
Reinforcement learning and
stochastics with applications in
mathematical finance

Eva Steine Dahl
Master’s Thesis, Spring 2020

This master’s thesis is submitted under the master’s programme Stochastic
Modelling, Statistics and Risk Analysis, with programme option Finance,
Insurance and Risk, at the Department of Mathematics, University of Oslo.
The scope of the thesis is 60 credits.

The front page depicts a section of the root system of the exceptional
Lie group E8, projected into the plane. Lie groups were invented by the
Norwegian mathematician Sophus Lie (1842–1899) to express symmetries
in differential equations and today they play a central role in various parts
of mathematics.

Abstract

The topic of this thesis is stochastic optimal control and reinforcement
learning. Our aim is to unify the theory and language used in the two fields.
The thesis presents both frameworks and discuss similarities, differences
and how the reinforcement learning framework can be extended to include
elements from the Hamilton-Jacobi Bellman equations. In the second
part of the thesis, this theory is used in order to price exotic options in
energy markets. We also use the HJB-equations and the Q-learner as an
update rule to look at problems from portfolio optimization.

Acknowledgements

First and foremost, I would like to thank my supervisor Kristina Rognlien Dahl.
Her constant support, advise and optimism has not only been crucial for the
creation of this thesis, it has also been a great source of comfort through the
process of making it. I am very grateful for having had such a competent and
kind supervisor. I would also like to thank Fred Espen Benth for sharing his
knowledge during my summer project, and for introducing me to the exciting
field of power markets.

I want to thank my family for their moral support and encouragements.
A special thanks to my mother for allowing me to raid her fridge every other
weekend, and for solving crosswords with me when the last thing I wanted to
see was another equation.

Last, but far from least, I want to thank all the great people that I have
met throughout my years at the faculty of mathematics. From the students
that made my academic years fun, the professors who made them challenging,
and the people at the administration office who made them possible. They all
played their part in making my years at UiO memorable.

iii

Contents

Acknowledgements iii

Contents v

List of Figures vii

Introduction ix
The theme of the thesis . ix
The work process . x
Structure of the thesis . x
My contributions . x

1 Preliminaries 1
1.1 Introduction . 1
1.2 Spaces, measurable sets and probability theory 1
1.3 Stochastic processes . 3
1.4 The stochastic integral . 5
1.5 Itô diffusions . 8

2 Stochastic optimal control 13
2.1 Introduction . 13
2.2 The system . 13
2.3 The control . 14
2.4 The evaluating function . 14
2.5 The objective . 16
2.6 The Hamilton-Jacobi-Bellman Equation 16

3 Reinforcement learning 25
3.1 Introduction . 25
3.2 Markov decision processes . 27
3.3 The RL algorithms: learning from the environment 30
3.4 Generalization of the state and action space 35
3.5 Reasons for divergence . 37
3.6 Computational complexity and efficient learning 38

4 Reinforcement learning and stochastic optimal control 41
4.1 Introduction . 41

v

Contents

4.2 Comparing the general framework 41
4.3 Formalizing the setting of RL 44
4.4 Assumptions for the HJB equation 46
4.5 Combining results from stochastic optimal control and RL . . 47

5 RL for pricing and hedging exotic options. 49
5.1 Introduction. 49
5.2 Exotic options for power markets. 50
5.3 Modeling the dynamics ♦ . 52
5.4 Defining the portfolio and the hedge 54
5.5 Learning the price of the option and the hedge 58
5.6 Numerical experiments ♦ . 62
5.7 Discussion . 64
5.8 The control problem in the QLBS setting 65

6 Concluding remarks 71

A Python code for numerical experiments. 73
A.1 Simulating Brownian motions 73
A.2 Simulating geometric Brownian motions with Monte Carlo

estimation . 74
A.3 Pricing exotic options . 75

List of notation and symbols 79

Bibliography 81

vi

List of Figures

1.1 Scenario tree for t = 3. 3
1.2 Plot of Brownian motions . 5
1.3 Plot of geometric Brownian motions. 9

3.1 Timeline of trajectory. 28
3.2 Plot of MC estimate, mean of GBM 32

5.1 List of notation for exotic options. 50
5.2 Parameter values for simulation of option pricing. 62
5.3 Plot of stochastic processes for energy options. 63
5.4 Plots of 10 paths of computed a values and payoff values. 63
5.5 Plot of 10 paths of computed Q-function. 64

vii

Introduction

The theme of the thesis

The topic of this thesis is control problems, studied in two different fields known
as stochastic optimal control and reinforcement learning (RL). Both fields study
problems of decision making in a stochastic environment over time, and both
are based on the Bellman equations. Still, they differ in a number of ways, the
main ones being:

1. The theory of stochastic optimal control is primarily studied by math-
ematicians and physicists, and the theoretical framework is therefore
mathematically rigorous. Reinforcement learning, on the other hand
lies in the intersection between informatics and statistics. It also has
great applicational value in the field of robotics, and is thus also studied
by engineers. This has lead to the RL-literature often being based on
examples of successful application rather than mathematical proofs.

2. Reinforcement learning uses algorithms that performs updates in a learning
environment.

3. Stochastic optimal control deals with continuous settings, while reinforce-
ment learning is primarily dealing with discrete settings.

The goal of the thesis is to present the setting of reinforcement learning in
a more formalized way, and to reconnect the field of reinforcement learning
with the original mathematical framework from which it originally grew. A
problem with many papers regarding RL is that they deal mostly in empirics.
They show what might work, but many fail to explain under which conditions
something must work. This makes for a field in which trial and error is a large
part of the modus operandi.

Throughout the thesis, we look at examples involving mathematical finance
and portfolio optimization. This is a field which has been studied using stochastic
analysis for many years, but it has in recent years gained the interest of machine
learning specialists looking for more data driven approaches. We will consider
some simple examples involving optimization of portfolios, but also more complex
cases of pricing financial products based on several underlying dynamics.

ix

Introduction

The work process

The work process has been as follows. Initially, we started by looking at the field
of stochastic control, and in particular the Hamilton-Jacobi-Bellman equations
(HJB equations), and their proofs. This was a completely new field for this
author, and therefore turned out to be quite time consuming. The field of
reinforcement learning was investigated next. Reinforcement learning is a wide
field, and there are numerous approaches, with even more tweaks and variations,
each assumed to be fitting to it’s own branch of problems. Navigating this
jungle of different approaches, each with their own variations of the notation,
showcased both the strengths and weaknesses of the reinforcement learning
framework. Lastly, we looked at applications within the field of finance.

There are three primary sources that has formed the basis for the underlying
theory of this thesis. The stochastic analysis and optimal control is based
on Øksendal’s approach in [Øks03]. The theory of reinforcement learning is
primarily based on Sutton’s work in [SB18], and the pricing of exotic options
leans on theory from Benth in [BBK08]. In addition, the method described in
Chapter 5 is based on a paper by Halperin [Hal17]. We have also been looking
at a number of papers, particularly on the subject of reinforcement learning.
This was necessary, since continuous state models in reinforcement learning is a
current field of study, and new result are still being produced.

Structure of the thesis

The thesis is structured as follows:

1. Chapter 1 contains the mathematical framework necessary for stochastic
optimal control, and the framework of the HJB-equations.

2. Chapter 2 presents the framework of the HJB-equations, in addition to
an example of application to finance.

3. Chapter 3 presents the field of reinforcement learning, and the algorithm
known as Q-learning.

4. In Chapter 4, we discuss similarities and differences of the two approaches
in more detail. We also discuss whether we can use the theoretical
framework from HJB to formalize the convergence in RL.

5. Chapter 5 presents a case from the intersection of reinforcement learn-
ing and mathematical finance. Here we study portfolio optimization, a
problem which has been solved by use of stochastic optimal control, but
which in recent years also has been explored through machine learning.

My contributions

Through the thesis, we will use the symbol ♦ to signal the authors own
contributions. The following list highlights the main contributions in each
chapter.

Chapter 1:

x

My contributions

• Example 1.2.5 and Example 1.4.11: Did computations and wrote code.

In addition, remarks and interpretations revolving the theorems in this chapter
are my own.

Chapter 2:

• Example 2.4.1: Showed simple example of stopping time.

• Proof of Theorem 2.6.2 and Theorem 2.6.4: Filled in missing details,
references and computations.

• Example 2.6.5: Added explanations, computations and details.

In addition, remarks and interpretations in this chapter are my own.

Chapter 3:

• Figure 3.1: Created timeline.

• Example 3.3.1: Wrote algorithm and code.

• Example 3.4.1: Created textual context to example by Sutton [SB18], and
added interpretation.

In addition to this, I have interpreted and summarized theory from multiple
sources in the rest of the sections.

Chapter 4:

This chapter is primarily my own analysis, summarizing and drawing con-
nections between the two frameworks.

Chapter 5:

• Section 5.2: The analysis of Halperin’s framework in relation to Q-learning
is by me.

• Section 5.3: The setup of the dynamics of the exotic option is by me, by
an idea from Fred Espen Benth.

• Section 5.4: Extended Halperin’s approach [Hal17] for an exotic option
type.

• Section 5.4: Added computation of the variance of the portfolio.

• Section 5.5: Did additional computations for Q∗(·), and added some
details and remarks.

• Section 5.6: Wrote all code, and did the numerical analysis.

• Section 5.8: Did all computations.

• Section 5.8: Did all computations.

In addition to this, I have interpreted and summarized theory from multiple
sources in the rest of the sections.

xi

CHAPTER 1

Preliminaries

1.1 Introduction

We will start by introducing some concepts, definitions and theory from the field
of stochastic analysis. Stochastic analysis is the study of stochastic processes,
which means processes driven in part by random noise. The concepts introduced
here will lay the foundation for the Hamilton-Jacobi-Bellman equations described
in Chapter 2. All the definitions in this section are taken from Øksendal [Øks03].

We will present the general framework of the problems studied in stochastic
analysis. These will give us a way of formalizing problems involving processes
under uncertainty. For these types of problems, some essential questions needs
to be answered:

1. What are the possible ways that the process can evolve, i.e. which states,
or values, can the process take?

2. How does the process evolve over time?

3. What information regarding the states and their history is available to us
at each time step?

The first part of this chapter will provide us with the tools to describe information
regarding these questions in a formal way.

The second part will present the random noise through the introduction of
the Brownian motion. We will also present how we can integrate over processes
regarding uncertainty, by introducing the Itô integral. Here we will present the
constraints underlying these integrals, and some tools for solving them. The
last part will describe stochastic differential equations and their solutions. This
will provide us with important tools for analyzing the stochastic processes, and
for performing optimal decisions in stochastic environments.

1.2 Spaces, measurable sets and probability theory

Modeling a stochastic system

For any problem involving stochastic processes, we will need a way of formalizing
what values, or states, the process is possibly going to take. To model the states
of the world or system we are looking at, we will let Ω denote the (possibly
infinite) set of all possible states. On this set, we define a σ-algebra:

1

1. Preliminaries

Definition 1.2.1 (σ-algebra). If Ω is a given set, then a σ-algebra F on Ω is a
family of subsets on σ with the following properties:

1. ∅ ∈ F ,

2. F ∈ F =⇒ F c ∈ F , where F c = Ω\F , and

3. A1, A2, · · · ∈ F =⇒
⋃∞
i=1Ai ∈ F .

In the context of this thesis, F ∈ F can be viewed as events, or states of the
world. In this way we can consider Ω as representing all the possible states of
the system we are considering. The smallest σ-algebra that can be constructed
from any given family can be defined as the union of all σ-algebras of the set.
More typically, however, we will start with an event(or a family of events), and
construct the σ-algebra by adding subsets until it satisfies 1.− 3. in Def. 1.1.1.
For a set U of events in Ω, we therefore denote the smallest σ-algebra HU , the
σ-algebra generated by U .

The Borel σ-algebra is the smallest σ-algebra of all open subsets of a
topological space. The elements of this set are called the Borel sets.

Example 1.2.2 (Borel sets). For the topological space R the Borel σ-algebra is
the smallest σ-algebra that contain all open intervals.

A set with a σ-algebra assigned to it, (Ω,F), is called a measurable space.
On these types of spaces we can introduce probability measures:

Definition 1.2.3 (Probability measure). A probability measure P on a measur-
able space (Ω,F) is a function P : F → [0, 1] such that

1. P (∅) = 0, P (Ω) = 1.

2. If A1, A2, · · · ∈ F and {Ai}∞i=1 are disjoint (i.e. Ai ∩ Aj = ∅ for i 6= j)
then P (

⋃∞
i=1Ai) =

∑∞
i=1 P (Ai).

Probability measures lets us assign probabilities to different sets of states.
We call (Ω,F , P) a probability space. It is called complete if F contains all
subsets G of Ω with P outer measure zero, i.e.

P ∗(G) := inf{P (F);G ⊂ F ∈ F} = 0.

In our case, complete implies that all the events with probability zero are
contained in F . We call the subsets of F the F-measurable sets.

Let X : Ω→ Rn be a function. The σ-algebra generated by X is the set of
events in Ω that is mapped to the Borel sets by X.

We want to look at dynamic systems over time, where the information that
is available to us increases over time. To model this, we introduce the concept
of a filtration:

Definition 1.2.4 (Filtration). A filtration on the probability space (Ω,F , P) is
a familyM = {Mt}t≥0 of σ-algebrasMt ∈ F such that

0 ≤ s < t =⇒ Ms ⊂Mt. (1.1)

We model the amount of information available to us at time t byMt, i.e.
the σ-algebra containing all the events that are possible at this time. We call
the subsets ofMt theMt-measurable sets.

2

1.3. Stochastic processes

u
u

u
u
u
u
u

uu
uu
uu
uu

�
�
�
�

@
@
@
@

!!
!!

b
b
b
b

!!
!!

b
b
b
b((((

((
hhhhhh

((((
((

hhhhhh

((((
((

hhhhhh

((((
((

hhhhhh

Ω = {ω1, . . . , ω8}

{ω1, ω2, ω3, ω4}

{ω5, ω6, ω7, ω8}

{ω1, ω2}

{ω3, ω4}

{ω5, ω6}

{ω7, ω8} ω8

ω7

ω6

ω5

ω4

ω3

ω2

ω1

q q q q
t = 0 t = 1 t = 2 t = 3 = T

Figure 1.1: Scenario tree for t = 3.

Example 1.2.5 (♦ Measurable set). If you own a stock, you are often interested
in whether the price of the stock will go up or down in the future. This can
be modeled using the framework described above. We look at a simplified case
in discrete time. We denote a price increase by U and a price decrease by D.
If we look at a time interval of three days we will have a probability space Ω
consisting of the events:

ω1 = UUU ,
ω2 = UUD,
ω3 = UDD,

ω4 = UDU ,
ω5 = DUU ,
ω6 = DDU ,

ω7 = DUD,
ω8 = DDD,

so that we get Ω = {ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8}.
This can also be represented by a scenario tree, (see Figure 1.1), where

we can see the branches as representation of the information in the filtration
at each time t = {0, 1, 2, 3}. Here each node can be seen as representing the
information we have about possible states at time t. At t = 0 we have not
yet seen any stock movement, and therefore there is a positive probability for
any of the 8 events. At t = 1 we have observed the first price change, and
we are therefore able to tell whether we are in the lower or top branch in the
tree. When we are at t = 3 all information is available to us, and we are in a
deterministic state of complete information. This partition generates a filtration
which contains the complete set of information we have at each time t.

1.3 Stochastic processes

We will use the concept of a stochastic process to model the change of a
(stochastic) system over time.

Definition 1.3.1 (Stochastic process). Let T be an interval on [0,∞). A stochas-
tic process is a parametrized collection of random variables

{Xt}t∈T ,

defined on the probability space (Ω,F , P) and assuming values in Rn.

3

1. Preliminaries

The parameter space T represents the time interval on which we observe
the stochastic process, and unless otherwise specified we will define T as [0,∞)
in this thesis.

One type of such process, which will play an important role in the following
chapter, is the Brownian motion:

Definition 1.3.2 (1-dimensional Brownian motion). A stochastic process {Bt}t≥0
on the probability space (Ω,F , P) is called a (standard) Brownian motion iff

1. B0 = 0 with probability 1 almost everywhere.

2. The paths (t 7→ Bt(ω)) are continuous.

3. B has independent increments, meaning thatBt1−Bt0 , Bt2−Bt1 , . . . , Btn−
Btn−1 are independent for 0 ≤ t1 < t2 · · · < tn.

4. B has normal stationary increments, i.e. that Bt − Bs has the same
distribution as Bt−s and Bt−s ∼ N(0, t− s).

This definition can be generalized for the multi-dimensional case. It can
also be shown that a standard Brownian motion has expectation 0 and variance
t. The expected value is found by using Item 1 and Item 3:

E[Bt] = [E[Bt −B0 +B0] = E[Bt −B0] + E[B0] = 0 +B0 = 0. (1.2)

By using the standard formula for the variance in combination with the result
above and 3., we get the result for the variance:

V ar(Bt) = E[B2
t]− E[Bt]2 = E[B2

t] = t, (1.3)

(where we for the last equality use that Item 3 with s = 0 implies E[B2
t] = t.)

A plot of five paths of the Brownian motion can be seen in Figure 1.2, where
the code can be found in Appendix A.1. For each time point the Brownian
motion’s increment is normally distributed with expectation equal to zero. By
summing these increments we get the path of the Brownian motion.

A Brownian motion is a type of martingale:

Definition 1.3.3 (Martingales). Let {Ft}t≥0 be a filtration on (Ω,F , P). A
stochastic process Xt : Ω −→ R is called a martingale if

Xt = E[Xs|Ft], ∀s > t. (1.4)

The term was originally used by gamblers, who used the phrase "to play the
martingale" on the strategy of always betting the double amount as your loss
in coin-toss games [Man]. If the coin process truly is a martingale, one would
assume that in the long run, the winnings and losses would even out, as a fair
coin has a 50/50 probability of landing on either side. Most gamblers, however,
greatly underestimated the amount of losses one would have to account for in
the short run.

Example 1.3.4 (Brownian motion is a martingale ♦). It can be shown that a
Brownian motion is a martingale. Since E[Bt −Bs] ∼ N(0, t− s), we have that
E[Bt] <∞ and that

4

1.4. The stochastic integral

Figure 1.2: Plot of Brownian motions.

E[Bt|Fs] = E[Bt −Bs +Bs|Fs]
= E[Bt −Bs|Fs] + E[Bs|Fs]
= Bs,

where we for the third equality use that the Brownian motion have increments
with expectation zero, and that E[Bs|Fs] = Bs.

We can generate a filtration based on the Brownian motion in a rather
intuitive way. The σ-algebra generated by the Brownian motion up to time t
will be

Ft = {σ(Bs : s ≤ t)} (1.5)

We see that {Ft}t≥0 will be increasing, so this family will be a filtration.
This filtration will give us a way of representing the information we have based
on the Brownian motion, and it implies that the Brownian motion at each time
t is Ft-measurable. Another way of saying this is that the Brownian motion is
adapted to the filtration Ft. In the discrete case, this information can also be
represented as a scenario-tree, as seen in Figure 1.1. In this case, each branch
would represent a state of the Brownian motion for some time step.

1.4 The stochastic integral

Looking at the plots of Brownian motions in Figure 1.2, it is natural to ask
whether these types of processes are integrable and differentiable. To this
end, we will now give a formal definition of the Itô integral, which for some
Itô-integrable function f (to be specified) is denoted∫ T

S

f(t, ω)dBt(ω). (1.6)

5

1. Preliminaries

It is natural to assume that this integral would be defined as the limit of
the sum of a partition with mesh approaching zero:

lim
∆t→0

{f(ti, ω)(B(ti+1)− dB(ti))}.

However, it turns out that the paths of the Brownian motion has too big
variation to define the integral without first restraining ourselves to a specific
class of functions:

Definition 1.4.1 (Class of integrable functions). Let V = V(S, T) be the class
of functions

f(t, ω) : [0,∞)× Ω→ R, (1.7)

such that

1. (t, ω)→ f(t, ω) is B × F-measurable, where B is the Borel σ-algebra on
[0,∞).

2. f(t, ω) is Ft-adapted.

3. E[
∫ T
S
f(t, ω)2dt] <∞.

It can be proved [Øks03] that there always will exist a sequence of elementary
functions that can approximate functions of this class:

Definition 1.4.2 (Elementary functions). A function φ ∈ V is called elementary
if it has the form

φ(t, ω) =
∑
j

ej(ω)1[tj ,tj+1)(t), (1.8)

where 1[tj ,tj+1)(t) is the indicator function which is 1 when t is in the interval
[tj , tj+1) and 0 otherwise, and ej is any Ftj -measurable function.

We will use the Lp-norm in order to describe the magnitude, i.e. the size, of
a process:

Definition 1.4.3 (The Lp-norm). If X : Ω → Rn is a random variable and
p ∈ [1,∞) is a constant we define the Lp-norm of X, denoted ‖X‖p, by

‖X‖p = ‖X‖Lp(P) = (
∫

Ω
|X(ω)|pdP (ω))

1
p .

If p =∞, we set

‖X‖∞ = ‖X‖L∞(P) = inf{N ∈ R : |X(ω)| ≤ N a.s.}.

