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Abstract

Predicting the future using deep learning is a research field of increasing

interest. The majority of contributions concern architectural designs for

predictive models, however, there is a lack of established evaluation methods

for assessing their predictive abilities. Images and videos are targeted towards

human observers, and since humans have individual perceptions of the world,

evaluation of videos should take subjectivity into account. With the absence

of appropriate evaluation methods, measuring the performance of predictive

models and comparing different model architectures is challenging.

In this thesis, I present a protocol for evaluating predictive models using

subjective data. The evaluation method is applied in an experiment to meas-

ure the realism and accuracy of predictions of a visual traffic environment.

These predictions are generated by a proposed model architecture, which

produces discrete latent representations of the environment. Application of

the evaluation method reveals that the proposed deep learning model proves

to be capable of producing accurate predictions ten seconds into the envir-

onment’s future. The predictive model is also shown to be robust in terms

of processing different image types for describing the environment.

The proposed evaluation method is shown to be uncorrelated with the pre-

dominant approach for evaluating predictive models, which is a frame-wise

comparison between predictions and ground truth. These findings emphas-

ise the importance of using subjective data in the assessment of predictive

abilities of models, and open up a new alternative of evaluating predictive

deep learning models.
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Chapter 1

Introduction

1.1 Motivation

Humans constantly use information from past experience to perform predict-

ive processing, which in turn can improve future behaviour. This bridging

over different temporal points with past considerations is suggested to be

the core capacity which makes our cognitive brain so versatile and efficient

(Bubic, Yves von Cramon, & Schubotz, 2010). The use of predictive machine

learning models has been around for some time, for instance for predicting

stock market movements (Coupelon, 2007), or the next word in a sentence

(Sutskever, Martens, & Hinton, 2011). In recent years, similar methods

have also become more common for visual tasks, allowing computers to learn

internal models of physical environments, and predict images of how the

environments will evolve in the future.

Equipping an intelligent agent with the ability to predict future states

and results of potential actions may improve its performance and robustness

in environments comprised of complex physical systems (Ha & Schmidhuber,

2018). In addition, research has shown that the type of image used to repres-

ent an environment may influence the model’s ability to predict future states

(Luc, Neverova, Couprie, Verbeek, & Lecun, 2017).

A number of visual predictive models based on deep learning face chal-

lenges because they are either highly domain specific and targeted towards

2



simple environments, or try to model complex environments but tend to lose

image detail quickly. Moreover, these models are evaluated by computers

quantifying the level of numerical resemblance between predicted and true

states, like videos.

But the ultimate receivers of images and videos are human observers,

and not all differences between images are equally significant to humans

(Moorthy, Wang, & Bovik, 2011). The interpretation of images and video

is highly subjective. Why then is model evaluation mainly performed using

objective, numerical methods? It is apparent that the research field of video

prediction using deep learning is in demand of alternative methods for the

evaluation of predictive models.

1.2 Research Questions

In this thesis, I attempt to develop an appropriate method for evaluating

predictive models using subjective data. This leads to the following research

questions:

1. How can subjective data be used to evaluate predictive deep learning

models, and which model properties should be assessed in the evalu-

ation?

2. To what degree does the type of image representing the environment

influence a model’s ability to predict a meaningful future?

1.3 Scope and Delimitations

Scope

The main focus of this thesis is the design of a new method for evaluating the

performance of predictive deep learning models. The method uses subject-

ive data, collected both to reveal aspects of an unfamiliar environment that

are considered important to human observers, and to recognise similar as-

pects in video predictions. The evaluation method is tested using long-term

3



predictions of different image types, generated by a proposed deep learning

model. The proposed deep learning model operates within a traffic envir-

onment containing numerous objects moving simultaneously, including the

point of view. The evaluation method is compared to the existing evaluation

approach within the research field.

Delimitations

The potential workload associated with this thesis is substantial. Therefore,

I devote attention to experiments that best answer the research questions

and impose the following delimitations.

The human observers in the experiments are obtained by convenience

sampling and through a crowdsourcing service. Also, the method evalu-

ates only the performance of the proposed model, not other state-of-the-art

models. The traffic environment used to train and test the proposed model

architecture is a computer simulation of a finite town and a fixed number

of object classes. In the proposed model architecture, I disregard the imple-

mentation of an intelligent agent, but focus rather on predicting long-term

future video. The distinct image types representing the environment are

RGB and semantic segmentation.

1.4 Contributions

In this thesis, I bring two contributions to the field of visual prediction using

deep learning. The main contribution is a protocol for evaluating predict-

ive models using subjective data. In addition, I propose a deep learning

model architecture that is capable of predicting accurate long-term futures

of complex visual environments.

1. A protocol for evaluating video predictions using subjective data. This

protocol is found in section 4.5, and is summarised by figure 4.8. Res-

ults in section 3.4.4.5 demonstrate that this method leads to very dif-

ferent interpretations of model performance as opposed to standard

4



evaluation approaches; a finding which reveals significant limitations of

standard evaluation approaches.

2. An adaptation of World Models by Ha and Schmidhuber (2018) for pre-

dicting accurate long-term video predictions. The proposed model ar-

chitecture adopts a vector quantised-variational autoencoder (van den

Oord, Vinyals, & Kavukcuoglu, 2017) in place of the variational au-

toencoder (Kingma & Welling, 2014) originally used by the authors

of World Models. It produces discrete latent representations in place

of continuous latent representations, and is trained with a gradient-

based optimisation method. Implementation of the model architecture

is found in section 3.3.

1.5 Thesis Structure

• Chapter 2 includes an overview of theory and techniques relevant for

this thesis.

• Chapter 3 reviews the research methodology related to design and im-

plementation of the proposed model architecture, and development and

testing of the evaluation method.

• Chapter 4 reviews the results of the model evaluation, which reveals

the performance of the proposed model architecture and utility of the

proposed evaluation method. In addition, it presents a refined protocol

for evaluating predictive models with subjective data.

• Chapter 5 presents conclusions of the results and findings in this thesis

and ideas for future are presented and presents ideas for future work.
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Chapter 2

Background

The following chapter aims to give the reader knowledge about the relevant

theories, methods and techniques used in this thesis. The reader will find

that prediction is a recurring topic throughout the complete text; thus, the

chapter begins by presenting this very subject (2.1). The definition of intelli-

gent agents (2.2) is followed by a comprehensive presentation of fundamental

theory related to deep learning (2.3, 2.3.5), a topic which gets considerable at-

tention. Highly relevant to the experiments in the thesis are methods within

deep learning used to learn alternative representations of data (2.4), as well

as sequences of data (2.5). Moreover, since applying deep learning involves

working with significant amounts of data, some knowledge of how to pre-

process such data (2.6) and also quantify the level of resemblance between

data (2.7) is reviewed. Finally, recognising the existing research on visual

prediction with deep learning, the last section presents a literature review of

the research field of visual prediction with deep learning (2.8).

2.1 Prediction and Predictive Models

A weather forecast might anticipate a sunny afternoon, but your experience

suggests that the dark cloud in the sky is a sure indication of rain. A fortune

teller might tell you to expect thrilling economic times in the near future,

but with a lack of faith in supernatural powers, you rather trust the stock
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market for financial gain. These are all examples of predicting future states,

though some have more scientific support than others. Bubic et al. (2010)

refers to predictive processing as ’any type of processing which incorporates

or generates not just information about the past or the present, but also

future states of the body or the environment’.

Neuroscientific research suggests that the brain runs an internal model of

the world that continually generates predictions about what is expected to

be perceived (Leinweber, Ward, Sobczak, Attinger, & Keller, 2017). Central

to this idea is predictive coding, a theory which postulates that the internal

model is created and updated by comparing predicted sensory input to actual

sensory input (Friston, 2005).

Mathematical and statistical models have also for long been used to de-

scribe past and future behaviour of various processes. Such models are usu-

ally characterised as either deterministic or probabilistic. A deterministic

model does not include random elements so that each time the model is run

with the same initial conditions, it will give the same results. On the other

hand, a probabilistic model does include random elements. Even with the

same initial conditions, the model is likely to give different results each time

it is run.

Recent advances in artificial intelligence have enabled machines to predict

future events of environments that resemble the real world. These methods

may further be divided into various subcategories. Some methods focus on

predicting the direct consequence of a series of states, i.e. for sensorimo-

tor control (Dosovitskiy & Koltun, 2016) or action recognition (H. Wang &

Schmid, 2013). Other methods predict a continuation of items or states, like

language (Vaswani et al., 2017) or video prediction (Srivastava, Mansimov,

& Salakhutdinov, 2015). The focus of this thesis is on the latter, namely

predicting future visual states of an environment in the form of videos.

2.2 Intelligent Agents

The ability to plan and execute goal specific actions in varied and unknown

environments is a central requirement of intelligent agents (Fragkiadaki,
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Agrawal, Levine, & Malik, 2015). An intelligent agent is an autonomous

entity which, in a similar manner to humans, perceives sensory input from

its environment, makes decisions, and carries out actions that will affect the

environment. An agent may be regarded as intelligent if it possesses abilit-

ies such as responding to environmental changes in a timely fashion, taking

initiative in order to satisfy its objective and socially interacting with other

agents or humans (Wooldridge & Jennings, 1995).

EnvironmentAgent

Sensory	input

Action

Figure 2.1: The scheme of an intelligent agent.

Interacting with the world requires a common sense understanding of how

it operates at a physical level. For example, humans can quickly decide if we

can cross an area without falling, or how an object will behave if we push

it. Making such judgments does not require us to apply laws of physics,

instead we rely on experience and intuition, built up through interaction

with the world (Lerer, Gross, & Fergus, 2016). Just like humans benefit from

performing predictive processing, so do intelligent agents. A visual predictive

model of physics gives the agent the ability to generate potential future states

of the world in response to an action without actually performing that action

(Fragkiadaki et al., 2015). Recent work has shown that agents equipped with

internal predictive models like those studied in this thesis, efficiently learn to

interact with environments (Ha & Schmidhuber, 2018; Hafner et al., 2019).

2.3 Deep Learning

Deep learning (DL) is a subcategory of machine learning (ML), which con-

cerns the design of algorithms that make computers able to learn from em-
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pirical data, and use this knowledge to make decisions. Machine learning can

be divided into three main classes: supervised, unsupervised, and reinforce-

ment learning. Supervised learning is concerned with learning input-output

mappings, unsupervised learning aims to find hidden structure in data, and

reinforcement learning deals with goal-directed behaviour (Dosovitskiy &

Koltun, 2016). Within unsupervised learning there is also what is called self-

supervised learning, which is autonomous supervised learning. When using

supervised learning, one must prefabricate labels, or rather target variables,

for the system to learn a mapping y = f(x). The use of self-supervised

learning systems eliminates the need of prefabricating such labels, because

the process rather extracts and uses naturally relevant context as supervisory

signals (Singh, 2018). Self-supervised learning is applicable for instance for

extracting features from images, modeling the order of words in a sentence,

or the sequence of images in a video. In the latter cases, the next item in

the sequence would be this supervisory signal, or label. Due to the thesis’

objective of predicting videos with deep learning, attention is mainly devoted

to self-supervised learning.

2.3.1 Artificial Neural Networks

Deep learning models focus heavily on biologically inspired methods, such as

neural network models. Early developments of these models were highly in-

fluenced by neuroscience and cognitive sciences (Barrett, Morcos, & Macke,

2019). An artificial neural network (ANN) is a composition of artificial neur-

ons, or nodes, which loosely model the neurons in a biological brain. These

nodes are connected to one another in layers, where they compute and pass

on new combinations of the network’s input. Their weighted connections

loosely resemble the behaviour of brain synapses between biological neur-

ons. Deep neural networks (DNN), which have multiple so-called hidden

layers, can under the right circumstances capture more complex functions

than shallower networks (Kriegeskorte & Douglas, 2018).

Figure 2.2 shows a fully connected network, sometimes referred to as a dense

neural network, which means that all nodes between two consecutive layers
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Input	layer Hidden	layers Output	layer

Figure 2.2: A simple artificial neural network illustrating the neurons, layers and
weighted connections.

are connected. Throughout this chapter, various network structures will be

discussed which may be combined as building blocks to compose more ad-

vanced ANNs than what a fully connected network can offer alone. The node

activations in a given layer, l, of a fully connected network are calculated us-

ing the following expression and parameters.

a
[l]
k =

n[l−1]∑
j=1

w
[l]
jka

[l−1]
j + b

[l]
k

(2.1)

a
[l]
k activation of node k in layer l

w
[l]
jk weight from node j in layer

l − 1 to node k in layer l

b
[l]
k bias of node k in layer l

where n[l−1] are the number of nodes in the layer, and w and b are trainable

parameters that are adjusted using some optimisation method. Now, what

does it mean that w and b are trainable parameters? As mentioned in the

introduction to this chapter, ANNs learn to approximate some function y =

f(x) by observing data. Approximating this unknown function is the training

objective, and is done as follows: The input samples x, or observations, are

propagated forward through the network such that the outputs ŷ are linear

combinations of x. The outputs ŷ are then compared to the target variables

y by the means of a loss function. The loss function gives a response value,

and the optimisation method changes the network’s parameters w and b such

that the loss value decreases, which in turn brings the network’s outputs ŷ
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closer to the target variables y. This procedure is called training a neural

network, and is further described in section 2.3.5.

2.3.2 Convolutional Networks

When using machine learning to process data with a grid-like topology, such

as images which are grids of pixels, convolutional neural networks (CNN)

are typically used (Goodfellow, Bengio, & Courville, 2016, p. 326). For

simplicity, this section considers images as the default input to CNNs. CNNs

are a special kind of ANNs which contain one or more convolutional layers.

A convolutional layer is a filter kernel which extracts features from an input

by means of convolution, a process for linear spatial filtering closely related

to correlation (Gonzalez & Woods, 2008). The convolution of image I and

filter kernel K at image location i, j is defined as

(I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (2.2)

where m and n are the dimensions of the kernel. The filter kernel is

convolved with the entire image, thus creating a complete feature map of

the image. In the above equation, the input I and kernel K have only one

channel, however the convolution process may be, and usually is, extended

to data with multiple channels. The different layers of a CNN form a hier-

archical structure, where each layer learns to search for different features.

For example, the first layer may look for horizontal or vertical lines, while

the second layer uses this information to detect corners, and the subsequent

layers detect more complex patterns such as texture or objects (Zeiler &

Fergus, 2014). A convolutional layer shares the same filter coefficients, or

parameters, for all positions in the image it processes. This results in a use-

ful property called translation equivariance, which means that the CNN will

detect the position of an object or structure even if it is not fixed. More

precisely, it means that if an image I is shifted, e.g. by one pixel to the right

such that I ′(x, y) = I(x + 1, y), its representation after the convolution will

be shifted correspondingly. Parameter sharing is an important distinction
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between fully connected layers and convolutional layers, and the same prop-

erty is also found in other architectures such as recurrent neural networks

(section 2.5).

Kernel

Output

Input

Figure 2.3: Convolving an input with a filter kernel. Each element of the im-
age is added to its local neighbours, weighted by the kernel coefficients. Adap-
ted from Wikimedia Commons, by Michael Plotke, January 28 2013, retrieved
from https://commons.wikimedia.org/wiki/File:2D Convolution Animation

.gif.

In traditional image analysis, feature extraction methods are designed

manually, while CNN’s, being machine learning systems, effectively develop

suitable filter parameters to extract features themselves through training

(section 2.3.5). These filter parameters are analogous to the parameters de-

scribed in section 2.3.1. Today’s CNNs are based on work introduced in

the late 90’s, namely ’Object Recognition with Gradient-Based Learning’

(Yann LeCun, 1999). In the last decade there has been tremendous devel-

opmental progress for CNNs, as well as other network architectures. Many

classification benchmarks have been broken, allowing new possibilities for ar-

tificial intelligence. This is especially the case regarding image analysis and

computer vision (Barrett et al., 2019).

2.3.3 Residual Blocks

While it is shown that a neural networks’ depth is of great significance, es-

pecially with regard to performance on visual recognition tasks (Long, Shel-
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Input Feature	map
Feature	map Feature	map

Feature	map

Convolutional	layers

Figure 2.4: An example of the hierarchical structure of a typical convolutional
neural network. The number of channels may vary among inputs and feature
maps.

hamer, & Darrell, 2015; Simonyan & Zisserman, 2015), very deep networks

come at the cost of being difficult to optimise. He et al. (2016) demonstrated

within an image classification task that as network depth increases, the classi-

fication accuracy of images saturates and then degrades quickly. The authors

investigated this topic, and documented the power of residual connections in

deep learning networks that have great numbers of layers. Their proposed

model architecture, called ’ResNet’, was successfully optimised with various

significant depths (≤ 1000 layers), while comparable architectures without

residual blocks could not be optimised. A residual block is a set of layers

that includes a residual connection, allowing the flow of unaltered inform-

ation from the first to the last layer in the block, i.e. retaining the input.

This property is useful because, depending on the task, some parts of a

deep neural network may be unnecessary or even impairing. Consider a con-

ventional block of neural network layers that attempts to fit the mapping

y = F(x). If the block is not able to fit this mapping, it would be more

useful to retain the input x and let a subsequent layer process it. On the

other hand, the layers F(x) in a residual block learn the deviation from the

input x, in other words the residual R(x) = F(x)− x. The residual block as

a whole performs the mapping y = F(x) + x.

The reason deep networks with residual blocks are easier to optimise is re-

lated the loss function, which depends on the model’s architecture. The loss

function defines a loss landscape in which the optimisation method searches
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Figure 2.5: Residual learning: a building block. A residual block retains the input
to the first layer and adds it to the output of the last layer. Figure by He et al.
(2016).

for the global optima, i.e. finding model parameters that yield the lowest

possible loss. However, loss landscapes are often rugged which might result

in getting stuck in one of many local optima. Li et al. (2017) demonstrated

that the loss landscape of a deep model with residual connections is much

smoother than that of a similar network without the residual connections.

Figure 2.6: The loss landscapes of a 56-layered ResNet model without (left) and
with (right) residual connections. Adapted from Li et al. (2017)

A smooth landscape aids the optimisation method in converging towards

a low loss, possibly at reduced time compared to its rugged counterpart.

