
Dynamics of a 2D Bose-Einstein
Condensate With an Impurity

Jonas Rønning

Thesis submitted for the degree of
Master of Science in Theoretical Physics

Institute of Physics
University of Oslo

15/05/2020



ii

Copyright c© 2020, Jonas Rønning

This work, entitled “Dynamics of a 2D Bose-Einstein Condensate With an Impurity”
is distributed under the terms of the Public Library of Science Open Access License, a
copy of which can be found at http://www.publiclibraryofscience.org.



Abstract

In this project we have studied the hydrodynamic forces that are acting on a small
impurity submerged into a two-dimensional Bose-Einstein condensate at finite temper-
ature. The condensate is modeled by the damped Gross-Pitaevskii equation which we
have coupled to a repulsive Gaussian potential to model the interaction with the impur-
ity. We have considered a weakly coupled impurity in an untrapped condensate. The
perturbations away from the condensates ground-state, both the ones caused by the
particle and those that are not, are assumed to be small. We therefore use linear per-
turbation analysis to find expressions for the hydrodynamic forces and compare these
expressions to the classical Maxey-Riley equation. We find that the force caused by the
perturbations that were in the fluid in the absence of the particle are proportional to the
local condensate acceleration. This is analogous to the inertial term in the Maxey-Riley
equation. The force due to the perturbations that were caused by the impurity takes,
for slowly moving impurities in the steady-state, the form of the Stokes’ drag. The
obtained expressions are then compared to numerical simulations.
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Chapter 1

Introduction

One thing that characterises the fluids we are interacting with on a daily basis is that
they have some resistance to flow due to internal friction between fluid layers. This
is the fluids viscosity [1]. This is the property we normally think about as the fluids
thickness, where thicker fluids like honey have higher viscosity than thin fluids like
water [2]. In some exotic fluids there are no internal friction. These fluids are called
superfluids. Some examples of superfluids are helium below 2.17K, cold dilute alkali
gasses, polariton condensates and dilute solutions of bacteria [3, 4, 5, 6, 7, 8]. Of these
the first three experience superfluidity due to quantum effects, while the solution of
bacteria experience superfluidity due to the colective motion of the bacteria. Superfluids
exhibit many fasinating properties like dissipationless flow, quantized vortices and the
fountain effect [3, 9]. The property of dissipationless flow makes it possible for the fluid
to maintain persistence flows, and it results in a vanishing drag force.

Superfluidity was first discovered in liquid helium in 1938 by P. Kapitza [10, 3],
when he measured that the viscosity of liquid helium dropped by a factor of at least
1500 when cooled below 2.17K. This is called the λ-point, because the curve for specific
heat is shaped like the letter λ at the transition temperature. He suggested that the
helium below the λ-point entered a new state with vanishing viscosity that he called
a superfluid in analogy to superconduction. A phenomenological description, and the
link between superfluidity and the quantum properties of helium was established by L.
Landau in the 1940s[3]. The model he developed separates the helium into a superfluid
and a normal fluid component. Where the normal fluids and the superfluids velocity
fields are independent and described by hydrodynamic equations. This is called the two
fluid model, and it gives a good description of the superfluidity of liquid helium.

To describe the superfluidity in dilute alkali gasses one uses that they undergo Bose-
Einstein condensation at sufficiently low temperatures [11]. A Bose-Einstein condensate
is a phase that emerge in Bose fluids when the thermal wavelength of the particles starts
to overlap, making the quantum mechanical properties of the particles important [12].
One can describe the condensate at zero temperature by the Gross-Pitaevskii equation
[13], which was derived independently by Gross and Pitaevskii in the 1960s[14, 15].
This is a mean-field equation describing the collective wavefunction of the atoms that
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are in the ground-state. The Gross-Pitaevskii equation can be modified to describe the
condensate at finite temperature by adding noise and damping terms [16, 17, 18], or
only a damping term. The equation we get when adding the damping term is called
the damped Gross-Pitaevskii equation. It can also be modified to describe polariton
condensates by adding pumping and damping terms [6].

