) KM

∗ (L)σ is induced by σ.

[Mer] Let n be the number of roots of unity in k. Recall the Hilbert symbol
of degree n which defines a surjective homomorphism:

K2(k) µn
ωn

We collect some results form [Tate1].

Theorem 4.7.4.

46



4.8. Generalized Jacobians

1. ker(ωn) = nK2(k).

2. nK2(F ) is a divisible group.

3. nK2(F ) has no l-torsion for any prime integer l different from the residue
characteristic.

Corollary 4.7.7. ωn is a split homomorphism and

K2(F ) = {cyclic group of order n} ⊕ nK2(F )

Tate conjectured in [Tate1] that nK2(F ) has no torsion. This is now a
theorem by Merkurjev:

Theorem 4.7.5. nK2(F ) is uniquely divisible.

Corollary 4.7.8. Let L/F be a finite abelian extension of degree d. Then the
norm map:

KM
2 (L) KM

2 (F )
NL/F

is surjective.

Proof. We have

K2(F ) = NL/F (jL/FKM
2 (F )) = dKM

2 (F )

and
dKM

2 (F ) ' mKM
2 (F )⊕ µdn ' mKM

2 (F )⊕ µn ' KM
2 (F )

�

Proposition 4.7.9 (Hilbert 90 for K2). Let L/F be a cyclic extension of degree
l 6= char(F ), σ be a generator for Gal(L/F ) and KM

2 (L)→ KM
2 (L) be the map

induced by σ. Then the following sequence is exact:

KM
2 (L) KM

2 (L) KM
2 (F )1−σ NL/F

4.8 Generalized Jacobians

In this chapter, we let X be a projective, irreducible, and non-singular algebraic
curve and let G be an abelian algebraic group. Suppose X G

f is a
rational map, and let S be the finite set where f is not regular. If D is a divisor
prime to S, we have:

D =
∑

nipi 7→
∑

nif(pi)

Theorem 4.8.1. If G is an abelian variety, then:

1. S = 0, i.e a rational map into an abelian variety is regular.

2. If D = (φ) is a principal divisor, then f(D)=0.

3. f(D) depends only on the class of D in the class group.
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If G is just an abelian algebraic group, we need to modify the notion of
class.

Definition 4.8.1. A modulus m with support on S is an effective divisor:

m =
∑
pi∈S

nipi

We say that a rational function φ is congruent to 1 mod φ, if vpi
(1− φ) ≥ 0 for

all pi ∈ S.

Theorem 4.8.2. For every rational map X G
f regular away from S,

there exists a modulus m with support S such that f(D) = 0 for every divisor
D = (φ) with φ ≡ 1modm.

A converse result holds.

Theorem 4.8.3. For every modulus m, there exists a commutative algebraic
group Jm and a rational map X Jm

fm , with the following universal

property: Given X G
f satisfying the assumptions in the previous theorem

with respect to m, we have the commuting diagram:

X G

Jm

f

fm
∃!θ

Theorem 4.8.4. There is a short exact sequence:

0 Rm/Gm Jm J 0

, i.e. Jm is an extension of J by Rm/Gm.

4.9 Local symbol

Recall the set up of a rational map X − S G
f with modulus supported

on S, and g ∈ k(X)∗ is any rational function.

Definition 4.9.1. We say that m is a modulus for the map f , if:

f((g)) =
∑
pi /∈S

vpi
(g)f(pi) = 0

Definition 4.9.2. A local symbol on X is a pairing of f and g assoiated to a
point p:

G(k(X)p)× k(X)∗p k
( , )p

,

that satisfies the four conditions:

1. (f, gg′)p = (f, g)p + (f, g′)p.

2. (f, g)p = 0 if p ∈ S and g ≡ 1 mod m at p.
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3. (f, g)p = vp(g)f(p) if p ∈ X − S.

4.
∑
p∈X(f, g)p = 0.

Proposition 4.9.3. If m is a modulus for f , then there exists a unique local
symbol on X.

4.10 A multiplicative local symbol: the tame symbol

As before, let X be a projective, irreducible, and non-singular algebraic curve.
Suppose we are given a rational map X − S Gm

f and S is the set
of zeros and poles for f . Let g ∈ k(X)∗. The tame symbol is the pairing:

k(X)∗ × k(X)∗ k∗
( , ) given locally as:

(f, g)p = (−1)vp(g)vp(f) f(p)vp(g)

g(p)vp(f)

Proposition 4.10.1. The tame symbol is a local symbol.

Proof. We must show that the four properties in Definition 4.9.2 are satisfied.
(1): We must show that (f, gg′)p = (f, g)p(f, g′)p. But this is trivial since:

(f, gg′)p = (−1)vp(gg′) f(p)vp(gg′)

(gg′)vp(f) = (−1)vp(g)+vp(g′) f(p)vp(g)+vp(g′)

g(p)vp(f)g′(p)vp(f) = (f, g)p(f, g′)p.

(2): We must show that (f, g)p = 1 if p ∈ S and g ≡ 1 mod m at p. We
calculate:

(f, g)p = (−1)vp(g)vp(f) f(p)vp(g)

g(p)vp(f) = (−1)0 f(p)0

g(p)vp(f) = 1
g(p)vp(f) = 1.

(3): We must show (f, g)p = vp(g)f(p) if p ∈ X − S. Since p is not in S,
vp(f) = 0. Then:

(f, g)p = (−1)vp(g)vp(f) f(p)vp(g)

g(p)vp(f) = f(p)v(p).

(4): The last property is: ∏
p∈X

(f, g)p = 1.

The proof is more involved, so we skip it for now. �

Corollary 4.10.2. Suppose f, g ∈ k(X)∗ are relativly prime. Then:

f((g)) = g((f)).

Proof. f((g)) = f((
∏
p p

vp(g))) = f(p)vp(g). Likewise for g((f)). The result
follows now fram the product formula (4). �
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4.11 Algebraic varieties over a finite field

In this section we are following [Serre] p.111-112. Let V be an algebraic variety
over Fq. Suppose V is defined by charts Ui, where we have an isomophism:

Ui Wi
' As k−varieties

If x = (x1, . . . , xr) is a point in an affine space, we write Fx or xq for the
point (x1, . . . , xn). The map x 7→ Fx commutes with polynomial maps with
coefficients in k. Because of:

Ui Ui
F '

"gluing" operates on V .

V
F

−−−−−→ V

x 7−→ xq

Remark 4.11.1. Over F Supose for a second that V is over C. Then Frobenius
F is bijective, bicontinuous and identifies the regular functions on V p with the
p-powers of the regular functions of V . One can say that F is the "maximal
height 1 purely inseperable covering" of V p.

V
F

−−−−−→ V p

x 7−→ xq

Proposition 4.11.2. The Fq-variety structure of V is unambiguously defined by
its structure of variety over Fq and by the Frobenius map F .

Proposition 4.11.3. Let X and X ′ be two varieties over Fq and if:

X X ′
ϕ

is a rational map with grapf Γϕ, then there is one and only one rational map
denoted ϕF with graph FΓϕ. There is a formula:

ϕF ◦ F = F ◦ ϕ.