Keep in mind that the loss landscapes in figure 2.6 are not actually three-

dimensional. Li et al. (2017) use specialised visualisation techniques to trans-

form the actual high-dimensional loss landscapes into visually interpretable

landscapes.
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2.3.4 Nonlinear Activation Functions

In the previous sections, various layers, or building blocks used in deep learn-

ing models were discussed. A layer performs a linear operation f(x) on an

input, meaning that combining more layers will only result in a deeper linear

model. Usually, there is a desire for deep learning models to be universal

function approximators and not only linear functions. To make linear mod-

els represent nonlinear functions of x, some nonlinear transformation φ(x)

is applied to x before passing it to a consecutive layer (Goodfellow et al.,

2016, p. 165). This type of transformation may be referred to as a nonlinear

activation function, or simply a nonlinearity. Recall that the activation of a

node in layer l is computed as

a
[l]
k =

n[l−1]∑
j=1

w
[l]
jka

[l−1]
j + b

[l]
k

Nonlinearity is introduced to this particular network layer by applying a

nonlinear activation function to all its activations ak

φ(a
[l]
k ) = φ(

n[l−1]∑
j=1

w
[l]
jka

[l−1]
j + b

[l]
k ) (2.3)

where φ(a) is some chosen nonlinear activation function applied to activations

a. The following are some examples of nonlinear activation functions that

are used in deep learning, and the models implemented in this thesis.

Sigmoid

The sigmoid function, denoted σ(x), stems from logistic regression and squashes

an input x to a value between values [0, 1]. This makes it applicable to clas-

sification problems where the target variables are either 0 or 1.
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Sigmoid(x) = σ(x) =
1

1 + exp(−x)
(2.4)

The sigmoid activation function may suffer from drawbacks which include

unwanted effects during a gradient-based training process (section 2.3.5),

such as vanishing gradients and slow loss convergence (Nwankpa, Ijomah,

Gachagan, & Marshall, 2018).

Hyperbolic tangent

The hyperbolic tangent function is in some circumstances preferred to the

sigmoid function because it yields better training performance for multi-layer

neural networks (Olgac & Karlik, 2011). Nonetheless, the function does not

solve the vanishing gradient problem described above. It does, however, pro-

duce a zero centred output which aids the gradient-based training process

(Nwankpa et al., 2018), equivalent to a scaled and shifted sigmoid function.

tanh(x) =
ex − e−x

ex + e−x
(2.5)

= 2σ(2x)− 1

Rectified linear unit

Ever since the rectified linear unit (ReLU) activation function was proposed

by G. Hinton (2010), it has been widely used for many deep learning ap-

plications (Nwankpa et al., 2018). The ReLU activation function remains

very close to being linear, thus preserving properties associated with the
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ease of training linear models, and is the default activation function recom-

mended for use with most feedforward neural networks (Goodfellow et al.,

2016, p. 170).

ReLU(x) = max(0, x) (2.6)

2.3.5 Training Deep Neural Networks

Deep neural networks learn some goal or property through many iterations

of observing data and adjusting parameters. This learning process is usually

referred to as training a model, and is done by using a chosen optimisation

method. When training a model, one must first establish some way of eval-

uating its performance concerning the training objective. Such a measure is

most often referred to as a loss function (see section 2.7). A loss function is

necessary because it lets the optimisation method know how it may change a

model’s parameters to improve its performance. There exist various optim-

isation methods used to train deep learning models. These methods may be

divided into gradient-based methods such as Adam (Kingma & Ba, 2015),

and non-gradient-based methods such as evolutionary algorithms (Such et al.,

2018). Most of the gradient-based methods are variants of gradient descent

(Cauchy, 1847), which takes a model’s parameters in the gradient direction

that minimises the loss. Computing all gradients of the loss function with

respect to the model’s parameters is effectively done by the use of the back-

propagation algorithm (Rumelhart, Hinton, & Williams, 1986), which applies

the chain rule of derivatives iterating backwards from the last network layer

to the input samples. The stochastic gradient decent (SGD) algorithm is

perhaps the most fundamental and popularised gradient-based optimisation

method used in practice. SGD is a stochastic approximation of gradient des-
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cent, which approximates the gradients of the whole dataset but based on

mini-batches of input data. The gradient descent parameter updates may be

expressed as follows

θ′ = θ − η∇θL (2.7)

where θ are the model’s parameters, θ′ the updated parameters, η is the

learning rate scaling the gradient step, and ∇θL are the derivatives of the

loss function with respect to the parameters.

2.3.5.1 Generalisation

While the goal of learning is to approximate some function based on the data

which is put into the model and their corresponding target variables, it is es-

sential that the model also learns to generalise to unseen data. Checking how

well a model is generalising may be done by presenting the model with two

sets of data during training; a training set and a validation set. The training

set is used by the optimisation method to update parameters and improve

the training loss. The validation set is at regular intervals used to measure

the model’s ability to generalise beyond what it learns from the training set.

If a model performs well on the training set, but poorly on the validation

set, it is likely overfitting, meaning it has learned the data’s variance, such

as noise, too well. On the other hand, underfitting happens when the model

is incapable of capturing the complexity and underlying pattern of the data.

This may be due to the number of training steps or training data being too

small or the complexity of the model being insufficient. The validation set

may also be used by the developer to tune a model’s hyperparameters, such

as the learning rate. In any case, both the training and validation set should

represent the same data distribution.

2.3.5.2 Regularisation Techniques

It is quite common to experience overfitting when working with deep learning

models. Various regularisation techniques may be imposed on the model

when training in order to reduce these symptoms, thus helping the model
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to generalise. Acquiring more data for the model to train on is perhaps

the best alternative, though this is often unfeasible, as gathering data may

be costly. There exist well-documented techniques that may be applied to a

model during training, with a few of them listed below. Which regularisation

techniques to apply to a model depends on the problem, model architecture

and dataset of choice.

Early stopping

Early stopping involves stopping a training procedure when the validation

loss starts increasing rather than decreasing (Yao, Rosasco, & Caponnetto,

2007). Though this is a very effective method for preventing a model from

overfitting, it may restrict the model’s expressiveness and desired perform-

ance.

Dropout

Dropout (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014)

is a technique that randomly deactivates different neurons in a network layer

at each training step, the rate of which is determined by probability hyper-

parameter. The idea behind dropout is to motivate the model to not rely

on any single feature. Effectively, dropout trains the ensemble of all sub-

networks that are formed by removing individual units (Goodfellow et al.,

2016, p. 255).

Batch normalisation

Batch normalisation makes normalisation a part of the model architecture

and performs normalisation for each batch of data (Ioffe & Szegedy, 2015).

As a result, the model becomes less sensitive to learning rates and parameter

initialisation. Batch normalisation is somewhat similar to dropout in the way

that it induces random components or noise to a model’s features (Goodfellow

et al., 2016, p. 314). Though its primary objective is to improve upon model

optimisation, the noise resulting from normalisation can have a regularising

effect, and sometimes makes dropout unnecessary.
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Data augmentation

Data augmentation involves modifying a dataset to increase its size. Ways

of modification may be adding noise to the data, or if the data are images

apply transformations such as crop, flip and rotation. Data augmentation is

especially valuable when data is scarce and collecting more data is challen-

ging.

2.4 Representation Learning

The performance of a machine learning model is highly dependent on the rep-

resentation it attempts to learn, but also the representation of the provided

input. This input may be raw data from a dataset or the output of another

model. So what makes one representation superior to another? According

to Goodfellow et al. (2016, p. 525), ’a good representation is one that makes

a subsequent learning task easier’. Examples of such subsequent learning

tasks could be classification tasks or prediction tasks. Simply choosing a

reasonable representation is no uncomplicated procedure (Bengio, Courville,

& Vincent, 2013); however, unsupervised and self-supervised learning allows

deep learning models to discover useful data representations by observing

large amounts of this data. Among deep learning methods for representation

learning, the focus of this thesis is on autoencoders.

2.4.1 Autoencoders

An autoencoder (AE) is an encoder-decoder network that attempts to de-

compose and reconstruct its input through one or more intermediate stages.

The network is trained using self-supervised learning, meaning that the data

labels are contained within the data itself. AEs were originally designed for

unsupervised feature extraction and dimensionality reduction (Bourlard &

Kamp, 1988; Kramer, 1991). As the name implies, an AE consists of two

parts; an encoder h = f(x) and a decoder x̂ = g(h), where h is a latent

representation holding features of x, and x̂ is the reconstruction of x.
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Learning useful representations, or features, with AEs is usually done by

constraining the latent representation h to have a smaller dimension than the

input x, forcing the autoencoder to capture only the most evident properties

of the training data, rather than focusing on fine details (Goodfellow et al.,

2016, p. 500). This means that AEs do not learn to copy the data perfectly,

but instead produce reconstructions that closely resemble the training data.

The learning objective is to minimise the reconstruction error

Lrecon = L(x, g(f(x))) (2.8)

where L is some loss function measuring dissimilarity between x and

g(f(x)) = x̂. Bottlenecked models with dimh < dimx are called undercom-

plete autoencoders. In addition to undercomplete autoencoders, there ex-

ist other categories such as sparse autoencoders and denoising autoencoders.

Sparse AEs motivate the presence of sparse latent representations, which

can be useful for classification problems. Denoising AEs receive a corrupted

sample as input and aims to predict the original, i.e. the uncorrupted sample.

In this thesis, we focus on undercomplete autoencoders, and subcategories of

these.

2.4.2 Variational Autoencoders

Generative models are models that represent probability distributions over

multiple variables in some way (Goodfellow et al., 2016, p. 651). Simply

put, a generative model aims to learn an approximation of a dataset’s true

distribution, and use this distribution to generate new data. According to

G. E. Hinton et al. (1995), the goal of generative models is ’to learn represent-

ations that are economical to describe but allow the input to be reconstructed

accurately’.

A variational autoencoder (VAE) (Kingma & Welling, 2014) is a type

of generative model, which tries to learn the distribution of a given dataset

using self-supervised learning. Learning the true distribution of a dataset

may be impractical or even impossible if the dimensionality of the data is

large, which is why a VAE instead attempts to learn an approximation of
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the true distribution.

While traditional autoencoders are powerful compression systems, their

latent variables are typically sparsely populated, making it unlikely to sample

random latent variables that can be decoded into valid outputs (Spinner,

Körner, Görtler, & Deussen, 2018). Similarly to undercomplete autoen-

coders, VAEs can reconstruct input samples, but with the possibility of

adding some variation, and also generate completely new samples not seen

during training. VAEs do this by learning latent representations that contain

useful properties of the data, but simultaneously make sure that all latent

representations are clustered together. This clustering is achieved by forcing

the latent variables z to fit a prior probability distribution p(z), which is

usually a standard normal distribution N (0, 1). The encoder takes as input

some data point x and outputs two parameters µ and σ for a posterior distri-

bution q(z|x) = N (µ, σ2). Latent variables z are then sampled from q(z|x)

and used by the decoder to reconstruct x̂ ≈ x, maximising the likelihood that

the model will generate the observed data. This process of estimating para-

meters for a probability distribution is called maximum likelihood estimation

(MLE), and is widely used in statistics.

By forcing all latent variables to stay close together we obtain the ability

to interpolate between samples. In the case where the data consists of images,

this means that a value change in the latent domain should yield a meaningful

change in the image domain (Ha & Schmidhuber, 2018). For example, Hou

et al. (2017) showed the possibility of interpolating between faces, such as the

transition from a non-smiling woman to a smiling woman, or the transition

from a man without eyeglasses to a man with eyeglasses.

To make sure that the parameters µ and σ do not become sparsely populated,

the prior p(z) is used as the target distribution during model optimisation.

q(z|x) = N (µ, σ2) is then forced to become as similar as possible to p(z) =

N (0, 1), thus restricting the shape of the latent space and enabling sampling

of p(z) to generate new data at inference. The two distributions are brought

closer together by minimising the Kullback-Leibler divergence
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Figure 2.7: We see a VAE encoding an input and outputting parameters µ and
σ for a normal distribution N (µ, σ2). Latent variables z are then sampled from
N (µ, σ2) and used by the decoder to reconstruct the input. Figure by Spinner et
al. (2018).

DKL(q(z|x)||p(z)) =
N∑
i=1

q(zi|xi) · log
q(zi|xi)
p(zi)

(2.9)

A VAE can be trained by minimising the sum of the data reconstruction loss

Lrecon and the KL divergence LKL

Lrecon = −Ez∼q(z|x)[log(p(x|z))] (2.10)

LKL = DKL(q(z|x)||p(z)) (2.11)

LV AE = Lrecon + LKL (2.12)

where −Ez∼q(z|x)[log(p(x|z))] is the negative expected log-likelihood of the

observations x.

Training VAEs

To train a VAE using a gradient based optimisation method, the gradients

with respect to the loss terms in equation 2.12 must be computed. While LKL
is a differentiable expression, this is not the case for Lrecon in its current form.

This is due to sampling of latent variables not being a differential operation.

However, Kingma and Welling (2014) solved this issue by introducing a re-
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parametrisation trick, which allows rewriting the expectation with respect to

q(z|x) such that the Monte Carlo estimate of the expectation is differentiable

with respect to µ and σ. Using the fact that any normal distribution may

be expressed in terms of the standard normal distribution as follows

N (µ, σ2) ∼ µ+ σ2 · N (0, 1) (2.13)

This property is then used to sample ε from the standard normal distribution

and create a latent sample

z = µ+ σ2 · ε, ε ∼ N (0, 1) (2.14)

The random component ε may be treated as a constant for each sample, and

thus the gradients over µ and σ may now be derived.

2.4.3 Vector-Quantised Variational Autoencoders

VAEs applied to complex datasets of natural images have a tendency to

produce blurry and somewhat unrealistic images due to uninformative latent

features (Zhao, Song, & Ermon, 2017). In recent years, there have been a

number of research contributions related to VAEs that attempt to overcome

these issues. The vector quantised-variational autoencoder, abbreviated VQ-

VAE, is one such contribution.

The VQ-VAE combines the VAE framework with vector quantisation to

obtain discrete latent representations (van den Oord et al., 2017). While

learning representations with continuous features has been the norm for much

previous work, the authors argue that discrete representations are better

suited for learning to model language, speech, images and video, due to the

fact that their properties are indeed discrete. For example, Ferrone and

Zanzotto (2020) define natural language as ’inherently a discrete symbolic

representation of human knowledge’, and image content may be described

by language, such as with image captioning systems (Vinyals, Toshev, Ben-

gio, & Erhan, 2015). van den Oord et al. (2017) also argue that discrete

representations are a natural fit for complex reasoning, planning and pre-
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dictive learning. By itself, the VQ-VAE is deterministic, meaning that an

input x will always result in the same reconstruction x̂, though in the original

paper it is paired with an autoregressive model that learns a prior distribu-

tion over the discrete representations. The learned prior distribution allows

the VQ-VAE to add variations to existing samples, or generate new samples,

making the combination a generative model. Even so, the use of such an

autoregressive model is not a requisite, and neither part of this thesis.

The core component of the VQ-VAE is the embedding space defined as e ∈
RK×D, where K is the size of the embedding space, and D is the dimension

of each embedding vector ei. This embedding space is comparable to a latent

space in a VAE. However, rather than manually deciding a distribution shape

for the embedding space as one would do in a regular VAE, the embeddings

are randomly initialised and learn to hold suitable features for producing

valid reconstructions of all samples in the dataset.

Figure 2.8: Overview of the VQ-VAE process. The left part of the figure shows an
image being encoded an mapped to discrete embeddings, before it is decoded into
a reconstruction of the image. The right part of the figure is a visual interpretation
of the embedding space, which shows how the encoder output is brought closer to
the embeddings. Figure by van den Oord et al. (2017).

As can be seen in figure 2.8, the encoder receives an image x as input and

outputs an encoded image ze(x). The vector quantisation layer searches the

embedding space e for the closest embedding vectors zq(x) through nearest

neighbour lookup, and returns indices z to these vectors. The decoder finally

maps zq(x) to x̂, reconstructing the original image.
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Training VQ-VAEs

As mentioned above, the vector quantisation layer performs a nearest neigh-

bour lookup to find the embedding vectors zq(x) that are closest to the en-

coder output ze(x). This operation is not differentiable, and will stop the flow

of gradients during backpropagation. The solution is to copy the gradients

directly from the decoder input zq(x) to the encoder output ze(x), as shown

in the left part of figure 2.8. However, this means that the embeddings ei do

not receive any gradients from the reconstruction loss Lrecon = log p(x|zq(x)),

but are instead learned by using vector quantisation. This involves iterat-

ively moving the embeddings ei closer to the encoder outputs ze(x) with a

predefined step size, minimising the euclidian distance between ze(x) and ei.

Alternatively, exponential moving averages can be to update the embedding

vectors. van den Oord et al. (2017) define the complete learning objective as

follows

LVQ-VAE = Lrecon + Lcommit + L∗embed
= log p(x|zq(x)) + β||ze(x)− sg[e]||2 + ||sg[ze(x)]− e||∗2

(2.15)

where sg is the stop-gradient operator defined as identity during forward

pass and has zero partial derivatives. L∗embed is marked because the embed-

dings are trained using vector quantisation, i.e. not the same optimisation

scheme used to train the encoder and decoder. It is possible that the em-

beddings ei do not train as fast as the encoder, so the term Lcommit is added

to help the encoder commiting to an embedding, controlled by a hyperpara-

meter β. The decoder optimises only Lrecon, while the encoder optimises

both Lrecon and Lcommit.

2.5 Sequence Learning

Modelling data sequences is a classical problem in stastics and machine learn-

ing. There exist various methods within machine learning that model se-

quences of data. Recurrent neural networks (RNN) are an example of such
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methods for time series regression and classification.

2.5.1 Recurrent Neural Networks

While deep feed-forward networks may be considered universal function ap-

proximators, recurrent neural networks are universal approximators of dy-

namical systems (Schäfer & Zimmermann, 2006). RNNs differ from fully

connected networks in the way that they share parameters across different

parts of the model, a property similar to the one found in CNNs (section

2.3.2). This sharing of parameters allows an RNN to learn from and gener-

alise across sequences of arbitrary lengths (Goodfellow et al., 2016, p. 363).