There have been many studies on the interactions between Bose-Einstein condens-
ates and impurities. Experimentally one have among others studied how a polariton
condensate interact with a defect in the non-linear media, the effect of stirring a con-
densate of dilute alkali atoms with lasers, and the effect of putting different types of
particles like neutral atoms, ions or electrons into the condensate [19, 20, 21, 22, 23].
There are many ways of modeling this systems that are suited for answering different
types of questions. One approach that is suitable for studying the effect of an obstacle
on the superfluid flow is to model the condensate with the Gross-Pitaevskii equation
and add the condition that the density vanishes on the impurity’s boundary [24]. This
approach is however not fit for finding the coupled impurity-condensate dynamics, and
the boundary conditions introduces non-linearities that can’t be dealt with analytic-
ally. An approach that can be used for finding the impurity-condensate dynamics is to
model the interaction with the impurity as condensate particles scattering on a potential
[25, 26, 27, 28, 29]. The forces on the particle is then found by applying the Erhenfest
theorem [30]. This model have been used to study the forces in the steady state limit in
condensates at zero temperature described by the Gross-Pitaevski equation [25, 26, 31],
and in driven non-equilibrium condensates [27]. These studies have mostly been con-
cerned on the criteria for superfluidity in a condensate that is stirred by an impurity
at constant velocity in the steady-state. For the condensates at zero temperature one
gets that the drag force vanish if the relative velocity between the condensate and the
impurity is below a critical velocity. Above the critical velocity the forces are non-zero,
but bear little resemblance with the classical Stokes’ drag.

In this thesis we are studying the interaction between a Bose-Einstein condensate
of weakly interacting particles and an impurity at finite temperature. We want to see
if the forces that are acting on the impurity bear any resemblance with the classical
hydrodynamic forces that are acting on a sphere placed in a classical fluid. We use the
damped Gross-Pitaevskii equation to model the condensate at finite temperature and
couple it to a repulsive Gaussian potential to model the interaction with the impurity.
We consider weakly coupled impurities and uses perturbation theory to find analytical
expressions for the forces. The expressions are then simplified to find in what limit
they look similar to the analog classical equations. We then test these equations by
numerically integrating the damped Gross-Pitaevskii equation coupled to the impurity
and calculate the force given by Ehrenfest’s theorem. The resulting forces are compared
with the forces given by the analytical expressions we found.

The outline of the thesis is as follows. In chapter 2 we discuss the concept of Bose-
Einstein condensation. We derive the Gross-Pitaevskii equation and use it to find and
motivate some of the properties of the condensate. In chapter 3 we discuss the criteria
for superfluidity following the arguments of Landau. We then use this criteria to show
that a weakly interacting Bose-Einstein condensate at zero temperature is a superfluid.
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We also find the dispersion relation for the condensate and look at the effects that finite
temperatures have on the exitations in the condensate. We then turn our attention to
the equations of motion for a small particle submerged in a classical incompresible fluid
in chapter 4, and look at simplifications of it. Chapter 5 deals with a condensate that
is stirred by an impurity at zero temperature. We find the drag force on the impurity
and use it to find the heating of the condensate. We also discuss qualitatively the wave
pattern that is created by the particle. In chapter 6 we present the numerical setup
and the methods that are used to test the theoretical predictions we make in chapter
7. Chapter 7 contains the main results obtained during this project. It starts with the
derivation of analytical expressions for the forces that are acting on the particle. The
obtained equations are then compared with the classical forces that where presented in
chapter 4. We then compare the expressions with numerical simulations. The thesis is
concluded in chapter 8 and we present an outlook for further studies. As a result of this
project there was written a paper that is submitted in ref. [32]. The latest submitted
version( per 15/05 ) of this paper is attached in the appendix.
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Chapter 2

Bose-Einstein Condensaton

In this chapter we discus the concept of Bose-Einstein condensation within the frame-
work of the mean-field approximation. In section 2.1 we start by defining the Bose-
Einstein distribution and shows how it leads to a condensation in momentum space for
an ideal Bose gas. In section 2.2 we discus condensation of interacting bosons in 2D. We
then derive the Gross-Pitaevskii equation in section 2.3 and in the following sections we
use it to define concepts that are useful when discussing the condensate, and extend it
to describe a condensate at finite temperature.