We have:

ϕ ◦ F = F ◦ ϕ ↔ ϕF = ϕ ↔ ϕ is defined over Fq.

Extension and decent of the base field

There is a map corresponding to Fqm , namely Fm. Conversely, given a variety
X over Fqm and a map:

V VF

we might ask under what conditions can we decend the base field of X to Fq
such that F corresponds to:

V
F

−−−−−→ V
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x 7−→ xq

The answer is here:

Theorem 4.11.1. {It is possible to decend the base field}

↔

f = ϕ ◦ θ, where:
X Xqθ ,

where θ is the canonical map of V to V q and where ϕ is a biregular isomorphism:

Xq X
' ϕ

Tori over a finite field

Let T be a torus of dimension r, i.e. T ' (Gm)r and Fmq is its splitting field.
We ask: can we decend the base field to Fq? Let say we can, how should we do
it?

Decend base field

We have:
(Gm)r (Gm)rF

. F corresponds to a square matrix MF of degree r, with coefficients in Z.

Lemma 4.11.4.
{Identify F andMF .}

↔

F = qΦ,

where φ ∈ Gl(r,Z), and Φm = 1

Lemma 4.11.5. If we have:

T T
' over Fq

,

↔

{MT 'MT ′}

Proposition 4.11.6.

{Classes of matrix groups up to conjugacy} = GM

↔

{Classes of representations of degree r with integer coefficients of a finite cyclic group}=
GR

Theorem 4.11.2. If GM = GR = l, where l is a prime, then representations of
GR can be completely determined using ClQ(µl).
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Tate, more intrinsic definition

One considers X(G), the set of rational characters of G over Fq, and lets the
Galois group G(Fq/Fq) act on X(G), i.e. we consider the group action:

X(G)×G(Fq/Fq) X(G)

Relation to the zeta function and the Artin L-function.

Given G, we have an associated Φ.
Question: How many rational points does G have over Fqn? The answer is:

|G(Fqn)| = det(qn − Φn) =
r∑

h=0
(−1)iqn(r−h)

∑
i1≤...≤ih

(λi1 · · ·λih),

where the λi’s are the Frobenius eigenvalues, i.e. the eigenvalues of Φ. We have:

Theorem 4.11.3.

ζG(s; k) =
h=r∏
h=0

∏
i1≤...≤ih

(1− λi−1 · · ·λihqr−ht)(−1)h+1
.

Let denote the h-th exterior power of the matrix Φ by Φh. The we can
rewrite the above such that:

ζG(S; k) =
h=r∏
h=0

det(1− qr−htΦh)(−1)h+1

The factors in the last expression of the zeta function are the one appearing
in Artin’s L-function. Let us explain this:

Let L/K be a finite Galois extension with Galois group G. Let us consider
a representation of G:

G C∗ρ
.

Using the representation ρ we decend the base field of (Gm)r from L to K,
thus we obtain a torus T over K. For every prime ideal p ∈ K, we have the
reduction Tp. Thus we have a splitting as above:

ζT (s) =
∏
p

ζTp
(s).

Hence we arrive at:

ζT =
h=r∏
h=0

Lh(s− r + h)(−1)h

.

Stated in the language of this thesis, it means that:

ζL(s) = L(X(T ), s) =
∏
χ

L(χ, s).

We now arrive at the theorem we are going to use in the proof of the
generalization of the Birch Tate conjecture: depends only on the representation
ρ from the rational point of view, i.e:
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Theorem 4.11.4. The zeta function and the Artin L-function depends only on
the representation ρ from the rational point of view, i.e they are stable under
isogeny.
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CHAPTER 5

Somekawa K-theory

In [Som90], Somekawa introduced what is today called Somekawa K-theory.
This definition was probably inspired by ideas of his supervisor Kazuya Kato,
a leading mathmatichan in algebraic number theory and cofounder higher
dimensional class field theory. Somekawa K-theory is a generalization of Milnor
K-theory.

5.1 Somekawa K-groups

In order to be able to define the Somekawa K-groups, we must first introduce
a generalization of the local symbol considered in Definition 4.9.2. Let us first
quickly recapitulate the situation. Let K be a finitely generated extension of
transcendence degree 1 over a field k, i.e. we are considering a curve. Recall
that for a place v, the symbol in Definition 4.9.2 is a pairing:

G(Kv)⊗K∗v G(k)( , )

If the algebraic group G is a semi-abelian variety, i.e. an extension of an abelian
variety by a torus, then this symbol can be canonically extended to a Somekawa
symbol.

The Somekawa symbol

Suppose we are given a semi-abelian variety G. Such a variety sits in an exact
sequence:

0 T G A 0 ,

where T is a torus and A is an abelian variety. Lets consider these group
schemes over one place a the time. Since the T is defined over K, it is also
defined over Kv. There exists a finite unramified Galois extension L/Kv that
the torus is splits over the residue field F of L, i.e. T ×k F ' G⊕nm . We get a
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diagram:

0 0

0 T (OL) G(OL) A(OL) 0

0 T (L) G(L) A(L) 0

Z⊕n Z⊕n

0 0

'

ordl rl

=

In the case T = Gm, we can think of an element living in T (L) as a nonzero
polynomial p(t) in one variable over k. It makes therefore sense to define the
ordl map, taking the order. Note that if p ∈ O∗L, then it is constant. The map
rl is the one defined last, and it is defined to be the one making the diagram
commute.
In the general case where T is n-dimensional as above, for h ∈ K∗v and g ∈ G(Kv)
we set:

K∗v −−−−−→ T (L)
hi 7−→ (1, . . . , h, . . . , 1)

G(Kv)×K∗v
ε

−−−−−→ G(OL)

(g, h) 7−→ ((−1)ordl(h)r1
L(g), . . . , (−1)ordL(h)rn

L(g))

We use this to obtain:

G(Kv)×K∗v
∂̃v

−−−−−→ G(OL)

(g, h) 7−→ ε(g, h)gordL(h)
n∏
i

h
ri

L
i

We remark that ∂̃v looks very similar to the tame symbol Section 4.10.

G(Kv)⊗K∗v G(OL) G(F ) G(k(v))∂̃v

∂v

The last map is in-
duced by the identity since ∂̃v is invariant by the Galois group Gal(F/k(v)).

Definition 5.1.1. We define the Somekawa symbol to be the composition ∂v.

The Somekawa K-groups

Say we are given semi-abelian varieties G1, . . . , Gn and a field k. We define the
Somekawa K-group K(k;G1, . . . , Gn) informally by writing:

K(k;G1, . . . , Gn) = ⊕E/k
G1(E)⊗ . . .⊗Gn(E)

Pr&Wr
.
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The above mean that the Somekawa K-group is generated by symbols on
the form {g1, . . . , gn}E/k. The arithmetic is just the same as for the Milnor
K-group:

{g1, . . . , gi + gj , . . . , gn}E/k = {g1, . . . , gi, . . . , gn}+ {g1, . . . , gj , . . . , gn}.