Consider, for example, a traffic environment, in which the signs, regulations,

and structuring of lanes are approximately the same across various parts of

a sequence. A model trying to learn such an environment may benefit from

owning a limited set of parameters that contain information about these gen-

eral rules, applicable to all steps in the sequence. Equation 2.16 represents

a simple recurrent function

xt+t = fθ(xt) (2.16)

where fθ(xt) is a function of an input x at step t, with a set of parameters

θ shared over every time step. A recurrent neural network extends the above

function and works by receiving as input not only the current input example

but also the internal states from when it processed previous examples. These

internal states, normally called hidden states, represent information from all

previous steps, making RNNs good at modelling rather long sequences. The

general form of an RNN may be expressed as follows

ht = fθ(ht−1, xt) (2.17)

where ht is the hidden state at the current step, ht−1 is the previous hidden

state, and xt is the current input. As a result, recurrent networks can re-

cognise, predict, and generate dynamical patterns, and are commonly used

in tasks where data occurs as time-series events, such as in natural language
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processing (Vinyals et al., 2015) or videos (Srivastava et al., 2015).

Figure 2.9: The structure of a recurrent neural network whips maps an input xt
to a hidden state ht. All units share the same set of parameters. Figure from
Colah’s Blog, by Christopher Olah, August 27 2015, retrieved from https://

colah.github.io/posts/2015-08-Understanding-LSTMs/.

The hidden states hmay be used for subsequent tasks directly, or transformed

to outputs y by an output layer, or weight matrix Why. A traditional recur-

rent neural network multi-dimensional data may be more precisely expressed

as follows

ht = tanh(Whhht−1 +Whxxt + b)

yt = Whyht (2.18)

xt : Input vector

ht : Hidden state vector

yt : Output vector

W : Weight matrices

b : bias

where Whh, Whx and Why are the weight matrices used to transform the

previous hidden state ht−1, the input xt and obtain the output yt, respect-

ively. The hyperbolic tangent function applies a nonlinear transformation to

the RNN and scales the hidden states within the value range [-1,1].

The main challenge with regular RNNs is that they struggle to preserve

long-range dependencies. The cause of this problem is related to what is

called exploding gradients and vanishing gradients. These effects appear when

the number of steps in a sequence increases, and as a result the RNN’s gradi-

ent values progressively amplify or decrease when backpropagating through

time. The consequence could be that early time steps yield gradients that
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either ruin or do not contribute to learning. It is therefore said that RNNs

suffer from short term memory and can only learn sequences of limited length,

which is why there exist various sub-classes of RNNs, designed specifically

to deal with these issues. The most common sub-classes are the long short-

term memory network (LSTM) (Hochreiter & Schmidhuber, 1997) and gated

recurrent units (GRU) (Cho et al., 2014).

2.5.2 Long Short-Term Memory Networks

One of the most effective types of sequence models used in practical ap-

plications are called gated RNNs (Goodfellow et al., 2016, p. 397). Long

short-term memory networks are such a type of RNNs, explicitly designed

to deal with the challenges related to learning long-term dependencies. Ho-

chreiter and Schmidhuber introduced the LSTM in 1997, which has since

then been improved and popularised in subsequent work. LSTM networks

are shown to work well on a large variety of problems, such as handwriting

recognition (Graves et al., 2009), machine translation (Sutskever, Vinyals,

& Le, 2014) and image captioning (Vinyals et al., 2015). LSTM units differ

from traditional RNNs in the way that they contain cells that control the

flow of gradients, which leads to faster learning and more successful runs

(Hochreiter & Schmidhuber, 1997). Each cell has an internal recurrence in

addition to the outer recurrence of the RNN (Goodfellow et al., 2016, p. 399).

Figure 2.10: The structure of a LSTM network. Figure from Colah’s Blog, by
Christopher Olah, August 27 2015, retrieved from https://colah.github.io/

posts/2015-08-Understanding-LSTMs/.

The core component of the cell is the cell state, which is controlled by
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three gating units. By adding and removing information to this cell state,

the LSTM network may learn what aspects of the data that are essential

to remember in order to preserve long-range dependencies. First, it decides

what information to discard from the cell state, using a forget gate. Following

this, an input gate creates candidate values for an updated cell state. Finally,

an output gate uses the cell state to output a new hidden state. Through

this process of four steps, the LSTM network determines what parts of past

events that are useful to remember.

Forget gate Decides which parts and how much of the cell state

to forget, ft

ft = σ(Wf · [ht−1, xt] + bf ) (2.19)

Input gate Decides which parts and how much of the cell state

to update, it, and creates candidate values for the

new cell state, Ĉt

it = σ(Wi · [ht−1, xt] + bi)

Ĉt = tanh(Wc · [ht−1,xt ] + bc]
(2.20)

Cell state update Applies ft to the cell state, making it forget certain

information, and updates the cell state with it and

the candidate values Ĉt

Ct = ft · Ct−1 + it · Ĉt (2.21)

Output gate Decides what information the new hidden state ht will

contain

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot · tanh(Ct)
(2.22)
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Figure 2.11: The different gating functions in an LSTM unit. Adapted from
Colah’s Blog, by Christopher Olah, August 27 2015, retrieved from https://

colah.github.io/posts/2015-08-Understanding-LSTMs/.

where the W ’s denote the weight matrices for the forget gate, input gate,

candidate cell values and output gate, respectively. The b’s are the gating

functions’ biases, and ht and xt is the hidden state and the input at time

step t. The functions σ and tanh are the sigmoid and hyperbolic tangent

activation functions (section 2.3.4). Due to the LSTM’s increased complex-

ity compared to regular RNNs, they possess a greater number of learnable

parameters, meaning they are somewhat more computationally expensive.

2.6 Preprocessing Data

Before applying a machine learning model to a chosen set of data, it may be

beneficial to first transform the data in ways that improve its compatibility

with the model. Such transformations may involve normalising or scaling

data for more efficient learning or altering its representation to better suit a

specific task.

2.6.1 Data Normalisation

When working with large amounts of data, which is typical in the field of deep

learning, it is common practice to adjust the data samples such that their

values all lie within a similar range. This type of adjustment, called data

normalisation, ensures no samples deviate considerably from the rest and

may help neural networks train faster (Sola & Sevilla, 1997). Two common

methods for data normalisation are the standard score and min-max feature

scaling.

The standard score compares an observation to a theoretical deviate, such

as a standard normal deviate. Here, the population mean µ and standard
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deviation σ are known or estimated parameters of the chosen dataset

x′ =
x− µ
σ

(2.23)

Feature scaling brings all values into a given numerical range, typically [0, 1].

x′ =
x− xmin

xmax − xmin
(2.24)

2.6.2 One-Hot Encoding

One-hot encoding involves converting a set of categorical data to binary rep-

resentations. Not all machine learning models can operate on such categor-

ical data directly, so depending on the task at hand, giving the data more

appropriate representations may be necessary. A one-hot representation of

data is a group of bits where maximum one value is high, and the rest are

low. One-hot encoding a categorical data sample may be seen as a two-step

process:

1. Integer encoding: From category to integer

2. One-hot encoding: From integer to one-hot representation

First of all, the number of possible categorical values or classes should be

limited to a fixed set, n. Integer encoding assigns integer values to the data

categories, for example by assigning categories ’pedestrian’ and ’vehicle’ with

integer values 4 and 10. This intermediate representation could be applied

to the machine learning model already but likely results in poor performance

and predictions that lay halfway between categories. Next, the integer values

are one-hot encoded to the group of bits, which are 1 × n vectors holding

only 0’s except in the value position of class c ∈ [0, n− 1], where it is 1. Say

for example that the maximum number of classes n is 10, then the one-hot

encodings of classes 3 and 7 become

c = 3
one−hot−−−−→ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
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c = 7
one−hot−−−−→ [0, 0, 0, 0, 0, 0, 0, 1, 0, 0]

2.6.3 Image Scaling

Typically, the capacity of deep learning models for image processing is tailor-

made to defined image sizes. Rather than increasing the capacity of a model

to fit large images, images may be downscaled and applied to a smaller

model. A smaller model would pay less attention to image detail, but con-

tains fewer parameters than a larger model, meaning it occupies less compu-

tational memory. The scaling factor should be chosen such that the scaling

process retains the image’s most essential content and structures. Resizing

images results in new images that are either larger, meaning new pixel values

must be assigned or smaller in which case some pixels must be removed or

altered. This altering of pixel values is done by means of an interpolation

method. Some conventional interpolation methods when resizing images are

the nearest neighbour, bilinear and bicubic interpolation.

Nearest neighbour The nearest neighbour algorithm selects the value of

the pixels’ closest neighbour. This interpolation tech-

nique is the quickest among the three, and is typically

used when computational speed is a criterion.

Bilinear Bilinear interpolation is performed using linear inter-

polation between points in two directions. It involves

more computational steps than the nearest neighbor

algorithm, but produces a smoother result.
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Bicubic Bicubic interpolation is normally accomplished using

either Lagrange polynomials or cubic splines. The in-

terpolated surface is smoother than that of both bilin-

ear interpolation and nearest neighbor interpolation.

Figure 2.12: Black coloured points correspond to the interpolated point and neigh-
bouring samples, respectively. Their heights correspond to their values. Adap-
ted from Wikipedia, retrieved from https://en.wikipedia.org/wiki/Bicubic

interpolation.

2.6.4 Semantic Segmentation

Semantic segmentation is not exactly a way of preprocessing data, but rather

a process consisting of compound methods for dividing regions of an image

by category. Thoma (2016) defines semantic segmentation as ’the task of

clustering parts of images together which belong to the same object class’.

The process is analogous to an image classification task at the pixel level,

thus instead of assigning the overall image with a class label, one or more

classes are assigned to specific regions in the image. Semantic segmentation

has several use-cases, such as detecting objects in traffic scenes or tumours

in patients. Semantically segmented images are usually obtained through a

semantic segmentation algorithm, often in the form of a deep learning model.

However, such images may be synthetically generated, for example, using a

computer simulator (Dosovitskiy, Ros, Codevilla, López, & Koltun, 2017).

Figure 2.13 illustrates an RGB image turned into a semantic segmentation

map.
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Semantic

segmentation

Figure 2.13: Classifying objects in an image with semantic segmentation. Adapted
from the CARLA Documentation, retrieved from https://carla.readthedocs

.io/en/stable/cameras and sensors/.

2.7 Similarity Measures

Measuring similarity between images or other types of data is a process regu-

larly used in conjunction with machine learning. For example, during model

optimisation, loss functions (2.3.5) are similarity metrics that aid the optim-

isation method to adjust the model’s parameters. Or, such similarity metrics

can be used to evaluate model performance at inference. If the similarity met-

ric is to be used as a loss function during gradient-based optimisation, it must

be differentiable. Though, if it is simply to be used as an evaluation metric

at inference, it is not required. This thesis largely deals with the processing

of images, and therefore, the following similarity metrics are mainly targeted

toward usage on images.

2.7.1 Mean Squared Error

Mean squared error (MSE) is a simple metric for investigating the squared

distance between points in a defined space, and may be used to indicate

the pixel-level similarity between images. Given two images Y and Ŷ , the

MSE quantifies the squared difference between all their pixel values. For two

images containing a single channel the expression can be written as follows

MSE(Y, Ŷ ) =
1

n

n∑
i=1

(Yi − Ŷi)2 (2.25)
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where n is the number of elements in either of the images. The lower the

MSE value, the greater is the resemblance between Y and Ŷ .

2.7.2 Cross-Entropy

Entropy is a measure of the uncertainty associated with a given distribution,

or a set of data. The cross entropy of a set Y relative to a set Ŷ is given as

H(Y, Ŷ ) =
n∑
i=1

Yi log
1

Ŷi
= −

n∑
i=1

Yi log Ŷi (2.26)

Cross entropy is useful as a loss function in for example multi-class classi-

fication problems, or regression over discrete variables (van den Oord et al.,

2016).

2.7.3 Binary Cross-Entropy

Binary cross entropy (BCE) is typically used within single-class classification

problems. BCE measures the distance between a predicted sample Ŷ , and

its true value Y , which is either 0 or 1.

BCE(Y, Ŷ ) = − 1

n

n∑
i=1

(yi · log ŷi + (1− yi) · log(1− ŷi)) (2.27)

2.7.4 Peak Signal-to-Noise Ratio

This method measures the Peak signal-to-noise ratio (PSNR), in decibels,

between two images. The ratio is a quality measurement between an original

and a compressed image. The higher the PSNR, the better the quality of the

compressed image.

PSNR(Y, Ŷ ) = 10 log10

R

MSE(Y, Ŷ )
(2.28)

where R is the maximum possible pixel value of the image.
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2.7.5 Structural Similarity Index

While MSE and PSNR are simple to implement, they are not indicative of

similarity as perceived by humans (Moorthy et al., 2011). The structural

similarity index (SSIM) attempts to overcome this problem by taking into

account structural information in images. The method assesses image quality

based on the perceived change in structural information between two images

(Z. Wang, Simoncelli, & Bovik, 2003). The SSIM index is calculated within

windows of two images, moved across to cover all image locations. Using

SSIM requires to set three hyperparameters, but assuming that they are all

set to 1, the similarity between two windows, w and ŵ, both of size n×n, is

calculated as such

SSIM(w, ŵ) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(2.29)

where

µx : the mean of x

µy : the mean of y

σx : the variance of x

σx : the variance of y

σxy : the covariance of x and y

c1, c2 : stabilising coefficients

For details related to the hyperparameters and the stabilising coefficients,

please refer to the original paper on the structural similarity index metric by

(Z. Wang et al., 2003).

2.7.6 Intersection over Union

Also known as the Jaccard index, this specific metric is applied to categorical

data, such as images of semantic segmentation. As the name implies, it

quantifies the intersection of two categorical images, Y and Ŷ , divided by
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their union.

IoU(Y, Ŷ ) =
Y ∩ Ŷ
Y ∪ Ŷ

(2.30)

2.8 Visual Prediction with Deep Learning:

A Literature Review

While deep learning models may be inspired by human cognitive processes

(2.3.1), Lake et al. argue that for intelligent machines to better mimic human

intelligence, they should build causal models of the world that support ex-

planation and understanding, rather than merely solving pattern recognition

problems (Lake, Ullman, Tenenbaum, & Gershman, 2016). Also, for an agent

to be able to predict how a visual world will change over time, it should pos-

sess some understanding of object structure and the possible transformations

objects may undergo (Lotter, Kreiman, & Cox, 2016). Recent developments

in deep learning have enabled computers and robots to learn such internal

models of physical systems from large sets of observations of the systems in

question (P. W. Battaglia, Pascanu, Lai, Rezende, & Kavukcuoglu, 2016;

Chang, Ullman, Torralba, & Tenenbaum, 2017; Watters et al., 2017). In

turn, these internal models may be used to perform predictions of future

states of physical environments. Castelló (2018) presents a comprehensive

survey on deep learning methods for future frame prediction. Below is a

compact review of some of these methods, including others, grouped by their

methodological similarity.

2.8.1 Learning Physical Reasoning

By providing a deep learning model with prior knowledge to the environ-

ments’ physics, i.e. what may be considered interactable objects, it can take

advantage of these constraints to rapidly learn new tasks, adapt to changes,

and naturally generalise reasoning to new scenes (Chang et al., 2017). This

type of technique may predict how balls move on a pool table (Fragkiadaki
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et al., 2015), how a tower of blocks is likely to collapse (Lerer et al., 2016)

and even the motion of humans (Alahi et al., 2016). These studies are meth-

odically similar in the way they consider only relevant objects in synthetic

images, retrieve their locations and translate them to positional coordinates

in a defined space, making it easier for a network to capture the essence of

their movements effectively. However, retrieval and use of such information

imply that the methods are supervised. Deterministic prediction of future

velocities and locations of these objects is then made using a model’s learnt

intuition of physics, which in turn are used to create synthetic images of

the future states. The models do not, however, generate visual states of the

future directly, e.g. by means of a decoder. Therefore the networks need not

retain image quality detail throughout a predicted sequence, as opposed to

methods discussed next.

2.8.2 Pixel-Level Prediction

An opposite approach to predicting future states of physical environments is

by pixel-wise processing of images. This is typically done by feeding one or

more images into a recurrent (2.5.1) or convolutional (2.3.2) network which

outputs a new image, assumed to be the next in the sequence. Lotter et

al. (2016) investigated the ability to do this with frames in video sequences

from car dashboard cameras, by training a model on large sets of such videos.

They describe a neural network architecture, namely ’PredNet’, inspired by

the theory of predictive coding (2.1). Each layer in the network makes local

predictions, forwarding only deviations from those predictions to subsequent

network layers. Though giving good results for a few predicted time-steps,

their method is prone to accumulation of pixel-level noise. As predictions

are made deeper into the future, small errors in pixel space will exceedingly

amplify, quickly spoiling the desired image quality (Wichers, Villegas, Erhan,

& Lee, 2018).

An entirely different network architecture, more robust to the frame-wise

accumulation of noise, predicts future scenarios in video games by analys-

ing long sequences of gameplay (Ha & Schmidhuber, 2018). This article,
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Figure 2.14: PredNet predicting two frames into the future of a dashboard camera
video sequence. Adapted from Lotter et al. (2016).

namely ’World Models’, received considerable attention because the research-

ers, among other things, created the first agent to solve the Car Racing envir-

onment in the OpenAI Gym (Brockman et al., 2016). Their proposed predict-

ive model is probabilistic and composed of three parts. First, a visual com-

ponent, or more specifically a VAE, compresses each observed input frame

into latent representations. Then, a memory component predicts how these

latent representations evolve, and finally, a controller component controls the

agent. The visual component may decode the predicted latent representa-

tions to gain a visual interpretation of the future. The memory model is

an LSTM combined with a mixture density network (Bishop, 1994) which

produces distributions of predictions, allowing the network to be creative,

and model various scenarios rather than just one trajectory.