2.1 Condensation of an Ideal Bose Gas

An ideal Bose gas is a gas of non-interacting bosons. The characteristic property of
bosons is that multiple particles can occupy the same quantum state simultaneously.
The occupation of a single particle state is given by the Bose-Einstein distribution [11]

fBE(ε) =
1

eβ(ε−µ) − 1
. (2.1)

Where ε is the energy of the state, µ is the chemical potential and β = 1
kBT

where
kB is the Boltzmann constant. The ideal Bose gas undergo a phase transition when
cooled below a critical temperature Tc, creating a Bose-Einstein condensate (BEC).
The transition happens when a macroscopic number of particles are occupying the
single particle ground state. What is interesting with this phase transition is that it
is not caused by the particles interactions(obviously its a non-interacting gas), but by
their statistics.

The particle density of an ideal Bose gas in the thermodynamic limit, N and V
goes to infinity while the ratio stays fixed, is given by the Bose-Einstein distribution as
[11, 33]

ρ =
1

V

1

e−βµ − 1
+

∫ ∞

0

g(ε)

eβ(ε−µ) − 1
. (2.2)

Where

g(ε) =
m3/2

√
2π2~3

ε1/2 (2.3)
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is the density of states in three dimensions. The first term in eq. (2.2) is the density in
the ε = 0 state, while the second is the density in the exited states. One have to consider
the ground state separately before taking the continuum limit, because it will not be
counted in the integral. Since V →∞ the density of the ground state is zero unless the
occupation diverges, i.e becomes macroscopic. One can carry out the integration in eq.
(2.2) and get that the density of the exited states is [11, 33]

ρex =

(
mkBT

2π~2

)3/2

g3/2(z). (2.4)

We have here introduced the fugacity z = eβµ, and the polylogathrimic function

g3/2(z) =

∞∑

p=1

zp

p3/2
. (2.5)

The series in eq. (2.5) converges if |z| < 1 and diverges for |z| > 1. When z = 1
the series converge, but have an infinite derivative. We see that the function g3/2(z) is
increasing for z > 0. This means that there is a maximal particle density in the exited
states given by

ρmaxex =

(
mkBT

2π~2

)3/2

g3/2(1) ≈ 2.612λ−3. (2.6)

Where λ is the thermal de Broglie wavelength. Since this function is proportional to
T 3/2 with no constant term we can for any non zero density ρ lower the temperature so
that ρ > ρmaxex . The remaining density have to be the ground state density. Since we
are considering the thermodynamic limit this means that the ground state occupation
number diverges. At zero temperature the maximal occupation of the exited states
vanish. This means that all particles are in the ground-state. The critical temperature
is given as the temperature where the ground state gets a macroscopic occupation, i.e
when ρc = 2.612λ−3. This means that the quantum statistics becomes important when
the wavelengths of the particles starts to overlap. The explicit expression for the critical
temperature is

Tc =
2π~2

kBm

( ρ

2.612

)2/3
. (2.7)

The first BEC was realised in liquid helium in the 1930s when it was cooled below
2.17K [11]. The condensation of the liquid helium is however not a good test of the
model described above, since the interactions between the helium atoms in the fluid
are not weak. The first example of a condensate of weakly interacting particles was
not realised before 1995, in trapped gasses of alkali metals [4, 5]. Figure 2.1 shows the
velocity distribution of a dilute gas of rubidium right before and after it condense. The
temperature is decreasing to the right in the figure. To the left we see the thermal cloud
right before the gas condenses. When the temperature decreases a spike is forming. This
spike is the atoms that are almost stationary, indicating a macroscopic occupation of
the ground-state. Reducing the temperature further almost all of the atoms are in the
ground-state with only a small occupation of the exited states.
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Figure 2.1: Velocity distribution of a trapped dilute alkali gas. To the left we see the
distribution right before the appearance of the condensate. In the middle we see the
gas when the condensate appears. We can see the coexistence of the thermal cloud and
the condensate. On the right we have the condensate at lower temperatures, where the
thermal cloud is almost gone. Figure from [34] with data from [4].

2.2 2D Interacting Bose-Einstein Condensate

Above we showed that the formation of a three dimensional BEC in a weakly inter-
acting Bose gas is due to the particles statistics and not their interactions. In two
dimensions the picture is different. An untrapped weakly interacting two dimensional
Bose gas is a true condensate at T = 0, but any non-zero temperature will destroy it
[35]. Even if there is no true condensate in two dimensions one have a transition to a
quasicondensate state below a critical temperature TBKT . This is called the Berezinkii-
Kosterlitz-Thouless(BKT) transition [36].

