Design Patterns for Mobile Devices

A Comparative Study of Mobile Design Patterns
using Android

Shamil Magamadov

Master Thesis submitted for the degree of
Master in Informatics: Software
60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2020






Design Patterns for Mobile Devices

A Comparative Study of Mobile Design Patterns
using Android

Shamil Magamadov



© 2020 Shamil Magamadov
Design Patterns for Mobile Devices
http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo


http://www.duo.uio.no/

Abstract

Design patterns in software engineering is a useful concept for developers to solve a
software design problem in a specific context. With the advent of mobile devices and
mobile application development, the demand for complicated software running on mobile
devices, varying in size and power capabilities, has proliferated. As design patterns were
initially not designed for such an environment, mobile design patterns can help overcome
the limitations and challenges with mobile application development.

This paper aims to develop mobile design patterns in Android by conducting a
comparative study of design patterns for mobile devices and evaluating the design patterns
in terms of performance efficiency and maintainability. Our end goal is to identify
requirements imposed on design patterns by Android and its mobile devices.

The results show that with techniques and strategies for optimized memory and power
usage, mobile design patterns can improve the application in terms of performance and
some aspects of maintainability. Two requirements were imposed on the design patterns.
One was for the patterns having to consider incorporating components from the mobile
platform architecture, in our case, Android. And secondly, having to manage and optimize
limited memory and power from the mobile device.



ii



Contents

1

[1.1 This Project|. . . . . . . . . . . 1
(L2 Motivation| . . . . . . . . L 1
(.3 Problem Statementl . . . . . . ... .. ... o o 1
M4 Goall . . . . . oo 2
[1.5 Approach| . . . . . . . 2
(L6 Work Donel . . . . . .. . 2
(.7 FEvaluation Criterial . . . . . . . . . . . .. ... 3
M8 Resultsl. . . . o o oo e e 4
(1.9 Conclusion| . . .. ... .. . 5
[L10 Contributions| . . . . . . . . . . . . 5
[LI1 lLamitations . . . . . . . . . . o e 5
MI270uthne . . . o v oo o e e 6
|2 Background| 9
2.1 Introductionl. . . . . . . . . . . L 9
2.2 What is a Design Pattern?|. . . . . . . ... ... ... .. L. 9
[2.2.1  Briet History| . . . . . . . . . . 9
[2.2.2  The Essential Elements of a Design Pattern| . . . . . . ... ... .. 10

2.3 Documentationl . . . . . . . ... 10
2.4 Why should one use Design Patterns?| . . . . ... ... ... .. ...... 11
2.5 Classification| . . . . . . . . . . . L 11
[2.6  Description of our Selected Design Patterns| . . . . . .. ... ... .. ... 12
[2.6.1  Abstract Factory| . . . . . . . ... oo 12
[2.6.2  Singleton| . . . . . ... .. 13
.63 Command . .. ... .. ... 14
R4 VASTEOr . . . o o o o 15
[2.6.5  Strategy|. . . . . . .. 16
[2.6.6 Factory Method| . . . . .. . ... ... oo 17

2.7 Summary] . ... e 18
2.8 Mobile Devicesl . . . . . . . . . e 18
2.8.1 Introductionl . .. ... ... . ... 18
[2.8.2  Main Challenges with Mobile Devices| . . . . .. ... ... ... .. 19

2.9 Development ot Mobile Applications| . . . . . .. ... ... .. ... .... 20
2.9.1 Introductionl . ... .. .. ... . 20
[2.9.2  The Different Approaches| . . . . . .. . .. .. ... ... ... ... 20
[2.9.3  Main Challenges with Mobile Application Development| . . . . . .. 20

[2.10 Why do we need Mobile Design Patterns?| . . . . ... ... ... ... ... 22

iii



[2.10.1 Examples of Mobile Design Patterns| . . . . . . ... ... ... ...
[2.10.2 Summary| . . . . ...
[2.11 Summary| . . . . . ... e e

4

3.2 Quality Modell . . . . . . . ... .
3.3 Analysis of the Quality Models| . . . . ... ... ... ... ... ...
[3.3.1  Criteria 1. Performance Etfhiciency| . . . . . . ... ... ... .. ..
[3.3.2  Criteria 2. Maintainability] . . . . .. ... ... ... ... ... ..
3.4  Quality Metric Object-Oriented Modell . . . . . . . ... ... ... .. ...
3.4.1 Quality Attributes (L__lzl .........................
3.4.2 Design Properties (Lo)[. . . . . . . . ...
3.4.3 Design Metrics (L3)| . . . . . o oot
[3.4.4 The Mapping of Log| . . . . . . . . . . .. L
[3.4.5 The Mappingof Lio| . . . . . . . . . . .. . ... ... ..
3.5 The Use of QMOOD in our Comparative Study|. . . . . .. ... ... ...
3.6 Analysis of QMOOD| . . . . . .. . oo
[3.6.1 The Mapping of Log| . . . . . . . . .. ... ... o
[3.6.2  The Mapping of Lio| . . . . . . . . . . . . ..
8.7 Measurement Processl . . . . . .. .. ... . L o
[3.7.1  Our Measurement Process of QMOOD|. . . . .. ... ... ... ..
[3.7.2  Our Measurement Process of ISO/IEC 25010[ . . . . ... ... ...
[3.8 Summary| . . . ...

ANalysis|

[4.2.1  Data Persistence and Application Lite Cycle|. . . . . . . ... .. ..
[4.2.2  Computing Perspective] . . . . . . ... ... ... ... ... ...,
[4.2.3  Sottware Development Perspectivel . . . . . . .. ... ... ... ..
4.3 Mobile Design Pattern vs. Design Pattern| . . . . . . ... ... ... ....
4.4 Choosing the Right Platform for our Mobile Application| . . . . . . . .. ..
4.5  Creating Mobile Design Patterns| . . . . . .. ... ... ... ... ....
[4.5.1 Method 1: Combining Design Patterns|. . . . . . ... ... ... ..
[4.5.2  Method 2: Using various Optimization Techniques and Strategies| . .
4.6 Summary] . . ... .. e e e

6_Casel

5.2 The Main Components|. . . . . . . . . .. .. .. ... .. ... ...,
0.3 Summary| . . ... . e e

Implementation|

6.1  Abstract Factory vs. Mobile Abstract Factory|. . . . . . . .. ... ... ..
6.2 Command vs Mobile Command| . . . . .. .. ... ... ... ... .....

6.4  Strategy vs Mobile Strategy| . . . . . . . . ... oL
6.5 Singleton vs. Mobile Singleton| . . . . .. .. ... ... . 00000
6.6 Summary] . . ... .. e

iv

25
25
25
26
27
27
28
29
30
32
34
34
35
35
37
38
38
38
40
41

43
43
43
43
45
46
46
47
47
47
48
49

51
ol
93
54



[T_Results| 67

(7.1 QMOOD Results| . . . . . .. .. ... . 67
[7.1.1  Abstract Factory vs.. Mobile Abstract Factory| . . . . ... ... .. 67
[7.1.2 Command vs. Mobile Commandl . . .. ... ... ... ....... 69
[(.1.3  Visitor vs.. Mobile Visitor|. . . . . . . . . ... ... .. ... 71
[7.1.4  Strategy vs. Mobile Strategy| . . . . . . . ... 0oL 73
[7.1.5 Project vs.. Mobile Project| . . . . ... ... ... ... ...... 75
[7.1.6  Summary| . . . . . . ... e e 77

[(.2 Android Profiler Results . . . . . .. ... .. ... o oo, 77
[7.2.1 Abstract Factory vs. Mobile Abstract Factory|] . . .. ... .. ... 78
[7.2.2 Command vs. Mobile Commandl . . .. ... ... ... ....... 78
[(.2.3  Visitor vs. Mobile Visitor . . . . . ... ... ... ... ....... 78
[7.2.4 Strategy vs. Mobile Strategy| . . . . ... ... ... ... ... 78
[7.2.5 Project vs. Mobile Project|. . . . . ... ... ... ... ....... 79
[7.2.6  Summary| . . . . . . . 79

[(.3  FExecution Time Resultsl . . . . .. ... ... .. ..o . 80
[7.3.1  Abstract Factory vs. Mobile Abstract Factory] . . . ... ... ... 80
(.3.2 Command vs. Mobile Commandl . . ... ............... 80
[.3.3  Visitor vs. Mobile Visitor] . . . . . ... ... ... ... ....... 80
[7.3.4  Strategy vs. Mobile Strategy| . . . . .. ... ... 0oL, 80
[7.3.5  Project vs. Mobile Project|. . . . . . . ... ... ... . 81
[7.3.6  Summary| . . . . ... 81

[[.4 _Weaknessess and Mistakes of our Measurement Process . ... ... .. .. 81

[7.5  Summary|] . . . . . . . e e 82

8 Discussion| 83

8.1 QMOOD| . .. .. . 83

8.2 Improved Execution Times| . . ... ... ... ... ... ... ..., 83

[8.3 Android Profiling| . . . . . . ... ... oo 85

8.4 Did Mobile Devices Impose new Requirements for Design Patterns?] . . . . 86

[8.5  Summary| . . ... 86

9__Conclusion| 89
A ppend 91
|A Project Implementation| 93

[A.1 Project with Regular Design Patterns| . . .. ... ... ... ... ..... 93
[A.1.1 Package; abstractbactory| . . . . ... ... o 0oL 93
[A.1.2 Package; activity| . . . . . . . . ... 94
[A.1.3 Package; command|. . . . . . ... ... o 0oL, 96
[A.1.4 Package:; visitor|. . . . . . . ... o o 97
[A.1.5 Package: strategy|. . . . . . .. ... o Lo 98
[A.1.6 Package: enums|. . . . . ... ... oL oo 99
[A.1.7 Package: gameObjects| . . . . . . . ... ... ... .. 100
[A.1.8 Package; project| . . . . ... oo 106

[A.2 Project with Mobile Design Patterns| . . . . . ... ... ... ... ... 111
[A.2.1 Package; mobileAbstractbactory| . . . . . ... ... 000 111
[A.2.2 Package; mobileCommand|. . . . . . ... ... ... ... ...... 113
[A.2.3 Package:; mobileVisitor| . . . . . . ... oo oo 114




[A.2.4 Package: mobileStrategy| . . . . . ... o oo 114

[A.2.5 Package; enums|. . . . . ... ..o oo 115
[A.2.6 Package: imageManager| . . . . . . ... ... 0oL, 115
[A.2.7 Package; mobileGameObjects| . . . . . . . ... ... ... ...... 117
[B_Static Method vs Instance Method| 119

vi



List of Figures

[2.6.1 General UML representation of Abstract Factory| . . . . . . . ... ... .. 13
[2.6.2 General UML representation of Singleton| . . . . . . . ... .. ... .... 14
12.6.3 General UML representation of Command| . . . . . . . ... ... ... ... 15
[2.6.4 General UML representation of Visitor| . . . . . . . . . ... ... .. .... 16
[2.6.5 General UML representation of Strategy| . . . . . . . .. ... ... ... .. 17
[2.6.6 General UML Representation of Factory Method.|. . . . . . . ... ... .. 18
3.2.1 The Quality Model of ISO/IEC 25010 . . . . .. ... ... ......... 26
3.4.1 The Mapping of Levels in QMOOD [B]| . . . . ... ... ... ... ..... 29
[4.2.1 Ilustration of the activity lifecycle [1I| . . . . . ... ... ... ... .. .. 45
[b.1.1 Flowchart of the Overall Architecturel . . . . . . .. .. ... ... ... .. 52
16.1.1 Our Regular Abstract Factory Implementation in UML Class Diagram|. . . 55
16.1.2 UML Class Diagram ot Mobile Abstract Factory] . . . . .. . ... ... .. Y
|6.1.3 Sprite Sheet of Player| . . . . . . ... ... ... ... . 0. 58
[6.2.1 UML Class Diagram of Command| . . .. ... ... ... ... ....... 59
16.2.2 UML Class Diagram of Mobile Command| . . . . .. ... ... ... .... 60
16.3.1 UML Class Diagram of Visitor| . . . . . . ... ... ... ... ....... 61
16.3.2 UML Class Diagram ot Mobile Visitor| . . . . . . .. ... ... ... .... 63
[6.4.1 UML Class Diagram of Strategy| . . . . . .. ... ... ... ... ..... 64
16.4.2 UML Class Diagram ot Mobile Strategy| . . . . . ... ... ... ... ... 64
[7.1.1 Quality Attribute Graph of Abstract Factory vs. Mobile Abstract Factory| . 69
[7.1.2 Quality Attribute Graph of Command vs.. Mobile Command| . . . . . . . . 71
[7.1.3 Quality Attribute Graph of Visitor vs. Mobile Visitor| . . . . . .. ... .. 73
[7.1.4 Quality Attribute Graph ot Strategy vs.. Mobile Strategy| . . . . . . . . .. 75
[7.1.5 Quality Attribute Graph of Project vs. Mobile Project| . . . . . . . ... .. 77
18.5.1 Effect of Techniques and Strategies on Mobile Design Patterns| . . . . . . . 87
18.5.2 Invoking Static Method Versus Instance Method| . . . . . . ... ... ... 88

vii



viii



List of Tables

[2.5.1 Overview of Design Pattern Classification [I5/f. . . . . . .. ... ... ... 12
[2.9.1 Overview over Native app Development| . . . . . . ... ... ... ... .. 22
3.4.1 Quality Attribute DeﬁnitionsJ@] ........................ 30
3.4.2 Design Property Definitions S| ......................... 31
[3.4.3 Design Metrics Descriptions [3]] . . . . . . ... .. ... L 33
:3.4.4 Mapping of Design Metrics to Design Properties [ . . . . . . v . o o o .. 34
[3.4.5 Design Properties relationships with Quality Attributes[3[]. . . . . . . . .. 35
13.6.1 Descriptions of our Adapted Design Metrics site MetricsReloaded| . . . . . . 36
3.6.2 Design Metrics for Design Propertiesﬂ .................... 37
3.6.3 Design Properties connections with Quality Attributes[3]| . . . . . ... .. 38
3.7.1 Computation Formulas for Quality Attributes [3]] . . . . . . ... ... ... 39
13.7.2 Example 1: Actual Metric Values for App| . . . . . .. ... ... ... ... 39
13.7.3 Example 1: Normalized Metric Values for App| . . . . ... ... ... ... 40
13.7.4 Example 1: Computed Quality Attribute Values for App|. . . . . . . . . .. 40
[4.5.1 Summary of Strategies for Power Conscious System [7] . . . . . . ... ... 49
[7.1.1 Actual Metric Values of Abstract Factory vs. Mobile Abstract Factory| . . . 68
|7.1.2 Normalized Metric Values ot Abstract Factory vs. Mobile Abstract Factory| 68
(7.1.3 Actual Metric Values of Command vs. Mobile Command| . . . .. ... .. 70
[7.1.4 Normalized Metric Values of Command vs.. Mobile Commandl . . ... .. 70
[7.1.5 Actual Metric Values of Visitor vs.. Mobile Visitorl . . . . ... .. ... .. 72
[7.1.6 Normalized Metric Values of Visitor vs.. Mobile Visitorl . . . ... ... .. 72
[7.1.7 Actual Metric Values of Strategy vs.. Mobile Strategyl . . . . . . ... ... 74
[7.1.8 Normalized Metric Values of Strategy vs. Mobile Strategy] . . . . . . . . .. 74
[7.1.9 Actual Metric Values of Project vs.. Mobile Project| . . . . . ... ... .. 76
[7.1.10Normalized Metric Values of Project vs.. Mobile Project| . . . . . . . .. .. 76
[7.2.1 Profiling ot Abstract Factory| . . . . . .. ... ... . 0. 78
[7.2.2 Profiling of Command| . . . . . . .. . ... .. 78
[7.2.3 Profiling of Visitor| . . . . . . . . . . . . . ... 78
[7.2.4 Profiling of Strategy| . . . . . . . . . ... . Lo 79
[7.2.5 Profiling of Project| . . . . . . . .. ... oo 79
[7.2.6 Summary of the Total Improvement| . . . . . .. ... ... ... ...... 79
[7.3.1 Execution Time of Abstract Factory| . . . . . . . ... ... ... ... ... 80
[.3.2 BExecution Time of Command| . . . . . . . . . .. .. ... ... ... .... 80
[7.3.3 Execution Time of Visitorl . . . . . . ... ... .. ... ... ... ..... 80
[7.3.4 Execution Time of Strategy| . . . . . . . . . . ... Lo 81
[7.3.5 Execution Time of Project|. . . . . . . .. . . .. ... 0. 81
[7.3.6 Summary of the Total Improvement| . . . . . . . ... ... ... ... ... 81

ix






List of Code Snippets

6.1 Sample Code of Abstract Factory| . . . . . . . .. ... ... ... ... 56
6.2 Sample Code of Mobile Abstract Factory|] . . . ... ... ... ... .... 57
6.3  Sample Code of Command|. . . . . ... .. ... ... ... ... ...... 59
6.4 Sample Code of Mobile Command| . . .. ... ... ... ... ....... 60
6.5 Sample Code of Visitor| . . . . .. .. .. ... ... ... . ... .. ... 62
6.6 Sample Code of Mobile Visitor| . . . . .. .. ... ... ... .. ...... 63
6.7 Sample Code ot Providing Global Access Point for the Context of a Activity |

using Singleton| . . . . .. L. Lo 65
B.1 Code of our Static Method versus Instance Method Test| . . . . . . . .. .. 119

xi



xii



Acknowledgement

The author would like to thank supervisor Eric Bartley Jul for his generous guidance
throughout the thesis, and his invaluable advice and suggestions. Furthermore, the author
would like to thank his family, fellow students, the University of Oslo, and the Oslo
Metropolitan University who have helped him throughout his academic years.

xiii



Xiv



Chapter 1

Introduction

1.1 This Project

This master thesis presents "Design Patterns for Mobile Devices" written by a master
student in coordination with supervisor Eric Bartley Jul at the Department of Informatics,
University of Oslo. The thesis is a comparative study of design patterns for mobile devices,
combined with the actual implementation of multiple design patterns.

Design patterns are a well-known concept in software engineering that has been applied
to object-oriented programming. It is a general repeatable solution to a commonly
occurring problem in software design. The pattern is a description or template for how to
solve a problem that can be used in many different situations. The authors referred to as
the Gang of Four (GoF) released a book (1994) [15], describing software design patterns
and 23 classical design patterns.

1.2 Motivation

The design patterns proposed by the GoF have had a significant impact on desktop
applications and software development. The design patterns have provided well-tested
solutions to recurring problems in software design and made the development process more
efficient and less time-consuming. However, these design patterns were initially designed
for desktop computers as the advent of mobile computing was not yet arrived. The
development of mobile applications (hereafter named mobile apps) and their environment
poses new challenges and limitations, making the design of mobile apps different from
regular computers. The designer has to take into account different considerations and
possibly new requirements imposed by mobile devices and mobile app development. These
problems can be overcome with improved or new solutions, namely mobile design patterns.

1.3 Problem Statement

Designing applications for mobile devices differ from desktop computers as we have to take
into account different considerations such as battery life, power consumption, variations
in screen size, multiple types of user interfaces, different operating systems, and types
of applications. As a result, some of the design patterns are not suitable for developing
a mobile app. With a short time to market and mobile apps being more demanding in
performance and sophisticated systems, there is a need for design patterns for mobile
devices.



1.4 Goal

Our goal is to identify new requirements imposed by mobile app development and mobile
devices on design patterns. Our end goal is to understand better what requirements and
affect mobile app development and its mobile devices have on the design patterns, so we
can more easily develop mobile design patterns that further enhance mobile apps in terms
of performance, reusability, and maintainability.

1.5 Approach

This paper is an experimental study where we conduct a comparative study of design
patterns for mobile devices to discover possible new requirements for mobile design
patterns. A comparative study is essentially a method of comparing two similar objects
to identify similarities and differences between them, and then trying to conclude which
object of the two is superior. In this case, we investigate which design patterns are more
suitable for mobile devices and try to conclude through testing and evaluation, if they
are worth using to develop a better mobile app. Our approach of the comparative study
will start with picking different design patterns, proposed by the GoF, for which we will
implement in the development of a mobile game. Furthermore, we use various techniques
and strategies for memory and energy consumption, and other examples of mobile design
patterns from research articles to develop a mobile design pattern of the design patterns
we have implemented. We will end up with two game projects where one is implemented
with the regular design patterns, and the other has design patterns that are more suited
for mobile devices. The projects and its design patterns will be compared and tested to
relevant measurements against different criteria. We conclude whether the mobile design
patterns are suitable for mobile devices or not through the evaluation of the projects and
their design patterns. In the end, we analyze and identify possible requirements imposed
by the mobile app development to the design patterns.

1.6 Work Done

The work done in this master thesis is summarized in chronological order in the following
list.

e Master Essay

A master essay of around 15 pages related to the master thesis was written. The essay
acted as a starting point for the thesis and served as guidance, especially for the
introduction and background of the first and second chapters. The essay discussed
one or two issues in at least two different scientific articles and a self-assessment.
It aimed to give a background about design patterns for mobile devices and to
understand the possible benefits of design patterns and why we need mobile design
patterns in mobile app development.

e Research

During the writing of the thesis, most of the time was invested in reading research
articles and books relevant to design patterns and mobile devices, software quality
assessment of our app and design patterns, documentation about Android and its
architecture, tools for profiling our app, and more.



e The Execution of the Comparative Study

We implemented the following five design patterns: Abstract Factory, Command, Visitor,
Strategy, and Singleton in our development of a mobile maze game in Android using
its official integrated development environment (IDE) Android Studio. The maze
game was a continuation from the example used in the GoF book [I5]. Two game
projects were developed where one was implemented with the regular design patterns
and the other with mobile design patterns, created by using various techniques
and strategies for memory and energy optimization [I7] [7]. In our measurement
process of the projects and its design patterns, a hierarchical model was used for
assessing some design quality attributes [3], Android’s CPU and Memory Profiler
was used for assessing the CPU and memory usage [1], and the execution time of the
design patterns was measured. A plugin called MetricsReloaded from the Android
Studio Marketplace was installed and used for calculating relevant metrics to the
hierarchical model we used. The emulator and device Nexus 6 with API version 23
was used in our measurement process. After the measurement process, we analyzed
and discussed the results of the design patterns. By the end, we identified the design
patterns that were more suitable for mobile devices and requirements imposed on
the design patterns from the process of developing a mobile maze game in Android.

1.7 Evaluation Criteria

In our comparative study, our regular and mobile design patterns Abstract Factory,
Command, Visitor, Strategy and Singleton, were evaluated mainly towards two criteria
or characteristics from the quality model in ISO/IEC 25010[11]: Performance Efficiency
and Maintainability. In our evaluation, we defined Performance Efficiency as the extent
to which our app performs to the required performance and amount of resources needed.
Maintainability was defined as the degree to which the design patterns can be reused for
other mobile apps, and the ease of use such that one change to a component should not
affect another.

High performance is a crucial feature for our game app, and it is, therefore, important
for our design patterns to manage the resources and the components of Android
appropriately. Consequences of low performance can cause slow response time, freezing,
crashing, and stutters in animations. The GoF Gang mentions in [I5] that design patterns
promote easier maintainability. Maintainability can be beneficial as it can e.g., accelerate
the development process, avoid code duplication, and remove bugs and faults. As we
change the structure of the design patterns when developing the mobile design patterns,
it is critical to assess whether the maintainability of the mobile design pattern has
maintained, improved, or worsen. Ideally, when evaluating the two criteria, we want
to prove that the mobile design patterns further enhances the performance efficiency and
maintainability of the mobile app.

The apps were tested with the emulator Nexus 6 API 23, which reflects the limited
resources and processing power of a mobile device. Our verification criteria were
first assessed using the Quality Metric Object-Oriented Model(QMOOD) [3] to connect
information from the low-level source code metrics to the high-level design quality
attributes efficiency, understandability, and reusability. We objectively measured the
performance efficiency by using the Android Profiler tools: CPU Profiler and Memory
Profiler, provided by Android. The tools were used to measure the real-time CPU usage
of the design patterns, tracking its memory allocations and memory usage. Finally, we



also measured the execution time of the design patterns. A good score in performance
efficiency can indicate that the app or design pattern is more resourceful, effective, and
will experience lesser game experience issues such as lag, slow loading time, freezing, and
crashes. A good score in maintainability can indicate that the design pattern is more
reusable, easier to comprehend, and less complicated.

The requirements that we have identified to be imposed on the design patterns will be
evaluated subjectively from our experiment, the development process, and our analysis
of the differences between implementing design patterns in a non-mobile and mobile
environment. This was decided due to the thesis being an empirical study and the lack
of research we found for developing mobile design patterns in Android and other mobile
platforms.

1.8 Results

Overall, the mobile design patterns had a better performance than the regular design
patterns, but the patterns generally used more memory than the regular design patterns.
Notably, the mobile Abstract Factory and mobile Command improved the execution time
36% and 29% compared to its regular design pattern, while the mobile Visitor and Strategy
pattern improved only 3% and 2%. However, the CPU usage of the mobile Visitor and
Strategy pattern decreased with 10% and 4%, compared to the mobile Abstract Factory
and Command of 0% and -8%. A common theme in the QMOOD showed that the
reusability of the mobile design patterns decreased while understandability increased. The
theme was due to the techniques and strategies we used for optimizing memory and energy
consumption.

The successful optimization techniques and strategies used for developing the mobile
design patterns were to convert, if convenient, instance methods to static and combining
multiple images to one. During our development, we noticed that a static method allocates
less memory than an instance method and is also more CPU efficient. This is mainly
due to the static method only needing one CPU instruction to be called, while calling
an instance method requires one first to allocate an object to the heap. However, a
drawback of converting the method of a class to static is that it can remove its inheritance
capability, resulting in poorer reusability. Combining several images to one became a
successful technique that led to faster execution time and better memory usage. It was
used to combine several images of a game object to one, and instead of having to drawn
individual images, we extracted and drew the desired part from a single image.

We identified two requirements for the design patterns imposed by the architecture
of Android and their mobile devices. The first requirement was for the design patterns
to consider if it was necessary to work with the Activity component and incorporate its
context. The second requirement was for the design patterns to manage the mobile device’s
limited memory in a more optimized way, leading to a more efficient and faster game app.
Requirement one was first imposed on the Abstract Factory as the products or objects
it created, needed the context of the activity when created. This was solved by passing
down the context from the activity and eventually to the Abstract Factory methods. If
requirement two was not properly handled, e.g., allocating unnecessary objects, it could
quickly cause the app to freeze or crash. The requirement can be solved by applying the
correct memory saving or/and power optimization techniques.