We now have the framework needed to define the stochastic integral:

Definition 1.4.4 (The Itô integral). Let f ∈ V(S, T). Then the Itô integral of f
is defined by ∫ T

S

f(t, ω)dBt(ω) = lim
n→∞

∫ T

S

φn(t, ω)dBt(ω), (1.9)

6

1.4. The stochastic integral

where the limit is in the L2(P)-norm, and where {φn}∞n=1 is a sequence of
elementary functions such that

E[
∫ T

S

(f(t, ω)− φn(t, ω))2dt]→ 0 as n→∞. (1.10)

A useful property of the Itô integral is the Itô isometry:

Theorem 1.4.5 (The Itô isometry).

E[(
∫ T

S

f(t, ω)dBt(ω))2] = E[
∫ T

S

f2(t, ω)dt], (1.11)

for all f ∈ V(S, T).

Theorem 1.4.6 (Properties of the Itô integral). Let φ, θ ∈ V(0, T), α, β be
constants and 0 ≤ S < U < T . Then:

1.
∫ T
S
φ(t, ω)dBt(ω) =

∫ U
S
φ(t, ω)dBt(ω) +

∫ T
U
φ(t, ω)dBt(ω) with probability

1 almost everywhere.

2.
∫ T
S

(αφ(t, ω) +βθ)dBt(ω) = α
∫ T
S
φ(t, ω)dBt(ω) +β

∫ T
S
θdBt(ω) with prob-

ability 1 almost everywhere, α, β ∈ R.

3. E[
∫ T
S
φ(t, ω)dBt(ω)] = 0.

4.
∫ T
S
φ(t, ω)dBt(ω) is F-measurable.

One problem with Itô integrals is that they are not stable under smooth
maps:

Definition 1.4.7 (Smooth maps). For n ∈ Z+ ∪ {∞}, we let

Cn([0,∞)× R) (1.12)

be defined as the space of functions that are n times continuously differentiable
on [0,∞)×R, with continuous extensions of the partial derivative on (0,∞)×R.

A mapping by a twice continuously differentiable function of a Itô integral
is not necessarily an Itô integral. If we introduce the stochastic integral, also
called an Itô process, we can ensure this. It is defined as follows:

Definition 1.4.8 (Itô processes). A stochastic process Xt : [0,∞) × Ω −→ R is
called a (1-dimensional) Itô process if

Xt = X0 +
∫ t

0
u(s, ω)ds+

∫ t

0
v(s, ω)dBs,

where v ∈ VH and u is Ft-adapted, with E[
∫ t

0 |u(s, ω)|ds] <∞, t ≥ 0.

The Itô process is the solution to the stochastic differential equation (SDE)
defined by

dXt

dt
= u(t, ω) + v(t, ω)Bt, (1.13)

7

1. Preliminaries

where u(s, ω) and v(s, ω) is defined as in Definition 1.4.8. We will write this as
its differential form dXt = udt+ vdBt when it does not create confusion.

One of the main tools for solving such stochastic differential equations is
the Itô’s Lemma.

Theorem 1.4.9 (Itô’s lemma). Let Xt be an Itô process given by

dXt = udt+ vdBt, (1.14)

and let g ∈ C2([0,∞)×R) (i.e g twice continuously differentiable on (0,∞)×R
with continuous extensions of the partial derivative on [0,∞) × R). Then
Yt := g(t,Xt) is an Itô process with

Yt = Y0 +
∫ t

0

∂

∂t
g(s,Xs)ds+

∫ t

0

∂

∂x
g(s,Xs)dXs + 1

2

∫ t

0

∂2

∂x2 g(s,Xs)v2
sds,

(1.15)

where∫ t

0

∂

∂x
g(s,Xs)dXs =

∫ t

0

∂

∂x
g(s,Xs)usds+

∫ t

0

∂

∂x
g(s,Xs)vsdBs. (1.16)

That is, dYt = ũdt+ ṽdBt, where

ũ(s, ω) = ∂

∂t
g(s,Xs(ω)) + 1

2
∂2

∂x2 g(s,Xs(ω))v2(s, ω) + ∂

∂x
g(s,Xs(ω))u(s, ω),

(1.17)

ṽ(s, ω) = ∂

∂x
g(s,Xs(ω))v(s, ω). (1.18)

Remark 1.4.10. We note that Itô’s lemma can in some sense be seen as a
stochastic version of the chain rule, where we need to add an extra correction
term (the last part of Equation (1.15)) because of the large variation of the
Brownian motion.

Example 1.4.11 (Geometric Brownian motion ♦). In Figure 1.3 we see a plot
of the path of a geometric Brownian motion for 5 different states. This is a
stochastic process with drift, meaning that the expected value changes over
time. It is the solution to the stochastic differential equation

dX(t) = µX(t)dt+ σX(t)dB(t).

The geometric Brownian motion in the plot have µ = 0.1 and σ = 0.1. We have
also plotted the expected value as the dotted line, given by X(0) exp(µt). The
code can be found in Appendix A.2.

1.5 Itô diffusions

A stochastic process which solves a stochastic differential equation is called an
Itô diffusion. In this section, we describe some properties of such solutions, and
under which assumptions they apply.
We will first establish for which cases the solution of such a stochastic process
exists, and for which cases they are unique:

8

1.5. Itô diffusions

Figure 1.3: Plot of geometric Brownian motions with drift µ = 0.1 and volatility
σ = 0.1.

Theorem 1.5.1 (Existence and uniqueness theorem for SDE’s). Let T > 0,
and b(·, ·) : [0, T] × Rn → Rn and σ(·, ·) : [0, T] × Rn → Rn×m be measurable
functions satisfying

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|); x ∈ Rn, t ∈ [0, T], (1.19)

for some constant C, (where |σ|2) =
∑
|σij |2) and such that

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y|; x, y ∈ Rn, t ∈ [0, T], (1.20)

for some constant D. Let Z be a random variable which is independent of the
σ-algebra F (m)

∞ generated by Bs(·), s ≥ 0, and satisfying

E[|Z|2] <∞. (1.21)

Then the stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, 0 ≤ t ≤ T, (1.22)
X0 = Z (1.23)

has a unique t-continuous solution Xt(ω) with the property that Xt(ω) is adapted
to the filtration {FZt } generated by Z and Bs(·), for s < t, and

E
[∫ T

0
|Xt|2dt] <∞. (1.24)

Theorem 1.5.1 essentially says that if a stochastic differential equation
satisfies the conditions of maximum linear growth (Equation (1.19)), and
Lipschitz continuity (Equation (1.20)), then there will exist a solution, and this
solution will be unique.

The time-homogeneous case of solutions is defined as follows:

9

1. Preliminaries

Definition 1.5.2 (Itô diffusions). A (time-homogeneous) Itô diffusion is a stochas-
tic process Xt(ω) = X(t, ω) : [s,∞)×Ω→ Rn satisfying a stochastic differential
equation of the form

dXt = b(Xt)dt+ σ(Xt)dBt, t ≥ s;Xs = x, (1.25)

where Bt is an m-dimensional Brownian motion and b : Rn → R and σ : Rn →
Rn×m satisfy the conditions from Theorem 1.5.1. In this case the conditions
simplify to

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ D|x− y|, x, y ∈ Rn, (1.26)

i.e. that b(·) and σ(·) are Lipschitz continuous.

Notation 1.5.3. We will use the notation Xs,x
t , for t ≥ s, when denoting the

solution to the SDE in Equation (1.25). When Xt(ω) is evaluated on [0,∞) we
will simply write Xx

t .

We see that the functions b and σ no longer depend directly on t. This is
essential for the next theorem, which shows that the process Xt now satisfies
the Markov property:

Theorem 1.5.4 (Markov property of Itô diffusion). Let {Ft}t≥0 be the natural
filtration of the path of a Brownian motion {Bt}t≥0, and let Xt be an Itô diffu-
sion. Then

E[f(Xx
t+h)|Ft](ω) = E[f(Xy

h)]|y=Xt(ω),

for all t, h ≥ 0 and bounded Borel functions f : Rn −→ R.

The theorem shows that the Itô diffusion Xt is memoryless. It does not
depend on the entire process from its initial state up to t, but only on the value
at the time t. This property is essential for the HJB theorem which we will
present in Chapter 2.

We can generalize this further, so that the Markov property also holds for a
type of random time called a stopping time:

Definition 1.5.5 (Stopping time). Let {Nt}t≥0 be an increasing family of σ-
algebras on Ω. A function τ : Ω→ [0,∞] is called a (strict) stopping time with
respect to {Nt} if

{ω : τ(ω) ≤ t}t≥0 ∈ Nt for all t > 0. (1.27)

Thus Nt contains the history of the stopping time, and if we know Nt, we
know whether the stopping time has occurred or not. For such a stopping time,
we have that the Markov property still holds, if we also assume that f is a Borel
function on Rn.

Having found the time-homogeneous Itô diffusion, we now define an operator
associated with this diffusion:

Definition 1.5.6 (Generator of Itô diffusion). Let {Xt} be a (time-homogeneous)
Itô diffusion in Rn. The (infinitesimal) generator A of Xt is defined by

(Af)(x) = lim
t↓0

Ex[f(Xt)]− f(x)
t

, x ∈ Rn. (1.28)

10

1.5. Itô diffusions

We let DA(x) denote the set of functions f : Rn → R such that the limit
exists at x, and DA denote the set of functions for which the limit exist for all
x ∈ Rn. Having the generator on this form is not very applicable in itself, but
the next theorem will give an explicit expression for A:

Theorem 1.5.7 (Explicit form of generator). Let Xt be the Itô diffusion

dXt = b(Xt)dt+ σ(Xt)dBt. (1.29)

If f ∈ C2
0 (Rn) then f ∈ DA, and

(Af)(x) =
∑
i

bi(x) ∂f
∂xi

+ 1
2
∑
i,j

(σσT)i,j(x) ∂2f

∂xi∂xj
. (1.30)

When f is sufficiently smooth, we can use a formula to find the expected
value at a stopping time, τ :

Theorem 1.5.8 (Dynkin’s formula). Let f ∈ C2
0 (Rn). Suppose τ is a stopping

time, Ex[τ] <∞. Then

Ex[f(Xτ)] = f(x) + Ex[
∫ τ

0
Af(Xs)ds]. (1.31)

Dynkin’s formula allows us to express the expected value of a function of
stochastic processes by its generator.
The next lemma will allow us to move the limit inferior outside the integral
while maintaining a lower bound:

Theorem 1.5.9 (Fatou’s lemma). Assume that {fn}n∈N is a sequence of non-
negative, measurable functions. Then∫

ω

lim inf
n→∞

fn(ω)dµ(ω) ≤ lim inf
n→∞

∫
ω

fn(ω)dµ(ω). (1.32)

Fatou’s lemma allows us to interchange the expectation and the limit for
measurable functions. This will be important for the proof of the Hamilton-
Jacobi-Bellman equation in Section 2.6.

The definitions and theorems presented in this chapter is the basis for
stochastic optimal control theory. This method allows us to find optimal
decisions in stochastic environments, and will be the topic of the next chapter.

11

CHAPTER 2

Stochastic optimal control

2.1 Introduction

Stochastic optimal control aims at finding the optimal function, called the
control, to maximize a given value function over time. It is based on the work of
R.Bellman, who introduced the Dynamic Programming principle in the 1950’s,
see e.g. [Bel53]. It states that if a sequence of controls, or functions, are optimal,
then the sequence will still be optimal if you remove the first control. In general,
it therefore says that a subsequence starting at any time t will also be optimal.

There are two main ways of solving these types of problems. When the
controls are Markov, as described in Section 1.5, we can use the Hamilton-
Jacobi-Bellman (HJB) equation to find the optimal control. The other approach,
called the Pontyagin’s maximum principle makes fewer assumptions on the
control, but is often more computationally demanding. This thesis will focus
on the HJB-approach.

In this chapter we will describe the framework of the Hamilton-Jacobi-
Bellman equation, which relies heavily on results from Itô calculus, and formulate
the general case. We will follow Øksendals approach in [Øks03], build on his
proofs, and end the section with an application from mathematical finance.

The main result of this chapter is the Hamilton-Jacobi-Bellman equation. It
shows that for a stochastic differential equation satisfying some conditions, we
can find an optimal control for the stochastic optimization by solving a much
simpler maximization problem (if such an control exists). This is proven for a
class of functions called Markov controls. It can, however, be shown that under
some additional constraints, the Markov controls can perform just as good as
any control adapted to the filtration at time t.

There are three main components of the optimization problem; the system,
the control, and the evaluation function. We will discuss them separately, before
considering the solution to the problem in the form of the HJB-equation.

2.2 The system

Let (Ω,F , P) be a given probability space. We let the state of the system at
time t be described by an Itô-process Xt of the form

dX(t) = dX(t;u) = b(t,X(t), u(t))dt+ σ(t,X(t), u(t))dB(t), (2.1)

13

2. Stochastic optimal control

where the functions are defined as follows:

b : R× R× u→ Rn,
σ : R× R× u→ Rn×m,
u(t) ∈ U ⊂ Rk,
X(t) ∈ R.

B(t) in Equation (2.1) is an m-dimensional Brownian motion (Definition 1.3.2),
and it will represent the "noisy" part of the problem, i.e. the part that we
cannot model in a deterministic fashion.

The solution to the stochastic differential equation (2.1) will be denoted
{Xs,x

h }h≥s. This denotes the process with initial starting point x, evaluated on
the interval [s, h]. The solution can be written as

Xs,x
h = x+

∫ h

s

b(r,Xs,x
r , ur) +

∫ h

s

σ(r,Xs,x
r , ur)dB(r). (2.2)

We let the probability of X(t) being in each of the subsets of the filtration,
starting at x for t = s, be denoted by Qs,x, so that we can write

Qs,x[Xt1 ∈ F1, . . . , Xtk ∈ Fk] = P 0[Xs,x
t1 ∈ F1, . . . , X

s,x
tk
∈ Fk],

for s ≤ ti, Fi ⊂ Rn, 1 ≤ i ≤ k, and k = 1, 2, This gives us a simpler way of
describing the probability law the time-shifted process which will be introduced
later in the chapter.

2.3 The control

Next, we want to model the control. This is the part that involves the agents
ability to act on past information, and possibly influence subsequent processes.
Since we assume that the agent observes the state at time t, we need the control
to reflect the information available at this time. This implies that we need the
control to be Fmt -measurable at time t, and stochastic for t > 0. To achieve
this, we introduce

u = u(t,Xt(ω)) ∈ U (2.3)

as a parameter contained in the Borel set U for each t. This will be the action
that controls the process {Xt}t≥0. It depends on the time and state, and it
affects the process. We note that it only depends on the state space {Xt}t≥0 at
time t, and not on the starting point, or any of the preceding states. We call
this type of functions Markov controls, as the resulting stochastic process will
be a Markov process.

2.4 The evaluating function

Our ultimate goal is to optimize decisions, so we want to find the best actions
to make over a given time interval. We will evaluate the value of the state

14

2.4. The evaluating function

and action combinations through two functions. One will model the instant
reward at each time point, discounted to present value. The other will model
the reward at some terminal, and possibly stochastic, point in time. We define
two (continuous) functions for this evaluation: The function f , which is the
profit rate function, and the function g which evaluates the action at the first
exit time of the process from a certain domain G :

f : R× Rn × U → R,
g : R× Rn → R.

For a fixed domain G ∈ R× Rn, we define T̂ as the first exit time from G after
some time point s of the process {Xs,x

r }r≥s. Written more formally:

T̂ = T̂ s,x(ω) = inf{r > s; (r,Xs,x
r (ω)) /∈ G} ≤ ∞.

This makes it possible to formulate problems where we look at an optimal
control over an interval that is modeled to end when a particular event happen.
It also allows for much simpler constructions, as shown in the following example.

Example 2.4.1 (Deterministic times are stopping times ♦). If we define G :=
T × Rn, where T ∈ R, T > s is some constant, we get

T̂ = inf{r > s : (r,Xs,x
r (ω)) /∈ G}

= inf{r > s : (r,Xs,x
r (ω)) /∈ T × Rn}

= T,

where we in the second equality use that Xs,x
r (ω) will always be in Rn. We are

then left with the deterministic stopping time T .

For simplicity, we introduce

Yt = (s+ t,Xs,x
s+t), for t ≥ 0, Y0 = (s, x). (2.4)

we can then reformulate both the initial differential equation and the perfor-
mance function at time s as

dYt = dY ut = b(Yt, ut)dt+ σ(Yt, ut)dB(t), (2.5)

Ju(y) = Ey[
∫ τG

0
fut(Yt)dt+ g(YτG)χ{τG<∞}], (2.6)

y = (s, x). (2.7)

This function will be our way of evaluating the impact of our action on the rate
of profit, and the terminal value. We evaluate the process from time 0, which
can be interpreted as our "now", all the way up until the exit time through the
function f , and the value of the state at the exit time is evaluated through the
function g.

15

2. Stochastic optimal control

2.5 The objective

For each staring point, x, and each point in the interval, s, we are looking for
two things. We aim to find a strategy of controls, defined by the function u,
that represent the optimal course of action. We also need to find what "profit"
we can expect by choosing this strategy. We denote this profit by the value
function Φ(y), also called the optimal performance.

This can be formalized as stating that for each y = (s, x) ∈ G, our goal is
to find the value function Φ(y), and the optimal control u∗ = u∗(y, t, ω) ∈ A,
such that

Φ(y) := sup
u(t,ω)∈A

Ju(y) = Ju
∗
(y), (2.8)

where A ∈ U is the family of admissible controls.
Having described each of the components of our problem, we are ready to

present the solution.

2.6 The Hamilton-Jacobi-Bellman Equation

We will consider Markov controls, given by u = u(t,Xt(ω)) as described in
Section 2.3. We can then formulate the dynamics of the system as

dYt = b(Yt, u(Yt))dt+ σ(Yt, u(Yt))dB(t), (2.9)

where we have used the notation introduced at the end of Section 2.4. By
defining the operator as

(Lvφ)(y) = ∂φ

∂s
(y) +

n∑
i=1

bi(y, v) ∂φ
∂xi

+
n∑

i,j=1
ai,j(y, v) ∂2φ

∂xi∂xj
, (2.10)

where ai,j = 1
2 (σσT)ij , y = (s, x) and x = (x1, . . . , xn), we can define the

generator of the Itô diffusion as

(Aφ)(y) = (Lu(y)φ)(y).

To formulate the HJB equation we first need the notion of a regular point:

Definition 2.6.1. A point y ∈ ∂G is called regular for G (w.r.t. Xt) if

Qy[τG = 0] = 1.

Otherwise the point is called irregular.

In other words, any point on the boundary of G is called regular if the
process almost surely will leave G at that point.

The next theorem presents the conditions under which a solution to the
optimization problem exists. It also shows that given these conditions, it will
be found as the solution to a partial differential equation:

Theorem 2.6.2 (The Hamilton-Jacobi-Bellman theorem, part I). Define

Φ(y) = sup{Ju(y) : u = u(Y) is a Markov control}. (2.11)

16

2.6. The Hamilton-Jacobi-Bellman Equation

Suppose that Φ ∈ C2(G)∪C(G), the union of the twice continuously differentiable
functions with its continuously differentiable closure, satisfies

Ey[|Φ(Yα)|+
∫ α

0
|LvΦ(Yt)|dt] <∞, (2.12)

for all bounded stopping times α ≤ τG, all y ∈ G and all v ∈ U . Moreover,
suppose that an optimal Markov control u∗ exists, and that ∂G is regular for
Y u
∗

t . Then the value function Φ (the solution to our optimization problem)
satisfies

sup
v∈U
{fv(y) + (LvΦ)(y)} = 0 for all y ∈ G (2.13)

and

Φ(y) = g(y) for all y ∈ ∂G. (2.14)

The supremum in (2.13) is obtained if v = u∗(y) where u∗(y) is optimal. In
other words,

f(y, u∗(y)) + (Lu
∗(y)Φ)(y) = 0, for all y ∈ G. (2.15)

By this theorem, we have that if there exists an optimal control, we know
that it will be the function u∗ that satisfies Equation (2.13) and Equation (2.14).
Simply put the Hamilton-Jacobi-Bellman equation says that we can find the
optimal control, the control that maximize the performance function J , as
a solution to the partial differential equation f(y, u∗(y)) + (LvΦ)(y) and the
boundary condition Φ(y) = g(y).

Sketch of proof ♦
This section is based on the proof of Øksendal, see [Øks03], but has been
extended with additional explanations. There are three things that need to
be proved, mainly Equation (2.13), Equation (2.14) and Equation (2.15). To
prove Equation (2.15) we will use a theorem stating the existence to a problem
known as the combined Dirichlet-Poisson problem:

Theorem 2.6.3. Assume that τG < ∞ a.s. Qx for all x. Let φ ∈ C(∂G) be
bounded and let g ∈ C(D) satisfy

Ex[
∫ τG

0
|g(Xs)|ds] <∞ for all x ∈ G. (2.16)

Define

ω(x) = Ex[φ(XτG)] + Ex[
∫ τG

0
g(Xs)ds], x ∈ G. (2.17)

1. Then

Aω = −g in G, (2.18)

and

lim
t↑τG

ω(Xt) = φ(XτG) a.s. Qx, for all x ∈ G. (2.19)

17

2. Stochastic optimal control

2. Moreover, if there exists a solution ω1 ∈ C2(D), and a constant C such
that

|ω1(x)| < C(1 + Ex[
∫ τG

0
|g(Xs)|ds]), x ∈ G, (2.20)

and ω1 satisfies Equation (2.18) and Equation (2.19), then ω1 = ω.