The quasicondensate state is a condensate with fluctuating phase [37, 38]. There
is a formation of local condensates in the system that can be described by local wave-
functions. Above the transition temperature the correlation of the phases of the local
wavefunctions is exponentially decaying with distance, while below there is a power law
decay. Since the correlation of the phases in the quasicondensate is decaying it is not
possible to describe the whole system with one wavefunction. However since the decay
is slow there exist a scale Rc so that if we are considering a cell of size L << Rc we can
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treat it as a true condensate and describe it with one wavefunction [37]. There is also
a smallest scale the correlation length ξ, which is the typical length scale of distortion
in the condensate.

The mechanism behind this change in the long range behaviour of the condensate at
the critical temperature is due to the behaviour of the vortices in the condensate [38, 39].
As will be discussed in section 2.9 vortices are phase defects that caries the circulation
of the BEC [40]. They are characterised by having zero density at their core and carry
a continuous phase rotation of 2πn around it. The most relevant vortices are the single
charged ones n = ±1, since the others are unstable and will split up into single charged
ones [39]. In the condensate one can observe two forms of vortices, free vortices and
bound vortex-antivortex pairs. This two forms have different effects on the coherence
of the condensate. The vortex-antivortex pairs cancel each other and have little effect
on the phase of the condensate, while the free vortices ruins the phase coherence. The
BKT transition happens because the free vortices can only be found above the critical
temperature. Below the transition temperature we have only vortex-antivortex pairs,
such that the only contribution to the decay in the coherence is due to the thermally
exited phonons [39].

2.3 The Gross-Pitaevskii Equation

The second quantized Hamiltonian describing a dilute Bose gas is given by [13]

H =

∫
d3r
[
− ~2

2m
Ψ̂†(r)∇2Ψ̂(r)+Ψ̂†(r)U(r)Ψ̂(r)+

1

2

∫
d3r′Ψ̂†(r)Ψ†(r′)Uint(r−r′)Ψ̂(r′)Ψ̂(r)

]

(2.8)
Here Ψ̂(r) and Ψ̂†(r) are the annihilation and creation operators for particles at posi-
tion r. They can be written as Ψ̂(r) =

∑
α Ψα(r)âα, where Ψα(r) is a single-particle

wavefunction and âα is the annihilation operator for the single-particle α state. U(r) is
an external potential, and Uint(r− r′) is an interacting potential. For a dilute gas one
approximate the interaction as point particle collisions and set the effective interaction
potential as Uint(r− r′) = gδ(r− r′). Where g = 4π~2as

m and as is the s-wave scattering
length [13]. The Hamiltonian then becomes

H =

∫
d3r
[
− ~2

2m
Ψ̂†(r)∇2Ψ̂(r) + Ψ̂†(r)U(r)Ψ̂(r) +

1

2
gΨ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)

]
. (2.9)

We find the time evolution of Ψ̂ by using the Heisenberg equation

i~∂tΨ̂ = [Ψ̂, H]. (2.10)

Using that [Ψ̂(r), Ψ̂†(r′)] = δ(r − r′), and
[
Ψ̂,∇2Ψ̂

]
= 0 the time dependence of the

field becomes

i~∂tΨ̂(r) = − ~2

2m
∇2Ψ̂(r) + U(r)Ψ̂(r) + gΨ̂†(r)Ψ̂(r)Ψ̂(r). (2.11)
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We then decomposes the operator as Ψ̂ = ψ̂ + φ̂. Here ψ̂ is the annihilation operator
for the ground state and φ̂ is for the exited states. As discussed above a BEC is formed
when the occupation of the ground state N0 becomes macroscopic. This means that the
fraction of particles in the ground state N0

N is finite even in the thermodynamic limit
when N → ∞. Since the fraction is finite we must have that N0 → ∞, meaning that
the states with occupation number N0 and N0 ± 1 is the same physical configuration.
We can therefore treat â0 and â†0 as complex numbers, and ψ̂ becomes a classical field.
If the occupation of the exited states is low, e.g at zero temperature, we can neglect the
φ̂ and get

i~∂tψ(r) = − ~2

2m
∇2ψ(r) + U(r)ψ(r) + g|ψ(r)|2ψ(r). (2.12)