1.9 Conclusion

Developing a mobile game in Android imposed the following requirements to the design
patterns. The first requirement was for the design patterns to consider if it was necessary to
incorporate the components from the mobile platform’s architecture, in our case, Android’s
architecture. From our experiment, the design patterns had to consider if it was necessary
to manage the context of the activities and the activities themselves. If not managed
properly, they could mess up the design patterns, e.g., the Abstract Factory could not
create objects without the activity’s context. The second requirement was for the design
patterns to be more optimized and efficient, managing the memory appropriately, as they
were not originally designed for mobile devices and its limited memory and computing
capabilities.

Overall, using mobile design patterns improved the mobile app in terms of performance
efficiency but had mixed results in maintainability. The use of power-optimized and
memory saving techniques such as converting the instance methods to static would most
likely increase the execution time of the design patterns, but it could also remove its
inheritance mechanism. This would, according to the QMOOD results, decrease the
reusability of the design pattern and instead increase the understandability.

Noticeably, the combination of replacing instance methods with static and combining
multiple images to one improved the execution time of Abstract Factory with execution
time 36%. An important lesson we learned and believe is important to understand when
developing mobile design patterns is memory allocation, to avoid unnecessary allocation
of memory, especially to the heap, and managing memory in a more optimized way.

1.10 Contributions

Proposing a design pattern for mobile devices has been achieved before. The author, Fang-
Fang Chua [§], presented an extended version of the model-view-controller pattern that
can be used to separate the presentation and the app code. In [6], the author introduced
an Energy Concerned Factory Method designed for a power limited environment. We
have contributed to clarifying more about what requirements mobile devices and its app
development impose on design patterns through our comparative study and analysis. We
attempted to clarify the mobile and non-mobile environment’s differences and what effect
the mobile environment has on the design patterns so that we can better understand
how to develop and use design patterns for mobile devices. From our experiment, we
have translated some regular design patterns to mobile design patterns for the Android
platform and identied two requirements imposed on mobile design patterns by Android
and its mobile devices.

1.11 Limitations

This master’s thesis was limited to 60 points written by a single student with the help of a
supervisor over three semesters. With limited time and human resources, the comparative
study and the apps developed were of a small size.

There are several weaknesses and faults in our measurement process and evaluation
criteria. One fundamental mistake was that we started the measurement process after we
had finished the development of the regular and mobile design patterns, making it difficult
to pinpoint which changes had the least and most impact in our measurement process.



Due to adequate time, we used and analyzed only one component of the Android
architecture was in our study. Other components from the Android system was not
included in our app or code. Thus one can argue, our study was not complete as these
components could also impose new requirements on mobile design patterns.

One of our main tasks was to develop design patterns for mobile devices. However,
we tested the design patterns on only one mobile device or emulator. Testing the
design patterns on several different emulators would have better reflected the different
characteristics of a mobile device, thus lead to a better validation of the results.

The end goal of our evaluation criteria was to clarify what possible requirements are
imposed on mobile design patterns. However, this thesis is limited to the development of
a mobile game whose primary concern was memory usage, performance, and some aspects
of maintainability. Hence, there is a need for research to develop design patterns in other
types of mobile apps, such as creating an app with varying user interfaces, an app using
sensors, GPS, or reliance on stable internet connection.

1.12 OQOutline

This paper has five main parts and nine chapters. The parts are essentially the chapters
between the introduction and conclusion, but part 4 and 5 combine two chapters as they
are highly relevant to each other. The following list describes the five parts.

e Part 1: Background

We start by going through the background of this thesis, where we describe the design
patterns introduced by the GoF and the ones we use, the main challenges of mobile
devices, and mobile app development. In the end, we introduce some examples of
mobile design patterns from other research articles.

e Part 2: Evaluation Criteria

Part two is the evaluation criteria of our comparative study, where we describe our
evaluation criteria and measurement process of the design patterns. The main topics
are the ISO/IEC 25010 standard, the QMOOD model, and the Android Profiler

tools, which we will use in our measurement process.
e Part 3: Analysis

Part three analyzes and discusses the challenges with mobile design patterns, mobile app
development, and how it can affect the design patterns. Focusing on Android and
its architecture, we discuss how it is different from a non-mobile environment and
what issues a developer might face when developing an app. In the end, we describe
the methods we use to develop our mobile design patterns.

e Part 4: Project and Implementation

Part four describes the project case of our game app, its overall architecture, and the
task of our design patterns. Next, we present the implementation of our regular and
mobile design patterns, and its differences with the help of code snippets and UML
(Unified Modeling Language) class diagrams [16].

e Part 5: Results and Discussion



Part five showcases first the results of the measurement process. Afterward, we discuss
the results and analyze the methods which we have implemented in our mobile design
patterns. In the end, we discuss the requirements we have identified to be imposed
on the design patterns.






Chapter 2

Background

2.1 Introduction

We start by introducing design patterns in software engineering and the background of
the thesis. As this is about studying mobile design patterns, we will not go in-depth on
the technical part of a design pattern, for instance, how design patterns use the principles
from object-oriented programming to solve design problems. This is better explained in
the GoF book[I5], which we recommend reading if one wants to know more about design
patterns.

2.2 What is a Design Pattern?

According to Wikipedia, a design pattern in software engineering is defined as "a general,
reusable solution to a commonly occurring problem within a given context in software
design. It is not a finished design that can be transformed directly into source code or
machine code. It is a description or template for how to solve a problem that can be
used in many different situations." [28]. A design pattern is about how the classes and
interacting objects are used to solve a design problem in a specific context. As mentioned
in the definition, a design pattern does not provide us the implementation of the solution
for a problem. We can rather think of it as a solid and a formal blueprint that shows us
how to solve the problem. The result of the blueprint will be unique from developer to
developer.

2.2.1 Brief History

The concept of design pattern was created and introduced by the influential architect
Christopher Alexander. Mr. Alexander can be seen as the early pioneer of design patterns
as formal ideas. As he said in his book A Pattern Language, "... Each pattern describes a
problem that occurs over and over again in our environment, and then describes the core
of the solution to that problem, in such a way that you can use this solution a million
times over, without ever doing it the same way twice" [2].

Now design patterns have also become a useful and powerful concept in software
engineering that has been applied to object-oriented programming. The book Design
Patterns: Elements of Reusable Object-oriented Software [I5], known as the GoF book
from 1994, had an influential impact on the field of software engineering, describing 23
object-oriented design patterns. Still, to this day, the book is regarded as an important
source for object-oriented design theory and practice.



2.2.2 The Essential Elements of a Design Pattern

A design pattern describes and evaluates a solution to a common problem by its four
essential elements [15]:

e The pattern name is the name of the design pattern. Having a good and short name
is important because it describes the design problem, its solutions, and consequences
in a word or two. The name of the pattern is also added to the design vocabulary in
the pattern language. Having a common vocabulary for design problems enables us
to design at a higher level of abstraction. Also, it makes it easier to communicate
with others.

e The problem describes what problem the pattern solves and what context it is in.
The problem that the design pattern solves usually consists of general intent and
motivation, describing in the end when to apply the pattern.

e The solution describes the elements that make up the pattern, such as classes and
objects. It also includes their relationships, responsibilities, and collaborations. The
solution does not provide us with a concrete design or implementation, but rather
abstract description of how to solve the design problem. The benefit of this is that
we can apply the solution in many different situations and implement the solution
in our way.

e The consequences is about the results and trade-offs we get for applying the pattern.
More than one pattern can likely solve the problem. Thus the consequences
often become the determining factor. Therefore, understanding the consequences
of choosing a design decision is crucial for evaluating design alternatives and
acknowledging the drawbacks and benefits of applying the pattern.

2.3 Documentation

According to the GoF book, design patterns are described using a consistent format for
making learning, comparison, and use easier. The pattern is divided into different sections
of the template, and down below are some sections that are usually present in the pattern
description.

e Pattern Name and Classification

A short and meaningful name of a pattern which will be added to our design vocabulary.
The pattern’s classification is a way to organize and group the patterns.

e Intent

A short description of the purpose of the pattern by briefly describing the solution of the
pattern and what design problem it addresses.

e Motivation

A scenario that shows how the classes and object structures in the pattern solve the
problem to describe the problem in detail further. The scenario is a guide for the
users to help understand the more abstract description of the pattern that follows.

e Structure

10



A graphical representation of the classes in the pattern using a modified UML (Unified
Modeling Language) notation [16]. Also, we can use interaction diagrams to illustrate
sequences of requests and collaborations between objects.

e Consequences

Discussing the results and trade-offs one gets by using the pattern and how the pattern
support its objectives. One can also discuss what aspect of system structure does
the pattern let us vary independently.

¢ Implementation

What pitfalls, hints, or technique is one should be aware of when implementing the
pattern. Are there also any issues with language dependency?

e Sample Code

Code examples that illustrate how one might implement the pattern in Java, C+-+, and
more.

e Related Patterns

Discussing other design patterns that are closely related to this pattern. Furthermore,
describing the important differences between them and with which other patterns
can or should this one be used.

2.4 Why should one use Design Patterns?

Design patterns are a set of tried and tested solutions for common problems in software
design and has arguably become a standard of essential knowledge for software developers
nowadays. One advantage of using design patterns is that we do not have to reinvent the
wheel for every time one comes across a similar problem. Instead, one can save time by
implementing a proven and well-documented solution. Furthermore, one will reduce the
risk of implementing a solution that is untested and new or, in the worst-case scenario,
implementing a design that is later discovered not to be viable. Design patterns also aid
communication for teammates by defining a common language. Instead of describing our
suggestion to a design problem in detail, we can instead say the name of the design pattern
that solves the problem, and everyone will understand the idea behind our proposal.

2.5 Classification

Design patterns differ in their granularity and level of abstraction [15]. Some patterns
only concern the process of creating objects, while other patterns might deal with the
composition of classes or objects. This is where classification comes to play. The design
patterns are classified so that we can refer to families of related patterns. Since there are
many patterns, having this classification helps us to learn the patterns faster and deepen
our understanding of what the patterns do, how they compare, and when to apply them.
There are three main groups to which design patterns are categorized to:

e Creational patterns cover the process of object creation and abstracts the process
from the code that relies on it.

11



e Structural patterns is about composing objects and classes to form a larger and
flexible structure.

e Behavioural patterns focuses on how classes or objects communicate effectively and
distribute responsibility between them.

Table 2.5.1 shows an overview of the classification of the GoF design patterns with their
category. The red highlighted design patterns in the table are the patterns we implemented

in our mobile game. The next section describes them in more detail.

Creational Structural Behavioral
Class | Factory Method Adapter Interpreter
Template Method
Object | Abstract Factory | Adapter Chain of Responsibility
Builder Bridge Command
Singleton Composite Iterator
Prototype Decorator Mediator
Facade Memento
Flyweight Observer
Proxy State
Strategy
Visitor

Table 2.5.1: Overview of Design Pattern Classification [15]

2.6 Description of our Selected Design Patterns

The patterns we selected for our study are Abstract Factory, Command, Visitor, Strategy,
and Singleton. These five patterns were simply selected because they were commonly used,
and the author did not have adequate time to use more. The patterns are described with
their intent, motivation, and structure, and we also describe the Factory Method as it is a
part of our Abstract Factory implementation. For more details, please read the GoF book
[15].

2.6.1 Abstract Factory

Intent

Abstract Factory provides an interface for creating families of related or dependent objects
without specifying their concrete classes.

Motivation

Imagine developing a shopping website where one sells different products that belong
to different brands. One has several shoes, t-shirts, and jackets from Nike, Puma,
and Adidas, and the website should have a feature to filter the products so that one
only shows products from a specific brand. Here, we want to avoid the cumbersome
process of manually changing the code, each time we display the products from a
particular brand. Abstract Factory solves this problem by defining sub-factories,

12



creating objects related to their family. Thus, one can easily switch between families
of objects by simply changing the factory that makes them.

Structure

From figure 2.6.1, we see AbstractFactory defining interfaces for creating different
products. The sub-factories of AbstractFactory implements the interfaces,
returning a concrete product related to their family. For instance, the method
CreateProductA() in ConcreteFactoryl returns the ConcreteProductAl while the
same method in ConcreteFactory2 returns the ConcreteProductA2. Furthermore,
the client that uses a concrete factory does not need to specify or know the exact
class that will be created.

ConcreteFactory1

CreateProductA() i 5
CreateProductB() : :

A4

Yy
%7 ConcreteProductA1 ConcreteProductBA
=={nterface==
AbstractFactory
Client R
CreateProductA() AbstractProductA AbstractProductB
CreateProductB() Z‘k [‘S
ConcreteProductA2 ConcreteProductB2
M M
ConcreteFactory2 i i

CreateProductA() B .
CreateProductB() [~~~ T TTTTTTTTTTTTTTTTTTTTTTTTT

Figure 2.6.1: General UML representation of Abstract Factory

2.6.2 Singleton

Intent
Singleton ensures a class only has one instance and provides a global access point to it.
Motivation

Sometimes one wants a class to have no more than one instance. There should be only
one accounting system committed to serving a company. A country may have only
one official government with a global access point that refers to those in charge. A
game app should be running on only one game engine.

Structure

The class itself is responsible for keeping track of its instance and making sure that no
other instance can be created. It accomplishes this by having a private constructor
and a static method getInstance(), which intercepts requests to create new instances

13



of the class. The method also provides a global access point to the instance by
returning the same instance of the class.

. N
Singleton if (instance == null) {

- instance: Singleton i i .
instance = new Singleton()

- Singleton()
- getlnstance(): Singleton <-f-----------

return instance

Figure 2.6.2: General UML representation of Singleton

2.6.3 Command
Intent

Command encapsulates a request as an object, thereby letting us parameterize clients
with different requests, quests or log requests, and support undoable operations.

Motivation

The command pattern acts as a middle layer between the sender and the receiver. The
sender can then issue requests without knowing about the receiver of the request
or the operation that is being performed. The command pattern handles this part.
For instance, imagine we are working on a toolbar, developing buttons and menus
that perform different requests based on user input. A flawed solution would be to
implement each request in each button or menu. When further developing other
menus, the code can then be duplicated or have menus dependent on the buttons.
Besides, the buttons and other menus would be highly dependent on the business
logic of the receivers. Any change of its business logic would lead us to have to change
the code of every object that was dependent on it. The Command patterns let the
toolbar objects (sender) make requests to unspecified receiver objects by converting
the request itself into an object. This object can then be passed and stored around,
avoiding duplication of code and making the toolbar objects unaware of the receiver
of the request and the operation that will be carried out.

Structure

The crucial part of this pattern is an abstract Command class, which defines the abstract
method Execute() for executing an operation. As we can see from figure the
ConcreteCommand class defines a binding between the receiver and the action. Its
Execute() method will then invoke the corresponding operation on the receiver. The
receiver should know how to execute the action associated with the request. With
the important parts in place, the client can create a ConcreteCommand object and
sets its receiver, and the invoker can call the command to carry out a request.

14



Invoker
<=[nterface==
- aCommand: Command Command
Client > < >

. + storeCommand(Command) + Execute()
! + executeCommand()
Receiver ConcreteCommand
i e e }
: + Actmn” { + Execute” .‘z .................. recewer_;‘q‘ctinn()
S >

Figure 2.6.3: General UML representation of Command

2.6.4 Visitor

Intent

‘Represent an operation to be performed on the elements of an object structure.
Visitor lets one define a new operation without changing the classes of the
elements on which it operates.’[15]

Motivation

The Visitor pattern lets one separate code or operations that are distinct and unrelated
to the structure of objects, leading to a system that is easier to maintain, change, and
understand. Say we have a shopping cart full of products (elements). The products
have different ways of calculating their price, some might need to be weighted,
and others have prices. To avoid adding additional code in the element itself for
calculating their total price. The cashier will instead act as a visitor, taking the
different set of products and weighting them with prices to provide us with the total
cost.

Structure

From figure we see that the interface Visitor declares a visit operation for each
concrete element of Element. Each visit operation takes in a specific element as a
parameter, which lets the visitor identify the concrete class of the element it visits,
and then give direct access to the element. The ConcreteVisitor implements each
visitor operation declared by the Visitor and stores its local state. The Element
simply defines an Accept operation that accepts a visitor to let it perform some
actions on itself. The concrete elements implement the accept operation.

15



<<nfarface==
Visitor

Client F

+ VisitElementA{ElementA)
+ VisitElementE(ElemeniE)

( |

ConcreteVisitor1 ConcreteVisitor2
+ VisitElementA{Elementd) + VisitElementA{Elementd)
+ VisitElementE(ElemeniB) + VisitElementE(ElemeniB)
Y
==(nierrace==
ObjectStructure Element

+ Accept(Visitor)

1

f )

ElementA ElementB
+ Accept(Visitor v) A + Accept(Visitor v) A
+ OperationAlf) ! + OperationB() '
Accept(Visitor v) { Accept{Visitor v) {
vvisitElementAdthis) v.visitElementBithis)
H H

Figure 2.6.4: General UML representation of Visitor

2.6.5 Strategy

Intent

‘Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from
clients that use it.'[15]

Mbotivation

The Strategy is useful when we want to choose or change between interchangeable
algorithms in runtime to carry out a specific behaviour. For instance, when we
want to compress files using different approaches such as ZIP and RAR. We can
define classes that encapsulate different compression algorithms, which will be our
concrete strategies.

Structure

16



Following figure shows the general UML representation of Strategy. The context

is composed by a Strategy. The Strategy defines a interface common to all concrete
strategies. This interface is used by the context to call concrete strategies. The

concrete strategies implements the algorithm interface.

Context

- sfrategy: Strategy

sfrategy

+ setStrategy(strategy)
+ executeStrategy()

Strategy

F
+ Algorithminterface()

N\

[

|

Concrete StrategyA

Concrete StrategyA

Concrete Strategy

+ Algorithminterface()

+ Algorithminterface()

+ Algorithminterface()

Figure 2.6.5: General UML representation of Strategy

2.6.6 Factory Method

Intent

The factory method defers the instantiation of a class to its subclasses.

Motivation

The intent is accomplished by defining an interface for creating an object in a superclass

and then letting the subclasses alter which type of object to be created. Usually, one
wants to use this pattern when we create one or several classes that share a common
superclass. Some indicators to use this pattern are when we do not know ahead of
time what class object we need and when we do not want the user to know every
subclass.

There are several advantages to implementing this pattern. One avoids tight coupling
between the ConcreteCreator and the ConcreteProducts[2.6.6 and the user does not
need to specify or know the exact class of object that will be created.

Structure

Figure shows the general class diagram for the factory method. The ConcreteCre-

ator class is the factory class which has a FactoryMethod that we call for generating
a ConcreteProduct. Usually, we decide what type of ConcreteProduct we want by
sending a parameter to the FactoryMethod in ConcreteCreator. Furthermore, the
Product is the parent class to ConcreteProduct, and normally, there is a group of dif-
ferent concrete products that inherit from a Product class. For instance, the product
class can be an abstract Vehicle class. Then we have several ConcreteProducts classes
such as Ship, Car, and a Boat that inherits from Vehicle.

17



Creator

Product
FactoryMethod()
] ol = Meth
AnOpearation() O-F=-=-====- HIOI}UL.I FactoryMethod()
ConcreteProduct ‘_ ======-=-==+ ConcreleCreator
FactoryMethod(} O~ ------1 retumn new ConcreteProduct

Figure 2.6.6: General UML Representation of Factory Method.

2.7 Summary

Design patterns are a powerful and useful concept in software engineering, a set of tried
and tested solutions for common problems in a specific context. The design patterns are
classified and grouped into either creational, structural, or behavioral for making it easier
to help us learn the patterns and more profound our understanding about them. The
catalog of design patterns was introduced by the Gang of Four and consisted of 23 design
patterns that are widely known and used to this day. The different patterns are described
using a consistent format consisting of sections such as the pattern name, the intent of the
pattern, and more. Finally, we have illustrated an example of the Factory Method, which
is, in our case, a part of the Abstract Factory. This pattern is later referenced in section
"Mobile Devices" when we look at a mobile version of this pattern called Energy-conscious
Factory Method [6].

2.8 Mobile Devices

2.8.1 Introduction

Over the last decade, mobile devices’ evolution in the market and demand for complicated
software running on mobile devices has proliferated. As an example, mobile phones went
from having only simple features at the beginning of the 2000s, such as messaging, camera
pictures, phone calls, to becoming central in our modern life offering payment services,
apps, high video streaming capabilities, and more. With mobile devices available on the
market, differing in sizes, power capabilities, battery life, different platforms, and a short
time to market have made developing and designing mobile apps a challenging task. In
this section, we will look into the challenges and issues with mobile app development, and
then briefly showcase some examples of existing mobile design patterns and how they can
overcome some of these challenges. But firstly, we describe what a mobile device is.

What is a Mobile Device?

Mobile devices, also known as handheld computers, are defined as a "computing device
that is small enough to hold and operate in hand" [27]. The significant difference between
mobile devices and computers is that mobile devices are made for portability, and is,
therefore, both lightweight and compact [26]. Mobile devices like smartphones, tablets, or
e-readers vary in size and computing capability; some devices are small enough to fit in
our pocket, and others may be larger with more processing power and memory.

18



In this paper, we define "mobile device" as a smartphone where it is possible to develop
mobile apps on, as we will develop mobile apps using Android.

2.8.2 Main Challenges with Mobile Devices

Different mobile devices on the market vary in screen size, memory usage, processing
power, battery life, and operating systems. As we can see, these are boundaries one has
to take into account when developing a mobile app, making it challenging to develop a
runnable app for the different mobile devices and keep up with the fast-evolving and short
to time market.

Below are some of the main issues and challenges related to mobile devices, according
to [12] [8].

Battery Life

Unlike desktops, which are always attached to AC power, mobile devices have the desire
to use and operate on batteries (DC power). Due to this desirability combined with the
size constraints of mobile devices, a new constraint is created; limited power supply.

Computing Power

Mobile devices have less computational processing power than regular computers.
Normally an app on a computer can not run on a mobile device as it requires
heavy computation. Nevertheless, the app can redesign to manage the resources more
appropriate for mobile devices with various techniques. The consequences of a low efficient
mobile app can cause problems such as slow load time, crashing or freezing when accessing
it.

Wireless Network and Communication

Mobile devices require wireless network access, that allows network communication even
while a user is mobile. As a result, wireless networks and communication introduce
challenges such as lower bandwidth, high bandwidth variability, heterogeneous network,
and security risks [12].

Mobility

While a stationary computer can configure to prefer the nearest network address, mobile
devices need to determine which server to use while still connected to the network. As a
result, mobility introduces issues like address migration, location-dependent information,
and migrating locality.

Portability

Being portable causes issues such as a smaller battery, user interface, storage capacity,
and also increases the risk of data (risk of physical damage, unauthorized access, loss, and
theft).

19



2.9 Development of Mobile Applications

2.9.1 Introduction

Mobile app development is a relatively new phenomenon that is increasing rapidly due to
the ubiquity and the popularity of smartphones among end-users. As we will see, there
are different approaches to developing mobile apps, and choosing the right approach for
one’s mobile app is important, as different apps and platforms have different requirements.
Understanding the differences between the different approaches and what they offer will
give us a better insight into developing mobile apps.

2.9.2 The Different Approaches

There are different approaches for developing a mobile app, namely native, web, and
hybrid. Native apps are executed entirely on the operating system (OS) of the device. The
advantage of native apps is that we get access to all the features (in many cases, unique
features) and functionality made available by the OS vendor. A critical disadvantage of
native apps is that the code is written platform-specific, making the development of native
apps for different OSs an expensive task. Web apps have a device-based client executing
on a remote server and thus support multi-platform. The main disadvantage of web apps
is that they have limited access to the features and functionality made available by the
OS vendor. Web apps are not capable of developing apps where key elements of the app
are required to be developed natively; for example, Skype having access to user contacts
is necessary to achieve the desired functionality. The hybrid approach is both native and
web-based, giving us "native-wrapped' web apps. Essentially, with this approach, we get
the best of both worlds: native features and multi-platform support.

2.9.3 Main Challenges with Mobile Application Development

Different mobile platforms are running their own OS, such as Apple’s i0S, Google’s
Android, Blackberry OS, and Windows Phone. From [table p. [22], we can
see that they have different languages, tools, file formats, and more for their mobile
app development. As [8] mentions, mobile devices having these different requirements,
operative systems, and platforms dedicated to them, makes it a challenging task to design
and develop a mobile app. For instance, some platforms are more suited for deploying
the type of application: web, native, or hybrid. The Software Development Kit (SDK)
provided by Android consists of a set of tools for creating native apps for Android devices.
[22] presents six design considerations when designing a mobile app:

e Decide if one will build a native, web, or hybrid app

e Determine device types one will support considering screen size and resolution, CPU
performance characteristics, memory, and storage space.

e Take into account limited bandwidth scenarios such as connection issues, choosing
hardware and software protocols based on speed, power consumption, and
granularity.

e Design a user interface (UI) while taking into account platform constraints: memory,
battery life, adaptations to different screen sizes and orientations, security, and
network bandwidth.

20



e Design an appropriate layered architecture for mobile devices by using the concept
of layers to maximize the separation of concern and to improve reusability and
maintainability.

e Consider device resource constraints like battery life, memory speed, and processor
speed in every design decision.

[19] conducted a qualitative study, identifying the main challenges developers face in
practice when developing apps for different mobile devices. The following are some of the
main challenges the developers from the study faced with developing a mobile app with
different mobile platforms such as Microsoft, Apple, and Windows.

e Open/Closed Source Development Platforms There was a dilemma in the study
about whether the platform should be open or closed. Participants expressed
difficulties with both types. Omne of the drawbacks they expressed of a closed
platform like Apple and Windows was that they lacked control since they did not
have an API to control. For example, it was difficult for them to determine if they
were connected to Bluetooth. On the other hand, some participants had difficulties
with the open platform Android where manufacturers did not always adhere to the
standards by modifying the source code to their wishes and launching it. They gave
the following example: "the standard Android uses commas to separate items in a
list, but Samsung phones use a semicolon”.

e Frequent changes and steep learning curve A common challenge between the
many developers was learning the languages and API of the different platforms and
keeping up with the frequent changes to the software development kits (SDK). Most
mobile developers would want their app to support different platforms, but this can
be a cost of quality as learning the different platforms is a steep learning curve, since
each platform are completely different (languages, marketplaces, guidelines, tools).

e Data-intensive apps Dealing with a large volume of data for apps is problematic,
especially when one is limited to mobile constraints. A respondent explained this
furthermore that: "So much data cannot be stored on the device, and using a network
connection to sync up with another data source in the backend is challenging".
Concerning hybrid apps, a participant quoted, "Our apps have a lot of data and
offline caching does not seem to work well.".