Common to these methods is the fact that they train predictive models in

a self-supervised manner, meaning the next element in a sequence is provided

as a supervisory signal during training.

2.8.3 Masked Video Prediction

Also the following models are self-supervised. In semantic segmentation, im-

age regions are masked and labelled by category, dividing the image into sev-

eral objects or classes (2.6.4). Luc et al. (2017) show that using their method,

predicting future semantic segmentation frames yields better results than pre-
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dicting RGB images, and allows predicting deeper into the future. Focusing

on traffic environments, the researchers explore the ability for deep learning

to predict segmentation maps of not yet observed video frames that lie up to

a second or further in the future. By turning an image into a segmentation

map, the complexity of the environment is drastically reduced, making the

predictive model able to estimate future states of the environment more ac-

curately. The model developed in the study is an autoregressive CNN that

learns to generate multiple segmented frames of traffic environments iterat-

ively, and their results show that directly predicting future segmentations is

substantially better than predicting and then segmenting future RGB frames

(Luc et al., 2017). The intuition behind this is that it is easier to learn the

dynamics of an environment that contains only high-level information (2.8.1),

rather than complex and undefined content. Though Luc et al. (2017) show

good results, their method fails to maintain the structure of objects when

predicting more than a second or two into the future.

Figure 2.15: Long-term video prediction with semantic segmentation by (Luc et al.,
2017). Ground truth segmentations at 1, 4, 7, and 10 seconds into the future (top
row), and corresponding predictions of the autoregressive model (bottom row).
Adapted from Luc et al. (2017).

Another line of research uses the latter idea to create a method that

first estimates a mask of the object of primary interest, before predicting

how that structure evolves in the future, and finally reconstructs the future

frames (Wichers et al., 2018). In their research, the domain is restricted to

human movement observed from a fixed position, which creates an environ-

ment with low complexity and only one transforming object at a time. The

method trains an encoder to capture the high-level information, like a mov-

ing foreground object, while making sure that the decoder can reconstruct
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the future frame. The method allowed the researchers to avoid compounding

errors which occurs in recursive pixel-level prediction, and predict a large

number of convincing future frames.

Figure 2.16: Long-term predictions of high-level human structures, reconstructed
into photo-realistic images. Adapted from the results of Wichers et al. (2018).

2.8.4 Evaluating Predictive Models

There is currently a growing interest in the field of predicting the future using

deep learning with an increasing number of contributions. When reviewing

the literature I discovered that the focus in most of this work is mainly on

designing models that are superior to the current state of the art, and that

there is insufficient focus on scientific evaluation of these models. In the work

discussed above, researchers evaluate and report results of their model, and

the predominant approach of doing this is to perform a numerical frame-

wise comparison between ground truth and predicted states or sequences.

Moorthy et al. (2011) emphasises the importance of assessing image and video

quality with methods that take into account how humans perceive visual

stimuli. Among the reviewed research, the only contributions that describe

other means of model evaluation in addition to a frame-wise comparison are

by Lerer et al. (2016) and Wichers et al. (2018). Lerer et al. (2016) predict

whether a tower of blocks will fall or not, and compare the outcome to human

judgement in a small-scale experiment. Wichers et al. (2018) employ a crowd-

sourced human preference evaluation to determine whether or not objects
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are of correct colour and shape throughout a prediction. Castelló (2018)

has made a similar remark about the shortcomings related to evaluating

predictive deep learning models, and states that ’there is in general a lack of

common test ground for this kind of models’.
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Chapter 3

Research Methods

Section 2.8 reviews some of the most successful methods for predicting the

future of visual environments using deep learning. While there exist a fair

amount of research contributions to the field, predicting deep into the future

of complex environments based on self-supervised learning still remains a

challenge. This is largely due to the accumulation of errors in each predicted

step, which with time, leads to significant inaccuracy. There is also a lack

of ways to determine how good video predictions generated by deep learning

models are, comparable to how humans would perceive them, as well as an

understanding of how such predictions could be used to benefit the decision

making of an intelligent agent. The following chapter argues for the choice of

methods used to answer the research questions (section 3.1) and reviews the

implementation of deep learning models (section 3.3), its learning environ-

ment (section 3.2) and a proposed method for evaluating predictive models

(section 3.4).

3.1 Considerations

The amount of research related to deep learning is vast, and there exists a

number of successful and less successful documented deep learning models

for various tasks. One of the thesis’ research contributions is a deep learn-

ing model architecture for visual prediction, and to narrow the possibilities
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related to the design of this model architecture, I define the following criteria:

• The model must be applicable to complex visual environments, which

includes a moveable point of view and numerous moving objects of

different shapes and sizes.

• Given a complex visual environment, the model must be able to predict

long-term future states while persevering object structures and avert

exposure to cumulative noise.

• The model must learn an understanding of the environment in a self-

supervised fashion.

• The model must be trained using a gradient-based optimisation method.

3.1.1 The Model Architecture

Among the types of methods discussed in section 2.8, the one that best

fits the above criteria is perhaps World Models by Ha and Schmidhuber

(2018). This model is comprised of three components; a visual component, a

memory component and a controller component. The controller component

is essentially an agent’s decision-making tool. However, in this thesis, I have

chosen to disregard the implementation of any intelligent agent and focus

on predicting long-term futures. In the original paper, the authors used a

VAE (section 2.4.2) for the visual component and an LSTM network (section

2.5.2) for the memory component.

A VAE produces continuous latent variables; however, van den Oord et

al. (2017) argue that discrete representations are a natural fit for complex

reasoning, planning and predictive learning. A VQ-VAE (section 2.4.3) out-

puts such discrete latent variables using a vector quantisation layer while

maintaining the ability to reconstruct the images from these representations.

The VQ-VAE is shown to output sharp images and does not assume the

data’s distribution, as opposed to a VAE which attempts to fit the latent

variables to a defined distribution, e.g. a normal distribution. In conclu-

sion, I take inspiration from World Models when creating the basis for the
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proposed predictive model, but implement only a visual component and a

memory component, and replace the VAE with a VQ-VAE. Risi and Stanley

(2019) have documented a similar architecture, although, it is not trainable

with a gradient-based optimisation method.

3.1.2 Learning to Predict Within an Environment

When selecting an environment for the model to operate within, I require

it to be complex in terms of possessing properties similar to the real world.

Such properties involve an element of uncertainty as well as numerous objects

moving simultaneously, including the point of view. Lotter et al. (2016)

state that ’the visual world is alive with movement, driven both by self-

motion of the viewer and the movement of objects within the scene’. Ha and

Schmidhuber (2018) use video games such as Car Racing (Brockman et al.,

2016) and ViZDoom (Wydmuch & Kempka Micha land Jaśkowski, 2018) as

their domain to test their model. Especially ViZDoom, a research-related

implementation of the classic video game ’Doom’ from 1993, is a challenging

environment that would be interesting to study. However, it is targeted

toward reinforcement learning mainly, i.e. controlling of an agent.

The Cityscapes dataset (Cordts et al., 2016), which is a traffic environ-

ment for semantic urban scene understanding, is a popular choice of domain

among others (Lotter et al., 2016; T.-C. Wang et al., 2017; Luc et al., 2017).

An advantage of such traffic environment datasets, both real and synthetic, is

how they provide various image representations such as semantic segmenta-

tion, depth, RGB and optical flow. In my experiments, I use the the CARLA

traffic environment simulator (Dosovitskiy et al., 2017) because it can provide

unlimited amounts of data of various sensory types. More details on this sim-

ulator are found in section 3.2.

3.1.3 Effects Associated with Image Types

Experimenting with different image types, more specifically RGB and se-

mantic segmentation images, requires the model architecture to be capable

of processing them both. Luc et al. (2017) proposed a quite different model
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architecture for a similar prediction task; an autoregressive CNN. Using this

autoregressive CNN, the researchers demonstrated the utility of represent-

ing the visual environment with semantic segmentation images as opposed

to RGB images. However, the model which I propose interprets the en-

vironment somewhat differently than an autoregressive CNN. Therefore, I

investigate if also the proposed model’s predictive abilities are improved by

using semantic segmentation as the visual input, which is the effect Luc et al.

(2017) describe. All details related to the model implementation are found in

section 3.3. Determining if the model accurately and meaningfully predicts

the future using either of these image types is closely related to the main

research question, as discussed below.

3.1.4 Evaluating Video Predictions

Evaluating video predictions is a field that has not been investigated in-depth,

and there is a lack of well-established standards for measuring the quality

and plausibility of such predictions (Castelló, 2018). Metrics that measure

quality and similarity between two images, such as PSNR, SSIM and IOU

(section 2.7), are usually the same metrics used to evaluate video predictions.

A frame-wise comparison does not take into account contextual information

specific to the environment (discussed further in section 3.4.4). According to

Moorthy et al. (2011), the ultimate receivers of images and videos are human

observers, and not all differences in images are equally significant for humans.

Since many similarity metrics (section 2.7) for frame-wise comparison do not

share the same visual perception as humans (Moorthy et al., 2011), I argue

that the research field of visual prediction with deep learning is in demand

of a new, flexible but at the same time domain-specific evaluation method

for evaluating predictions.

An evaluation method without knowledge of the events of interest pos-

sibly fails to evaluate the quality of a long-term video prediction appropri-

ately. Nevertheless, the frame-wise comparison is the prevalent approach to

evaluating video predictions, and to comply with the norms of the research

field, this thesis makes use of the same evaluation metrics. However, even

47



though the frame-wise comparison between consecutive ground truth and

predicted frames may be useful to indicate certain things such as temporal

accumulation of noise, it does not measure a prediction’s main events or

whether it is a plausible trajectory.

Especially challenging is exploring how the quality of video predictions

are impacted by the type of image data that is used. It would not be fair

to apply any of the similarity metrics discussed in section 2.7 to such dis-

tinct data types and expect a reasonable comparison. Generally speaking,

evaluating unsupervised models is challenging because vague properties such

as meaningfulness is difficult to measure analytically (Wortman Vaughan,

2018). Vaughan also argues that crowdworkers’ opinions may be well suited

to indicate coherency between categorical data.

3.1.5 Context is Important

What does it mean that a model produces meaningful outputs, and how can

this property be measured analytically? Whether a piece of information is

considered meaningful depends completely on what that piece of information

is meant to represent, in other words; meaningful information is contextual

(Cox, 2014). The proposed predictive model attempts to learn the general

dynamics and rules of the specific traffic environment, and use this knowledge

to predict accurate future scenarios that are, ideally speaking, deceivingly

similar to the true scenarios. The context is the CARLA traffic environment,

thus meaningfulness is related to this specific context.

If a human is to describe video, or more specifically an event from the

environment, she or he would presumably do so with words, by category, or

by how realistic she or he perceived it to be. A prediction may be identical

to a true scenario, categorically speaking, even though objects are not com-

pletely overlapping in space or time. Take for instance a scenario where in

the ground truth there are four vehicles passing in the left lane, but in the

prediction there are only two. Although the prediction failed to foresee all

the vehicles, it is still very accurate in relation to the context. A frame-wise

comparison might on the other hand consider this a poor prediction because
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of the dissimilarity in the image regions where the vehicles are missing. I

argue that since a frame-wise comparison does not take the required context

into consideration, it might be an unreliable way of evaluating the predictive

model.

3.1.6 A Mixed Methods Research Design

These considerations lead to the idea of conducting surveys to help eval-

uate the content of video predictions. In her book, Willig (2013, p. 28)

argues that sometimes the most appropriate way to answer a research ques-

tion requires the use of two or more research methods. She suggests that

combining qualitative and quantitative methods within the same study may

help answer related questions. This approach is referred to as mixed methods

research design (MMR, section ??), a methodology for conducting research

that involves collecting, analysing and integrating quantitative and qualitat-

ive research to expand and strengthen a study’s conclusions (Schoonenboom

& Johnson, 2017). Mixed methods research may be used when the integra-

tion of these research types provides a better understanding of the research

problem than either of each alone.

Describing the contents of video clips, or more specifically video predic-

tions, is a subjective matter which should not be left to one single person

or machine to do, in order to preserve a shared opinion. This indicates that

using a quantitative method alone might not suffice for the research this

thesis. I suggest first conducting a simple qualitative survey to learn more

about aspects of the environment that are considered important to humans,

followed by a quantitative survey designed on the basis of these results in

order to collect a larger amount of data for further analysis. Finally, by us-

ing numerical and statistical methods on the collected data, we may learn

how good the proposed model is at predicting the future of the established

environment, and to what degree the choice of image type will help predict

a meaningful and accurate future.
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3.2 The Dataset

The data used to train and evaluate the proposed model is obtained by using

the CARLA simulator. CARLA is an open-source simulator designed for

autonomous driving research. It features open digital assets such as urban

layouts, buildings and vehicles that were created for this purpose and can

be used freely (Dosovitskiy et al., 2017). The simulation platform supports

flexible specification of sensor suites and environmental conditions. For the

experiments in this thesis, CARLA 0.8.4 was set up to have a car drive around

in a predesigned town while storing images from two camera feeds. The agent

manoeuvring the vehicle was CARLA’s built-in autopilot, following arbitrary

routes while obeying all traffic rules and regulations defined by the simulator’s

default configuration.

The data generation was conducted in individual sequences with lengths

of 500 frames. The initialisation of new sequences involves assigning vehicles

and pedestrians to the town. The numbers units were chosen randomly

between 150 and 250. The agent vehicle spawned in an arbitrary position

within the city, before beginning to manoeuvre. The weather condition was

randomly set to be either default, clear noon, or cloudy noon upon sequence

start.

Figure 3.1: Using the CARLA simulator, a vehicle automatically drives around in
an environment while gathering data of two image types.

The agent used built-in camera sensors to gather RGB images and corres-
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ponding semantic segmentation labels, synchronised to represent the same

sequence. These images were stored with a height and width of 256 pixels,

at a frame rate of 15 frames per second. The RGB images have three colour

channels; red, green and blue, while the semantically segmented images have

13 class channels, each representing one of 13 object. In total, 1479 sequences

were recorded for each image type, equalling a total of 2 × 7395500 images.

All the specification details on simulator conditions and object classes are

summarised in table 3.1.

CARLA specifications

Simulator conditions Object classes

CARLA version 0.8.4 0 None

Environment Town 02 1 Buildings

Agent controller Built-in autopilot 2 Fences

Image dimensions 256 x 256 pixels 3 Other

Frame rate 15 FPS 4 Pedestrians

Sequence length 500 5 Poles

Weather condition Random x ∈
[default,
clear noon,
cloudy noon]

6 Road lines

7 Roads

8 Sidewalks

no. Sequences 1479 9 Vegetation

no. Pedestrians Random x ∈ [150, 250] 10 Vehicles

no. Vehicles Random x ∈ [150, 250] 11 Walls

12 Traffic signs

Table 3.1: Table summarising the CARLA simulator conditions and object classes
which were used when creating the dataset.

3.3 Implementation of the Model

The predictive deep learning model presented in this thesis is a system com-

prised of two components. A visual component first compresses what it sees

into discrete, abstract representations. A memory component then uses these
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abstract representations of the visual environment to learn an internal model

of the world’s behaviour, that is used to predict future states of the envir-

onment based on recent events. The work of Ha and Schmidhuber (2018),

World Models, inspires this setup, which builds upon the idea that intelligent

agents benefit from running an internal model of the world it operates within.

The proposed architecture’s main difference from World Models is its use of

discrete image representations. Also, both components are deterministic,

which makes the model as a whole deterministic. The model implement-

ation is open-sourced and may be found at https://github.com/plaffa/

discrete-world-models.

3.3.1 The Visual Component

The visual component is a vector quantised-variational autoencoder (section

2.4.3). The VQ-VAE is an encoder-decoder network that learns discrete lat-

ent representations of its inputs, while maintaining the ability to reconstruct

the images from these representations. Here, the network is designed to re-

ceive images of height and width 128×128, and output latent representations

of size 8×8. Two versions of this network are created, with minor differences;

one with 3 input channels to support RGB images, and the other with 13

input channels to support semantically segmented images, hereby referred to

as VQ-VAERGB and VQ-VAESEG, respectively. In both cases, the encoders

output discrete 5-bit latent variables of size 8× 8, meaning each element in

the latent space contains an integer in the range [0, 31].

Autoencoders are essentially compression systems, and given an 8-bit

image IRGB, and a 1-bit image ISEG, achievable bit compression ratios are

VQ-VAERGB:
128× 128× 3× 8

8× 8× 5
≈ 1229 : 1

VQ-VAESEG:
128× 128× 13× 1

8× 8× 5
≈ 666 : 1

One could argue that since the latent space contains discrete variables, the

VQ-VAE is somewhat restricted when it comes to the variety of images it
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Quantised
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Figure 3.2: An overview of the visual component’s structure (left) and an explan-
ation of its modules (right).

may express. However, this is probably not an issue since with the given

specifications there exist up to 3264 discrete latent space combinations, which

theoretically yield more than 2.135 · 1096 unique images.

The training objective is given by equation 2.15. For the VQ-VAERGB,

Lrecon is an MSE function (section 2.7.1), while for the VQ-VAESEG it is

a BCE function (section 2.7.3). Pixel-wise class weighting is integrated to

these loss functions, using class weights wc proportional to the distribution

of classes c in each mini-batch of semantic segmentation data

wc = 1−Nc/N

where Nc is the number of elements (pixels) of class c and N is the total

number of elements (pixels) constituted by all classes in one mini-batch of

semantic segmentation data. The weighting of the loss functions involves

using a priori information such as labels inherited in the semantic segment-

ation data. Therefore, the models are not strictly speaking self-supervised.

However, when working with unbalanced semantic segmentation datasets,

meaning some classes occur more often than others, it is advised to balance

the class frequencies by introducing weights (Ronneberger, Fischer, & Brox,
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2015). For an evaluation comparison to be fair across models tailored to

distinct image types, I argue that the same weighting should apply to VQ-

VAERGB. The weighting also helps both models pay more attention to detail,

i.e. classes of small size or classes that seldom occur.