This is the Gross-Pitaevskii equation(GPE). It can also be obtained by using a variation
procedure [13]

i~∂tψ =
δH

δψ∗
. (2.13)

Here H is the Hamiltonian for the classical field

H =

∫
d3r

[
~2

2m
|∇ψ|2 + U|ψ|2 +

g

2
|ψ|4

]
. (2.14)

It is common to transform the GPE to the comoving frame ψ −→ ψe−i
µ
~ t, since the

ground state oscillates with the chemical potential µ = ∂E
∂N [13]. This gives an extra

−µψ on the right, such that the GPE becomes

i~∂tψ(r) = − ~2

2m
∇2ψ(r) + [U(r)− µ+ g|ψ(r)|2]ψ(r). (2.15)

As for eq. (2.12) we can obtain this equation by a variation principle [13, 41]

i~∂tψ =
δH
δψ∗

. (2.16)

With H = H − µN0 as the Hamiltonian. It is given by

H =

∫
d3r

[
~2

2m
|∇ψ|2 + U|ψ|2 +

µ2

2g
(
g

µ
|ψ|2 − 1)2

]
. (2.17)

Where we have completed the square for g
2 |ψ|4 − µ|ψ|2 and ignored a constant en-

ergy term[41]. This Hamiltonian will conserve energy as long as the potential is time
independent. We can see this by taking the time derivative, which gives [41]

∂tH =

∫
d3r

(
δH
δψ

∂tψ +
δH
δψ∗

∂tψ
∗ +

δH
δU ∂tU

)

=

∫
d3r

(
δH
δψ

1

i~
δH
δψ∗
− δH
δψ∗

1

i~
δH
δψ

+
δH
δU ∂tU

)
=

∫
|ψ|2∂tUd3r. (2.18)

And it is clear that if we have a time independent potential the energy is conserved.
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2.4 The Thomas-Fermi Ground State

When working with the BEC it is convenient to know what the ground state of the
system is. We will use it as a starting point for perturbation theories when studying
the condensate analytically, and when doing numerics we will use it to find an initial
wavefunction. We can find the ground state of the GPE by looking at stationary
solutions to eq. (2.15) [40]. In the steady-state the equation takes the form

µψ =

[
− ~2

2m
∇2 + U + g|ψ|2

]
ψ. (2.19)

This is the time-independent Gross-Pitaevskii equation. If we set g = 0 this becomes
the time-independent Schrödinger equation, with the energy replaced by the chemical
potential. When considering non-zero interactions between the bosons this equation be-
comes non-linear and hard to solve analytically. We can make it simpler by considering
a large number of particles in a nearly uniform condensate with repulsive interactions
(g > 0). In this case the particles are pressed towards the edge of the condensate
[40, 13], making it flat and increasing its radius. The density fare from the edge is then
slowly varying, so that the kinetic energy of the ground state is small compared to the
interaction energy and it can be neglected. This is the Thomas-Fermi approximation.
The wavefunction in this approximation is

|ψTF |2 =
µ− U
g

(2.20)

when µ > U and zero else. If we have a spherical harmonic magnetic trap U = 1
2mω

2
hor

2

we find that the size of the condensate is given by the Thomas-Fermi radius

R2
TF =

2µ

mω2
ho

. (2.21)

Rewriting the ground state in terms of this we get

|ψTF |2 =
µ

g

(
1− r2

R2
TF

)
. (2.22)

We can see from this that the Thomas-Fermi approximation breaks down near the edges
of the condensate due to large variations when r comes close to RTF .

2.5 Reduction of Dimensionality

The effective dimension of the BEC can be controlled by adjusting the trapping poten-
tial. We can see this by considering a condensate that is trapped in a pancake formed
harmonic oscillator potential

U(r) =
1

2
m(ω2

r (x
2 + y2) + ω2

zz
2). (2.23)
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The GPE eq. (2.15) can then be reduced to an effective two dimensional equation[40]
by making sure that the frequency ratio ωr/ωz and the harmonic oscillator length
aho,z ≡

√
~/(mωz) are sufficiently small. Under this assumptions we can decompose

the wavefunction in a component in the xy-plane and the axial component. We are
therefore looking for solutions of the form