¢ Reusing code across different platforms The majority of the participants con-
cluded that reusing code or porting functionality across the platform was challenging
or impossible. Also, when reusing code across a platform, the quality of the result
was not adequate. This seems logical, as we have mentioned in Table 2.9.1 that
the platforms have different requirements for development (programming language,
packaging, and operative systems). A participant explained in further detail a simple
example of how the platforms push messages, for why porting code is not possible:
"... In Android, a push message wakes up parts of the app, and it requests for CPU
time. In iOS, the server would pass the data to the Apple push server. The server
then sends it to the device, and no CPU time to process the data is required."

Varying User Interfaces

In [4], the authors mention creating apps for stationary users on a PC or a similar device,
using the typical user interfaces keyboard, mouse, and monitor have proved to be fairly

21



efficient. For mobile apps, these user interfaces are not applicable. There are varying
and alternative interfaces for mobile apps such as voice user interfaces, small displays,
touch-screen displays, pointing devices, and buttons. Having to account for multiple user
interfaces and often used in combination can lead to heavy user interaction, tightly coupled
apps, and an unstructured design.

Overview over Native Application Development

As previously mentioned, choosing the right OS and platform for one’s mobile app
is important as the different OS have different requirements for their mobile app
development. Following table is a overview over the native app development and the
different requirements of the operative systems.

Operative Systems ‘ Apple iOS ‘ Android ‘ Blackberry OS ‘ Windows Phone
Languages ‘ Objective-C, C, C++ ‘ Java and some C,C++ ‘ Java ‘ C#, VB.NET and more
Tools Xcode Android SDK BB Java Eclipse Plug-in | Visual Studio

Windows Phone Dev Tools
File format ‘ .app ‘ .apk ‘ .cod ‘ .xap
App marketplaces ‘ App Store ‘ Google Play ‘ Blackberry App World ‘ Windows Phone Marketplace

Table 2.9.1: Overview over Native app Development

2.10 Why do we need Mobile Design Patterns?

The GoF introduced 23 design patterns that have been influential in software development.
The design patterns have proven to be well tested and documented solutions for common
problems in a specific context. However, can we use the same solutions in the context of
mobile app development? Most likely not, as the issue with applying the design patterns
directly to mobile devices is that there were initially meant for regular computers. The
challenges of mobile app development, like minimizing power consumption, had never
been a concern [6]. However, the design patterns can be adapted and designed for such an
environment and overcome the limitations and challenges with developing apps for mobile
devices.

2.10.1 Examples of Mobile Design Patterns

From studying research articles, we found some examples of mobile design patterns that
overcame different challenges with developing mobile apps. The following is a brief
description of the examples we found.

High-efficiency Model-view-controller pattern for mobile apps

The author Fang-Fang Chua [§] proposed an extended version of the model-view-
controller (MVC) pattern, which combines the Observer, Command, Composite,
Mediator and Strategy design patterns. The MVC pattern is a well-known pattern
consisting of three components: model, view, and controller, where the intent is to
separate the business logic (model) and the presentation logic (view) from each other.
In the research article, Dr. Chua claims that the "Extended MVC pattern is used
to separate the presentation and the app code. This allowed us to develop an app

22



with loose coupling and separation of concern.". The extended MVC made it easier
to reuse modules and remove and add features without affecting other modules.

The extended MVC and MVC patterns were implemented, tested, and evaluated for
a Student Planner Android app on different mobile devices to verify if the proposed
design pattern was more reusable and efficient in mobile app development. The test
results showed that the extended MVC pattern greatly improved the efficiency of the
mobile app. Furthermore, the pattern reduced code duplication and made the app
compatible with various devices and properly handled elements such as edit text,
buttons, and scrolling.

Energy conscious factory method design pattern for mobile devices

In this research article [6], the author talks about how the design patterns for object-
oriented-programming, introduced by the GoF were targeted for regulars computers
and not mobile devices. Thus, most of the design patterns are not appropriated
for developing mobile apps, mainly power concerned systems due to limited battery
life. The author intends to solve this constraint by introducing Energy Concerned
Design Patterns, which are based on the existing design patterns from the GoF book.
Starting with the popular Factory Method pattern, the author introduces an Energy
Concerned Factory Method or EC Factory Method.

The difference between the EC Factory Method and the regular Factory method is
that the EC Factory Method is designed for a power limited environment by making
use of struct, classes and static methods in the most efficient combination. Instead
of having the regular Factory Method which consists of a ConcreteProduct class,
ConcreteCreator class, and a non-static FactoryMethod, it had a ConcreteProduct
class, ConcreteCreator struct, and a static FactoryMethod. The results of the
research showed that the EC Factory Method consumed less than approximately
11% CPU time than the regular Factory Method, and around 80% in the worst-case
scenario, making the EC Factory Method more appropriate for developing mobile
apps rather than implementing the regular Factory Method.

Design pattern based approach for development of game engines in mobile platforms

This paper [23] examines the design of a mobile game engine, that satisfies both functional
and non-functional requirements, using design goals and design patterns.

The author focuses on four main design goals for developing a game engine that is
suitable for mobile games. The design goals were mostly determined by hardware
and software specifications of mobile platforms, thus the main design goals were:
Usability, Efficiency, Portability, and Adaptability. Furthermore, the design patterns
were used to help achieve these goals by using efficient conscious design patterns
such as Flyweight, Frame limiting, and other tested and proven game development
patterns. For instance, memory efficiency was obtained by using the design pattern
Flyweight. Flyweight is a structural design pattern where the intent is to minimize
memory usage by sharing as much common data between similar objects, so one can
fit more objects into the available amount of RAM instead of holding all the data
in each object. In this example, they held the static properties of a game object
on a separate registry associated with each type of element. As a result, when a
new instance was requested, it got provided with allocated dynamic properties and
mapped static properties, reducing the size of the element by double.

23



The tests showed that including mobile-centric design patterns, the performance of
the game engine increased drastically. The memory consumption was reduced up
to 56% and power consumption decreased up to 6%. Both ratios increased with
increasing the number of game elements up to a certain extent. In conclusion, the
paper concluded that "Using design patterns allowed us to use industrial-strength,
tested and proven methods in the mobile development context."

2.10.2 Summary

The fast evolvement of mobile devices and the popularity of mobile apps in the market
demand complicated software to be run on mobile devices without problems such as
crashing and freezing. Mobile devices are known as handheld computers and they have
different characteristics such as size, resolution, battery life, and processing power. These
are some boundaries one has to take into account when developing a mobile app which can
make it difficult to design and develop mobile apps for different mobile devices. Design
patterns, a set of tested and proven solutions for common problems were originally designed
for desktop computers, thus applying these patterns in mobile apps might not fulfill one’s
requirements such as minimizing power consumption. However, mobile design patterns
that have been adapted or designed for such an environment, can be used to overcome the
challenges and limitations with mobile app development.

2.11 Summary

This chapter has introduced design patterns, documentation, and the catalog of design
patterns. The catalog of design patterns consists of proven solutions to common design
problems in a specific context. We believe that these proven solutions can be implemented
and adapted to mobile app development, overcoming the limitations and challenges with
developing mobile apps for mobile devices.

We have identified and analyzed some design patterns for mobile app development
and how they have overcome some of the limitations and challenges with developing apps
for mobile devices. We have looked at an energy-conscious factory method that is suited
for power-conscious apps and a high-efficiency MVC design pattern, which improves the
quality of mobile apps in terms of usability, efficiency, and re-usability.

This chapter aims to give a background about design patterns and to understand the
possible benefits of design patterns and why we need mobile design patterns in mobile app
development. Our proposed work is through developing, testing, and evaluating different
mobile design patterns, find the requirements imposed by the mobile app development
and its mobile devices onto design patterns. By the end, we hope to understand better
how to develop mobile design patterns.

24



Chapter 3

Evaluation Criteria

3.1 Introduction

In this chapter, we explain the history of quality models, its positives and negatives, and
then describe our selected verification criteria from the quality model in international
standard ISO/IEC 25010, for which our mobile apps and its implemented design patterns
have been evaluated towards. Relevant to our defined criteria, we performed a source code
metric analysis with the Quality Metric Object-Oriented Model (QMOOD) introduced by
Bansiya et al. [3]. In the end, we describe the tools and plugins provided by Android,
which we use in our measurement process.

3.2 Quality Model

A quality model is used for evaluating software quality and can be used during the
development stage to ensure and follow that the quality of the software is maintained.
One of the first quality models was introduced in 1977 by McCall [21], and later that year,
another popular model was introduced by Boehm [5]. These models became important
predecessors for the widely known quality model described in the international standard
ISO/IEC 9126 [9]. The quality model of the standard describes six quality characteristics
with their sub-characteristics, for classifying software quality [I0]. The main characteristics
are functionality, reliability, usability, efficiency, maintainability, and portability. Its
successor, ISO/TEC 25010 described in addition to two more design characteristics, namely
compatibility and security [I1]. In this paper, we focus on the quality model of ISO/TEC
25010, because it replaced its predecessor ISO/IEC 9126, and is therefore arguably the
most relevant quality model we can use.

25



Software Product Quality ‘

ISO/IEC 25010 Quality Model

Functional o S
Suitability Compatibility Maintainability

» Functional » Co-existence + Maturity * Modularity
Completeness N

+ Interoperability + Availability + Reusability

+ Functional B

Correctness + Fault + Analysability
Tolerance _—

* Functional + Modifiability
Appropriateness * Recoverability - Testability

Appropriateness
Recognizability

Portability

« Time + Confidentiality + Adaptability
Behaviour + Learnability
+ Integrity + Installability
+ Resource + Operability
Utilization + Non- + Replaceability
+ User Error repudiation
» Capacity Protection
» Authenticity

User Interface

Aesthetics Accountability

Accessibility

Figure 3.2.1: The Quality Model of ISO/IEC 25010

3.3 Analysis of the Quality Models

All the quality models from above share some common faults, which have been pointed
out by several research papers, like being too generic and universal [14] [I3][3][? ]. [14]
points out that the models are too general to meet the unique needs of specific software
systems intended to e.g., mobile devices. The author also noticed that the universal models
covered other needs that are not necessary for mobile apps, making it challenging to find
the necessary parts for evaluating mobile apps. Consequently, the author presented a
mobile quality model, based on the established quality models, that already focuses on the
crucial qualities of mobile software. [? | summaries the disadvantage of the models from
McCall, Boehm, ISO 9126, and ISO 25010; they combine as many perspectives of quality
as possible into one framework, leading it to a high abstraction level. In conclusion, using
only a generic quality model can make it challenging to assess software quality, especially
for specific software systems accurately.

Considering that we are implementing design patterns for a mobile game with limited
capabilities and memory, we extract and scope down the verification criteria from the
quality model of ISO 25010 to Performance Efficiency and Maintainability, as we believe
these two are the crucial qualities to assess. The following list below shows our selected

26



verification criteria or characteristics, and its sub-characteristics.
Verification Criteria

1. Performance Efficiency
(a) Resource Utilization
(b) Capacity

2. Maintainability
(a) Reusability
(b) Modularity

Note that we evaluate only the sub-characteristics Reusability and Modularity from
Maintainability as its other sub-characteristics are out of our scope.

3.3.1 Criteria 1. Performance Efficiency
Performance Efficiency and its sub-characteristics are defined as following [11].

Performance Efficiency - ‘A set of attributes that bear on the relationship
between the level of performance of the software and the amount of resources
used, under stated conditions.

(a) Time behaviour — ‘Degree to which the response and processing times
and throughput rates of a product or system, when performing its functions,
meet requirements’

(b) Resource Utilization — ‘Degree to which the amounts and types of
resources used by a product or system, when performing its functions,
meet requirements.

(c) Capacity — ‘Degree to which the maximum limits of a product or system
parameter meet requirements.

For our study, we define Performance Efficiency as the extent to which our app performs
to the required performance and amount of resources needed. As our game app, with its
implemented design patterns, allocate a high number of objects and also work with views,
context, and activities, it is crucial to manage the resources and components appropriately
and preserve the battery life. The consequences of low-performance efficiency for the app
can be slow response time, freezing, crashing, and stutters in animations. As we will
develop design patterns suited for the mobile environment, our goal is to see if the mobile
design patterns, compared to the regular design patterns, enhance the app’s performance
efficiency.

3.3.2 Criteria 2. Maintainability

Maintainability and our selected sub-characteristics of maintainability are defined as
following [11].

Maintainability - ‘A set of attributes that bear on the effort needed to make
specified modifications.

(a) Modularity — ‘Degree to which a system or computer program is
composed of discrete components such that a change to one component
has minimal impact on other components.

27



(b) Reusability — ‘Degree to which an asset can be used in more than one
system, or in building other assets’

For our study, we define Maintainability as the degree to which the design patterns can
be reused for other mobile apps and the ease of using the design patterns such that a change
to one component should not affect another. Maintainability can be significantly beneficial
for mobile app development as it can, among other things, accelerate the development
process, improve performance, avoid code duplication, and remove bugs and faults. The
GoF says in [I5], that design patterns promote easier maintainability, reusability, and
flexibility. As we change the structure of the design patterns and develop mobile design
patterns, it is crucial to test and see whether the maintainability of the mobile design
patterns has maintained, improved, or worsen. Ideally, as mobile app development
introduces challenges such as short time to market, developing an interactive app with
varying user interfaces, and more, we want to prove that the mobile design patterns can
improve maintainability, especially reusability and modularity.

3.4 Quality Metric Object-Oriented Model

The Quality Metric Object-Oriented Model (QMOOD), introduced by Bansiya et al. [3],
connects information from the low-level source code metrics to the high-level design quality
attributes like efficiency and reusability. Hence why we are using the QMOOD to verify
further the quality of our mobile design patterns and its app. The model is meant for
comparing software design that has similar requirements and objectives. The reason is
that the internal characteristics of software design can be significantly different based on
their requirements and objectives. In our study, we use the model to compare mobile apps
with the same case, implemented with the same design patterns where the difference is
that one app has more mobile design patterns. In conclusion, it is a valid case for using
the model.

From [figure p- , we can see that QMOOD consists of four levels and three
relationships or mappings used to connect the levels. L4 consists of the object-oriented
design components that define the architecture of a object-oriented design with objects
and classes, and the relationships between them. L4 delivers the numerical information
from the design components (objects, classes, methods and more) which is used to measure
the design metrics in Ls. This process is reflected by the relationship Ls4. The design
metrics are assigned to the design properties and their measurement is used to assess the
properties. Lo contains the design properties that may influence the quality attributes in
L.

28



<: | Mapping Level Li Leveli Lj Mapping for level i to level
Level One Level Two Level Three Level Four
L4 L, L1 Ly
Design | 4 12 00 | 4= 00 | 4 b 00
Quality Design Design Design
Aftributes &' Properties \ Metrics &‘ Components
Figure 3.4.1: The Mapping of Levels in QMOOD [3]

In the following sections, we describe the levels (L; to L4) and the mappings between
them (Lj2, Las, L34) from Bansiya et al. perspective.

3.4.1 Quality Attributes (L)

The QMOOD model describe six quality attributes: 'functionality", "effectiveness",
"understandability", "extendibility", 'reusability” and "flexibility". Note the quality
attributes are similar to the attributes of the ISO 9126 standard as its attributes were
selected as the initial set in the QMOOD model. However, the authors decided to exclude
the attributes they reviewed as not contributing to defining design quality and replacing
the terms with terms they meant more descriptive and appropriate. For example, the
term "maintainability" of the ISO standard was replaced by "understandability" as it
concentrates more upon design characteristics[3].

29



Quality Attribute

Reusability

Definition
Reflects the presence of object-oriented design that
allows a design to be reapplied to a new problem
without significant effort.

Flexibility

Characteristics that allow the incorporation of
changes in design. The ability of a design to be ad-
apted to provide functionality related capabilities.

Understandability

The properties of the design that enables it to be
easily learned and comprehended. This directly
relates to the complexity of the design structure.

Functionality

The responsibilities assigned to the classes of a
design, which are made available by the classes
through their public interfaces.

Extendibility

Refers to the presence and usage of properties in an
existing design that allows for the incorporation of
new requirements in design.

Effectiveness

This refers to a design’s ability to achieve the desired
functionality and behaviour using object-oriented
design concepts and techniques.

Table 3.4.1: Quality Attribute Definitions [3]

3.4.2 Design Properties (L2)

Design properties are defined as "tangible concepts that can be directly assessed by
examining the internal and external structure, relationship, and functionality of the design
components, attributes, methods, and classes" [3]. The following table describes the
Bansiya uses only one metric to assess a design
property Hence, we can say that the mapping between the design property and metrics
are direct and easy to follow. The metrics defined in [table[3.4.3] p. [33] are chronologically

definitions of our design properties.

mapped to the design properties in table [3.4.2]

30




Design Property
Design Size A measure of the number of classes used in a design.

Hierarchies Hierarchies are wused to represent different
generalization-specialization concepts in design.
It is a count of the number of non-inherited classes
that have children in a design.

Abstraction A measure of the generalization-specialization aspect
of the design. Classes in a design which have
one or more descendants exhibit this property of
abstraction.

Encapsulation Defined as the enclosing of data and behavior
within a single construct. In object-oriented designs,
the property specifically refers to designing classes
that prevent access to attribute declarations by
defining them as private, thus protecting the internal
representation of the objects.

Coupling Defines the interdependency of an object on other
objects in a design. It is a measure of the number of
other objects that would have to be accessed by an
object in order for that object to function correctly.

Cohesion Assesses the relatedness of methods and attributes
in a class. Strong overlap in the method parameters
and attribute types is an indication of strong
cohesion.

Composition Measures the "part-of", "has", "consists-of," or "part-
whole" relationships, which are aggregation relation-
ships in an object-oriented design.

Inheritance A measure of the "is-a" relationship between classes.
This relationship is related to the level of nesting of
classes in an inheritance hierarchy.

Polymorphism The ability to substitute objects whose interfaces
match for one another at run-time. It is a measure
of services that are dynamically determined at run-
time in an object.

Messaging A count of the number of public methods that are
available as services to other classes. This is a
measure of the services that a class provides.

Complexity A measure of the degree of difficulty in understand-
ing and comprehending the internal and external
structure of classes and their relationships.

Table 3.4.2: Design Property Definitions [3]

31



3.4.3 Design Metrics (L3)

The design properties identified in QMOOD are assessed by using one or more defined
design metrics. While some well-defined metrics for assessing design properties exist,
the authors argued that metrics that could not be calculated before nearly completing
the implementation of classes, could not be used in the model. This resulted in them
defining five new metrics which could only be calculated from design information: Data
Access Metric (DAM), Direct Class Coupling (DCC), Cohesion Among Methods of Class
(CAM), Measure of Aggregation (MOA), and Measure of Functional Abstraction (MFA).
All the metrics identified by the authors are described in table [3.4.3] below.

32



Metric Name Description

DSC Design Size in | This metric is a count of the total number of classes
Classes in the design.

NOH Number of Hier- | This metric is a count of the number of class
archies hierarchies in the design

ANA Average Number | This metric value signifies the average number of
of Ancestors classes from which a class inherits information. It

is computed by determining the number of classes
along all paths from the "root" class(es) to all classes
in an inheritance structure.

DAM Data Access Met- | This metric is the ratio of the number of private
ric (protected) attributes to the total number of attrib-

utes declared in the class. A high value for DAM is
desired. (Range 0 to 1)

DCC Direct Class | This metric is a count of the different number of

Coupling classes that a class is directly related to. The metric
includes classes that are directly related by attribute
declarations and message passing (parameters) in
methods.

CAM Cohesion Among | This metric computes the relatedness among meth-
Methods of Class | ods of a class-based upon the parameter list of the

methods. The metric is computed using the summa-
tion of the intersection of parameters of a method
with the maximum independent set of all parameter
types in the class. A metric value close to 1.0 is
preferred. (Range 0 to 1).

MOA Measure of Ag- | This metric measures the extent of the part-whole
gregation relationship, realized by using attributes. The

metric is a count of the number of data declarations
whose types are user-defined classes.

MFA Measure of | This metric is the ratio of the number of methods
Functional  Ab- | inherited by a class to the total number of methods
straction accessible by member methods of the class. (Range

0to1)

NOP Number of Poly- | This metric is a count of the methods that can
morphic Methods | exhibit polymorphic behavior. Such methods in

C++ are marked as virtual.

CIS Class  Interface | This metric is a count of the number of public
Size methods in a class.

NOM Number of Meth- | This metric is a count of all the methods defined in

ods

a class

Table 3.4.3: Design Metrics Descriptions [3]

33




3.4.4 The Mapping of Lo3

The following table represents the mapping Los, showing the relation between the
design properties and the design metrics identified by Bansiya et. al. The higher the
measurement of a design metric is, the higher value the design property gets. For instance,
the property Design Size will increases as the number of classes increases.

Design Property Derived Design Metric

Design Size Design Size in Classes (DSC)
‘ Hierarchies ‘ Number of Hierarchies (NOH) ‘
‘ Abstraction ‘ Average Number of Ancestors (ANA) ‘
‘ Encapsulation ‘ Data Access Metric (DAM)) ‘
‘ Coupling ‘ Direct Class Coupling (DCC) ‘
‘ Cohesion ‘ Cohesion Among Methods of Class (CAM) ‘
‘ Composition ‘ Measure of Aggregation (MOA) ‘
‘ Inheritance ‘ Measure of Functional Abstraction (MFA) ‘
‘ Polymorphism ‘ Number of Polymorphic Methods (NOP) ‘
‘ Messaging ‘ Class Interface Size (CIS) ‘
‘ Complexity ‘ Number of Methods (NOM) ‘

Table 3.4.4: Mapping of Design Metrics to Design Properties [3]

3.4.5 The Mapping of L

Table displays the connections between the design properties and quality attributes.
The quality attributes are evaluated in terms of the influence and weightings of the design
properties. A design property can either negatively or positively influence the quality of
an attribute. A @ indicates a positive influence, while the opposite indicates a negative
influence.

34



4 Positive Influence § Negative Influence

Reusability Understandab. Effectiveness Flexibility Functionality Extendib.

Design Size @ @*
‘ Hierarchies ‘ ‘ ‘ ‘ ‘ L ‘ ‘
‘ Abstraction ‘ ‘ ¥ ‘ 1) ‘ ‘ ‘ ‘
‘ Encapsulation ‘ ‘ @ ‘ @ ‘ % ‘ ‘ ‘
‘ Coupling ‘ & ‘ 2 ‘ ‘ ¥ ‘ ‘ ‘
‘ Cohesion ‘ @ ‘ @ ‘ ‘ ‘ 1) ‘ ‘
‘ Composition ‘ ‘ ‘ 1) ‘ @* ‘ ‘ ‘
‘ Inheritance ‘ ‘ ‘ * ‘ ‘ ‘ ‘
‘ Polymorphism ‘ ‘ 3 ‘ 1) ‘ T ‘ L ‘ ‘
‘ Messaging ‘ * ‘ ‘ ‘ ‘ L ‘ ‘
‘ Complexity ‘ ‘ 2 ‘ ‘ ‘ ‘ ‘

Table 3.4.5: Design Properties relationships with Quality Attributes[3].

3.5 The Use of QMOOD in our Comparative Study

QMOOD can first of all be used for evaluating design patterns, as they are implemented in
object-oriented design. Design patterns usually contains objects, classes and relationships
between them. We especially chose QMOOD for its ability to analyze the metrics and
design properties, up to the quality attributes. This is relevant for our study, as we
will change the structure of our regular design patterns, in a attempt to develop mobile
design patterns for enhancing performance efficiency and maintainability. The mobile
version of the pattern will have different values of its design properties, and thus possibly
quality attributes. The results of the QMOOD will further verify whether the changes
made for developing the mobile design patterns, has improved the patterns in terms of
maintainability and performance efficiency.

3.6 Analysis of QMOOD

When using QMOOD, the mapping of the levels and the levels itself has to be defined.
However, the QMOOD quality model was made to be non-intrusive and adaptable; thus,
it allows changes to be made to address different perspectives, objectives easily, and in
our case, assessing mobile apps, implemented with design patterns [3]. We can adjust
the design properties, design metrics, quality attributes, and even the mappings between
them to fit our case. In our use case, we evaluate only three quality attributes of our
mobile app; "reusability’, "effectiveness", and "understandability"', as these are the only
relevant attributes to our selected criteria from the ISO 25010. For a detailed definition
of our selected quality attributes, see [table p. . We adapted the design metrics
provided by Bansiya to the metrics provided by the plugin MetricsReloaded. This was
done due to the metrics provided by Bansiya were not available in the plugin, and also we
changed the metrics for which we believed can indicate a better result. See the descriptions
of the metrics in the Bansiya model in [table p- . The metrics from the plugin

35



are Java source code metrics, and we selected the metrics that are similar to the metrics
in the Bansiya QMOOD model. A detailed description of the replacement metrics is in
the table right below.

Name Domain Description

NOC Number of | Package This metric is a count of the total number of classes
Classes in the design.

DIT Depth of Inherit- | Class This metric calculates the depth of the inheritance
ance Tree tree for each class. The depth is calculated as the

number of inheritance steps between the class and
object.

A Abstractness Package This metric calculates the number of abstract classes
and interfaces divided by all classes for each package.

AHF Attribute Hiding | Project This metric calculates the degree of attribute encap-
Factor sulation in a project. Essentially, it gives the ratio

of how many classes an average field is from, other
than the defining class.

1 Instability Package This metric calculates the instability of a package,
defined as the package’s efferent couplings divided
by the sum of the package’s afferent and efferent
couplings. (Range 0 to 1) 0 indicates a maximally
stable category, 1 indicates a maximally unstable
category.