It can be proven that for L uniformly elliptic in G, and g ∈ Cα(D) for some
α > 0 we have

Lω = −g in G, (2.21)

and

lim
x→y,x∈G

φ(y) for all regular y ∈ ∂G. (2.22)

This is exactly what we need to prove Equation (2.15), as we then have

(Lu
∗(y)Φ)(y) = −f(y, u∗(y)) =⇒ f(y, u∗(y)) + (Lu

∗(y)Φ)(y) = 0. (2.23)

Next we want to prove Equation (2.14). Since ∂G is regular, we know that any
process starting in this point will leave G immediately, and thus the stopping
time τG will be 0. We therefore get that

Φ(y) = Ju
∗
(y) = Ey

[∫ τG

0
fu
∗
(Yt)dt+ g(YτG)χ{τG<∞}

]
= Ey

[∫ 0

0
fu
∗
(Yt)dt+ g(Y0)χ{0<∞}

]
= Ey[g(Y0)] = Ey[g(s, x)]
= Ey[g(y)].

The last thing to prove is Equation (2.13). We set y = (s, x) ∈ G, and choose
any Markov control u. Let α < τG be a bounded stopping time. We then have
that

Ey[J(Yα)] = Ey
[
EYα

[∫ τG

0
fu(Yr)dr − g(YτG)χ{τG<∞}

]]
(2.24)

= Ey
[
Ey
[
θα(
∫ τG

0
fu(Yr)dr − g(YτG)χ{τG<∞})

]∣∣Fα], (2.25)

(2.26)

where we have used the strong Markov property from Section 1.5, and a shift
parameter defined by (θαY)(t) = Y (α+ t) "shifting" the function to start in α.
The strong Markov property then gives us that for a measurable function η we
have EYα [η] = Ey[θαη|Fα].

18

2.6. The Hamilton-Jacobi-Bellman Equation

We can further use that θα
∫ τG

0 η(Ys)ds =
∫ τG
α

η(Ys)ds, which gives us

= Ey
[
Ey
[
θα(
∫ τG

0
fu(Yr)dr − g(YτG)χ{τG<∞})

]∣∣Fα] (2.27)

= Ey
[
Ey
[
(
∫ τG

α

fu(Yr)dr − g(YτG)χ{τG<∞})
]∣∣Fα]. (2.28)

(2.29)

Since we have the expectation of a conditional expectation, we can use the
law of total expectation (E[E[X|Fs]] = E[X]). If we also use that

∫ T
a
fds =∫ T

0 fds−
∫ a

0 fds, we get

= Ey[
∫ τG

0
fu(Yr)dr − g(YτG)χ{τG<∞} −

∫ α

0
fu(Yr)dr] (2.30)

= Ey[
∫ τG

0
fu(Yr)dr − g(YτG)χ{τG<∞}]− E

y[
∫ α

0
fu(Yr)dr], (2.31)

(2.32)

which we recognize as

Ju(y)− Ey[
∫ α

0
fu(Yr)dr]. (2.33)

We have thus showed that

Ey[J(Yα)] = Ju(y)− Ey[
∫ α

0
fu(Yr)dr]. (2.34)

Rearranging this we see that

Ju(y) = Ey[
∫ α

0
fu(Yr)dr] + Ey[J(Yα)]. (2.35)

We now let W ⊂ G be of the form W = {(r, z) ∈ G : r < t1} where s < ti. Set
α = inf{t ≥ 0 : Yt 6= W}, so that α is the first exit time from W . We suppose
that an optimal control u∗(y) = u∗(r, z) exists (as is stated in the theorem) and
choose

u(r, z) =
{
v if (r, z) ∈W,
u∗(r, z) if (r, z) ∈ G\W,

(2.36)

where G\W is the set of of point that are in G but not in W . Since we have
defined α as the first exit time from W we have that

Φ(Yα) = Ju
∗
(Yα) = Ju(Yα). (2.37)

If we combine this with the expression for Ju(y) from Equation (2.35), and
remember that Φ(y) is the supremum of Ju(y), we get

Φ(y) ≥ Ju(y) = Ey[
∫ α

0
fv(Yr)dr] + Ey[J(Yα)] (2.38)

= Ey[
∫ α

0
fv(Yr)dr] + Ey[Φ(Yα)]. (2.39)

19

2. Stochastic optimal control

Since Φ ∈ C2(G) we can use Dynkin’s formula, given in Theorem 1.5.8, and get
that

Ey[Φ(Yα)] = Φ(y) + Ey[
∫ α

0
(LuΦ)(Yr)dr]. (2.40)

Note that we can use this formula since we have chosen a control u, and thus
Yt is an Itô diffusion with generator given by (Lu(y)Φ)(y).
If we use this expression in Equation (2.38) we get

Φ(y) ≥ Ey[
∫ α

0
fv(Yr)dr] + Φ(y) + Ey[

∫ α

0
(LuΦ)(Yr)dr], (2.41)

which implies that for all W = {(r, z) ∈ G : r < t1}, we have

Ey[
∫ α

0
fv(Yr) + (LuΦ)(Yr)dr] ≤ 0, (2.42)

and since the stopping time α is always positive, we have

Ey[
∫ α

0 fv(Yr) + (LuΦ)(Yr)dr]
Ey[α] ≤ 0. (2.43)

If we let t1 go towards s, i.e. towards the starting point, we get that since F v(·)
and (LvΦ)(·) are continuous at y, F v(y) + (LvΦ)(y) ≤ 0.
By combining this with Equation (2.15), we get that

sup
v∈U
{fv(y) + (LvΦ)(y)} = 0, for all y ∈ G, (2.44)

which completes the proof. �

The second part of the theorem states that if we have found a control such
that supv∈U{fv(y) + (LvΦ)(y)} = 0 for all y ∈ G, then we have found the
optimal control:

Theorem 2.6.4 (The Hamilton-Jacobi-Bellman equation, part II). Let φ be a
function in C2(G) ∩ C(G) such that. for all v ∈ U ,

fv(y) + (Lvφ)(y) ≤ 0, y ∈ G, (2.45)

with boundary values

lim
t→τG

φ(Yt) = g(YτG)χ{τG<∞}, a.s. Qy, (2.46)

and such that

{φ−(Yτ); τ stopping time, τ ≤ τG} is uniformly (2.47)
Qy-integrable for all Markov controls u and all y ∈ G. (2.48)

Then

φ(y) ≥ Ju(y) for all Markov controls u and all y ∈ G. (2.49)

20

2.6. The Hamilton-Jacobi-Bellman Equation

Moreover, if for each y ∈ G we have found u0(y) such that

fu0(y)(y) + (Lu0(y)φ)(y) = 0, (2.50)

and

{φ(Y u0
τ); τ is stopping time, τ ≤ τG} is uniformly Qy-integrable for all y ∈ G,

(2.51)

then u0 = u0(y) is a Markov control such that

φ(y) = Ju0(y).

Hence, if u0 is admissible, then u0 must be an optimal control and φ(y) = Φ(y).

Sketch of proof

Assume that φ satisfies Equation (2.45) and Equation (2.46), and let u be a
Markov control. We then define a new stopping time by

TR = min{R, τG, inf{t > 0: |Yt| ≥ R}},

for all R <∞, i.e the first exit time from either G or the R×R square. Since
by Equation (2.45) we have that (Luφ) ≤ −fu, we get by Dynkin’s formula
(Theorem 1.5.8) that

Ey[φ(YTR)] = φ(y) + Ey[
∫ TR

0
(Luφ)(Yr)dr]

≤ φ(y)− Ey[
∫ TR

0
fu(Yr)dr],

for all R ≤ ∞. This implies that

φ(y) ≥ Ey[
∫ TR

0
fu(Yr)dr + φ(YTR)],

for all R ≤ ∞. Since this applies for all R, we can preserve the inequality when
taking the limit

φ(y) ≥ lim
R→∞

Ey[
∫ TR

0
fu(Yr)dr + φ(YTR)].

Further, we can use Fatou’s Lemma (Theorem 1.5.9) since we have from
Equation (2.47) that both φ(YTR), φ(YτG) and

∫ τG
0 f(Yr)dr are uniformly Qy-

integrable, and thus measurable. We can thus interchange the expectation and
the limit:

φ(y) ≥ Ey[lim
R→∞

{
∫ TR

0
fu(Yr)dr + φ(YTR)}].

We note that when R→∞, TR → τG, and thus we get by Equation (2.46)

φ(y) ≥ Ey[lim
R→∞

{
∫ TR

0
fu(Yr)dr + φ(YTR)}]

= Ey[
∫ TR

0
fu(Yr)dr + g(Yτg)χ{τG<∞}]

= Ju(y).

21

2. Stochastic optimal control

We have thus proved Equation (2.49). To prove Equation (2.51), we just con-
sider u0 such that Equation (2.50) and Equation (2.51) holds, and by the same
computations we get equality. �

We will end the chapter by showing how the HJB-theorem can be used to
solve an optimization problem in finance.

Example 2.6.5 (HJB-equation in portfolio problem). We will look at a classic
example of portfolio selection, taken from [Øks03], where we consider an agent
who has the choice between allocating his funds. He can put them in a stock,
with price dynamics given by

dS(t)
dt

= S(t)[µ+ σB(t)],

with µ > 0 representing the average price change of the stock, σ > 0 representing
how volatile the stock is, and B(t) denoting a Brownian motion. He can also
put them in a bank account with a deterministic dynamics given by

dX(t) = ρX(t)dt,

where ρ is the interest rate. We assume there is no possibility of lending money,
so the total wealth of the agent is given as

Z(t) = S(t) +X(t).

If we define the action as the fraction of the wealth allocated in the stock,
u(t) = S(t)

S(t)+X(t) , we get that S(t) = u(t)Z(t) and X(t) = Z(t)(1− u(t)), and
we can therefore write the dynamics of the wealth as

dZ(t) = dS(t) + dX(t)
= Z(t)[(ρ(1− u(t)) + µu(t))dt+ σu(t)dB(t)].

We assume that the agent starts with x amount of wealth, such that Z(0) =
x > 0. Our agent will have to choose how much money to invest in the "risky"
stock based on his utility, U(Z(t0)), of the wealth at the end of some period,
denoted t0. We thus get the performance function

Φ(s, x) = sup
u
Ju(s, x) = Ju

∗
(s, x)

= Ju
∗
(s, x) = Es,x[U(Zu

∗

t0)].

Since we assume that the only payoff from our investment is the utility of
the value of our portfolio at the end of our time period, we get that f = 0.
For Φ to satisfy Equation (2.13) we need to find the action v = u(t, x) that
maximizes

∂Φ
∂t

+ x(ρ+ (µ− ρ)v)∂Φ
∂x

+ 1
2σ

2v2x2 ∂
2Φ
∂x2 . (2.52)

Differentiating this with respect to v and setting equal to zero gives us that

v = −
(µ− ρ)∂Φ

∂x

xσ2 ∂2Φ
x2

. (2.53)

22

2.6. The Hamilton-Jacobi-Bellman Equation

When put back into Equation (2.52), this gives us that Φ needs to satisfy

∂Φ
∂t

+ ρx
∂Φ
∂x
−

(µ− ρ)2(∂Φ
∂x)2

2σ2 ∂2Φ
x2

= 0, for t < t0, x > 0, (2.54)

Φ(t, x) = U(x), for t = t0 or x = 0, (2.55)

where the last equation comes from the boundary condition in Equation (2.14).
We choose to solve this for the utility function U(x) = xγ . We need to find a
solution of the form Φ(x, t) = f(t)xγ . By putting this form into our expression
in Equation (2.52) we get

f ′(t)xγ + x(ρ+ (µ− ρ)v)f(t)γxγ−1 + 1
2σ

2v2x2f(t)γ(γ − 1)xγ−2 (2.56)

= f ′(t)xγ + (ρ+ (µ− ρ)v)γ + 1
2σ

2v2γ(γ − 1))f(t)xγ (2.57)

= g′x(t) + λgx(t), (2.58)

for

gx(t) = f(t)xγ , (2.59)

λ = (ρ+ (µ− ρ)v)γ + 1
2σ

2v2γ(γ − 1). (2.60)

We see that Equation (2.58) is just an ordinary differential equation, which has
eλ(t0−t)xγ as its solution. We can now put this into Equation (5.78) we get

u∗(t, x) = − (µ− ρ)eλ(t0−t)γxγ−1

xσ2eλ(t0−t)γ(γ − 1)xγ−2 (2.61)

= µ− ρ
σ2(1− γ) . (2.62)

This can be put in the expression for λ, giving us

λ = sup
v∈A
{(ρ+ (µ− ρ)v)γ + 1

2σ
2v2γ(γ − 1)} = rγ + (µ− ρ)2γ

2σ2(1− γ) . (2.63)

We have now found a control that satisfies the conditions given in Theorem 2.6.2.
By Theorem 2.6.4, this shows that if u∗(t, x) ∈ (0, 1), i.e. if u∗ is an admissible
control, then it is an optimal control.

We have in this chapter presented a way of solving optimization problems
based on Itô calculus. This approach uses powerful mathematical results, and
presents conditions which guarantees an optimal solution. In the next chapter
we study a similar type of optimization problem, but from the viewpoint of an
entirely different field. Reinforcement learning is a type of machine learning
which uses iterative algorithms on data in order to find the optimal control,
and the optimal value function in settings of decision making over time. Unlike
with the HJB-theorem, reinforcement learning makes few assumptions on the
underlying process and value function. We will see, however, that this also
limits the convergence results, and makes it harder to provide clear prerequisites
needed for the method to find the optimal values and controls.

23

CHAPTER 3

Reinforcement learning

3.1 Introduction

In recent years, there has been a surge in the use of machine learning, and many
companies are now exploring how it can be used to utilize their data in new
ways. This popularity can partly be attributed to the increase in computational
power, but is also likely an effect of the availability of large amounts of data.

Machine learning and statistics share many methods, but in general their
difference lies in the targeting of different goals. While statisticians are primarily
focused on the validity of their models and making inference, machine learning
is predominantly concerned with making predictions or clustering data. Even
though statisticians sometimes do machine learning, and machine learners
sometimes do statistics, neither are a sub-field of the other. This might also
be some of the reason why many machine learning methods lacks the formal
proofs that are more common in statistics.

Reinforcement learning is a type of machine learning, and has gained some
fame for having been used to beat the best computers in the games of Go,
chess and shogi, see [Sil+18]. These are all games that involve a vast number
of states, and achieving them has been considered a giant leap towards truly
intelligent machines.

Machine learning

Machine Learning (ML) is an application of artificial intelligence that focuses on
the use of algorithms to enable machines to learn from data without explicitly
stating the way in which the data should be utilized. Instead ML focuses on
fitting data into predefined structures or patterns, and allowing the computer
to find the best way to do so. The methods can range from simple methods of
regression, where the goal is to find values of parameters in a linear equation,
to deep neural networks, where the computer can model complex systems of
equations mapping input to output.

The process of using ML can be generalized in the following way: We have
some sort of available data. We use this data to construct a learner, which
is a function that maps input data into some sort of output. When using
machine learning algorithms, we need to be able to evaluate the performance
of our model. The error estimate of our model will, for any random process,
consist of a reducible error and a irreducible error. The reducible error is
produced by our inability to correctly capture the true underlying model, while

25

3. Reinforcement learning

the irreducible error is produced by the random noise in the data. In order
to get an accurate estimate of the error in our model it is essential that we
evaluate the performance of our model on one data set, usually called the test
set, while training the model on another set, called the training set. This way
we avoid that the model tries to fit our data set, which in any non-trivial case
will be a subset of our true population, too closely. Problems arising from this
is known as overfitting.

There are four main classes of machine learning, and the differences between
them revolves around how they deal with the training set:

1. Supervised learning has a training set which constitutes of independent
variables, often denoted x, and a dependent variable, typically denoted
y. The name "supervised" comes from the fact that we can imagine that
there is a supervisor who knows the correct link between the y’s and the
x’s in our training set. This supervisor then can give us feedback each
time we try to infer a value of y from the values of x.

2. Unsupervised learning has a training set which has independent variables
x, but no dependent variable. We therefore have no "correct" solution
that we can get feedback on, and there is no supervisor telling us if we are
right or wrong in our assessment. This type of learning tries to discover
traits of the distribution, or discovering clusters, in the data.

3. Semi-supervised learning has some parts of the training set with both de-
pendent and independent variables, and some parts with only independent
variables.

4. Reinforcement learning(RL) solves a sequential decision-making problem
by performing actions in an environment. You train your model on
available data until some convergence criteria is met, and the convergence
is our measure of the performance of the model. We therefore don’t
usually separate our data in training- and test-sets, but instead consider
any data used until convergence as the training set.

The majority of machine learning algorithms, among others linear regression,
boosting and trees, are supervised learning algorithms. A method does, however,
not need to be limited to only one type of learning. Neural networks, for example,
can be used both in supervised and unsupervised learning.

Reinforcement learning differs from other fields of machine learning in several
ways. Most importantly, it focuses on problems involving sequential decision
making, which differs from the more classic cases of prediction and classification
performed by most ML algorithms. An implication of this is that RL algorithms
also have to take into account the delayed reward of the actions performed,
instead of considering the performance of the model on each training data
individually and isolated. Lastly, it allows for active exploration performed on
the data, which involves letting the learner use prior knowledge gained from
earlier iterations to choose the data considered.

We will in this thesis focus on this fourth type of machine learning. This
chapter will introduce reinforcement learning, present one of its most used algo-
rithms called the Q-learner, and discuss limitations and possible improvements
to this method.

26

3.2. Markov decision processes

3.2 Markov decision processes

The following section is based on Sutton [SB18]. In reinforcement learning, the
primary goal is to find an action that achieves some sort of pre-specified goal,
and possibly also what value this action generates. Simply put, the RL problem
can be stated as follows:

• Ω is the environment.This represents the system our agent interacts with,
and can for example be the stock market of an option or a stock. A
specific observation of this system is represented by ω.

• St(ω, at−1) ∈ S is the state of the system. The state space S can be any
value or vector representing the relevant information of the system passed
to the agent.

• at(St) ∈ A is the agents action performed in the environment.

• π(St) is the function mapping any possible state St to an action at. In
other words it is the strategy which the agent act according to.

• Rt+1(St, at) ∈ R ∈ R is the reward perceived by the agent at time t+1.
Note that this is the reward for the action taken at time t, not t+ 1.

When it does not create confusion, we will denote the state, action, policy and
reward by St, at, πt and Rt+1.

We call the learner and decision maker the agent, while everything the
agent interacts with is called the environment. They interact continually, in a
loop. At each time step, t = 0, 1, 2, . . . the agent receives some representation
of the environment’s state, St(ω) ∈ S, and uses this information to select an
action, at(St) ∈ A. At the next time step the agent receives a numerical
reward Rt+1 ∈ R ∈ R, representing a payoff from the action chosen at time t,
and information of the new state St+1. We can represent this as a trajectory
S0, a0, R1, S1, a1, R2, S2, a2, R3, . . . , and thus reduce a wide range of sequential
decision making problems to three signals passing back and forth between an
agent and an environment: the action at, the state St and the reward Rt. These
types of processes are known as Markov Decision Processes (MDP). The goal
of an MDP is to maximize the accumulated (discounted) rewards and it is
necessary for the states to have the Markov property, as described in Section 1.5.
This means that we need all relevant history to be represented in the current
state, and the actions can only depend on the current state.

Some additional remarks on the flexibility of the framework should be noted:

• The time steps do not need to be fixed and can be of arbitrary length.

• There can be an infinite time horizon, or an end time that can be either
deterministic or stochastic.

• The states can be low-level, for example the monetary value of a stock,
but also high level with a higher degree of abstraction, as long as we can
formalize it in some meaningful way as a state space S.

• The actions are also very generally defined, and can be anything we want
our agent to learn.

27

3. Reinforcement learning

Figure 3.1: Timeline of trajectory.

The downside of this flexibility is that the choices of how we represent this
framework, in essence how we choose A,S, and R, will greatly influence our
solution. These choices are subject to personal beliefs and a priori knowledge.

The Bellman equations

The goal of an MDP is to maximize the accumulated (discounted) rewards,
which is expressed through a value function, v(s). This function assigns a value
to each state encountered. We are therefore looking for an optimal policy π,
that is a set of actions, that maximize this value function. But since we are
considering not only immediate rewards, but also future rewards, we need a
formula that connects the value of some state at time t with the value of the
following states. The Bellman equation does exactly this, and can be stated as
follows [SB18]:

vπ(s) = E[
∞∑
k=0

γkRt+kS|St = s] (3.1)

=
∑
a∈A

π(a|s)
∑
s′∈S

∑
r∈R

p(s′, r|s, a)
(
r + γvπ(s′)

)
, (3.2)

where p(s′, r|s, a) is the conditional probability of getting to state s′ with a
reward of r by using action a in state s, and v(s′) is the value of the state s′.

In many applications, the choice of action given a state is deterministic, and
π(a|s) will therefore be 1 for a single a ∈ A, and 0 for all others. Equation (3.1)
can then be seen as the sum of instant and (discounted) future rewards of going
from state s to s′, weighted by the probability of this transition actually taking
place.