We impose two different relations on the symbols:

P r: the projection formula

The projection formula is a standard formula that occours when there are
restrictions, transfers and cup/tensor-products. Given a finite field extension:

E1 E2

and a semi-abelian variety, we have canonical norm and restiction maps:

G(E1) G(E2)

RE2/E1

NE2/E1

This yields the following relation among two elements in the Somekawa K-group:

{RE2/E1(g1), . . . , gi, . . . , RE2/E1(gn)} = {g1, . . . , NE2/E1(gi), . . . , gn}

W r: Weil reciprocity

It was to decribe this relation we needed to define the Somekawa symbol.
Let K/k be a finitely generated extension of fields of transcendence degree 1.
Let gi ∈ Gi(K) and h ∈ K∗. We assume that for any place v, there is an integer
0 ≤ i(v) ≤ n such that gi ∈ G(Ov) for all i 6= i(v).Then:∑

v

{g1(v), . . . , ∂v(gi(v), h), . . . , gn(v)}k(v)/k = 0.

We have already seen several analogs of this. For instance the product formula
for the local symbols and Hilbert symbols.

The first result on Somekawa K-theory

We are going to need the next lemma from [SY07].

Lemma 5.1.2. Suppose we have G1, . . . , Gn semi-abelian varieties and for each
Gi we have a exact sequence of commutative algebraic group:

G′i Gi G′′i 0

Then the following sequence is exact:

K(F ;G′1, . . . , G′n) K(F ;G1, . . . , Gn) K(F ;G′′1 , . . . , G′′n) 0
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5. Somekawa K-theory

The first nice theorem regarding the Somekawa K-groups is that they agree
with the Milnor K-groups when all the Gi’s are the trivial tori:

Theorem 5.1.1.
K(k;Gm, . . . ,Gm) ' KM

n (F )

The proof of this fact is quite formal and not so conceptual. We refer to
[Som90] for the proof. We rather give a heuristic reason in the next paragraph.
There are essentially two key facts that yields the isomorphism:

(1): We can imagine a web of finite field extensions over k and consider the
object G1 ⊗ · · · ⊗Gn, where the Gi’s are semi abelian varieties. We can attach
this object to each field in the web and when it is attached to a field E, we call
the associated object G1(E)⊗ · · · ⊗Gn(E) a Somekawa pregroup. We will then
have one group per field and the groups will have nothing to do with each other.
We then impose the projection formula relation and get G1(E)⊗···⊗Gn(E)

Pr . Now,
the arithmetic in each group is very rigid since it is more or less determined by
the arithmetic in the nearby fields in the web. The first part of the theorem
says that all arithmetic is determined by what happens in the base k ⊗ · · · ⊗ k.

(2): The second part says basically that when we have projected all the way
down to the base, the Weil reciprocity relation becomes the Steinberg relation.
The fact that the Steiberg relation implies Weil reciprocity in the base can be
easyly shown using the Somekawa symbol. Suppose we have the following data:

K = k(t), h = t−1, gi = 1− ait−1, gj = 1− t and gl = al.

Suppose that ai + aj = 1. For the place v = t− ai, we have:

{g1(v), . . . , ∂v(gi(v), h), . . . , gn(v)} = {a1, . . . , an}

and for all other places it vanshies. By Section 5.1, we are done.
The next result connects the Somekawa K-groups to etale cohomology.

Proposition 5.1.3. We have a commuting diagram:

G1(k)⊗ · · · ⊗Gn(k) H1
et(k,G1[m])⊗ · · · ⊗H1

et(k,Gn[m])

K(k;G1, . . . , Gm) Hm
et (k,G1[m]⊗ · · · ⊗Gm)

α

β

∪

c

5.2 Yamazaki’s version

Let us now turn our attention to the Somekawa K-groups in Yamazki’s
generalization of the Birch-Tate-conjecture. Let T be a torus. We have:

KT (F ) = K(F ;T,Gm) = ⊕E/F
T (E)⊗ E∗

Pr&Wr
,

where the notation above is already explained above. Since these groups occupy
a central part of this thesis we will give these groups a name, namely Yamazki
K-groups. We begin by reviewing the set up for the main theorem of the thesis.
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5.2. Yamazaki’s version

the generalization of the Birch-Tate-conjecture

As we have already proved in the function field case, we have the following
formula:

ζK(−1) = |K2(OK)|
|H0(K,Q/Z(2)) .

In the number field case it is called the Birch-Tate-conjecture.

The weight two motivic complex Z(2)
In order to be able to make certain constructions, we are dependent on having
the complexes

Tori

The simplest torus one can think of is the trivial torus Gm and the next simplest
are powers of it, i.e. T = (Gm)⊕r. The reason for calling these tori is that in
motivic homotopy theory, Gm is along with S1 a motivic sphere. For example
Gm(C) = C∗ which is homotopy equivalent to S1, and G(R) = R∗ is homotopy
eqivalent to S0. If a torus is not a power of Gm, then in comes equipped with
a splitting field L. The extension L/K can be assumed to be finite Galois
and when we base change we get: T ×K L = (Gm)r. To the the torus T we
associate the character group X(T )∗ = Hom(T,Gm) and the cocharacter group
X(T ) = Hom(Gm, T ). We will be mostly concerned with the cocharacter group,
as it will be the coefficient module when take Galois cohomology. Note that for
the trivial torus Hom(Gm, T ) = Hom(Gm,Gm) = Z. We make the following
three definitions:

Definition 5.2.1.

1. A torus P over F is called quasi trivial if it is on the form:

P = ⊕Ei/FREi/FGm,

where the Ei’s are finite field extensions.

2. A torus I over F is called invertible if there exist another torus I ′ over F
such that I ⊕ I ′ is quasi trivial.

3. A torus Q is called flasque if it satifies the Hilbert 90 property for all
finite extensions E/F , i.e:

H2(E,X(Q)⊗ Z(1)) = 0.

Lemma 5.2.2. We have the following implications for a torus T :

{T is quasi trivial} =⇒ {T is invertible} =⇒ {T is flasque}

Proof. Let T be quasi trivial, i.e. T = ⊕Ei/FREi/FGm. Then by definition it
is invertible. To see flasqueness, we first concider the trivial torus T = Gm an
observe that flasqueness follows from Hilbert 90:

H2(F,X ⊗ Z(1)) = H1(F,Gm = 0.
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5. Somekawa K-theory

Let T = ⊕iREi/FGm. Then

H2(F,X ⊗ Z(1)) = ⊕iH2(Ei,Z(1)) = ⊕iH1(Ei,Gm) = 0.

If the torus T is invertible, then T ⊕T ′ is quasi trivial for some T ′, hence flasque.
Thus T is flasque. �

Here, we state a very important theorem in the classification of tori. We
will treat this result purely formally, so we will omit the proof and rather refer
to [Ono90] p. 114.