LCM Lack of Cohesion | Class This metric calculates on the degree of cohesiveness

of Methods of a class. A variant of the LCOM metric designed
by Hitz and Montazeri is used due to it being more
appropriate for Java. The metric says that two
methods of a class are related if they share a variable
use, or one method calls another. It is then the
count of the number of components of the method
relation graph. (Range 0 to 1) 1 indicates a highly
cohesive class, which can not easily be split into
smaller classes.

CSA Class Size (attrib- | Class This metric calculates the total number of attributes
utes) or fields for each class. Static fields inherited from

superclasses are not counted for purposes of this
metric.

OMM 1 - number of | Class This metric is the ratio of the number of methods
overridden meth- inherited by a class to the total number of methods
ods / number of accessible by member methods of the class. (Range
methods 0to 1)

NOM number of over- | Class This metric calculates the number of times each non-
ridden  methods abstract method is overriden.
or polymorphism
factor

CSO Class Size Opera- | Class This metric calculates the toal number of operations
tion (or methods) for each class. Static methods inherited

from superclasses are not counted for purposes of this
metric.

WMC Weighted Method | Class This metric calculates the total cyclomatic complex-
Complexity ity of the methods in each class.

Table 3.6.1: Descriptions of our Adapted Design Metrics site MetricsReloaded

36




As we can see, most of our replacement metrics express similar information to the
Bansiya metrics, and some of the metrics are alike but have different names. Some
of the metrics like OOM, Abstractness, and Instability were selected following the
Adapted QMOOD model of [18], because they too express similar information to the
Bansiya metrics. The metrics which are noticeably different are the last metric of both
tables, namely Number of Methods (NOM) and Weighted Method Complexity (WMC).
Compared to NOM, WMC calculates the total cyclomatic complexity of all the methods
in each class instead of counting all the methods. Cyclomatic Complexity is a metric,
defined by McCabe]20], used for evaluating the complexity of a program or an algorithm
in a method. Essentially, the metric counts the number of decisions in a method, and
the more decisions a method has, the more complex it is. Generally, a method with
low cyclomatic complexity is better, and easier to maintain and understand, and vice
versa. The reason for the replacement was that we think WMC is a better indicator of the
complexity as WMC sums up the cyclomatic complexity of all the class methods compared
to NOM, which counts the number of class methods.

In our case, we want the domain of the metrics to be either package or class as we
will first calculate the metrics of the design patterns one by one and then the project
as a whole. Unfortunately, we could not find an alternative metric from the plugin for
the Encapsulation where the domain is package or class. Our replacement metric AHF is
adequate for measuring the Encapsulation, but the metric calculates the degree of attribute
encapsulation of the whole project. As a result, we will use the value of this metric to
assess Encapsulation, only when we are analyzing the project as a whole. When we analyze
the design patterns one by one, the calculation will be neutral; thus, Encapsulation will
have value 1.

3.6.1 The Mapping of Los

The following table shows the relation between the design properties and our
replacement of design metrics. This process represents the mapping Los.

Design Property Derived Design Metric

Design Size Number of Classes (C)
‘ Hierarchies ‘ Depth of Inheritance Tree (DIT) ‘
‘ Abstraction ‘ Abstractness (A) ‘
‘ Encapsulation ‘ Attribute Hiding Factor (AHF) ‘
‘ Coupling ‘ Instability (I) ‘
‘ Cohesion ‘ Lack of Cohesion of Methods (LCM) ‘
‘ Composition ‘ Class Size Attributes (CSA) ‘

Inheritance 1 - Number of Methods Overriden / Number of Methods

(OMM)

‘ Polymorphism ‘ Number of Methods Overriden (NOOC) ‘
‘ Messaging ‘ Number of Methods (METH) ‘
‘ Complexity ‘ Weighted Method complexity (WMC) ‘

Table 3.6.2: Design Metrics for Design Properties [3]

37



3.6.2 The Mapping of L2

4 Positive Influence  § Negative Influence

Reusability Understandab Effectiveness
Design Size @ ¥

Hierarchies

Abstraction

Encapsulation

‘ Coupling

» | @
D@ e

Cohesion

Composition

Inheritance

B B 5

Polymorphism

@

Messaging @
‘ Complexity ‘ ‘ ¥ ‘ ‘

Table 3.6.3: Design Properties connections with Quality Attributes[3].

As we can see from the table above, we changed the Hierarchies property to negatively
effect the Effectiveness, compared to the positive influence in Bansiya’s model. The change
was made due to the design property is now being measured by the metric Depth of
Inheritance tree. According to [I7], the longer the inheritance tree, the danger of having
extra overhead increases, which can consume more resources then necessary, thus resulting
a negative influence for the Effectiveness.

3.7 Measurement Process

In this section, we describe how we use the QMOOD model and the tools, plugin, and
methods to evaluate our apps and its implemented design patterns towards our verification
criteria from ISO 25010 and QMOOD model.

3.7.1 Our Measurement Process of QMOOD

In step Li2, Bansiya uses a computation formula for computing the value of the quality
attributes. The formula uses weighted design properties in combination to build one
quality attribute. As we can see from [table p- , the weighing of the design
properties can either positively or negatively influence the quality attribute. For example,
the design size has a positive effect on the reusability as the more classes we have, the more

38



we can reuse. On the other hand, for understandability, the design size has a negative
effect as the more classes we have, the size of the app increases. Thus it will be harder
to maintain and understand the app. The initial value of the weighted design properties
had, depending on if it has a positive or negative influence, +- 1 or +- 0.5. In the end, the
initial values of the weighted design properties are proportionally changed so that the sum
of the new weighted design properties are equivalent to 4+-1. This ensured that the sum
of weighted design properties influences the quality attribute +-1. This way of weighting
was chosen by Bansiya to make it straightforward and easy to apply. The following table
shows the computation formula for the quality attributes.

Quality Attribute Index Computation
Reusability -0.25 * Coupling + 0.25 * Cohesion + 0.5 * Messaging + 0.5 * Design Size

Understandability -0.33 * Abstraction + 0.33 * Encapsulation -0.33 * Coupling + 0.33
* Cohesion - 0.33 * Polymorphism - 0.33 * Complexity - 0.33 * Design
Size

Effectiveness 0.22 * Abstraction + 0.22 * Encapsulation + 0.22 * Composition +
0.22 * Inheritance + 0.22 * Polymorphism - 0.11 * Hierarchies

Table 3.7.1: Computation Formulas for Quality Attributes [3]

In practice, the actual value of the metrics will have different ranges when calculating
the sum of the different metric values. Hence why, we normalize the metric values with
respect to their metric value of the first version, which is, in our case, the app that is
implemented with the regular design patterns. The following example illustrated in the
tables[3.7-2] and [3.7-3] shows how the actual metric values are replaced by their normalized
values. The normalized values are calculated by dividing a metric value with its metric
value in the first version of the app.

app 1.0 app 2.0 app 3.0
Design Size 18 35 42

| Hierarchies | 8 | 12 | 15
‘ Abstraction ‘ 2 ‘ 5 ‘ 12
| Encapsulation | 0.23 | 038 | 0.54
| Coupling | 4.02 | 504 | 83
| Cohesion | 03 | 025 | 02
‘ Composition ‘ 73 ‘ 120 ‘ 147
‘ Inheritance ‘ 0.2 ‘ 0.48 ‘ 0.82
| Polymorphism | 13 | 34 | 59
‘ Messaging ‘ 23 ‘ 48 ‘ 74
| Complexity | 57 | 72 | 8l

Table 3.7.2: Example 1: Actual Metric Values for App

39



app 1.0 app 2.0 app 3.0
Design Size 1 1.94 2.33

‘ Hierarchies ‘ 1 ‘ 1.5 ‘ 1.87
‘ Abstraction ‘ 1 ‘ 2.5 ‘ 6

‘ Encapsulation ‘ 1 ‘ 1.65 ‘ 2.34
| Coupling | 1 | 125 | 2.06
| Cohesion | 1 | 08 | 05
| Composition | 1 | 1.64 | 201
‘ Inheritance ‘ 1 ‘ 2.4 ‘ 4.1
‘ Polymorphism ‘ 1 ‘ 2.6 ‘ 4.53
‘ Messaging ‘ 1 ‘ 2.09 ‘ 3.2
| Complexity | 1 | 126 | 142

Table 3.7.3: Example 1: Normalized Metric Values for App

After normalizing the metric values, we can calculate the values for the quality
attributes. The next table [3.7.4] shows the computed value of the quality attributes
based on the normalized values from the metrics. From the example results, we can
see it indicates that the last version of the app has increased reusability and effectiveness.
However, understandability has reduced, which is reasonable as the app size has increased.

Quality Value app 1.0 app 2.0 | app 3.0
Reusability 1 1.90 2.38

| Understandability | -1 | -2.34 | -4.45
‘ Effectiveness ‘ 1 ‘ 2.31 ‘ 3.90

Table 3.7.4: Example 1: Computed Quality Attribute Values for App

Metrics Reloaded

Metrics Reloaded is a plugin from the Android Marketplace that calculates and analyzes
the source code towards a set of selected metrics. This plugin was used to measure the
design metrics we have selected from the plugin [table p. [36].

3.7.2 Our Measurement Process of ISO/IEC 25010

The app was tested towards our selected verification criteria from ISO/IEC 25010 with
Android Profiler tools. Also, we measured the execution time of the design patterns.

Android Profiler

Android provides built-in profiler tools to provide real-time data about how one’s app uses
CPU, memory, energy, network, and battery resources [I]. The following are descriptions of
two profilers we used in Android Studio and what selected sub-characteristics of ISO/IEC
25010 they evaluated.

40



e CPU Profiler allows us to inspect our app’s CPU usage in real-time while interacting
with our app and inspect details in recorded method traces (Java), function traces
(C/C++) and system traces. For evaluating Performance Efficiency, we record the
CPU usage of our design patterns executed over a certain time.

e Memory Profiler will help us monitor the memory use of our app. It will help us to
identify memory leaks and track memory allocations by capturing heap dumps. A
heap dump is a snapshot that shows all the objects using memory at a particular
time. Memory leaks can then be spotted by identifying objects still in memory that
should not be. This can happen when the garbage collector is unable to reclaim
a resource and return it to the heap. In Android, they can typically occur when a
view, context, or activity reference is saved on a background thread. As we have been
working with views, activities, and their context, we have to be aware of memory
leaks for managing resources appropriately. We also have to be aware of unnecessary
memory allocations, as we will allocate a high number of objects. Using memory
profiler, we can then identify where in the code we allocate too many objects in a
short amount of time or leaked objects. Avoiding an undesirable memory allocation
can lead to better performance [I]. A good score in memory profiler will indicate
a positive influence on the sub-characteristics Resource Utilization of Performance
Efficiency.

Execution Time

The execution time of the design patterns and the app was measured by using the Java
method System.nanolongtime(), because it is accurate and straightforward. If a mobile
design pattern has a better execution time then its regular version, then we can say
that the mobile design pattern has improved in the sub-characteristics Time behavior of
Performance Efficiency.

3.8 Summary

Our mobile design patterns will be evaluated towards two selected verification criteria or
characteristics, namely performance efficiency and maintainability from the ISO model
25010. For performance efficiency, we evaluate three sub-characteristics: time behavior,
resource utilization, and capacity. For our use case, we evaluate how the app performs with
regards to the required performance and amount of resources needed. For maintainability,
we focus only on the sub-characteristics modularity and reusability. We evaluate the degree
to which the design patterns can be reused for other mobile apps and the ease of using
the design patterns such that a change to one component should not affect another. To
further assess the quality attributes, we use the QMOOD model to analyze and compare
the source code metrics between the design patterns and link them further up to design
properties and then quality attributes. Our goal of the evaluation is to see if the mobile
design patterns compared to the regular version, have improved the design properties of
the app, proving that the proposed mobile design patterns are more suited to mobile app
development and enhance performance and maintainability of the app.

In the measurement process, we make use of Android Profiler Tools to profile and
measure CPU usage and memory usage. In addition, we measure the execution time of
the design patterns. For measuring the metrics in the QMOOD model, we use the plugin
MetricsReloaded.

41



42



Chapter 4

Analysis

4.1 Introduction

In this paper, we create and implement different mobile design patterns. We first have to
understand the differences between a mobile design pattern and a regular design pattern.
Furthermore, we discuss the difference between implementing design patterns in a non-
mobile and mobile environment as this can greatly affect the effectiveness of a mobile
design pattern, and whether or not it is applicable to use. Lastly, we introduce some of
the methods and concepts of how we create and implement mobile design patterns.

4.2 Mobile Environment vs. Non-Mobile Environment

Developing a mobile app in a mobile environment is different from developing a desktop
app in a non-mobile environment. These differences can affect and introduce new
challenges and requirements to design patterns. The following sections discuss the
main differences between developing apps in the mobile environment versus non-mobile
environments and how we believe it can affect a design pattern.

4.2.1 Data Persistence and Application Life Cycle

A wuser interacts with mobile apps in high frequency compared to desktop apps. The
user also interacts usually with one app at a time. Hence why, mobile apps compared to
desktop apps are often opened, closed, reopened, or hold on standby (to save battery life).
This highlights the issue of data persistence for mobile apps [14]. For example, a running
app currently in use may be interrupted by a phone call, leading to the app going into a
paused state. Afterward, the app’s latest changes can be lost if the user did not save them
before the app was paused due to the app being killed in the background by the mobile
system, especially if it runs out of memory. These state changes often happen in a mobile
app and must be appropriately handled to guarantee data persistence. This is generally
handled by an implemented application life cycle where the developer can define what the
app does when its states changes. Most mobile platforms offer their life cycle, differing in
syntax and semantics. In this paper, we introduce the application life cycle in Android.
Android has four essential building blocks of an app or components: activities, services,
broadcast receivers, and content providers [I]. The components serve their purpose and
have distinct life cycles. The activity is an entry point for user interaction and represents
the user interface for a single screen. The activity has callback methods that correspond
to specific stages of its life cycle. These methods can be used to manage the life cycle of

43



the activity and the transitions between the states. The following sections describe the
callback methods, and figure on the next page, illustrates the activity’s lifecycle.

OnCreate()
This is the first invoked method when an activity gets launched. This method must be

implemented and initialize the essential elements of one’s activity. Most of all, this is
where one must define the layout of the activity’s user interface.

OnStart()

This method is invoked after the OnCreate() method or when the activity gets restarted.
This callback contains the final preparations for interacting with the user.

OnResume()

This callback is invoked just before the user begins interacting with the activity. Here, all
user input is recorded, and the core functionality of the app implemented.

OnPause()
The OnPause() method is called when the activity gets interrupted and loses focus. In this

method, the activity is still partially visible before it will, in most cases, go into Stopped
state and no longer visible.

OnStop()

This callback is called when the activity is no longer visible to the user.

OnRestart()
If the activity is no longer visible but is returning to interact with the user again,

OnRestart() is called. The callback will restore the state of the activity from when it
was stopped.

OnDestroy()

If OnRestart() is not called, the next callback is OnDestroy(), which is the final callback
method before the activity is completely destroyed.

44



onCreate()
onsStart()
User navigates .
to the activity onResume()
| Appprocess | |' Activity
' Rl / . running
Y .
—_—

Another activity comes

into the foreground

v

onPause()

|
The activity is
no longer visible

v

onStop()
|

Apps with higher priority
nead memory

-

User returns
to the activity

[

onRestart()

Started

Funning

Destroyed

Callback Method

Invoke

User navigates
to the activity

)

The activity is finishing or
being destroyed by the system

v

onDestroy()

Figure 4.2.1: Illustration of the activity lifecycle [I]

When working with activities, it is also important to release all the activity resources
before it is completely terminated. If not, memory leaks can happen. This was described
more in detail in [chapter Evaluation Criteria, p. . As we can see, when developing
a mobile app in Android with design patterns, we have to properly handle its core
components and its life cycles to guarantee data persistence and avoid other problems

such as memory leaks.

4.2.2 Computing Perspective

Following is a list of the main issues with the development of apps in a mobile environment
from a computing perspective and how we believe it can affect the design patterns.

e Battery life and Computing Power Due to battery life and limited computer

45




power, resources must be managed and used correctly and efficiently for mobile apps.
For example, the brightness of the display affects how much battery power is used.
For creating more power concerning design patterns, a solution might be to adapt
the design patterns, using various programming techniques, efficient data types, and
more, to make it more efficient. One has also to consider using heavy loading,
which can make a mobile app more efficient by executing heavyweight functionality,
functions that require a lot of processing power, on the server-side. This allows the
client to access the Web Service API to invoke the functionality on the server [8].

e Wireless Network and Communication Mobile apps connected to the wireless
network need to deal with a lack of reliable connectivity and how to operate when
the app gets disconnected. There seems to be a lack of research for implementing
design patterns for apps that requires reliable and excessive connectivity.

e Portability Due to limitations of storage capacity, mobile apps have to be designed to
optimize data storage usage. Similar concept to heavy loading, a solution might be
to store the data on the server and access it when needed. However, one must take
into account that the information stored on the server will not be available while the
mobile device is disconnected from the network.

e Varying User Interfaces Developing an interactive mobile app that requires multiple
types of user interfaces can lead to unstructured design, such as code duplication,
which can increase the size of the software and poor design. As mentioned in [4],
the traditional MVC (model-view-controller) pattern is not sufficient, but one can
modify and create a more efficient MVC pattern supporting more dynamic properties
as shown in [§].

4.2.3 Software Development Perspective

The main issue we identified with developing apps in a mobile environment from a
software development perspective is that there are different mobile platforms with their
own defined architecture and components. For example, Android uses the Activity
component to represent and manage the user interface, while Apple’s i0OS uses UlView,
UlIViewController, and more. Thus, a mobile design pattern for Android may not work
or has to be tweaked for Apple’s iOS. The platforms also use different programming
languages. Android uses Java, while iOS uses mainly Swift, which is primarily written in
C++. This can cause problems to mobile design patterns, e.g., a technique for memory
saving used in design patterns can work differently for the two languages as Java uses
garbage collector for allocating memory, while Swift uses Automatic Reference Counting
(ARC). In conclusion, the difference in a programming language and mobile platform can
affect the effectiveness of a mobile design pattern. This is further discussed in [section

p. 7.

4.3 Mobile Design Pattern vs. Design Pattern

As mentioned earlier in this paper, design patterns were originally targeted for computers
and not mobile devices. Thus some patterns from the GoF book are not recommended
when developing mobile apps [6]. There are design patterns that are more suitable
than others, such as heavy loading, Flyweight, and Proxy [24]. Both heavy loading and
Proxy can increase the efficiency of a mobile app. Heavy loading executes heavyweight

46



functionality on the server, While the Proxy pattern avoids duplication of objects by
providing a substitute or a placeholder for another object.

The Flyweight pattern can reduce the computing power consumed by an app by
instantiating smaller objects and sharing similar objects instead of instantiating new ones.
For example, in this research paper [24], the results showed that the combination of both
the Flyweight pattern and Proxy, provided that they are applied in the right context,
improved the efficiency of a mobile app by decreasing both execution time and memory
usage.

Design patterns that are not appropriate to use in a mobile environment where,
e.g., power consumption and battery life are of concern, can be adapted to tackle these
constraints, as demonstrated by author Kayun in his research paper [6]. We can conclude
that mobile design patterns are either adapted versions of existing patterns or existing
patterns that are suitable for a mobile environment such as Proxy and Flyweight, to
overcome the limitations and challenges with mobile devices and the development of mobile

apps.

4.4 Choosing the Right Platform for our Mobile Applica-
tion

Platforms such as i0OS, Android, and Microsoft have different programming languages and
tools which can affect the effectiveness of the mobile design patterns and whether or not
they are even profitable to use. Android Studio, which is the IDE for Google’s Android,
is written mainly in Java and some C and C++. However, the adapted Factory method
suggested by Kayun [6] is most effective when it mixes the usage of struct and class. The
Factory method was implemented in Microsoft’s .NET framework, which is written in
C#. In Android Studio, the datatype struct is not available for the developer, making the
adapted Factory method less effective. We can try to replicate a struct in Java by creating
a class where the methods and variables are all public. However, the main advantage of
using a struct was that it is a value type, while class is a reference type [6].

4.5 Creating Mobile Design Patterns

We summarize the techniques and strategies for developing mobile design patterns in
two methods: combining design patterns or using various optimization techniques and
strategies. The methods are created and inspired by some research papers about
optimization techniques and strategies for memory and energy consumption [7][17], and
other papers that have developed various design patterns for mobile devices [§][6].

4.5.1 Method 1: Combining Design Patterns

Because design patterns are extensible and reusable solutions, we can combine the design
patterns to solve a new problem or an existing problem, which is more complex. In [8], the
author incorporated the design patterns Observer, Command, Composite, Mediator, and
Strategy into the architectural pattern model-view-controller to solve the limitations and
challenges of an interactive mobile app which can support dynamic properties and more.

47



4.5.2 Method 2: Using various Optimization Techniques and Strategies

In [17], the authors presented the following techniques and strategies for mobile apps to
save memory space and lower memory consumption.

e Combining several classes

One can save memory quite dramatically if several classes containing methods are
combined into one class. The paper showed two apps with two different structures
where the first app was divided into 14 classes, and in the second, the same methods
were in one class. The second alternative showed impressive 50% more savings.

e Combining several images

This is a similar memory-saving technique as the above, where we combine several images
into one bigger image. Instead of having to store and draw individual images, one
can extract and draw the desired part from a single image. The paper shows that this
technique is especially effective for smaller images as the overhead of the image files
is clearer. Also, if the images are similar in content, then the compression algorithm
might achieve greater results.

e Avoiding small classes

Classes contain considerable overhead. Omne can save more memory by avoiding the
creation of small classes or inner classes. Inner or nested classes are recognized as
classes also, so they too contain overhead. Normally, inner classes contain small
functionality, so having the extra overhead is relatively large in most cases.

e Managing inheritance Inheritance can take up more memory than necessary since all
parent variables are present in its child objects, all though they may be unnecessary.
Additionally, the parent class has to be loaded when creating a child object if it
has not been loaded yet. Inheritance should be carefully used in cases where it is
necessary and useful. Especially, one should avoid unnecessary methods or variables.

e Avoiding dependencies Similar to inheritance, one can save memory by avoiding
unnecessary references between classes, as it saves at least one item from the classes
constant pool and sometimes the loading of the other class.

In [7], the authors proposed optimized strategies for developing software in an energy
concerned environment, a familiar environment for mobile devices, based on quantitative
outcomes. In their report, they measured and compared the power consumption of
significant usages in Object-oriented programming such as classes, prototypes, attributes,
methods, and more. Some impressive results were the power consumption of using class
or struct, and whether or not using the keyword static. In [6], the author realized that
creating a struct rather than a class where the size did not exceed a certain amount was
more efficient. The author also found out that certain combinations of static and non-
static methods were also more efficient, and the static method consuming less CPU then
the non-static method. In conclusion, we can use these research articles as references to
mix usages of keywords and data types for developing a more energy concerned design
pattern. However, it is not possible for us to use the datatype struct as the programming
language of Android is Java. The following table is a summary of the results in [7].

48



Issue Option 1 Option 2 Option 3 Recommendation

Group of attributes creation class struct class

Class prototype abstract class  interface any

Class attribute static dynamic static

Class method static dynamic  dynamic anonymous dynamic
Dynamic local variable class bare use this any
Attribute accessibility private public protected private or public
Method accessibility private public protected any

Table 4.5.1: Summary of Strategies for Power Conscious System [7]

4.6 Summary

We have discussed the main differences between the mobile environment and non-mobile
environment, and how that may affect the implementation of design patterns and the
considerations, we may have to take. Some key differences were that in mobile app
development, we encounter the issue of data persistence and working with application
life cycles. The lifecycle of an activity in Android can transition between different states.
To guarantee data persistence, avoiding the loss of data, we have to properly handle
the transition states, especially where the activity or the app itself gets destroyed. We
have also to ensure that the resources of activity are successfully released so that we
avoid memory leaks. From researching several papers about optimization techniques and
strategies for memory and energy consumption, and other papers that have implemented
mobile design patterns, we summarized the information into two methods for developing
mobile design patterns: 1. combining design patterns or 2. using various optimization
techniques and strategies. Some of the techniques introduced were having an optimized
combination of data-types and keywords, converting multiple images into one, converting
methods to static, and combining several classes. One of the techniques, however, used
the keyword struct, which is not available in the Java language, which we are using in our
use case. One solution was to replace the struct with a public class containing only public
members, leading to the difference being that structure is a value type, while the public
class is a reference type.

49



50



Chapter 5

Case

In this chapter, we introduce the case of our project: a mobile maze game for which our
design patterns will be implemented. We illustrate an abstract view of our app to describe
the overall architecture and flow, and how the game app will work in Android.

5.1 Overall Architecture

Our maze app is a continuation from the maze example in the GoF book [15]. As defined
in the book, a maze consists of a set of rooms. The rooms consist of four sides (north,
east, south, west) that can have a door or a wall. Entering an open door can then lead
us to the next room. A key difference is that we created a maze app with several design
patterns implemented for the same app, making it more of a complete game. In our
continuation, the maze game consists of one player and a room, which consists of 5 sides
where the additional side is the center of the room. In the center of the room, there can
spawn coins which can be picked up by the player. An engine is also implemented and
contains all the objects created in the maze app. As we can see from the flowchart of our
overall architecture the Engine is responsible for updating the app and adding the
game objects into the View. The activity class GameActivity is responsible for processing
incoming requests from the View. From the model-view-controller perspective, the Engine
can be seen as the model as it contains all the game objects with its operations, while
the game activity acts as a controller that interacts with the Engine to perform the user
requests, provided through user inputs from the View. The flowchart can be regarded
as a loop that will typically stop on the condition that the game is completed. If so,
GameActivity will finish its activity.

o1



i End-User [ ]View[ ] Controller [:] Model «—— Direction of Flow

1. sends input

View J

2. Motify GameActivity 6. GameActivity finish its activity

GameActivity

Mo

5. Game

3. GameAciivity updates Engine Finished?

1 4_Engine updates and draw view components

Engine J

Figure 5.1.1: Flowchart of the Overall Architecture

52



5.2 The Main Components

Following is an overview of the main components of the maze app, and these components
will be used and referenced in the implementation chapter of our design patterns.

e Engine contains all the game objects in the app. The Engine is responsible for
constantly updating and drawing the game objects as long as the game is not finished.
The update method updates the player and checks for collisions between the game
objects, while the draw method adds the image view of the game objects to the user
interface.

e Game Activity acts as an interface between the user interface components and the
game objects. The activity listens and processes incoming requests from the View
(UI). When processing the requests, data from the Engine and its game objects gets
manipulated.

e Player is a character in the game that the user controls. A player object can move in
four directions: north, south, east, or west, and open doors and pick up items from
the ground.

e Maze contains rooms with doors and walls and picks up items like coins. A maze is
created in the Engine.

e Room consists of a total of five sides. The four sides (north, east, south, and west) of
a room can be delegated to a wall or a door, while the last side, center, can contain
a pickup item.

e Door can either be locked or opened. If it is opened, then the player can open the door
to enter the next room. If a player tries to enter a locked door or a wall, the player
will end up hitting the door or the wall.

e Pickup is items that can be picked up by the player. In this case, a pickup item can
be a handful coin of bronze, silver, or gold.