Since the action a is the only component we are able to control, the optimal
value function will satisfy the Bellman optimality equations:

v∗(s) = max
a

∑
s′∈S

∑
r∈R

p(s′, r|s, a)
(
r + γv∗(s′)

)
, (3.3)

π∗(x) = arg max
a

v(s), (3.4)

where v∗(·) denotes the optimal value function. These equations are used in
the mathematical optimization method dynamic programming, and are also the
foundation for the theory discussed in Chapter 2.

28

3.2. Markov decision processes

The key point of Equation (3.3) is that it gives us a relation between the
value function for state s, and the value function for the next state s′. Thus if we
know the optimal value function for some time point t, we can find the optimal
value for the immediately preceding state. This also gives us the optimal action,
as it will be precisely the at that maximize this value function. As we will see,
recursive relationships like this is a recurring theme in reinforcement learning,
and the Bellman equation is the foundation for almost all learning algorithms
used.

In the two following sections, we will discuss the policy π and the value
function v from Equation (3.1) in greater detail.

The policy

The function that connects each possible state of the environment to an action
is called a policy. This can be random, in which case we write π(a|s) as the
probability of performing action a, given state s. In all the settings in this
chapter, however, the function mapping s to a will be deterministic, so we will
write

π(St) = at. (3.5)

When we are in a setting where the actions performed on the environment will
affect the consecutive states, the policy chosen can have a large effect on which
types of data, that is which states, the learner is exposed to. We therefore need
to make sure that a policy both seeks to act in an optimal way, but also that
it tries to explore and gain knowledge of the state space. In this perspective
we can differentiate between a greedy policy, which will always seek to take the
action that maximise the reward, while a less greedy policy will allow for more
exploration. The greedy policy is defined as

π∗(St) = arg max
a

V (St), (3.6)

while a less greedy, and more exploring policy will choose Equation (3.6) most
of the time, but also perform random actions in order to explore the state space.

One of the problems with greedy strategies is that if we are unlucky with
our first data points, a trajectory of less optimal actions might be chosen, which
can lead to the better actions being starved of data. We are essentially biased
towards the data we already know something about, even though there might
be other, and better strategies to be tried. One way of rectifying this without
having to choose a less greedy strategy is to equip the actions with a strongly
optimistic prior belief, so that we will need more data to discard the action.
This way we can make the risk for eliminating an optimal action arbitrarily
small [KLM96]. We will explain how this can be done in Section 3.3.

A couple of things should be noted here. The policy defining the action
at is only dependent on St. The implication of this is that the policy has the
Markov property, meaning that it is independent of the state (and the action)
at times st−i for all i. We should also note that the optimum value of an action
is less meaningful when seen outside the context of the policy. Since we assume
that the value of a state is dependent on both the initial action, and the policy
performed on the remaining states, whether an action is optimal or not will in
most problems depend on the actions performed on future (but not past) states.

29

3. Reinforcement learning

The value function

How well the action performs is evaluated by a value function, which we defined
as a recursive relation in Equation (3.1). The value function takes into account
both the immediate reward Rt+1 and the long term reward of the action, which
we denote by Gt+1. The Rt ∈ R ⊆ R, is a problem specific value.

By defining Gt as the instant reward plus the sum of discounted rewards,
we can write

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . (3.7)
= Rt+1 + γ(Rt+2 + γ2Rt+3 + . . .) (3.8)
= Rt+1 + γGt+1 (3.9)

We can then write the value function as

Vt(s) = Eπ[Gt|St = s], (3.10)

where the expectation is dependent on the policy. This follows from the fact
that the rewards in Gt is dependent on what actions are taken in the future, in
addition to also being dependent on the stochastic nature of the states.

The value function assigns a value to a state, given that a certain policy
is followed in the future. It will be our way of quantifying the performance
of our policy, and the goal of reinforcement learning is to find the policy
which maximize this value function. To be able to formulate a problem as a
reinforcement learning problem we therefore need to find expressions for the
immediate and long term reward, and an algorithm that tells us how the agent
can learn by observing the environment and the payoff from the value function.

The computation of the reward is considered external to the agent, as it is
defined by the problem, and thus out of the agents control. Note that this has
nothing to do with the amount of information the agent has of the state and
the reward function. The agent can have complete information on both, but
will still not have complete control over them.

3.3 The RL algorithms: learning from the environment

There are typically two ways in which we can find the optimal policy. Both is
performed by first initializing arbitrary values of the value function for each
value s ∈ S, and for policy iteration also π(s) ∈ A.

1. Policy iteration performs optimization based directly on the policy. It is
performed by alternating between an evaluation step and an improvement
step. In the evaluation step, we use the Bellman equations to update the
value function for all s ∈ S:

Vk+1 = Eπ[Rt+1 + γVk(St+1)|St = s], (3.11)

where k = 1, 2, . . . , is the index for the iterations. This update is performed
until the change in update is sufficiently small, that is when

|V (s)− Vnew(s)| < ε, (3.12)

30

3.3. The RL algorithms: learning from the environment

for some error bound ε and all s ∈ S. In the improvement step, we check
if the policy is actually maximizing the Bellman equations used in step
one. If so, the optimal policy is reached, if not, we go back to step one,
now using the actions that did optimize the value functions.

2. Value iteration performs optimization indirectly by maximizing the value
function, since the policy that maximizes this is the optimal set of actions.
It updates the value function, for each s ∈ S, by

Vk+1 = max
a

E[Rt+1 + γVk(St+1)|St = s,At = a], (3.13)

and does so until Equation (3.12) is satisfied.

In the first case we update the policy function for each iteration (through
the improvement step), and the update of the value function is used as a way of
evaluating the policy. In the second case we update the value function directly.

If we want to utilize prior beliefs, as discussed in Section 3.2, we could
choose non-arbitrary initial values of V (s) and π(s). We would then instead
be using values representing our prior beliefs, either for all s ∈ S, or for some
subset of the state space.[KLM96]. These prior beliefs could for example be
represented by giving high values to states that are believed to be "good" in
some sense.

When assessing the performance of our model we need to quantify exactly
what we consider a good performance. Optimally, we would want an algorithm
that quickly converges to the correct optimal strategy and value function. In
reality, however, the need for efficiency is often at odds with the need to find the
correct optimal value. Additionally, the optimal value is often either impossible
to reach, or computationally unfeasible, and we therefore are more likely to try
to converge fast to a "near optimal" value. In this case we have to specify what
we define as near optimal, essentially choosing ε.[KLM96] This will be discussed
more in Section 3.4 and Section 3.6.

A well explored alternative to reinforcement learning is Monte Carlo sim-
ulation. These methods have clear convergence proofs, and are therefore
incorporated into many RL methods. We will therefore present the general
framework of this approach next, before presenting how reinforcement learning
algorithms extend on this method.

Monte Carlo simulation

Monte Carlo (MC) methods involves simulating by use of random numbers
in order to create a sample set, or to evaluate some mathematical expression.
Given a distribution, we can generate samples of any function of this distribution.
We can then use averaging to infer properties of this function. The following
example show one use of MC estimation.

Example 3.3.1 (MC simulations of GBM’s (cont. from Example 1.4.11) ♦).
We can use Monte Carlo simulations in order to compute estimates of the
properties of a geometric Brownian motion. The approach is written in pseudo-
code below, and the full code is found in Appendix A.1.

31

3. Reinforcement learning

Figure 3.2: Plot of MC estimate of mean of geometric Brownian motion. Shown
for 10, 50 and 1000 simulations. Numerical solution is also displayed.

Algorithm 1: Monte Carlo computation of GBM mean
Let Nmc be the number of MC simulations, n be the number of time
steps in a (discrete) Brownian motion, B(t) is Brownian motion, and
G(t) is geometric brownian motion.;

for Nmc = 1, 2, . . . ,M do
B(0) = 0 ;
G(0) = initial condition;
Generate n Brownian increments from distribution N(0, t);
for t = 1, 2, . . . , n do

ε ∼ N(0, t) ;
B(t) = B(t− 1) + ε;
G(t) = G(0) exp[(µ− σ2

2)t+ σB(t)];
end
Compute the mean for each time point t as;

E[G(t)] =
∑M

0
G(t)

M ;
end

By using the code in Appendix A.2 for 1000 simulations, we get the estimate
of the mean as portrayed in the plot in Figure 3.2. Here we see the estimates
for the mean of a GBM for 10, 50 and 1000 simulations. As we see, a higher
number of simulations cause the graph to closer approximate the graph of the
true analytic solution 1.

Just like with exploration of the state space, MC simulation and estimation
might also suffer from too large, or infinite, state spaces. The random number

1Note that a higher volatility, that is a higher σ leads to more variation in the paths, and
thus a larger number of simulation needed for a good approximation. The paths in the plot
has σ = 0.2.

32

3.3. The RL algorithms: learning from the environment

generator used for the simulation may not be able to generate all points within
a reasonable time, or at all.

The MC estimate will have sampling error, where some of the error will be
irreducible error stemming from the variance of the data. Some of the error,
however, will be variance that can be reduced by increasing the number of MC
samples. Choosing the right size for the sample set is therefore essential for the
MC estimate to be of value. Methods exist for estimating a confidence interval
for the estimator:

(θ̂ − I1, θ̂ + I2). (3.14)

The sample size can then be chosen such that the length of the confidence
interval is shorter than some max value. When using MC simulations, the
sample standard deviation (SD) is often reported alongside the results, as the
order of the SD will give an upper bound on the precision of the estimate
[Gen03].

Temporal difference: Where Monte Carlo meets dynamic
programming

We will be using methods from a framework of reinforcement learning called
temporal difference (TD). Temporal difference methods contain elements from
two well explored methods in optimization, Monte Carlo (MC) estimation
(Section 3.3) and dynamic programming (DP) (Section 3.2). Just like with Monte
Carlo methods, it learns by directly observing the environment without needing
a model of the underlying dynamics. And just like in dynamic programming, it
uses iteratively updated learned estimates, i.e. it uses bootstrapping [SB18].

Both MC and DP uses experience to solve prediction problems, but they
differ in what their target is. In the simplest of cases, the Monte Carlo method
will update the value function2 by

V (St)→ (1− α)V (St) + αGt, (3.15)

where Gt is the discounted future reward, and α is a step size parameter, while
the TD method will update V by

V (St)→ (1− α)V (St) + α[Rt+1 + γV (St+1)], (3.16)

or, equivalently, by

V (St)→ V (St) + α[Rt+1 + γV (St+1)− V (St)]. (3.17)

The method above is called TD(0) or one-step TD, and is a special case of
the more general TD(λ) (for more on this method, see [SB18]). We call
Rt+1 + γV (St+1) the TD target. Temporal difference methods augment the
existing estimate of the value function by a learning rate times the difference
between the old estimate and the TD target. We see that TD bases its update
in part on an existing estimate, i.e. it is a bootstrapping method. We have that

V (s) = Eπ[Gt|St = s] (3.18)
= Eπ[Rt+1 + γGt+1|St = s] (3.19)
= Eπ[Rt+1 + γV (St+1)|St = s]. (3.20)

2note that V is still a function of the policy π.

33

3. Reinforcement learning

We can say that MC methods uses an estimate of Equation (3.18) as target,
while dynamic programming uses an estimate of Equation (3.20). They are
however not estimates for the same reasons. While in the MC case it is an
estimate because we do not know the true expected value and therefore have
to use a sample return, in the DP case we assume complete knowledge of the
model. In that case it is instead the fact that we don’t know V (St+1) that
creates the need for estimation, and forces us to use an estimate V (̂St+1). The
temporal difference method inherits both these traits. We use an estimate both
because we use sampling, and because we don’t know V [SB18].

When we are in a setting of not knowing the true underlying model of
our data the advantages of TD methods over dynamic programming is clear.
We can simply take our data as given, and do not need any knowledge of the
transitional probabilities. We are simply observing samples from some unknown
distribution, without making any assumption on what this distribution is.

As for Monte Carlo methods, the essential difference is that while MC
methods must wait until the end of some trajectory to update V , TD methods
can update it at time t+ 1. The Monte Carlo method needs to wait until we
have reached the end of the time period in our simulation, as it computes the
expected value. Temporal difference algorithms, on the other hand, are doing
bootstrapping, and can therefore use information as it is gathered to continually
update its estimate. This can potentially speed up learning.

An inherent weakness to bootstrapping methods is the dependence on the
initial estimate. The value function is being updated by using both some new
data and the old estimate. If there are not enough data points this might lead
to divergence, i.e. our learning algorithm might not converge. We do however
know that for enough data, some TD algorithms are proved to converge. The
Q-learner is one of these.

The Q-function

Q-learning is an algorithm which is used for choosing an optimal action by
finding the optimal value of state and action trajectories.

The Q-function, also known as the action-value function, is defined by the
following update-rule

Q(St, at) = (1− α)Q(St, at) + α[Rt+1 + γmax
a
Q(St+1, a)], (3.21)

where α is a learning-rate parameter and γ is the discounting factor. Q(St, at)
represents the value of taking the action at while being in state St. We can
therefore interpret Equation (3.21) as updating the Q-function by a weighted
sum of the old estimate and an estimate using the sample of Rt+1 (and the
estimate on future optimal value).

The following algorithm, taken from Sutton [SB18], describes the complete
set-up:

34

3.4. Generalization of the state and action space

Algorithm 2: Q-learner algorithm.
Initialize Q(s, a) arbitrarily for all s ∈ S, a ∈ A ;
for s ∈ Si, where Si is some trajectory, do

for t = 1, 2, . . . , n do
Choose action a from St using policy derived from the Q-function;
Take action a, observe R and St+1;
Q(St, at)→ (1− α)Q(St, at) + α[Rt+1 + γmax

a
Q(St+1, a)];

end
until the terminal state is reached.

end

The Q-learner is model-free, which means that we are not making any as-
sumptions on the underlying dynamics of the system. This makes the algorithm
applicable to a large number of problems.

It is also an off-policy method. This means that the policy which is learned
is not dependent on the policy used while learning. Specifically, it means that
the learner will gain knowledge of the environment with a policy b, and use this
to find the optimal value of the Q-function. It will however, not be learning this
policy. Instead, it will learn a policy, π∗, which is the policy that maximizes
the Q-function. In Section 5.2 we use the greedy Q-function to find a solution
of a portfolio optimization problem.

Q-learning is one of the most used RL algorithms, but when applied to large
or continuous state spaces it has some non-negligible short-comings. We will
discuss these problems in more detail in Section 3.4 and Section 3.5.

3.4 Generalization of the state and action space

In a lot of settings, we are faced with an infinite number of actions, and possibly
also an infinite number of states. Even in settings where there is a large, but
finite number of actions or states the computational complexity will likely make
it impossible to learn the model or the optimal policy. To deal with this we will
need to generalize the state and action space. This can often be done with the
use of a suitable basis or function approximation, under the assumption that
similar actions on similar states will generate similar outcomes. In this case, the
choice of weights is a supervised learning problem, and in general all methods
used for supervised learning can be used for the function approximation [SB18].
Some are however more general, and in recent years, deep Q-learning have
gained a lot of popularity. This is an extension of the traditional algorithms
used in Q-learning, and the only correction is that our generalization of large
state and action spaces are done by using neural networks (for more on this,
see [Mni+15]).

The choice of generalization can be essential for the convergence of the
learning algorithm, but there is no universal answer to what the best choice of
method is. Choosing this often requires a great deal of insight to the problem,
and often some trial and error. Linear function approximation has been the
most used approach, mainly because of the simplicity of the approach, the fact
that it generate quadratic errors, and that it has been shown to have stronger
convergence properties in many cases.[KOT11] It also makes it easier to use
least squares optimization, as seen in Section 5.2.

35

3. Reinforcement learning

In general, function approximation poses problems for all off-policy methods.
Unlike with on-policy methods, where the extension to a generalized state or
action space is more direct, these methods require special care. The problem is
connected with the distinction between a training policy used for exploration,
and a target policy which we are trying to optimize. This potentially allows
for artificially high values given to actions because of the anticipation of a
future reward. While in the online setting these anticipations needs to be
confirmed, this is not the case for the off-policy setting. This problem is still
being studied, and even though some methods have shown promising results,
none have managed to extend the proof of convergence in Q-learning to the
generalized setting [SB18].

Example 3.4.1 (Divergence of Q-learning ♦). As an example of the problems
of off-policy learning, we might construct a simple example. This is based on
an divergence-example from Sutton [SB18], but with an added context.

Let us assume an agent who is considering buying a risky stock, S2, with
funds from another stock, S1, which she owns. She is under the assumption
that this stock is twice as valuable as the stock she owns, so we set up the
assumed parameterized values as

Q(S1) = ω (3.22)
Q(S2) = 2ω. (3.23)

As it turns out, both stocks are value-less, and gives a return of 0 for each
t. This is however, still possible to represent exactly by our parameterized
Q-functions. The corresponding Q-function will be

Q(St, at)→ Q(St, at) + α[Rt+1 + γmax
a
Q(St+1, a)−Q(St, at)]. (3.24)

We assume that at has no influence on the Q-function at all, and that we are
simply trying to discover what value change we will get by going from owning
stock 1 to stock 2. If our initial assumption is that ω = 1, then for t = 1, 2, i.e.
only two time periods, we get that the first iteration of Q-update is

ωnew = ω + α[Rt+1 + γ2ω, a)− ω] (3.25)
= ω + α[0 + γ2ω − ω] (3.26)
= (1− α)ω + αγ2ω (3.27)
= (1− α) + 2αγ, (3.28)

which is greater than one for (2γ − 1)α ≥ 0. For this case, the value of ω will
in fact increase as long as the initial value is greater than 1. If we where to
encounter this state multiple times, this effect would only get larger, and the
weight would go towards infinity.

The key to this example is to understand the effect of assuming a different
policy behaviour from the one performed while learning the Q-function. Even in
the case where the policy does not affect the Q-function it can lead to divergence.
The reason for this is that we assume that the learner is doing sub-optimal
decisions when learning the Q-value. In this example, the owner of the stock
assumes that he should not take into account the future disappointing return
of the stock. Instead he assumes that this bad return is stemming from his

36

3.5. Reasons for divergence

exploratory policy not being optimal, not the fact that the stock is bad (which
it is). Thus he will not update the weights of this bad state, even when future
experience will show him the true return of the stock.

While this might seem like a very simple example, and it does not truly
show that the weights are not updated at a later point, it captures the essential
problem of off-policy learning. More complex examples with complete MDP’s
exist, see for example Sutton [SB18].

Choosing the class of function approximators

When using function approximators in RL algorithms, we are no longer trying to
find the optimal value function, or Q-function. We are instead looking for some
Q̃∗ ∈ F , where F is the class of function approximators considered. This might
be parameterized functions, for example linear functions, or non-parameterized
functions such as neural networks. Given such a class of functions, we want
to find the Q̂∗ that approximates Q best. We therefore need a notion of the
distance between Q and Q̂. While the Euclidean norm might be fitting for
some cases, often we are more concerned with some states than others. We
would likely be more interested in minimizing the error for a state with large
probability of being encountered, than the error of unlikely states. Sutton
[SB18] therefore proposes to use a weighted distance measure, defined by

||Q||2µ =
∑
s∈S

µ(s)Q(s, a)2. (3.29)

The weights µ(s) represents how much we "care" about each state instance s,
and can be set using for example prior knowledge of the problem.

We can then write the mean squared action-value error, AV E, given by

AV E(w) =
∑
s∈S

µ(s)[Qπ(s, a)− Q̂(s, a),w)]2 (3.30)

as

V E(w) = ||Qw −Qπ||2µ. (3.31)

This error will never converge to zero unless the function class chosen for the
function approximation perfectly captures the true Q-values. We can therefore
not use it as a formal definition of convergence. It does, however, give us a
way of evaluating how well the class of functions approximates the Q-function.
We are then faced with balancing the minimization of this error against the
size of the class of functions. Choosing a too large class might make learning
the approximated values computationally unfeasible. It might also lead to
overfitting, as described in Section 3.1.

3.5 Reasons for divergence

Although proofs and guarantees of convergence are sparse in the field of re-
inforcement learning, we do know something about what causes the lack of
convergence.

As described by Sutton [SB18], there are three components that, when
combined, cause large problems for convergence. He calls the combination of
these the deadly triad:

37

3. Reinforcement learning

1. Off-policy algorithms use a different policy for learning than what it is
trying to learn. This means that the distribution of the samples will most
likely be different than the distribution of the actual on-policy distribution.
Specifically, if the true transitional probabilities are represented by P , but
our learner is only exposed to the transitional probabilities D, then this
might lead to problems.

2. Using bootstrapping methods involve sampling from an existing estimate.
Such methods can be vulnerable to bad initial estimates.

3. Function approximation leads to an incorrect representation of the true
value or Q-function.

These elements are all present in Q-learning under continuous environments,
and it is for this reasons that convergence fails.

Existing convergence proofs

As mentioned earlier, it has been proved that the Q-learning algorithm converge
to the optimal value function, given that it is exposed to enough data (see
[WD92] for complete proof). When generalization is introduced, of the form
described in Item 3 in Section 3.5, we no longer have such a guarantee [SB18].