Theorem 5.2.1. Let T be a torus over K. Then there are quasi trivial tori P
and Q such that:

T⊕m ⊕ P Q∼

5.3 results

The universal symbol

Recall that we define the universal symbol on a field in Theorem 3.3.1. This
symbol can also be defined for the Yamazaki’s groups in the following way: Let
E/F be a finite field extension. We have as in Theorem 3.3.1:

T (E)⊗ E∗ H1(E,X ⊗ Z(1))⊗H1(E,Z(1)) H2(E,X ⊗ Z(2)) H2(F,X ⊗ Z(2))' ∪ NE/F

Definition 5.3.1. A torus T has motivic interpretation if the associated
continuous symbol is an isomorphism;

KT (F ) H2(F,X ⊗ Z(2))'

There are some cases where it is easy to prove that a torus has motivic
interpretation.

Example 5.3.2. (1) If T = Gm, then the above isomorphism becomes:

K2(F ) H2(F,Z(2))' .

A nice explicit and conceptual proof of this fact can be found in ??.

(2) Let T = ⊕iREi/FGm. Then we have diagram which makes the statement
obvious:

⊕iK2(Ei) ⊕iH2(Ei,Z(2))

KT (F ) H2(F,X ⊗ Z(2))

=

'

=
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5.3. results

(3) Let T be invertible, then there is a T ′ such that T ⊕ T ′ is quasi trivial.
Then the projection maps induces the isomorphisms we need:

KT ′(F ) H2(F,X ′(2))

KT⊕T ′(F ) H2(F,X(2)⊕ x′(2))

KT (F ) H2(F,X(2))

'

Flasque resolutions

Let T be a torus over F split by L. Then there exists a flasque torus Q and a
quasi trivial P , such that there is an exact sequence of group schemes:

0 Q P T 0

The above is called a flasque resolution.

Proposition 5.3.3. Given a flasque resolution where Q is invertible, then T
must have motivic interpretation.

Proof. By Lemma 5.1.2, we have an exact sequence:

KQ(F ) KP (F ) KT (F ) 0

We can also take Galois cohomology thus getting a long exact sequence. It is
well known that H3(F,Z(2)) = 0 [Lic87]. Since Q is invertible we can find a Q′
such that Q⊕Q′ = ⊕iREi/FGm. Thus:

H3(F,X(Q⊕Q′)⊗ Z(2)) = ⊕iH3(Ei,Z(2)) = 0,

on the other hand:

KQ(F ) KP (F ) KT (F ) 0

H2(F,X(Q)⊗ Z(2)) H2(F,X(P )⊗ Z(2)) H2(F,X(T )⊗ Z(2)) 0

' '

�

Norm residue homomorphism and more

Recall the map from the Somekawa K-group into etale cohomology Proposi-
tion 5.1.3 which of course applies to the Yamazaki K-groups. We identify etale
and Galois cohomology and construct the map:

KT (F )/n H2(F, T [n]⊗ µn)hT
1
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5. Somekawa K-theory

Construction

First we consider the short exact sequence:

0 µn E∗s E∗s 0n ,

which is the sequence from Section 2.3. Because of Hilbert 90 we have the
isomorphism:

E∗/(E∗)n H1(Es, µn)'

Recall the norm residue homomorphism constructed in the classical
situation in Section 2.3. Just as for the continuous symbol, the norm residue
homomorphism has an extension to Yamazaki’s K-groups. We consider the
exact sequence in Section 2.3 with some modern modification. We say that if n
is an integer invertible in F , we have a triangle:

Z(2) Z(2) µ⊗2
n Z(2)[1]

We tensor the sequence with X and obtain:

X(2) X(2) T [n]⊗ µn X(2)[1]

We take pass to cohomology and obtain the following results:

Proposition 5.3.4. Assume that T admits motivic interpretation. Then we
have an isomorphism:

H0(F, T [n]⊗ µn) ' H1(F,X ⊗ Z(2))[n],

and two short exact sequences:

0 H1(F,X ⊗ Z(2))/n H1(F, T [n]⊗ µn) KT (F )[n] 0 ,

0 KT (F )/n H2(F, T [n]⊗ µn) H3(F,X ⊗ Z(2))[n] 0hT
1

Proof. The first isomorphism follows from the well known vanishing of
H0(F,Z(2)) proved by Merkurjev. The other statements are tautologies. �

Remark 5.3.5. We see that if T = Gm, then:

KT (F )/n H2(F, µn ⊗ µn)h1 ' ,

again because of the vanishing of H3(F,Z(2)). We remark that there might be
a mistake here, because the above isomorphism is the famous Merkurjev-Suslin
theorem, and we do not expect there to be a two sentence proof of that.
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Tate’s diagram for K2

Recall the fundamental diagram discussed in Section 3.3, a diagram which
is used in the proofs of almost all major result in that paper [Tat76]. These
results have for example vast applications in Iwasawa theory, and it motivated
Tate’s student, Stephen Lichtenbaum to state the so called Quillen-Lichtenbaum
conjecture. This conjecture is an extension of Tate’s theorem for K2 into all
degrees, and it is now proven as it is a consequence of the Bloch Kato conjecture.
Anyhow, it seems like a good idea to extend this diagram to our Yamazaki K-
groups. Lets first modify the diagram a little so it fits nicely into our situation.
Let us consider the diagram:

Gm(F )⊗ µp KGm(F ) KGm(F ) KGm(F )/p

H1(F, µ⊗2
p ) H2(F,Zp(2)) H2(F,Zp(2)) H2(F, µ⊗2

p )

'

γ p

h h h1

δ p

This is how the diagram would look like if T = Gm. Now, let T be any torus
over F . There is a finite Galois extension L/K such that L is the splitting field
for T , i.e. T ' (Gm)r. We set X̂p(2) = X⊗Zp(2) as the analogue of the twistet
Tate module and get a diagram:

⊕ri=1Gm(L)⊗ µp ⊕ri=1K
Gm(L) ⊕ri=1K

Gm(L) ⊕ri=1K
Gm(L)/p

⊕ri=1H
1(L, µ⊗2

p ) ⊕ri=1H
2(L,Zp(2)) ⊕ri=1H

2(L,Zp(2)) ⊕ri=1H
2(L, µ⊗2

p )

T (F )⊗ µp KT (F ) KT (F ) KT (F )/p

H1(F, T [p]⊗ µp) H2(F, X̂p(2)) H2(F, X̂p(2)) H2(F, T [n]⊗ µp)

'

γ p

h h h1 '

δ p

γT p

hT hT hT
1

δT p

The above diagram basically sums up all we have done so far regarding
Yamazaki’s K-groups and also ordinary K2 for that matter.
Remark 5.3.6. It is a very interesting question to ask what is the difference
between the groups upstaris and downstairs. In Serre’s note on tori over finite
fields ??, we saw that since T and (Gm)r are equivalent over Fq, they must at
least be isogeneous. If T is invertible, they are isomorphic by earlier discussions.

We now extend a major application of the "Main conjecture" of [Tat] which
is proven in [Tat76]. The proof presented here is our own and differ quite a
lot for the on by Yamazaki [Yamazaki]. The proof rests upon our lenghty
treatment of Tate’s results for ordinary K2. We also implement a key idea in
Yamazaki’s proof of the generalization of the Birch Tate conjecture that makes
everything fit thogether.