I use the released VQ-VAE implementation in the Sonnet library 1 2 for

inspiration, with some slight architectural modification. The full details on

the VQ-VAE architecture are summarised in figure 3.6.

3.3.2 The Memory Component

The memory component learns an internal model (section 2.1) of the environ-

ment. It consists of two fully connected layers (section 2.3.1) and two LSTM

layers (section 2.5.2) that receive as input a sequence of latent representa-

tions produced by the visual component and outputs a statistically probable

continuation of these representations. This means that it does not learn to

model a series of images directly, but rather a sequence of latent variables

that represent these images. The architecture of the memory component

remains the same no matter which image type is used.

The training objective is to minimise the cross-entropy (section 2.7.2)

between a predicted sequence of latent representations, Ŷ , and a target se-

quence of latent representations, Y , given an input sequence X:

X = [xt, xt+1, xt+2, · · · , xk−1],

Y = [xt+1, xt+2, xt+3, · · · , xk],

Ŷ = [x̂t+1, x̂t+2, x̂t+3, · · · , x̂k],

where xt and x̂t are 8 × 8 latent representations at time step t and k is

the number of latent representations in a sequence. Nearly all sequences in

the dataset are dominated by large, still objects in the image domain, such

as roads and buildings. As a result, consecutive latent representations share

highly similar characteristics. A simple way for the memory component to

1https://github.com/deepmind/sonnet/blob/v2/sonnet/src/nets/vqvae.py
2https://github.com/deepmind/sonnet/blob/master/sonnet/examples/

vqvae example.ipynb
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achieve low loss values is then to learn to predict a copy of the input sequence.

To help the memory component learn the dynamics of small, rarely occurring

objects in these sequences, the cross-entropy loss function is weighted by a

matrix σn×m containing the standard deviations of the latent representations’

elements across all sequences in a mini-batch of data

σ =
√

Var(X) =


σ1,1 σ1,2 σ1,3 · · · σ1,m

σ2,1 σ2,2 σ2,3 · · · σ2,m

...
...

...
. . .

...

σn,1 σn,2 σn,3 · · · σn,m


where X is a mini-batch of sequences of latent representations and n and

m are the height and width of the latent representations, which in this case

is 8 × 8. Weighting the loss function with σ forces the memory component

to pay more attention to regions in the latent space that contain dynamic

properties.

In order to preserve the latent representations’ discrete characteristics,

they are one-hot encoded (section 2.6.2) and flattened before they are sent

to the memory component, as shown in figure 3.3.

8	x	8

one	-	hot

1	x	2048

Figure 3.3: One-hot encoding and flattening of a latent representation.

The flattened representations are fed through a fully connected layer with

2048× 1024 nodes, before entering the LSTM for recurrent processing. The

predicted hidden states of the LSTM are fed through another fully connected

layer with 1024× 2048 nodes, which is followed by a 32-dimensional argmax

operation and reshaping to get the desired 8 × 8 latent space shape. The

memory component can receive sequences of arbitrary lengths, and predict

as many future steps as desirable, which makes it applicable for producing

both short-term and long-term predictions. The complete architecture of the
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Figure 3.4: An overview of the memory component consisting of a fully connected
input layer, two LSTM layers and a fully connected output layer.

memory component is summarised in figure 3.6.

3.3.3 Putting the Components Together

The visual and memory components work together to perceive, compress and

predict future states of the environment based on recent events. Figure 3.5

illustrates the complete predictive model, consisting of the two components

put together.

3.3.4 Model Training Procedure

There are two instances of the model with minor differences; modelRGB and

modelSEG. The individual components and models as whole are implemen-

ted in PyTorch 1.1.0 (Paszke et al., 2019), and use the Adam optimisation

method (Kingma & Ba, 2015) for learning parameters. The components are

trained separate from one another, similar to (Ha & Schmidhuber, 2018).

Training the Visual Component

Both VQ-VAERGB and VQ-VAESEG are trained on images scaled from size

256×256 to size 128×128, using nearest neighbour interpolation for semantic

segmentation images and bicubic interpolation for RGB images. The images
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Figure 3.5: The complete predictive deep learning model comprised of the two
components. The visual component compresses a sequence of images into a cor-
responding sequence of latent representations. The memory component uses this
as a condition to predict an arbitrary number of future states, that are decoded
by the visual component.

used to train the VQ-VAEs are from 514 of the 1479 sequences described in

section 3.2. Both VQ-VAEs are trained with a learning rate of 3e−4 for 80

epochs with shuffled mini-batch sizes of 64.

Training the Memory Component

After training the VQ-VAEs, the remaining 965 sequences described in sec-

tion 3.2 are divided into a training set and a validation set used to train

the memory component. The training set contains 773 sequences, while the

validation set contains 192 sequences. This validation set is also used for

evaluation purposes in the next section, 3.4. From these datasets, the visual

components extract latent representations which are stored locally for effi-

cient training of the memory component. The sequences are originally of

length 500 and frame rate 15 FPS (section 3.2), but the frame rate is re-

57



4x4	conv,	64,	ReLU	
stride	=	2,	zero	pad	=	1

4x4	conv,	128,	ReLU	
stride	=	2,	zero	pad	=	1

3x3	conv,	128,	Linear	
stride	=	1,	zero	pad	=	1

3x3	conv,	64,	ReLU	
stride	=	1,	zero	pad	=	1

1x1	conv,	128,	Linear	
stride	=	1,	zero	pad	=	0

1x1	conv,	128,	Linear	
stride	=	1,	zero	pad	=	0

Vector	quantisation
embed	dim	=	64

no.	embeddings	=	32

3x3	conv,	128,	Linear	
stride	=	1,	zero	pad	=	1

4x4	conv,	64,	ReLU	
stride	=	2,	zero	pad	=	1

3x3	conv,	128,	Linear	
stride	=	1,	zero	pad	=	1

transposed

1x1	conv,	64,	Linear	
stride	=	1,	zero	pad	=	0

VISUAL	COMPONENT	/	VQ-VAE
DECODERENCODER

MEMORY	COMPONENT	/	LSTM

Fully	connected,	Linear
2048	x	1024

LSTM
hidden	=	1024

LSTM
hidden	=	1024

Fully	connected,	Sigmoid
1024	x	2048ReLU

3x3	conv,	64,	ReLU	
stride	=	1,	zero	pad	=	1

ReLU

4x4	conv,	64,	ReLU	
stride	=	2,	zero	pad	=	1

4x4	conv,	128,	ReLU	
stride	=	2,	zero	pad	=	1

3x3	conv,	128,	Linear	
stride	=	1,	zero	pad	=	1

3x3	conv,	64,	ReLU	
stride	=	1,	zero	pad	=	1

1x1	conv,	128,	Linear	
stride	=	1,	zero	pad	=	0

1x1	conv,	128,	Linear	
stride	=	1,	zero	pad	=	0

ReLU

3x3	conv,	64,	ReLU	
stride	=	1,	zero	pad	=	1

ReLU

ReLU

3x3	conv,	64,	ReLU	
stride	=	1,	zero	pad	=	1

1x1	conv,	128,	Linear	
stride	=	1,	zero	pad	=	0

1x1	conv,	128,	Linear	
stride	=	1,	zero	pad	=	0

ReLU

3x3	conv,	64,	ReLU	
stride	=	1,	zero	pad	=	1

ReLU

ReLU

3x3	conv,	64,	ReLU	
stride	=	1,	zero	pad	=	1

1x1	conv,	128,	Linear	
stride	=	1,	zero	pad	=	0

1x1	conv,	128,	Linear	
stride	=	1,	zero	pad	=	0

ReLU

3x3	conv,	64,	ReLU	
stride	=	1,	zero	pad	=	1

ReLU

4x4	conv,	128,	Linear	
stride	=	2,	zero	pad	=	1

transposed ReLU

4x4	conv,	128,	Linear
stride	=	2,	zero	pad	=	1

transposed ReLU

10x10	conv,	img_ch,	Sigmoid	
stride	=	2,	zero	pad	=	4

transposed ReLU

3x3	conv,	128,	Linear	
stride	=	1,	zero	pad	=	1

2D	convolution

2D	transposed	convolution

Residual	block	component

LSTM	layer

Fully	connected	layer

EXPLANATION

3x3	conv,	64,	ReLU	
stride	=	1,	zero	pad	=	1

1x1	conv,	128,	Linear	
stride	=	1,	zero	pad	=	0

1x1	conv,	128,	Linear	
stride	=	1,	zero	pad	=	0

ReLU

3x3	conv,	64,	ReLU	
stride	=	1,	zero	pad	=	1

ReLU

RGB
SEG

img_ch	=	3
		img_ch	=	13

Figure 3.6: The component architectures that comprise the proposed deep learning
models.
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duced to 5 FPS by splitting the sequences into groups of three of lengths

164. The memory component is trained on sequences from the training set 3

with a learning rate of 3e−4 using shuffled mini-batch sizes of 64. All layers

use dropout regularisation (section 2.3.5.2) with a probability of p = 0.3. To

reduce overfitting (section 2.3.5.1), the training is interrupted by early stop-

ping (section 2.3.5.2) when there is no further improvement on the validation

set 4.

3.4 The Proposed Evaluation Method

The method used to evaluate model performance is based on a mixed meth-

ods research design consists of two surveys; a qualitative survey S1 and a

quantitative survey S2. Conducting S1 establishes which aspects of the envir-

onment (section 3.2) that should be considered important. This information

is used within S2 to collect a large amount of data related to the predictive

abilities of the proposed models. The S2 submissions are then analysed using

numerical and statistical methods that assess model performance.

Both surveys are web-based, in which participants observe short video

clips and perform certain tasks related to these videos. The University of

Oslo’s ’Nettskjema’ service is used for this purpose. All videos have a frame

rate of 5 FPS and a length of 50 frames, which equals a 10-second duration

in the environment. However, for visual purposes the videos’ playback speed

is increased by a factor of two. The predictive models’ visual components

(section 3.3.1) process all videos such that ground truth and predicted videos

appear visually similar so as not to create a bias in the mixed methods

research. The layouts of S1 and S2 may be found at https://plaffa.github

.io/surveys.html.

3training sequences with 164 steps at a frame rate of 5 FPS
4validation sequences with 164 steps at a frame rate of 5 FPS

59

https://plaffa.github.io/surveys.html
https://plaffa.github.io/surveys.html


3.4.1 The Qualitative Survey

In the qualitative survey, S1, seven participants obtained by convenience

sampling observed and created descriptions for 52 ground truth video clips

from the specified traffic environment. M. Battaglia (2008) defines conveni-

ence sampling as ’a type of nonprobability sampling in which people were

sampled simply because they are ”convenient” sources of data for research-

ers’. The ground truth videos were sampled from the validation dataset

described in section 3.3.4, though first inspected to make sure they represent

a variety of events. More specifically, a video corresponds to the first 150

frames of a sampled sequence, but to reduce the frame rate from 15 FPS to

5 FPS only every third frame is selected, resulting in a length of 50 frames.

Among the 52 videos, 26 are of image type RGB and the other 26 of

semantic segmentation, presented in a random order. All sequences are pro-

cessed by the visual component (section 3.3.1), and are thus subject to some

quality change. Before beginning the survey, the participants were thor-

oughly informed about the thesis’ topic, and that the descriptions they cre-

ate should mainly relate to traffic, roads and interaction between vehicles.

Furthermore, they were shown how the same video may be represented with

different image types, but they did not know whether they were going to

see ground truth or predicted sequences. For convenience, the descriptions

they created could consist of up to four words, which suggested a clip’s main

events. New participants were recruited until theoretical saturation among

the descriptions was achieved, as suggested by Willig (2013, p. 71). This

means that as long as new video descriptions can be identified, the data col-

lection should continue, which for this experiment was achieved with seven

participants. The submitted video descriptions usually portrayed one or two

main events per video, and the most recurring descriptions among these were

accepted for the quantitative survey, S2, as shown in table 3.2 below.

3.4.2 The Quantitative Survey

In the quantitative survey, S2, the eight categories obtained from S1 are used

by new participants to describe new videos. In addition, another category,
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Recurring descriptions selected as categories

c1 Driving straight c5 Breaking for traffic

c2 Left turn c6 Approaching vehicle

c3 Right turn c7 Oncoming vehicle(s)

c4 Standing still c8 Following vehicle

Table 3.2: The eight most recurring descriptions created by participants of S1 to
be used as categories for S2.

Summary of the qualitative survey S1

Research type Qualitative
Format
Survey

no. Participants 7
Gender distribution Driving licence
57% female, 43% male 71% YES, 29% NO

no. Videos 52
Type

Ground truth
RGB and semantic

segmentation

no. Categories 8

Table 3.3: Summary of the qualitative survey, S1.

’undefined’, is added to be used in cases where the participants of S2 con-

sider none of the other categories to be appropriate. The videos of S2 are

52 unique sets of video sequences. This means that for both image types,

RGB and semantic segmentation, there are 52 ground truth videos and 52

corresponding video predictions, representing the same sequences across im-

age types. I define a test set as the collection of these 4 × 52 = 208 videos,

selected as follows:

1. With a discrete uniform distribution, select 52 random numbers from

the interval [0, 191], corresponding to the sequences of the validation

set (section 3.3.4).

2. Delimit the sequences to frame numbers 225-405 (not to overlap with

the videos of S1), i.e. to a total of 180 frames. Reduce the frame rate
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from 15 FPS to 5 FPS by selecting every third frame, resulting in a

length of 60 frames.

3. For both image types, select the 10 first frames from each of these 52

sequences to be used as conditions to the predictive models.

4. For each condition, select the 50 subsequent images in the sequence as

the ground truth videos.

5. Apply each condition to the predictive models and save the predicted

sequences, each comprising of 50 predicted frames

Owing to the large number of videos in the test set, S2 is divided into four

subsets with 52 videos each, so as not to tire the participants. However, they

may complete as many of the subsets as they wish, though only the same

subset once. To reduce a potential ordering effect (Strack, 1992), the order

of all videos is randomised across the four subsets. The participants do not

know when they observe a ground truth video or prediction. Every video is

followed by two inquiries, shown in tables below. The first inquiry records a

participant’s category of choice for the video on a nine-level nominal scale,

and the second inquiry records its degree of perceived realism in the video

on a five-level ordinal scale.

c1 c2 c3 c4 c5 c6 c7 c8 c9

Category o o o o o o o o o

Table 3.4: A participant of S2 selects one of the nine possible categories to describe
a video’s event.

Unrealistic Somewhat unrealistic Neither Somewhat realistic Realistic

Realism o o o o o

Table 3.5: A participant of S2 reports how realistic it perceives a video to be on a
five-level ordinal scale.

As discussed in section 3.1, properties such as meaningfulness and realism are

challenging to measure analytically, and should thus be well defined not to
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confuse the participants and make sure they all have a similar understanding

of what the property means. The Lexico dictionary service defines realism as

’the quality or fact of representing a person or thing in a way that is accurate

and true to life’. This definition was extended to fit the research problem,

and provided in S2 as follows:

In the context of these videos, realism is thought of as how realistic

the events are in comparison to real life events. This should not

consider the quality of the images, but rather whether you think

it is likely that the scenario or trajectory could happen in a real

traffic environment. A realistic video should also have a relatively

continuous flow, and stable transitions between consecutive images.

In total, S2 received 453 submissions (not all were from unique participants),

of which approximately 95% were from users of the Amazon Mechanical

Turk service (Crowston, 2012). These users received a small payment for

completing the survey, while the remaining proportion of submissions were

from participants obtained by convenience sampling and did not receive any

payment.

Summary of the quantitative survey S2

Research type Quantitative
Format
Survey

no. Submissions
S2.1

S2.2

S2.3

S2.4

453
110
106
112
125

Gender distribution Driving licence
-

30.3% female
69.7% male

-

-
96.3% YES
3.7% NO

-

no. Videos
S2.1

S2.2

S2.3

S2.4

208
52
52
52
52

Type
-

Ground truth
and prediction

-

RGB and
semantic

segmentation
-

Table 3.6: Summary of the quantitative survey, S2. S2.i, i ∈ [1, 2, 3, 4] are the four
subsets of S2.
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3.4.3 Outlier Detection

One drawback of using crowdworkers’ opinions is that one cannot guarantee

the quality of each submission. It could be tempting to believe that most of

the participants understand the task in S2, wish to contribute and thereof

provide their honest opinions on the topics. However, since the participants

are rewarded with a payment, some may be motivated by other aspects, such

as completing the survey quickly only to claim the reward and consequently

ignore its content altogether. This is unfortunate as these participants in-

duce a response bias, i.e. a nonrandom deviation of the answers from their

actual value (Lavrakas, 2008). Submissions that deviate considerably from

the population trend may be considered outliers and should be identified

and rejected to assure that they do not influence the result. There exist

numerous methods for rejecting outliers in data. One approach is to accept

only samples that are within some factor of the standard deviation from the

population mean, and discard the rest. Though this method may be used,

the mean and standard deviation are quite sensitive to extreme values in

the data, making it somewhat unreliable. A more robust method utilises

the median absolute deviation (MAD) to detect outliers (Leys, Ley, Klein,

Bernard, & Licata, 2013). Using this method, we can determine whether a

sample xi is an outlier by using the following expression

|xi −median(x)|
MAD(x)

> T (3.1)

where x = {x1, x2, · · ·, xn} is the population data and xi ∈ x is a sample

from the population data. MAD(x) is the median of all samples’ absolute

deviations from the population median, multiplied by an empirically derived

constant k

MAD(x) = k ·median(|x−median(x)|) (3.2)

If the calculated value exceeds the threshold T , the sample xi is flagged as an

outlier. This formulation of the method is applicable when xi is a scalar, but

in our case, the samples are vectors of category frequencies. Each sample

represents a submission provided by a participant, or more specifically, a
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vector containing the number of times the participant chose each category,

as shown in the example table 3.7.

Participant c1 c2 c3 c4 · · · cn
p

1
24 7 6 3 · · · 0

p
2

2 5 23 13 · · · 1

p
3

11 14 18 8 · · · 0
...

...
...

...
...

