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Abstract 

The development of well-functioning numeracy skills is a foundation for further 

mathematical skills. Mathematical skills develop in a cumulative fashion, and to help children 

establish these skills, we need to better understand how they in fact develop, how to identify 

children who are at risk of developing mathematical learning difficulties, and last but not least 

– how we can help remedy these difficulties. To better understand and ultimately support 

these children, we need to apply different methods and research designs. We need to make 

sure we raise questions that are detailed enough in order to avoid brevity, and help to answer 

the major question which is – which are the most important skills to help children who 

struggle in mathematics? Which particular skills might be more relevant to be assessed in 

order to identify children who are at risk of developing mathematical learning difficulties?

 The first study examined the developmental relationship between the approximate 

number system and early mathematical skills, in two different datasets. The main objective 

was to further investigate the theory that the approximate number system has a potential 

casual influence on mathematical development. First, we reanalyzed the dataset from a recent 

study by Elliott, Feigenson, Halberda, and Libertus (2019). Using cross-lagged panel model 

Elliott et al. (2019) claimed a reciprocal relationship between the approximate number system 

and early mathematics, however when reanalyzing this dataset by using a novel 

methodological approach, a random-intercept cross-lagged panel model, no evidence of a 

reciprocal relationship was found. Second, in a 1-year longitudinal study with three time 

points we examined the developmental relationship of the approximate number system and 

addition skills with the same methodological approach as in the reanalysis of Elliott et al.’s 

(2019) data. Here, the results did not show any evidence supporting a reciprocal relationship 

between the approximate number system and mathematical development either. Combined, 

this questions the idea that the approximate number system plays a vital role in the 

development of early mathematics, and vice versa. Moreover, this study displayed how 

different methodological approaches lead to different results.    

 The second study is a validation study. The psychometric properties of the Early 

Numeracy Screener that was developed from a theoretical model, the core numerical skills 

model by Aunio and Räsänen (2016). The Early Numeracy Screener aims to detect children 

who are at risk of developing mathematical learning difficulties later on, and furthermore 

aims to identify three sets of early numeracy skills; namely counting skills, numerical 

relational skills, and basic arithmetic skills. Confirmatory factor analysis found evidence for a 



 

three-factor model, establishing construct validity. Furthermore, criterion-related validity was 

found in crosstabulation and correlation with a national test taken towards the end of the 

school year. The results indicated that the Early Numeracy Screener identifies three 

dimensions of early numeracy skills, and hence serves as functional screener for first graders 

in mathematics.            

 The third study is a randomized controlled trial of low-performing first graders. This 

study aimed to improve early numeracy skills and evaluated the effects of a 14-week early 

numeracy program designed to boost numeracy skills of low-performing children at risk of 

developing difficulties in mathematics. The intervention targeted counting skills, numerical 

relational skills, and basic understanding of arithmetic. The intervention produced modest 

benefits (d = 0.20) on early numeracy (counting and numerical relational skills) learning, but 

those were not significant. There were moderate and reliable effects on word problem solving 

(d = 0.41); however, the effects were reduced and faded at the second follow-up test (after a 

second intervention phase of 6 weeks with intervention training once per week) and at follow-

up test (6 months after the intervention) compared to the immediate post-test.   

 Combined, the findings from these three studies have attempted to ultimately enhance 

the understanding of what influences mathematical development in young children, what 

early mathematical skills generate mathematical development. More precisely, these studies 

indicated that the debated approximate number system did not have a strong as effect on 

mathematical development as previous studies suggest. Additionally, in order to make fine-

grained assessment when children are in the early development of mathematics these studies 

found that early numeracy skills could be divided into three separate numeracy skills. 

Knowledge about what influences mathematical development and the notion that subskills in 

early numeracy could be identified, furthered skills that could be targeted in interventions 

supporting struggling learners in mathematics. All three studies have implications for future 

research and for the practice field. For future research, this thesis have highlighted how novel 

and innovative methodological approaches can affect the evidence in which inferences are 

drawn. Furthermore, this thesis have implications for the Norwegian practice field and 

provide Norwegian schools and teachers an assessment tool to help identify children at risk of 

developing learning difficulties in mathematics, and with intervention material to help support 

these children.  
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1 Introduction 
Efforts to support children’s numeracy skills are of long-term importance to children’s later 

academic success. We need to understand the origins and complexity of early numeracy skills 

in order to identify children who are at risk for developing difficulties with mathematics and 

remedying these difficulties as early as possible. The main topic of this thesis is early 

numeracy, subdivided into the development of early numeracy skills, assessment of early 

numeracy skills, and educational support targeting early numeracy skills. Three studies are 

presented: 

The approximate number system and early mathematics: the developmental 

relationship. The first study presents an analysis of two longitudinal datasets about the 

developmental relationship between approximate number system and early mathematics. 

Validation of an early numeracy screening tool. The second study is a validation of a 

screening tool, the Early Numeracy Screener for first graders, which can be used as a means 

by which to detect children struggling with early numeracy and who are therefore at risk of 

developing learning difficulties in mathematics. 

A randomized controlled trial. The third study presents a randomized controlled trial with 

the aim of ameliorating low-performing first graders’ early numeracy skills. 

 

Pursuing the objective of understanding and supporting mathematical thinking and learning 

relies on different conceptions of fundamental theoretical constructs (Alock, Gilmore, & 

Inglis, 2013), as well as methodological approaches. There are many unanswered questions in 

this field, in terms of theories about how we create and develop mathematics and how 

components of this development are associated with each other – if indeed, they are 

associated at all. The initial question at the outset of this thesis was (an enormous) “How?” – 

How can we support children who struggle in learning mathematics? Several other queries are 

necessary to respond to this “how”, for instance “who” - Who needs this support, which 

children? Why do they need exactly this support and in what manner? In addition, on what 

grounds do we decide how to provide support, why do we prioritize some components of 

mathematical development over others in both identifying children at risk for mathematical 

difficulties and providing support. Are some components in mathematical development more 

important than others? The enormous question “how” quickly evokes more questions, and the 
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questions become more and more concrete and detailed, while at the same time they are 

entangled. Answering these seemingly easy questions raises even more questions. We need 

more knowledge when it comes to finding key numeracy skills for mathematical development 

as this insight might have consequences for developing valid and reliable measures and 

designing effective interventions.  
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2 The path to mathematical competence 
It has been well established that children’s quantitative competencies when they enter formal 

schooling predict their relative mathematics achievement throughout schooling (Duncan et al., 

2007; Ritchie & Bates, 2013). Their mathematical competencies when they leave school 

predict their employability and wages throughout adulthood (Brynner, 1997; Rivera-Batiz, 

1992). This theoretical chapter opens with an overarching theoretical model on how we can 

understand learning difficulties in general. The objective for including this all-embracing 

model is to place mathematical development in a broader perspective and hence lead the way 

to theoretical models and frameworks on mathematical development. The models depicted are 

frameworks on how we both can understand typical development and learning difficulties in 

mathematics. The models discussed in this chapter are already existing models, and are 

challenged methodologically in terms of inferences drawn from these “box-and-arrows” 

models. These theoretical models on mathematical development will submit to some of the 

unresolved issues related to causality in the field of mathematics. Furthermore, in this chapter, 

the different numeracy components will be presented. Additionally, this chapter on theory 

includes matters such as mathematical learning difficulties, assessment of early numeracy, 

and early numeracy interventions.  

2.1 Attempts to explain mathematical development 

It has been suggested that quantitative abilities provide the foundation for the emergence of 

more complex numeracy, counting, and arithmetic skills during the preschool years (Gelman 

& Gallistel, 1978). Generally, early numeracy is typically defined as the understanding of 

numbers prior to formal instruction (Howell & Kemp, 2010), for instance learning number-

words, its sequence and the acquisition of counting skills connecting the number word to 

quantity. Studies have related children’s mathematical achievement to specific aspects (e.g. 

counting skills) of their early numerical competencies (Hannula-Sormunen, Lehtinen, & 

Räsänen, 2015). Developing well-functioning early numeracy skills is a groundwork for later 

mathematical skills. It is considered a vital pathway to employment in a society in which the 

demands for mathematical reasoning, problem solving and being able to analyze information 

is steadily increasing (Geary, Bailey, & Hoard, 2009; Trilling, & Fadel, 2009). In this thesis, 

the concepts, numeracy and mathematical skills and abilities, are used. The umbrella term 

mathematical development and mathematical skills encompasses numeracy skills, and 

numeracy skills, as we will see, are thought to be a building block in theories of mathematical 

development.        
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A cognitive explanation of learning difficulties focuses how skills are learned and how 

typical development might be disturbed (Hulme & Snowling, 2009). A complete explanation 

of any learning difficulty will involve several layers of description. Morton and Frith (1995) 

argued that it would be useful to make unambiguous diagrams for theoretical explanations. 

Figure 1 is an example of such a general model and depicts several sections of learning. 

Therefore, it is hypothesized that there are separable modules that underlie particular skills, 

and these subsystems have different functions. To exemplify, the model might help describe 

the association between the cognitive level (e.g. working memory) that is hypothesized to 

affect the behavioral level in mathematics (e.g. arithmetic fact retrieval). The model, however, 

does not assume an opposite causal link; the debate concerning the causal link in mathematics 

is elaborated further later in this thesis. 

 

Figure 1.  A model of the potential gene-brain-cognition-behavior pathways from genotype 

MAOA-L to reactive aggression. Adapted from Morton and Frith (1995)  

Although some aspects of development are subject to genetic influences, it is important not to 

adopt a deterministic mindset; genetic influence does not undermine the importance of 

environment; hence, providing support for struggling learners is imperative. It has been 

demonstrated that for mathematics, heritability (inherited genetic factors) explains a large 

variation in children’s skills, around 60-70% (de Zeeuw, de Geus & Boomsma, 2015). This 

does not imply that mathematic skills are unalterable since 30-40 % consequently would then 

not be under genetic control. Furthermore, it also seems to vary by country, for instance De 

Zeeuw et al., (2015), compared with Hart, Petrill, Thompson, and Plomin (2009) displaying 

that genetic factors explained more of the variance in the U.S. than in the UK. This does 

however imply that it can be difficult to increase the mean and reduce the variation in a group 
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at the same time. Similarly important is the neurological perspective on the development of 

learning and learning difficulties. In the field of mathematics, neurological research is 

essential to understanding development through investigation of brain activation patterns and, 

for example, which brain areas involved in typical development and functioning might be 

disturbed both in selected and unselected samples. In-depth discussions of the genetic and 

neurological domains of mathematical learning difficulties are however not included in this 

thesis. Although these levels are a foundation and of course important, this thesis operates on 

a cognitive and behavioral level because to understand how to remedy mathematical 

difficulties, it is necessary to understand the development and interaction between the 

cognitive and the behavioral level. This does not diminish the importance of neuroscientific 

and genetic studies, but simply because this was neither the aim nor the rationale of this 

thesis.    

2.2 Theories concerning factors that influence numeracy development  

Which aspects of thinking originate from instruction, and which emerge independently of 

specific experience? We need to more fully understand the factors that scaffold early 

mathematics development. To do this, we need to look more closely at some of the models of 

mathematical development. Researchers have used information from a variety of sources to 

address the question of how children acquire skills in conventional mathematics, including 

longitudinal studies of typically developing children (e.g. Aunola, Leskinen, & Nurmi, 2004; 

Bull, Espy, & Wiebe, 2008; De Smedt, Verschaffel, & Ghesquière, 2009; Jordan, Kaplan, 

Locuniak, & Ramineni, 2007) and research with children who have severe mathematical 

learning difficulties (i.e. developmental dyscalculia, e.g. Berch & Mazzocco, 2007). Most of 

the studies in this field, however, are cross-sectional, which is a critical issue when it comes to 

studying development. Therefore, in this thesis, longitudinal studies will be prioritized since 

they can be used to generate causal hypotheses.   

2.2.1 The triple code model of numerical processing 
In 1992, Dehaene proposed a model, namely the triple code model and this model has 

become a widespread model in the field of number processing. Dehaene’s triple code model 

linked the external, encoded representation with different internal mental codes, so that 

information represented as digits activated representations that differed from those activated 

by words or quantities. An unambiguous distinction has emerged between a system of 

calculation procedures based on the quantity on the one hand and a second calculation system 

relying on memorized facts (Dehaene, 1992; Dehaene & Cohen, 1991). Incorporating this 
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idea, see Figure 2, (Dehaene 1992; Dehaene & Cohen, 1995; Dehaene & Cohen, 1997), the 

triple code model is a multirouted model of numerical processing postulating three 

functionally sovereign but related codes (Dehaene, 1992).  

 

Figure 2. Triple Code Model of Numerical Cognition with elements related to early 

numeracy, adapted from Dehaene (1992) 

The triple code model can be seen as an operationalization of early numeracy, and has a 

detailed numerical aspect of early numeracy. The model is theorized by three premises that 

must occur. Numbers may be represented mentally in three main representations of numbers 

(Dehaene & Cohen, 1997): a visual Arabic code, an analogical magnitude code, and a verbal 

code. The analogue magnitude representation is knowledge about the proximity and relative 

size of quantity. The foundation of the analogue magnitude representation is a preverbal 

system, suggesting that children have an innate understanding of magnitudes (Dehaene, 1992) 

that can be measured in preverbal infancy. Linguistic numerical tasks, such as retrieving 

answers to arithmetic combinations, activate a region that has been linked to language 

processing, including reading and phoneme detection. The triple code model sets these 

abilities into three groups according to the format in which numbers are manipulated 

(Dehaene & Cohen, 1997). The bidirectional arrows between the three codes suggests the 

three codes being both independent, but at the same time interdependent and linked together. 

 The original version of the triple code model and subsequent extensions primarily 

relied on theoretical considerations derived from arithmetic deficits following 

neuropsychological impairments such as an acquired deficit in calculation (Dehaene & 

Cohen, 1997). These models were derived from investigations involving adults; we therefore 
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need to take a closer look at studies involving younger children. At present, several early 

predictors for children’s early mathematical attainment are predominant in the literature; 

visuospatial skills (Butterworth 2005); mental number line precision (Praet & Desoete, 2014; 

Reeve, Paul, & Butterworth, 2015); innate number competence (Duncan et al., 2007; Jordan, 

Kaplan, Ramineni, & Locuniak, 2009); counting skills (Jordan et al., 2007; Muldoon, Towse, 

Simms, Perra, & Menzies, 2013); and linguistic skills (Praet, Titeca, Ceulemans, & Desoete, 

2013). In 2018, Siemann and Petermann assessed the literature containing contradictory 

findings on how the triple code model can be applied to mathematical development, and 

challenged what they considered the model’s unanswered questions. First, Siemann and 

Petermann (2018) stated that developmental trajectories are not clearly expressed for the 

model. Second, it was suggested that the many impacts of domain-general factors are not 

accounted for.           