Theorem 5.3.1. Assume T ′ admit motivic interpretation. Then we have
isomorphisms:

KT (F )[p∞] ' H2(F,X ′ ⊗ Zp(2))Tors ' H1(F,X ′ ⊗Qp/Zp(2))/div.
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5. Somekawa K-theory

Proof. By [Ono90] we can swap the torus T ′ by a quasi trivial torus T and
they will be isogeneous. We can therefor assume that T is on the form
T = ⊕ri=1REi/FmathbbGm. We get a diagram:

⊕ri=1K
Gm(Ei)[p∞] ⊕ri=1H

2(Ei,Zp(2))Tors ⊕ri=1H
1(Ei,Qp/Zp(2))/div

KT (F )[p∞] H2(F,X ⊗ Zp(2))Tors H1(F,X ⊗Qp/Zp(2))/div

KT ′(F )[p∞] H2(F,X ′ ⊗ Zp(2))Tors H1(F,X ′ ⊗Qp/Zp(2))/div

'
'

'

= = =

'

h

∼ ∼ ∼

δ

Here, ∼ means isogeneous. The = signs going up are isomorphism induced by
Shapiro’s lemma ??, which we have seen many times before. The top horisontal
isomorphisms are due to the theorems of Tate discussed in ??. The middle
horisontal arrow become isomorphisms as a consequence. What is left is to
show that h and δ are isomorphisms, but that is not that hard: (1) h and
δ is surjective by a diagram chase. (2) h is injective by Proposition 3.3.1,
i.e. H2(F,X ′ ⊗ Zp(2))Tors contains no p-divisible subgroup. (3) δ is injective
because of ?? �

Remark 5.3.7. The technique in the proof might be applicable to many situations.
The reason is that it really exposes the rigid nature of moving a torus defined
over one field Ei to a smaller one T . This is very analogous to the discussion
??.

⊕ri=1K
Gm(Ei)[p∞] ⊕ri=1H

2(Ei,Zp(2))Tors ⊕ri=1H
1(Ei,Qp/Zp(2))/div

KT (F )[p∞] H2(F,X ⊗ Zp(2))Tors H1(F,X ⊗Qp/Zp(2))/div

KT ′(F )[p∞] H2(F,X ′ ⊗ Zp(2))Tors H1(F,X ′ ⊗Qp/Zp(2))/div

'
'

'

= = =

'

h

∼ ∼ ∼

δ

The Somekawa K-groups for local fields

Lemma 5.3.8. If p = char(k) > 0, then KT (k) = 0.

Proof. Let k′/k be a finite Galois extension that splits T . We know by the
theorem abover [Mer] that K2(F ) is a direct sum of a finite group and a uniquely
divisible group. By the norm argument KT (k) is a direct sum of a uniquely
divisible group and a torsion group of finite exponent. If char(k) = p > 0, then
we know from ?? that KT (k)[p∞] is p-divisible. Hence it is finite and divisible,
thus it is trivial. �

Proposition 5.3.9. Let k′/k be a finite extension. Then the norm map:

KT (k′) KT (k)
Nk′

k

is surjective.

64



5.3. results

Proof. We assume that k′/k is a Galois extension of degree l. We take an
arbitrary element in the Somekawa K-group. It is represented by (a, b)k1/k

for some finite field extension k1/k, where a ∈ T (k1) and b ∈ k∗1 . We will
show that this element is in the image of the norm map. If k′ ⊂ k1, then
(a, b)k1/k = Nk′

k ((a, b)k1/k′). Hence we assume k′1 = k1k
′/k1.

First we consider the case when T = Gm. This case has already been
proven above because Somekawa K-groups coincide with Milnor K-groups for
T = Gm. However, here is a very different proof that invokes fundamental ideas
in local class field theory.

We take another extension k2/k1 of degree l. We have a map

k∗1/N
k′1
k1
k′∗1 → k′2/N

k′2
k2
k′∗2 ,

which is an isomorphism by the following argument. The existence theorem of
local class field theory asserts the existence of a corresponding map between
groups:

Gal(k′2/k2)→ Gal(k′1/k1),

which is by construction an isomorphism of cyclic groups of degree l. Hence we
have

(a, b)k1/k = Nk′

k ((a1, R
k′2
k1

(b))k′1/k′ + (Rk
′
2
k2

(a2), b′)k′2/k′)

�

The result that the norm maps are surjective is a strong result. Yamazaki
derives some consequences:

Proposition 5.3.10. Let m ∈ k be a natural number. Then the Galois symbol:

KT (k)/m H2(k, T [m]⊗ µm)

is bijective.

Corollary 5.3.11. Let X̂(r) = lim←X(T )⊗µ⊗rn and Q/Z(r)‘ = lim→µ
r
n, where

n runs through natural nubers prime to ther characteristic of k. Then we have
isomorphisms:

KT (k)Tor KT (k)/div H2(k, X̂(2)) H1(k,X ⊗Q/Z(2)‘)/div X̂(1)Gk

' ' ' '

Proposition 5.3.12. KT (F ) = {Finite group} ⊕ {Uniquely divisible}

Yamazaki has conjectured that all tori admit motivic interpretation. In
the proof of the generalization of the Birch Tate conjecture this will be one of
the assumptions, hence we do not need the next result. We therefore state it
without a proof:

Theorem 5.3.2. Let T be a torus over a non-arcimedean local field k. Then T
admits motivic interpretation.
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5. Somekawa K-theory

5.4 Non-archimedean local field

Since K2(C) is uniquely divisible, we get that KT (C) is uniquely divisible by
applying the usual arguments related to the transport of structure by the norm
and restriction maps:

KT (C) ⊕ri=1K
Gm(C)

R

N

.

Yamazaki call this kind of reasoning the norm argument. We recall an elementary
lemma from [Milnorq].

Lemma 5.4.1. K2(R) = Z/2Z⊕ {divisible}

Consider now the exact sequence:

0 ker
(
ResCRGm → Gm

)
ResCRGm Gm 0 .

Using Proposition 5.3.4 we obtain an exact sequence:

0 KT (R)/n H2(R, T [n]⊗ µn) H3(R, X(T )⊗ Z(2)) 0 .

Example 5.4.2. If T = Gm, then KT (R)Tor = Z/2Z.
If T = ResCRGm or T = Ker(ResCRGm → Gm), then KT (R) = 0.
For all n, we have an exact sequence:

0 KT (R)/n H2(R, T [n]⊗ µn) H3(R, X(T )⊗ Z(2))

This sequence is known in the following special cases:

0 Z/2Z Z/2Z 0 T = Gm

0 0 0 0 T = ResCRT

0 0 Z/2Z Z/2Z T = Ker(ResCRT → T )

5.5 Hasse principle

Theorem 5.5.1. For all i ≥ 3, we have isomorphisms:

Hi(K,X(2)) ' ⊕v|∞Hi(Kv, X(2)).