The convergence proofs that exist on Q-learning (without function approxi-
mation), and on temporal difference in general are based on showing that the
learning-operator is a contraction (see for example [SB18], [MMR08] or [TV97]).
These proofs provide some interesting insight into the problems with showing
convergence of the Q-function. The proof of Q-function convergence assumes
that all states are visited an infinite amount of times. In large state spaces,
however, we might not even visit a state at all, and many will only be visited
once. In the case of the continuous setting we are even worse off, as no state
will be visited more than once. There exist methods to deal with this problem
but none give the same assurance of convergence as the case of non-continuous
Q-learning.

Another proof of interest is the proof of convergence of the TD(λ)-algorithm
[TV97]. This method shares many similarities with the Q-function. While it is
proved that this algorithm converges when using linear function approximators,
this only applies for an on-policy setting. Further, a counter-example is provided,
showing that an off-policy method will fail, keeping all other assumptions
required for the proof intact. The literature seems to imply that if a convergence
proof is to be gained, it will likely not happen without ensuring that the behavior
policy and learned policy is closely related [TV97].

3.6 Computational complexity and efficient learning

When we are faced with large state or action spaces, the use of function
approximators on these spaces can often massively improve the computational
complexity and improve convergence speed. There are however also differences
in the computational speed of different methods.

In general, value iteration is much faster per iteration, but policy iteration
takes fewer iterations. The computational complexity of value iteration is
O(|A||S|2) steps per iteration, while for policy iterations it is O(|A||S|2 +

38

3.6. Computational complexity and efficient learning

|S|3).[KLM96] The "expensive" part of policy iteration is solving for the exact
value of Vπ. The algorithm can therefore be sped up by using an alternative
version that fix the policy over successive iterations and instead do value iteration
in these steps. There are also several numerical-analysis techniques that can
speed up the processes both for value and policy iterations, like multigrid
methods and state aggregation [KLM96].

Another way of making the learning more efficient is to utilize prior knowl-
edge to make for "smarter" exploration of the state space, as described briefly
in Section 3.3.

When all the data is already present, for example when we are only looking
at historical data, we can utilize what is known as batch updating. Batch
updating means that we only update our Q-function after processing a batch
of data, instead of updating it after each new data point, i.e. after each new
observation of our environment. This will also speed up the learning.[LGR12]

In this chapter, we have introduced reinforcement learning, and highlighted
some of its strengths and weaknesses. We have primarily focused on a type
of RL algorithm called Q-learning, and shown under which circumstances the
algorithm might fail to converge. We have chosen to focus on the Q-learner
because it is one of the most used algorithms from the RL framework. It
also has some strong convergence properties for the finite-state case. While
this convergence no longer is guaranteed for the case of continuous underlying
dynamics, this makes it an interesting focus for comparison with the HJB-
equations discussed in Chapter 2. This comparison will be the topic of the next
chapter. There, we will discuss the connections between the HJB-equations and
RL. We will discuss similarities and differences between the two frameworks,
and try to formalize prerequisites for the convergence of the RL algorithms,
specifically the Q-learner.

39

CHAPTER 4

Reinforcement learning and
stochastic optimal control

4.1 Introduction

The two previous chapters have shown two different approaches to optimizing
over action- and value spaces. Both are based on the Bellman equation. The
theory of stochastic optimal control (SOC) extends the approach to a continuous
state and action setting through Itô calculus and the Hamilton-Jacobi-Bellman
equation. In the reinforcement learning setting however, the applicability for
the continuous case is more indirect, coming from a generalization of the state
and action space. This also means that in addition to the approximality caused
by the randomness of the paths, we will also get an error from our inability
to represent the state- and action space accurately. While there are many
examples of these approximations working well, there are few formal proofs,
and in practice the use of these algorithms often involves a certain degree of
trial and error.

This chapter will look at the differences and similarities between the two
frameworks, and try to formalize what the differences might mean for the
convergence of RL algorithms, specifically the Q-learner used in combination
with function approximation. We will look at some assumptions needed for
convergence of the approximated Q-function, and study whether any of the
assumptions posed by the HJB-equation might help convergence in the Q-learner
case.

4.2 Comparing the general framework

We will start by highlighting the common features of stochastic optimal control
and reinforcement learning before turning to their differences. In both settings
we are looking for an optimal trajectory, or a path. In addition to some
deterministic dynamics, this path will be determined by three factors:

1. The starting state of the system.

2. The random noise.

3. The actions which are performed on the system.

41

4. Reinforcement learning and stochastic optimal control

Interpretation: Parameter: Restrictions:

State of the system

to be controlled.

SOC Yt Itô diffusion.

RL St Markov property.

Actions performed

in the system.

SOC u Markov property, Ft −measurable.

RL a Markov property, Ft −measurable.

Short term reward.
SOC g(YτG) continuous.

RL Rt

Long term reward.
SOC

∫ τG
0 fut(Yt)dt continuous.

RL Gt

Value function.
SOC Ju(y) Ey[|Φ(Yα)|+

∫ α
0 |L

vΦ(Yt)|dt] <∞

RL Vt(s) = Eπ[Gt|St = s]

Table 4.1: Comparison of SOC and ML.

The first factor is known, but in most cases not controllable, the second is
neither controllable nor known apart from some characteristics, and the last one
is controllable, but might be a function of the partially unknown state space.
The question posed in both stochastic optimal control and in reinforcement
learning is how we can use the controllable action, which we denoted u in SOC
and a in RL, to optimize the system. To optimize the system is just another
way of saying that we want to find the optimal path of the value function.

In this chapter, we will generally use the term control action when we are
simultaneously talking about the control u and the action a.

An important difference between the two approaches lies in the method they
use. In stochastic optimal control we can use theory from differential equations
to find the control that optimizes the value function. This is based on first using
data or prior knowledge to find an expression for the dynamics of the system.
In reinforcement learning, however, we are always performing our optimization
by use of iteration. We are making no assumptions on the underlying model,
but are instead discovering the dynamics through iteratively updating some
value function or policy.

In Table 4.1 we have listed the main components of the two frameworks.
We will discuss the components separately in the following sections.

The state

We will begin by addressing the first component in the table, the state of the
system. In general, the states are less rigorously specified in the RL setting than
within SOC. They are assumed to be some trajectory, or path, either discrete
or continuous. The only assumption that needs to be satisfied is that the states
have the Markov property.

In the SOC case, we assume for Yt to be an Itô diffusion, i.e. a solution to

42

4.2. Comparing the general framework

the system dynamics

dX(t) = dX(t;u) = b(t,X(t), u(t))dt+ σ(t,X(t), u(t))dB(t), (4.1)

as described in Equation (2.1). The restrictions on b(·) and σ(·) ensures the
existence of a solution Xt. This diffusion also has the Markov property. We
note that this is not the same as assuming that the controls are Markov, which
is a stronger restriction than just the states being Markov.

The control action

In both the RL and optimal control framework, the control action is assumed to
have the Markov property (see Section 1.5). That is, in both cases we demand
that the control action taken at time t is only based on information from state
St or Yt. When using the HJB-equations, we assume that the control is Ft-
measurable. This is usually not specified in the RL framework, but is assumed
because of the way the agent is acquiring knowledge of the environment. When
we use algorithms where all data is processed simultaneously, this assumption
still needs to hold. We also note that in the stochastic optimal control setting,
we know the relation between the control action and the state space, while in
the RL case, this relation needs to be discovered.

The short and long term reward

The short and long term rewards described in Table 4.1 are defined somewhat
differently in the two frameworks. Stochastic optimal control allows for a
specific reward signal that applies for the final stage of the trajectory, that is
the function g(·). This function does not need to have any connection to the
function f(·), that describes how we evaluate the reward over time. In the case
of the RL-scheme. we have only one way of expressing the reward, through the
reward signal R.

In the general setting of RL, we put a great deal of importance on the initial
reward of our action. This is because it is the only certain information we have
at the next step, telling us whether we are on a good path to our goal or not.
This can for example be seen in the update rule for the Q-function,

Q(St, at) = (1− α)Q(St, at) + α[Rt+1 + γmax
a
Q(St+1, a)], (4.2)

where we take the sampling information gathered by the reward signal, Rt, and
use it as part of the update. Future rewards do of course also matter, but we
can separate the initial reaction from our action because we are not considering
expected values, but how the value function is actually responding to our choice
of action. This is important in a setting of sequential decision making because
the instant reward is the only riskless reward we can consider. All other rewards
are hypothetical, and may not actually be realized.

The value function

We will end by discussing the value function for the two approaches, as shown
in Table 4.1. This function will evaluate the connection between the state and

43

4. Reinforcement learning and stochastic optimal control

action control, and the short and long term reward. As discussed in Section 2.4,
the value function in stochastic optimal control is expressed as

Ju(y) = Ey[
∫ τG

0
fut(Yt)dt+ g(YτGχ{τG<∞})], (4.3)

where we note that both f and g can be 0. In RL it is expressed as

Vt(s) = Eπ[Gt|St = s] = Eπ[Rt+1 + γGt+1|St = s], (4.4)

where R is the instant reward from the last action, and G is the following
discounted rewards.

The RL framework value function, Equation (4.4), is based on a simple
observation: Any reward at a given time, is only a function of the current state,
but an action might affect which states, and thus which rewards are gained
in the future. Thus we get that an action might affect all future rewards, but
these rewards are still only a function of the current states, and are as such
Markov rewards.

In the stochastic optimal control value function Equation (4.3), we are
looking at the long term reward from now until an end point, τG, and consider
separately the reward gained at this ‘exit time‘. In the RL value function
Equation (4.4), we are considering the instant reward, given by an action, and
a future (uncertain) reward that is given as all future rewards. That is, for any
action, we can look at what that action gives us immediately, and what it gives
us in the future.

4.3 Formalizing the setting of RL

As shown in the previous section and Table 4.1, the general framework of
reinforcement learning puts few assumptions on the components, such as the
state-action space, or the value function. There are however some things that
need to be satisfied in order to at least theoretically be able to reach an optimal
value.

For any reinforcement learning problem, there are two clear assumptions
that applies for all types of algorithms (for instance the Q-learning algorithm
in Section 3.3):

1. We require that the problem can be formulated as a Markov decision
problem, as described in Section 3.2.

2. We require availability of samples from the data distribution, or an
environment where one can simulate in order to collect data.

If these two requirements are met, we are able to set up any reinforcement
learning algorithm. However, we do not have any way of knowing whether this
algorithm will converge or not.

Additional requirements for convergence Of TD algorithms

In the analysis of convergence by Melo et al. [MMR08], two additional require-
ments are presented as necessary for the convergence of an RL algorithm. The
first, and most intuitive, requirement concerns the data acquired. We need a

44

4.3. Formalizing the setting of RL

sufficient amount of information on the dynamics of the system in order to
find an optimal policy and its corresponding value function. In general, we will
need the data to have "explored" the state-action space, S ×A, enough. This
means that if we let (ΩS ,FS , PS) denote the probability space (see Section 1.2)
of the sample set, and (ΩD,FD, PD) denote the probability space of the true
underlying data, we require that

(ΩS ,FS , PS) ≈ (ΩD,FD, PD). (4.5)

The less data the algorithm is exposed to, the more bias the model will have.
When we are in an online situation, that is when the information is gathered
"real-time", this is less of a problem. In that case we can define an exploratory,
that is a less greedy, policy which will explore the state-action space as needed.
If we are in a batch-learning setting (see Section 3.6), however, we will typically
have a fixed amount of data available. In this case the agent’s ability to find
the optimal policy is dependent on the agent’s access to information on the
dynamics. If the samples of data does not contain remotely optimal actions,
we can not expect to find these actions from the data either. To counter this
problem, growing batch learning is sometimes used, where we alternate between
performing batch learning, and using the derived policy to gain more samples
from the state-action space.[LGR12]

The second assumption for convergence by Melo et al. [MMR08], regards
the need for some sort of "smoothness" of the underlying value function. This is
a direct consequence of the solution to our optimization only being approximate.
It will be approximate because of randomness in our data, and because we are
approximating the Q-function. We will therefore need that any approximate
solution is also within some range of the underlying true optimal values. A small
change to an action should not drastically change the course of the trajectory.
In the convergence proofs by Melo et.al [MMR08] the weights of the value
function are required to be Lipschitz continuous with respect to the action,
although different assumptions have been made in other convergence analyses.

Interestingly, this is not too different from the assumption made on the value
function J in stochastic optimal control, as we there assumed C2-smoothness
(see Theorem 2.6.2 and Table 4.1). As the Lipschitz continuity is a stronger
assumption than the assumption put on J , one might question whether this
requirement could be soften in the RL case.

The assumptions listed here are present in most proofs of convergence, but
several examples [SB18], have shown that they are not sufficient, even when
the optimal solution does exist. The remaining assumptions often differ, but
we will discuss the ones that are present in proofs of convergence regarding the
Q-learner.

Convergence of the Q-learner

In general, the Q-learner algorithm will converge when all states have an exact
representation, given enough data, in addition to some other minor demands,
namely:

1.
∑∞
i=0 αi =∞,

2.
∑∞
i=0 α

2
i <∞,

45

4. Reinforcement learning and stochastic optimal control

3. The reward signal is finite i.e. Rt <∞ for all t,

where α is the learning rate [SB18]. Item 1 and Item 2 basically ensures that the
learning rate is not to large, nor too small. A too large learning rate can cause
the learner to skip past the optimal value, while a too small learning rate will
make in computationally unfeasible to reach an optimal value (see for example
the proof in [WD92] [MMR08] for more on the use of these assumptions). These
requirements are also present in the proofs of similar algorithms, such at the
proof of TD(λ) by Tsitsiklis [TV97].

4.4 Assumptions for the HJB equation

While the assumptions on the RL framework are quite loosely defined, the
assumptions posed by the HJB equation are more rigid and formalized. Generally
they consist of:

1. The action is Markov. This is basically the same demand as in the RL
framework.

2. The value function needs to be twice continuously differentiable, or in the
continuous closure of this space. This smoothness is an assumption on the
function of both the starting point of the process, and the process itself.
In other words, both small changes to the process and small changes to
the initial value should not change the optimal solution too much. This is
similar to the assumption of smoothness discussed in the last section. It
does, however, give us a candidate for exactly how smooth this function
is required to be.

3. We are demanding that the expected value of the value function (for
any stopping time bounded by τG) and the integral of the operator is
finite. The first will be true for any convergent RL algorithm. The second,
however, does not have a clear counterpart in the RL setting.

4. We are assuming that the closure is regular, so that any process will leave
the given domain G when it gets to the closure.

5. Lastly, we assume that an optimal control, u∗, actually exists.

Under these assumptions, we know that the solution will given by the differential
equation defined in Equation (2.15), that is by

f(y, u∗(y)) + (Lu
∗(y)Φ)(y) = 0, for all y ∈ G, (4.6)

and

Φ(y) = g(y) for all y ∈ ∂G. (4.7)

Remark 4.4.1. The assumption in Item 3 requires some additional comments.
As far as this author can see, the assumption on finite expectation, shown under
restrictions of the value function in Table 4.1, poses no additional restrictions
on the function Φ. We have already assumed Φ ∈ C2(G) ∩ C(G). This will
ensure that the partial derivatives in the operator L in Equation (2.10) will be
finite. We have also assumed that b(y, v) and σ(y, v) are Lipschitz continuous
(Equation (1.20)), so the operator will be finite on a finite interval [0, α].

46

4.5. Combining results from stochastic optimal control and RL

We also note that in Example 2.6.5, we were able to find an exact solution
to the optimization problem. This is, however, a quite unusual situation, and
we often need to use approximations in order to solve Equation (4.6). This
means that we are also facing questions of efficiency in the HJB setting.

4.5 Combining results from stochastic optimal control and
RL

We have in the previous sections discussed the differences in the two frameworks
of HJB theorems and the TD-algorithms in RL. One natural question is whether
one could improve the converge rates or proofs of the TD algorithms by using
the theory and assumptions from the HJB theorems. We will in this section
briefly discuss some possible directions which could be explored, noting that
most of these ideas goes beyond the scope of this thesis and has to be left for
future work.

As noted in Item 2 in Section 4.4, the HJB equations requires that the value
function satisfy some smoothness conditions. This assumption could potentially
take care of a problem when using RL and function approximations. This is
because it would mean that our approximated representations of the value-
or Q-function remains within a certain bound of the functions true value. If
this is not satisfied, we have no guarantee that the approximations used are
not generalizing over too large areas of the state-action space. As noted in
Section 4.3, several convergence results regarding TD(λ) algorithms require
this.

In this chapter, we have discussed differences and similarities in two ways of
doing optimization, one rooted in mathematics and one rooted in informatics
and statistics. While the mathematical framework has been used in finance for
a long time, the RL framework has only recently gained popularity as a way of
doing predictions and deciding prices in financial markets. In Chapter 5, we
will look at some ways in which we can combine results from mathematical
finance, which use models, and still end up with a Q-learning algorithm which
is model-free. We will then use this method to price exotic options in power
markets. We will also discuss whether this approach can be augmented to solve
the problem discussed in Example 2.6.5, by using the optimality condition in
Equation (4.6) and Equation (4.7) as an update rule.

47

CHAPTER 5

RL for pricing and hedging exotic
options.

5.1 Introduction.

This section will look at applications in financial markets. These are markets
where financial contracts are bought and sold, by agents that are either trying
to reduce risk or gaining revenue. In this chapter we will focus on the use of
reinforcement learning in the pricing of one type of contract known as an option.
Options are financial instruments which allow the owner the opportunity, but
not the obligation, to buy or sell an asset, S(t), at a predetermined time, T ,
for a predetermined price, K. The asset S(t) is typically modelled by an SDE,
and we will in Section 5.3 describe a type of SDE that is used for financial
assets. The most common type of options are put options, where the owner of
the option has a profit of

max{K − S(T), 0}, (5.1)

and call options, where the owner has a profit of

max{S(T)−K, 0}. (5.2)

The predetermined price K, is commonly known as the strike price.
Owning an option reduces risk, as the agreed upon price protect him or her

against large fluctuations in the market. Because of this, options are often used
in markets where prices have high variation, or where prices fluctuate a lot over
short time periods. For more on option theory, see [Ben03].

The subject of this section will be how we can use the model described by
Halperin [Hal17] to price exotic options, that is options with more complex
structures than the traditionally traded ones. Halperin named the method
QLBS since his original goal was to use the Q-learner to compute the well-known
Black-Scholes solution for the pricing of a put option. He did, however, note that
the method allow for extensions well beyond simple put options. Our focus will
be extending the method to allow for another (non-hedgeable) stochastic process
influencing the price of the option. While Halperin presented the theoretical
framework for the pricing and hedging of a standard put option, he did not
present any numerical results. We will therefore also expand on Halperin’s
work by doing numerical experiments based on his method. The code for our
implementation can be found in Appendix A.3.

49

5. RL for pricing and hedging exotic options.

Variable Description:

K Strike price for electricity.

L Strike price for wind.

S(t) Price of electricity.

W(t) Wind speed.

σ volatility of electricity prices.

η volatility of wind speed.

B(t) Brownian motion modeling stochastic part of electricity dynamics.

B̃(t) (correlated) Brownian motion modeling stochastic part of wind dynamics.

B̂(t) (Uncorrelated) Brownian motion modeling stochastic part of wind dynamics.

ρ Correlation between B(t) and B̂(t).

µ Long term mean of wind process.

α Rate of mean reversion for the wind process.

Z(t) Logarithm of the wind process.

Λ(t) Function modelling the seasonal trend in the data.

Z1(t) First row of the multidimensional stochastic process Z(t).

A Matrix modelling the amount of autocorrelation.

Π(t) Portefolio value at time t.

u(t) Position in tradable stock at time t.

I(t) Value in bank account at time t.

er∆t Interest rate.

γ Risk parameter.

Figure 5.1: List of notation for exotic options.

We will first describe how Halperin [Hal17] uses modern portfolio theory to
find expressions for optimizing the price of options. We will then show that this
method can be extended by introducing another process into the framework,
and how this can be used in the reinforcement learning setting proposed by
Halperin. We will end by discussing which conclusions can be made, and further
extensions that possibly can be implemented.

5.2 Exotic options for power markets.

In energy markets, the price of electricity usually varies a great deal over short
time periods, and a drop in temperature or a draught can greatly affect prices.
Because of the uncertainty that this imposes on companies dealing with the
supply or demand of large quantities of power, these agents are often willing to
pay a higher price in order to insure, or hedge, against the fluctuation. This is
the market of power options. In this market the agents can buy the right to
purchase a certain amount of power, at a specified time or time interval, at a
predetermined price. The price of these options need to reflect the uncertainty

50

5.2. Exotic options for power markets.

of the electricity price, which again is affected by factors such as temperature,
rainfall and wind speed.

Halperin used his model for the case of a put option on a single asset with
a single underlying stochastic process. We will extend on this, by showing
that the same approach can be used on an option that is dependent on two
correlated stochastic processes. One of them will represent the hedgeable stock,
and the other will represent the non-hedgeable wind process.

We are putting ourselves in the position of a retailer of power. This retailer
buys power at prices that varies greatly, and sells it to consumers at a price that
is allowed far less fluctuations (they typically have to announce a price change
at least a week before). Because of this, they stand to loose a lot of money
if the price of power is low, or if the demand for power is low. This makes
them interested in hedging their position, that is they want to buy an option to
insure themselves against future losses. These future losses will depend on both
the price of electricity and on temperatures or wind. The price of this option
will be the topic of the remaining parts of this section.