ψ(r, t) = ψ(x, y, t)φ(z). (2.24)

The axial component φ(z) is because of the tight confinement approximately given as
the wavefunction for a harmonic oscillator and it satisfy the equation

~2

2m
∂2
zφ(z)− 1

2
mω2

zz
2φ(z) + µφ(z) = 0. (2.25)

Since the trapping frequency is so large the exited states are suppressed. The axial
component is therfore the ground state wavefunction of the harmonic oscillator

φ(z) = π−1/4a
−1/2
ho,z e

−(z2/2a2ho,z). (2.26)

Inserting this wavefunction into eq. (2.15) multiplying with φ∗ and integrating out the
axial dependence we get the two dimensional GPE given by

i~∂tψ(r2D) = − ~2

2m
∇2
⊥ψ(r2D) +

[
U2D(r2D)− µ+ g2D|ψ(r2D)|2

]
ψ(r2D). (2.27)

Where g2D = g/(
√

2πaho,z) is the effective 2D coupling constant, r2
2D = x2 + y2,

U2D(r2D) = 1
2mω

2
rr

2
2D and ∇2

⊥ = ∂2
x + ∂2

y . We will drop the subscripts since we are
mostly working in 2D. The exception is chapter 4 which is in three dimensions.

2.6 Dissipation

At finite temperature the ground state is not fully populated and there is some pop-
ulation in the exited states. The interaction between particles in the condensate and
the exited states can be modeled by adding a dissipative term to the GPE [41]. This
results in energy dissipation from the condensate into the exited states. The GPE then
becomes the damped Gross-Pitaevskii equation (dGPE)

i~∂tψ(r) = (1− iγ)
[
− ~2

2m
∇2ψ(r)− µψ + V (r)ψ(r) + g|ψ(r)|2ψ(r)

]
. (2.28)

Where the dimensionless parameter γ is a function of temperature, chemical potential
and the energy of the thermal cloud [17, 18]. It is typically very small, around 10−4

in typical experiments with rubidium. The dGPE can be derived from the stochastic
Gross-Pitaevskii equation, which is obtained via a microscopic reservoir theory [17, 18].
In this theory one defines an energy cutoff εc. The particles with energy above the cutoff
are treated as thermalized, while the particles below are the ones that are described by
the condensate wavefunction. The interactions between the thermalized particles and
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the atoms in the condensate creates damping and noise terms. We can neglect the noise
at sufficiently low temperatures, leaving us with the dGPE[18].

One can see that the effect of the parameter γ is to remove energy from the con-
densate by considering the change in energy of the condensate, which is now given by
[41]

∂tH =

∫
d2r

(
δH
δψ

∂tψ +
δH
δψ∗

∂tψ
∗ +

δH
δU ∂tU

)

=

∫
d2r

(
δH
δψ

1− iγ
i~

δH
δψ∗
− δH
δψ∗

1 + iγ

i~
δH
δψ

+
δH
δU ∂tU

)
= −2γ

~

∫
d2r| δH

δψ∗
|2+

∫
|ψ|2∂tUd2r.

(2.29)

Since the first term is negative its clear that the effect of it is to dissipate energy out of
the system. If one have a time dependent potential one can balance out this effect by
adding the same amount of energy that is dissipated.

2.7 Dimensionless Units

To make the analytical and numerical work easier we can introduce dimensionless units.
As the unit for speed we use the speed of sound in the condensate c2 = µ/m, see section
3.2. As the unit for length we use the healing length ξ = ~/mc = ~/√mµ. Which sets
the length for typical distortions in the condensate. We can see this from the fact that
a distortion over a distance ξ is accompanied by a rise in the kinetic energy of order
~2/mξ2 [41]. This is allowed as long as the increase in the energy is not larger than
the chemical potential. The unit for time is then given by τ = c/ξ = ~/µ. The unit
for energy is the chemical potential µ. Rescaling the dGPE according to these units it
becomes

i∂tψ(r) = (1− iγ)
[
− 1

2
∇2ψ − ψ + V ψ +

g

µ
|ψ|2ψ

]
. (2.30)

We rescale the wavefunction to ψ → ψ
√
µ/g. Note that

√
µ/g is the Thomas-Fermi

ground state for an uniform condensate. Which is very convenient when considering
perturbation theories. The dimensionless equation is then

∂tψ(r) = (i+ γ)
[1
2
∇2ψ + (1− V − |ψ|2)ψ

]
. (2.31)

So that the only adjustable parameter is the thermal drag γ. As mentioned the size of
this thermal drag is of order 10−4 in typical experiments, but we will consider drags of
the size 10−2 to see its effect clearer. Note that there is an other convention for units
that is commonly used, for example in [42], where the half in front of the Laplacian is
removed.