Proof. We recall that we have the distinguished triangle whenever n is invertible:

X(2) X(2) T [n]⊗ µn X(2)[1]n

This triangle along with the inclusion K Kv gives us a commutative
diagram where the rows are the associated long exact sequences in cohomology.

66



5.5. Hasse principle

Let ni be the exponent of Hi(K,X(2)) for i ≥ 3. Choosing n to be the prime
to char(K)-part of nini+1 we get the diagram:

0 Hi(K,X(2)) Hi(K,T [n]⊗ µn) Hi(K,X(2)) 0

0 ⊕v|∞Hi(Kv, X(2)) ⊕v|∞Hi(Kv, T [m]⊗ µn) ⊕v|∞Hi+1(Kv, X(2)) 0

'

The middle vertical arrow is an isomophism by the Poitou-Tate theorem.
We see immediately that all the fi’s are inejctive. Then since f4 is injective,
we see by a diagram chase that f3 is surjective to. Hence all the fi’s are
isomorphisms. �

Theorem 5.5.2. Assume T admits motivic interpretation. Let L/K be a finite
separabel extension. There is an isomorphism of finite groups:

KT (K)/NL/K ' ⊕v|∞KT (Kv)/NLw(v)/K(Lw(v)).

Proof. We let S be the kernel of the canonical map ResLKT T , and
denote the associated cocharacter group Y = X(S) = Hom(Gm, S). We get
a distinguished triangle: Y (2) ResLKX(2) X(2) Y (2)[1] .
We get two long exact sequences sitting thogether in a commuting diagram:

. . . Hi(K,X(2)) Hi+1(K,Y (2)) Hi+1(L,X(2)) . . .

. . . ⊕v|∞Hi(Kv, X(2)) ⊕v|∞Hi+1(Kv, Y (2)) ⊕v|∞Hi+1(Lw(v), X(2)) . . .

We observe that the triangle is induced by the Norm map of tori. Using the
assumption that T admits motivic interpretation we obtain the diagram:

0 KT (K)/NL
KK

T (L) H3(K,Y (2)) H3(L,X(2))

0 ⊕v|∞KT (K)/NLw(v)
Kv

KT (Lw(v)) ⊕v|∞H3(Kv, Y (2)) ⊕v|∞H3(Lw(v), X(2))

We remark that we only need to take the infinte places into account in the
sum ⊕v|∞KT /NL

K(Lw(v)), since by theorem(?) the norm map is surjective for
non-archimedean places. We also use that the norm map is independent of
the place w we choose above v. By the last theorem the to vertical arrows on
the right are isomorphisms, hence by the five-lemma we conclude that the left
vertical map is an isomorphism too. �

Let T = Gm and consider the "norm" map ResCRGm → Gm with kernel S.
We get the triangle:

S ResCRGm Gm S[1]

Recall that we are eventually going to consider the case when T is a torus
overK split L, whereK and L are totally real. That means that the completions
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above will just be the reals, i.e. Kv = R and Lw = R. The diagram above
becomes:

0 KT (K)/NL
KK

T (L) H3(K,Y (2)) H3(L,X(2))

0 ⊕v|∞KT (Kv)/N
Lw(v)
Kv

KT (Lw(v)) ⊕v|∞H3(R, Y (2)) ⊕v|∞H3(R, X(2))

' ' '

Corollary 5.5.1. sds

Proof. s �

Definition 5.5.2. Let p 6= char(K), then we define:

KT (C) = Ker

KT (K)[p∞]→
∏
v-p,∞

H1(Knr
v , X ⊗Qp/Zp(2))GFv


The v-component is given by the composition:

KT (K)[p∞] KT (Kv)[p∞] H1(Kv, X ⊗Qp/Zp(2)) H1(Knr
v , X ⊗Qp/Zp(2))GFv

'

Proposition 5.5.3. If T admits motivic interpretation, then KT (C) is finite.

Proof.

KT (CL)[p∞]G KT (L)[p∞]G ⊕v-p,∞
(
⊕w|vH1(Lnrw , X ⊗Qp/Zp(2))GFv

)
G

0

0 KT (C)[p∞] KT (K)[p∞] ⊕v-p,∞H1(Knr
v , X ⊗Qp/Zp(2))GFv 0

�

We fix now Q/Z(2)′ = limrightarrow µn, where n runs over all natural
numbers prime to the characteristic. The next result is a formula that is a key
tool in the proof the main theorem. Yamazaki’s statement in the number field
case is that the formula hold up to a power of 2. We have extended the result
such that no extra power of 2 is needed, by verifying Yamazaki’s proof in the
case p = 2.

Proposition 5.5.4. Suppose T1 T2
f is an isogeny among tori that are

split by a totally real field in the number field case. Then the formula holds:

|KT1(OK)|
|H0(K,X(T1)⊗Q/Z(2))| = |KT2(OK)|

|H0(K,X(T2)⊗Q/Z(2))|
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Proof. Let S be the finite set of places where Ti have bad reduction and also
the infinite places of K. We pick any prime p (p = 2 is allowed), and recall the
localization sequences in etale cohomology Proposition 4.2.1 for KTi(OK) and
H1(OK [ 1

pS ], X(Ti)⊗Qp/Zp(2)). In order to have enough space for the diagram,
let Mi = X(Ti)⊗Qp/Zp(2):

0 KT (OK)[p∞] H1(K,Mi) ⊕v-pH1(Knr
v ,Mi)GFv 0

0 H1(OK [ 1
pS ],Mi) H1(K,Mi)[p∞] ⊕v-pSTi,v(Fv)[p∞] 0

=

This implies that we have an exact sequence:

0 KT (OK)[p∞] H1(OK [ 1
pS ],Mi) ⊕v-p,v∈SH1(Knr

v ,Mi)GFv 0

We recall our result in etale cohomology, that

H2(OK [ 1
pS

],Mi) = H2(K,Mi) = 0

vanishes by the localization sequence. If we are able to show that:

|H1(OK [ 1
pS ],M1)|

|H0(OK [ 1
pS ],M1)|

=
|H1(OK [ 1

pS ],M2)|
|H0(OK [ 1

pS ],M2)|
(5.1)

and that

| ⊕v-p,v∈S H1(Knr
v ,Mi)GFv | = | ⊕v-p,v∈S H1(Knr

v ,Mi)GFv | (5.2)

we will be done by the localization sequence above. The isogeny T1 T2
f

gives us the exact sequence:

0 C ⊗ µn M1 M2 0 (5.3)

where C = ker(f) and n is the p-power part of the order of C. There is an
exact sequence:

0 ker(a) H1(Knr
v ,M1) H1(Knr

v ,M2) 0a

Taking GFv invariance we get:

0 ker(a)GFv H1(Knr
v ,M1)GFv H1(Knr

v ,M2)GFv H1(Fv, ker(a)) 0 ,

since

H1(Fv, H1(Knr
v ,Mi)) = H2(Kv,Mi) = KT (Kv)⊗Qp/Zp = 0,

because KT (F ) = {finite} ⊕ {uniquely divisible}. Equation (5.2) follows now
from the fact that ker(a)GFv is a finite GFv

-module.
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5. Somekawa K-theory

In [neucoh] p.427 we have the global Euler-Poincare characteristic formula,
which in our case gives us the equation:

|H0(OK [ 1
pS ], C ⊗ µn)||H2(OK [ 1

pS ], C ⊗ µn)|
|H1(OK [ 1

pS ], C ⊗ µn)|
= 1

Hence by the vanishing og H2 and the exactness of the sequence (5.3), we are
done.