The implemented design patterns in our maze app were Abstract Factory, Command,
Visitor, Strategy, and Singleton. Each pattern had a specific role or responsibility for
implementing the maze app. Following is a list of what the implemented design patterns
were used for.

Abstract Factory was used for creating different mazes depending on which factory
(BombedMazeFactory or StandardMazeFactory) is chosen.

Command was used for sending and handling different commands from the player. For
example, the player can command to enter a door or a wall. The command pattern
will then encapsulate this request (as an object) and handle it.

Visitor was used for performing different operations when a player visits or collides with
an object. For example, if the player collides with a pickup item, then the visitor
pattern will calculate the value of the pickup item.

Strategy defined different algorithms for taking a screenshot of the maze app and saving
the image in different file formats like PDF and JPEG.

Singleton was used for ensuring that the Engine class had only one instance and provided
a global access point to it, and the context of the GameActivity.

93



5.3 Summary

For developing our mobile app and design patterns, we continue the maze example from
the GoF book [I5]. Our two main components, Engine and GameActivity can be seen as
the model and controller of the model-view-controller pattern. The Engine contains all
the game objects, updates the objects and draws them on the View. The GameActivity
is responsible for interacting with the Engine to process incoming user requests from the
View. Abstract Factory was used for creating different types of mazes and their objects.
The Command pattern was responsible for handling the different commands from the
player, and the Visitor was used to perform the different operations of the maze objects.
Strategy defines different algorithms for saving a screenshot of the game in various file
formats. Singleton was used to ensuring there is only one Engine instance and provided a
global access point to the game activity context.

54



Chapter 6

Implementation

In this chapter, we analyze and compare the implementation of our regular and mobile
design patterns. We discuss the changes we made for developing mobile design patterns
and issues and challenges which we encountered for developing a mobile app in Android
Studio. We start by analyzing the first design pattern implemented, then the second, and
so forth. For the full implementation details of the projects, please see [Appendix [A] p.

93]

6.1 Abstract Factory vs. Mobile Abstract Factory

The regular abstract factory was easy to implement, and we followed the general UML
class diagram of the pattern. As mentioned, the pattern was responsible for creating
the different mazes and the player. Each sub maze factory implemented a maze factory
interface with factory methods for creating the maze objects (door, wall, room, and pick
up item) and the player object.

StandardMazeFactory

+ makeDoor(). StandardDoor
+ makeWall(): StandardWall

| W L
%7 StandardDoor Standardwall
==lnterface==
Maze Factory
Engine e makeDoor(): Maze Door Wall
+ makeWWall(): Wall % %
BombedDoor BombedWall
BombedMazeFactory A ’ﬁ‘
+ makeDoor(): BombedDoor ! !
+ makeWall(): BombedWall f----------------- Bttt -

Figure 6.1.1: Our Regular Abstract Factory Implementation in UML Class Diagram

95



public interface MazeFactory {
Maze makeMaze () ;
Wall makeWall(Direction d, Context ¢);
Room makeRoom (int roomNumber) ;
Door makeDoor(Room rl, Room r2, Direction d, Context c);
PickUp makeRandomPickUp (Context ¢);

}
public class StandardMazeFactory implements MazeFactory {
@Override
public Door makeDoor (Room rl, Room r2, Direction direction , Context
context) {
return new StandardDoor(rl, r2, direction, context);
}
@Override
public Maze makeMaze() {
return new Maze () ;
}
@Override
public Room makeRoom(int roomNumber) {
return new Room(roomNumber) ;
}
@Override
public Wall makeWall(Direction direction , Context context) {
return new StandardWall(direction , context);
}
@Override
public PickUp makeRandomPickUp(Context c) {
Random random = new Random /() ;
int randWeight = random.nextInt (100);
switch (random.nextInt (3)){
case 0: return new Bronze(c, randWeight);
case 1l: return new Silver (¢, randWeight);
case 2: return new Gold(c, randWeight);
default: return new Bronze(c, randWeight);
}
}
}

Code Snippet 6.1: Sample Code of Abstract Factory

However, as the Abstract Factory pattern was not meant for mobile devices, we tried to
adapt it by using the techniques discussed in chapter 4. For developing the mobile Abstract
Factory pattern, we converted all the factory methods that create and return game objects
to static methods. Static methods can prove to be more cost-efficient then non-static if
the size of the objects. However, making the methods static made it impossible for the
sub-factories to override the interface methods in MazeFactory. Our proposed solution
was then to make MazeFactory a public class, instead of an interface, that contains a
FactoryType enum that defines which sub-factory is to be used. We do not need to
know which sub-factories are used, because we will only need to create a MazeFactory
instance and not instances of specific sub-factories. That is delegated to the MazeFactory
instance with its FactoryType enum. The following figures illustrate these implementation
differences between our mobile Abstract Factory and regular Abstract Factory.

o6




StandardMazeFactory = [777TTTTTTTTTTTTR o Y

+ makeDoor(). StandardDoor !
+ makeWall(): StandardWall i |

A v ¥

.
Use StandardDoor Standardwall

== Enumeration==

FactoryType Maze Factory % %

Standard
Bombed

B + makeDoor(); Maze | Door | ‘ wall
+ makeWall(): Wall
|
Use BombedDoor BombedWall
v
BombedMazeFactory A A
+ makeDoor(): BombedDoer
+makeWall(): BombedWall  f----=-=--=-=-=--~ o :

Figure 6.1.2: UML Class Diagram of Mobile Abstract Factory

public class MazeFactory {
public static Maze makeMaze() {

}

}

Maze maze = null;
switch (Setting . factoryType){
case Bombed:

maze = BombedMazeFactory . makeMaze () ;
break;

default:
maze = StandardMazeFactory . makeMaze () ;

}

return maze;

public static Wall makeWall(Direction d, Context c){

}

Wall wall = null;
switch (Setting . factoryType){
case Bombed:
wall = BombedMazeFactory . makeWall(d, c);
break;
default :
wall = StandardMazeFactory . makeWall(d, c);

}

return wall;

public static Door makeDoor (Room rl, Room r2, Direction d, Context c)

(...}

public static Room makeRoom(int roomNumber) {...}
public static PickUp makeRandomPickUp(Context ¢, double weight) {...}

public class StandardMazeFactory {
public static Maze makeMaze () {

}

return new Maze() ;

public static Door makeDoor (Room rl, Room r2, Direction direction ,

Context context) {

o7




return new StandardDoor(rl, r2, direction, context);

}

public static Room makeRoom(int roomNumber) {
return new Room(roomNumber) ;
}

public static Wall makeWall(Direction direction, Context context) {
return new StandardWall(direction , context);
}

public static PickUp makeRandomPickUp(Context ¢, double weight) {...}

Code Snippet 6.2: Sample Code of Mobile Abstract Factory

In mobile abstract factory, we also use the memory saving technique by converting the
images of the game objects into a single image. For example, in regular abstract factory,
when our player is changing directions, individual images for a specific direction east, west,
south or north is drawn. But in mobile abstract factory, the different images of a player
for moving left, up, down or right are combined into a single image player.png, resulting
in a sprite sheet. Now, instead of drawing individual images, we can extract and draw the
desired part from a single image.

Figure 6.1.3: Sprite Sheet of Player

6.2 Command vs Mobile Command

In our regular Command pattern, we have two sub-classes EnterDoorCommand and
EnterWallCommand of the Command interface. The EnterDoorCommand checks if the
current game object collided with the player is a door and if so, enter the door to the next
room if it is unlocked. Similar to the EnterWallCommand, this command will check if it
is a wall and if so, the player will not be able to enter it.

o8




Engine Command
- enter: Command # engine: Engine
»
GameActivity - + execuie) + execute)
EnterDoorCommand EnterWallComand

- door: Door

-wall: Wall

+ execute()

+ EnterDoorCommand{Door d)

+ execute()

+ EnterWallCommand(\Wall w)

Y
Door Wall

+ enter(). boolean + enter(): boolean

Figure 6.2.1: UML Class Diagram of Command

public abstract class Command {
protected Engine engine = Engine. getInstance ();
public abstract void execute();

public class EnterWallCommand extends Command {
Wall wall;
public EnterWallCommand(Wall wall) {...}

@Override
public void execute ()
if (wall = null){

return;

{

if (wall.intersects (engine.getPlayerSprite())) {
wall.enter () ;
}

}

public class EnterDoorCommand extends Command {
Door door;
public EnterDoorCommand(Door door) {...}

@Override
public void execute ()
if (door = null){
return;
}

if (door.intersects (engine.getPlayerSprite())){
if (door.enter ()){
engine . movePlayerToRoom (door . otherSideFrom (engine . getCurrentRoom

());

{

99




Code Snippet 6.3: Sample Code of Command

As we can see from the sample code [6.3] the sub-classes and their commands are
similar, simple and small. Our proposed solution for the mobile command pattern was
then to combine these small commands into one command, namely EnterCommand. The
command will now instead check if there is a StaticSite collided with the player and if the
object is possible to enter. If so, the command assumes it is a unlockable door and moves
the player to the next room of the door.

Engine Command
- enter: Command # engine: Engine
GameActivity 3| + Execute) + execute()

EnterCommand

- staticSite: StaficSite

+ EnterCommand(StaticSite 5)
+ gxecute()

Static Site

+ enter(): boolean

Figure 6.2.2: UML Class Diagram of Mobile Command

public abstract class Command {
public Engine engine = Engine.getInstance();
public abstract void execute();
}
public class EnterCommand extends Command {
StaticSite staticSite;
public EnterCommand(StaticSite sS){...}

@Override
public void execute (){
if (this.staticSite == null){
return;
}

if(staticSite.intersects (engine.getPlayerSprite()) && staticSite.
enter () = true) {
Door door = (Door) staticSite;

60




engine . movePlayerToRoom (door.otherSideFrom (engine . getCurrentRoom () ))

)

}

Code Snippet 6.4: Sample Code of Mobile Command

6.3 Visitor vs. Mobile Visitor

In our visitor pattern we perform different operations when the player visits or collides
with game objects. For example, when the player collides with either bronze, silver or gold
objects, the objects gets visited and a operation for calculating their value is performed.
In the regular visitor pattern, we have specific visit operation methods for calculating each
type (bronze, silver and gold) of pick up item. The visit operation method calculates the
value of a pick up item by multiplying the weight and value of the item.

<<interface=>

Visitor
] ot visitDoor(Door door)
Engine 1+ visitwall(Wall wall)
+ visitBronze(Bronze bronze)
+ visitSilver(Silver silver)
+ visitGold{Gold gold)
EnterSiteVisitor PickUpVisitor
- engine: Engine - engine: Engine
+ visitDoor{Door door) + visitDoor(Door door)
+ yisitWall(Wall wall) + yisitWall(Wall wall)
+ visitBronze(Bronze bronze + visitBronze(Bronze bronze
+ visitSilver(Silver silver) + visitSilver(Silver silver)
+ visitGold{Gold gold) + visitGold{Gold gold)
Y
StaticSite
ObjectStructure Powr -
+ accept{Visitor v)
PickLUp
M
.
Door Wall Bronze Silver Gold
+ Accept(Visitor v) + Accept(Visitor v) + Accept(Visitor v) + Accept(Visitor v) + Accept(Visitor v)
+ enter{Player p). boolean + enter{Flayer p). boolean + enter{Flayer p). boolean + enter{Player p). boolean + enter{Player p). boolean

Figure 6.3.1: UML Class Diagram of Visitor

61




public class PickUpVisitor implements Visitor {
@Override
public void visitDoor (Door door) {

}
@Override

public void visitWall (Wall wall) {

}
@Override

public void visitBronze (Bronze bronze) {
double value = bronze.getWeight () * bronze.getValue();
Engine. getInstance () .incrementPlayerMoney (value) ;

}

@Override

public void visitGold (Gold gold) {
double value = gold.getWeight () % gold.getValue();
Engine. getInstance () .incrementPlayerMoney (value) ;

}

@Override

public void visitSilver (Silver silver) {
double value = silver.getWeight () * silver.getValue();
Engine. getInstance () .incrementPlayerMoney (value) ;

Code Snippet 6.5: Sample Code of Visitor

In the visitor operation methods, we saw a possible improvement in efficiency by taking
advantage of the polymorphism concept. Hence, the proposed solution when developing
the mobile visitor pattern was to combine the visit operations methods for the specific
pick up items and the static sites to a single method. For instance, instead of calling the
weight and value method of the child class of the parent PickUp class, we will call the
necessary methods from the parent itself. Due to polymorphism, the program will know
which specific method to call when a child class like gold is visited.

62




==interfaces=
Visitor

- k-
Engine 7|+ visitstaticSite(StaticSite s)
+ visitPickUp(PickUp p)
EnterSiteVisitor PickUpVisitor
- engine: Engine - engine: Engine
+ yisitStaticSite(StaticSite s + yisitStaticSite(StaticSite s
isitStaticSite(StaticSite s) isitStaticSite(StaticSite s)
+ visitPickUp({PickUp p) + visitPickUp(PickUp p)
Y
StaticSite
ObjectStructure e ~
+ accept{Visitor v)
PickLUp
M
.
Door Wall Bronze Silver Gold

+ Accept(Visitor v)
+ enter{Player p). boolean

+ Accept(Visitor v)
+ enter{Flayer p). boolean

+ Accept(Visitor v)
+ enter{Flayer p). boolean

+ Accept(Visitor v)
+ enter{Player p). boolean

+ Accept(Visitor v)
+ enter{Player p). boolean

Figure 6.3.2: UML Class Diagram of Mobile Visitor

@Override
public void visitStaticSite(StaticSite staticSite) {}
@OQOverride
public void visitPickUp (PickUp pickUp) {
double value = pickUp.getWeight () = pickUp.getValue();
engine.incrementPlayerMoney (value) ;

public class PickUpVisitor implements Visitor {

private Engine engine Engine. getInstance () ;

Code Snippet 6.6: Sample Code of Mobile Visitor

63




6.4 Strategy vs Mobile Strategy

In our Strategy pattern, the GameActivity contains a specific Strategy, either JPEG-
Strategy or PNGStrategy, for taking a screenshot. Our implementation of taking a screen-
shot on Android could not have been completed without the recommended solution from
the author at Stack Overflow [25]. The strategies has to take in a activity as a parameter
for it to be able to take a screenshot of the activity screen, save it and then view it. As
we can see, from the method setOnClickListener in GameActivity, it sends its activity.

GameActivity

<=|nferface==

- mActivity: Activity Strategy

- sfrategy: Strategy

- screenShotButton: Button + sirategy(Activity activity)
sirateqgy

+ onClick(View v) f

[ )

JPEGStrategy PNGStrategy
screenShotButton. setOnClickListener (| (v)
strategy.strategy (mActivity) ; + strategy(Activity activity) + strategy(Activity activity)
T H - openScreenshot(File imgF, Activity a) - openScreenshot{File imgF, Activity a)

Figure 6.4.1: UML Class Diagram of Strategy

When calling a specific strategy, in our case, whether JPEGStrategy or PNGStrategy,
one has to create an instance of the class. We felt this was an unnecessary operation as the
strategy method does not need to be bound to a specific object. As a result, our proposed
solution for our mobile strategy pattern was to make the strategy methods static. As we
can see from the class diagram [6.4.2] we can call the strategy method without having to
create an instance. For specifying the file format of the screenshot, an additional parameter
fileFormat is created.

GameActivi
v PhotoStrategy

- mActivity: Activity
- strateg}-::* Strategtltf + strafegy(String fileFormat, Activity activify)
- screenShotButton: Button - openScreenshol{File imgF, Activity a)

strategy

+ onClick{View v)

e

goreanShotButton. setOnClickListener | (v)
PhotoStrategy.strategy{ fileFormal: *.png", mActivity);
by

Figure 6.4.2: UML Class Diagram of Mobile Strategy

6.5 Singleton vs. Mobile Singleton

In this paper, we did not develop a mobile singleton pattern, because it was difficult
to change it as there is not much that can be changed. The pattern can be combined
with other patterns and used in other cases where it might solve some problems. We
encountered one problem getting the context of the game activity for which our game

64



objects were displayed. The context of the activity was needed to create the image views
of the game objects. We used Singleton to solve this problem by providing a global access
point for the activity’s context to be saved and attainable. The solution consisted of
making the Engine a singleton, which makes sense as there should be only one Engine
running the app. The global Engine instance was then accessed in the GameActivity
class, and we passed the context of the activity to the Engine. Now we had a global access
point to our necessary context, and the Engine’s game objects could be easily created by
passing down the context.

public class GameActivity extends AppCompatActivity {
// Getting a global instance of Engine using Singleton
private Engine engine = Engine. getInstance();

@Override

public void onCreate(Bundle savedInstanceState){
super.onCreate (savedInstanceState);
setContentView (R.layout . activity__game) ;

// Passing down the context of the activity to the Engine, so the

game can be started
engine .startGame (getApplicationContext ());

}

Code Snippet 6.7: Sample Code of Providing Global Access Point for the Context of a
Activity using Singleton

6.6 Summary

In summary, the mobile abstract factory was implemented with both combining the
multiple images of each game object to one and converting the factory methods to static.
The mobile command pattern was created by combining similar sub-command classes to
one. The mobile visitor pattern was created by combining the visitor methods that visited
the same element to one method by taking advantage of polymorphism. This was possible
due to the elements having the same parent class. The mobile strategy was created by
converting the strategy method to static and combining similar strategy classes to one.

65




66



Chapter 7

Results

This chapter shows the results from our measurement process of the apps implemented
with regular and mobile design patterns towards our evaluation criteria. The tests were
performed on a powerful ASUS gaming laptop with the following device specifications.

e Processor Intel Core i7-7700HQ CPU @ 2.80 GHz
e Graphics Card Geforce GTX 1070
e Installed RAM 16GB

e Operating System Windows 10 Home, 64-bit

7.1 QMOOD Results

In this section, the results of the design properties and its normalization from our QMOOD
analysis are first shown. Based on these results and the computation formula, a quality
attribute graph is created. The graph displays the computed values of the quality
attributes of our regular and mobile design patterns.

7.1.1 Abstract Factory vs.. Mobile Abstract Factory

The class and package metrics of the regular abstract factory and mobile abstract factory
were calculated. The following tables show the actual metric values and the normalized
values of both patterns.

67



Metric Abstract Factory Mobile Abstract Factory ‘

Design Size 3 3
‘ Hierarchies ‘ 1 ‘ 1
| Abstraction | 0.33 | 0
‘ Encapsulation ‘ 1 ‘ 1
| Coupling | 0.79 | 0.77
‘ Cohesion ‘ 6 ‘ 4.47
‘ Composition ‘ 0 ‘ 0
‘ Inheritance ‘ 0.33 ‘ 1
‘ Polymorphism ‘ 12 ‘ 0
‘ Messaging ‘ 18 ‘ 19
| Complexity | 10.5 | 12.33

Table 7.1.1: Actual Metric Values of Abstract Factory vs. Mobile Abstract Factory

Metric Abstract Factory Mobile Abstract Factory ‘
Design Size 1 1
‘ Hierarchies ‘ 1 ‘ 1
‘ Abstraction ‘ 1 ‘ 0
‘ Encapsulation ‘ 1 ‘ 1
| Coupling | 1 | 0.97
‘ Cohesion ‘ 1 ‘ 0.78
‘ Composition ‘ 0 ‘ 0
‘ Inheritance ‘ 1 ‘ 3
‘ Polymorphism ‘ 1 ‘ 0
‘ Messaging ‘ 1 ‘ 1.06
‘ Complexity ‘ 1 ‘ 1.17

Table 7.1.2: Normalized Metric Values of Abstract Factory vs. Mobile Abstract Factory

After normalizing the metric values, the following quality attribute graph was created.

68



QUALITY ATTRIBUTE GRAPH
15
1.0 1.0
1.0 e Tt
0.8 0.8
0.5
W
; 0.0
>
-0.5
-0.5
-1.0
-1.0
-1.5
K %,
% %
<
o <
2 e
L O
(}b ’fq
%) e
i A
‘VC)O
T
| == PRe usability Understandability Effectiveness |

Figure 7.1.1: Quality Attribute Graph of Abstract Factory vs. Mobile Abstract Factory

From the graph we can see that both the reusability and effectiveness of the
mobile abstract factory has not changed compared to the regular version. However, the
understandability of the abstract factory has increased from -1 to -0.50.

7.1.2 Command vs. Mobile Command

The following tables show the actual metric values and its normalized values of our
Command and Mobile Command implementation.

69



Command Mobile Command
Design Size 3 2

‘ Hierarchies ‘ 1.67 ‘ 1.50
‘ Abstraction ‘ 0.33 ‘ 0.50
‘ Encapsulation ‘ 1 ‘ 1
| Coupling | 064 | 0.57
‘ Cohesion ‘ 1 ‘ 1
‘ Composition ‘ 5 ‘ 3
| Inheritance |  0.67 | 0.75
‘ Polymorphism ‘ 2 ‘ 1
‘ Messaging ‘ 6 ‘ 4
‘ Complexity ‘ 3.33 ‘ 2.5

Table 7.1.3: Actual Metric Values of Command vs. Mobile Command

Command Mobile Command
Design Size 1 0.67

‘ Hierarchies ‘ 1 ‘ 0.90
‘ Abstraction ‘ 1 ‘ 1.52
‘ Encapsulation ‘ 1 ‘ 1

| Coupling | 1 | 0.89
‘ Cohesion ‘ 1 ‘ 0.33
‘ Composition ‘ 1 ‘ 0.60
‘ Inheritance ‘ 1 ‘ 1.13
‘ Polymorphism ‘ 1 ‘ 0.50
‘ Messaging ‘ 1 ‘ 0.67
‘ Complexity ‘ 1 ‘ 0.75

Table 7.1.4: Normalized Metric Values of Command vs.. Mobile Command

Then the following quality attribute graph was created.

70



QUALITY ATTRIBUTE GRAPH
15
1.0 0.9
1.0 { =
\i_f
0.5
w
% 0.0
=
-0.5
-1.0 -1.0
-1.0
-1.5
95 470
& s,
1, %
‘?4/ o
(o) @)
1,
%,
%
| ==@==Re usability Understandability Effectiveness

Figure 7.1.2: Quality Attribute Graph of Command vs.. Mobile Command

From the graph we can see that both the reusability and effectiveness of the
mobile command version decreased from 1 to 0.7 and 0.9. While the understandability of
both patterns remained the same.

7.1.3 Visitor vs.. Mobile Visitor

The following tables show the metric values and the normalized values of our Visitor and
Mobile Visitor implementations.

71



Metric Visitor Mobile Visitor ‘

Design Size 4 3
‘ Hierarchies ‘ 1 ‘ 1
‘ Abstraction ‘ 0.33 ‘ 0.33
‘ Encapsulation ‘ 1 ‘ 1
| Coupling | 0.67 | 0.67
‘ Cohesion ‘ 2 ‘ 2
‘ Composition ‘ 2 ‘ 1
| Inheritance | 0.33 | 0.33
‘ Polymorphism ‘ 10 ‘ 4
‘ Messaging ‘ 15 ‘ 6
‘ Complexity ‘ 5 ‘ 2

Table 7.1.5: Actual Metric Values of Visitor vs.. Mobile Visitor

Metric Visitor Mobile Visitor |

Design Size 1 0.75
‘ Hierarchies ‘ 1 ‘ 1
‘ Abstraction ‘ 1 ‘ 1
‘ Encapsulation ‘ 1 ‘ 1
‘ Coupling ‘ 1 ‘ 1
‘ Cohesion ‘ 1 ‘ 1
‘ Composition ‘ 1 ‘ 0.50
‘ Inheritance ‘ 1 ‘ 1
‘ Polymorphism ‘ 1 ‘ 0.40
‘ Messaging ‘ 1 ‘ 0.40
‘ Complexity ‘ 1 ‘ 0.40

Table 7.1.6: Normalized Metric Values of Visitor vs.. Mobile Visitor

Then the following quality attribute graph was created.

72



QUALITY ATTRIBUTE GRAPH
15
1.0
1.0 O
0.7
\0‘6
0.5
W
; 0.0
>
-0.5
-0.5
-1.0
-1.0
-1.5
L
N 4706,/
O/P (((\b
7
R
%
| =@==Reusability Understandability Effectiveness

Figure 7.1.3: Quality Attribute Graph of Visitor vs. Mobile Visitor

From the graph similar to the quality attribute graph of Abstract Factory, we
can see that both reusability and effectiveness of the mobile visitor version have decreased
from 1 to 0.6 and 0.5. While the understandability of the Visitor pattern has increased
significantly from -1 to -0.2.

7.1.4 Strategy vs. Mobile Strategy

The following tables show the metric values and the normalized values of our Strategy and
Mobile Strategy implementations.

73



Strategy Mobile Strategy
Design Size 3 1

‘ Hierarchies ‘ 1 ‘ 1
| Abstraction | 033 | 0
‘ Encapsulation ‘ 1 ‘ 1
‘ Coupling ‘ 0.4 ‘ 0
‘ Cohesion ‘ 1 ‘ 1
‘ Composition ‘ 0 ‘ 0
‘ Inheritance ‘ 0.6 ‘ 1
‘ Polymorphism ‘ 2 ‘ 0
‘ Messaging ‘ 5 ‘ 2
‘ Complexity ‘ 2 ‘ 3

Table 7.1.7: Actual Metric Values of Strategy vs.. Mobile Strategy

Strategy Mobile Strategy
Design Size 1 0.33

‘ Hierarchies ‘ 1 ‘ 1
‘ Abstraction ‘ 1 ‘ 1
‘ Encapsulation ‘ 1 ‘ 1
‘ Coupling ‘ 1 ‘ 0
‘ Cohesion ‘ 1 ‘ 1
‘ Composition ‘ 0 ‘ 0
‘ Inheritance ‘ 1 ‘ 1.67
‘ Polymorphism ‘ 1 ‘ 0
‘ Messaging ‘ 1 ‘ 0.40
| Complexity | 1 | 1.50

Table 7.1.8: Normalized Metric Values of Strategy vs. Mobile Strategy

Then its following quality attribute graph was created.