2.8 Hydrodynamics

We want to show that the dGPE can be transformed into a hydrodynamical descrip-
tion of the condensate. To do this we first take the Madelung transform ψ(r) =



2.8 Hydrodynamics 13

√
ρ(r)eiΦ(r)[41, 17]. Here ρ = |ψ|2 is the particle density, while Φ is a complex phase.

The current density of ρ is given by

J =
~

2mi
(ψ∗∇ψ − ψ∇ψ∗) =

~
2mi

(
√
ρ∇ρ+ ρi∇Φ−√ρ∇ρ+ ρi∇Φ) =

~
m
ρ∇Φ = ρv.

(2.32)
We have here identified the superfluid velocity as v = ~

m∇Φ. Inserting the Madelung
transformation into eq. (2.28) and multiplying with ψ∗ we get the two equations

∂tρ+∇ · (ρv) =
2γρ

~
(µ− Ueff ), (2.33)

and
~∂tΦ = µ− Ueff +

~γ
2ρ
∇ · (ρv). (2.34)

From the real and the imaginary part. Notice that eq. (2.33) gives that the particle
number is only conserved when Ueff = µ. This term is driving the condensate into
particle number equilibrium with the thermal cloud [17]. The effective potential is
given by

Ueff =
mv2

2
+ U + gρ− ~2

2m

∇2√ρ
√
ρ
. (2.35)

The last term in the effective potential is the quantum pressure. It is typically very
small unless the density ρ is changing rapidly [41, 17]. If we now take the gradient of
eq. (2.34) we get

~∂t∇Φ = −∇mv2

2
−∇(U + ρg) +

~γ
2
∇∇ · (ρv)

ρ
+

~2

2m
∇∇

2√ρ
√
ρ
. (2.36)

Using the product rule on the second to last term and assuming that we are far away
from vortices so that we can neglect terms that includes the curl of the velocity this
equation becomes

∂tv + v · ∇v = − 1

m
∇(U + gρ) +

~γ
2m
∇2v +

~2

2m2
∇∇

2√ρ
√
ρ

+
~γ
2m
∇(∇(ln ρ) · v). (2.37)

Assuming that the condensate is slowly varying we can remove the two last terms and
get

∂tv + v · ∇v = − 1

m
∇(U + gρ) +

~γ
2m
∇2v. (2.38)

This is a quantum Navier-Stokes equation where (U + gρ) is the pressure term and the
dynamical viscosity is given by νq = ~γ

2m or νq = γ
2 in the dimensionless units [17]. It is

clear that under these assumptions the condensate behave as an inviscid fluid at T = 0,
and follows a quantum Euler equation. It is in other words a superfluid, we will discuss
this in more dept in the next chapter. The finite viscosity at T > 0 is caused by the
interaction between the thermal cloud and the condensate. We are therefore sometime
referring to γ as the thermal drag or the thermal viscosity.
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2.9 Vortices

As mentioned in section 2.2 the vortices in a BEC are phase defects that carries the
circulation. Something that characterises the flow in a BEC is that the circulation
is quantized. We can see this directly from the Madelung transformation. Since the
wavefunction of the condensate is single valued the circulation around any closed curve
C is given by

Γ =

∮

C
v · dl =

~
m

∮

C
∇Φ · dl = 2π

~
m
n. (2.39)

Where n is an integer, the circulation of the fluid is therefore quantized in units of 2π ~
m

[40]. We now consider a condensate where the phase is continuous everywhere except
at some point. We place a closed curve in the condensate and change it continuously
without letting it pass through this point [42]. The circulation around the curve can
then only change continuously because the phase is continuous. However the circulation
is quantized so it has to be constant. If the circulation is non-zero and we deform the
curve in this way until it becomes a point, then the gradient of the phase at that point
has to be infinite [42]. This point with circulation 2π~/m · n and singular phase is a
quantized vortex with charge n. Since the energy of the vortex should not be infinite
the density has to vanish. The vortices therefore have a core with zero density. The
size of the vortex core is characterised by the healing length [40]. Knowing that the
circulation is due to point like defects we can find the velocity profile around one vortex
from eq. (2.39) as

v = n
~
mr

θ̂. (2.40)