�

5.6 The generalization of the Birch Tate conjecture for
Somekawa K-groups

We have now finally arrived at the main theorem. Here, we extend Yamazaki’s
theorem to also be correct at the prime p = 2.

Theorem 5.6.1 (Main theorem). Let T be a torus over a global field K and
suppose T admits motivic interpretation.

In the number field case we must additionally assume that L/K be an
extension of totally real fields, where L is a splitting field for T . Then we have
the formula:

LK(X(T ),−1) = |KT (OK)|
|H0(K,X ⊗Q/Z(2))|

Proof. We start by recalling Ono’s classification theorem of tori Theorem 5.2.1:
We can find quasi trival tori P and Q such that we have an isogeny:

T⊕m ⊕ P Q∼

We have by Proposition 5.5.4 and Theorem 4.11.4 that both sides of the equation
in the formula are stable under isogeny. Since both sides splits over direct sums:

LK(X(T ⊕ T ′),−1) = LK(X(T ),−1)LK(X(T ′),−1)

and

|KT⊕T ′(OK)|
|H0(K,X(T ⊕ T ′)⊗Q/Z(2))| = |KT (OK)||KT ′(OK)|

|H0(K,X(T )⊗Q/Z(2))||H0(K,X(T ′)⊗Q/Z(2))| ,

combined with the fact that LK(X(T ), s) is real analytic, we have reduce the
formula to the case of a 1-dimensional quasi trivial torus, i.e. we may assume
that T = RMK (Gm) for some field M sitting in the tower: K ⊂ M ⊂ L. Note
that M must be totally real. Now, we know that the Artin L-function depends
only on the representation, so under induced represesentations we have:

LK(X(T ), s) = L(IndMKX(Gm), s) = ζM (s).

Our Somekawa K-groups becomes equal to ordinary K2, i.e:

KT (OK) = K2(OM ).
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Thus we are reduced to the question wether the following formula holds:

ζM (−1) = |KT (OM )|
|H0(M,X ⊗Q/Z(2))| ,

but this is in the number field case a consquence of the main conjecture of
Iwasawa theory for totally real fields proven by Wiles [Wiles] for p odd and in
[Rognes] for p = 2. In the function field case it follows from Theorem 4.2.5. �

d
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CHAPTER 6

Somekawaformula

6.1 Main theorem

Theorem 6.1.1. Let F1, . . . ,Fn be homotopy invariant Nisnevich sheaves with
transfers. Then there is a an isomorphism:

K(k;F1, . . . ,Fn) ' HomDMeff,−
Nis

(Z,F1[0], . . . ,Fn[0])

Recall the definition of the Somekawa K-group for a torus:

Definition 6.1.1.
KT (F ) = ⊕E/F

T (E)⊗Gm(E)
PR&WR

.

Corollary 6.1.2.

KT (K) = HomDMeff,−
Nis

(M(Spec(K)), T [0]⊗Gm[0])

6.2

We have a commuting diagram of symmetric monoidal categories, where the all
functors are adjoints to canonical inclusions:

PST PST

HI HINis

aNis

h0 hNis
0

aNis

Lemma 6.2.1. Let F1, . . . ,Fn be homotopy invariant Nisnevich sheaves with
transfers. Then there is a canonical isomorphism:

(F1 ⊗HI . . .⊗HI Fn)(k) HomDMeff,−
Nis

(Z,F1[0], . . . ,Fn[0])'

6.3 Local symbols

Let G be a presheaf with transfers. We define:

G−1(U) = Coker(U × A1)→ G(U × (A1))).
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6. Somekawaformula

If G is homotopy invariant, then G(U × (A1 − {0}) = G(U)⊕ G−1(U). Hence
we get an exact endofunctor:

HINis → HINis

G 7→ G−1

Lemma 6.3.1. Let G be homotopy invariant. For i = 1 we have:

Hi(Spec(k(x))× (A1 − {0}),G)/Hi(Spec(k(x),G) = G−1(k(x)).

For i 6= 1, the quotient is trivial.

We recall the definition of cohomology with support on a point:

Hi
x(X,U) = lim→H

i
{x̄}∩U (U,G),

where the limit is taken over the partially ordered set of open neighbourhoods
of x.

Proposition 6.3.2. Let G be homotopy invariant. Then the for i = 1 we have:

Hi
x(X,G) = G−1(k(x))

The cohomology groups are trivial for i 6= 1.

Proof. We have a long exact sequence for cohomology with supports:

. . . H0
{0}(A1,G) H0(A1,G) H0(A1 − {0},G) H1

{0}(A1,G) . . .

By the lemma above we get the result �

We use this result to define a canonical map:

G(K) G−1(k(x))∂x

Lemma 6.3.3 (Naturality). Let Y X
f be a dominant morphism of

smooth schemes. Suppose y ∈ Y is a point of codimension 1 lying above
x. Then we have diagrams reflecting the nice behaviour our symbol has with
respect to pullback.

G(L) G−1(k(y))

G(K) G−1(k(x))

(∂y)

∂x

f∗ f∗

If f is finite and surjective, we have the following interplay with the pushforward:

G(L) ⊕y∈f−1(x)G−1(k(y))

G(K) G−1(k(x))

(∂y)

f∗ f∗

∂x

The analogy to the restriction, the norm and the boundary map in Milnor
K-theory is clear.
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6.4. The K-groups

Proposition 6.3.4. Let G be homotopy invariant. Then we have a canonical
isomorphism:

G−1 → Hom(Gm,G)

Proposition 6.3.5. Let C be a smooth, proper, connected curve over K with
function field K. For any G ∈ HINis we have a canonical homomorphism:

H1
Zar(C,G) G−1(k)

TrC/k
,

such that for any x ∈ C, the composition:

G−1(k(x)) H1
x(C,G) H1

Zar(C,G) G−1(k)'

Trk(x)/k

TrC/k

equals the canonical transfer map:

Spec(k(x)) Spec(k)
Trk(x)/k

Proposition 6.3.6 (Reciprocity). Let C be a smooth, proper, connected curve
over k, with function field K. Then we have a complex:

G(K) ⊕x∈CG−1(k(x)) G−1(k)(∂x)
∑

x
Trk(x)/k

6.4 The K-groups

K(k;G1, . . . , Gn) = ⊕E/k
G1(E)⊗ . . .⊗Gn(E)

PR&WR

Let F1, . . . ,Fn ∈ HINis. Our K-groups will be defined as qoutients of:

(F1 ⊗PST . . .⊗PST Fn)(k)

We observe that the projection formula is already taken care of, since we are
working with tensor products of Nisnevich sheaves with transfers. Hence we
only need to introduce a Weil reciprocity relation to get our K-groups.