. . . 5
p
m

21 3 4 9 · · · 0

Table 3.7: An example of what the summarisation of survey submissions may look
like. Here, p

i
, i ∈ [1, 2, · · · ,m] represents a participant’s submission to a subset of

S2, i.e. the participant’s frequency count of each category cj for j ∈ [1, 2, · · · , n]. m
is the total number of submissions to the subset and n is the number of categories.

The complete set of submissions X is a matrix with shape m× n, where

Xp is a row of X containing the frequencies of categories from participant

p. Then, a row of the transpose of X, i.e. XT
c , contains the frequencies of

category c for all participants. Outlier detection using Mahalanobis’ distance

(Mahalanobis, 1936) is an acknowledged way of detecting outliers among

such multivariate samples. However, that involves computation of the inverse

covariance matrix of X, Cov(X)−1, which may be unstable or even impossible

if encountering singularity issues. Therefore, we stick with the MAD based

method, and reformulate it by using the euclidian distance to make equation

3.1 applicable to vectors.√∑n
c=1(Xpc −median(XT

c ))2

MAD∗(X)
> T (3.3)

where

MAD∗(X) = k ·median(
√

(X −median(X))2) (3.4)

and median(X) = [median(XT
1 ),median(XT

2 ), · · · ,median(XT
n )] are the me-

dians of the columns of X. Finally, equation 3.3 is used to create a function
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that determines whether the submission by participant p is an outlier

outlier(Xp) =

True, if

√∑n
c=1(Xpc−median(XT

c ))2

MAD∗(X)
> T

False, otherwise
(3.5)

Now, this function should indicate participants who have responded in such

a manner that deviates from the population trend. As discussed at the

beginning of the section, participants that complete the survey quickly may

induce problems. Spending an unreasonably long time completing the survey

could also be suspicious. The described function (equation 3.5) does not

take the participant’s time spent into consideration, and it might suggest an

outlier even though the elapsed time is reasonable. Therefore, the function

is used in conjunction with another criterion; the participants’ time spent,

tp, must be within one standard deviation of the population mean

µtime − σtime ≤ tp ≤ µtime + σtime (3.6)

If a participant exceeds both these limits, there is good reason to believe that

it is an outlier and thus remove it from the set.

3.4.4 Analysing Survey Submissions

The result of conducting both surveys, S1 and S2, and refining S2 by remov-

ing submission outliers, is a collection of subjective data about all videos in

the test set (section 3.4.2). More specifically, data has been gathered about

the categorical preference of each video on a nine-level nominal scale, in ad-

dition to their degree of realism on a five-level ordinal scale. The following

section describes how the obtained data may be used to evaluate the pre-

dictive models. Considering that the MMR design is a candidate approach

to evaluating predictive deep learning models, its conclusions are compared

to the recognised evaluation approach, a frame-wise comparison.

66



3.4.4.1 The Overall Distribution of Categories

The total amount of submissions to S2 constitute a distribution of event

categories. More specifically, the submissions constitute a distribution of

categories for each group of video, RGBGT , RGBPD, SEGGT and SEGPD.

Using a goodness of fit test, it is possible to compare an observed distribu-

tion associated with predictions to a probability distribution associated with

ground truth. These distributions are of unknown shape, and the data is

nominal; therefore, we require a non-parametric test that can handle 2 × 9

contingency tables. The Chi-square goodness of fit test (“Chi-square Good-

ness of Fit Test”, 2008) fits these criteria. Using this test, we investigate

whether or not there is a significant difference between the distributions of

categories derived from predictions and those derived from the ground truth.

If no significant difference between the distributions is identified, it could

mean that the predictive models succeed in predicting traffic events that

follow the same distribution as the environment.

One remark related to using this test is that the expected counts of cat-

egories should be five or more in at least 80% of the categories, and no cat-

egory should have an expected frequency of less than one (McHugh, 2012).

However, this assumption is most likely to be met if the sample size equals

at least the number of cells multiplied by five (McHugh, 2012). This means

that each subset of S2 should receive more than 2× 9× 5 = 90 submissions,

which, seen from table 3.6 is indeed satisfied.

3.4.4.2 Inter-Rater Agreement

The task in S2 is highly subjective, and it is not to be expected that all

respondents submit identical opinions. Estimating the inter-rater agreement

(section ??), i.e. to what extent the respondents agree upon categories, will

indicate which methods that are most reliable for evaluating model perform-

ance. The subsets of S2 do not receive an equal amount of submissions (see

table 3.6), hence there is some potential missing data. The Krippendorff’s

alpha test is a test that computes the inter-rater agreement, corrects for

agreement by chance and takes into account potential missing data (Hayes &
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Krippendorff, 2007). Krippendorff’s alpha values, α, indicate the following:

α = 1 : Perfect agreement.

α = 0 : Absence of agreement. Statistically unrelated opinions.

α < 0 : Disagreement exceeding what can be expected by chance.

Alpha values less than 0.667 signify poor agreement and are considered un-

acceptable (Krippendorff, 2004, p. 241-243).

3.4.4.3 Realism

The proposed model should produce realistic predictions, therefore, realism

is investigated as a property of its own. More specifically, what is being

recorded in S2 is the participants’ degree of perceived realism in the videos,

with the definition in section 3.4.2 as a reference. Whether or not the models

predict realistic videos should be detectable with another statistical test:

This data (realism) is recorded on an ordinal scale, and again the distribution

is unknown, therefore, another non-parametric test is required. A Wilcoxon-

Mann-Whitney test (Neuhäuser, 2011) is therefore used to compare outcomes

in realism between ground truth and prediction. This is a non-parametric test

used to investigate whether two independent samples are from populations

of the same distribution. The test may also be used to investigate whether

the participants prefer videos with a specific video type, in terms of how

realistically they are perceived.

3.4.4.4 Prediction Accuracy

The predictive models attempt to predict accurate future events of the traffic

environment. Therefore, it is natural to investigate their prediction accuracy.

In order to investigate this property, two approaches are discussed. If the

level of inter-rater agreement is high, the opinions provided in S2 are reliable

and may be used as labels for the ground truth videos.
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A classification task

If there is significant agreement between raters, it may be appropriate to view

S2 as a classification task with one label for each ground truth video. Since

the participants unknowingly categorise both predictions and ground truth

videos, the ground truth responses may be used to determine the labels. The

categories associated with predictions are matched against their ground truth

counterparts to measure the single-label classification accuracy, or rather, the

prediction accuracy of the model.

If there is less agreement between the raters, it may be more appropriate

to treat S2 as a multi-label classification task. The reason not all participants

who rate a video agree upon a category could be related to the fact that

the videos extend over a long period (10 seconds), and that more than one

notable categorical event may occur during this duration. In this multi-label

classification task, a video may belong to more than one true category. The

label(s) of a given ground truth video is chosen in the following way:

Single-label classification: The category with the most votes is the true

label assigned to the ground truth video.

Multi-label classification: All categories with the number of votes ex-

ceeding one standard deviation of the median are true labels assigned to the

ground truth video.

Once the classification scores are derived, a statistical test comparing two

proportions of correctly classified videos may detect which, if any, image

type that yields more accurate predictions than the other. For this purpose,

a two-sided z-test of equality for two proportions (Finkelstein & Levin, 1990)

should be appropriate.

Pairwise comparison of categorical distributions

If the inter-rater agreement is low, the models may perform poorly on the

classification tasks. Panda et al. (2018) argues that with a consensus ap-

proach, two groups of raters can be treated in the same way as if they were

only two raters, and then any inter-rater agreement method can be used to
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assess agreement between these two groups. The task is then to measure

the rate of agreement, or similarity, between two such distributions, across

all video pairs in S2. The Chi-square goodness of fit test could be used for

this also, but with suspicion of not fulfilling the assumption about 80% of

the expecteds having to be ≤ 5 Mcfarlane et al. (2008) suggest using vector

space methods for assessing inter-rater agreement where the data is high-

dimensional. One advantage of the classification task is the fact that the

model performance is quantified as the proportion of correct classifications,

i.e. a value ranging from zero to one. Model evaluation based on measuring

similarity between groups of high-dimensional data calls for a metric with

such property.

The cosine similarity does exactly this. This measure of similarity treats

the categorical distributions as positive vectors in an n-dimensional space,

where n is the number of categories. A cosine similarity value of one indic-

ates complete similarity between two positive vectors, meaning the vectors

are parallel. A value of zero indicates complete dissimilarity, meaning the

vectors are perpendicular. Cosine similarity is defined by the dot product

and magnitude of the two vectors, as shown in equation 4.5.1.

cos θ =
a · b
‖a‖‖b‖

=

∑n
i=1 aibi√∑n

i=1 a
2
i

√∑n
i=1 b

2
i

(3.7)

As with the classification scores, another statistical test may detect which, if

any, image type that yields more accurate predictions than the other when

comparing categorical distributions. Classification accuracy measures the

proportion of correctly classified predictions, while cosine similarity gives

a measure of how correct the prediction is compared to the ground truth

in terms of their distributions of categories. Therefore, a Wilcoxon-Mann-

Whitney test would be more appropriate than a two-proportion test to detect

whether one of the image types is associated with better predictions.

3.4.4.5 Comparing the MMR to a Frame-Wise Comparison

After conducting the above analysis on the submissions to S2, the proposed

evaluation method (the mixed methods research design) should be compared
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to the acknowledged evaluation method (the frame-wise comparison). The

use of scatter plots allow a visual interpretation of this comparison, and

correlation coefficients may indicate the relationship between the evaluation

methods. Pearson correlation (“Pearson’s Correlation Coefficient”, 2008) is a

statistic that measures the linear correlation between two variables. For the

sake of the comparison, these two variables are the results of the prediction

accuracy discussed above and the results of the frame-wise comparison. The

Pearson correlation coefficient, r, indicates the strength and direction of the

linear relationship between these variables.

Strength

The correlation coefficient ranges from 1 to +1. The closer the absolute value

is to 1, the stronger is the relationship between the variables, and an absolute

value of 1 signifies a perfect linear relationship. Correlation coefficients close

to 0 indicate that there is no linear relationship between the variables.

Direction

The direction of the linear relationship is interpreted from the sign of the

correlation coefficient. A positive coefficient means that the variables tend

to increase or decrease together, while a negative coefficient indicates that

the variables move in opposite directions.

If the two evaluation methods measure similar properties of the video pre-

dictions, we would expect a strong, positive relationship between them.

3.4.5 Refining the Evaluation Method

I have proposed a method for evaluating video predictions and predictive

deep learning models. This involves designing, conducting and analysing

the mixed methods research design for evaluation of predictive models. The

final result is an improved and updated evaluation method based on the

experiences gained during the process. I present the updated evaluation
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method in the format of a protocol, which is my main contribution to the

field of visual prediction with deep learning.
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Chapter 4

Results and Discussion

The following chapter reviews the results of the work in this thesis, revealing

the performance of the proposed models, and the utility of the mixed methods

research design. Throughout the chapter, the research questions from section

1.2 are discussed, which concern evaluating predictive models by measuring

the realism and accuracy of predictions they produce. Also, I investigate the

importance of image type for representing the visual environment in video

prediction tasks. Below is a summary of the predictive models, the methods

used to evaluate model performance, and the data from which the results are

derived.

• The predictive models used in all experiments are described in section

3.3.

• Evaluation of model performance is assessed using two different ap-

proaches; a prevalent approach which is a quantitative frame-wise com-

parison between video predictions and ground truth videos, and a can-

didate approach which is our proposed mixed methods research design

(section 3.4).

• The data (videos) used to derive the following results are from the test

set described in section 3.4.2. Note that all videos are processed by the

visual components (section 3.3.1) such that a frame-wise comparison
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is reasonable, and ground truth and predicted videos appear visually

similar so as not to create a bias in the mixed methods research.

A qualitative review of some video prediction samples gives an intuition of

what the models have learnt. A quantitative frame-wise comparison between

video predictions and ground truth videos is performed, before finally re-

viewing the results based on the proposed evaluation method comprised of

the mixed methods research design.

4.1 A Qualitative Review of Video

Prediction Samples

To help fully understand the results presented in this chapter, samples from

the data described above are inspected. A sample consists of the condition

used to generate a video prediction, the video prediction itself and its cor-

responding ground truth, as shown in figure 4.1. The condition is comprised

of ten input frames, which the model uses as context to predict a future tra-

jectory. Prediction of future states is made purely in the latent space by the

memory component (section 3.3.2). The predicted latent variables are then

decoded by the visual component to create the sequence of visual states, i.e.

the video prediction.

Figure 4.1 shows four samples, commented from top to bottom:

1. (RGB) The model succeeds in predicting some of the oncoming traffic

in the left lane, in addition to the right turn towards the end of the

sequence.

2. (RGB) The model predicts the agent approaching a vehicle and a full

stop due to intersecting traffic. The ground truth video shows deceler-

ation but no full stop.

3. (SEG) The model predicts a right turn followed by traffic clog, while

the ground truth shows a left turn followed by traffic clog.
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Condition Ground truth

f = 0 3 6 9 10 12 15 18 24 31 38 45 52 59

Prediction
f = 0 3 6 9 10 12 15 18 24 31 38 45 52 59

f = 0 3 6 9 10 12 15 18 24 31 38 45 52 59

f = 0 3 6 9 10 12 15 18 24 31 38 45 52 59

Figure 4.1: Examples of two RGB samples (top) and two semantic segmentation
samples (bottom). The top row contains a sequence of ground truth images from
the validation set, where the initial 10 frames are the condition used by the model
to predict future states. The bottom row contains the corresponding predicted
sequence generated by the model. The frame number in a sample is denoted by f .
Recall that the ground truth (f = 10 − 59) are also encoded and decoded by the
model’s visual component (section 3.3.1).

4. (SEG) The model predicts a standstill by an intersection, while one

vehicle passes in the left lane. The ground truth shows the same,

except that the passing vehicle is a motorcycle.

Looking closer at sample 2, it can be seen that the cars in frames f = 31

are quite different. The car in the ground truth image is black, whereas

in the predicted image it is mostly yellow and red. Something similar is

observed in sample 4, where the passing vehicle in the ground truth sequence
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is a motorcycle, while it in the prediction is a car. This characteristic is

interesting because from one perspective the objects are the same, namely

cars. However, comparing the images with a similarity metric such as mean

square error might indicate little resemblance between the vehicles due to

their difference in pixel intensity.

This observation raises a relevant question; with what detail should a

model capture the environment to meaningfully predict its future? For ex-

ample, is predicting the specific type or colour of a vehicle more useful than

predicting the fact that it is a vehicle? The next section examines to what

extent measuring pixel-level similarity between prediction and ground truth

can be used to evaluate the performance of the models.

Another property of the models worth noting, seen in figure 4.1, is their

ability to maintain the structure of objects over many predicted frames. This

property is not achieved in related research such as (Luc et al., 2017), whose

methods struggle to generate accurate long-term predictions of complex en-

vironments (see figure 2.16). The reason the proposed models are able to

maintain object structure is believed to be due to the use of autoencoders,

or more specifically VQ-VAEs in the visual components. The latent repres-

entations produced by the visual components enable the models to predict

precise future states and create meaningful image reconstructions, even over

many consecutive time steps. This property supports the assumptions (sec-

tion 3.1) when it comes to designing a suitable model architecture for this

prediction task.

More of these samples may be found in video format at https://plaffa

.github.io/samples.html. Having gained some knowledge about what the

models have learnt, it is time to investigate how good these predictions are

overall, by using the first evaluation approach, which is the frame-wise com-

parison.
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4.2 Model Evaluation Approach 1:

A Quantitative Frame-Wise Comparison

This section reviews the frame-wise comparison between ground truth videos

and video predictions. As mentioned in section 3, related research within the

field of video prediction suggests this approach to be the acknowledged way

of evaluating predictive models. Taking inspiration from Luc et al. (2017),

the video prediction task is divided into three scopes; short-term, mid-term

and long-term prediction.

Short-term prediction is here defined to involve predicting the next 5

frames of a sequence, mid-term to be the next 20 frames, and long-term to

be the next 50 frames. Frame-wise comparison with four different similarity

metrics is then applied to evaluate the video predictions, at all three scopes.

The similarity metrics quantify the resemblance between consecutive pairs of

prediction and ground truth frames. Tables 4.1, 4.2 and 4.3 report average

structural similarity (SSIM), peak signal-to-noise ratio (PSNR), mean square

error (MSE) and intersection over union (IoU) for short-term, mid-term and

long-term prediction respectively, computed using built-in functions of MAT-

LAB R2018b. Average similarity scores are based on the similarity between

all pairwise frames throughout a scope’s total sequence length. In addition,

IoU for moving objects (IoU-MO) is included (Luc et al., 2017). Moving ob-

jects in the test set are pedestrians and vehicles. Note that IoU and IoU-MO

apply only for semantic segmentation images, so they are not reported for

RGB.

In addition to reporting results for the predictive models (modelRGB and

modelSEG), a naive baseline model is included. This baseline model is a

repeated copy of the last conditional input frame, and gives a basis for com-

parison of the results. Tables 4.1, 4.2 and 4.3 report image similarity between

prediction and ground truth for the four models, where bold values indicate

the best scores.

As can be seen from tables 4.1, 4.2 and 4.3, both modelRGB and modelSEG

are superior to their baselines at all prediction scopes, and all average simil-

arity scores. This indicates that the models have at least learnt to predict a
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Short-term prediction

Method SSIM PSNR MSE IoU IoU-MO

BaselineRGB 0.79 21.56 797.4 - -

BaselineSEG 0.82 (18.49) (1157.9) 0.82 0.25

ModelRGB 0.83 23.25 605.4 - -

ModelSEG 0.86 (19.99) (854.6) 0.86 0.32

Table 4.1: Average scores based on frame-wise comparison for short-term predic-
tions (next 5 frames). SSIM, PSNR and IoU scores indicate quality (higher is
better). MSE is a measure of error (lower is better).