 Support for the triple code model has however been found in recent studies (Malone, 

Burgoyne, & Hulme, 2019; Malone, Heron-Delaney, Burgoyne, & Hulme, 2019). A latent 

variable path model showed that early number knowledge and numerosity discrimination 

were unique predictors of arithmetical development (Malone, Burgoyne, et al., 2019), and 

another study showed that tasks involving mapping magnitudes onto verbal or visual stimuli 

predicted arithmetic performance over and beyond predictors such as age and IQ (Malone, 

Heron-Delaney, et al., 2019).  

2.2.2 Pathways to Mathematics  
In 2010, LeFevre et al. (2010) proposed and tested a slightly different model compared 

with Dehaene’s (1992) model of mathematical development in children’s acquisition of 

mathematics. This pathway to mathematical development model hypothesized by LeFevre 

and colleagues (2010) consists of three independent cognitive precursors or pathways: 

linguistic, quantitative, and spatial attention. The pathways model posits that linguistic skills 

should predict children’s performance in early numeracy, such as naming numbers or writing 

Arabic digits. Language as a measure has recently been stressed in the prediction of numeracy 

development (Purpura, Hume, Sims, & Lonigan, 2011; Sarnecka, Kamenskaya, Yamana, 

Ogura, & Yudovina, 2007). Studies do reveal contradictory findings, however; some studies 

(Barner, Chow, & Young, 2009; Negen & Sarnekca, 2012) found that general measures of 

language development predict number and number word knowledge, although other studies 

did not support such a link (Ansari et al., 2003). Praet and colleagues (2013) found that 

expressive language explains 24 % of the variance in arithmetic skills, even after controlling 
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for number naming and procedural counting. This is in line with other studies (Purpura et al., 

2011), and in accordance with studies finding similar patterns of growth in linguistic and 

quantitative skills (Jordan, Kaplan, Olàh, & Locuniak, 2006; Jordan et al., 2007). Different 

language components might contribute to different mathematical skills (e.g. oral language, 

receptive language, understanding of grammatical rules, Storch & Whitehurst, 2002). Still 

other studies have found language skills to be linked with children’s word problem solving 

skills (Fuchs et al., 2008; Fuchs et al., 2010). Linguistic skills, however, did not predict 

nonlinguistic arithmetic (LeFevre et al., 2010). Nonlinguistic arithmetic were arithmetic tasks 

requiring children to represent and mentally manipulate quantities, but do not require labelling 

those quantities with numbers or link to Arabic symbols (LeFevre et al., 2010). This supports 

the proposed distinction between these pathways, leaving numerically relevant linguistic and 

quantitative skills as two distinct factors. The model depicted in Figure 2 displays the 

predictions premising the model.  

 

Figure 2 Pathways to Mathematics, adapted from LeFevre et al. (2010) 

LeFevre et al. (2010) suggested that future work is needed to refine and develop the pathways 

model theoretically, empirically, and methodologically. The pathway model did not address 

the question of how knowledge from linguistic and quantitative pathways is integrated; 

although it was suggested that working memory might play an important role in this process 

(Krajewski & Schneider, 2009; Swanson, Jerman, & Zheng, 2008).    

 In 2015, Sowinski et al. attempted to refine the pathways to mathematics model. They 

tried to improve the quantitative pathway by combining children’s subitizing, counting, and 

symbolic magnitude comparison skills, and furthermore hypothesized that quantitative, 

linguistic, and working memory pathways could account for unique variance in the numerical 
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outcomes. However, the results indicated that only the quantitative and linguistic pathways, 

not working memory, accounted for unique variance. Although the refinement of this model 

supported the 2010 model empirically, the study had the limitation of being cross-sectional, 

not longitudinal, as was the original proposal of the pathways to mathematics model (LeFevre 

et al., 2010).            

 In 2017, Lira, Carver, Douglas, and LeFevre attempted yet again to integrate mapping 

among non-symbolic quantities, i.e. between spoken number words and written digits into the 

model. Empirical support for this integration was found in previous studies displaying the use 

of written symbols predicting arithmetic skills (Zhang et al., 2014). Furthermore, Lira et al. 

(2017) investigated to find a way this unit might be mediated by counting sequence 

knowledge suggested by (Purpura, Baroody, & Lonigan, 2013) and other numerical language 

skills (Moll, Snowling, Göbel, & Hulme, 2015). After using latent variables testing their 

hypothesis, Lira et al. (2017) found that children’s verbal counting predicted their knowledge 

of the number symbols and their ability to understand and manipulate exact quantities. In the 

integrated model, the various precursor and mapping tasks were arranged in a 

linguistic/symbolic and quantitative pathway consistent with the original model from 2010. 

The study concluded that children’s knowledge about non-symbolic exact quantities, spoken 

number word, and digits predicted their ability to map between symbolic and non-symbolic 

exact quantities. The mappings between written digits and non-symbolic exact quantities 

developed later than the other mappings. Thus, Lira et al. (2017) claimed this to be evidence 

for a model of early number knowledge in which integration across symbolic and non-

symbolic representations of exact quantity underlies the development of children’s number 

comparison skills.  

2.2.3 Core numerical skills model 
Another theoretical model that has been suggested to explain the foundation of early 

numeracy skills is the core numerical skills model. Aunio and Räsänen (2016) hypothesized a 

model of crucial numerical factors for the development of mathematical skills among children 

aged five to eight years old. Their model was based on results from longitudinal studies, more 

precisely mathematical subskills that predict later mathematics (e.g. Aunola et al., 2004; 

LeFevre et al., 2010). In order to find further support for these construct, they qualitatively 

analyzed normed test batteries intended to measure the development of mathematical skills, 

the idea being to investigate how these groups of skills were operationalized within different 

test batteries. The core numerical skills model (see Figure 3) divided skills into four parts, 
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symbolic/non-symbolic number sense, understanding mathematical relations, counting skills, 

and basic skills in arithmetic (Aunio & Räsänen, 2016). 

 

Figure 3 Core numerical skills model, adapted from Aunio and Räsänen (2016) 

In the core numerical skills model, symbolic and non-symbolic skills are defined as processes 

where approximate evaluation of magnitudes or symbols representing magnitudes are used. 

Understanding mathematical relations in the core numerical skills model include domains that 

constitute early numeracy skills; namely, understanding numerical relations (e.g. 

understanding of the quantitative and non-quantitative relationships between the elements in 

the task). Furthermore, numerical relational skills include mathematical-logical principles, 

understanding the meaning of the base-10 system (Aunio & Räsänen, 2016). A third 

component of the core numerical skills model is counting skills. Counting skills refers to the 

child’s knowledge of number symbols, skills in moving within the sequence of the number 

words and enumeration (Aunio & Räsänen, 2016). Basic arithmetic skills constitute the fourth 

component, and in 5‒8-year-olds, this refers to the degree to which a child masters mainly 

addition and subtraction tasks with number symbols (Aunio & Räsänen, 2016). Visually, the 

model’s boxes and arrows display that non-symbolic and symbolic number sense is the 

foundation the components counting skills, numerical relational skills, and basic arithmetic 

skills are based on, it but also implies this association to be bidirectional.    

 Although the core numerical skills model was designed without being empirically 

tested prior to being published, one can find empirical support for the four components’ 

predictive influence of early numeracy and mathematical development. Longitudinal studies 

have established that numerical relational skills are a central part of early numeracy 
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development (Aunio & Niemivirta, 2010; Desoete, Stock, Schepens, Baeyens, & Rieyers, 

2009; Stock, Desoete, & Roeyers, 2009). Counting strategies are, perhaps not surprisingly, an 

imperative aspect of children’s early numerical knowledge (Wright, Martland, & Stafford, 

2006). Notably, the skills displayed in the model are supported by previous research 

describing predictors of early numeracy (Desoete, Ceulemans, De Weerdt, & Pieters, 2012; 

Gersten et al. 2012; Moeller, Pixner, Zuber, Kaufmann, & Nuerk, 2011). Additionally, this 

was not the first nor last attempt to create multifactor models for early numeracy and 

mathematical development (e.g. Cirino, 2011; Hirsch, Lambert, Coppens, & Moeller, 2018).

 In 2019 Aunio and colleagues empirically tested the core numerical skills model using 

a cross-sectional design with confirmatory factor analysis, before it was tested yet again as 

part of a validation for the Early Numeracy Screener (see Study 2). The factors for counting 

skills, numerical relational skills, and basic arithmetic skills were identified as three separate 

dimensions (Aunio et al., 2019). However, the model has not yet been tested in a longitudinal 

design and this raises a question of dimensionality. In Study 2, three of the four components 

in the core numerical skills model were empirically tested, trying to establish whether the 

model indeed consisted of several factors or was unidimensional. Even though the analysis 

favored the three-factor model, the model fit for a one-factor model was also good, and 

arguably indicated the model might be unidimensional. Thus, even if the factors that create 

the foundation for mathematic skills are conceptualized as a set of different skills, these skills 

might be highly related. For further discussion, see Study 2.  

2.2.4 Conceptual and procedural understanding 
Another way of understanding the foundation of mathematical skills is suggested to be 

based on a development of both a conceptual and a procedural understanding of the task. 

Conceptual knowledge refers to the implicit or explicit understanding and is a flexible 

knowledge that is not tied to specific types of task. Procedural understanding is the ability to 

execute action sequences to solve problems (Rittle-Johnson, Siegler, & Alibali, 2001). 

According to this theory, to develop well-functioning mathematical skills, a child has to 

master both conceptual and procedural understanding.   
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Figure 4. Iterative model for the development of conceptual and procedural knowledge, adapted from   

  Rittle-Johnson et al. (2001). 

As for empirical support, it has been demonstrated that children’s conceptual and 

procedural knowledge contribute to their competencies in an area of mathematics, such as 

arithmetic (Rittle-Johnson & Siegler, 1998; Rittle-Johnson et al., 2001). These two types of 

knowledge (conceptual and procedural) lie on a continuum and cannot always be separated 

(Rittle-Johnson et al., 2001). According to this theory, depicted in Figure 4, children’s 

conceptual knowledge of the magnitude of numbers is especially important because it 

involves the ability to estimate the magnitude of numerals and sets of objects (Siegler, 2016; 

Siegler & Booth, 2005). Fundamental arithmetic includes both procedural knowledge (e.g. 7 – 

5 = 2, knowing how to execute the task) and conceptual knowledge (e.g. 7 – 5 = 2, implicit 

and explicit understanding, knowing that subtraction is inverse addition, and one can use 

addition to solve this task (Bisanz & LeFevre, 1990).     

 What weakens the theory of procedural and conceptual knowledge is that they seem to 

develop hand in hand, and are highly interweaved. This was also addressed by Rittle-Johnson, 

et al. (2001) themselves, they highlighted that the bidirectional relations between procedural 

and conceptual knowledge might lead to the iterative development of the two types of 

knowledge. Thus, it seems rare that a child is able to develop procedural knowledge without 

having conceptual knowledge or vice versa. Notably, the research on conceptual and 

procedural knowledge led to the development of an important line of research that focused on 

strategies of arithmetic facts and problem solving. A strategy is a procedure that is involved in 

a flexible, goal-oriented manner and that influences the selection and implementation of 

subsequent procedures (Bisanz & LeFevre, 1990). For example, there are individual 

differences in memorizing arithmetic facts. Children with mathematical learning difficulties 

struggle more when retrieving arithmetic facts from memory than children with typical 

development (Geary, 2010; Jordan, Glutting, & Ramineni, 2008). Children who perform 
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poorly in arithmetic rarely use retrieval of facts and tend to rely on back-up strategies (e.g. 

counting fingers instead of retrieving the answer directly) for solving even basic arithmetic 

tasks (Geary, 1993; Ostad, 1997,1998; Siegler, 1988). Children without mathematical 

difficulties show increased reliance on retrieval strategies and a decreased reliance on back-up 

strategies (Ostad, 2000; Ostad & Sorensen, 2007). In a sense, being rigid in strategy use and 

having only few strategies for problem solving can be seen as an adjoining cause of 

mathematical difficulties. However, it could also be a consequence of the difficulties. It can 

perhaps be best understood as a characteristic rather than a cause or consequence.  

2.3 Domain-general and domain-specific factors 

Mathematical proficiency is determined by many cognitive factors (e.g.Geary, 1993), and a 

common way to distinguish between them is to distinguish between domain-general (e.g. 

working memory) versus domain-specific (e.g. counting) skills. It has been argued that the 

theoretical models discussed in the previous section can be labelled domain-specific models 

since they explain mathematical development mainly as a result of development in skills that 

are close to mathematics (e.g. Aunio & Räsänen, 2016).      

 The current understanding of the terms domain-general and domain-specific factors 

has been shaped by discussions about whether there are domain-specific modules in the mind 

(Fodor, 1983) and whether infants enter the world with innately pre-specified core knowledge 

(Dehaene, 2001). Fodor (1983) defined the modules need to be innately pre-specified, which 

is line with the hypothesis that infants possess innately pre-specified domain-specific core 

knowledge (Dehaene, 2001). For example, Feigenson, Dehaene, & Spelke (2004) postulated 

that there might be two core systems of numerical representations – one system for 

representing large numerosities approximately, namely the approximate number system 

(ANS), and one system for representing small numbers of objects exactly. However, it has 

been argued that these mainly domain-specific skills are insufficient for understanding 

mathematical development. Thus, the contribution of both domain-general and domain-

specific factors must be considered. Furthermore, a combination of domain-general abilities 

and domain-specific skills has been found to contribute to the growth of academic 

competencies, but their relative importance is not fully understood (Ferrer & McArdle, 2004; 

Gustafsson & Undheim, 1992; Von Aster & Shalev, 2007).  

2.3.1 Domain general theories 
A conceptual framework that focuses more on both domain-general and domain-

specific explanations of mathematical development is suggested by Geary and Hoard (2005). 
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These cognitive factors comprise both cognitive functions (e.g. working memory) and mental 

representations (e.g. arithmetic facts stored in memory). According to Geary and Hoard 

(2005), both numerical knowledge and general processing abilities contribute to mathematical 

development. The framework was based on earlier evaluations of cognitive deficits in 

children with mathematical learning difficulties (Geary, 1993), and the objective was to 

understand the performance and cognitive patterns of children with mathematical learning 

difficulties.  

 

Figure 6. Hierarchical framework of the skills underpinning mathematics, adapted by Geary and  

 Hoard (2005) 

The framework depicted in Figure 6 is based on an overview of the developmental delays and 

deficits of children with mathematical learning difficulties, and the underpinning components 

of them (Geary & Hoard, 2005). The mathematical domain on the top is related to conceptual 

and procedural competencies, which is in turn supported by an array of cognitive systems, as 

shown in the bottom sections of the figure. On the basis of this framework, developmental 

delays and deficits in mathematics can be understood as being related to a combination of 

disrupted functions – the domain-general abilities such as the central executive, for instance 

(Geary & Hoard, 2005).  