We will consider a special case of option pricing based on the German market.
In Germany the main source of energy is coal, but they also rely on wind power.
In this market the sellers of coal energy are only allowed to sell when there
is not enough wind energy to satisfy the demand for power. Therefore, the
suppliers of coal energy stands to loose money if there is a lot of wind. We will
therefore look at a put-call option defined by

max
(
K − S(T), 0

)
max

(
W (T)− L, 0

)
, (5.3)

where S(T) is the price of power andW (T) is the amount of wind. The owner of
such an option will have the choice to sell power at a predefined price, K, called
the strike price. In addition to this, however, the value of the option is also
affected by the wind, and there is therefore an additional strike price, L, that
represents the wind speed. This represents the buyer and seller’s assumption
of what can be considered "normal" wind speed, such that a large value of
W (T) increases the price of the option. The option is thus dependent on two
stochastic processes, S(t) and W (t) and we will see that these processes are
dependent.

RL in the QLBS model ♦.

Halperin’s QLBS model uses the Q-function described in Section 3.3, but it
does not utilize the whole flexibility allowed by the algorithm. Perhaps most
noteworthy, it does not allow for the action, which in the intended QLBS
case is the hedge, to affect the observed state space. This is essential for
the batch learning part of the model, since we evaluate across all simulations
simultaneously. It also means that the method can be implemented without use
of tools such as Tensorflow or Pytorch, as we don’t need to simulate a real-time
environment. We also note that this reflects the fact that the hedges does not
have any effect on the price of the option.

Since the hedge at does not affect the state of the asset we are also removing
the need for exploration in our model. An important question in reinforcement
learning is the balance between exploration and exploitation. By this we mean
to what degree our method should utilize prior knowledge in order to learn

51

5. RL for pricing and hedging exotic options.

versus using the new data which is gathered. When our agent is part of an
interaction with his environment, making sub-optimal actions is an important
part of gaining information of the environment. We will consider a greedy
policy (see Section 3.2), meaning that we do no exploration. This also allows
for the use of backward iteration when finding the optimal Q-function. If we
were to consider a less greedy policy, this would not work, as we would need to
know the value of Vt to calculate Qt+1. One way of adding exploration to the
model, could instead be to use consecutive batch learning. We would then use
a policy in the simulation of a set of processes, perform QLBS on these, and
use the computed action, but with some noise, in the simulation of the next.

The fact that the Q-learner is an off-policy method, as described in Sec-
tion 3.3, transfers into the QLBS-model. This makes it possible to create an
artificial data set of trading strategies, and use this with some data set of real
stock trajectories. The hedges can be completely random, and our model will
still discover to the correct option price, given that we feed our model enough
data.

5.3 Modeling the dynamics ♦

The price of power, S(T), will be modelled as a stochastic process. We will use
a geometric Brownian motion as described in Example 1.4.11, but since S(T) is
a forward price, and not a spot price, we will have r = 0. We therefore get that
the process is defined by

dS(t) = σS(t)dB(t). (5.4)

When modeling the wind dynamics, we will use two slightly different ap-
proaches, depending on whether we are using real or simulated data. We will
consider the case of simulated data first, as this is the simplest approach. A list
of all the notation can be found in Section 5.2.

Modelling the wind process using simulated data.

To simulate the stochastic process for the wind dynamics, W (t), we use the
exponential of a Ornstein-Uhlenbeck process, Z(t). This process is typically
used for modelling wind, temperature or rain water, among other things because
of its mean-reverting property (see [BBK08]). It will be based on a different
Brownian motion, B̃:

W (T) = exp(Z(T)), (5.5)
dZ(t) = (µ− αZ(t))dt+ ηdB̃(t), (5.6)

dB̃ := ρdB +
√

1− ρ2dB̂, (5.7)

where B is the Brownian motion used in Equation (5.4), B̂ is a different
Brownian motion independent on B, and ρ ∈ (−1, 1) is the correlation factor
between B̃ and B. The strike K will depend on the current spot price while
the strike L will depend on what we constitute as "normal" wind.

This problem is essentially a problem of estimating a function of two uncor-
related Brownian motion. We see this because

max(K − S(T), 0) max(exp(Z(T))− L, 0) (5.8)

52

5.3. Modeling the dynamics ♦

can be written as a function of the two underlying Brownian motions:

f1(B(T))f2(B̃(T)), (5.9)

where f1 represents the first max-function and f2 represents the second max-
function. By using Equation (5.7) we can write this as

f1
(
B(T)

)
f2
(
ρB(T) +

√
1− ρ2B̂(T)

)
(5.10)

:= g
(
B(T), B̂(T)

)
. (5.11)

Which shows that the option is a function of two uncorrelated Brownian motions.
While this stochastic process will capture the dynamics of the wind process

when using simulation, real data requires a more complex model to capture
seasonal effects.

Modelling the wind process using real data.

When modeling processes like wind, temperature or rain we need our process
to reflect the seasonal attributes these processes display. Wind will typically
fluctuate over the course of a year, with high wind speed being more common
in some seasons than others. One simple way of addressing this trend in the
data, described by Benth [BBK08], is to define the wind process as the sum of a
seasonally dependent, deterministic function Λ, and a stochastic noise term Z1:

exp(W (t)) = Λ(t) + Z1(t). (5.12)

This gives us a parametric function, which captures both the periodic nature of
the seasonal effects, and a possible evolution over time. Since we expect the
seasonally dependent part to fluctuate between high and low values we can
define a seasonality function by

Λ(t) := a0 + a1t+ a2 cos(2π(t− a3)/365). (5.13)

We can then perform a regression on true wind data using this function. This
lets us find estimates for the parameters, a0, a1 and a2. Then we can add it to
our modeled stochastic part.

Another feature of the wind process is the presence of autocorrelation. The
wind speed of today will often be correlated with the wind speed of the preceding
days. In order for our model to keep its Markov property we need to be able to
write our wind dynamics as a function of a non-correlated stochastic process.
We can incorporate this into our model by using a CAR(p)-model to express
the wind dynamics . It models a continuous autoregressive stochastic process,
(CAR). Autoregressive means that there is correlation between the process at
times t and t+ k for k = 0, 1, . . . , p. It is expressed by

dZ(t) = AZ(t)dt+ ep(t)σ(t)dB̃(t), (5.14)

53

5. RL for pricing and hedging exotic options.

where, for the correlation factor ρ ∈ (−1, 1),

dB̃ := ρdB +
√

1− ρ2dB̂, (5.15)

A =



0 1 0 · · · 0

0 0 1 · · · 0

· · · · · · ·

0 0 0 · · · 1

−αp −αp−1 αp−2 · · · α1


, (5.16)

Z(t) is the deseasonalized wind dynamics, and B̃(t) is a random noise term
modeled by a Brownian motion. B and B̂ are as described in the former section.
By defining the process in this way, we are still able to express the payoff-function
as a function of a standard Brownian motion, which is necessary to use the
framework of the QLBS-model. Also, max(K − S(T), 0) max(exp(Z(T))−L, 0)
can still be written as a function of two uncorrelated Brownian motions, by
the same argument as in the previous section. To find the appropriate p it is
necessary to look at relevant wind data, and study correlation between the time
periods (see more in [BBK08]).

5.4 Defining the portfolio and the hedge

This section will consist of two parts. The first part will describe how we can
formulate our portfolio optimization problem into a reinforcement problem,
through the use of the Q-function. The second part will explain how we can
find explicit expressions for the updates for this function, enabling us to use
batch learning on all the paths of the stochastic process for each time step.

We will begin by describing the portfolio problem, and how a self-financing
portfolio can be used to find the "fair" price. By fair we mean a price that
ensures that neither the seller nor the buyer of the option is profiting, if we
would be able to consider all the possible values of the option.

The portfolio ♦

This section follows the methods proposed by Halperin [Hal17]. While Halperin
described the method for the classic Black-Scholes case of a put-option, we
will extend it to the case of a put-call option dependent on two assets. As we
will see, the inclusion of a second non-tradeable asset does not introduce much
change to the original model, as the recursiveness of the model comes from the
self-financing constraint in the replicating portfolio. Since the portfolio only
consists of the bank account and the tradable asset we are left with the same
expressions as in Halperins Black-Scholes case.

We are interested in valuation and hedging of an option on a given asset,
for which we have some historic or simulated data points. These data points
contain information on the asset’s spot price for a given time period, at certain
time intervals. The following sections are based on the theory of hedging by a
replicating portfolio, a standard setting of mathematical finance [BBK08].

54

5.4. Defining the portfolio and the hedge

We start out by observing the price dynamics of the given stock. We consider
a seller of a put-call option with terminal value

HT (ST ,WT) := max
(
K − ST , 0

)
max

(
WT − L, 0

)
, (5.17)

as described in Section 5.2, where St is the stock price andWt is the exponential
of either a geometric Brownian motion or for the case of available real wind
data, a CAR(p)-process. K and L denote the strike prices. Since Wt represents
the wind dynamics, we will only allow for trading in the stock, St. In order to
hedge the option, the seller will set up a replicating portfolio that consists of
the tradeable stock and a bank account It, which at any time t ≤ T will have
the value

Πt = utSt + It, (5.18)

where ut is the position in the stock St and It is a risk-free bank account. This
portfolio is closed at the time of maturity t = T , at which point our goal is to
have its value perfectly replicating the value of the option. Closing the portfolio
means setting uT to 0. This gives us a condition for the portfolio at maturity:

ΠT = IT . (5.19)

Our goal is to make this as close (in the standard Euclidean norm) to the value
of the option HT (ST ,WT) as possible.

We note that this portfolio is the same as the one shown by Halperin [Hal17].
Even though the option in our case is based on two stochastic processes, the
problem is reduced to the same mathematical expressions as Halperin’s once we
have set up the portfolio, since the portfolio is only based on the tradeable asset.
In fact, because the updates to the Q-function used by Halperin is based on the
replicating portfolio, any portfolio with only one tradeable asset will behave
in exactly the same way. This means that we can use the method for a wide
range of options. The rest of this section will therefore mimic the approach of
[Hal17]. We note, however, that even the introduction of more tradable assets
would follow the same approach, and could be incorporated at the cost of some
computational complexity.

The recursive relation ♦
The main idea behind our pricing scheme is that if we are able to find a recursive
way of expressing the value of the option, we can back trace from the terminal
condition all the way to t = 0. We therefore need a way of expressing Πt as
a function of Πt+1. To achieve this, we set a self-financing constraint. This
means that we demand that all changes to the portfolio, i.e. all hedges, are
financed by a set bank account. We do not allow for money to be invested
in the portfolio after t = 0, so the change of (time-discounted) value in the
portfolio must be equal to the change of (time-discounted) value in the stock.
This can be expressed as:

er∆tΠt(Bt)−Πt+1(Bt+1) = er∆tutSt − utSt+1. (5.20)

We will in the following sections use the notation

γ = e−r∆t, (5.21)

55

5. RL for pricing and hedging exotic options.

where r is the interest rate, so that γ discounts future values to their present
value.

Using Equation (5.20), we can express Π in a recursive manner as:

Πt(Bt) = γ[Πt+1 − ut∆St], where ∆St = St+1 − er∆tSt. (5.22)

Here, Bt is the Brownian motion representing the stochastic part of the asset
St. As a general note, we will write all functions of St as functions of Bt to
emphasise that this is a prerequisite to be able to formulate our problem as a
Markov decision process. If we can’t do this, we are no longer in the setting of
reinforcement learning. We also note that ∆St = St+1 − er∆tSt is simply the
change in value of the stock price St, and er∆t is an interest rate factor setting
the value of St to the present value of t+ 1.

The point of the hedge, or action, is to minimize the risk associated with
the portfolio. Therefore, the optimal action is one that minimizes the variance
of the portfolio value,

u∗(Bt) = arg min
u

Var[Πt|Ft]. (5.23)

This is the greedy policy that the Q-learning algorithm is trying to learn (see
Section 3.2). Here, the history Ft is the history of the cross-sectional data, that
is the data from all the paths of the stochastic process up to time t.1 From the
standard formula for variance,

Var[Πt|Ft] = γ2Et[(Πt − E[Πt])2] (5.24)
= γ2Et[(Πt+1 − ut∆St − E[Πt+1 − ut∆St])2] (5.25)
= γ2Et[(Π̂t+1 − ut∆Ŝt)2], (5.26)

where we for simplification have used the notation

x̂ := x− E[x]. (5.27)

We can then find the optimal value of ut by computing the derivative, solve for
u, and set the equation equal to zero:

∂Var[Πt|F]
∂u

= γ2(−2Et[Πt+1∆Ŝt] + 2utEt[∆Ŝ2
t] (5.28)

=⇒ u∗t = Et[Π̂t+1∆Ŝt]
Et[∆Ŝ2

t]
(5.29)

= Cov(Πt+1,∆St|Ft)
Var(∆St|Ft)

. (5.30)

By defining the optimal action in this way, we have defined it as a way of
controlling all the variance of the portfolio. In general, an owner of a portfolio
would like to maximize his monetary value, and would not be concerned with
the possibility of gaining a lot of money. One possibility could therefore be to
instead use the conditional value at risk (CVaR) measure to define the optimal
action (see for example [RUZ02]). We will however leave this idea to future
research, and continue using Equation (5.23) as the optimal hedge.

1We note that the value of the hedge can only be dependent on history up to this point,
as it is performed without knowledge of the future.

56

5.4. Defining the portfolio and the hedge

The action-value function

We will now present the value function, which represents the value of the
portfolio. The optimal value of this function at time t = 0 will be the price of
the option.

Halperin’s [Hal17] choice of option price is based on an idea by Potters et
al. [PBS01]. The idea is that the value of the option at time t is equal to the
value of the portfolio Π(t), plus the future risk associated with the portfolio.
The price then also takes into account the risk faced by the seller and can be
expressed by the value function:

Vt(Bt) := E
[
Πt + λ

T∑
t′=t

e−r(t
′−t)Var[Πt′ |Ft′]

∣∣∣∣Ft], (5.31)

where λ is a parameter stating how risk averse the seller of the option is. Since
the risk of the option can’t be eliminated completely in a realistic setting, this
gives us a way of quantifying how an increase in either risk, or risk aversion
will affect the price of the option. The minimization of this value function will
give the price of the option at time t, as we are trying to find the hedge that
reduce future variance (i.e. risk) of the portfolio. By changing the sign, we can
equivalently state the problem as a maximization of

Vt(Bt) = E
[
−Πt − λ

T∑
t′=t

e−r(t
′−t)Var[Πt′ |Ft′]

∣∣∣∣Ft]. (5.32)

By moving the first part outside the summation, we then get

Vt(Bt) = E
[
−Πt − λVar[Πt]− λ

T∑
t′=t+1

e−r(t
′−t)Var[Πt′ |Ft′]

∣∣∣∣Ft]. (5.33)

We can then use the recursive nature of Πt to write this expression as a function
of Vt+1:

Vt(Bt) = Eπt [γat∆St(Bt, Bt+1)− λVar(Πt|Ft) + γVt+1(Bt+1)] (5.34)
= Et[Rt(Bt, at, Bt+1) + γV πt+1(Bt+1)], (5.35)

where we have defined R as

Rt(Bt, at, Bt+1) := γat∆St(Bt, Bt+1)− λVar(Πt|Ft). (5.36)

We have now restated our initial value function into an expression involving
one term representing the reward signal R(·), and one term representing the
discounted future value V (·), as described in Section 3.2. We will use the
notation V ∗(·) for the optimal value function in the following sections. We also
remark that the value function is dependent on the policy π.

In the framework of the QLBS-model, we allow for the dynamics of the
system to be unknown. We will therefore not optimize the value function, but
instead the similar Q-function, as described in Section 3.3. It is defined as the
expected value of the value-function given the state of the system, Bt = x,
and the action performed on this state, at = a, and conditioned on following a

57

5. RL for pricing and hedging exotic options.

policy π′ for the remaining time periods.2 We then get that the RL algorithm
is performed on the Q-function

Qt(x, a) = Et[Rt(Bt, at, Bt+1)|Bt = x, at = a] + γEt[V ∗t+1(Bt+1)|Bt = x].
(5.37)

The optimized value function is the same as the optimized Q-function when
maximizing a over the next time step:

V ∗t+1(Bt+1) = max
at+1∈A

Q∗t+1(Bt+1, at+1). (5.38)

Therefore, Equation (5.37) can be formulated as

Qt(x, a) = Et[Rt(Bt, at, Bt+1) + γ max
at+1∈A

Q∗t+1(Bt+1, at+1)|Bt = x, at = a].

(5.39)

At t = T the hedge is set to zero, and we get the terminal condition from
Equation (5.31):

Q∗T (BT , aT = 0) = −ΠT (BT)− λVar(ΠT (BT)). (5.40)

We note that, from Equation (5.38), maximizing the Q-function with respect
to a gives the optimal value function, and that the optimal strategy, i.e. the
optimal set of hedges, is given as

π∗t (Bt) = arg max
at∈A

Q∗t (Bt, at). (5.41)

The Q-function described in Equation (5.39) involves the expected values of
processes which we don’t know the distribution of. In the next section, we will
therefore use the Monte Carlo paths to approximate them. This will allow us
to use regression methods to find optimal values of Q and a.

5.5 Learning the price of the option and the hedge

We assume we have some set of basis functions {Φn(x)}. This can for example be
spline functions, polynomials, or a Fourier basis (see [SB18] for more on choosing
basis functions). The number of basis function will need to be selected through
either prior knowledge or numerical experiments. More complex dynamics
will typically require a larger number of basis functions in order to accurately
represent the trajectories. This increase will, however, lead to a quite significant
increase in the computational complexity [SB18].

We can express the optimal action and Q-function as

a∗(Bt) =
M∑
n=0

φn,tΦn(Bt) (5.42)

Q∗(Bt, a∗t) =
M∑
n=0

ωn,tΦn(Bt), (5.43)

2We remember that we are assuming that the states are Markov, so this means that all
relevant information on the future state Bt+1 is present in x and a.

58

5.5. Learning the price of the option and the hedge

for φ ∈ R, ω ∈ R, and where M is the dimension of the basis, i.e. the number
of basis functions.

Our goal is to perform regression on the Q-function in order to find values
for the weights φn,t and ωn,t. We will start by considering the action, and it’s
weights ωn,t.

Finding the optimal action ♦
To find the values of ωn,t, we start with the expression for Q. By inserting the
expression for R in Equation (5.36), and the expression for the optimal hedge
in Equation (5.26) into Equation (5.39) we get:

Q∗t (Bt, at) = γEt[Q∗t+1(Bt+1, a
∗
t+1) + at∆St]− λγ2Et[(Π̂t+1 − ut∆Ŝt)2].

(5.44)

Writing out the last quadratic expression, we get:

Q∗t (Bt, at) = γEt[Q∗t+1(Bt+1, a
∗
t+1) + at∆St]− λγ2Et

[
Π̂2
t+1 − 2atΠ̂t+1∆Ŝt + a2

t (∆Ŝt)2
]
.

(5.45)

We then substitute the expectation with the MC estimate, as described in
Section 3.3:

Q∗t (Bt, at) = γ
1

NMC

(NMC∑
k=1

Qk,∗t+1(Bkt+1, a
∗
t+1) + at∆Skt

)

− λγ2 1
NMC

(NMC∑
k=1

(Π̂k
t+1)2 − 2atΠ̂k

t+1∆Ŝkt + a2
t (∆Ŝkt)2

)
,

(5.46)

where NMC is the number of Monte Carlo paths. The number of MC paths
will need to be determined by doing numerical experiments, or by using the
theory on confidence bounds discussed in Section 3.3.

Since we are performing minimization on the weights of the expansion of
a, we can remove the at-independent terms. This includes Q∗, as the action,
equivalently the hedge, should not affect the optimal Q-value:

Q∗t (Bt, at) =
NMC∑
k=1

(
at∆Skt − λγ

[
(Π̂k

t+1)2 − 2atΠ̂k
t+1∆Ŝkt + a2

t (∆Ŝkt)2]).
(5.47)

We can now substitute at with the basis expansion, and change the sign in
order to make it into a minimization problem3:

Q∗t (Bt, at) =
NMC∑
k=1

(
−

M∑
n=1

φn,tΦn(Bkt)∆Skt

+ λγ

[
(Π̂k

t+1)2 − 2
M∑
n=1

φn,tΦn(Bkt)Π̂k
t+1∆Ŝkt +

(M∑
n=1

φn,tΦn(Bkt)∆Ŝkt
)2])

(5.48)
3Note that the minimization is with respect to the weights of the hedge, not the value

function.

59

5. RL for pricing and hedging exotic options.

=
NMC∑
k=1

(
−

M∑
n=1

φn,tΦn(Bkt)∆Skt + λγ

(
(Π̂k

t+1)2 +
M∑
n=1

φn,tΦn(Bkt)∆Ŝkt
)2
)
.