K-groups of Somekawa type

Let F1, . . . ,Fn ∈ HINis, and consider the following data:

1. a smooth proper connected curve C over k.

2. h ∈ k(C)∗.

3. gi ∈ Fi(k(C)) for each i ∈ {1, . . . , n} with the following condition: For
any c ∈ C, there is an i(c) such that c ∈ Ri for all i 6= i(c), where
Ri = {c ∈ C|gi ∈ Im(Fi(OC,c)→ Fi(k(C))).
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6. Somekawaformula

Definition 6.4.1. Given a tripple (C, h, (gi)) as above we define the Weil
reciprocity of Somekawa type WRS to be generated by elements of the form:

WRS :=
〈∑
c∈C

Trk(c)/k(g1(c)⊗ . . .⊗ ∂c(gi(c), h)⊗ . . .⊗ gn(c))|(C, h, (gi))
〉

We then define the K-group of Somekawa type to be the quotient:

K(k;F1, . . . ,Fn) := (F1 ⊗PST . . .⊗PST Fn)(k)
WRS

Theorem 6.4.1. There is a surjective homomorphism:

K(k;F1, . . . ,Fn) HomDMeff,−
Nis

(Z,F1[0]⊗Fn[0])

K-groups of geometric type

Let now F1, . . . ,Fn ∈ PST , and consider the folloing data:

1. C is a smooth projective connected curve C over k.

2. a surjective morphism C P1f .

3. gi ∈ Fi(C ′) for each i ∈ {1, . . . , n}, where C ′ = f−1((P1 − {1}).

Definition 6.4.2. We define the Weil reciprocity of geometric type to be
genereted by elements of the form:

WRG :=
∑
c∈C′

vc(f)Trk(c)/k(g1(c)⊗ . . .⊗ gn(c)).

We then define the K-group of geometric type to be:

K(k;F1, . . . ,Fn) := (F1 ⊗PST . . .⊗PST Fn)(k)
WRG

Let now F ∈ PST and consider the following set of data:

1. A smooth projective curve C over k.

2. A surjective morphism C P1f .

3. A section: Ztr(C ′) Fα .

To such a tripple (C, f, α) we associate an element:

α(div(f)) =
∑
c∈C′

vc(f)Trk(c)/kα(c)

Elements of this type generate the rational sections:

F(k)rat = 〈α(div(f))〉
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Proposition 6.4.3. Let F ∈ PST . Then we have:

h0(F)(k) = F(k)/F(k)rat.

Proof.
Ztr(C ′)(4) F(4)

Ztr(C ′)(k) F(k)

i∗o−i
∗
∞

α

i∗o−i
∗
∞

α

�

Lemma 6.4.4. Let F1, . . . ,Fn ∈ PST and let F = F1 ⊗PST . . .⊗PST Fn. Let
(C, f, α) be a rational tripple. Then α can be written as a finite sum:

α =
∑

Trh(g1 ⊗ . . .⊗ gn),

Where we have sujective and finite morphisms of smooth projective
curves, D C P1h f , gi ∈ Fi(h−1(C ′)) for i ∈ {1, . . . , n} and

F(h−1(C ′)) F(C ′)Trh is the canonical transfer.

Theorem 6.4.2. Let F1, . . . ,Fn ∈ HINis. Then we have an isomorphism:

K ′(k;F1, . . . ,Fn) HomDMeff,−
Nis

(Z,F1[0], . . . ,Fn[0])'

Proof. �

K-groups of Milnor type

Let F1, . . .Fn ∈ HINis. Recall the cocharacter group F−1 =
HomHINis

(Gm,F), where the elements are cocharacters Gm Fχ .

Definition 6.4.5. We define the Weil reciprocity of Milnor type to be generated
by:

WRM = 〈a1 ⊗ . . .⊗ χi(a)⊗ . . .⊗ χj(1− a)⊗ . . .⊗ an〉

, where ar ∈ Fr and a ∈ (k∗ − {1}). We then define the K-theory of Milnor
type to be:

K̃(k;F1, . . . ,Fn) := (F1 ⊗PST . . .⊗PST Fn)(k)
WRM

Lemma 6.4.6. Let F1, . . . ,Fn ∈ HINis. Then we have a surjective homomor-
phism:

K̃(k;F1, . . . ,Fn) K(k;F1, . . . ,Fn)
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6.5 Main theorem

Proposition 6.5.1. The following to statments are equivalent:

6.5.1.1. The homomorphism K(k;F1, . . . ,Fn) K ′(k;F1, . . . ,Fn) is
a bijection for F1, . . . ,Fn ∈ HINis.

6.5.1.2. We are given a tripple (C, f, (g̃)) giving rise to Weil reciprocity of
geometric type, where g̃ is the section:

Ztr(C ′) hNis0 (C ′)g̃

Suppose F1 = . . . = Fn = hNis0 (C ′), and consider the modified tripple (C, f, (g̃),
which give rise to Weil reciprocity of geometric type:

WRG =
∑
c∈C′

vc(f)Trk(c)/k(g̃(c)⊗ . . .⊗ g̃(c))

Then WRG vanish in K(k;hNis0 (C ′), . . . , hNis0 (C ′)).

Definition 6.5.2. We say that a sheaf F is proper, if for any smooth curve C
over a field k and any closed point c ∈ C, the canonical map:

F(OC,c) F(k(C))

Definition 6.5.3. Let F ∈ HINis. We say that the sheaf F is curve-like if it
sits in en exact sequence of the form:

0 T F F̄ 0

where F̄ is proper and T is a quasi-trivial torus.

Lemma 6.5.4. hNis0 (C) is curve-like. In fact, it is the Nisnevich sheaf with
transfers associated to the presheaf of relative Picard groups:

U 7→ Pic(C × U,D × U),

where C is the projective completion and D is the normal crossing divisor C−C.

Proposition 6.5.5. Let C be a smooth proper curve and let F be curve-like.
Let Z C be smooth and proper and K = k(C). We have commutative
diagram:

0 0 0

0 T (OC,Z) F(OC,Z) F̄(OC,Z) 0

0 T (K) F(K) F̄(K) 0

0 ⊕iT−1(k(ci)) ⊕iF−1(k(ci)) ⊕iF̄−1(k(ci)) = 0

0 0 0
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6.5. Main theorem

Lemma 6.5.6. Let F1, . . . ,Fn be curve-like sheaves. Let D C be a
surjection of curves over k where C is smooth and proper. Let fi ∈ Fi(k(D)
and v ∈ D. Let x = {f1, . . . , fn, fn+1} ∈ K(k;F1, . . . ,Fn). Then:

6.5.6.1. If v(fn+1 − 1) > 0, then ∂v(x) = 0.

6.5.6.2. ∂v(x) = {f1(v), . . . , ∂v(fi, fn+1), . . . , fn)}k(v)/k.
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