2.3.2. Working memory as a domain-general theory 
In addition to Geary and Hoard’s (2005) model, which perhaps can be considered as a 

combination of domain-general and domain-specific components, there are also other notable 
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domain-general theories. One such domain-general theory concerns working memory. It is 

suggested that individual differences underlying cognitive skills predict performance in 

mathematics, and it has been proposed that working memory plays a substantial role in the 

development of numerical magnitude knowledge (Kolkman, Hoijtink, Kroesbergen, & 

Leseman, 2013). Working memory is found to be critical for children’s procedural knowledge 

and for the execution of action sequences used for solving arithmetic problems (Geary, Hoard, 

Byrd-Craven, & De Soto, 2004). Several studies have related these abilities to both concurrent 

and future mathematical abilities (Bull & Lee, 2014; Cragg & Gilmore, 2014; Raghubar, 

Barnes, & Hecht, 2010). Although working memory has been put forward as important for 

mathematical achievement, the nature of this relationship is unclear (Cragg, Keeble, 

Richardson, Roome, & Gilmore, 2017). It is also suggested that both working memory and 

ANS predict performance in mathematics; hence, children displaying difficulties in both of 

these skills might show particularly low mathematical performance (Toll, Kroesbergen, & 

Van Luit, 2016).           

 Many studies have used Baddeley’s model (Baddeley, 2000; Baddeley & Hitch, 1974) 

as the basis for theorizing and measuring working memory capacity. According to this model, 

working memory is based on different components responsible for processing visual-spatial 

information and verbal information. This model also includes an executive function 

component that organizes and plans reasoning. Geary, Hoard, and Nugent (2012) found that 

the role of working memory varies with both the children’s experience and the type of 

mathematical problems they are asked to solve. Thus, the relationship between working 

memory and mathematics might depend on what component of working memory is focused 

on, but also on the type of mathematical task that is being solved. Furthermore, the correlation 

between mathematics and different aspects of working memory is typically diminished when 

domain-specific abilities are controlled for. Geary (2001) found that mathematical 

performance measured at Grade 1 predicted mathematical achievement and growth beyond 

the contribution of domain-general abilities. Fuchs and colleagues (2010) found that domain-

specific skills significantly predicted simple arithmetic computational skills in Grade 1; 

domain-general abilities did not mediate this relation. There are mixed findings suggesting 

that the size of the relationship between working memory and mathematics may diminish with 

age. In addition, working memory is highly related to intelligence (that will be discussed in 

the next section); some researchers see the two as being close to being isomorphic constructs 

(Colom, Flores-Mendoza, & Rebello, 2003; Colom et al., 2004). Thus, typically, if 
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intelligence is controlled for, the relationship between working memory and mathematical 

skills is reduced (Passolunghi, Cargnelutti, & Pastore, 2014). 

2.3.3. Executive functions 
It has been suggested that the key facet of working memory as related to mathematics 

involves attentional control and the ability to update information represented in working 

memory (Bull & Lee, 2014; Iuculano, Moro, & Butterworth, 2011). This suggestion opens a 

discussion as to whether working memory and executive functions indeed can be divided into 

two separate domains. Executive functions are often defined as a process that controls, 

directs, or coordinates other cognitive processes (Bull & Lee, 2014). Executive function skills 

have also been put forward as an important factor in academic success, particularly in 

mathematics (Allan, Hume, Allan, Farrington, & Lonigan, 2014; McClelland, Acock, & 

Morrison, 2006). Van der Ven, Kroesbergen, Boom, and Leseman (2011) found that updating, 

but not other executive functions (i.e. inhibition and shifting), explained mathematical 

achievement at each of four time points in Grades 1 and 2. In their study, latent growth 

models showed significant individual differences in the rate at which children improve in 

mathematics, with minimal variation in the growth rate for updating. There were significant 

correlations between achievements in mathematics and updating, and significant correlation in 

their rates of growth. Lee and Bull (2016) stated in their study, however, that there was no 

significant correlation between inhibition, shifting and mathematics performance, nor did they 

affect the correlations between working memory and mathematics.  

2.3.4 Intelligence 
It is clear from a number of studies that mathematics is highly related to nonverbal 

reasoning or what is often labelled fluid intelligence. Fluid intelligence indexes is an 

indication of people’s ability to identify the principal rules or concepts in new problem-

solving areas (Cattell, 1963). Performance on measures of fluid intelligence and working 

memory are moderately correlated (Ackerman, Beier, & Boyle, 2002), but appear to assess 

independent competencies (Embretson, 1995; Jurden, 1995). Clearly, although there is a 

rather strong correlation between mathematical performance and fluid intelligence, findings 

from studies concerning the developmental relationship between intelligence and mathematics 

are contradictory. Some studies show that fluid intelligence was found to predict gains in 

mathematics achievement throughout childhood (e.g. Ferrer & McArdle, 2004), other find 

that fluid intelligence in sixth grade did not predict gains in academic skills over and beyond 

prior mathematical skills (Gustafsson & Undheim, 1992). This difference in results might be 
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related to different types of analytical approaches, the use of different intelligence tests, and 

estimation of domain-specific effects using prior achievement. Notably, the most consistent 

effects are found for intelligence and the updating component of working memory (Deary, 

Strand, Smith, & Fernandes, 2007; Siegler et al., 2012; Östergren & Träff, 2013).   

2.3.5 Domain-specific versus domain-general models 
Domain-general abilities are often not able to explain development over and beyond 

the mathematical autoregressor. That does not imply that they are not a cause of mathematical 

development. They may be responsible for an early foundation, and nonverbal intelligence 

might be a third variable underlying both mathematics and working memory. It is suggested 

that longitudinal stability in mathematics persists after controlling for domain-general abilities 

(e.g. Aunola et al., 2004; Jordan et al., 2009). Mathematical skills are highly stable (Bodovski 

& Farkas, 2007), thus, things other than the autoregressor often do not come into play because 

there is little variation left to explain. There is still no consensus on which domain-specific or 

domain-general factors are fundamental to mathematical performance and mathematical 

development. De Smedt, Janssen, et al. (2009) found, for instance, that while executive 

functions predicted second grade mathematics, it was no longer a significant predictor of 

achievement in Grade 2 once Grade 1 mathematical achievement was included as a predictor. 

As with other academic domains, the relative contributions of domain-general and domain-

specific abilities to subsequent mathematical achievement are not fully understood. They may 

vary across grades and they may vary across the level of student knowledge and mathematical 

content (Bailey, Watts, Littlefield, & Geary, 2014; Fuchs et al., 2016; Geary, 2011; Geary, 

Nicholas, Li, & Sun, 2017; Lee & Bull, 2016; Von Aster & Shalev, 2007).  

2.4 What do we know and what do we not know about causal factors 

underpinning mathematical development? 

The models and theories discussed in this section all assume causal relations in mathematical 

development. Strong causal claims require strong evidence (Merkley, Matejko, & Ansari, 

2017). Most theories, and neither of the previously mentioned ones, have employed a rigorous 

randomized controlled trial design to test the causal hypothesis, and thus the results 

supporting the theories can be somewhat questionable. However, non-experimental work on 

cognitive development and in particularly longitudinal studies may be useful to generate 

causal hypotheses and establish the plausibility of causal relationships if they are based on 

clear and thoughtful interpretations of their results (Bailey, 2019). Thus, to trace possible 

causal influences from early cognitive skills to later arithmetic attainment, longitudinal 
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studies starting before children enter formal education are essential (Moll et al., 2015) so that 

these models are tested empirically, and do not become simply box-and-arrow models. 

Identifying the pathways is a somewhat unique challenge. The most prominent theorists in the 

field of causal inference have primarily focused on estimating the effects of known causes 

(Shadish, Cook, & Campbell, 2002).        

 We do know a lot about correlation (e.g. Halberda, Feigenson, & Mazzocco, 2008) but 

much less about the causal relationship in mathematical development. One possible way of 

looking at this might be to ask whether causal mechanisms underlie the correlational evidence 

between domain-specific foundational competencies, for example between ANS and 

mathematical performance. The theoretical models mentioned do not necessarily suggest how 

the components of the models can be tested, but rather are just displaying the tests from which 

the models are derived. This raises a new challenge when it comes to drawing theoretical 

models. Namely, the questions about what are the reliable early and longitudinal predictors of 

the development of numeracy skills and other aspects of mathematics, and in what way can 

we strive to make the most valid inferences? Studies that attempt to disentangle the effects of 

different predictors and to map patterns of development are beginning to be reported (e.g. 

Fuchs et al., 2010; Göbel, Watson, Lervåg, & Hulme, 2014; Mazzocco, Feigeinson, & 

Halberda, 2011). The question is thus whether there is a two-way relationship between 

theoretical development and experimental testing. Recent use of latent growth modelling has 

started to identify the pattern of skills associated with faster growth in mathematical learning 

(e.g. Geary, 2005), and it would be interesting to explore how interactions here are associated 

with differences in learning rates.         

 Of the theories previously elucidated, the pathway model by LeFevre and colleagues 

(2010) is the only model derived and empirically tested that uses latent growth models. 

Perhaps theoretical models fall victim to a lack of use of more sophisticated analyses, for 

example the use of latent variables in structural equation modelling. This is perhaps the most 

relevant manner of testing theoretical models drawn from a mere hypothesis, and not 

deducted or tested empirically, like those of LeFevre et al. (2010).   

2.5 Components of early numeracy skills 

It has been suggested that humans have an innate ability to perceive, comprehend, and 

manipulate numerosities, a so-called number sense (Dehaene, 1997), more specifically ANS. 

This proposed system could address the fundamental question of where mathematical abilities 

stem from, and then might drive what kind of number sense we have. This core knowledge in 
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mathematics is also found across diverse human cultures (Dehaene, Izard, Pika, & Spelke, 

2006; Pica, Lerner, Izard, & Dehaene, 2004). ANS is theorized to underpin mathematical 

development (Feigenson et al., 2004; Piazza et al., 2010), and is usually operationalized into 

two skills and concepts, namely nonsymbolic and symbolic magnitude processing (De Smedt, 

Noël, Gilmore, & Ansari (2013). The influential and at the time innovative, and highly cited 

study by Halberda et al. (2008) suggested that ANS may have a causal role in determining 

individuals’ mathematical achievement. Several subsequent studies have supported this 

association (Libertus, Feigenson, & Halberda, 2011; Libertus, Feigeson, & Halberda, 2013; 

Mazzocco et al., 2011; Schneider et al., 2016).      

 Thus, to examine the ANS hypothesis, we need to look at longitudinal studies and 

intervention studies. As for longitudinal studies, some show support for this hypothesis (Chu, 

vanMarle, & Geary, 2016; Halberda et al., 2008; Malone, Burgoyne, et al., 2019; Malone, 

Heron-Delaney, et al., 2019; Toll, Van Viersen, Kroesbergen, & Van Luit, 2015). However, 

these results are inconclusive. There are other longitudinal studies that do not support the 

ANS hypothesis (e.g. Göbel et al., 2014). Consequently, ANS is a topic of dispute. Several 

studies examine the association between ANS and mathematical development and seek 

explanations and causal patterns. In one study, Elliott et al. (2019) attempted to examine 

whether the relationship between ANS and mathematics is reciprocal. Using a latent cross-

lagged panel model, they concluded that the relationship is indeed reciprocal, indicating that 

there might be a causal relationship between ANS and mathematics throughout development. 

The validity of the inferences concerning the causal relationship can nevertheless be 

challenged methodologically, for further discussion see Study 1.   

2.5.1 The causal debate about the ANS 
Findings suggest that preschoolers who can finely discriminate quantities have higher 

concurrent and later mathematics achievement than other children (Fazio, Bailey, Thompson, 

& Siegler, 2014; Feigenson, Libertus, & Halberda, 2013). Hence, studies have emphasized the 

importance of and correlations of ANS with individual mathematics achievement (e.g. 

Halberda et al., 2008; Mazzocco et al., 2011; Vanbinst, Ghesquière & De Smedt, 2015). 

These suggestions are all associational, and thus they address questions such as “what is” and 

not “what if” (Pearl, 2018). Pearl (2018) suggests a causal hierarchy, namely, association, 

intervention, and counterfactuals, association being at the bottom. This is not to say that 

associational studies are unimportant. They do indeed lead the way, and they are considered 

the first step in making causal inferences. They are not sufficient, however, for identifying the 
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mechanisms affected by the changes that occur in the relationship between ANS and 

mathematical development. For obtaining causal inferences that are objective and therefore 

have the best chance of revealing scientific truths, carefully designed and executed 

randomized experiments are suggested to be optimal (Rubin, 2008).     

 Moreover, one could perhaps argue that ANS might not be a domain-specific skill, but 

a domain-general ability. If ANS is indeed a domain-general ability, meta-analyses 

investigating the effect of other domain-general abilities (e.g. working memory) have proven 

not to have a positive effect on far transfer measures (Melby-Lervåg & Hulme, 2013; Melby-

Lervåg, Redick, & Hulme, 2016). These results coincide with the results of training studies of 

ANS. This might be due to a lack of both near transfer and far transfer in training ANS. 

However, currently published training studies of ANS so far have been underpowered and 

consequently limited (Green, Strobach, & Schubert, 2013; Moreau, Kirk, & Waldie, 2016), 

making interpretation difficult. Thus, ANS training studies do not show promising results 

(Wilson, Dehaene, Dubois, & Fayol, 2009); in addition, they display rather poor design and 

have methodological weaknesses. Inglis and colleagues (2017) performed a p-curve analysis 

of studies that reported a causal claim between ANS and mathematics performance, and 

argued that published and existing literature to date, do not contain enough evidence of a 

causal link between ANS and mathematics test.     

 Consequently, the question of ANS as a foundation for mathematical development 

remains relatively unanswered. Although, there seems to be a consensus that ANS has a role 

to play, the discussion is instead whether it explains anything over and beyond other 

numeracy skills. ANS might be seen as the first building block in early numeracy and later 

mathematical development, but as children learn other skills (e.g. counting), ANS might be 

less important in the further development. Although there are still unresolved issues related to 

causality in the field of mathematics, it seems clear that early numeracy skills are strongly and 

causally related to later mathematical achievement. The most important of these suggested 

causal factors are counting skills, numerical relational skills, and basic arithmetic skills. These 

components of early numeracy have undergone numerous investigations, with strong research 

designs such as longitudinal studies and randomized controlled trials. The dimensionality of 

these factors is unclear, given that, as will be shown, some skills that are divided into separate 

constructs might possibly be the same.  
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2.5.2 Counting skills 

There seems to be support for the notion that children typically learn the count 

sequence by rote and then discover counting principles through informal experiences with 

numbers and counting (Briars & Siegler, 1984). The knowledge seems to emerge from a 

combination of inherent and investigational factors (Briars & Siegler, 1984; Gelman & 

Gallistel, 1978), and gradually young children acquire more advanced counting abilities. 

Gelman and Gallistel’s noteworthy work from 1978 suggest that counting skills consist of five 

implicit principles; one-to-one correspondence; the stable order principle; the cardinality 

principle; the abstraction principle; and the order-irrelevance principle. Out of these, one-to-

one correspondence, the stable order principle, and the cardinality principle define the “how 

to count” rules. Even for children who are considered poor counters, counting is described as 

a numerically meaningful activity (Gallistel, 2007). The one-to-one principle suggests that 

only one number word can be assigned to each counted object (Geary, 1994). Before 

kindergarten (usually around 5 years of age) most children grasp the concept that each object 

in a set is counted once and only once, and that the count words are always used in the same 

sequence for example, 1, 2, 3, 4, 5. (Gelman & Gallistel, 1978). Items must be tagged only 

once (Gelman & Gallistel, 1978), and children gradually learn that they can count objects 

presented in any configuration a long as they count each object only once (Dyson, Jordan, & 

Glutting, 2013). A premise for this principle is the stable order principle (Geary, 1994). The 

tags the child uses to match items in an array must be organized in a stable and repeated order 

(Gelman & Gallistel, 1978).         