(5.49)

Having expressed Q∗ as a function of the unknown basis weights and data from
the samples, we now want to find the optimal weights. We therefore differentiate
with respect to φn,t, and set equal to zero:

NMC∑
k=1

(
− Φn(Bkt)∆Skt (5.50)

+ λγ

[
− 2Φn(Bkt)Π̂k

t+1∆Ŝkt + 2
(M∑
n=1

φn,tΦn(Bkt)2(∆Ŝkt)2
])

(5.51)

= 0. (5.52)

Solving this for each φn,t gives us the following set of equations:

NMC∑
k=1

M∑
n=1

φn,tΦn(Bkt)Φm(Bkt)(∆Ŝkt)2 (5.53)

=
NMC∑
k=1

(
Φn(Bkt)Π̂k

t+1∆Ŝkt + 1
2λγ

NMC∑
k=1

Φn(Bkt)∆Skt
)
. (5.54)

This can be written as

Atφt = Bt (5.55)
=⇒ φt = A−1

t Bt, (5.56)

where At is an M ∗M matrix with elements

An,m =
NMC∑
k=1

Φn(Bkt)Φm(Bkt)(∆Ŝkt)2, (5.57)

Bt is a vector with elements

Bn =
NMC∑
k=1

[
Φn(Bkt)Π̂k

t+1∆Ŝkt + 1
2λγ

NMC∑
k=1

Φn(Bkt)∆Skt
]
, (5.58)

and φt is a vector of the optimal weights.

Finding the Q-function.

Our next step is to find the optimal Q-function. This means that we need
to find the weights to our basis function that maximizes the expression from
Equation (5.39). To this end, we can express our optimality condition, that is
our Bellman equation (see Section 3.2), as

Rt(Bt, a∗t , Bt+1) + γ max
at+1∈A

Q∗t+1(Bt+1, at+1) = Q∗t (Bt, a∗t) + εt, (5.59)

60

5.5. Learning the price of the option and the hedge

where εt is the irreducible error (see Section 3.1) of our model estimate at time
t. We assume this to be random noise, with E(εt) = 0. When at = a∗t , the
expectation of this is equivalent to the expectation of the Bellman equation
defined in Equation (5.39). We can therefore find the optimal Q-value by
performing least-squares minimization on

Ft(ω) =
NMC∑
k=1

(
Rt(Bt, a∗t , Bt+1) + γ max

at+1∈A
Q∗t+1(Bt+1, at+1)−

M∑
n=0

ωn,tΦn(Bkt)
)2
.

(5.60)

Differentiating with respect to each ωi and setting equal to zero gives us the
following expression:

∂Ft(ω)
ωi

=
NMC∑
k=1

[
− 2(Rt(Bt, a∗t , Bt+1) + γ max

at+1∈A
Q∗t+1(Bt+1, at+1))Φi(Bkt)

+ 2ωiΦi(Bkt)
]

= 0.
(5.61)

This implies that

NMC∑
k=1

[
(Rt(Bt, a∗t , Bt+1) + γ max

at+1∈A
Q∗t+1(Bt+1, at+1))Φi(Bkt)

]

=
NMC∑
k=1

[
ωiΦi(Bkt)

]
.

(5.62)

This can be expressed on matrix notation, as

Ctω
∗
t = Dt, (5.63)

where

C(t)
n,m =

NMC∑
k=1

Φn(Bkt)Φm(Bkt), (5.64)

D(t)
n =

NMC∑
k=1

Φn(Bkt)
(
Rt(Bt, a∗t , Bt+1) + γ max

at+1∈A
Q∗t+1(Bt+1, at+1)

)
. (5.65)

Here, Ct is an M ×M matrix, and Dt is an M -dimensional vector. We then
get that the optimal weights are given as:

ω∗t = C−1
t Dt. (5.66)

Inserting ω∗t into Equation (5.43) gives us the optimal Q-function. Our initial
goal was to maximize the Q-function in order to find the optimal fair asking
price for the option. Since we changed the sign of the Q-function and made it
into a minimization problem, we get that the negative of value of this function
at time t = 0 gives us the optimal price for the option.

61

5. RL for pricing and hedging exotic options.

parameter: value

σ 0.4

r 0.05

S0 100

K 100

µw 0.05

T 1

n 25

λ 0.00001

corr -0.9

Figure 5.2: Parameter values for simulations.

We note that this method should work for both continuous and discrete
time, although only the discrete case has been proved to converge to the true
optimal option price (see Section 3.4). We also have a risk aversion parameter
that measures the option sellers perceived risk. This allows for using the same
method both for the no-arbitrage case, and for the more realistic case where
there is some risk, and therefore some reward perceived by the sellers and buyers
of the options.

5.6 Numerical experiments ♦

In this section we include a numerical experiment for the case of a put-call
option which is dependent on both a tradable asset representing the energy
price, and a correlated non-tradable asset representing the wind speed. This
is an extension of Halperin’s [Hal17] work, as he did not any numerics in his
paper, and also because of the inclusion of a second process. The parameters
for our simulations can be found in Figure 5.2.

We start by simulating the paths of the tradable asset St and the non-
tradable wind process Wt. We will use 10000 simulations. The plots from the
simulation of the two correlated Brownian motions, St and Wt can be found in
Figure 5.3, where we see the asset and wind process in the lower row, while the
upper row shows the Brownian motions. We create a third degree polynomial
as a basis to represent our data points, and create a feature matrix of these
points.

We can now start our computation of at and Πt. This is done by computing
our way back from the terminal value T , by using equations Equation (5.57),
Equation (5.58), and Equation (5.56), and putting this into Equation (5.42).
We can then find Πt by putting the optimal hedge a∗t into Equation (5.22).
Plots of at and Πt is pictured in Figure 5.4. The hedges (a) are all equal at
t = 0, as they respond to the same initial value. We see that the value of the
hedges has a larger spread as we move along the time-axis. This is because the

62

5.6. Numerical experiments ♦

Figure 5.3: Plot of Brownian motions(upper row), and S and W (bottom row).

Figure 5.4: Plots of 10 paths of computed a values(hedges) and payoff values.

underlying stochastic processes also moves in a wider range as time passes, and
the hedges needs to become bigger to control these variations. At t = 25 the
portfolio closes, and the hedges are therefore all set to zero.

Having found the optimal value for a∗t , we can now use Equation (5.64)
and Equation (5.65) in Equation (5.66) to find the optimal Q-function. The
negative of this function at time t = 0 will be the correct price. Figure 5.5
shows the paths of the Q-values. We get that the price of the option is 29.425.
As a comparison, the Monte Carlo estimate for the option price is 31.944. The
entire computation time is 1.43 seconds.

63

5. RL for pricing and hedging exotic options.

Figure 5.5: Plot of 10 paths of computed Q-function.

5.7 Discussion

In this section we have implemented the QLBS method for the case of two
correlated stochastic processes, where only one of them is hedgeable. We have
built on the work of Halperin, both by implemented the method which he
proposes in his paper, and also by extending it to two processes. By doing
this, we both show the validity of Halperins method, while also showcasing its
usefulness in working with exotic options. The framework and code can easily
be transformed into different options where only one of the assets are hedgeable.
We only need to change the expression for our terminal value and make sure
that this is a function of the underlying Brownian motions, the Q-function and
our regression problem will stay the same. We have also noted that additional
hedgeable assets can be incorporated, but this will lead to somewhat more
complex computations of the matrices At, Bt, Ct and Dt. This implies a great
flexibility compared to other methods of hedging and pricing which are more
dependent on the type of option being considered. We are also extending the
model without almost any delay in the numeric speed. The added stochastic
process only influences the starting value of the Q-function, and will not add
extra computations to the updating of the function. When simulating data
we are only decreasing the computational speed by having to simulate another
process and computing the option value for each simulation, while in the case of
real data, only the latter of these will create any delay. This makes the method
proposed in this report fairly efficient compared to other alternative approaches.

We are however still in the somewhat stylized setting of complete model
knowledge. Because of this, the application of the QLBS-method described in
this chapter does in many ways perform the same task as dynamic programming.
It is in the case of incomplete knowledge of the model that the methods of
reinforcement learning may contribute something completely new to the table.
In the setting we have described, we have looked at the case where we observe
some path of the asset price and wind dynamics, and where we are able to
compute the reward as we work our way back from t = T . In the batch

64

5.8. The control problem in the QLBS setting

Q-learning described by Halperin [Hal17], we are instead observing samples
from the reward function and the action function. We have more data, but less
prior knowledge of the model. It is in this setting that the QLBS-model might
present completely new results.

Another way forward would be to consider real data of prices and wind,
and compute the option price based on this. In this case, one could use the
seasonal models proposed in section 3.1, and thus allow for seasonal variations
in our stochastic wind process. The focus of this section has been to implement
an extension of Halperin’s approach, and we therefore leave the case of real
historical data as a possibility for future work.

5.8 The control problem in the QLBS setting

In both Example 2.6.5, and the QLBS-approach to pricing exotic options in
Chapter 5, we have studied the case of financial portfolios. We have used the
two frameworks, HJB and RL, to predict future values of portfolios, and used
hedges to optimize wealth. The two setups presented have many common traits.
We will in this section discuss which necessary components are needed to be
able to use the QLBS framework for an optimization problem. We will then
describe the differences and similarities between the problem from Chapter 5
and Example 2.6.5, and formulate the example from Example 2.6.5 in the RL
setting. We will end the section by discussing problems with our approach.

Necessary conditions for the QLBS model

In order to use the method presented in Chapter 5, there are four important
aspects that needs to be present:

1. The risky process need to be a martingale, or we need to be able to
transform it into a martingale.

2. The stochastic process that we are performing the optimization on (i.e.
the portfolio) needs a recursive relation. This means that we need some
way of linking the present and future reward of the q-function for each
time point t, where 0 ≥ t < T .

3. We need to have some terminal condition, which provides us with the
value of the Q-function for time T , for each of the samples.

4. The action (i.e. hedges) need to be quadratic, or on some other form
that will provide us with a maximum solution. If this is not satisfied,
we are no longer able to express the solution by Equation (5.56) and
Equation (5.66).

. The first assumption is needed to remove the drift and make the mean constant.
The second assumption is essential for all RL problems, and ensures that we
can use the Bellman equations. Without it, we are no longer able to use future
optimal values to find the present optimal value.

The third assumption is closely related to the Bellman conditions. We need
this in order to have a "starting point" for our optimal chain of value functions.
This is always satisfied for a finite trajectory in an RL framework, as the

65

5. RL for pricing and hedging exotic options.

value function or Q-function will equal the reward signal, which is considered
exogenous to the problem.

The assumption in Item 4 is a consequence of the use of least squares. In
Chapter 5, we found an expression for the optimal action, in the example
the hedge, which made the errors quadratic. The quadratic errors made for
a rather simple computation, but essentially, the important part is that the
errors made it possible to do least squares minimization on the Q-function.
This is rather similar to a condition required for using the HJB-theorems in
Chapter 2. Here, we see that if we can not have quadratic or other similarly
solvable solutions, then the control u disappears when differentiating on the
operator-expression in Equation (2.52), and we are not able to solve the problem
by using differentiation.

Comparing the two portfolio problems

In this section, we will comment on the differences and similarities of the two
examples.

In chapter two we used the HJB-theorem to maximize the utility of a
portfolio. This portfolio consisted of a bank account

dX(t) = ρX(t)dt, (5.67)

and a risky asset

dS(t) = S(t)µdt+ S(t)σdB(t), (5.68)

This setup is in fact very similar to the original problem presented by Halperin
in [Hal17], where he used the framework to find the Black-Scholes solution. The
stock St and bank account Bt is defined identically, but while Halperin defined
the portfolio as

Πt = utSt +Bt, (5.69)

meaning that ut represents the amount of stocks owned at time t, we defined
it in Example 2.6.5 as the fraction of wealth owned at time t. We could then
directly describe the dynamics by

dZ(t) = dS(t) + dX(t) (5.70)
= Z(t)[(ρ(1− u(t)) + µu(t))dt+ σu(t)dB(t)]. (5.71)

In Halperin’s approach, we defined the optimal hedge, ut as

u∗(Bt) = arg min
u

Var[ΠT |Ft], (5.72)

in other words, as the action that minimize the variance, conditional on the
filtration generated by the samples of data. This gave us an analytic expression
of u∗, and one of the important features of this definition was that it made the
errors quadratic.

When optimizing u in Example 2.6.5, we are instead trying to find u∗ given
by

u∗(Bt) = arg max
u

(U(Πt)|Ft) (5.73)

= arg max
u

((Πt)γ |Ft). (5.74)

66

5.8. The control problem in the QLBS setting

This is not quadratic in ut, which makes Halperin’s scheme impossible to
use, at least the version which produce the matrices in Equation (5.57) and
Equation (5.58).

Using the HJB-equations as an Q-learner update rule

We will in this section discuss a possible approach to solving the portfolio
problem, and discuss problems that arise with Halperin’s [Hal17] method. We
will use both the update and terminal condition given from Example 2.6.5, and
try to find the optimal value for the utility of the portfolio, Zt, given by (ZT)γ .

We should note that this is a type of reinforcement learning problem where
the instant reward for almost all states are zero. The only states which have
an instant reward are the terminal ones, that is ZT . Because of this, we can’t
set up the same type of portfolio relation as the one used by Halperin. We are
instead using the operator expression as an update. In essence this means that
the value of each non-terminal state is initially zero. But as we work our way
back, using the Equation (2.13),

sup
v∈U
{fv(y) + (LvΦ)(y)} = 0 for all y ∈ G, (5.75)

we will assign a higher value to states that lead to a larger terminal value of
the portfolio.

We can use the HJB equations to provide both the update rule and the
terminal conditions. They are, for the portfolio described above, given by

sup
v
{∂Φ
∂t

+ x(ρ+ (µ− ρ)v)∂Φ
∂x

+ 1
2σ

2v2x2 ∂
2Φ
∂x2 } = 0. (5.76)

and

Φ(t, x) = xγ . (5.77)

The first equation says that the optimal value will occur when we choose the
highest value of v that makes the operator zero.

Using the expression for v, found in Example 2.6.5,

v = −
(µ− ρ)∂Φ

∂x

xσ2 ∂2Φ
x2

. (5.78)

and inserting it back into Equation (5.76), gives us that Φ needs to satisfy

∂Φ
∂t

+ ρx
∂Φ
∂x
−

(µ− ρ)2(∂Φ
∂x)2

2σ2 ∂2Φ
x2

= 0, for t < t0, x > 0, (5.79)

Φ(t, x) = U(x), for t = t0 or x = 0, (5.80)

In order to make clear the connections between the control parts, and their
RL counterparts, we will break it down in a list:

1. Ju(s, x) is the value function, which will correspond to the Q-function
Q(a, s). We note that both are a function of both action and state.

67

5. RL for pricing and hedging exotic options.

2. Φ(s, x) is the optimal value function, that is our Q∗(a, s). This is the
function we are trying to find for each iteration in Halperin’s scheme.

3. Φ(t0, x) = U(x) is the terminal condition.

In the case of the control example we have an initial wealth, Zs = x.

The setup of the problem

The general idea for our setup is as follows:

1. Simulate the sample data. This is done the same way as for the Chap-
ter 5, except we are now generating paths of Equation (5.67) and Equa-
tion (5.68).

2. Create a basis and fill it with the data from the trajectories. This can for
example be done as in Section 5.5, by using a polynomial basis of degree
3.

3. Define the final payoff as ZγT . This will also be the final value of the
Q-value, that is Q(ZT) = ZγT . We will set u = 0 for the final step, so that
the ZT = XT .

4. Discretize the optimality conditions. We need to discretize Equation (5.76)
in order to formalize the update. We will use central differencing in order
to find numerical approximations for the derivatives.

5. Write the numerical approximation in Item 4 so that we have Φn on
one side, and Φn+1 on the other. This Φ-function represents the Q-
function in the QLBS approach, so we now have an expression similar to
Equation (5.39) in the exotic option example.

6. Replace u and Φ by their basis functions, and solve for the weights.

However, we will show that this, which can be seen as the most direct
translation of the QLBS-model presented in this chapter (by which we mean the
formulation of the problem that makes the fewest amount of new assumptions),
will lead to some non-negligible problems.

Discretizing the operator

Since we are working with a numerical solution to the HJB-equations, we
will need to discretize the operator defined in Equation (5.76). We start by
defining the discrete version of the partial derivatives. For this we will use
central differencing and combine it with Monte Carlo estimation. For each MC
simulation of the wealth Zt+1 at time t+ 1, we will define the partial derivative
of sample i as

∂Φit+1
∂Zit+1

≈
Φ(Zi+1

t+1)− Φ(Zi−1
t+1)

Zi+1
t+1 − Z

i−1
t+1

(5.81)

∂2Φ
∂Z2

t+1
≈

Φ(Zi+1
t+1)− 2Φ(Zit+1) + Φ(Zi−1

t+1)
(Zi+1

t+1 − Zit+1)(Zit+1 − Z
i−1
t+1)

, (5.82)

68

5.8. The control problem in the QLBS setting

for each n. We have written this in terms of t+ 1 since we are going to compute
the derivatives using back propagation. For the partial derivative of t+ 1, we
will have to use forward difference. We then get that

∂Φit+1
∂t

≈
Φ(Zit+1)− Φ(Zit)

∆t . (5.83)

Remark 5.8.1. We use forward difference in order to get an expression with
Qn, and because we don’t have Φ(Zn+0.5∆t) or Φ(Zn−0.5∆t). In general we will
never have the value of Φ(Zt−θ) for any theta, because of the back propagation.

To simplify the notation, we will denote

Φit+1 = Φ(Zit+1), (5.84)
a(Zit+1, v

i
t) = Zit+1(ρ+ (µ− ρ)vi), (5.85)

b(Zit+1, v
i
t) = 1

2σ
2v2
i (Zit+1)2. (5.86)

We can then write the optimality condition in Equation (5.76) as

Φit+1 − Φit
∆t + a(Zit+1, v

i
t+1)

Φi+1
t+1 − Φi−1

t+1

Zi+1
t+1 − Z

i−1
t+1

+ b(Zit+1, v
i
t+1)

Φi+1
t+1 − 2Φit+1 + Φi−1

t+1

(Zi+1
t+1 − Zit+1)(Zit+1 − Z

i−1
t+1)

= 0.
(5.87)

We are thus left with an equation of only t+ 1 dependent terms, and Φit. If
we have the optimal "fraction of wealth" samples vit+1, we can therefore solve
for Φi

t, by using back-iteration. As we will see, however, the setup runs into
some problems when we try to find the optimal v-values.

Formulating the HJB update ♦
Having defined discrete expressions for the HJB-optimality condition in Equa-
tion (4.6), we can use Equation (5.78), derived from the differentiation in
Example 2.6.5, that is

v = −
(µ− ρ)∂Φ

∂x

xσ2 ∂2Φ
x2

. (5.88)

By using the expressions from Section 5.8 with MC estimates from samples,
and inserting them in Equation (5.78), we get

v∗t = −
(µ− ρ)

∑Nmc
i=1

(
Φi+1
t −Φi−1

t

Zi+1
t −Zi−1

t

)
1

Nmc∑Nmc
i=1 Zit

(
σ2 Φi+1

t −2Φit+Φi−1
t

(Zi+1
t −Zit)(Zit−Z

i−1
t)

)
1

Nmc

. (5.89)

However, in this equation, vt is only dependent on the value function Φ and
portfolio Z at time t. Thus we can’t express this in the recursive way, as was
done in the method of Halperin [Hal17], and we are not able to find the optimal
values.

Since we are unable to find these optimal vt’s, we are not able to find the
optimal value function in Equation (5.87) either, and our approach therefore
comes to a halt.

69

5. RL for pricing and hedging exotic options.

Discussion

As we have seen, the method presented by Halperin [Hal17] is flexible in regards
to using different option types. However, as this section shows, it’s way of
formulating the recursive relation is closely related to the way the portfolio
optimization is defined. By changing the expression for the optimal hedge, as
defined originally in Equation (5.23), we loose the natural link to the Bellman
equations (see Section 3.2), and are no longer able to find the analytic solutions.

The basic ideas presented in this section should still be possible to use in a
more data driven method, one which perform the Q-learning algorithm without
using the analytic expressions in the QLBS model. However, because of time
limitations, this proved to be beyond the scope of this thesis.

In the next chapter, we will discuss some concluding remarks, and comment
on possible future work and extensions.

70

CHAPTER 6

Concluding remarks

We have in this thesis studied stochastic optimal control and reinforcement
learning. These two fields study the same problem, and are both based on the
optimality condition proposed by Bellman (see Section 3.2), but also differs
in their use of these equations. We have tried to unify some of the theory
underlying the two fields, and also looked at how the theory can be used in
applications involving portfolio optimization and option pricing.

In Chapter 4 we discussed the lack of convergence proofs concerning the
Q-learner in a continuous action-state space setting. We studied some proofs of
similar algorithms and specific cases, and noted which conditions that seem to
be present in all the proofs. We also discussed whether additional assumptions
made in some of these proofs have connections to the assumptions made in the
HJB-equations. The convergence of the Q-learner in continuous action-state
space settings is an ongoing field of exploration. In Chapter 4, we tried to
address what assumptions might make up the bare minimum of the requirements
for convergence.