74



QUALITY ATTRIBUTE GRAPH
15
1.0
10
0.8
.\O‘.G
05
0.5
o]
2 0.0 -0.2
30 :
=
-0.5
-1.0
-1.0
-1.5
Ny
) 470&
% Z,
[ S
%
2
<°6},
| =@==PRe usability Understandability Effectiveness

Figure 7.1.4: Quality Attribute Graph of Strategy vs.. Mobile Strategy

The quality attribute graph of Strategy shows also that the reusability
and effectiveness of the mobile strategy version have decreased to 0.6 and 0.5, while
understandability has increased significantly from -1 to -0.2.

7.1.5 Project vs.. Mobile Project

When measuring the design properties of the project with regular design patterns and the
mobile project with mobile design patterns, we summed all the values from the metric
values of its design patterns that we have shown from above. Following tables these
summed metric values and the normalized values of our project and mobile project.

75



Project Factory Mobile Project
Design Size 37 35

‘ Hierarchies ‘ 2.36 ‘ 2.22
| Abstraction | 0.24 | 0.19
‘ Encapsulation ‘ 0.70 ‘ 0.67
| Coupling | 0.55 | 0.56
| Cohesion | 2.34 | 2.48
| Composition | 183 | 183
‘ Inheritance ‘ 0.73 ‘ 0.82
‘ Polymorphism ‘ 46 ‘ 28
‘ Messaging ‘ 168 ‘ 159
‘ Complexity ‘ 8 ‘ 8.1

Table 7.1.9: Actual Metric Values of Project vs.. Mobile Project

Project Mobile Project
Design Size 1 0.95

‘ Hierarchies ‘ 1 ‘ 0.94
‘ Abstraction ‘ 1 ‘ 0.79
‘ Encapsulation ‘ 1 ‘ 0.96
| Coupling | 1 | 1.02
| Cohesion | 1 | 1.06
‘ Composition ‘ 1 ‘ 1

‘ Inheritance ‘ 1 ‘ 1.13
‘ Polymorphism ‘ 1 ‘ 0.61
‘ Messaging ‘ 1 ‘ 0.95
| Complexity | 1 | 1.01

Table 7.1.10: Normalized Metric Values of Project vs.. Mobile Project

After normalizing the metric values, the following quality attribute graph was created.

76



QUALITY ATTRIBUTE GRAPH
1.5
1.0 1.0
1.0 —
0.9
0.5
o8]
2 0.0
z 0
>
-0.5
-0.8
-1.0
-1.0
-1.5
% %
92 €y
e
"
6‘0)
| =@=PRe usability Understandability Effectiveness

Figure 7.1.5: Quality Attribute Graph of Project vs. Mobile Project

The results from the graph shows that the reusability of the mobile project has
remained the same. The effectiveness has decreased slightly from 1 to 0.9, and the project’s
understandability has increased from -1 to -0.8.

7.1.6 Summary

In summary, the QMOOD results show that most of the mobile design patterns improved
in the quality attribute understandability, while the reusability and effectiveness of the
pattern got reduced, especially the effectiveness. Notably, none of the mobile design
patterns had improved in reusability and effectiveness, and none had decreased in
understandability.

7.2 Android Profiler Results

When profiling each design pattern, we looked at the average CPU usage of the entire app
and its memory usage, and then overall memory usage of the design pattern itself. At the
end, the improvement of the mobile design patterns at each of these points is summarized
compared to the usual design patterns.

77



7.2.1 Abstract Factory vs. Mobile Abstract Factory

The mobile app with mobile abstract factory had the same CPU usage as the regular app
with abstract factory of 70%. But the mobile app used 100MB more then the regular app
and the mobile design pattern itself used 40KB more.

Memory Usage of

Design Pattern CPU Usage Memory Footprint Design Pattern
Abstract Factory 70% 800MB 212KB
Mobile Abstract Factory ‘ 70% ‘ 900MB 252KB

Table 7.2.1: Profiling of Abstract Factory

7.2.2 Command vs. Mobile Command

For the mobile command, the app used 65% CPU usage compared to the regular command
at 60%, and in addition 30MB more. The mobile command pattern itself was allocated
37KB, while the regular pattern was allocated 34KB.

Memory Usage of
Design Pattern
Command 60% 90MB 34KB

Mobile Command | 65% | 120MB 37KB

Design Pattern CPU Usage Memory Footprint

Table 7.2.2: Profiling of Command

7.2.3 Visitor vs. Mobile Visitor

The mobile app with mobile visitor used 5% lesser CPU usage compared to the regular
app with Visitor. The mobile app used only 22MB, while the regular app used 38MB.
However, the memory usage of the mobile design pattern was around the same as the
regular version despite the positive results from the previous two points.

Memory Usage of
Design Pattern
Visitor 50% 38MB 49KB

| Mobile Visitor | 45% 22MB 51KB

Design Pattern | CPU Usage Memory Footprint

Table 7.2.3: Profiling of Visitor

7.2.4 Strategy vs. Mobile Strategy

The regular app with Strategy had virtually the same CPU usage and total memory usage
as the mobile version. But the mobile strategy pattern itself used 22KB, while the regular
pattern used 31KB.

78



Memory Usage of

Design Pattern CPU Usage Memory Footprint Design Pattern

Strategy 27% 50MB 31KB
| Mobile Strategy | 26% | 50MB | 22KB

Table 7.2.4: Profiling of Strategy

7.2.5 Project vs. Mobile Project

When measuring the first field of the projects, we measured the average CPU usage based
on its results from its design patterns above, while the last two fields are the sum of all
the values from its design patterns.

Both projects used around, on average, the same CPU usage. However, the total
memory usage of the mobile project and its design patterns was 1092MB and 362KB
compared to the regular project of 1042MB and 326KB.

Memory Usage of
Design Pattern
Project 52% 1042MB 326KB

Mobile Project | 51% | 1092MB 362KB

Design Pattern | CPU Usage Memory Footprint

Table 7.2.5: Profiling of Project

7.2.6 Summary

In summary, the profiling shows that most of the mobile design patterns compared to the
regular design patterns improved negatively, especially in the memory usage of the design
pattern. Noticeably, the Total Memory Usage of the mobile command increased 33%. The
mobile visitor had 10% better CPU Usage and 42% better Total Memory Usage. While
the mobile strategy pattern had 32% better Memory Usage of Design Pattern. Overall,
the mobile project had 2% better CPU Usage, 5% poorer memory usage and 11% poorer
memory usage of the design patterns themselves.

I Positive Improvement M Negative Improvement

Memory Usage of
Design Pattern

CPU Usage Memory Footprint

Mobile Abstract Factory 0% -12% 19%
| Mobile Command | -8% 3% -9%
| Mobile Visitor | 10% | 42% | -4%
| Mobile Strategy | 4% | 0% | 32%
| Mobile Project | 2% | -5% | -11%

Table 7.2.6: Summary of the Total Improvement

79



7.3 Execution Time Results

When measuring the execution time, we executed the implementation of the design
patterns ten thousand times and then one hundred thousand times. The results displayed
is the average time of execution time for 10 iterations. At the end, we summarize the
results.

7.3.1 Abstract Factory vs. Mobile Abstract Factory

The mobile abstract factory had a better execution time of 1.22 seconds in ten thousand
executions and 21.26 seconds in one hundred thousand executions, while the abstract
factory had a execution time of 2.02 seconds and 31.14 seconds.

Design Pattern Execution Time x 10k Execution Time x 100k ‘
Abstract Factory 2.02 31.14

‘ Mobile Abstract Factory ‘ 1.22 ‘ 21.26

Table 7.3.1: Execution Time of Abstract Factory

7.3.2 Command vs. Mobile Command

Mobile Command resulted in a execution time of 0.23 seconds and 2.06 seconds.
Meanwhile, the regular Command had a execution time of 0.32 seconds and 3.00 seconds.

Design Pattern Execution Time x 10k Execution Time x 100k
Command 0.32 3.00

‘ Mobile Command ‘ 0.23 ‘ 2.06

Table 7.3.2: Execution Time of Command

7.3.3 Visitor vs. Mobile Visitor

When executing itself ten thousand times, both Visitor patterns had approximately the
same execution time of 0.70 seconds. However, when executing one hundred times the
regular visitor pattern had a better execution time of 6.57 seconds, while the mobile
version had 6.13 seconds.

Design Pattern Execution Time x 10k Execution Time x 100k
Visitor 0.70 6.57

| Mobile Visitor | 0.71 | 6.13

Table 7.3.3: Execution Time of Visitor

7.3.4 Strategy vs. Mobile Strategy

Mobile Strategy had just about a better execution time of 1.76 seconds and 17.23 seconds,
compared to the regular Strategy that had 1.79 seconds and 17.66 seconds.

80



Design Pattern Execution Time x 10k Execution Time x 100k
Strategy 1.79 17.66

‘ Mobile Strategy ‘ 1.76 ‘ 17.23

Table 7.3.4: Execution Time of Strategy

7.3.5 Project vs. Mobile Project

The execution time of the projects are measured by adding up the execution time of its
design patterns. As we can see in the following table, the mobile project, containing the
mobile design patterns, had a better execution time in both fields of 3.86 seconds and
51.05 seconds, compared to the regular project’s 6.04 seconds and 64.96 seconds.

Design Pattern @ Execution Time x 10k Execution Time x 100k
Project 6.04 64.96

| Mobile Project | 3.86 | 51.05

Table 7.3.5: Execution Time of Project

7.3.6 Summary

In summary, the results shows that the mobile design patterns generally had a better
execution time compared to the regular design patterns. Noticeably, we can see in table
that the mobile abstract factory had 36% better execution time then the regular
abstract factory. Similarly, the mobile command had 29% better execution time then its
regular version. While both mobile visitor and strategy had small improvements of 3% and
2%. Overall, the mobile project improved 17% in its execution time of its implemented
design patterns.

I Positive Improvement

Summary Total Improvement
Mobile Abstract Factory 36%
‘ Mobile Command ‘ 29%
‘ Mobile Visitor ‘ 3%
‘ Mobile Strategy ‘ 2%
‘ Mobile Project ‘ 17%

Table 7.3.6: Summary of the Total Improvement

7.4 Weaknessess and Mistakes of our Measurement Process

A weakness in our QMOOD analysis was that we compared only two versions to the
regular and mobile design patterns. We analyzed at the end when we finished applying all
the changes we made to develop the mobile design patterns and the project. This made it
difficult to pinpoint which changes had the least and most impact on the quality attributes.

81



Better QMOOD analysis for the future would have been to have several more versions of
our mobile design patterns whenever an update is made. Furthermore, we should have
changed the model’s influence and weight following the techniques and strategies we used
to develop the mobile design patterns. For instance, according to [17], the design property
Design Size that described the number of classes should have had a negative influence on
the quality attribute Effectiveness. These changes could have led to results that better
indicate how much of the techniques and strategies we have used.

Another weakness of our study was that only one component, namely Activity, of the
Android architecture was used in the development of our app. Other app components from
Android, such as Broadcast receivers, Services, and Content providers, were not included
in our app or code. These components can potentially impose new requirements for design
patterns. Due to adequate time, the activity component with the design patterns was also
not thoroughly tested for other problems such as memory leaks or other potential problems
like using multiple activities in the Observer pattern.

One critical mistake was that we started the measurement process after we had
implemented all the changes and updates to the mobile design patterns, that is when
we had finished the development phase. This made it difficult to pinpoint which changes
had the least and most impact in the measurement process.

Finally, the thesis was about design patterns for mobile devices. However, we tested
only the design patterns for one mobile device or emulator. Testing the design patterns
with several different mobile devices would have reflected the different characteristics of a
mobile device better and lead to a better validation of the results.

7.5 Summary

The QMOOD results show none of the mobile design patterns improving in reusability
and effectiveness, but most of the patterns improved in understandability.

Results of the Android profiling shows that most of the mobile design patterns
improved positively in CPU Usage, but negatively in the memory footprint and memory
usage of the design pattern themselves. Notably, the mobile command’s memory footprint
increased 33%, while the mobile visitor had 10% better CPU Usage and 42% better Total
Memory Usage. Overall, the mobile project had 2% better CPU Usage, 5% poorer memory
footprint, and 11% poorer memory usage of the design patterns themselves.

In general, the execution time of the mobile design patterns had better execution time
than the regular design patterns. Most impressively, the mobile abstract factory had an
improvement of 36%, and the mobile command had 29% better execution time then its
regular version. Overall, the execution time of the mobile project improved 17% compared
to the regular project.

82



Chapter 8

Discussion

In this chapter, we discuss the results of our regular and mobile design patterns from
our measurement process, including QMOOD, android profiling, and execution times. We
discuss the improvements in our mobile design patterns and what we could have done
differently. In the end, we discuss the requirements we believe were imposed on the design
patterns by Android and its mobile devices.

8.1 QMOOD

From our QMOOD analysis, none of our mobile design patterns improved in efficiency or
reusability compared to its regular design pattern. However, an expected improvement
between the patterns was in understandability due to the changes made for the mobile
design patterns reduced the overall size of the pattern: small classes combined to one,
similar methods combined to one method, and converting the instance methods to static
resulted in removing the inheritance mechanism of the classes, and thus the overridden
methods. For QMOOD, reducing the overall size meant that the metric values for the
design properties also got reduced. This will, as expected, by seeing the computation
formula for calculating the quality attributes, give us lower efficiency and reusability. For
those two quality attributes, most of the design properties influence the attribute positive,
which means that the more methods, classes, and use of inheritance, the better the results.
The positive influence is contradictory to the methods we used from [I7] for developing
mobile design patterns such as merging small classes into a bigger one for saving static
space and the avoidance of using inheritance when possible. While for the quality attribute
understandability, the methods implemented from the [I7] had a positive effect. As we
can see, our QMOOD’s influence and weight did not follow the techniques and strategies
we used to develop the mobile design patterns. Not regarding it, explains why none of
the mobile design patterns could improve in reusability and efficiency, but only improve
in understandability.

8.2 Improved Execution Times

Mobile Abstract Factory had a significantly better execution time than its predecessor,
with an improvement of 36%. The mobile abstract factory was, on average, 10 seconds
faster than the Abstract Factory. The improvements can be understood by first explaining
the difference in memory allocation. Allocating objects in the heap is known to be costly,
hence why one should avoid it and rather allocate memory to the stack when possible.

83



We accomplished this in our design patterns, where we converted the instance methods
to static methods. By doing so, we no longer had to create an instance of the class
when calling the factory method. By avoiding creating an instance, we avoid unnecessary
allocation of memory to the heap. Avoiding unnecessary allocations can improve the
execution time and save memory, especially in the worst-case scenario where we have to
create an instance for each time we call the instance method. For further description,
please see [table p. . However, this drastic improvement does not apply when
we do not create a new object for each time we call the instance method. By the test
from [8:2.1] we concluded that there is no noticeable difference in the execution time of a
static method and an instance method when called from a single class reference or object.
Nevertheless, the advantage of the static method is that we can avoid allocating memory
in the heap (further explained in the discussion of Android profiling), and in the worst-case
scenario, we have to create an instance for each time we call the instance method. One
should, if possible and convenient, use a static method.

Despite the small changes in combining two sub-command classes into one command,
the mobile Command pattern also had a better execution time than the regular Command
pattern with an improvement of 29%. The only change we made was combining the
two commands into one command EnterCommand. According to [17], combining small
classes into one class can reduce memory from the heap as the overhead of the small
classes is removed and no longer needed. However, we combined only two classes, so
we had to test if this was the case for the improvement of 29%. It turned out it was
not, because we implemented and tested the execution time of the regular Command
pattern in the mobile project, and its average execution time was no different to the
mobile design pattern. The real difference between the two patterns was the game objects
it was working with. In the mobile project, the images of the game objects such as Player,
Wall, and Door, were combined. The image of the sprites was selected by extracting the
desired part from the combined image. These desired parts were preallocated in memory
in the ImageManager class, making the instruction of setting a desired image to the sprite
efficient, as the program just had to access the preallocated image. In conclusion, it was
the more efficient game objects, combining small images into one, which improved the
mobile Command pattern and not the change we made directly to the Command pattern,
which was combining the small command classes. However, combining small command
classes into one should not be excluded as a possible improvement, as we tested combining
only two classes into one and not numerous classes.

The visitor patterns had approximately the same execution time when they executed
ten thousand times, and a difference of 0.44 seconds when executed one hundred times.
The change we made directly to the mobile visitor pattern was combining multiple visitor
methods that visited elements of the same parent class into one visitor method, and it
seemed like the method itself had no real effect. In theory, more methods a class has, the
more static memory is allocated in the heap as information about each method to a class
is saved. However, in practice, the memory saved by combining methods into one was not
noticeable. Noteworthy, it also seemed like the mobile game objects which combined their
images into one had no real effect of improving the visitor pattern. This is likely due to
the visitor methods not allocating new game objects or changing existing game objects
such that a new image of the sprite was selected.

The mobile and regular strategy pattern also had around the execution time. The
change made to the mobile Strategy pattern of making the strategy algorithms of
PNGStrategy and JPEGStrategy to static methods had no significant effect. The
difference in execution time from static and instance strategy methods was hard to see

84



because the strategy patterns were tested with ten iterations and one hundred iterations.
This low amount of iterations was due to the strategy algorithm’s high cost, which took
a screenshot. As a result, we did another test where the strategy methods only did some
basic arithmetic operations, so we could execute the methods numerous times to see if
there is a difference. The results were clear; a static method invoked from a class reference
had the same execution time as an instance method invoked from one object reference.
Both cases had an execution time of around 0.21 seconds. However, in the worst-case
scenario, when the instance method got invoked for each time an object is created, it had
an execution time of 1.01 seconds. The inefficient result is due to the constant memory
allocation of creating an object for every method call. In conclusion, a mobile strategy
pattern with static strategy methods can be very beneficial if one has to create a new
strategy object for every strategy call.

Method Call Execution Time
Invoke Static Method from Class Reference 0.21s

‘ Invoke Instance Method from one Object Reference ‘ 0.21s

‘ Invoke Instance Method for each Object Created ‘ 1.01s

Table 8.2.1: Execution Time of Static Method vs Instance Method

8.3 Android Profiling

The profiling of our design patterns showed an interesting mix of results. Both mobile
abstract factory and command, which had a better execution time, used more resources
of CPU, memory footprint, and the patterns itself also used more memory. The mobile
Visitor pattern, which improved slightly in execution time, used less CPU, and overall
memory. The strategy patterns had the same CPU usage and total memory usage, but
the mobile strategy pattern itself used 9 KB less.

In conclusion, the mobile project used more memory than the regular project, most
likely, due to the extra class and code, we implemented from the technique of combining
multiple images into one. Our implementation consisted of an ImageManager class that
took the use of the singleton pattern. The class took the use of the Bitmap and Drawable
classes to retrieve all the desired parts from our sprite sheets. This change resulted in
faster execution time for the mobile abstract factory and Command pattern, but it cost
an extra in both memory and CPU usage.

We used the same test to analyze the memory and CPU usage as we discussed the
execution time of static methods versus instance methods with a simple test. As we can
see from table the results were clear. The worst-case scenario where calling the
instance method for each object created used almost double amount of CPU then the best
scenario where we call the instance method from just one object. The worst-case scenario
added 22 MB to the app while the best scenario added 0,2 MB. When calling the instance
method from only one object, there was no real difference in CPU usage and total memory
usage. However, when looking at the number of allocations and shallow size of Employee
class, the best scenario had one allocation of 16KB, whereas the static method had zero
allocation and thus zero in shallow size. Even though the difference is not noticeable when
using the app, it is noteworthy that using a static method; we avoid allocating at least
one object. In conclusion, one should use static methods, if possible, to avoid allocating
an unnecessary amount of memory and using unnecessary CPU.

85



Method Call CPU Usage Total Memory Usage
Invoke Static Method from Class Reference 25% 10MB

‘ Invoke Instance Method from one Object Reference ‘ 25% ‘ 10MB

‘ Invoke Instance Method for each Object Created ‘ 40% ‘ 22MB

Table 8.3.1: CPU and Memory Usage of Static Method vs Instance Method

8.4 Did Mobile Devices Impose new Requirements for
Design Patterns?

During the measurement process of our game app, the memory for our mobile device was
noticeably limited. When allocating a high number of objects, it did not take long before
there was little to no memory in the heap. When there was no free memory of the heap,
the app froze and had to wait for the garbage collector to finish up, freeing up enough
memory for the app to begin starting again. With limited memory space, memory saving
techniques, and proper management of memory are necessary for developing more quality
and faster mobile app. This was proved with the mobile Abstract Factory as we converted
the factory methods to static and developed more efficient products of the factory by
combining their images into one image, and preallocated the desired parts of the image.
With the right techniques and strategies applied, we proved that a regular design pattern
could be translated into a more mobile-friendly pattern. In conclusion, performance and
managing memory in a more efficient way is a clear requirement for design patterns.

We came across some problems with the activity component of Android architecture
when implementing the design patterns for our maze app using Android. For instance, the
regular implementation of the Command pattern and Abstract Factory were not sufficient
for running the maze game. The Abstract Factory had the task of creating game objects,
and the Command pattern could receive a game object as a parameter from a command
request and execute some code. The problem for both patterns was that the context of
the Activity was required for performing their task. For instance, the game objects needed
the context to define their ImageView when created. As a result, the Abstract Factory
could not create new products without getting the context of the Activity for which the
game objects were going to be displayed. Activity is one of the components of the Android
architecture. The architecture and components differ from different mobile platforms like
Android and Apple’s iOS. In conclusion, it seems there is a requirement for design patterns
to consider if it is necessary to incorporate the components from the mobile platform’s
architecture and adequately handle them.

8.5 Summary

We identified two requirements imposed by Android and their mobile devices during the
development of our mobile maze game in Android with design patterns. Requirement one
was for the design patterns to consider incorporating components of the mobile platform
architecture, in our case Android. Requirement two was for the design patterns to manage
limited memory and CPU in a more optimized way for leading to a more efficient and faster
app.

Requirement one was first imposed on the Abstract Factory as the game objects that
were going to display on the Ul of an activity, needed its context when created. By creating

86



an extra parameter context in the factory methods and passing down the context from
the activity to the Engine where we use the Abstract Factory, the requirement solved.

Requirement two imposed due to the limited computing power and resources of the
mobile device. As the regular design patterns were originally not created for such
an environment, we implemented and tested different memory and power optimization
techniques and strategies in the development of the mobile design patterns. Improving
all three execution time, memory, and CPU usage of the mobile patterns turned out to
be challenging. The results show that noticeably improved execution time uses more
memory and the same amount or more CPU. The following table shows the techniques
and strategies applied to the mobile design pattern, their improvements compared to
the regular design patterns, and which techniques and strategies had a successful and
unsuccessful impact. Noticeably, the methods that had a successful impact was combining
multiple images to one and using static methods.

Positive Improvement | EEIEGN Negative Improvement

Successful Unsuccessful Exec. | CPU Memory
Methods Methods Time | Usage | Footprint

combining multiple
Abstract Factory images to one, 36% 0% -12%
using static methods

combining multiple | combining small

Command . 29% | -8% -33%
images to one classes to one
Visitor combining similar 3% 10% 42%
methods to one
Strategy using static methods 2% 4% 0%

Figure 8.5.1: Effect of Techniques and Strategies on Mobile Design Patterns

The drawbacks of the techniques and strategies we used to create mobile design
patterns were that it could remove the inheritance of the classes by converting the methods
to static and reduce the number of classes and methods. The drawback emerged in our
quality attribute graphs from our QMOOD results, showing that most mobile design
patterns had reduced their reusability attribute. Low reusability can lead to a longer
development process, and this is not optimal in short to time market of mobile apps.
However, the understandability of the mobile design patterns improved, which, according
to the QMOOQOD definition, the design patterns are easier to comprehend and less complex.
Better understandability can be one of the advantages of techniques and strategies for
optimizing power and memory consumption.

Finally, one key lesson we learned throughout our thesis and believed it is important
to understand for developing more efficient design patterns is memory allocation. For
example, through our testing and research of memory allocation and using static methods
[6][7], we learned it is more CPU and memory efficient then instance methods. A critical
difference between the two methods is that a static method requires only one CPU
instruction when called from the stack, while an instance method must first allocate an
object in the heap before it can be called. The difference is illustrated in the following
figure.

87



Invoking Static Method

Stack

1. |ClassBA_method() —

Invoking Instance Method

2 | object.method() —1

>l

1. | ClasshA object = new Classh()
) G s wvp—

method()
Stack The Heap
method()
ClassA
—”  Object

Figure 8.5.2: Invoking Static Method Versus Instance Method

88




Chapter 9

Conclusion

Developing a mobile game in Android imposed two requirements for the software design
patterns. Requirement one was for the design patterns to consider incorporating the
components of the mobile platform architecture. In our case, the context of the Activity
component of the Android architecture was, e.g., needed in the Abstract Factory pattern
for creating its products. The second requirement was for the design patterns to be more
optimized or efficient by managing the memory more suitable to the limiting processing
power and memory of the mobile device, as the design patterns were initially not designed
for such an environment.

In conclusion, the results of the comparative study showed that mobile design patterns
improved the performance efficiency of the mobile app and the understandability of the
patterns at the expense of their reusability. Optimization techniques and strategies for
energy and memory consumption, such as converting the instance methods to static,
could increase the execution time of the design patterns, but it could also remove its
inheritance mechanism. According to our QMOOD results, the reusability of the pattern
would decrease and instead increase the understandability.

Notable, the combination of converting instance methods to static and combining
multiple images to one, improved the execution time of Abstract Factory 36%, while
just combining multiple images to one, improved the execution time of Command 29%.
One important lesson we learned and believe is key for understanding in developing more
efficient design patterns is memory allocation, to avoid allocating unnecessary memory,
especially to the heap, and managing memory in a more optimized way.