 Coming to understand the cardinal values of the words in their count list is a lengthy 

process, but once achieved, it represents children’s first explicit understanding of a formal 

mathematical concept (Carey, 2004). The achievement of learning the cardinal principle 

(cardinal principle knower, CPK) is suggested to be a milestone in children’s mathematical 

achievement (Geary et al., 2018). Understanding the cardinal principle has emerged as a key 

predictor of later mathematical outcomes (Chu, et al., 2016; Geary & vanMarle, 2016; Geary 

et al., 2018). This understanding of cardinality is proposed as an early anchor for subsequent 

mathematics learning (Geary & vanMarle, 2016). So, what are the mechanisms behind this 

strong role of the cardinal principle in mathematics? Geary et al. (2017) theorized that 

becoming a CPK at an early age gives the CPK children more experience and practice with 

other mathematical skills. Consequently, children who are CPKs later have less experience 

being a cardinal principle knower before formal learning starts. As a result, the foundation for 

learning mathematics might be vulnerable. It is therefore proposed that children who 
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understand the cardinal principle when they begin preschool (typically three- to four-years-

olds) or have achieved CPK status within the first year of preschool have a substantive 

advantage in later number skill knowledge (Geary et al., 2018). Additionally, it is suggested 

that children’s understanding of cardinal value of number words at the beginning of preschool 

predicts the sophistication of their strategy choice three years later, controlling for other 

factors (Geary et al., 2018).  

2.5.3 Numerical relational skills 

Longitudinal studies have proposed that numerical relational skills are an essential part 

of early numeracy development (Aunio & Niemivirta, 2010; Desoete et al., 2009; Stock et al., 

2009). Numerical relational skills include a set of subskills such as the early mathematical-

logical principles and understanding the meaning of the base-10 system (Aunio & Räsänen, 

2016; Geary & vanMarle, 2016). Numerical relational skills also include an understanding of 

operational symbols in mathematics – such as more than (>), less than (<), equal to (=) and 

not equal to (≠) (Aunio & Räsänen, 2016). Hence, it is suggested that this componential skill 

include mathematical language (Negen & Sarnecka, 2012). There may be several potential 

reasons for why numerical relational skills are important for the development of mathematical 

skills. The ability to operate with number word sequences and enumerate, combined with 

mathematical-logical thinking is suggested to be a component of early numeracy (Aunio & 

Niemivirta, 2010; Desoete et al., 2009; Stock et al., 2009). Development of mathematical 

thinking is accordingly related to the children’s growing abilities to apprehend and make 

relational statements, for example learning what it means that a number is equal to or more or 

less than another number (Aunio & Niemivirta, 2010; Resnick, 1989). The ability to 

numerically compare two sets is a vital aspect of the conservation ability and other related 

forms of numerical reasoning (e.g. Sophian, 1988).  

2.5.4 Basic arithmetic skills 

Primary school children are expected to learn basic arithmetic facts and learn 

computational procedures for solving complex arithmetic problems. Frequent and successful 

use of counting strategies usually leads to improvements in memory representations of 

arithmetical facts (e.g. counting on, use concretes or fingers as tags without counting out each 

addend, 4 + 3 counting, “one-two-three-four” then counting on, “five-six-seven”) and leads to 

the strategy of retrieving arithmetical facts from long-term memory (Canobi, Reeve, & 

Pattison, 2002; Wilkins, Baroody, & Tilikainen, 2001). Memorization and retrieval are 

proposed as playing an important role in the development of arithmetic skills. Nearly all 
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typically developing children will memorize most of the basic arithmetic facts (Geary, 2000). 

Arithmetic skills build on a core number knowledge system for representing numerical 

quantity using abstract symbols that is typically in place by the age of five (Barth, LaMont, 

Lipton, & Spelke, 2005). By second grade, children are typically able to answer single-digit 

addition problems, although rapid fact retrieval is still not mature in most children of that age 

(Jordan, Hanich, & Kaplan, 2003). Basic arithmetic skills in five‒to-eight year-olds pertain to 

the degree to which a child masters mainly the addition and subtraction tasks using number 

symbols (Aunio & Räsänen, 2016).  

2.5.5 Dimensionality 
Having a closer look at both the proposed theoretical models (e.g. Aunio & Räsänen, 

2016) and the components in early numeracy development (e.g. Gelman & Gallistel, 1978); 

there are still issues that remain to be addressed. One of these is dimensionality in some of the 

different components of mathematical skills. Dimensionality might be an issue when it comes 

to the early numeracy skills such as counting and numerical relational skills. Are there indeed 

two separate factors, and/or is one factor more important than the other? For instance, in the 

case of some of the specific skills in the core numerical skills model (Aunio & Räsänen, 

2016), it can be argued that there might not be a clear-cut difference between counting and 

numerical relational skills. Studies conducted for instance by vanMarle, Chu, Li, and Geary 

(2014), describe specific skills and principles from both the relational skills, as merely 

elements of counting skills (e.g. ordinality). It has also been suggested that some early 

numeracy skills have a stronger impact on mathematical development than others. Recent 

studies by Geary et al. (2018) have had a stronger emphasis on one feature of counting, 

namely understanding the cardinal principle.      

 Hence, there is a need for both longitudinal studies examining both the dimensionality 

of mathematical development and experimental studies in order to better understand the 

causal relationships. There is also a need for the longitudinal studies to continue to develop 

and use new methodological approaches. The widely used and popular crossed-lagged panel 

model have for instance been subject to critique having methodological weaknesses analyzing 

associations between different aspects in mathematical developmental longitudinal data 

(Allison, 2011; Gunasekara, Richardson, Carter, & Blakely, 2014; Hamaker, Kuiper, & 

Grasman, 2015). For an elaboration and discussion of these panel models, see Study 1.  
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2.6 Mathematical learning difficulties 
In the DSM-5 (American Psychiatric Association, 2013) mathematical learning difficulties are 

defined as Specific Learning Disorder with impairment in mathematics. The difficulties in 

mathematics must have persisted for six months, and be related to difficulties with number 

sense competencies, automatizing arithmetic facts, precision and accuracy related to 

calculations, and arithmetic reasoning. The ICD-10 (World, Health Organization, 2015), used 

in Norway, defines mathematical difficulties as a Developmental arithmetical disorder. In the 

Norwegian translation, it is specifically related to calculations. The definition’s emphasis is 

on what the difficulties cannot be caused by, namely a lack of instruction and the child’s 

cognitive abilities. Critically, mathematical skill is a continuous variable that is normally 

distributed in the population, and any cut-offs meant to establish normal versus disordered 

development will be somewhat arbitrary. However, it is common to assume that around 15–

20% of children and adults experience difficulties in developing mathematical skills to such 

an extent that it hampers their school or work performance (Geary, 2011). Out of these, 5–7% 

have difficulties so severe that they are often diagnosed as having specific mathematical 

learning difficulties or developmental dyscalculia (American Psychiatric Association, 2013; 

Berch & Mazzocco, 2007; Butterworth, Varma, & Laurrilard, 2011).  

 Mathematical learning difficulties is suggested to be remarkably stable. According to a 

study by Morgan, Farkas, and Wu (2009), 65% of children who started and ended 

kindergarten below the tenth percentile were still in the lowest 10 percentile four years later. 

The average mathematics score in fifth-grade for those repeatedly displaying mathematical 

difficulties in kindergarten was more than two standard deviations lower than the average 

mathematics score in fifth grade for those who had not displayed mathematical difficulties in 

kindergarten (Morgan et al., 2009). Notably, children who experience poor numeracy skills in 

early childhood are most commonly not defined as having mathematical learning difficulties 

due to the young age, and if identified, they are more often called at-risk of having later 

mathematical learning difficulties. Even though we have longitudinal studies where children 

are identified with poor counting skills at the age of four, there is no tradition for labeling this 

before the child has started school, in Norway but also in other countries, since is 

recommended to evaluate the effect of intensive instruction (e.g. Geary, 2004, 2011). The 

scope of development is high, and it is necessary to evaluate the effect of instruction when 

they start formal schooling.   
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2.6.1 Indicators of mathematical learning difficulties 
Children with mathematical learning difficulties primarily display difficulties in the 

skills (discussed in the previous section), which explains individual differences in 

mathematical achievement. This means that they have poorer performance than typically 

developing controls on the domain-specific skills (e.g. retrieving arithmetic facts) and 

domain-general skills (e.g., working memory) discussed in the previous section. There are 

studies indicating that children with mathematical difficulties have poorer ANS than their 

peers without such difficulties (Mazzocco et al., 2011; Szardenings, Kuhn, Ranger, & Holling 

2018). Difficulties with basic arithmetic fact retrievals are considered a trademark for children 

with mathematical difficulties at an early school age, and consequently children with 

mathematical difficulties commit more procedural errors and use developmentally immature 

and error prone procedures. Moreover, many children with mathematical learning difficulties 

do not shift from procedural-based problem solving to memory-based solving (Ostad, 1997), 

suggesting that they encounter difficulties in starting or accessing arithmetic facts in or from 

long-term memory. One well-established finding is that typically achievers among children 

use a more sophisticated mix of strategies to solve simple arithmetic problems. For 7+ 4, 

these children either retrieve the answer, decompose the problem into easier ones (e.g. 7 + 4 = 

7 + 3 = 10 + 1), or use minimal counting (starting with the larger number and counting the 

smaller one). Their low performing peers, in contrast, tend to commit many retrieval and 

counting errors, and when they count correctly, they often use immature strategies (e.g. 

counting both addends).          

 An important issue is whether the children with mathematical difficulties are 

qualitatively different on some variables compared with those that do not display such 

difficulties. Several meta-analyses have tried to address this issue (Peng & Fuchs, 2016; Peng, 

Namkung, Barnes, & Sun., 2016; Peng, Wang, & Namkung, 2018; Peng, Wang, Wang, & 

Lin, 2019). These studies have investigated the relation between domain-general abilities and 

mathematics. Peng et al. (2016) found that the relation between working memory and 

mathematics was stronger for individuals with mathematical learning difficulties. In addition, 

they found a significant relation between working memory and word problem-solving (Peng 

et al., 2016). Children with mathematical learning difficulties are also suggested to have 

storage and inhibition deficits specific to numerical information and dual-task deficits of both 

verbal and numerical information (Peng, Congying, Beilei, & Sha, 2012). This is linked to 

phonological storage and the phonological loop which, together with executive functions, are 

two key components of working memory. Phonological storage is the base of counting and 
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simple arithmetic (Passolunghi & Siegel, 2001). The 2012 study by Peng and colleagues 

indicates that poor numerical storage is a distinctive feature of children with mathematical 

learning difficulties, furthering a notion of phonological storage deficits being a “bottleneck” 

that narrows information flow to the executive functions during mathematical performance 

(Peng et al., 2012; Peng et al., 2018).  

2.6.2 Comorbidity          

 Several studies have confirmed the issue of comorbidity (e.g. Landerl & Moll, 2010; 

Raddatz, Kuhn, Holling, Moll, & Dobel, 2016). Moll et al. (2015) investigated the cognitive 

profiles in children with reading difficulties, mathematical difficulties, as well as children 

with both reading and mathematical difficulties. The results indicated that underlying 

cognitive deficits are not similar; children with reading difficulties have a phonological 

deficit, and children with mathematical learning deficits in processing numerosities (Moll et 

al., 2015). In a recent meta-analysis, Joyner and Wagner (2020) examined the co-occurrence 

of mathematical difficulties and reading difficulties, by hypothesizing mathematic difficulties 

as a possible predictor of reading difficulties. The main finding of this study was that children 

with mathematical learning difficulties are possibly two times likely to also have reading 

difficulties than those without mathematical learning difficulties. Since cognitive traits are 

correlated, children with poor mathematical skills are not only in the lower end of the 

distribution of mathematical skills, but often also on the lower end of distributions of other 

skills (Toll et al., 2016). Pennington (2006) suggested a multiple deficit model, addressing the 

matter of how comorbidity previously has been studied (i.e. as single indicators), supported 

by studies suggesting that comorbidity might be the result of a complex interplay between 

domain-general and domain-specific skills (Landerl & Moll, 2010). In a longitudinal study, 

Koponen et al. (2018) supported the notion that comorbidity might be the result of a shared 

domain-general factor (as for instance suggested by Willcutt et al., 2013), and also for 

domain-specific skills. Vanbinst, Van Bergen, Ghesquière and De Smedt (2020) investigated 

the co-development of early reading skills and mathematical skills, and their results conveyed 

significant correlations between early reading and early mathematics before children have 

formal instructions in school. Findings from this study displayed that phonological awareness 

predicted early reading and also early mathematics even after controlling for age, IQ, 

nonsymbolic and symbolic magnitude processing and early arithmetic (Vanbinst et al., 2020), 

which might indicate shared cognitive foundation of both reading and mathematical domains. 
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Thus, those with mathematical difficulties might more often have difficulties with reading, 

language and/or attention.  

2.7 Early numeracy assessment  
This section addresses some perspectives on educational assessment and assessment practices 

in Norway. Children who score poorly on mathematics achievement tests at school-entry are 

at elevated risk of achieving poor long-term mathematics outcomes (Duncan et al., 2007; 

Geary, Hoard, Nugent, & Bailey, 2012). Identifying these children and subsequently offering 

support has the potential to reduce the risks of developing mathematical difficulties. Given the 

importance of early numeracy skills for later educational and occupational success, it is 

crucial that educators have access to research-informed and reliable assessment of early 

numeracy skills.  

2.7.1 Early numeracy screening 
There are different ways to assess children’s mathematical competence; for example, 

assessment interview, diagnostic assessment, dynamic assessment. Conversely, some 

assessments are more comprehensive and multidimensional in nature (e.g. Jordan et al., 2006, 

2007; Mazzocco, 2005). In early mathematics, unlike in early literacy, no core deficit 

suggestive of early mathematics difficulties has been identified yet (Chiappe, 2005). Rather, 

mathematics skills, particularly in the early years, develop as a sequence of connected 

concepts and skills called a learning trajectory. As such, Foegen, Jiban, and Deno (2007) 

indicated that a brief assessment tool that covers a broader range of content might actually be 

a better means by which to assess early mathematics skills in younger children than a 

narrowly focused measure. Screening refers to an efficient and collective process of assessing 

all students in a classroom. The objective for this is to enable teachers to identify quickly and 

accurately which children need additional evaluation and instruction. Importantly, teachers 

need a range of research-informed assessment tools to meet specific needs, including the 

ability to screen within their classrooms.        

 There are, as mentioned, different approaches to assessment and the tradition or 

national framework for assessment approaches might lead the way when it comes to 

assessment approaches. Within the framework of Response to Intervention (RTI) for instance, 

the use of an appropriate assessment is crucial to the RTI process (Riccomini & Smith, 2011). 