One possible idea for future work would be to extend on the method from
Chapter 5 by using the CVaR as a measure of the agents aversion to risk,
as was briefly discussed in Section 5.4. By using the CVaR, we would both
change the analytic expression of the optimal hedge (Equation (5.23)), and
the future risk minimization in the value function (Equation (5.31)). It would
also be interesting to look at true power market data in order to compare the
option price produced by the model with real option prices. This is especially
interesting to consider when comparing different values of the risk parameter
λ, used in the model to quantify an agents aversion to risk. Since we assume
that the agents in a market perceives some risk (they would not want to buy
and sell options otherwise), this parameter is essential for the part of the model
that brings the pricing method into the real, risky world of financial products.

Another idea is to allow for some degree of influence by the hedge on the
state values. This was noted in Section 5.2, and would involve using consecutive
batch learning. In portfolio theory, one usually assumes that the owner of the
portfolio is too small to affect prices in the market by selling or buying stocks. In
the power market discussed in Chapter 5, however, the market usually consists
of fewer, and larger, power market suppliers, and one might therefore assume
that some of these has a certain degree of market power.

In the second part of Chapter 5 we looked at ways to expand on Halperin’s
approach [Hal17], but by using the optimality demand from the HJB-equations as

71

6. Concluding remarks

an update rule. While we did not manage to find the way to do so, we highlighted
which prerequisites were needed to extend the model, and showed why the
straightforward approach leads to expressions involving multiple unknowns.

72

APPENDIX A

Python code for numerical
experiments.

A.1 Simulating Brownian motions

import matplotlib.pyplot as plt
import numpy as np

def bm(T, dt):
#--
"""
Description: Function generating and ploting multiple uncorrelated Brownian

motions in addition to their mean value.

Input: T = terminal time of Brownian motion.
dt = time step size.

Output: Returns array of Brownian motion, as the
cumulated sum of the Brownian increments.

"""
#--
n = int(T/dt)
tt = np.linspace(0, T, n)
for i in range(1,6):

dbm = np.random.standard_normal(n) # Brownian increments.
bm = np.cumsum(dbm)*np.sqrt(dt) #Brownian motion.
bm[0] = 0
mean = 0
mean += np.mean(bm)

plt.rcParams[’figure.figsize’] = (10,8)
plt.rcParams[’lines.linewidth’] = 0.4
plt.plot(tt, bm, label = ’B(t, omega_%i)’ %i, linewidth = 1)
print(np.mean(bm))
#plt.plot(np.mean(bm))
plt.legend()

plt.plot(tt, np.mean(bm)*tt/tt, label = mean)
plt.show()
return(bm)

bm = bm(T, dt)

73

A. Python code for numerical experiments.

A.2 Simulating geometric Brownian motions with Monte
Carlo estimation

import matplotlib.pyplot as plt
import numpy as np
import math as math

def gbm(T, dt, mu, sigma, ic, Nmc):
#--
"""
Description: Function generating and ploting multiple uncorrelated geometric

Brownian motions in addition to their mean value.

Input: T = terminal time of Brownian motion.
dt = time step size.
mu = drift of geometric Brownian motion.
sigma = volatility of geometric Brownian motion.
ic = start value.

Output: returns array of geometric Brownian motion.
"""
#--
n = int(T/dt) # number of time steps.
tt = np.linspace(0, T, n) # array of plotting points.
gbm = np.zeros((n, Nmc))
for i in range(1,Nmc):

bm = np.zeros(n)
dbm = np.random.standard_normal(n) # Brownian increments.
bm[0] = 0
bm = np.cumsum(dbm)*np.sqrt(dt) #Brownian motion.

gbm[:, i] = ic* np.exp((mu - 0.5*sigma**2)*tt + sigma * bm) #GBM.
return(tt, gbm)

#Parameters:
T = 15 # Time.
dt = 0.1 # Time step.
mu = 0.05 # Drift.
sigma = 0.2 # Volatility.
ic = 1. # Initial condition.

tt, gbm = gbm(T, dt, mu, sigma, ic, 100)

#Plots of 6 paths of GBM’s:
for i in range(1,6):

plt.rcParams[’figure.figsize’] = (10,8)
plt.rcParams[’lines.linewidth’] = 0.4
plt.plot(tt, gbm[:, i], label = ’X(t, omega_%i)’ %i, linewidth = 1, linestyle="dashed")
plt.legend()

plt.show()

#Plots of Monte Carlo estimates of GBM mean value:
plt.plot(tt, ic*np.exp(mu*tt), label = ’Analytic computation of mean’, linewidth=1.5)
plt.plot(tt, np.mean(gbm[:, 0:10], axis=1),\
label = ’MC estimate of mean, 10 simulations’, linewidth=1.5)
plt.plot(tt, np.mean(gbm[:, 0:50], axis=1),\
label = ’MC estimate of mean, 50 simulations’, linewidth=1.5)
plt.plot(tt, np.mean(gbm[:, 0:1000], axis=1),\
label = ’MC estimate of mean, 1000 simulations’, linewidth=1.5)
plt.legend()
plt.show()

74

A.3. Pricing exotic options

A.3 Pricing exotic options

import matplotlib.pyplot as plt
import numpy as np
import math as m
from scipy.stats import norm
import pandas as pd
import scipy.interpolate as interpolate
from scipy.linalg import cholesky
import bspline
import bspline.splinelab as splinelab
import time
np.random.seed(15)

t0 = time.time() # Timer for computation time.

sigma = 0.4 # volatility of stock.
mu = 0.0 # Drift of Stock.
S0 = 100 # Initial value of Stock price.
K = S0 # Strike. We use the initial value of the stock.
r = 0.05 # Interest rate.
a = 0.5
etta = 0.6 # Volatility of Wind dynamics.
mu_w = 0.05 # Drift of wind dynamics.

T = 1. # Time of termination.
n= 25 # Number of time steps.
delta_t = T/n # time steps.
gamma = np.exp(-r*delta_t) # discounting factor.
risk_aversion = 0.00001 # Risk aversion.
corr = -0.9 # Correlation of the two Brownian motions.
Nmc = 10000 # Number of simulations.

tt = np.linspace(0, T, n+1)
l = len(tt)
X = np.zeros((Nmc, n+1))
S = np.zeros((Nmc, n+1))

W= np.zeros((Nmc, n+1))
W_= np.zeros((Nmc,n+1))

for j in range(0, Nmc):
dim_bm = 2
norm_ = np.random.standard_normal((n+1,dim_bm)) # Two arrays of Brownian increments.
R = np.array([[1, corr], [corr, 1]]) # corr is correlation.
corr_chol = cholesky(R, lower=True) # Make cholesky decomposition.
norm_ = np.dot(corr_chol, norm_.T) # Create correlated Brownian motions.
norm_ = norm_.T
norm_[0, 0] = np.log(S0)
norm_[0, 1] = 0
norm_[1:,0] = norm_[0,0] + sigma*np.cumsum(norm_[1:,0])*np.sqrt(delta_t) # Sigma-scaled standard BM.
norm_[1:,1] = norm_[0,1] + np.cumsum(norm_[1:, 1])*np.sqrt(delta_t) # Standard BM.
X[j,:] = norm_[:,0] # Brownian motion driving the asset.
W_[j,:] = norm_[:,1] # Brownian motion driving the wind.
S[j, :] = np.exp((mu - 0.5*sigma**2)*tt[:] + X[j,:]) # Stock process.
W[j, :] = np.exp((mu_w - 0.5*etta**2)*tt[:] + W_[j,:]) # Wind process.

delta_S = S[:, 1:n+1] - m.exp(r*delta_t) * S[:,0:n] # Increments of stock process.
delta_S_hat = delta_S[:,:] - np.mean(delta_S[:,:], axis=0) # Difference to mean of increments of S.

""" We create a simple polynomial basis: """
basis_dim = 3

75

A. Python code for numerical experiments.

def poly_basis(x):
"""
Input is a vector with dimension 1 times Nmc of state variable X_t.
Output is matrix of Nmc times basis_dim.
"""
pol = np.stack((np.ones(Nmc), x, np.square(x)))
pol = np.polynomial.polynomial.polyvander(x, basis_dim-1).T
return(pol.T)

""" We create a matrix of of all our datapoints by using the basis: """
A = np.zeros((n, basis_dim, basis_dim))
M_approx = np.zeros((n+1, Nmc, basis_dim))

for i in range(0, n+1):
M_approx[i, :, :] = poly_basis(X[:,i])

""" We define the two functions from equation (52) in Halperin: """

def A_func(t, delta_S_hat, Nmc, M_approx):
""" A is an n x basis_dim x basis_dim dimensional matrix,
based on equation (52) in Halperin. """
delta_S_hat2 = np.square(delta_S_hat[:,t])
Y = np.dot(M_approx[t, :, :].T, M_approx[t, :, :] * delta_S_hat2.reshape(-1,1))
return(Y)

def B_func(t, delta_S_hat, Nmc, M_approx, PI_hat_t):
note that PI_t should be a vector of PI_t for each k.

""" B is an n x basis_dim dimensional matrix, , based on equation (52) in Halperin."""
Y = np.dot(M_approx[t, :, :].T, PI_hat_t * delta_S_hat[:,t])\

+ 1./(2*gamma * risk_aversion)*delta_S[:,t].T) #Risk part is set to zero.
return(Y)

"""
We define our terminal payoff-function by using the expression for the option.
Here we allow for both the payoff-function used by Halperin,
and the payoff-function defining a put-call on energy futures.
"""

def term_payoff(S, W, K, L=1, put = "false"):
if put == "true":

return(np.maximum(K - S, 0))
else:

return(np.maximum(K-S, 0)*np.maximum(W-L, 0))

"""
We then compute values for the action a and the portfolio PI iteratively,
by using the recursivenes of PI.
"""
PI = np.zeros((Nmc, n+1))
phi = np.zeros((basis_dim, n+1)) # vector with weights for hedge.
a = np.zeros((Nmc, n+1)) # a is the hedge.
PI_hat = np.zeros((Nmc,n+1))

PI_hat_func = lambda x: x - np.mean(x, axis=0)
PI[:, n] = term_payoff(S[:, -1], W[:, -1], K)
phi[:,n] = 0
PI_hat[:, n] = PI_hat_func(term_payoff(S[:,-1], W[:, -1], K)) # terminal value of portfolio.

for t in range(n-1, -1, -1):
A_ = A_func(t, delta_S_hat, Nmc, M_approx)
B_ = B_func(t, delta_S_hat, Nmc, M_approx, PI_hat[:,t+1])
phi[:,t] = np.dot(np.linalg.inv(A_), B_)

76

A.3. Pricing exotic options

a[:, t] = np.dot(M_approx[t,:,:], phi[:,t])
PI[:,t] = gamma * (PI[:, t+1] - a[:, t] * delta_S[:, t])
PI_hat[:,t] = PI_hat_func(PI[:,t])

""" Using the computed hedge values, we can now compute the reward R: """
R = np.zeros((Nmc, n+1))
R[:, n] = -risk_aversion * np.var(PI[:, -1])

def R_func(t, a):
R[:, t] = gamma * a[:, t] * delta_S[:, t] - risk_aversion * gamma**2 *np.mean(PI_hat[:, t+1]**2 \
- 2*a[:, t]*delta_S_hat[:, t]*PI_hat[:,t+1] +
a[:, t]**2 * (delta_S_hat[:,t])**2)
return(R[:, t])

""" We define the two functions from in (56) in Halperin. """
def C_func(t, M_approx):

Y = (M_approx[t, :, :].T).dot(M_approx[t, :, :])
return(Y)

def D_func(t, M_approx, R, Q):
Z = np.dot(M_approx[t, :, :].T, (R + gamma * Q))
return Z

"""
We can then find the Q value, which is the optimal price of the option,
by working our way back from t=T, using the regression suggested by
Halperin. We find the weights for the basis expansion, and use these to
find Q:
"""
Q = np.zeros((Nmc, n+1))
Q[:,n] = -PI[:, n] - risk_aversion * np.var(PI[:, n]) # Start value for the Q-function.
def Q_func():

for t in range(n-1, -1, -1):
R[:, t] = R_func(t, a)
C = C_func(t, M_approx)
D = D_func(t, M_approx, R[:, t] , Q[:,t+1])
omega = np.linalg.inv(C).dot(D)
Q[:, t] = np.dot(M_approx[t, :, :], omega.T)

Q_func()

""" Functions for computing the Black-Scholes price:"""
def BS_put(t, S0, sigma, r, K, T):

d1 = 1./(sigma* np.sqrt(T-t)) * (np.log(S0/K) + (r + 0.5*sigma**2)*(T-t))
d2 = d1 - sigma*np.sqrt(T-t)
price = norm.cdf(-d2)*K*np.exp(-r*(T-t)) - norm.cdf(-d1)*S0
return price

def BS_call(t, S0, sigma, r, K, T):
d1 = 1./(sigma* np.sqrt(T-t)) * (np.log(S0/K) + (r + 0.5*sigma**2)*(T-t))
d2 = d1 - sigma*np.sqrt(T-t)
price = norm.cdf(d1)*S0 - norm.cdf(d2)*K*np.exp(-r*(T-t))
return price

print("Put option price is: %s" % (BS_put(0, S0, sigma, r, K, T)))
print(’Halperin estimate of option price.: %s’ % (-Q[0,0]))

""" For comparison we compute the expected value of the return by using the MC simulations: """
total_nmc_payoff = np.sum(term_payoff(S[:,-1], W[:, -1], K))
expected_payoff = np.exp(-r) * total_nmc_payoff/Nmc
print(’Expected payoff by Monte Carlo simulation: %s’ % expected_payoff)
print(’Difference between QLBS and MC estimate: %s’ % (-Q[0, 0] - expected_payoff))
print(’Difference between QLBS and true estimate: %s’ % (BS_put(0,S0,sigma,r,K,T) - (-Q[0,0])))

77

A. Python code for numerical experiments.

print(’Difference between MC and true estimate: %s’%(BS_put(0,S0,sigma,r,K,T)-expected_payoff))

t1 = time.time()

print(’Total computation time: %s ’ % (t1-t0))

""" Plots """
Plot of the 10 first simulations of X:
fig, axs = plt.subplots(2, 2, constrained_layout=False)
axs[1,0].plot(S[0:10, :].T)
axs[1,0].set_title(’20 simulations of stochastic process S.’)
axs[0,0].plot(X[0:10, :].T)
axs[0,0].set_title(’10 simulations of stochastic process X.’)
axs[1,1].plot(W[0:10, :].T)
axs[1,1].set_title(’10 simulations of stochastic process W.’)
axs[0,1].plot(W_[0:10, :].T)
axs[0,1].set_title(’10 simulations of stochastic process W_.’)
plt.show()

print(np.corrcoef(X[10,:], W_[10,:]))# Check correlation.
plt.plot(X[5,:], W[5,:], "o")
plt.title(’Correlation, X and W.’)
plt.show()

fig, axs = plt.subplots(2, constrained_layout=False)
axs[0].plot(a[0:10, :].T)
axs[0].set_title(’10 simulations of optimal a values.’)
axs[1].plot(PI[0:10, :].T)
axs[1].set_title(’10 simulations of optimal payoff values.’)
plt.show()

plt.plot(R[0:10,:].T)
plt.title(’10 simulations of optimal R values.’)
plt.show()
plt.plot(Q[0:11, :].T)
plt.title(’10 paths of Q value.’)
plt.show()

78

List of notation and symbols

Mathematics

(Ω,F) A The measurable space.

(Ω,F , P) The probability space.

(Af)(x) The generator A of Xt.

T̂ The first exit time after s for {Xs,x
r }r≥s.

F The σ-algebra on Ω.

HU The σ-algebra generated by U .

Ω The set of possible states.

Φ(y) The maximum atainable value of the performance func-
tion.

τ The stopping time.

{Bt}t≥0 The Brownian motion.

{Xs,x
h }h≥s The process starting in x, evaluated on [s, h].

{Xt}t∈T The stochastic process.

Cn([0,∞)× R) The space o n times continuously differentiable func-
tions on [0,∞)× R with continuous extensions of the
partial derivative on (0,∞)× R.

Ju(y) The performance function.

P The probability measure.

Qs,x The probability law of Xt.

Yt The time shifted state-control pair.

Machine Learning

α ∈ [0, 1] The learning rate.

γ ∈ [0, 1] The discount factor.

79

A. Python code for numerical experiments.

A The action space.

S The state space.

Ω The environment.

π The policy mapping states to actions.

at(St, Rt) ∈ A The action taken at time t.

b The behaviour policy which drives the learning algo-
rithm in off-policy learning.

Gt+1(π, St) The discounted future reward.

p(s, st+1, a) The transitional probability of going from state st to
st+1 when performing action a.

Qπ(St, at) The action-value function, see Section 3.3

R ∈ R ⊂ R The reward space.

Rt+1(St, at, ω) ∈ R The reward received at time t+ 1, for the state at time
t.

St(St−1, at−1, ω) The state of the environment at time t.

Vπ(St, at) The value function.

80

Bibliography

[BBK08] Benth, F. E., Benth, J. Š., and Koekebakker, S. Stochastic Modeling
of Electricity and Related Markets. WORLD SCIENTIFIC, 2008.
eprint: https://www.worldscientific.com/doi/pdf/10.1142/6811.

[Bel53] Bellman, R. An introduction to the theory of dynamic programming.
Tech. rep. RAND CORP SANTA MONICA CA, 1953.

[Ben03] Benth, F. E. Option theory with stochastic analysis: an introduction
to mathematical finance. Springer Science & Business Media, 2003.

[Gen03] Gentle, J. E. Random number generation and Monte Carlo methods.
eng. New York, 2003.

[Hal17] Halperin, I. “QLBS: Q-learner in the Black-Scholes (-Merton) worlds”.
In: arXiv preprint arXiv:1712.04609 (2017).

[KLM96] Kaelbling, L. P., Littman, M. L., and Moore, A. W. “Reinforcement
learning: A survey”. In: Journal of artificial intelligence research 4
(1996), pp. 237–285.

[KOT11] Konidaris, G., Osentoski, S., and Thomas, P. “Value function ap-
proximation in reinforcement learning using the Fourier basis”. In:
Twenty-fifth AAAI conference on artificial intelligence. 2011.

[LGR12] Lange, S., Gabel, T., and Riedmiller, M. “Batch Reinforcement
Learning”. In: Reinforcement Learning: State-of-the-Art. Ed. by
Wiering, M. and Otterlo, M. van. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 45–73.

[Man] Mansuy, R. “The origins of the word “martingale””. In: ().
[MMR08] Melo, F. S., Meyn, S. P., and Ribeiro, M. I. “An analysis of rein-

forcement learning with function approximation”. In: Proceedings
of the 25th international conference on Machine learning. 2008,
pp. 664–671.

[Mni+15] Mnih, V. et al. “Human-level control through deep reinforcement
learning”. In: Nature 518.7540 (2015), pp. 529–533.

[Øks03] Øksendal, B. Stochastic differential equations. Sixth. Universitext.
An introduction with applications. Springer-Verlag, Berlin, 2003,
pp. xxiv+360.

81

https://www.worldscientific.com/doi/pdf/10.1142/6811

Bibliography

[PBS01] Potters, M., Bouchaud, J.-P., and Sestovic, D. “Hedged Monte-
Carlo: low variance derivative pricing with objective probabilities”.
In: Physica A: Statistical Mechanics and its Applications 289.3-4
(2001), pp. 517–525.

[RUZ02] Rockafellar, R. T., Uryasev, S. P., and Zabarankin, M. “Devia-
tion measures in risk analysis and optimization”. In: University of
Florida, Department of Industrial & Systems Engineering Working
Paper 2002-7 (2002).

[SB18] Sutton, R. and Barto, A. Reinforcement Learning: An Introduction.
Adaptive Computation and Machine Learning series. MIT Press,
2018.

[Sil+18] Silver, D. et al. “A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play”. In: Science 362.6419
(2018), pp. 1140–1144.

[TV97] Tsitsiklis, J. N. and Van Roy, B. “Analysis of temporal-diffference
learning with function approximation”. In: Advances in neural in-
formation processing systems. 1997, pp. 1075–1081.

[WD92] Watkins, C. J. and Dayan, P. “Q-learning”. In: Machine learning
8.3-4 (1992), pp. 279–292.

82

	Acknowledgements
	Contents
	List of Figures
	Introduction
	The theme of the thesis
	The work process
	Structure of the thesis
	My contributions

	Preliminaries
	Introduction
	Spaces, measurable sets and probability theory
	Stochastic processes
	The stochastic integral
	Itô diffusions

	Stochastic optimal control
	Introduction
	The system
	The control
	The evaluating function
	The objective
	The Hamilton-Jacobi-Bellman Equation

	Reinforcement learning
	Introduction
	Markov decision processes
	The RL algorithms: learning from the environment
	Generalization of the state and action space
	Reasons for divergence
	Computational complexity and efficient learning

	Reinforcement learning and stochastic optimal control
	Introduction
	Comparing the general framework
	Formalizing the setting of RL
	Assumptions for the HJB equation
	Combining results from stochastic optimal control and RL

	RL for pricing and hedging exotic options.
	Introduction.
	Exotic options for power markets.
	Modeling the dynamics
	Defining the portfolio and the hedge
	Learning the price of the option and the hedge
	Numerical experiments
	Discussion
	The control problem in the QLBS setting

	Concluding remarks
	Python code for numerical experiments.
	Simulating Brownian motions
	Simulating geometric Brownian motions with Monte Carlo estimation
	Pricing exotic options

	List of notation and symbols
	Bibliography