Mid-term prediction

Method SSIM PSNR MSE IoU IoU-MO

BaselineRGB 0.78 20.73 989.7 - -

BaselineSEG 0.81 (18.12) (1288.3) 0.79 0.22

ModelRGB 0.82 22.95 709.6 - -

ModelSEG 0.85 (19.80) (899.3) 0.85 0.27

Table 4.2: Average scores based on frame-wise comparison for mid-term predictions
(next 20 frames). SSIM, PSNR and IoU scores indicate quality (higher is better).
MSE is a measure of error (lower is better).

Long-term prediction

Model SSIM PSNR MSE IoU IoU-MO

BaselineRGB 0.75 19.95 1187.8 - -

BaselineSEG 0.78 (17.67) (1499.9) 0.76 0.20

ModelRGB 0.79 21.87 888.5 - -

ModelSEG 0.83 (18.92) (1159.7) 0.82 0.23

Table 4.3: Average scores based on frame-wise comparison for long-term predic-
tions (next 50 frames). SSIM, PSNR and IoU scores indicate quality (higher is
better). MSE is a measure of error (lower is better).

more accurate future of the environment than simply copying the last condi-

tional frame. As will be explained below, some values are given in parentheses
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because application of these metrics on semantically segmented (SEG) im-

ages is somewhat questionable. Summary of each of the similarity scores in

tables 4.1, 4.2 and 4.3:

SSIM: ModelSEG outperforms modelRGB and the baselines.

PSNR: ModelRGB outperforms modelSEG and the baselines.

MSE: ModelRGB outperforms modelSEG and the baselines.

IoU: ModelSEG outperforms baselineSEG, also for IoU-MO.

Figures 4.2 and 4.3 show scores from the frame-wise comparisons with respect

to all 50 frames in long-term predictions. The curve represents the average

score, and the regions surrounding them show the standard deviation. Figure

4.2a (SSIM) indicates that the degree of average structural similarity between

prediction and ground truth decreases with time, at a similar rate for both

models. However, modelSEG generally achieves a higher SSIM score than

modelRGB, possibly due to the homogeneity of object regions in semantic

segmentation images.

A similar tendency is seen in figure 4.2b (PSNR), though the rate of

descent is less prominent, and this time modelRGB receives a higher overall

score. The reason modelRGB receives higher PSNR scores than modelSEG is

unsurprising and related to figure 4.2c (MSE). Calculation of PSNR makes

use of MSE (see section 2.7), such that low MSE values consequently corres-

pond with high PSNR values. While RGB images consist of small transitions

in pixel intensity, semantically segmented images contain distinct colours in

separate class regions (see figure 4.1 for intuition). Class regions that fail to

overlap across two semantic segmentation images will yield a larger impact

than that of two RGB images. In other words, the use of MSE and thus

PSNR is targeted towards RGB images and comparing the same metrics

applied to other data types such as semantic segmentation is not equitable.

Figure 4.3 shows the two similarity metrics IoU and IoU-MO for semantic

segmentation sequences. IoU-MO scores (moving classes; vehicles and pedes-

trians) are significantly lower than IoU computed across all classes. Because
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(a) Structural similarity (SSIM).
Higher value is better.

(b) Peak signal-to-noise ratio (PSNR).
Higher value is better.

(c) Mean squared error (MSE).
Lower value is better.

Figure 4.2: Frame-wise comparison between ground truth and video predictions.
RGB and semantic segmentation model. The curves represent the similarity meas-
ures averaged across the 52 videos. The coloured areas represent the standard
deviations from the mean curve.

a scene is dominated by large, static objects, such as roads and the sky,

small, dynamic objects, such as vehicles and pedestrians, contribute less to

the similarity score. Therefore, IoU, as well as MSE, PSNR and SSIM, may

indicate a good prediction, simply because large, static objects are easier to

predict.

IoU-MO more accurately describes the model’s ability to predict dynamic

objects. However, there are two challenges with IoU-MO. Firstly, IoU-MO is

only applicable to semantic segmentation images, not RGB images. Secondly,

IoU-MO scores merely measure to what extent dynamic objects in prediction
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Figure 4.3: Intersection over union for all objects (IoU) and moving objects (IoU-
MO) for semantic segmentation sequences. Higher value is better.

and ground truth overlap. A condition (10 frames) does not contain sufficient

information to accurately predict the future on the pixel-level. Therefore, one

should not require a prediction to overlap with the ground truth for it to be

meaningful.

Following the reasoning above, none of the four metrics is ideal to evaluate

a model’s ability to predict the future. Still, SSIM is perhaps the most reliable

metric, because it is less sensitive to pixel-level mismatch compared to MSE

and PSNR, and it is applicable to both image types. Besides, SSIM (and

IoU) scores are easier to interpret than MSE and PSNR, because they yield

values in the range [0, 1] ⊂ R, i.e. percentage similarity.

A final overview of average SSIM is shown in figure 4.4, which illus-

trates the performance of both predictive models compared to their baselines.

The regions of greatest distinction between the predictive models and their

baselines are the first 10 frames in a sequence, where both baselines show

great decline in structural similarity with ground truth.
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Figure 4.4: Average SSIM.

4.3 Model Evaluation Approach 2:

The Mixed Methods Research Design

The mixed methods research design involves studying responses from two

surveys; a qualitative survey, S1, and a quantitative survey, S2. Conducting

the qualitative survey establishes areas of focus related to the prediction

task in this thesis, formulated as a set of traffic events (section 3.4.1). These

events are categorical choices used by participants in the quantitative survey,

S2 (section 3.4.2). Full details on the implementation and outcome of the

mixed methods design is found in section 3.4. Evaluation of the predictive

model is based on the responses to S2 by using methods described in section

3.4.4.

4.3.1 Preliminary Analysis

The analysis of the mixed methods research begins by identifying possible

outliers among the responses to S2. The method used to detect outliers

is based on median absolute deviation as described in section 3.4.3, with

parameters k = 1.0 and T = 2.0. The amount of time a participant spends
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on a subset of S2 should not exceed one standard deviation from the mean,

which across the four subsets equals a valid time interval between 5.6 and

20.7 minutes. Any submission to S2 violating both these criteria is considered

an outlier. Among the 453 responses to S2, 24 (5.3% of the population)

were identified as outliers and removed from the set. Table 4.4 shows the

distribution among categories across the four survey subsets, produced by

the remaining 429 responses.

Distribution among selected categories

Video type c1 c2 c3 c4 c5 c6 c7 c8 c9 Total

RGBGT 2053 265 426 691 420 434 406 543 167 5404

RGBPD 2006 351 515 514 306 394 385 645 173 5289

SEGGT 1678 278 456 762 522 447 404 593 217 5357

SEGPD 1773 403 668 691 306 390 372 612 158 5373

Total 7510 1297 2065 2658 1554 1665 1567 2393 715 -

Proportion 35.05% 6.05% 9.64% 12.41% 7.25% 7.77% 7.31% 11.17% 3.34% 100%

Table 4.4: The distribution among the 9 categories related to ground truth video
and video prediction for both image types, RGB and SEG (semantic segmentation).

The first step is to investigate whether the distribution among the video

predictions’ categories is similar to that of the ground truth categories. The

following null and alternative hypothesis are:

H0H0H0: There is no significant difference between the distribution of categories

for video predictions (observed) and ground truth video (expected), with

respect to the 52 videos.

HAHAHA: There is a significant difference between these distributions

The Chi-square goodness of fit test with an alpha level of 0.05 and 8 degrees

of freedom is used on the data in table 4.4, computed using the statistical

software R (R Core Team, 2018). With sample sizes of ∼5300 the test has a

statistical power of 0.99, i.e. a 99% chance of detecting an effect if it exists.

Table 4.5 summarises the Chi-square goodness of fit test. Since both p-values

are lower than the significance level of 0.05, the null hypotheses are rejected

with 95% confidence. This concludes that both modelRGB and modelSEG

generate video predictions with distributions among event categories that

are different from that of the ground truth videos. This result might suggest
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Chi-square goodness of fit test

Model alpha df p-value Conclusion

ModelRGB 0.05 8 < 2.2e− 16 Reject H0

ModelSEG 0.05 8 < 2.2e− 16 Reject H0

Table 4.5: Specifications and results related to the Chi-square goodness of fit
performed on the data in table 4.4.

that the models have learnt some general understanding of the environment,

rather than to copy the data perfectly, as suggested by the visual inspection

of samples (section 4.1). However, the result is only intermediate, because the

overall distributions have merely been determined unequal, whereas the level

of dissimilarity has not been determined. Sections 4.3.2 and 4.3.3 investigate

the latter, but first the realism of video predictions produced by the models

must be assessed, i.e. the participants’ degree of perceived realism among the

videos in part two of the survey, with the definition of realism from section

3.4 in mind. Realism related to the 52 videos in a subset of S2 is recorded on

a five-level ordinal scale, with an overall distribution across all subsets shown

in table 4.6.

Distribution among the degree of perceived realism

Video type Unrealistic Somewhat unrealistic Neither Somewhat realistic Realistic

RGBGT 3.03% 7.58% 13.51% 39.78% 36.10%

RGBPD 4.47% 7.83% 13.37% 38.52% 35.81%

SEGGT 13.00% 12.67% 13.53% 34.73% 26.08%

SEGPD 13.36% 12.54% 13.03% 33.67% 27.39%

Overall 8.49% 10.16% 13.36% 36.68% 31.35%

Table 4.6: The participants’ degree of perceived realism among the videos in part
two of the survey, divided into the four video types.

Table 4.6 shows that the participants mainly interpret all video types

as somewhat realistic or realistic. By treating the ordinal scale as numbers

within the range 1-5, it is clear that the participants favour RGB videos over

segmented videos in terms of how realistic they are perceived. As can be

seen in table 4.7, RGB (ground truth and predictions) videos are generally

perceived as more realistic than segmented videos. This may be due to the
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nature of RGB images falling more natural to people, as opposed to semantic

segmentation which is a representation of the world people rarely relate to.

General tendency of the degree of perceived realism

Video type Median Average

RGBGT Somewhat realistic (4) Somewhat realistic (3.99)

RGBPD Somewhat realistic (4) Somewhat realistic (3.94)

SEGGT Somewhat realistic (4) Neither / Somewhat realistic (3.49)

SEGPD Somewhat realistic (4) Neither / Somewhat realistic (3.50)

Table 4.7: The general tendency of the degree of perceived realism when treating
the ordinal scale as numbers in the range 1-5.

Wilcoxon-Mann-Whitney tests with significance levels of 0.05 are used

to compare outcomes in realism between ground truth and prediction for

RGB and segmented videos. The tests reveal that for both image types,

no significant difference between the levels of realism in ground truth and

predictions can be identified. This result may suggest that video predictions

produced by both modelRGB and modelSEG are perceived just as realistic as

the ground truth videos.

4.3.2 Video Classification

It has been established that both modelRGB and modelSEG generate video

predictions with distributions among event categories unequal to that of en-

vironment. While this result is somewhat explanatory in terms of model

performance, it has not yet been determined how accurate the predictions

are. Therefore, the evaluation objective is treated as two separate video clas-

sification tasks, as described in section 3.4.4.4. With the submissions to S2,

there are usually one or two true labels in the multi-label classification task,

on rare occasions three. The classification scores are summarised in table

4.8.

At first thought, the classification scores in table 4.8 are not remarkably

impressive. For both models, the average accuracy is quite low, and the

standard deviation is quite high. However, because long-term futures are

uncertain, it is difficult to determine whether these classification scores are
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Video classification

Model
Accuracy: Single-label Accuracy: Multi-label

Average Median Std. Average Median Std.

ModelRGB 32.8% 32.1% 20.2% 48.0% 53.8% 20.60%

ModelSEG 35.8% 34.8% 21.2% 47.6% 54.1% 19.9%

Table 4.8: Classification scores for modelRGB and modelSEG with the single-label
and multi-label classification tasks, reported accuracy in terms of average, median
and standard deviation.

good or bad. Nevertheless, a way of deriving a concrete measure of model

performance according to a defined objective has been determined. This is

not tailored to a specific type of data but may instead be used with both

RGB images and semantically segmented images.

Which model is better at predicting correct events?

The next step is to examine whether there is a significant difference in classi-

fication performance between the two models (RGB and SEG), using a two-

proportion test: A two-sided z-test of equality for two proportions, without

continuity correction and a significance (alpha) level of 0.05, computed using

the statistical software R. To investigate whether the proportions of correctly

classified video predictions are equal for both models, the following null and

alternative hypotheses is formulated:

H0H0H0: The proportion of correctly classified video predictions with modelRGB is

equal to the proportion of correctly classified video predictions with modelSEG

HAHAHA: The two proportions are unequal

With sample sizes of over 5300 (see table 4.4) the test has a statistical

power of 0.99, i.e. a 99% chance of detecting an effect if it exists. Fig-

ure 4.5 shows box plots of the classification results, including p-values from

the two-proportion tests. The p-value from the single-label proportion test
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is 1.401e−4, i.e. less than the significance level of 0.05, meaning that the

null hypothesis may be rejected and concluding with 95% confidence that

modelSEG is superior to modelRGB at the single-label video classification task.

The p-value from the two proportions test for multi-label classification is

0.1995, i.e. higher than the significance level, and the null hypothesis may

not be rejected. This means that for the multi-label classification task, no sig-

nificant difference in accuracy proportion between modelRGB and modelSEG

is identified.

Video classification accuracy
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Figure 4.5: Box plots showing the classification results from the single-label and
multi-label video classification tasks.

Is there a biased category?

When studying table 4.4, category c1 (’driving straight’) is chosen much

more frequently than any other category, namely ∼35% of the time. The

reason could be related to the position of this particular categorical choice

within the survey compared to the other categories (see the link provided

in section 3.4 for the survey layout), or because much of the events in the

videos incidentally involves driving straight forward. Also, category c9 (’un-
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defined’) is chosen very seldom, only ∼3% of the time, possibly because it

is unnecessary. Including these somewhat biased categories, especially c1,

may lead to unreliable results, the video classification scores were computed

again but now without categories c1 and c9. Note that removing the two

categories also means losing a number of category votes, which in turn may

result in more uncertain classification scores. ModelRGB now gets an aver-

age classification accuracy of 29.6% at the single-label task, and 36.6% at

the multi-label task. ModelSEG maintains a higher single-label classification

accuracy than modelRGB, with an accuracy of 34.0%. At the multi-label clas-

sification task, modelSEG scores 37.7%. Performing two new two-proportion

tests yields p-values of 1.547e−4 and 0.016 for the single-label and multi-label

tasks, respectively. In other words, modelSEG remains superior to modelRGB

at the single-label video classification task. Still, no significant difference in

classification performance between the models can be identified at the multi-

task video classification task. In conclusion, though categories c1 and c9 are

identified as high and low frequent categorical choices, removing them makes

no noticeable difference in terms of classification accuracy.

Explaining accuracy with inter-rater agreement

The considerable increase in classification accuracy using multiple labels does

suggests that the events in the videos may be better described using multiple

categories rather than a single category. Initially, somewhat poor classifica-

tion scores were observed in general, and it is therefore necessary to investig-

ate why this is the case. An examination of the extent to which participants

agree on the video’s categories was conducted by calculating the inter-rater

agreement of responses to S2 in SPSS (IBM Corp., 2019). The Krippendorff’s

alpha test (section 3.4.4.2) is here used to calculate the inter-rater agreement,

and these alpha (α) are reported in table 4.9 below. For convenience, the

total set of videos is divided into four groups, RGBGT , RGBPD, SEGGT and

SEGPD, and quantify the degree of agreement between participants with

respect to each group.

The reliability coefficients (α) from the Krippendorff’s alpha test help to
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Inter-rater agreement on choice of category

Agreement RGBGT RGBPD SEGGT SEGGT Average

Total number of ratings 5405 5289 5357 5373 (5356)

Krippendorff’s alpha (α) 0.122 0.131 0.106 0.164 (0.131)

Degree of agreement poor poor poor poor (poor)

Table 4.9: Inter-rater agreement using Krippendorff’s alpha.

understand why the classification accuracies are somewhat low. Alpha val-

ues less than 0.667 signify poor agreement (section 3.4.4.2), thus, as shown

in table 4.9, the agreement between participants is poor within all groups

of videos. This might create uncertainty related to the use of ground truth

labels to describe the true scenario of a video. At this point, it is necessary

to question the survey layout in terms of the tools the participants have at

their disposal to describe videos in the survey. Mcfarlane et al. (2008) suggest

that inter-rater agreement may be low if the number of possible categories

to choose from is large. Therefore, owing to the fact that participants in

S2 describe a ten-second long video using only one of nine possible categor-

ies, broad agreement between raters of video predictions and raters of their

ground truth counterparts cannot be expected. Nevertheless, the collected

data based on ten-second long videos and nine categorical choices can be

used in an alternative way to evaluate model performance if the agreement

between individual raters is low.

4.3.3 Pairwise Comparison of Categorical

Distributions

A video’s event content is better described using up to several categories,

as opposed to using a single category. Therefore, an alternative evaluation

objective that is more appropriate than the video classification task at meas-

uring the categorical similarity between two videos. As argued in section

3.4.4.4, a consensus approach enables two groups of raters to be treated in

the same way as if they were only two raters. Table 4.10 shows how videos

89



are described by categorical distributions following this logic.

Categorical distributions for an arbitrary sample

Video type c1 c2 c3 c4 c5 c6 c7 c8 c9 Total

RGBGT 33.1% 2.4% 4.0% 41.9% 3.2% 4.8% 8.9% 0.8% 0.8% 100.0%

RGBPD 20.0% 3.2% 3.2% 50.5% 4.2% 7.4% 5.3% 3.2% 3.2% 100.0%

Table 4.10: Category distribution for an arbitrary sample (one video pair) shown
as an example. The proportions are rounded to the nearest decimal.

Agreement between categorical distributions is here quantified using co-

sine similarity. As with the classification task, the cosine similarity is meas-

ured after removing categories c1 and c9 due to the suspicion of c1 inducing

a bias and c9 being rarely used. Eliminating these categories adjusts the

categorical distributions accordingly.

Inter-group agreement:

Cosine similarity between categorical distributions

Model
cos θ with all categories cos θ with {c2, c3, c4, c5, c6, c7, c8}

Average Median Std. Average Median Std.