The assessment approach in RTI can be described as twofold. RTI offers an approach with 

universal screening of all children in order to identify the students at risk for learning 

difficulties, subsequently followed for those children who were identified with the screening 
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tool to be at risk by assessment in order to monitor those students’ progress and consequently 

to offer them targeted support.  

2.7.2 Assessment practices in Norway 
What is critical to screening efforts, then, is the degree to which screeners provide 

accurate information about students who may need additional instruction. The RTI framework 

has not yet been implemented in Norway. There is no other framework establishing a national 

default for schools when it comes to assessment and how this is related with providing 

support for children. In Norway there are no national guidelines when it comes to assessment 

beyond the national tests provided by the directorate of education, no framework to ensure 

that all schools have an assessment practice comparable, for instance, with the RTI 

framework. Yet, in Norway, students are subject to national assessments in mathematics 

during the first three years of schooling (Udir, 2017). The tests are provided and developed by 

the Norwegian Directorate of Education and Training (Udir, 2017), which are executed 

towards the end of each school year pursuant to national guidelines. The national tests are 

summative and evaluate whether a student is over or below a set cut-off score. The schools 

can subsequently not choose the time during the school year that they see fit to administer it. 

When it comes to assessing first graders in mathematics, in Norway notably, there is no other 

validated assessment tool other than the national test available for Norwegian schools to use, 

for further elaboration see Study 2.  

2.7.3 Assessment tools in Norway 
To date, no study has been conducted yet about the manner and/or which assessments 

tools Norwegian schools use to assess young children’s mathematical skills, similar to what 

Arnesen and colleagues (2019) did with reading and social skills. Consequentially, there is no 

precise overview of how teachers assess children’s early numeracy beyond the tests that are 

publicly available. The fact that for Norwegian first graders there is only one standardized 

assessment in mathematics (the national test), leaves perhaps not a very controversial 

statement, that teachers are left having to evaluate children’s mathematical development in a 

non-validated manner. Note that this does not mean that the assessment tools available are 

necessarily of poor quality, they are merely not validated yet. Nevertheless, since the tools are 

not validated, there is no evidence of the quality of the tool, or the lack thereof. However, 

whether or not there are assessments tools available or not, teachers still have to and want to 

assess children in mathematics. Not having validated assessment tools available might thereby 

result in rather arbitrary assessments. Although teachers by and large are able to single out 
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high-performing from low-performing students through informal observation, they need 

assessment tools to make a more fine-grained differentiation (Kilday, Kinzie, Mashburn, & 

Whittaker, 2012). In Norway, students are not graded in mathematics until secondary school. 

There is no uniform way of assessing children’s mathematical achievement and as a result, 

teacher assessment of children’s mathematical performance is likely to vary somewhat 

depending on the teacher. In Norway, however, there are guidelines in the curriculum listing 

the mathematical competencies children are expected to have every other year, but still these 

guidelines are rather vague and are teacher and/or school dependent (Utdanningsdirektoratet, 

2018 ).  

2.7.4 The purpose of assessing early numeracy skills  
Assessment provides us with information that guides us in supporting struggling 

learners. Assessment tools in early numeracy skills and early mathematics should encompass 

basic mathematical concepts and skills. Furthermore, they need to be reliable and valid for the 

purposes for which they are used, in this case, identifying the students who might need an 

intervention (Lee, Lembke, Moore, Ginsburg, & Pappas 2012). Although there are traditions 

for assessing students’ achievement, it is unclear whether this practice is utilized to improve 

students’ learning and development, how and when these assessments are being conducted, 

the extent to which the students’ benefit from them, and/or the extent to which teachers use 

the assessment results. Given the importance of basic numerical skills for later educational 

and occupational success, it is essential that educators have access to research-informed and 

reliable assessment of basic numerical competencies. Efficient and reliable assessment tools 

can serve a twofold purpose. First, they can be used broadly to identify which children need 

additional instruction, and second, they can be used to identify the specific aspects of 

mathematical knowledge in which a particular child needs further instruction (Purpura & 

Lonigan, 2015). Early identification and intervention promote early success and confidence in 

mathematics, and can prevent later failure (Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 

2007; Gersten, Jordan, & Flojo, 2005). 

2.8 Early numeracy intervention 

The previous elaboration of theoretical models concerning factors that influence numeracy 

development has important consequences for the construction of interventions. Thus, to get 

effects from an intervention, it is clearly crucial to target skills that might represent causes in 

the development of mathematics. As this review of theoretical models and components of 

early numeracy shows, there was strong support for counting, the cardinal principle, 
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numerical relational skills, and knowing Arabic numbers as these relate to mathematical 

abilities. Thus, these factors would also be strong candidates to target to improve children’s 

early mathematical skills, and as we will see, several studies have tried to do this. As for 

ANS, the causal status is not clear, and training studies have found no conclusive evidence 

that specific ANS training improves symbolic arithmetic (Szücs & Myers, 2017). There is 

also strong support for the notion that certain aspects of language are related to specific 

aspects of mathematics (i.e. vocabulary with word problems, phonological processing with 

arithmetic fact storage and retrieval). Some studies have introduced and applied the term 

mathematical language as a domain-general skill in mathematics (Purpura, Day, Napoli & 

Hart, 2017) and language comprehension within word-problem solving (Fuchs, Fuchs, 

Seethaler, & Craddock, 2019). Recent and ongoing intervention studies are also attempting to 

improve word-problem skills (Fuchs et al., 2019; Powell, Berry, & Barnes, 2019). 

As for more domain-general processes such as working memory, executive functions, 

and nonverbal intelligence, these are related to mathematics, and possibly also causally 

related. However, it seems as if these factors are more distal causes of mathematical 

development, since they are rarely able to explain development in mathematical skills over 

and beyond previous mathematics skills. However, it is still plausible that they create a 

foundation for mathematical skills and for instance operate as a third variable underlying both 

mathematical skills and counting skills, the cardinal principle, and numerical relations. 

However, these kinds of distal causes are less obvious candidates to target in interventions, 

and as we will see, the results from studies that have tried to intervene in terms of these 

domain-general factors (e.g. working memory) do not show promising results (Melby-Lervåg 

et al., 2016).            

 Thus, the building blocks in the design of early numeracy instruction programs 

typically emphasize the early numeracy components which we know are important in early 

mathematical development (e.g. cardinal principle). The focus on counting skills as well as 

arithmetic skills is often highly valued in experimental studies in both preschool and school-

aged children. Even if children have at their disposal procedures that are appropriate to a 

particular counting context, children might not learn which of their procedures to utilize, and 

fail at the task (see Gelman & Greeno, 1989). The strength of the association between early 

and later mathematical achievement provides a compelling rationale for schools to emphasize 

pertaining to instructional resources in kindergarteners and school beginners who are 

struggling to progress in the learning of ideas, concepts and operations in relation to early 

numeracy skills.           
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 In recent years, the number of meta-analyses in the field of mathematical learning 

difficulties interventions has increased (Chodura, Kuhn, & Holling, 2015; Dennis et al., 2016; 

Gersten et al., 2009; Jitendra et al., 2018; Kroesbergen & Van Luit, 2003; Monei & Pedro, 

2017; Wang, Firmender, Power, & Byrnes, 2016). Chodura et al. (2015) examined effects 

from interventions for children with mathematical difficulties between the ages of 6–12 years, 

and the results based on 35 studies showed a large increase in the intervention groups 

compared with the control group (d = 0.8) on measures of number skills and arithmetic. In 

another meta-analysis, Dennis et al. (2016) found that the overall mean effect size from the 25 

studies included here was only moderate (d = 0.55). Results from this meta-analysis provide 

an objective for further intervention studies as well as providing this support for children in 

schools. However, there were methodological weaknesses, for instance many studies in the 

meta-analysis had low power, and no randomization. For a more detailed elaboration and 

discussion, see Study 3.   

Moreover, other intervention studies have faced two main challenges, namely fadeout 

and transfer. This will therefore be discussed in more depth here, in order to investigate how 

these challenges might be addressed so that we can plan, design, and implement interventions 

accordingly.  

 

2.8.1 Fadeout effects in mathematics       

 A consistent finding across interventions is fadeout effects. Fadeout brings out the 

pattern of diminishing effects when an effective mathematics intervention has ended (Bailey, 

2019). There are different hypotheses for and perspectives on fadeout effects. Commonly, 

they are both complex and contextual and discussion span a range of important topics from 

how the fadeout effects are measured to how an intervention effect might qualitatively be 

prolonged with, for instance, efforts from teachers facilitating the learning outcome from an 

effective intervention when the intervention has ended.   

2.8.2 Constraining content or preexisting differences hypothesis 
The constraining content hypothesis postulates that fadeout effects are due to 

environmental factors after an intervention ends. This hypothesis suggests that the instruction 

the children in the intervention receive after the intervention does not build on knowledge 

they received in the intervention and that might lead to fadeout. Engel, Claessens, and Finch 

(2013) support this, noting that kindergarten teachers report spending a lot of the 

mathematical instruction time on content that most of their students already know. Bailey et 
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al. (2016) found that children in the intervention group fell behind their posttest matched 

peers from the control group in the following year at approximately the same rate as the 

control group caught up to the treatment group. The constraining content hypothesis suggests 

that intervention material might be targeted at a too low level so that the control group 

children are likely to catch up to the treatment-group-children (Bailey et al., 2016). 

Successively, fadeout might be the consequence of preexiting differences hypothesis. The 

preexisting hypothesis argues that fadeout is due to the relatively stable variances between 

children (Bailey et al., 2016). This might ultimately cause them to return to their previous 

individual achievement trajectories after an effective early intervention (Bailey et al., 2016). 

 It may also be that both types of hypotheses for fadeout co-occur in a study. The 

intervention might have taken place too late in the school year, leaving the content taught in 

the intervention too easy and this in turn makes it even harder to alter the rather stable 

discrepancy between children. Another way of looking at it might be the hypothesis that the 

preexisting differences make children who struggle in early numeracy more vulnerable to 

instructions rendering environmental factors more important. Perhaps this is crucial for 

children with difficulties in early numeracy, that skills taught in an intervention need to be 

continually reinforced after an intervention ends, i.e. that the skills targeted in early numeracy 

interventions are developed as a sequence of connected concepts and skills that need 

scaffolding post-intervention.  

2.8.3 Modest transfer         

 The modest transfer explanation posits that, given children’s early mathematics skills 

are necessary for their later mathematical learning, they are necessarily not sufficient to 

produce long-term effects on children’s mathematical achievement (Bailey et al.,2014). This 

fadeout effect is not exclusive to early numeracy interventions but has also been found in 

language interventions (Rogde, Melby-Lervåg, & Lervåg, 2016). It is therefore important to 

be realistic when it comes to how much changing the environment some hours per week can 

improve skills since the remaining environment and children’s genes are stable. Thus, the 

fadeout effects have important implications for instruction; early interventions do not imply 

that the children’s challenges are solved, but that children who experience problems are likely 

to need interventions regularly so that they do not fall back into a lower developmental 

trajectory. 
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2.8.4 Trifecta skills          

 To accommodate the risk of fadeout effects, three important characteristics in 

designing an intervention have been suggested (Bailey, Duncan, Odgers, & Yu, 2017): 1) the 

skills must be malleable by early intervention, 2) the skills must be fundamental for academic 

success, and 3) the skills that are more likely to produce persistent effects are those that do not 

develop quickly under counterfactual conditions. These three conditions, trifecta skills, should 

be aimed at targeting an intervention. Knowledge of the characteristics of children at risk of 

persistently low mathematics achievement may allow us to target children who, under 

business-as-usual conditions, would take several years to learn as they would learn from a 

successful early mathematics intervention (e.g. Berch & Mazzocco, 2007). Three distinct 

processes have been suggested to sustain benefits for children (Bailey et al., 2017); namely, 

skill-building, foot-in-the-door skills, and sustaining environments. Albeit being distinct, 

these processes are related. Both skill-building and foot-in-the-door approaches are embedded 

in developmental cascades theory. Within this framework, effects of early skills might have a 

ripple effect over time and influence later skills. Taking the cardinal principle as an example, 

most children will probably become cardinal principle knowers during their kindergarten 

years. Targeting support might not provide a permanent advantage in mathematical skills, but 

it might allow children more experience with these skills, which in turn can provide a more 

solid foundation of the development of early mathematics (Geary & vanMarle, 2016).  

Furthermore, it is suggested that early intervention impacts can be sustained only if they are 

followed by environments of sufficient quality to withstand normative growth (Bailey et al., 

2017). Bailey and colleagues (2017) suggested that future studies might apply a design 

investigating a third treatment condition; namely, designing a third condition that specifically 

aims to sustain and maintain the effects of the intervention.     

 Consequences of fadeout effects in mathematical interventions are twofold. These 

perspectives are important for both the researcher planning an intervention study, and 

obviously also for teachers and special needs teachers giving support to children with 

mathematical learning difficulties. The intervention in Study 3 is the first randomized 

controlled trial in mathematics education ever conducted in Norway. This stresses the twofold 

necessity: Norway needs more intervention studies at the same time as Norwegian teachers 

need to adapt these trifecta perspectives when they plan, provide and maintain the targeted 

intervention skills; the sooner the better.  
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2.9 Summary 
As shown in this chapter, the field of mathematical development, assessment, and 

interventions is characterized by both a thirst and a need for knowledge. Our understanding of 

these topics has developed rather quickly. From Dehaene’s triple code model in 1992, to 

several longitudinal studies providing strong support for previous, present, and perhaps future 

causal claims regarding mathematical development. Drawing theoretical models (e.g. 

Dehaene, 1992; Geary & Hoard, 2005) and conducting correlational studies can generate 

hypotheses, but they do not allow us to draw causal inferences. However, they were and are 

indeed the starting point when it comes to finding key numeracy skills for mathematical 

development. In science, evidence primarily comes from empirical data, reasons, and 

arguments. It is key to be precise when it comes to what you have and want evidence for. 

Does one have evidence for an association, a causal relationship, or generalization? Research 

design and methodological integrity can be supportive in this (Kvernbekk, 2016). Thus, it is 

important to evaluate the quality and extent of evidence that presupposes the assertions. This 

kind of understanding allows us to ask whether the researcher has the right to legitimize a 

claim. Consequently there has been a shift in how we investigate mathematical development 

on a cognitive and behavioral level, and there are now higher criteria on what grounds causal 

inferences can be made. This includes for instance more robust studies when it comes to both 

research designs and analytical approaches. Raising the methodological bar has however lead 

to stronger justification of claims for the components of early numeracy that are important for 

mathematical development. This knowledge is necessary to identify children at risk of 

mathematical learning difficulties. Via these early numeracy components, we find markers of 

mathematical difficulties and in turn, these are the components we might need to provide 

these children with support.          