89



90



Appendices

91






Appendix A

Project Implementation

In this appendix, we present the implementation of the regular and mobile project and its
design patterns. Note that this is more of a refined version of our projects, in an attempt
to make it more readable and easier to understand.

A.1 Project with Regular Design Patterns

A.1.1 Package; abstractFactory

public class BombedMazeFactory implements MazeFactory {

@Override

public Door makeDoor (Room rl, Room r2, Direction direction , Context
context) {
return new BombedDoor(rl, r2, direction, context);

}

@Override

public Maze makeMaze () {
return new Maze () ;

}

@Override

public Room makeRoom(int roomNumber) {
return new Room(roomNumber) ;

}

@Override
public Wall makeWall(Direction direction, Context context) {
return new BombedWall(direction , context);

}
@Override
public PickUp makeRandomPickUp(Context c) {
Random random = new Random /() ;
int randWeight = random.nextInt (100);
switch (random.nextInt (3)){
case 0: return new Bronze(c,randWeight);
case 1l: return new Silver (¢, randWeight);
case 2: return new Gold(c, randWeight);
default: return new Bronze(c, randWeight);
}
}

}

public interface MazeFactory {
Maze makeMaze () ;
Wall makeWall(Direction d, Context c);
Room makeRoom(int roomNumber) ;

93




Door makeDoor (Room rl, Room r2, Direction d, Context c);
PickUp makeRandomPickUp(Context c);

public class StandardMazeFactory implements MazeFactory {

@Override

public Door makeDoor(Room rl, Room r2, Direction direction, Context
context) {
return new StandardDoor(rl, r2, direction, context);

}

@Override

public Maze makeMaze() {
return new Maze () ;

}

@Override

public Room makeRoom(int roomNumber) {
return new Room(roomNumber) ;

}

@Override

public Wall makeWall(Direction direction , Context context) {
return new StandardWall(direction , context);

}

@Override
public PickUp makeRandomPickUp(Context c) {
Random random = new Random () ;
int randWeight = random.nextInt (100);
switch (random.nextInt (3)){
case 0: return new Bronze(c, randWeight);
case 1: return new Silver(c, randWeight);
case 2: return new Gold(c, randWeight);
default: return new Bronze(c, randWeight);

A.1.2 Package; activity

public class GameActivity extends AppCompatActivity {
private Engine engine = Engine.getInstance();

private Strategy strategy = new PNGStrategy () ;
private Activity mActivity;

private Button screenShotButton;

public GameActivity (){}

@Override

public void onCreate(final Bundle savedInstanceState){
super .onCreate (savedInstanceState) ;
setContentView (R.layout . activity__game) ;

ActivityCompat.requestPermissions (this ,
new String []{ Manifest.permission .WRITE EXTERNAL STORAGE} ,
1);

mActivity = this;
screenShotButton = (Button) findViewById(R.id.screenshotButton);

94




engine .
engine .
engine .
engine .
engine .

{

moneyText = (TextView) findViewById(R.id.moneyText) ;
enterDoorButton = (Button) findViewBylId(R.id.actionButton);
gridLayout = (FrameLayout) findViewByld(R.id.gridLayout);
startGame (getappContext () ) ;
enterDoorButton.setOnClickListener (new View.OnClickListener ()

@Override
public void onClick (View v) {

}
1)

engine . executeEnter () ;

screenShotButton.setOnClickListener (new View.OnClickListener () {
@Override
public void onClick (View v) {

}
s

@Override

strategy .strategy (mActivity);

public void onWindowFocusChanged(boolean hasFocus) {
super .onWindowFocusChanged (hasFocus) ;
if (hasFocus){
engine . positionEachRoomFromMaze (engine . maze) ;

}
}

@Override

public boolean onKeyDown(int keyCode, KeyEvent event) {

switch

(keyCode) {

case KeyEvent .KEYCODE_D:{

}

if (engine.currentRoom. getStaticSite (East) != null){
if (!(engine.currentRoom. getStaticSite (East).intersects (
engine.player.getSprite()))){
engine . player . moveRight () ;
engine.intersectsFlag = false;
}
} else{
engine . player.moveRight () ;
}

return true;

case KeyEvent .KEYCODE A:{

}

if (engine.currentRoom. getStaticSite (West) != null){
if (!(engine.currentRoom. getStaticSite (West).intersects (
engine.player.getSprite()))){
engine . player.moveLeft () ;
engine.intersectsFlag = false;

} else{
engine . player.moveLeft () ;
}

return true;

case KeyEvent.KEYCODE_S:{

if (engine.currentRoom. getStaticSite (South) != null){
if (!(engine.currentRoom. getStaticSite (South).intersects (

95




engine.player.getSprite()))){
engine . player .moveDown () ;
engine.intersectsFlag = false;

} else{
engine. player .moveDown () ;
}

return true;

}
case KeyEvent KEYCODE W:{
if (engine.currentRoom. getStaticSite (North) != null){
if (!(engine.currentRoom. getStaticSite (North).intersects (
engine.player.getSprite()))){
engine . player .moveUp() ;
engine.intersectsFlag = false;

}

} else {
engine . player .moveUp() ;
}

return true;

}
}
return true;

}

}
public class Main extends AppCompatActivity {

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState) ;
setContentView (R.layout .activity__main);

}

public void startGame(View view){
new Intent (this, GameActivity.class);

Intent i =
startActivity (i);

A.1.3 Package; command

public abstract class Command {
protected Engine engine = Engine. getInstance ();

public Command () {}
public abstract void execute();

4
public class EnterDoorCommand extends Command {

Door door;
public EnterDoorCommand(Door door) {
super () ;
this.door = door;
}
@Override
public void execute ()
if (door = null){
return;

{

}
if (door.intersects (engine.getPlayerSprite())){

if (door.enter ()){
engine . movePlayerToRoom (door . otherSideFrom (engine . getCurrentRoom

());

96



}

public class EnterWallCommand extends Command {

Wall wall;
public EnterWallCommand (Wall wall) {
super () ;
this.wall = wall;
}
@Override
public void execute() {
if (wall = null){
return;

}

if (wall.intersects (engine.getPlayerSprite())) {
wall.enter () ;
}

A.1.4 Package; visitor

public interface Visitor {
void visitDoor (Door door);
void visitWall(Wall wall);
void visitBronze (Bronze bronze);
void visitSilver (Silver silver);
void visitGold (Gold gold);

public class PickUpVisitor implements Visitor {
@Override
public void visitDoor (Door door) {

}
@Override

public void visitWall (Wall wall) {

}
@Override

public void visitBronze (Bronze bronze) {
double value = bronze.getWeight () * bronze.getValue();
Engine. getInstance () .incrementPlayerMoney (value) ;
}
@Override
public void visitGold (Gold gold) {
double value = gold.getWeight () % gold.getValue();
Engine. getInstance () .incrementPlayerMoney (value) ;
}
@Override
public void visitSilver (Silver silver) {
double value = silver.getWeight () * silver.getValue();
Engine. getInstance () .incrementPlayerMoney (value) ;
}
}
public class EnterSiteVisitor implements Visitor {
@Override
public void visitDoor (Door door) {
Engine. getInstance () .setEnter (new EnterDoorCommand (door));

97




}
@Override

public void visitWall(Wall wall) {
Engine. getInstance () .setEnter (new EnterWallCommand (wall));
}

@Override
public void visitBronze (Bronze bronze) {
PickUpVisitor pickUpVisitor = new PickUpVisitor();
bronze.accept (pickUpVisitor);
Engine. getInstance (). gridLayout.removeView (bronze. getSprite());
}
@Override
public void visitGold (Gold gold) {
PickUpVisitor pickUpVisitor = new PickUpVisitor();
gold . accept (pickUpVisitor);
Engine. getInstance (). gridLayout.removeView (gold. getSprite());
}
@Override
public void visitSilver (Silver silver) {
PickUpVisitor pickUpVisitor = new PickUpVisitor();
silver .accept(pickUpVisitor);
Engine. getInstance (). gridLayout.removeView (silver.getSprite());

A.1.5 Package; strategy

public interface Strategy {
void strategy (Activity activity);

public class PNGStrategy implements Strategy {
@Override
public void strategy (Activity activity) {
Date now = new Date();
String fileName = "screenshot"
+ android. text.format.DateFormat. format ("yyyy-MM-dd_hh:mm: ss

", now)
String fileFormat = ".png";
try {
String path = Environment.getExternalStorageDirectory ().toString
() + "/“ +

fileName + fileFormat ;

// Screen capture

View view = activity .getWindow () .getDecorView () .getRootView () ;
view.setDrawingCacheEnabled (true) ;

Bitmap bitmap = Bitmap.createBitmap (view.getDrawingCache());
view.setDrawingCacheEnabled (false);

// Save Screenshot
File file = new File(path);
FileOutputStream outputStream = new FileOutputStream (file);
bitmap . compress (Bitmap. CompressFormat .PNG, 100, outputStream);
outputStream . flush () ;
outputStream . close () ;
openScreenshot (file , activity);
} catch(Throwable e){
e.printStackTrace () ;

98




}
}

private void openScreenshot(File imageFile, Activity activity){
Intent intent = new Intent ();
intent.setFlags (Intent .FLAG_GRANT_ READ_URI PERMISSION) ;
intent.setAction (Intent .ACTION_VIEW) ;
Uri uri = Uri.fromFile(imageFile);
intent .setDataAndType(uri, "image/x");
activity .startActivity (intent);

}

}

public class JPEGStrategy implements Strategy{
@Override
public void strategy (Activity activity) {
Date now = new Date();

String fileName = "screenshot"
+ android. text.format.DateFormat. format ("yyyy-MM-dd_hh:mm: ss
", now);
String fileFormat = ".jpg";
try {
String path = Environment.getExternalStorageDirectory ().toString
O+ '/ +

fileName + fileFormat ;

// Screen capture

View view = activity .getWindow () .getDecorView () .getRootView () ;
view .setDrawingCacheEnabled (true) ;

Bitmap bitmap = Bitmap.createBitmap (view.getDrawingCache());
view . setDrawingCacheEnabled ( false) ;

// Save Screenshot
File file = new File(path);
FileOutputStream outputStream = new FileOutputStream (file);
bitmap . compress (Bitmap . CompressFormat .JPEG, 100, outputStream);
outputStream . flush () ;
outputStream. close () ;
openScreenshot (file , activity);

} catch (Throwable e){
e.printStackTrace () ;

}

}

private void openScreenshot(File imageFile, Activity activity){
Intent intent = new Intent();
intent.setFlags (Intent .FLAG_GRANT READ_URI_PERMISSION) ;
intent.setAction (Intent .ACTION VIEW) ;
Uri uri = Uri.fromFile(imageFile);
intent .setDataAndType(uri, "image/*");
activity .startActivity (intent);

A.1.6 Package; enums

public enum Direction{
North ,
South ,
East ,
West ,

99




Center;

A.1.7 Package; gameObjects

public class Door extends StaticSite {

// Room
protected Room rooml;
protected Room room2;

// Boolean
protected boolean isOpen;

// Class
protected Setting setting = Setting.getlnstance();

public Door(Direction d, Context c¢) {
super (¢, d);
isOpen = false;

if (d = Direction.North || d = Direction.South) {
width = setting.getImgWidthMap () . get (North) ;
height = setting.getImgHeightMap () .get (North);
sprite.setLayoutParams(new FrameLayout.LayoutParams (width ,
height));
sprite.setScaleType (ImageView.ScaleType .FIT _XY);
sprite.setImageResource (R.drawable.dooreast ) ;
} oelse {
width = setting.getImgWidthMap () . get (East) ;
height = setting.getImgHeightMap () .get (East);
sprite.setLayoutParams(new FrameLayout.LayoutParams(width
height));
sprite.setScaleType (ImageView.ScaleType .FIT _XY);
sprite.setImageResource (R.drawable.doornorth);

}

public interface MapSite {
boolean enter () ;
}

public abstract class StaticSite implements MapSite {
// Context
protected Context context;
// Sprite
protected ImageView sprite;

// Default width & height
protected int width = 100;
protected int height = 100;
// Direction

protected Direction direction;

public StaticSite (Context ¢, Direction d){
this.direction = d;
this.context = c;
this.sprite = new ImageView(this.context);

100




public abstract void accept(Visitor v);

public boolean intersects (ImageView view2) {
final int[] location = new int[2];

sprite.getLocationInWindow (location);
Rect rectl = new Rect(location [0], location[1],location[0] + sprite.
getWidth (), location[1] + sprite.getHeight());

view2 . getLocationInWindow (location);
Rect rect2 = new Rect(location [0], location[1],location [0] + view2.
getWidth (), location [1] + view2.getHeight());

return rectl.intersect(rect2);

}

// Getters and setters

public Door(Room rl, Room r2, Direction d, Context c) {
super (¢, d);
this.rooml = rl;
this.room2 = r2;
this.isOpen = true;

if (d = Direction.North || d = Direction.South) {
width = setting.getImgWidthMap () .get (North);
height = setting.getImgHeightMap () .get (North);
sprite.setImageResource (R.drawable. dooreast);

} else {
width = setting.getImgWidthMap () . get (East) ;
height = setting.getImgHeightMap () .get (East);
sprite.setImageResource (R.drawable.doornorth);

}

sprite.setLayoutParams(new FrameLayout.LayoutParams(width, height));

sprite.setScaleType (ImageView.ScaleType .FIT XY);

public Room otherSideFrom (Room rl) {
if (rl.equals(this.rooml)) {
return room?2;
} else if (rl.equals(this.room2)) {
return rooml;
} else {

return null;
}
}

@Override
public boolean enter () {
if (!isOpen) {
return false;

} else {

return true;
}
}

@Override

public void accept(Visitor v) {
v.visitDoor (this);

}

public class BombedDoor extends Door {
public BombedDoor(Room rl, Room r2, Direction d, Context c¢){
super (rl,r2,d,c);

101




}

public BombedDoor(Direction d, Context c){
super (d,c);
}

@Override

public boolean enter () {
// Door exploded!
return false;

}
}
public class StandardDoor extends Door {
public StandardDoor (Room rl, Room r2, Direction d, Context c){
super (rl,r2,d,c);
}

public StandardDoor(Direction d, Context c){
super (d,c);

}

public class Wall extends StaticSite {
// Setting
protected Setting setting = Setting.getlnstance();

public Wall(Direction d, Context c¢){
super (c¢,d);

if (d = North || d == South){
width = setting.getImgWidthMap () . get (North) ;
height = setting.getImgHeightMap () .get (North);
sprite.setImageResource (R.drawable. walleast ) ;

else {
width = setting.getImgWidthMap () . get (East) ;
height = setting.getImgHeightMap () .get (East);
sprite.setImageResource (R.drawable. wallnorth);
}
sprite.setLayoutParams(new FrameLayout.LayoutParams(width, height));
sprite.setScaleType (ImageView. ScaleType .FIT XY);

}
@Override

public boolean enter () {
return false;
}

@Override
public void accept(Visitor v) {
v.visitWall (this);
}
I

public class BombedWall extends Wall {
public BombedWall(Direction d, Context c) {
super (d, ¢);
}

@Override
public boolean enter () {
// Wall exploded!

return false;

}

public class StandardWall extends Wall {
public StandardWall(Direction d, Context c¢) {
super (d, c¢);

102




}

}

public class Player extends MovableObject {

private HashMap<Direction , Integer> imgManagerL = new HashMap<>();
private HashMap<Direction, Integer> imgManagerR = new HashMap<>();

public Player (Context ¢, Direction d){
super (¢, d);

imgManagerL . put (North, R.drawable.upl);
imgManagerL . put (South, R.drawable.downl);
imgManagerL . put (East, R.drawable.right);
imgManagerL . put (West, R.drawable.left);

imgManagerR . put (North, R.drawable.upr);
imgManagerR . put (South, R.drawable.downr);

sprite.setLayoutParams(new FrameLayout.LayoutParams (121,
sprite.setScaleType (ImageView.ScaleType .FIT XY);
this.sprite.setImageResource (imgManagerL. get (d));

this.velocity = new Point (20,20);

}

@Override

public void update(float elapsedTime) {
// update player

}

@Override

public ImageView getSprite () {
return this.sprite;

}

public void moveRight () {
if (lastDirection != East){
changeDirection (East) ;
}

position.x += velocity .x;
this.sprite.setX(position.x);
}
public void moveLeft () {
if (lastDirection != West){
changeDirection (West) ;
}

position.x —= velocity .x;
this.sprite.setX(position.x);
}
public void moveUp() {
if (lastDirection != North){
changeDirection (North);
}

position.y —= velocity .y;
this.sprite.setY (position.y);

}

public void moveDown() {
if (lastDirection != South){
changeDirection (South) ;
}

position.y += velocity .y;
this.sprite.setY (position.y);

103

108));




public void changeDirection (Direction d){
if (d = South || d == North){
if (lastDirection = West){
sprite.setImageResource (imgManagerL. get (d));

}telse{

sprite.setImageResource (imgManagerR . get (d));
}

telse{

sprite.setImageResource (imgManagerL. get (d));
}
lastDirection = d;
// Getters and setters

public abstract class PickUp extends StaticSite {
protected double weight;
public PickUp(Context ¢, double weight){
super (¢, North);
this.weight = weight;
sprite.setLayoutParams(new FrameLayout.LayoutParams(width ,
sprite.setScaleType (ImageView.ScaleType .FIT _XY);

public double getWeight () {
return weight;
}

public class Bronze extends PickUp {

public String rareType = "Bronze';
private double wvalue;

public Bronze(Context ¢, double weight){
super (¢, weight);
sprite.setImageResource (R.drawable.bronze);
value = 0.01;
}
public String getRareType() {
return rareType;
}

@Override

public void accept(Visitor v) {
v.visitBronze (this);

}

@Override

public boolean enter () {
return false;

}

public double getValue() {
return value;
}
}

public class Silver extends PickUp {

public String rareType = "Silver";
private double value;

public Silver (Context ¢, double weight){
super (¢, weight);
sprite.setImageResource (R.drawable. silver);
value = 0.1;

104

height));




}

public String getRareType() {
return rareType;
}

@Override

public void accept(Visitor v) {
v.visitSilver (this);

}

@Override
public boolean enter () {
return false;

public double getValue() {
return value;
}
}

public class Gold extends PickUp {
public String rareType = "Gold";
private double wvalue;

public Gold(Context ¢, double weight){
super (¢, weight);
sprite.setImageResource (R.drawable. gold);
value = 1;

}

public String getRareType() {
return rareType;

}

@Override

public void accept(Visitor v) {
v.visitGold (this);

}

@Override
public boolean enter () {
return false;

public double getValue() {
return value;
}

public class Room implements MapSite {
private Map<Direction, StaticSite> staticSiteMap = new HashMap<>();
private Point roomPosition = new Point (0,0);
private Context c;

// Room number
private int roomNumber;

private int roomWidthCenter = Setting.getInstance () .getRoomWidth() ;
private int roomHeightCenter = Setting.getInstance ().getRoomHeight () ;

// Constructor

public Room(int roomNo){
this .roomNumber = roomNo;

}

// Add MapSite in Direction [North, South, East, West]

public void addSite(StaticSite staticSite){
staticSiteMap.put(staticSite.getDirection (), staticSite);

}

// Add MapSite in Direction [North, South, East, West]

105




public void addSite(Direction direction, StaticSite staticSite){
staticSiteMap .put(direction , staticSite);
}

public void positionAllSites () {
if (staticSiteMap .isEmpty ()) {
return;
}

for (Map.Entry<Direction, StaticSite> entry : staticSiteMap.entrySet
0) A
switch (entry.getKey()) {
case North:
entry.getValue().set (roomPosition.x, roomPosition.y —
entry .getValue () .getHeight ());
break ;
case East:
entry.getValue () .set (roomPosition.x + roomWidthCenter —
entry.getValue () .getWidth (), roomPosition.y);
break;
case South:
entry.getValue () .set (roomPosition.x, roomPosition.y +
roomHeightCenter) ;
break;
case West:
entry.getValue().set (roomPosition.x, roomPosition.y);
break;
case Center:
entry.getValue().set (roomPosition.x + roomWidthCenter /
3, roomPosition.y + roomHeightCenter / 2);
break;

default :

}
}
@Override
public boolean enter () {
// enter room

// Getter and Setters...
public List<StaticSite> getAllSites () {
List<StaticSite> listMapSite = new ArrayList<>();
for (Map. Entry<Direction, StaticSite> entry : staticSiteMap.entrySet

)4

listMapSite.add(entry.getValue());

}

return listMapSite;

}

public StaticSite removeStaticSite(Direction d) {
return staticSiteMap .remove(d);
}

public StaticSite getStaticSite(Direction d) {
return staticSiteMap.get(d);
}

A.1.8 Package; project

‘public class Engine {

106



private static Engine engine = null;
private Context context;

// View

public FramelLayout gridLayout;
public Button enterDoorButton;
public TextView moneyText;

public int frameHeight;

public int frameWidth;

public Timer timer;

public Handler handler = new Handler () ;

public Maze maze;

public Room currentRoom;

private HashMap<Direction , StaticSite> staticSiteMap;
// Player

public Player player;

private double playerMoney = 0;

public StandardDoor currentDoor;
public boolean intersectsFlag;

public Command enter;
private EnterSiteVisitor enterSiteVisitor = new EnterSiteVisitor ();

private Engine() {}
// Singleton
public static Engine getInstance() {
if (engine = null){
engine = new Engine();
}

return engine;

}

public void startGame(Context context) {

this.context = context;

if (frameHeight = 0) {
frameHeight = gridLayout.getHeight () ;
frameWidth = gridLayout.getWidth () ;

}

player = new Player(this.context, East);

maze = createMaze (new StandardMazeFactory ());

display (maze) ;

movePlayerToRoom (maze. getRoomList () . get (0) ) ;

this.timer = new Timer () ;
timer.schedule (
new TimerTask (){
@Override
public void run() {
handler. post (new Runnable() {
@Override
public void run() {
update () ;

}

public Maze createMaze (MazeFactory factory) {
Maze aMaze = factory .makeMaze() ;

107




Room rl1
Room
Room
Room

Room

r3
r4

Door

Door doorl

factory .makeRoom (1)
r2 = factory .makeRoom (2)
r2 2 = factory .makeRoom(22) ;
factory .makeRoom (3)
factory .makeRoom (4)

)

)

)

)

locked = factory .makeDoor(rl, null, North, context);
locked .setIsOpen(false);
= factory .makeDoor(rl,r2, East, context);
= factory .makeDoor(r2,r3, North, context);

Door door2
Door door2__
Door door3 =
rl.addSite
rl.addSite
rl.addSite
rl.addSite

~ A~~~

= factory .makeDoor(r2,r2_2, East, context);
factory .makeDoor(r3,r4, South, context);

locked) ;

East, doorl);

factory .makeWall(South ,
factory . makeWall (West ,

context));
context));

r2.addSite (East, door2_2);

(
r2.addSite(factory .makeWall(North,
r2.addSite (West, doorl);
r2.addSite (Center,

(

context));

factory .makePickUp(context));

r2.addSite (South, door2);

r2_ 2.
r2 2.
r2_ 2.
r2_ 2.
r2 2.

addSite

r3.addSite (factory . makeWall (West,
r3.addSite (factory . makeWall (East ,
Center ,

addSite (factory .makeWall(North,
addSite (West, door2_ 2);

addSite (Center ,
addSite (factory .makeWall(South

context));

factory .makeWall (East, context));
factory .makePickUp(context));
context));

context));
context));
factory . makePickUp(context));

r3.addSite (South, door3);
r3.addSite (North, door2);

(
(
r3.addSite (
(
(

r4 . addSite (factory .makeWall(East, context));
r4.addSite (factory . makeWall (West, context));
r4.addSite (North, door3);

r4.addSite (Center, factory.makePickUp(context));
aMaze . AddRoom(rl, East);

aMaze . AddRoom (r2, East);

aMaze.AddRoom (r2_2, East);

aMaze . AddRoom( null , West) ;

aMaze . AddRoom (r3, South);

aMaze . AddRoom (14, South);

return aMaze;

}

// Called every frame
private void update(){
if (I(staticSiteMap .isEmpty ())){

for (Map. Entry<Direction ,

StaticSite> entry staticSiteMap .

entrySet ()){

if (entry.getValue().
if (!intersectsFlag) {

}

intersects (player.getSprite())) {

entry.getValue().accept(enterSiteVisitor);

108




if (!(entry.getKey () = Center)) {
intersectsFlag = true;
}

}
}

player.update();

}

public void movePlayerToRoom (Room room){

if (room = null)return;
currentRoom = room;
currentDoor = null;

player.setPosition (room. getRoomPosition () .x + room.
getRoomWidthCenter () /3, room.getRoomPosition().y + room.
getRoomHeightCenter () /4);

staticSiteMap = (HashMap) currentRoom.getStaticSiteMap ();

intersectsFlag = false;

}

public void display (Maze maze){
gridLayout .addView (player.getSprite ());
displayEachRoomFromMaze (maze) ;

}

public void displayEachRoomFromMaze (Maze maze){
List <Room> roomList = maze.getRoomList () ;

for (Room room : roomList) {
for (StaticSite staticSite : room.getAllSites()) {
if (gridLayout.indexOfChild (staticSite.getSprite()) = —1){

gridLayout .addView (staticSite.getSprite());

}
}
}

public void positionEachRoomFromMaze (Maze maze){
maze . positionAllRooms () ;
for (Room room : maze.getRoomList()) {
room. positionAllSites ();
}

// Execute Command
public void executeEnter (){
if (this.enter != null){
enter.execute () ;
}
}

public void updateMoneyText () {

DecimalFormat df = new DecimalFormat () ;
df.setMaximumFractionDigits (4) ;
this . moneyText.setText ("Money: " + df.format(playerMoney) + "g");

}

public void incrementPlayerMoney (double playerMoney) {
this.playerMoney += playerMoney;
updateMoneyText () ;

}

// Getters and setters...

public ImageView getPlayerSprite(){
return this.player.getSprite();

}

public void setEnter (Command enter) {
this.enter = enter;

109




}

public class Maze {
private List<Room> roomList = new ArrayList <>();
) . getStartMazeX () ;

private int startMazeX = Setting.getlnstance ()
) . getStartMazeY () ;
)

private int startMazeY = Setting.getlnstance

— N — —

private int nextRoomY = Setting.getInstance () .getRoomHeight () ;
private int nextRoomX = Setting.getInstance () .getRoomWidth () ;
Point nextRoomCenter = new Point (startMazeX , startMazeY);

public Maze(){}
public void AddRoom(Room room, Direction direction){
if (roomList.isEmpty()){
if (room != null) {
roomList.add (room) ;
room.setRoomPosition (nextRoomCenter) ;

}
telse {
switch (direction) {
case North:

nextRoomCenter = new Point (nextRoomCenter.x,
nextRoomCenter.y — nextRoomY) ;
break;
case Hast:
nextRoomCenter = new Point(nextRoomCenter.x + nextRoomX,
nextRoomCenter.y) ;
break;
case South:
nextRoomCenter = new Point(nextRoomCenter.x,

nextRoomCenter.y + nextRoomY); //+ offsetY)

break;
case West:
nextRoomCenter = new Point (nextRoomCenter.x — nextRoomX,
nextRoomCenter.y) ;
break;
default :
break ;
}
if (room != null) {
roomList.add (room) ;
room . setRoomPosition (nextRoomCenter) ;

}
}
//Getters and setters ...
public Room getRoomNu(int roomNu) {
for (int i = 0; i < roomList.size(); i++){
if (roomList.get (i) .getRoomNumber () == roomNu) {
return roomList.get (i);
}

}

return null;

public List<Room> getRoomList () {
return roomList;
}

public class Setting {

private static Setting instance = null;

110




private int startMazeX;
private int startMazeY;

private HashMap<Direction , Integer> imgWidthMap = new HashMap<>();
private HashMap<Direction, Integer> imgHeightMap = new HashMap<>();

private Setting(){

int number = 300;
roomWidth = number;
roomHeight = number;

imgWidthEast = 40;
imgHeightEast = number;
imgWidthNorth = number;
imgHeightNorth = 40;
startMazeX = 100;
startMazeY = 400;

imgWidthMap . put (North , imgWidthNorth) ;
imgHeightMap . put (North, imgHeightNorth);
imgWidthMap . put (East , imgWidthEast) ;
imgHeightMap . put (East, imgHeightEast);

}
public static Setting getInstance() {
if (instance = null) {
instance = new Setting();
}
return instance;
}

//Getters and setters ...

public HashMap<Direction , Integer> getImgHeightMap () {
return imgHeightMap;

}

A.2 Project with Mobile Design Patterns

We will not present and repeat all of the classes we have seen from the regular project
above when presenting the implementation of the mobile project because they are pretty
much alike. We present only the mobile design patterns and main differences. The main
differences aside from the mobile design patterns were that we added an ImageManager
class which represents the technique of combining multiple images to one, and a factory

enum which decides whether we use a bombed maze factory or the standard.