ModelRGB 0.7988 0.8649 0.1969 0.7630 0.8012 0.2040

ModelSEG 0.7992 0.8660 0.2023 0.7730 0.8601 0.2053

Table 4.11: Inter-group agreement assessed as cosine similarity between categor-
ical distributions for all video pairs. Average, median and standard deviation of
similarity between distributions are reported using all categories and a subset of
categories.

Table 4.11 summarises the degree of similarity between categorical dis-

tributions of video predictions and ground truth for all 52 videos. By visual

inspection, it seems modelRGB and modelSEG perform equally well, perhaps

except for modelSEG having a somewhat larger median similarity value when

ignoring categories c1 and c2. To test whether categorical similarity with one

model tends to be larger than with the other, the following null and altern-

ative hypotheses are formulated to be tested with Wilcoxon-Mann-Whitney

tests:
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H0H0H0: The distributions of categorical similarity scores of modelRGB and modelSEG

are equal

HAHAHA: The distributions of scores of the two models are unequal

Note that in the transition from category votes by groups to categorical

distributions, the sample size is reduced to the number of videos, i.e. 52. The

Wilcoxon-Mann-Whitney tests give a p-value of 0.8561 when including all

categories, and 0.6996 with the subset of categories, as shown with box plots

in figure 4.6. With significance levels of 0.05, the null hypotheses may not be

rejected, meaning there is no real evidence that one model performs better

than the other. In essence, comparing categorical distributions with cosine

similarity arrives at the same conclusion as the multi-label video classification

does. Using the proposed model architecture, and if the content of a video is

described by multiple categories or by a categorical distribution, representing

the visual environment with either RGB images or semantic segmentation

makes no significant difference in terms of how accurate the generated video

predictions are.
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Figure 4.6: Box plots showing the cosine similarity for categorical distributions
with all categories and a subset of categories.
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4.4 Comparing the Two Evaluation Approaches

The results based on the two approaches for assessing model performance

have been presented. Measuring the correlation between approach 1 (the

frame-wise comparison) and approach 2 (the proposed mixed methods re-

search design) will reveal to what extent the approaches measure similar

properties of the predictive models. As argued in the end of section 4.2,

SSIM is the most appropriate metric for frame-wise comparison across image

types. Therefore, only SSIM is used in this final comparison, excluding MSE,

PSNR and IoU. Figure 4.7 shows the relation between results using approach

1 and approach 2 when evaluating each of the 52 video predictions. Coef-

ficients r describe the Pearson correlation between these outcomes (section

3.4.4.5).

In all four plots shown in figure 4.7, the linear relationship between the

two model evaluation approaches is either nonexistent or very weak (section

3.4.4.5). These weak relationships are interpreted from the correlation coef-

ficients, given in greater detail below. The null hypothesis is that there is no

statistically significant relationship between the variables, i.e. r = 0, which

is tested with significance levels (α) of 0.05.

{SLC vs. SSIM}RGB : r(50) = .06, p = .672→ not significant

{MLC vs. SSIM}RGB : r(50) = .16, p = .257→ not significant

{cos θall vs. SSIM}RGB : r(50) = .03, p = .833→ not significant

{cos θsub vs. SSIM}RGB : r(50) = .07, p = .621→ not significant

{SLC vs. SSIM}SEG : r(50) = .07, p = .621→ not significant

{MLC vs. SSIM}SEG : r(50) = .06, p = .672→ not significant

{cos θall vs. SSIM}SEG : r(50) = .19, p = .177→ not significant

{cos θsub vs. SSIM}SEG : r(50) = .19, p = .182→ not significant

where r(df) is the correlation with df = N − 2 degrees of freedom, and

N = 52, i.e. the total amount of samples per image type in the test set.
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SSIM vs. video classification
Single-label classification

(a) Correlation coefficients
rRGB = −0.0644 rSEG = 0.0704

Multi-label classification

(b) Correlation coefficients
rRGB = 0.1590 rSEG = 0.0561

SSIM vs. similarity between categorical distributions
Including all categories

(c) Correlation coefficients
rRGB = 0.0325 rSEG = 0.1898

With categories {c2, c3, c4, c5, c6, c7, c8}

(d) Correlation coefficients
rRGB = 0.0722 rSEG = 0.1879

Figure 4.7: Scatter plots showing the relationship between SSIM and cosine simil-
arity for all 52 videos in survey part two. The correlation between the evaluation
methods outcomes is given for each image type by ri, i ∈ [RGB,SEG].

SLC, MLC and cos θc are the single-label and multi-label classification scores

and cosine similarity, where c may include all categories, all, or the subset

of categories, sub.

The null hypothesis may not be rejected in any of the cases, which means

that no statistically significant linear relationship is detected between any of

the variables, and correlation coefficients r 6= 0 cannot be expected with the
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current sample sizes.

In the previous section, 4.3.3, it was shown that the proposed evaluation

method’s two ways of deriving prediction accuracy agree quite well, especially

when comparing cosine similarity with multi-label video classification. What

is clear, however, is that the prediction accuracy does not agree with the

frame-wise comparison. For one thing, all four scatter plots suggest that the

SSIM scores are biased toward values > 0.6, meaning that SSIM values within

a rather small range of operation [0.6, 1] ⊂ R correspond to video predictions

of quality or accuracy somewhere between ’poor’ and ’good’. On the other

hand, the prediction accuracy based on the proposed method (classification

accuracy and cosine similarity) makes use of the entire scale [0, 1] ⊂ R.

The two evaluation approaches are supposedly uncorrelated, which in

practice means that the frame-wise comparison evaluates video predictions

differently to how humans perceive them. This finding emphasises the short-

comings related to using a frame-wise comparison for judging the quality of

videos, which according to Moorthy et al. (2011) is a task with a highly sub-

jective nature, ’coupled with the human visual system’s peculiarities’. Also,

it supports the argument that there is indeed a need for developing new ways

of evaluating predictive deep learning models to assess how meaningful their

predictions are.

4.5 Refining the Proposed Evaluation Method

The results in this chapter and the considerations below lead to the devel-

opment of an improved version of the evaluation method. The main contri-

bution of this thesis is presented; a refined protocol for evaluating predictive

models using subjective data, shown in figure 4.8. The term predictive mod-

els refers mainly to deep learning models that predict future visual states

of environments. It is believed that the protocol can be applicable for other

and similar models and prediction tasks.
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4.5.1 Considerations

A number of challenges and shortcomings were encountered during the pro-

cess of developing and testing the proposed evaluation method. These chal-

lenges are mainly related to the design of the qualitative survey S1 and quant-

itative survey S2, and were identified when discovering the poor agreement

(section 4.3.2) between participants in S2. Mcfarlane et al. (2008) argues that

the low inter-rater agreement may be explained by the significant number of

possible categories to choose from when conducting S2 as a participant. This

brings us back to the design and analysis of S1 (section 3.4.1).

Modifications to the qualitative survey

In S1, the participants’ task is to create descriptions for videos from the

environment. I suggest that in addition to creating the descriptions, the

participants should be inquired about how many distinct events they believe

the environment (videos) is capable of expressing, N . When sampling new

participants to achieve theoretical saturation (section 3.4.1), this number,

N , should contribute to the level of saturation. After collecting enough

submissions, m, the median([M1,M2, · · · ,Mm]) will aid the researcher when

selecting categories for use in S2, for example by not exceeding the suggested

number. Also, the participants in S1 could inform about other aspects of the

environment they consider essential, and which are not interpretable from

the descriptions.

Modifications to the quantitative survey

As long as the sample size (number of participants) is large, model predic-

tion accuracy derived by measuring the cosine similarity between categorical

distributions is a reliable measure, even if the number of categories to choose

from is significant. That said, there is room for improvement, especially re-

garding the way participants of S2 may use the given selection of categories.

It appears that the videos in S2 are somewhat ambiguous, and participants

tend to struggle when selecting a category because several categories may be

equally plausible.
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If the categorisation task appears challenging, it should be adjusted early

in the process. Therefore, experience suggests recruiting only a limited

amount of participants for S2 in an initial session. With the limited num-

ber of submissions, compute the inter-rater agreement (reliability) between

raters by using e.g. Krippendorff’s alpha or Fleiss’ kappa (Panda et al.,

2018). If there is strong agreement among between participants (for example

αKrip > 0.667, see section 3.4.4.2), proceed sampling participants for S2. The

model evaluation objective may be treated as a classification task according

to section 3.4.4.4.

If on the other hand there is low agreement between the participants, the

number of categories, N , should be decreased. If reducing N is problematic,

a solution is to allow the participants to assign more than one category

to a video, thus allowing for a hierarchy of categories with k levels. The

main category describes the main event, and optional subcategories describe

possible subevents. A matrix representing the categorical distributions of a

video would be

The distribution

of categories

(main and subcategories)

for one video

→


c1,1 c1,2 c1,3 · · · c1,N

c2,1 c2,2 c2,3 · · · c2,N

...
...

...
. . .

...

ck,1 ck,2 ck,3 · · · ck,N


where c1 = [c1,1, · · · , c1,N ] is a vector with the distribution of main categor-

ical events, and cj = [cj,1, cj,2, · · · , cj,N ] is a vector with the distribution of

subcategory j ∈ {2, 3, 4, · · · , k}. The researcher must then decide upon the

level of the hierarchy, k. This new way of categorising videos in S2 allows

retaining the use of the cosine similarity as a measure of categorical similarity

between a ground truth video, GT , and a predicted video, PD

cos θ =
a · b
‖a‖‖b‖

where a = [c1, c2, c3, · · · , ck]GT is comprised by concatenating vectors cGTi

and b = [c1, c2, c3, · · · , ck]PD is comprised by concatenating vectors cPDi ,
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where i ∈ {1, 2, 3, · · · , k}. Other measures of similarity or reliability may

also be applicable, such as the Kupper Hafner statistic (Kupper & Hafner,

1989), a statistic for assessing inter-rater agreement for multiple attribute

responses. This however, is left to be investigated in later work.

4.5.2 The Evaluation Protocol

The protocol for evaluating predictive models using subjective data is shown

figure 4.8 below.
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saturation(D,N)? No

Yes

Create	N	categories
from	D
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p1					p2					p3

With	p2:
Conduct	S2
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Agreement?

Determine assessment
of quality, Q Event	realism

Photo-realism

Between-frame
transition

Select
new	p2

Reduce	N
possible?

No

Single	category

Yes

Yes

Categorisation	task:
Hirearchy	of	categories

Categorisation	task:

With	p3:
Conduct	S2

Prediction	accuracy
Classification	and
cosine	similarity

Prediction	accuracy
Cosine	similarity	or
inter-group	agreement

With	p3:
Conduct	S2

Prediction	quality

QPD	vs.	QGT

Examples

S1	:	qualitative	survey
S2	:	quantitative	survey
M		:	no.	videos	necessary	for	statistical	tests
Q		:	assessment	of	quality
p1	:	population	sample	for	qualitative	survey
p2	:	small	population	sample	for	quantitative	survey
p3	:	large	population	sample	for	quantitative	survey
D		:	event	descriptions
N		:	number	of	suggested	events

Select	video
sample	size,	M

No

Figure 4.8: A protocol for evaluating predictive models with subjective data. p1, p2

and p3 denote populations of human evaluators.
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Chapter 5

Conclusions and Future Work

In this chapter, the conclusions of the results and analysis from chapter 4 are

presented in section 5.1, and ideas for future work in section 5.2.

5.1 Conclusions

The field of video prediction using deep learning faces a challenge of great sig-

nificance, namely the general lack of common test ground for predictive deep

learning models (Castelló, 2018). While there exist acknowledged numerical

methods for evaluating such models, their use is questionable because they

perceive videos in different way of the human visual system.

The work in this thesis presents a new method for evaluating predict-

ive models using subjective data, which measures mainly two properties of

predictive models; the realism and the accuracy of the predictions they pro-

duce. The evaluation method is based on a mixed methods research design,

which involves conducting surveys to gather subjective data about videos

generated by predictive models, with minimal prior information about the

environment. The data collection is followed by statistical analyses that re-

veal the quality and prediction accuracy of the models. Evaluating video

predictions with the proposed method is still in the early stages; however,

it has been tested in order to discover the potential for improvement. With

these improvements, the main contribution of the thesis is a refined protocol
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for evaluating predictive models using subjective data.

5.1.1 The Proposed Evaluation Method

The proposed evaluation method was tested by applying it in the evaluation

of two proposed deep learning models for video prediction of a simulated

traffic environment. These models have similar architecture, but each model

accepts a distinct image type that represents the environment. In this work,

the image types were RGB and semantic segmentation. It was found that

both models can produce long-term video predictions that to human observ-

ers appear equally realistic to ground truth videos.

The prediction accuracy of the two models was measured by video clas-

sification and by comparing categorical distributions for each pair of video

consisting of prediction and ground truth. The model using semantic seg-

mentation images performs marginally better than the model using RGB

images at the single-label classification task. However, when including more

categories in the analyses, as in the multi-label classification task and when

comparing categorical distributions, no statistically significant difference in

terms of prediction accuracy is identified between the two models. The mod-

els produce accurate long-term (10 seconds) predictions of the environment,

shown by the considerable cosine similarity between categorical distributions

of ground truth and video predictions.

The proposed evaluation method was compared to the currently acknow-

ledged evaluation method in the field of video prediction with deep learning,

which is a frame-wise comparison between ground truth and video predic-

tions. Analyses reveal that the two evaluation methods are uncorrelated,

and thus measure different properties of a video. Furthermore, this confirms

that the acknowledged evaluation method, i.e. the frame-wise comparison,

evaluates video predictions differently to how humans perceive them, a dis-

covery consistent with the findings of (Moorthy et al., 2011). This implies

that future contributions to the research field in the form of model archi-

tectures most certainly should evaluate the model’s performance using sub-

jective data, if not only as a part of the evaluation. As a result of the work
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throughout this thesis, I have contributed to the research field with a protocol

for performing exactly this type of model evaluation. I therefore encourage

others to either use it in their research as is, or as a source of inspiration.

5.1.2 The Predictive Model and Image Type

As for the proposed deep learning model architecture, I show that the ’World

Models’ architecture by (Ha & Schmidhuber, 2018), which uses continuous

latent variables to learn an internal model of the environment, can be mod-

ified to use discrete latent variables. By replacing the visual component’s

VAE with a VQ-VAE, and modifying the memory component to perform re-

gression over discrete variables, I have documented a new architecture similar

to World Models. Other than it using discrete variables, the main difference

with the proposed architecture is that it disregards the implementation of an

agent.

Based on the results in section 4.2, I conclude that the proposed model

architecture is robust to the type of image representing the environment.

Also, whether the model architecture receives RGB images or semantic seg-

mentation images for interpretation of the environment makes no significant

difference in terms of the realism and accuracy of predictions. This finding is

different from the results by (Luc et al., 2017), who by using an autoregress-

ive CNN architecture and a quantitative evaluation method obtain superior

prediction results using semantic segmentation images opposed to RGB im-

ages.

5.2 Future Work

5.2.1 The Evaluation Protocol

Having presented a protocol for evaluating predictive models with subjective

data, the next natural step is to see this protocol being used to evaluate a

variety of model architectures that predict future visual states of a variety

of environments. In particular, it would be interesting to see a comparison
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between the model architecture proposed in my work and the autoregressive

CNN by Luc et al. (2017). Also, since World Models (Ha & Schmidhuber,

2018) inspires both my work and the work by (Risi & Stanley, 2019), an

intriguing idea is using the evaluation protocol for a comparison between all

three implementations on a video prediction task.

The evaluation protocol can be used to measure other model properties

that did not make it to the scope of this thesis. Because some events may

occur more frequently than others within an environment, the prediction

accuracy can be measured within each separate category to evaluate the

model’s expressiveness. This investigates whether a model has the ability to

predict all categories equally well, or if some categories are harder to predict

than others.

5.2.2 Image Types

In this work, only the image types RGB and semantic segmentation were

used to investigate to what degree image types influence a model’s predictive

abilities. For future work, the use of other image types should be worth

investigating. Also, it would be interesting to see the development of a single

predictive model that accepts various image types, as opposed to having k

models for the k image types.

5.2.3 The Predictive Model

I acknowledge that there is room for improvement for the proposed predict-

ive model, especially regarding the choice of loss functions and the weighting

of these. Also, training this model end-to-end with a gradient-based optim-

isation method remains a challenge due to the inhibited flow of gradients

in the VQ-VAE. Nevertheless, the model has proven to be appropriate for

predicting long-term futures of a visual environment, and its capabilities due

to its use of discrete variables lead to other interesting ideas for future work:

The current predictive model is deterministic, designing a probabilistic

variant could be possible by for example introducing multinomial sampling

in the output of the memory component. Another idea involves the use of
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transformers (Vaswani et al., 2017), which are sequence models shown to

learn sequences of discrete variables effectively. An interesting experiment

would, therefore, be to replacing the memory component’s LSTM network

with a transformer network.
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nett (Eds.), Advances in neural information processing systems

32 (pp. 8024–8035). Curran Associates, Inc. Retrieved from

http://papers.neurips.cc/paper/9015-pytorch-an-imperative

-style-high-performance-deep-learning-library.pdf

Pearson’s Correlation Coefficient. (2008). In W. Kirch (Ed.), Encyclopedia

of public health (pp. 1090–1091). Dordrecht: Springer Netherlands.

Retrieved from https://doi.org/10.1007/978-1-4020-5614-7 2569

doi: 10.1007/978-1-4020-5614-7{\ }2569

R Core Team. (2018). R: A Language and Environment for Statistical

Computing. Vienna, Austria. Retrieved from https://www.r-project

.org/

Risi, S., & Stanley, K. (2019). Deep neuroevolution of recurrent and discrete

world models. In (pp. 456–462). doi: 10.1145/3321707.3321817

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Net-

works for Biomedical Image Segmentation. In N. Navab, J. Hornegger,

W. M. Wells, & A. F. Frangi (Eds.), Medical image computing and

computer-assisted intervention – miccai 2015 (pp. 234–241). Cham:

Springer International Publishing.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning repres-

entations by back-propagating errors (323rd ed.). Nature.
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