 Early numeracy skills and early mathematical development can be seen as gatekeeper 

skills. Opened at the right point, other skills cascade in. Moreover, if a child does not grasp 

these skills quickly, that door might not open again.  
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3 Overview of studies 

3.1 Summary of Study 1 

Title: Analyzing the Developmental Relationship between the Approximate Number System 

and Early Mathematics: Different Methodological Approaches Lead to Different Results  

Authors: Lopez-Pedersen, A., Lervåg, A., & Melby-Lervåg, M. 

Aim of the study 
The aim of this study was to examine the developmental relationship between the 

approximate number system and early mathematical skills. There is a debate about the 

directionality of this relationship and claims on both sides of the discussion lack evidence to 

make strong causal inferences. With two different datasets the hypothesis that the 

approximate number system has a potential causal influence on mathematical development, 

but also that the relationship goes the other way, that mathematical skills influence ANS was 

examined.  

Method 
In order to examine whether a causal relationship between ANS and mathematical skills is 

plausible, it is important to test whether ANS actually explains development in mathematical 

skills over and beyond mathematical skills at the previous time point. Two types of 

parameters are specified in the CLPM, cross-lagged and autoregressive measuring 

respectively to what extent variability at in one time point can be explained by the variability 

in a different measure at a preceding time point, and an estimation of the rank-order stability 

of individuals. In order to differentiate the between-person and the within-person differences, 

the data were analyzed using random intercept cross-lagged panel model (RI-CLPM). Single 

indicators were used on the models in both datasets.  

 

Results 
The claim that ANS has a causal influence on mathematical skills (Halberda et al., 2008) has 

been highly influential in the causal debate of ANS and mathematical development. 

Additionally, this suggestion has furthered a hypothesis that this relationship is reciprocal 

(Elliott el al., 2019). However, when reanalyzing Elliott et al.’s (2019) dataset by using a 

random-intercept cross-lagged panel model, no evidence of a reciprocal relationship was 

found. The cross-lagged effects in Elliott’s initial study disappeared. These results were 

supported having analyzed a second dataset with the same methodological approach. Results 
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did not show any evidence supporting a reciprocal relationship between ANS and 

mathematical development. In sum, the results of Study 1, analyzing two different datasets 

with RI-CLPM, do not support the hypothesis of a reciprocal relationship between ANS and 

early mathematics. Study 1 also displayed how using different methodological approaches can 

lead to different results.  

 

3.2 Summary of Study 2 

Title: Validation of the Early Numeracy Screener for First Graders 

Authors: Lopez-Pedersen, A., Mononen, R., Korhonen, J., Aunio, P., & Melby-Lervåg, M. 

Aim of the study 
This study investigated the psychometric properties of the Early Numeracy Screener. The 

Early Numeracy Screener is a teacher administered, paper-and-pencil test measuring counting 

skills, numerical relational skills and basic arithmetic skills. Derevied from the core numerical 

skills model (Aunio & Räsänen, 2016) this study aimed to investigate the dimensionality of 

the screener - whether the Early Numeracy Screener was identified as a one-factor model or a 

three-factor model.  

Method 
In this study, 366 first graders born in 2010 were screened with the Early Numeracy Screener. 

Confirmatory factor analysis (CFA) was used to examine the factor structure of the test 

instrument. The validity and reliability were evaluated through EFPAs quality criteria (Evers, 

Hagemeister, & Høstmælingen, 2013; Evers, Muñiz, Høstmælingen, Sjöberg, & Bartram, 

2013). Teachers administered the screener in their respective classrooms, the screeners were 

then collected and data was entered by research assistants. Data about each child’s score on 

the national assessment in numeracy was collected towards the end of the school year once all 

the schools had executed it.  

Results 
The results indicated that the Early Numeracy Screener reliably measures three distinct 

subskills of early numeracy (counting skills, numerical relational skills, basic arithmetic 

skills). Moreover, these subskills were related to the national test scores and children 

identified as at risk of developing mathematical learning difficulties with the Early Numeracy 

test were likely to perform below the 20th percentile in the national test in mathematics six 
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months later. The Early Numeracy Screener may thus serve as an indicator of young 

children’s performance in early numeracy. The brevity and ease of use of the Early Numeracy 

Screener makes it suitable for classroom instructional settings.   

 

3.3 Summary of Study 3 

Title: Improving Numeracy Skills in Low Performing First Graders: A Randomized 

Controlled Trial 

Authors: Lopez-Pedersen, A., Mononen, R., Aunio, A., Scherer, R., & Melby-Lervåg, M. 

Aim of the study 
The third study is a randomized controlled trial aimed to improve low-performing children’s 

early numeracy skills in an eight-week intervention program in Norwegian first graders. The 

trial intended to answer whether there are immediate effects of the intervention, and whether 

these effects are lasting or fade out completely or partly as the children receive less or no 

intervention.  

Method 
All children in two municipalities in Norway born in 2010 and attending first grade were 

invited to participate in the study. This resulted in 366 initial participants. The children were 

screened with a test of early numeracy skills, and 32% children were identified with the 

lowest scores (N = 120, 57% girls, mean age = 77 months). The children were randomly 

allocated to either control or intervention group, the control group followed business as usual 

in their respective classrooms. Children’s numeracy skills were assessed at four time points: 

pre-intervention, immediate posttest after 8 weeks of intervention, posttest after boost phase 

and a six-month follow-up.  

The intervention program             

The intervention program was conducted by teachers and special needs teachers working at 

the schools. The intervention had two phases, one initial 8-week phase with a total of 24 

instruction sessions (16 small-group and 8 individual ones), approximately 130 minutes each 

week. The second phase of the intervention started two weeks after the first intervention phase 

ended. This phase involved six instruction sessions, once a week, over a total of six weeks. 

The sessions in the second phase were a repetition of the initial eight weeks intervention 

regarding their content. The objective of including a repetition phase was an attempt to avoid 
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fadeout effects. Each of the intervention teachers received all the material in advance of the 

intervention start, as well as training and practice in using the material.   

Results                

The intervention produced positive benefits (d = 0.20) on early numeracy (counting and 

numerical relational skills) learning, but these were not significant. This may have been due to 

many children reaching ceiling on the measures after the intervention. There were moderate 

and reliable effects on word problem solving (d = 0.41); however, the effects were reduced 

and faded out on the second follow-up test (after the second intervention phase of 6 weeks 

once a week) and at follow-up test (6 months after the intervention) compared to the 

immediate post-test. Overall, this randomized controlled trial showed that early numeracy 

skills are malleable and that frequent and long-term interventions are needed for the positive 

effects to last. 
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4 Methodological considerations and discussion  
The methodological issues and discussion in this chapter relate to several topics that have not 

been fully covered in the three studies. First, issues concerning methodological approaches 

and challenges in the three studies will be discussed. This includes limitations related to 

validity, design issues, analysis, and possible bias. Second, ethical considerations of research 

with children in studies and research designs are also included.   

4.1 Methodological approaches  

Choosing methodological approaches when analyzing data is continuously manifold and 

challenging and can have consequences for the inferences drawn. All three studies have a 

quantitative approach. In all the papers of this thesis, structural equation modeling has been 

conducted. Structural equation modeling allows one to control for measurement error, and 

thus makes an imperative argument for performing these types of analyses. The three studies 

have rather different objectives and research questions and have thus required different 

methodological approaches.  

4.2 Methodological considerations and challenges 

Study 1 initially set out to merely analyze our own dataset, exploring the data with 

latent-trait analysis and fixed-effect models. However, when we expanded the study to 

include the data from Elliott et al. (2019) that used CLPM, the story of the paper changed in 

the sense that the study also took a methodologically conceptual approach. We attempted thus 

to challenge the widely used cross-lagged panel models (CLPM). A limitation of CLPM is 

that they assume that every person in the study varies over time around the same means, and 

that there are no trait-like individual differences (Allison, 2006, 2011; Hamaker et al., 2015). 

As a result, the lagged parameters that are obtained with the cross-lagged panel model do not 

represent the actual within-individual relationships over time, and this may lead to inaccurate 

conclusions regarding plausible causal influences (Hamaker et al., 2015). We ended up using 

random intercept cross-lagged panel model, RI-CLPM (Hamaker et al., 2015). The RI-CLPM 

is an attempt to unravel the within-person process from the stable differences between persons 

since the CLPM does not differentiate between these two levels which most probably exist in 

the data (Hamaker et al., 2015). Using RI-CLPM the within-person level is separated from the 

between-person level. In RI-CLPM the between-person variance is accounted for, and thus 

the cross-lagged effects only represent change within-person. RI-CLPM is hence designed to 

obtain the estimates of cross-lagged regressions parameters that truly reflect the underlying 
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reciprocal process that takes place at the within-person level (Hamaker et al., 2015). The fact 

that CLPM focuses on changes in the rank-order of individuals might disguise important 

developmental trends, since individuals might experience changes that does not strongly 

affect the overall rank-order in the sample (Mund & Nestler, 2019). For further discussion, 

see Study 1.  

4.2.1 Sample size  
Sample size is an essential issue. Structural equation modeling is a large sample 

technique (Kline, 2016), and sample size affects the statistical power and precision of the 

model’s parameter estimates (Brown, 2015). Sample size has been a methodological 

challenge throughout the thesis, especially in Study 1 and 3. This had consequences in several 

respects. With a sample size of 120, we could not afford to run complex models and the 

sample size of 120 is almost a lower threshold for allowing structural equation modelling in 

the first place. In Study 1, reanalyzing Elliott et al. (2019) accommodated the challenge of 

sample size (n = 193), and with these data, potentially more complex models could be 

estimated. For example, the RI-CLPM could have been conducted with multiple indicators, 

and not observed variable as reported in Study 1 (i.e. both our own data and those of Elliott et 

al., 2019). We were not able to do this with Elliott et al.’s (2019) dataset because we only had 

access to the sum score of the mathematical test used in this study (TEMA-3). It would be 

interesting to divide this into multiple indicators, making latent variables of the observed 

variables in the test (e.g. counting skills separated from arithmetic skills). This might have led 

to a more fine-grained analysis studying the associational relationship between ANS and early 

numeracy skills. This, in addition to the low sample size in our own data, represented a threat 

to construct validity. Low sample size affects the precision of the model parameter, and thus 

this is a limitation when it comes to the validity of the inferences from these indicators.  

4.2.2 Threats to validity in a validation study  
The groundwork of assessment describes the elements that are vital when developing 

high-quality assessments. Test theory provides principles for high-quality assessments and 

psychometric properties in terms of reliability, validity, and norms. Mainly, many of these 

theories provide several procedures for analyzing variables and were used for evaluating the 

quality of Study 2 in this thesis. In Study 2, a confirmatory factor analysis was conducted to 

examine whether the Early Numeracy Screener could identify one or three factors. Since this 

was a validation study of an already established hypothesis; different aspects of threats to 

validity was the main objective of the study in itself. The European Federation of 
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Psychologists’ Associations (EFPA) (Evers, Hagemeister et al., 2013; Evers, Muñiz et al., 

2013) emphasizes two types of validity when it comes to assessment tools‒ construct validity 

and criterion validity. Construct validity refers to whether the items represent the theoretical 

constructs that they are designed for. Looking more closely into the EFPA check list for 

evaluations of test instruments, there are some areas that would have strengthened the 

soundness of the Early Numeracy Screener. Test - retest reliability was not conducted. 

Therefore, for future studies it would be interesting to increase the validity further with a test-

retest design of the screening tool and perhaps open the possibility of doing ROC-curves 

analysis by adding standardized mathematical measures. Furthermore, developing an 

assessment tool should ideally use Item Response Theory or the Rasch Model in the initial 

phase; this was not done since we evaluated an already developed assessment tool. In this 

sense, we did not have any other criterion-related measure with which to correlate the Early 

Numeracy Screener (e.g. SYMP test, Brankaer, Ghesquière,& De Smedt, 2017), only the 

national test. The challenge with the national test was that we did not have access to the 

dimensionalities nor the validation of the test. We requested them, and both the test 

developers and the Directorate of Education did indeed want to help us with this information, 

but alas, they were not obtainable.  

4.2.3 Validity and validation 

Validity refers to the amount of relevant information a test provides, and the 

trustworthiness of the inferences drawn from the test scores (Thorndike & Thorndike-Christ, 

2014). Whether the inferences derived from an assessment’s score and interpretation of its 

outcomes are true, depend on how comparable the inferences are across different groups. 

Developing and evaluating The Early Numeracy Screener reported in this thesis endeavored 

to accommodate different types of validity in order to reduce biased interpretations of the test 

scores, and hence attempting to ensure the soundness of future teacher inferences based on 

having conducted the Early Numeracy Screener. In order to develop assessment tools, in this 

case an early numeracy screener, quality markers of an assessment tool need to meet the 

validity standards concerning construct validity, content validity, criterion-related validity, 

and reliability.            

4.2.4 Construct validity 

Construct validity refers to whether the items measure the theoretical construct for 

which they are designed. The constructs of the Early Numeracy Screener and their score 

interpretations reported in Study 2 are based on theories of how young children learn and 
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develop early numeracy skills (Aunio & Räsänen, 2016). The validation of these constructs 

aims to confirm that they reflect the intended theoretical constructs of the assessments 

(Cronbach & Meehl, 1955) and a central aspect of construct validity includes evidence of 

content relevance (Messick, 1995). Construct validity was examined in Study 2 with 

confirmatory factor analysis (CFA). Furthermore, Thorndike and Thorndike-Christ (2014) 

suggest that construct-related evidence comes from the correspondence between the test 

scores to the deduction from theory. Investigating this correspondence can also be done by 

CFA; in Study 2, the Early Numeracy Screener was deduced from the core numerical skills 

model (Aunio & Räsänen, 2016), and we used CFA to investigate the dimensionality of the 

screener.  

4.2.5 Content validity 

Content validity concerns whether a test contains appropriate content and requires 

appropriate processes (Thornike & Thorndike-Christ, 2014). In accordance with Messick 

(1995), content validity alone cannot be used to qualify validity. In Study 2, the Early 

Numeracy Screener was developed to measure three early numeracy skills (counting skills, 

numerical relational skills, and basic arithmetic skills). Content validity refers to how one can 

tell whether the test in fact measures these skills and is related to evidence that reveals the 

relationship between the content and the proposed interpretation (Thorndike & Thorndike-

Christ, 2014). This was accommodated using CFA to analyze the factor structure; we 

compared the model fit of two different models, a one-factor model and a three-factor model. 

The three-factor model fitted the data best and thus indicated that the three factors theorized 

by the core numerical skills model (Aunio & Räsänen, 2016) were identified. 

4.2.6 Criterion-related validity 

Criterion-related validity refers to predictive and concurrent validity, that is, whether 

the measurement correlates with other relevant valid assessments used for the same purpose to 

predict future or current performance. In Study 2, predictive validity was examined by 

correlating the Early Numeracy Screener scores with the national test taken later in the school 

year. Criterion-related validity also focuses on how norms and cut-off points are developed 

and how the norming sample represents the population that the assessment was designed for 

in terms of such characteristics as age, socio-economic background, and gender. Messick 

(1995) claims that the validity concepts should not be considered in isolation since they are 

complimentary and should therefore be viewed as a unified concept. Hence, construct validity 
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includes aspects of content and criterion-related validity and can therefore be seen to represent 

validity as a whole. 