A.2.1 Package; mobileAbstractFactory

public class MazeFactory {
public static Maze makeMaze() {
Maze maze = null;
switch (Setting . factoryType){

111



case Bombed:

maze = BombedMazeFactory . makeMaze () ;
break ;
default :
maze = StandardMazeFactory .makeMaze () ;

}

return maze;
}
public static Wall makeWall(Direction d, Context c){
Wall wall = null;
switch (Setting . factoryType){
case Bombed:
wall = BombedMazeFactory . makeWall(d, c);
break;
default :
wall = StandardMazeFactory . makeWall(d, c);

}

return wall;
}
public static Door makeDoor (Room rl, Room r2, Direction d, Context c){
Door door = null;
switch (Setting . factoryType){
case Bombed:
door = BombedMazeFactory.makeDoor(rl, r2, d, c¢);
break;
default :
door = StandardMazeFactory.makeDoor(rl, r2, d, c¢);

}

return door;
}
public static Room makeRoom(int roomNumber){
Room room = null;
switch (Setting . factoryType){
case Bombed:

room = BombedMazeFactory .makeRoom (roomNumber) ;
break;

default :
room = StandardMazeFactory .makeRoom (roomNumber) ;

}

return room;
}
public static PickUp makeRandomPickUp(Context ¢, double weight){
PickUp pickUp = null;
switch (Setting . factoryType){
case Bombed:
pickUp = BombedMazeFactory . makeRandomPickUp(c, weight);
break;
default :
pickUp = StandardMazeFactory . makeRandomPickUp(c, weight);

}

return pickUp;

}

public class BombedMazeFactory {
public static Maze makeMaze () {
return new Maze() ;
}

public static Door makeDoor (Room rl, Room r2, Direction direction ,

Context context) {
return new BombedDoor(rl, r2, direction, context);

112




public static Room makeRoom(int roomNumber) {
return new Room(roomNumber) ;
}

public static Wall makeWall(Direction direction , Context context) {
return new BombedWall(direction , context);
}

public static PickUp makeRandomPickUp(Context ¢, double weight) {
return new Bronze(c, weight);
}
}

public class StandardMazeFactory {
public static Maze makeMaze (){
return new Maze () ;
}

public static Door makeDoor (Room rl, Room r2, Direction direction ,
Context context) {
return new StandardDoor(rl, r2, direction, context);

}

public static Room makeRoom(int roomNumber) {
return new Room(roomNumber) ;

}

public static Wall makeWall(Direction direction , Context context) {
return new StandardWall(direction , context);
}

public static PickUp makeRandomPickUp(Context c, double weight) {
Random random = new Random() ;
int randWeight = random.nextInt (100);
switch (random.nextInt (3)){
case 0: return new Bronze(c,randWeight);
case 1: return new Silver(c,randWeight);
case 2: return new Gold(c,randWeight);
default: return new Bronze(c,randWeight);

A.2.2 Package; mobileCommand

public abstract class Command {
public Engine engine = Engine. getInstance();
public Command () {}
public abstract void execute();

public class EnterCommand extends Command {

StaticSite staticSite;

public EnterCommand(StaticSite s){
super () ;
this.staticSite = s;

}

@Override

public void execute (){
if (this.staticSite = null){

return;

if(staticSite.intersects (engine.getPlayerSprite()) && staticSite.

enter ()) {

if (staticSite.enter()) {
Door door = (Door) staticSite;

113




engine . movePlayerToRoom (door.otherSideFrom (engine .
getCurrentRoom () ) ) ;

A.2.3 Package; mobileVisitor

public interface Visitor {
void visitStaticSite (StaticSite staticSite);
void visitPickUp (PickUp pickUp);

public class PickUpVisitor implements Visitor {
@Override
public void visitStaticSite(StaticSite staticSite) {}
@OQOverride
public void visitPickUp (PickUp pickUp) {
double value = pickUp.getWeight () = pickUp.getValue();
Engine. getInstance () .incrementPlayerMoney (value) ;

}

public class EnterSiteVisitor implements Visitor {
@Override
public void visitStaticSite(StaticSite staticSite) {
Engine. getInstance () .setEnter (new EnterCommand(staticSite));
}

@Override

public void visitPickUp (PickUp pickUp) {
PickUpVisitor pickUpVisitor = new PickUpVisitor();
pickUp.accept (pickUpVisitor) ;
Engine. getInstance () .removeView (pickUp. getSprite ());

A.2.4 Package; mobileStrategy

public class PhotoStrategy {
public static void strategy (String fileFormat, Activity activity) {
Date now = new Date();

String fileName = "screenshot"
+ android . text .format.DateFormat. format ("yyyy-MM-dd_hh:mm: ss
", now) ;
try {
String path = Environment.getExternalStorageDirectory ().toString
() + "/“ +

fileName + fileFormat ;

// Screen capture

View view = activity .getWindow () .getDecorView () .getRootView () ;
view.setDrawingCacheEnabled (true) ;

Bitmap bitmap = Bitmap.createBitmap (view.getDrawingCache());
view .setDrawingCacheEnabled (false);

// Save Screenshot

File file = new File(path);
FileOutputStream outputStream = new FileOutputStream (file);

114




if (fileFormat = ".png") {
bitmap . compress (Bitmap . CompressFormat .PNG, 100, outputStream
)i}
else {
bitmap . compress (Bitmap . CompressFormat .JPEG, 100,
outputStream) ;
}
outputStream . flush () ;
outputStream. close () ;
openScreenshot (file , activity);
} catch(Throwable e){
e.printStackTrace () ;
}

}

private static void openScreenshot(File imageFile, Activity activity){
Intent intent = new Intent();
intent.setFlags (Intent .FLAG_GRANT READ_URI_PERMISSION) ;
intent.setAction (Intent .ACTION VIEW) ;
Uri uri = Uri.fromFile(imageFile);
intent .setDataAndType(uri, "image/*");
activity .startActivity (intent);

A.2.5 Package; enums

public enum FactoryType {
Standard ,
Bombed ;

A.2.6 Package; imageManager

public class ImageManager {
private static ImageManager instance = null;
private HashMap<Direction , Drawable> doorImage;
private HashMap<Direction , Drawable> walllmage;
private HashMap<String , Drawable> moneylmage;
private HashMap<Direction , Drawable> playerImagel ;
private HashMap<Direction , Drawable> playerIlmageR ;

private Context context;

private ImageManager(Context c¢){
this.context = c;
doorImage = new HashMap<>();
walllmage = new HashMap<>();
moneylmage = new HashMap<>();
playerImagel. = new HashMap<>();
playerImageR = new HashMap<>();

Bitmap sourcePlayer = Bitmap.createScaledBitmap (BitmapFactory .
decodeResource (context.getResources () ,R.drawable. player),
700,121, false);
Bitmap upRBm = Bitmap.createBitmap (sourcePlayer, 363, 0, 121, 108);
Bitmap upLBm = Bitmap.createBitmap (sourcePlayer, 242, 0, 121, 108);
Bitmap downLBm = Bitmap.createBitmap (sourcePlayer, 0, 0, 121, 108);

115




Bitmap downRBm = Bitmap.createBitmap (sourcePlayer, 121, 0, 121, 108)
Bitmap rightBm = Bitmap.createBitmap (sourcePlayer, 592, 0, 108, 121)
Bitmap leftBm = Bitmap.createBitmap (sourcePlayer, 484, 0, 108, 121);

Drawable upRBmD = new BitmapDrawable(context.getResources (), upRBm) ;

Drawable upLBmD = new BitmapDrawable(context.getResources (), upLBm) ;

Drawable downLBmD = new BitmapDrawable(context.getResources(),
downLBm) ;

Drawable downRBmD = new BitmapDrawable(context.getResources(),
downRBm) ;

Drawable rightBmD = new BitmapDrawable(context.getResources(),
rightBm) ;

Drawable leftBmD = new BitmapDrawable(context.getResources (), leftBm

)

playerImageL . put (North, upLBmD) ;
playerImageL . put (South, downLBmD) ;
playerImageL . put (East, rightBmD);
playerImageL . put (West, leftBmD);

playerImageR . put (North, upRBmD) ;
playerImageR . put (South , downRBmD) ;

Bitmap sourceDoor = Bitmap.createScaledBitmap (BitmapFactory .
decodeResource (context.getResources (), R.drawable.door) ,
42,169, false);
Bitmap doorNorth = Bitmap.createBitmap (sourceDoor, 0, 0, 21, 40);
Bitmap doorEast = Bitmap.createBitmap (sourceDoor, 21, 0, 21, 169);
Drawable dN = new BitmapDrawable(context.getResources (), doorNorth);
Drawable dE = new BitmapDrawable(context.getResources(), doorEast);

doorImage . put (North, dN);
doorImage.put(East, dE);

Bitmap sourceWall = Bitmap.createScaledBitmap (BitmapFactory .

decodeResource(context.getResources (), R.drawable.wall),

190,169, false);

Bitmap wallNorth = Bitmap.createBitmap (sourceWall, 0, 0, 169, 50);
Bitmap wallEast = Bitmap.createBitmap (sourceWall, 169, 0, 21, 169);
Drawable wN = new BitmapDrawable(context.getResources (), wallNorth);
Drawable wE = new BitmapDrawable(context.getResources (), wallEast);
walllmage . put (North , wN) ;
walllmage . put (East , wE) ;

Bitmap sourceMoney = Bitmap.createScaledBitmap (BitmapFactory .
decodeResource(context.getResources (), R.drawable.money) ,
627,170, false);
Bitmap gold = Bitmap.createBitmap (sourceMoney, 418, 0, 209, 170);
Bitmap silver = Bitmap.createBitmap (sourceMoney, 209, 0, 209, 170);

Bitmap bronze = Bitmap.createBitmap (sourceMoney, 0, 0, 209, 170);
Drawable g = new BitmapDrawable(context.getResources(), gold);
Drawable s = new BitmapDrawable(context.getResources (), silver);
Drawable b = new BitmapDrawable(context.getResources(), bronze);

moneylmage . put ("gold", g);
moneylmage . put ("silver", s);
moneylmage . put ("bronze", b);

116




// Singleton
public static ImageManager getInstance(Context c¢) {
if (instance = null) {
instance = new ImageManager(c);
}

return instance;

}

// Getters and setters ...

public HashMap<Direction , Drawable> getDoorImage () {
return doorlmage;

}

public HashMap<Direction , Drawable> getPlayerImageR () {
return playerImageR;
}

A.2.7 Package; mobileGameObjects

public class Player extends MovableObject {

private HashMap<Direction , Drawable> imgManager, = new HashMap<>();
private HashMap<Direction , Drawable> imgManagerR = new HashMap<>();

public Player (Context ¢, Direction d){
super (¢, d);

// Using imageManager to get the desired image parts of the player’s
spritesheet
ImageManager imageManager = ImageManager. getInstance(c);

Drawable upLBm = imageManager.getPlayerImageL (). get (North);
Drawable downLBm = imageManager.getPlayerImageL (). get (South);
Drawable rightBm = imageManager.getPlayerlmageL () .get (East);
Drawable leftBm = imageManager.getPlayerImageL () .get (West);

Drawable upRBm = imageManager.getPlayerImageR (). get (North);
Drawable downRBm = imageManager.getPlayerImageL (). get (South);

imgManagerL . put (North, upLBm) ;
imgManagerL . put (South, downLBm) ;
imgManagerL . put (East , rightBm) ;
imgManagerL . put (West, leftBm);

imgManagerR . put (North , upRBm) ;
imgManagerR . put (South, downRBm) ;

this.sprite.setImageDrawable (rightBm) ;
sprite.setLayoutParams(new FrameLayout.LayoutParams(121, 108));
sprite.setScaleType (ImageView.ScaleType .FIT XY);

}

public void moveRight () {
if (lastDirection != East){
changeDirection (East) ;

117




}
position.x 4= velocity .x;
this.sprite.setX(position.x);

public void changeDirection (Direction d){
if (d = South || d == North){
if (lastDirection = West){
sprite.setImageDrawable (imgManagerL . get (d));

telse{
sprite.setImageDrawable (imgManagerR . get (d) ) ;

}
telse{

sprite.setImageDrawable (imgManagerL. get (d));
}
lastDirection = d;

public class Door extends StaticSite {

public Door(Direction d, Context c) {
super (¢, d);
isOpen = false;

// Using imageManager to get the desired image parts of the Door’s
spritesheet

ImageManager imageManager = ImageManager. getInstance (context);

Drawable part;

if (d = North || d = Direction.South) {
part = imageManager.getDoorImage () .get (North);
width = setting.getImgWidthMap () . get (North) ;
height = setting.getImgHeightMap () .get (North);
} else {
part = imageManager.getDoorImage (). get (East);
width = setting.getImgWidthMap () . get (East);
height = setting.getImgHeightMap () . get (East);
}
sprite.setLayoutParams(new FrameLayout.LayoutParams(width, height));
sprite.setScaleType (ImageView.ScaleType .FIT _XY);
sprite.setImageDrawable(part);

118




Appendix B

Static Method vs Instance
Method

In this appendix, we present the implementation of the static method versus the instance
method test, where we measured both the execution time, CPU usage, and memory of
both methods.

public class Employee {
public void heavyOperation (){

int a = 1;
int b = 1;
int operation = a+b;

}
}

public class StaticEmployee {
public static void staticHeavyOperation (){

int a = 1;
int b = 1;
int operation = atb;

}

public class MainActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout . activity__main);
}
public void invokeTest(View view){
double time = 0;
for(int i = 0; i<10; i++){
//time+=invokelnstanceMethodForEachObject () ;
//time+=invokelnstanceMethodFromOneObject () ;
time+=invokeStaticMethodFromClassReference () ;
}
System.out. println ("Average time: " + (time/10));

}

public double invokelnstanceMethodForEachObject (){
double time = 0;
long startTime = System.nanoTime () ;
for(int i = 0; i < 1E7; i++){
Employee e = new Employee () ;
e.heavyOperation () ;

-

119




long elapsedTime2 = System.nanoTime() — startTime;
time = (double) elapsedTime2/1E9;
System.out.println ("Invoke, Instance, Method for each time a object is
uereated: " 4+ time + "s'");
return time;
}
public double invokelnstanceMethodFromOneObject (){
double time = 0;
long startTime = System.nanoTime () ;
Employee e = new Employee () ;
for (int i = 0; i < 1E7; i4++) {
e.heavyOperation () ;
}

long elapsedTimeb = System.nanoTime() — startTime;
time = (double) elapsedTime5 / 1E9;
System.out.println ("Invoke Instance Method from one Object reference
0"+ time + "s");
return time;
}
public double invokeStaticMethodFromClassReference (){
double time = 0;
long startTime = System.nanoTime () ;
for (int i = 0; i < 1E7; i++4) {
StaticEmployee.staticHeavyOperation () ;
}

long elapsedTimeb = System.nanoTime() — startTime;
time = (double) elapsedTime5 / 1E9;
System.out.println ("Invoke, Static Method, from  Class, reference: " +

time 4+ "s'");
return time;

Code Snippet B.1: Code of our Static Method versus Instance Method Test

120




References

1]

Android profile. https://developer.android.com /studio/profile, Februar 2020. Accessed
on 2020-02-27.

Christopher Alexander. A pattern language: towns, buildings, construction. Oxford
university press, 1977.

Jagdish Bansiya and Carl G. Davis. A hierarchical model for object-oriented design
quality assessment. IEEE Transactions on software engineering, 28(1):4-17, 2002.

Reza B’Far. Mobile computing principles : designing and developing mobile
applications with uml and xml, 2005.

Barry W Boehm, John R Brown, Hans Kaspar, M Lipow, and G MacLeod. Merritt.:
Characteristics of software quality, 1978.

Kayun Chantarasathaporn and Chonawat Srisa-an. Energy conscious factory method
design pattern for mobile devices with c# and intermediate language. In Proceedings
of the 3rd International Conference on Mobile Technology, Applications E#38;
Systems, Mobility '06, New York, NY, USA, 2006. ACM.

Kayun Chantarasathaporn and Chonawat Srisa-an. Object-oriented programming
strategies in c# for power conscious system. International Journal of Computer
Science { Online}, 1(1), 2006.

Chua Fang-Fang. Design patterns for developing high efficiency mobile application.
2013.

International Organization for Standardization. Iso/iec 9126. https://www.iso.org/
home.html, 2001. Accessed on 2020-02-11.

International Organization for Standardization. Iso/iec 9126, software engineering -
product quality - part 1: Quality model. https://www.iso.org/standard/22749.html,
2001. Accessed on 2020-02-11.

International Organization for Standardization. Iso/iec 25010, systems and software
quality requirements and evaluation (square) - system and software quality models.
https://www.iso.org/standard /35733.html, 2011. Accessed on 2020-02-11.

G. H. Forman and J. Zahorjan. The challenges of mobile computing. Computer,
27(4):38-47, April 1994.

Dominik Franke, Stefan Kowalewski, and Carsten Weise. A mobile software quality
model. In 2012 12th International Conference on Quality Software, pages 154-157.
IEEE, 2012.

121


https://developer.android.com/studio/profile 
https://www.iso.org/home.html
https://www.iso.org/home.html
https://www.iso.org/standard/22749.html
https://www.iso.org/standard/35733.html

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

[24]

[25]

[27]

28]

Dominik Franke and Carsten Weise. Providing a software quality framework for
testing of mobile applications. In 2011 fourth IEEE international conference on
software testing, verification and validation, pages 431-434. IEEE, 2011.

Erich Gamma. Design patterns: elements of reusable object-oriented software. Pearson
Education India, 1995.

Object Management Group. Uml 2.0. https://www.omg.org/spec/UML/2.0, 2005.
Accessed on 2020-05-13.

V-M Hartikainen, Pasi P Liimatainen, and Tommi Mikkonen. On mobile java memory
consumption. In 14th Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing (PDP’06), pages 7-pp. IEEE, 2006.

Andreas Jetter, Harald Gall, Martin Pinzger, Patrick Knab, and Andreas Jetter.
Assessing software quality attributes with source code metrics, 2006.

M. E. Joorabchi, A. Mesbah, and P. Kruchten. Real challenges in mobile app
development. In 2013 ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement, pages 1524, Oct 2013.

Thomas J McCabe. A complexity measure. IEEE Transactions on software
Engineering, (4):308-320, 1976.

JA McCall, PK Richards, and GF Walters. Factors in software quality. vol. 1, 2, and
3. Nat’l Tech. Information Service, Springfield, USA, 1977.

Microsoft Patterns. Microsoft Application Architecture Guide. Microsoft Press, USA,
2nd edition, 2009.

A. G. Peker and T. Can. A design goal and design pattern based approach for
development of game engines for mobile platforms. In 2011 16th International
Conference on Computer Games (CGAMES), pages 114-120, July 2011.

Muhammad Ehsan Rana, Wan Nurhayati Wan Ab. Rahman, Masrah Azrifah Azmi
Murad, and Rodziah Atan. The impact of flyweight and proxy design patterns on
software efficiency: An empirical evaluation. 2019.

taraloca. How to programmatically take a screenshot
on android. https:/ /stackoverflow.com/questions/2661536/
how-to-programmatically-take-a-screenshot-on-android /5651242+#5651242, 2018.

Accessed on 2020-05-13.

Techopedia. Mobile device. https://www.techopedia.com /definition /23586/
mobile-device, May 2019. Accessed on 2019-05-08.

Wikipedia. Mobile device. https://en.wikipedia.org/wiki/Mobile_device, May 2019.
Accessed on 2019-05-08.

Wikipedia. Software design pattern. https://en.wikipedia.org/wiki/Software_design_
pattern, April 2019. Accessed on 2019-04-12.

122


https://www.omg.org/spec/UML/2.0
https://stackoverflow.com/questions/2661536/how-to-programmatically-take-a-screenshot-on-android/5651242#5651242
https://stackoverflow.com/questions/2661536/how-to-programmatically-take-a-screenshot-on-android/5651242#5651242
https://www.techopedia.com/definition/23586/mobile-device 
https://www.techopedia.com/definition/23586/mobile-device 
https://en.wikipedia.org/wiki/Mobile_device 
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern

	Introduction
	This Project
	Motivation
	Problem Statement
	Goal
	Approach
	Work Done
	Evaluation Criteria
	Results
	Conclusion
	Contributions
	Limitations
	Outline

	Background
	Introduction
	What is a Design Pattern?
	Brief History
	The Essential Elements of a Design Pattern

	Documentation
	Why should one use Design Patterns?
	Classification
	Description of our Selected Design Patterns
	Abstract Factory
	Singleton
	Command
	Visitor
	Strategy
	Factory Method

	Summary
	Mobile Devices
	Introduction
	Main Challenges with Mobile Devices

	Development of Mobile Applications
	Introduction
	The Different Approaches
	Main Challenges with Mobile Application Development

	Why do we need Mobile Design Patterns?
	Examples of Mobile Design Patterns
	Summary

	Summary

	Evaluation Criteria
	Introduction
	Quality Model
	Analysis of the Quality Models
	Criteria 1. Performance Efficiency
	Criteria 2. Maintainability

	Quality Metric Object-Oriented Model
	Quality Attributes (L1)
	Design Properties (L2)
	Design Metrics (L3)
	The Mapping of L23
	The Mapping of L12

	The Use of QMOOD in our Comparative Study
	Analysis of QMOOD
	The Mapping of L23
	The Mapping of L12

	Measurement Process
	Our Measurement Process of QMOOD
	Our Measurement Process of ISO/IEC 25010

	Summary

	Analysis
	Introduction
	Mobile Environment vs. Non-Mobile Environment
	Data Persistence and Application Life Cycle
	Computing Perspective
	Software Development Perspective

	Mobile Design Pattern vs. Design Pattern
	Choosing the Right Platform for our Mobile Application
	Creating Mobile Design Patterns
	Method 1: Combining Design Patterns
	Method 2: Using various Optimization Techniques and Strategies

	Summary

	Case
	Overall Architecture
	The Main Components
	Summary

	Implementation
	Abstract Factory vs. Mobile Abstract Factory
	Command vs Mobile Command
	Visitor vs. Mobile Visitor
	Strategy vs Mobile Strategy
	Singleton vs. Mobile Singleton
	Summary

	Results
	QMOOD Results
	Abstract Factory vs.. Mobile Abstract Factory
	Command vs. Mobile Command
	Visitor vs.. Mobile Visitor
	Strategy vs. Mobile Strategy
	Project vs.. Mobile Project
	Summary

	Android Profiler Results
	Abstract Factory vs. Mobile Abstract Factory
	Command vs. Mobile Command
	Visitor vs. Mobile Visitor
	Strategy vs. Mobile Strategy
	Project vs. Mobile Project
	Summary

	Execution Time Results
	Abstract Factory vs. Mobile Abstract Factory
	Command vs. Mobile Command
	Visitor vs. Mobile Visitor
	Strategy vs. Mobile Strategy
	Project vs. Mobile Project
	Summary

	Weaknessess and Mistakes of our Measurement Process
	Summary

	Discussion
	QMOOD
	Improved Execution Times
	Android Profiling
	Did Mobile Devices Impose new Requirements for Design Patterns?
	Summary

	Conclusion
	Appendices
	Project Implementation
	Project with Regular Design Patterns
	Package; abstractFactory
	Package; activity
	Package; command
	Package; visitor
	Package; strategy
	Package; enums
	Package; gameObjects
	Package; project

	Project with Mobile Design Patterns
	Package; mobileAbstractFactory
	Package; mobileCommand
	Package; mobileVisitor
	Package; mobileStrategy
	Package; enums
	Package; imageManager
	Package; mobileGameObjects


	Static Method vs Instance Method