4.2.7 Reliability 

Both reliability and validity are required to any test. Reliability refers to the precision 

of a measurement procedure (Thorndike & Thorndike-Christ, 2014), scores produced by an 

assessment tool and how it is conducted should be consistent and reproducible. Furthermore, 

reliability indicates the internal consistency of a test (Thorndike & Thorndike-Christ, 2014), 

whether different test items that examine the same construct, (e.g. counting) produce similar 

result. The internal consistency of both the one-factor model and the three-factor model was 

satisfactory. Reliability is essential for determining the extent to which an assessment tool 

contains random measurement error, and this is a necessity for construct validity. In addition, 

the reliability of an assessment includes the accuracy of the assessment measure, and how 

precise the resulting scores are. The degree of reliability of a test depends on the purpose of 

the testing.      

4.2.8 External validity  
In Study 3, we investigated the effects of an intervention. With a sample size of 120, 

we could yet again not afford to run complex models. We did however examine the 

measurement models for each construct, and this process required trial and error in 

constructing the latent variables. For example, we tried exploring a latent variable using the 

scores of counting and numerical relational skills loading on one factor, but this resulted in a 

poor model, and did not represent the data well. Therefore, we used the two indicators of 

these skills as manifest scores and examined their changes over time and effects of the 

intervention separately.        

 Sample size has been a methodological challenge throughout the thesis. This had 

consequences in several respects. Furthermore, in Study 3, with a sample size of 120, we had 

to detect rather large effect sizes in order for them to be significant. The study had power to 

detect an effect size d = 0.33 in 70% of the cases with pretest as a covariate explaining 30% of 

the variation. One might speculate that a larger sample might have resulted in significant 

effects in more of the measures. The sample size, however, does affect the external validity of 

the intervention, namely, the validity of inferences from the context of the study to a wider 

context or to other contexts (Kleven, 2008). Furthermore, the low statistical power threatens 

external validity when it comes to whether the causal relationship holds over variations in 

persons, settings, treatments, and outcomes (Shadish et al., 2002). The low sample sizes in the 
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studies in this thesis were however a result of the sparse funding of the studies. These studies 

had no external funding, merely departmental research funding which is quite limited, and this 

ultimately restricted how many participants we could include in the intervention. The total of 

120 participants was thus a compromise and a prerequisite to make the study feasible. 

4.3 Bias in research design – randomized controlled trials 
Cartwright (2007) divides all research methods into two main groups; clinchers and 

vouchers. Randomized controlled trials belong to the group referred to as clinchers. Clinchers 

are deductive methods when specific assumptions in the experiment occur; a positive result 

logically follows the conclusion. The evidence is guaranteed through the research design, but 

if, and only if, the design gratifies all claims. Randomized controlled trials are referred to as 

the gold standard for causal evidence indicating “what works” (Dewey, 1929; Kvernbekk, 

2013); it is a deductive method in which specific assumptions in the experiment occur. In a 

randomized trial, the emerging evidence is adequate for the conclusion and can be argued to 

be a guarantee for the conclusion (Kvernbekk, 2016). The standard result in an RCT is a 

treatment effect, and the objective in educational research is to improve practice. It is 

disputed, however, that RCTs are the gold standard in research design (Cartwright, 2007). 

RCTs are said to operate within relations between causes and effects, and the evidence obliges 

the causal claim. Cartwright and Hardie (2012) state that results from an RCT cannot be 

directly related to the arguments concerning effectiveness, but that results from RCTs can 

serve as a premise for the arguments concerning effectiveness. Cartwright (2007) argues that 

there are two criteria for rigorous evidence. One is credibility, the notion that credible 

evidence argues the likelihood that the conclusion is true. The other criterion is that explicit 

and complete evidence makes the conclusion likely. According to Cartwright (2007), there is 

no gold standard, no universally best research method, and further states that RCTs suffer 

from scope weakness. Cartwright (2007) argues that the results are valid for the participants in 

the study, but only for this precise group. The method and design do not necessarily guarantee 

strong claims of evidence concerning external validity. 

4.4 Ethical perspectives 

4.4.1 Open science framework 
If this study was conducted now, the studies would have been preregistered, had open 

data and scripts. This would provide transparency, openness, and reproducibility in science 

(Nosek et al., 2015). This is important to avoid unethical research practice; however, when 
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this thesis was begun, an open science framework had not yet become a current object of 

attention.  

4.4.2 Children as informants 
All the data from this thesis were collected from one large study; the discussion of ethical 

considerations will be related to children as informants and linked to the RCT study. The 

Norwegian Centre for Research Data (NSD) gave ethical approval, and we obtained informed 

parental consent for each child in this study. Parents were informed about the purpose of the 

study and how the results of the studies would be used as well as what participation would 

entail, for instance, how, when and by whom their children would be assessed, as well as what 

the main mechanisms of RCTs are. These include how the children are allocated to each 

group, what happens in the intervention group and in the control group. The information was 

disseminated in a neutral manner in line with the guidelines provided by the National 

Committees for Research Ethics in Norway (NESH) (2016). Children are considered a 

vulnerable group in research, and the protection of vulnerable groups is defined in the 

Helsinki Declaration (World Medical Association, 2013) and is thus legitimized by the 

objective of this study which is to ultimately provide better educational conditions for 

children at risk of learning difficulties in mathematics. Additionally, the researcher needs to 

have adequate knowledge about children to be able to adapt both methods and content of the 

research according to the children’s age (NESH, 2016). In terms of content, the intervention 

was planned by researchers with backgrounds in special needs education, and thus by scholars 

with knowledge about children’s mathematical and psychological development. In addition to 

the PhD student (myself), research assistants conducted the individual assessment of the 120 

participants. They were master’s students in special needs education and were provided with 

thorough instructions prior to assessing children. All the children were assessed in their 

respective schools, creating safe and sound testing conditions. The research assistants were 

instructed to take the children’s well-being in the test situations into account, in research 

involving young children that means responsiveness to the children’s needs in the test 

situation.            

 The design of randomized controlled trials also raises ethical dilemmas. The groups 

are not treated equally; the intervention group receives special training while the control 

group continues in a business-as-usual manner. An ethical dilemma exists here in the sense 

that it can be argued that the control group is treated unfairly (Gall, Gall, & Borg, 2007). This 

is also the case in Study 3, where the control group received ordinary classroom teaching. 
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That being said, there was not yet any evidence that this intervention would be effective; thus, 

we had no way of being able to predict the extent to which the intervention group might be 

favored. Moreover, ordinary classroom instruction is considered to be of relatively high 

quality in Norway; for example, there is a teacher norm stipulated by the Norwegian 

Directorate for Education and Training that sets a ceiling of 15 students per teacher in the 

early grades. The schools are obliged to comply with these guidelines.   

 Furthermore, we considered ethics in relation to the handling of personal data. Ethical 

approval and permission were obtained from the Norwegian Social Science Data Services 

(NSD), and anonymization, data storage, audio recordings, storage of name lists, were all 

ensured to comply with the requirements of NESH (2016) and NSD.  
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5 Discussion 

The overarching topic in this thesis has been how to support children who struggle with 

mathematics, and thus an attempt to ascertain this through three different studies. We began 

with a somewhat detailed and fine-grained Study 1 in which we investigated the 

developmental relationship between what can be described as one of the smallest ingredients 

of mathematics, ANS. This study might not at first seem very relevant in terms of how we can 

remedy children’s learning difficulties in mathematics. But if we look back at the first model 

presented by Morton and Frith (1995), this knowledge, involving the contesting of the causal 

relationship between ANS and early mathematical development, primarily represents a 

cognitive explanation of a learning difficulty. The model provides a theoretical understanding 

of the association and is line with other theoretical models for mathematical development, 

such as the triple code model (Dehaene, 1992) and the core numerical skills model (Aunio & 

Räsänen, 2016). These models have contributed to how we can support children who struggle 

in mathematics, because in order to do so, we need to know what early numeracy is; we need 

to understand how mathematical skills develop.      

 These theoretical models have thus furthered a fruitful line of research that has been 

aimed at understanding the relationship between the small elements in mathematics and the 

ultimate goal – proficiency in mathematics. To investigate the relationship between ANS and 

mathematical performance, several studies have supported the hypothesis that ANS has an 

effect on mathematical performance. One of the major issues in the discussion, however, is 

how ANS and mathematical development are causally linked. This has triggered 

methodological issues in this debate, and these issues were the onset of Study 1. How can 

different methodological approaches contribute to this discussion? When analyzing both 

Elliott et al.’s (2019) dataset and our own with a more valid methodological approach, ANS 

did not explain development in early mathematics skills over and beyond mathematical skills 

at previous time points. Analyzing the two datasets with RI-CLPM led to the disappearance of 

the reciprocal effect between ANS and mathematics postulated in Elliott et al. (2019) study, 

indicating that ANS is neither a cause nor an effect of mathematical development. These 

results weakens the support for a reciprocal relationship between ANS and mathematics. 

Moreover, the re-analysis of Elliott et al.’s data (2019) raises a methodological concern as 

different methodological approaches in the current study gave different and contrasting 

results.  
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5.1 Early numeracy assessment 

The results from Study 2 indicate that the Early Numeracy Screener reliably measures three 

distinct subskills of early numeracy: counting skills, numerical relational skills and basic 

arithmetic skills. Concerning construct validity, we examined whether the Early Numeracy 

Screener worked best as a one-factor model or a three-factor model. The CFAs showed better 

model fit for the three-factor model based on counting skills, numerical relational skills and 

basic arithmetic skills. This supports Aunio and Räsänen’s (2016) theoretical model, which 

suggests that the early numeracy skills is multi-dimensional. Support for assessing these 

distinct factors of numeracy skills is not only found in Aunio and Räsänen’s (2016) study 

alone; but is also in previous research (Desoete et al., 2012; Gersten et al. 2012; Moeller et al., 

2011). Other studies have also argued early numeracy consisting of multi factors (e.g. Cirino, 

2011; Hirsch et al., 2018). The mutual challenge for these multi factor models, such as for 

instance Hirsch et al. (2018) and the core numerical skills model (Aunio & Räsänen, 2016) is 

that the model fit for these models compared to more parsimonious models are arguably 

rather similar. Study 2 displayed that although the three-factor model had a better fit than the 

one-factor model, these might indeed be highly related skills.     

 Given that the Early Numeracy Screener worked better as a three-factor model, this 

may also be beneficial for the practice field when it comes to identifying children at risk of 

developing mathematical difficulties. The screener enables teachers to identify and 

differentiate between components of early numeracy skills. Consequently, to recognize which 

particular skill might be difficult for a child, hence the support can be targeted and fine 

grained, and it might make it easier to monitor children’s progress. For instance, verbal 

counting plays an important role as a predictor of arithmetic skills (Zhang et al., 2014); 

accordingly counting may be an important skill through which to identify children at risk of 

developing mathematical learning difficulties. Therefore, to assist children in establishing 

these skills, it is important to identify children who struggle at an early stage, more precisely 

to identify exactly which skill they are struggling with.     

    

5.2 Intervention strength and intervention difficulty level 

One of the common denominators of previously effective intervention studies (e.g. Fuchs et 

al., 2013; Gersten et al., 2015) is the strength of the interventions. The intervention presented 

in Study 3 lasted for only 8 weeks, 3 sessions per week, followed by a six week boost phase 

two weeks after the initial eight weeks of the intervention ended. Considering the stability in 
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mathematics performance, the intervention in Study 3 might not have been strong enough. It 

should have lasted for a longer period of weeks, and the boost phase should have been 

planned differently. It would be interesting, for example, to have the boost phase at a later 

stage, perhaps a month or two after the intervention ended, and to include more sessions per 

week in the boost phase. Furthermore, it is possible that the content of the intervention was 

too easy – these skills were perhaps skills that children indeed eventually will learn. This 

could be a result of the rather high cut-off in our sample, the fact that these skills would not be 

counterfactual and thus counting and numeric relational skills training were not effective. In 

future studies, this could be adjusted for by having a lower cut-off; perhaps the level of this 

particular intervention might be more suitable for children with more severe difficulties. This 

does, however, require a closer look at individual differences in the participating children in 

this study. Which children had a greater effect from the intervention and these analysis could 

consequently be a starting point for developing new interventions.      

 The rather disappointing effects in this intervention leads one to reflect whether the 

intervention should have been conducted earlier in the school year. This intervention started at 

the end of January. That was mainly due to practicalities, since we needed roughly two 

months to test all the children before the intervention started. Counting skills are emphasized 

in the beginning of formal instruction, and in that context, it should also be noted that the 

control group in the current study also received high-quality instruction in early numeracy and 

arithmetic skills.  In Norway, in first grade, there are a large number of teachers in each class, 

and this makes it possible to give differentiated teaching that also targets those who struggle. 

Thus, this opening for differentiated teaching is likely to be of high quality and enable the 

control group to make substantial gains when compared with the intervention group. This can 

perhaps explain why the gains in the intervention group on the near transfer measures of early 

numeracy skills such as counting and numeric relational skills and on arithmetic were 

somewhat disappointing.          

 The current intervention also shows smaller effects than the mean effects in the meta-

analyses by Dennis et al. (2016) and Chodura et al. (2015). The reason for this could be that 

these meta-analyses include mostly quasi-experiments that are not randomized. It is well-

known that quasi experiments often overestimate effects compared with randomized 

controlled trials (Shadish, Clarke & Steiner, 2008), and this could also be the case here. In 

addition, due to the practice of publishing mainly studies with significant effects, mean effects 

from meta-analyses are often overestimated by publication bias (Polanin, Tanner-Smith & 

Hennessy, 2016).  
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5.3 Educational implications 

Since ANS is still debatable, we need perhaps to take a pragmatic viewpoint and consider the 

educational implications of studies of ANS. Measuring ANS in itself is not something 

Norwegian schools or clinicians traditionally do, and training studies with a rigorous design in 

mathematics is in itself understudied in Norway. Based on the discussion in both the 

theoretical elaboration previously mentioned and in Study 1, ANS might not be the most 

pertinent mathematical ability to target neither when it comes to assessing children nor in 

designing interventions. This is furthermore relevant as to what extent information from 

assessing ANS can provide pedagogical information. Perhaps what we assess should go hand-

in-hand with the intended support? One might thus argue that once children at risk of 

developing mathematical difficulties are identified, we should target what we know they are 

struggling with (e.g. counting skills, arithmetic skills), and not – from the practitioners’ 

viewpoint – the rather elusive ANS. Furthermore, if indeed ANS is a domain-general skill, 

meta-analyses of other domain-general skills, such as working memory, has yet to prove an 

effect on far transfer skills (Melby-Lervåg & Hulme, 2013; Melby-Lervåg et al., 2016). This 

might be applied to training studies of ANS, which have not shown conclusive evidence that 

specific ANS training improves arithmetic (Szücs & Myers, 2017). Hence, we should target 

skills that are in fact malleable and that it makes theoretical sense to target. Since there still 

are many unanswered questions concerning ANS, it might be more relevant to focus on skills 

we know are crucial for mathematical development, both when it comes to developmental 

milestones, assessing children at risk of mathematical difficulties and providing the necessary 

educational support.           

            

5.4 Closing remarks and future directions 

This thesis has been a contribution to the field of mathematical development and 

mathematical learning difficulties in Norway. As for educational contributions, Study 2 will 

have a direct implication for the Norwegian practice field. Hopefully the Early Numeracy 

Screener will enable schools to identify children in at risk of developing mathematical 

difficulties earlier in the school year. Early identification has received political attention in 

Norway recently (NOU 2019: 3), and the Ministry of Education has recommended that early 

assessment in first grade become mandatory (Kunnskapsdepartementet, 2019). Schools can 

now freely use the Early Numeracy Screener, and the intervention material will also be 

publically available for schools to use, free of charge. Study 2 and Study 3 are thus unique 
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contributions to the Norwegian practice field. As displayed in this section, the field of 

mathematical development, assessment, and interventions is characterized as a field with both 

a thirst and need for knowledge. Additionally, the manner of how we try to understand these 

topics has developed rapidly.         

 The main questions raised in this thesis generated many additional questions. The 

objective of helping struggling learners such as those in Study 3 depends on knowledge of the 

smaller aspects, such as in those in Study 1, and the first step in helping struggling learners is 

to identify them. In this thesis, the originally envisioned study trajectory changed somewhat 

during the journey. Beginning with the enigmatic question “how”, we discovered a need to 

challenge theoretical models and causal claims in particular. Causal relationships need to be 

handled with an utmost care, because this is indeed what for instance teachers who work with 

children strive for information about from us as research investigators. Hence, the power of 

the concept “effect” is immense. Moreover, as shown in this thesis and its studies, we need to 

operate on a methodological sound level to interpret our own results as well as those of others. 

As researchers one of our mandates is societal –research should also benefit society at large. 

In this case, society refers particularly to children, teachers, and clinicians who, in different 

ways, face learning difficulties in mathematics. Thus, we need to be sober and precise in 

terms of what we recommend that practitioners should emphasize in the identification, 

development and support of young children on their path to mathematics. Should we fail to 

discharge this duty, we thereby neglect the ‘gatekeeper skills’ that permit us to open doors at 

the right moment and influence young minds at a crucial stage of development.   
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FORESPØRSEL OM DELTAGELSE I FORSKNINGSPROSJEKT 
 
Bakgrunn og formål 
Universitetet i Oslo arbeider med et forskningsprosjekt hvor vi ønsker å undersøke hvordan arbeid med 
matematikk i skolen kan ha positiv virkning på matematikkferdigheter og matematikkutvikling. I den forbindelse 
skal alle skolene i kommunen delta i prosjektet. Elever på 1. trinn vil få tilbud om å delta. Formålet med prosjektet 
er tredelt - å vurdere effekten av et intervensjonsprogram i matematikk, lage normer til et screeningsverktøy i 
matematikk som videre vil kunne bidra til tidlig identifisering av elever som strever i matematikk og å undersøke 
hvilke faktorer som kan være med på å påvirke utvikling av matematiske ferdigheter.  

 
Hva innebærer deltakelse i studien? 
Screening                      
Elever som deltar skal kartlegges på ulike ferdigheter knyttet til matematikk. Dette gjennomføres i gruppe/klasse 
av kontaktlærerne, og tar ca. 30-40 minutter. Dette er en skriftlig prøve i matematikk, men er ikke knyttet til 
elevens vurdering i faget. Formålet med denne screeningen er todelt - både å validere kartleggingsprøven og å 
bruke den til å velge deltakerne til tiltaket vi ønsker å vurdere effekten av. Etter at screeningen er gjennomført vil 
omtrent 30 % av elevene bli med videre i prosjektet. Det vil være resultatene på screeningen som avgjør hvem 
som blir med videre – de elevene som gjennom screeningen viser de trenger tiltaket vi ønsker å vurdere effekten 
av mest. For å kunne validere screeningen må vi gjennomføre screeningen to ganger i løpet av skoleåret– en i 
oktober 2016 og en i april/mai 2017, for deretter å sammenligne med kartleggingsprøven fra 
Utdanningsdirektoratet som alle elevene på 1. trinn gjennomfører. I tillegg vil foreldre motta et spørreskjema om 
bakgrunnsinformasjon som mattestimulerende tiltak i hjemmet, hjemmespråk og utdanningsbakgrunn 

Tiltak                     
Skolene som disse barna går på vil bli fordelt tilfeldig i to grupper, der den ene halvparten får et pedagogisk 
opplegg hvor man arbeider med matematikkferdigheter (intervensjonsgruppen) og der den andre gruppen følger 
vanlig opplæring i skolen (kontrollgruppen). Vi vil trekke lodd om hvem som skal følge tiltaket og hvem som 
følger vanlig opplegg i skolen.  

Lærere ved skolen vil gjennomføre tiltaket, et matematisk intervensjonsprogram, med intervensjonsgruppen tre 
ganger i uken, to av disse på ca. 45 minutter og en på ca. 10 minutter. Dette varer i 8 uker, etterfulgt av en 6 ukers 
periode hvor gruppen har en økt per uke som en repetisjonsfase. Det vil tas lydopptak av undervisningen. 
Intensjonen med dette er å kunne sikre at lærerne følger tiltakets opplegg og instruksjoner, ikke å lytte til elevene. 
Dersom klassen gjennomgår nytt lærestoff i matematikk som ikke dekkes i intervensjonsmaterialet, vil deltagerne 
følge klassens undervisning.  

Elevene testes før tiltaket starter, etter at 8 uker med tiltak er over, etter at 6 uker med repetisjon er ferdig og ca. et 
halvt år etter tiltaket, høsten 2017. Dette innebærer utvidet kartlegging innenfor matematikk, språk og generelle 
evner. Vi ønsker også å følge elevene videre ved å kartlegge dem videre ca. en gang i året fram til slutten av 5. 
trinn. Dette vil da kun være innenfor matematikk.  

Vi ønsker å innhente informasjon om elevens videre skolegang, som for eksempel resultater fra nasjonale 
kartlegginger. Vi vil sende informasjonsskriv om dette underveis der det minnes om muligheten for å trekke seg 
om man ikke ønsker øvrig deltakelse. Informasjon om dette kommer fra skolen.  
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Hva skjer med informasjonen om deg og ditt barn?                        
All informasjon om ditt barn skal ha koblingsnøkkel, og anonymiseres ved prosjektslutt. Materialet vil bli lagret 
på eksterne sikrede harddisker og slettet innen oktober 2025. Lydopptakene vil slettes innen januar 2020. Ingen 
enkeltbarn vil være gjenkjennbare i rapporteringer fra prosjektet. Alle opplysningene behandles konfidensielt og 
skolen vil ikke få tilgang til testresultatet for hver enkelt elev.  

Du har rett til å på forhånd se testmanualer og opplegg som skal forelegges barnet. Du har videre rett til innsyn i 
hvilke opplysninger som registreres om barnet. Hvis du ønsker innsyn i pedagogisk opplegg, kan du kontakte 
skolen. Hvis du ønsker innsyn i hvilke opplysninger som registreres, kan du kontakte ansvarlig forsker.  

Prosjektet er meldt og godkjent av personvernombudet for forskning, Norsk Senter for forskningsdata AS (NSD).  

Frivillig deltakelse                 
Deltagelse i prosjektet er frivillig. Barn som ikke deltar, vil følge den vanlige skoledagen som normalt. De ansatte 
på skolen skal være var for elevens signaler og avbryte testingen eller matematikktreningen hvis barnet viser tegn 
til ikke å ville delta, og dere kan når som helst trekke dere. Dersom dere trekker barnet fra prosjektet, vil alle 
innsamlede opplysninger bli slettet. 
 
 
Ta gjerne kontakt med undertegnede på telefonnummer 22 85 44 42/91 83 04 69, anita.lopez-pedersen@isp.uio.no 
dersom det er spørsmål. Dersom du gir tillatelse til at ditt barn kan delta i prosjektet, er det fint om svarslippen på 
neste side leveres lærer innen___fredag 30. september 2016_____.   

 
Oppsummert ønsker vi med dette informasjonsskrivet samtykke til følgende: 

x Gjennomføring av screening i matematikk, og i arbeidet med å standardisere (validere) denne 
screeningen gir skolen tillatelse til å utlevere resultatet fra denne for å sammenligne resultatet på 
de nasjonale kartleggingsprøvene fra Utdanningsdirektoratet  
 

x Deltakelse til tiltaket dersom ditt barn etter screeningen viser seg å kunne ha utbytte av det (dette 
får dere eksplisitt informasjon om via skolen) 

 
 

x Mulighet til å følge elevene i tiltaksgruppen ved å innhente informasjon om elevens videre 
skolegang, som for eksempel resultater fra nasjonale kartlegginger på øvrige trinn 

Deltagelse i dette forskningsprosjektet er svært viktig for oss, og vi vil sette stor pris på deres deltagelse.  

På vegne av forskergruppen,  

vennlig hilsen         

 

_______________________________    _____________________________________ 

 Anita Lopez-Pedersen     Monica Melby-Lervåg 

(Doktorgradsstipendiat ved Institutt for spesialpedagogikk, UiO)            (Professor ved Institutt for spesialpedagogikk, UiO) 
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SVARSLIPP 
 

Som foresatt har jeg lest informasjonsbrev angående forskningsprosjektet.  

Jeg samtykker til at vårt barn  

 

Navn: _________________________________________________, fødselsdato:________________(dd/mm/åå) 

 

 Kan delta i prosjektet.  

 Kan ikke delta i prosjektet. 

 

Navn på skolen:…………………………………………… 

 

 

Navn og telefonnummer foresatt(e): 

 

 

 

 

 

 

___________________________________________________________________________________________ 

 

 

 

Underskrift_________________________________________________________Dato ___________2016 





Institutt for spesialpedagogikk 
Det utdanningsvitenskapelige fakultet 
 

Postadresse: Postboks 1140 Blindern, 0318 Oslo 
E-post: ekspedisjonen@isp.uio.no 
www.uio.no/isp/ 

 

Kjære ansatte i skolen! 
 
           Oslo, 31.08.2016 
FORESPØRSEL OM DELTAGELSE I FORSKNINGSPROSJEKT 
 
Bakgrunn og formål 
Universitetet i Oslo arbeider med et forskningsprosjekt hvor vi ønsker å undersøke hvordan arbeid med 
matematikk i skolen kan ha positiv virkning på matematikkferdigheter og matematikkutvikling. I den 
forbindelse skal alle skolene i kommunen delta i prosjektet. Barn på 1. trinn vil få tilbud om å delta.  

Elever som deltar skal kartlegges på ulike ferdigheter knyttet til matematikk. Dette gjennomføres i 
gruppe/klasse av kontaktlærerne, og tar ca. 30-40 minutter. Omtrent 30 % av elevene vil bli med videre i 
prosjektet, det vil være resultatene på screeningen som avgjør hvem som blir med videre – de elevene som 
gjennom screeningen viser de vil kunne ha utbytte av tiltaket. Skolene som disse barna går på vil bli fordelt 
tilfeldig i to grupper, der den ene halvparten får et pedagogisk opplegg hvor man arbeider med 
matematikkferdigheter (intervensjonsgruppen) og der den andre gruppen følger vanlig opplæring i skolen 
(kontrollgruppen). Elever som ikke deltar i prosjektet følger ordinær undervisning, uavhengig hvilken klasse 
de går i.  

 

Hva innebærer deltakelse i studien for ansatte på skolen?                                                                                   
Gjennom loddtrekning vil klassene som de aktuelle barna går i fordeles tilfeldig i en tiltaksgruppe og en 
kontrollgruppe. Kontrollgruppen følger ordinær undervisning i skolen. Pedagogisk personale på skolen som 
blir med i tiltaksgruppen vil gjennomføre tiltaksprogrammet. Skolens ledelse og lærere har deltatt på 
informasjonsmøte om studien, og den enkelte skole avgjør hvem som skal gjennomføre tiltaket. Hvis du 
ønsker å delta i forskningsprosjektet, ved å gjennomføre det pedagogiske opplegget vårt, leverer du 
samtykkeskjema til rektor som formidler det videre til forskerne. Ansvarlig(e) pedagog(er) vil få opplæring 
av forskerne i prosjektet. Dette vil foregå som to halvdagsseminarer i perioden november-desember 2016.  

Prosjektet starter oktober/november 2016, og tiltaket i skolen vil pågå fra og med januar 2017 og til og med 
våren 2017. Lærere ved skolen vil gjennomføre et matematisk intervensjonsprogram med 
intervensjonsgruppen tre ganger i uken tiltaksperioden (to av disse på ca. 45 minutter og en på ca. 10 
minutter). Det vil tas lydopptak av undervisningen. Intensjon med lydopptak er å sikre gjengivelse av 
studiens og undervisningsøktenes instruksjoner. Dette er informasjon forskerne trenger for å kunne vurdere i 
hvilken grad opplegget har blitt fulgt når man skal vurdere resultatene når studien er avsluttet, ikke for å gi 
veiledning, tilbakemelding eller som vurdering av lærerne.  

 

Hva skjer med informasjonen som innsamles?                        
I tillegg til lydfilene ønsker vi å samle informasjon om lærernes utdanningsbakgrunn og kjenn, både for 
elevene i tiltaksgruppen og elevene i kontrollgruppen. Vi ønsker videre at lærerne gjennomfører enkel 
loggføring underveis i prosjektet. Dette vil bli lagret på eksterne sikrede harddisker og slettet innen januar 
2025. Alle opplysningene behandles konfidensielt. 

Du har rett til innsyn i hvilke opplysninger som registreres om deg som ansatt. Hvis du ønsker innsyn i 
hvilke opplysninger som registreres, kan du kontakte ansvarlig forsker. 
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Prosjektet er meldt til personvernombudet for forskning, Norsk Senter for forskningsdata AS (NSD).  

 

Frivillig deltakelse                 
Deltakelse i prosjektet er frivillig. Ansatte som ikke ønsker å delta, vil følge den vanlige skoledagen som 
normalt. Både forskere og ansatte i skolen skal være var for elevenes signaler og avbryte testing eller 
matematikktrening hvis barnet viser tegn til å ikke ville delta.  

Dere kan når som helst trekke dere fra prosjektet uten at dette får konsekvenser. Dersom dere trekker dere fra 
prosjektet, vil alle innsamlede opplysninger bli slettet.  

Ta gjerne kontakt med undertegnede på telefonnummer 22 85 44 42/91 83 04 69 dersom det er spørsmål.  

 

På vegne av forskergruppen,  

vennlig hilsen         

 

 

_______________________________    _____________________________________ 

 Anita Lopez-Pedersen     Monica Melby-Lervåg 

(Doktorgradsstipendiat ved Institutt for spesialpedagogikk, UiO)            (Professor ved Institutt for spesialpedagogikk, UiO) 

 

 

 

 

 

Som ansatt har jeg lest informasjonsbrev angående forskningsprosjektet.  

Jeg samtykker til å delta i prosjektet 

 

              

 

Underskrift____________________________________________________Dato _______________ 
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