Where θ̂ is the azimuthal unit vector and r is the distance from the vortex. We have
here assumed azimuthal symmetry and that the net flux into the vortex is zero, i.e the
vortex is neither a sink nor a source. An effect of the quantization of the circulation
is that single charged vortices are stable. This is because the circulation around an
isolated vortex can’t gradually decrease. Vortices can be removed from the condensate
by vortex-antivortex collisions, where two vortices with opposite charge annihilates each
other.



Chapter 3

Superfluidity.

In this chapter we discus the superfluidity of a BEC. We start by discussing the criteria
for superfluidity, and then we proceed to show that the BEC fulfils this criteria at zero
temperature. We also find the dispersion relations for small exitations in the condensate.

3.1 Landau’s Criteria for Superfluidity

A superfluid is characterised by its ability to flow without friction when flowing under a
critical velocity. This behavior was first observed in liquid helium below 2.17K [3]. The
superfluidity observed in helium is a quantum effect that is caused by the discretisation
of excitations in the fluid. When a fluid flowing past an obstacle experience friction
part of its kinetic energy is converted into thermal energy[3]. If the fluid heats up it
means that it makes a transition into an exited state. Since the energy of the excited
states are quantized we can’t excite the fluid if the velocity is below a critical velocity,
and therefore we get a frictionless flow. This is illustrated in figure 3.1 which shows the
heating caused by a moving laser in a superfluid and a thermal gas.

Figure 3.1: The figure shows the density of superfluid and a thermal gas after they have
been stirred by a laser. A decrease in density indicates heating. For the superfluid (blue,
whole) there is no heating below a critical speed, while the thermal cloud (red, hollow)
experiences heating for any stirring velocity. The critical velocity of the superfluid can
be found from a bilinear fit. Figure from [20].

When the fluid is heated to the lowest exited state an excitation is created. Consider
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a fluid flowing past an obstacle with velocity v, creating excitations. Let the energy
and momentum of the excitation in the frame moving with the fluid be ε(p) and p
respectively. The energy in the frame of the obstacle is then changed by[3]

ε(p) + p · v. (3.1)

This change of energy have to be smaller than zero in order for the transition to be
energetically favorable. We see that the second term is smallest when the momentum of
the excitation is opposite of the flow velocity. The condition for creating an excitation
is then

v >
ε(p)

p
. (3.2)

It is sufficiently that this condition is fulfilled at the minimum of the ratio, so that
the critical velocity becomes

vc = min
p

ε(p)

p
. (3.3)

This is the Landau critical velocity [3]. If this critical velocity is non-zero the fluid flows
without friction at velocities below this, and we call it a superfluid.

3.2 Dispersion Relation and Critical Velocity.

Let us look at how small excitation’s behave in a weakly interacting Bose-Einstein
condensate described by the dGPE eq. (2.28). We write the wavefunction on the form

ψ = ψh + δψ0. (3.4)

Where ψh is the ground state and δψ0 are small perturbations. Linearising the dGPE
with respect to δψ0 gives [40]

i~∂tδψ0 = (1− iγ)

[
− ~2

2m
∇2δψ0 + (U + 2g|ψh|2 − µ)δψ0 + g|ψh|2δψ∗0

]
. (3.5)

We write the perturbation as δψ0 = u(r)e−iωt + v∗(r)eiω
∗t and consider an uniform gas

with U = 0. For a uniform gas the Thomas-Fermi ground state eq. (2.20) gives that
µ = gρh. Inserting this into eq. (3.5) we get

[
~ωu(r) + (1− iγ)

(
~2

2m
∇2u(r)− gρhu(r)− gρhv(r)

)]
e−iωt (3.6)

+

[
−~ω∗v∗(r) + (1− iγ)

(
~2

2m
∇2v∗(r)− gρhv∗(r)− gρhu∗(r)

)]
eiω
∗t = 0. (3.7)

Since e−iωt and eiω∗t are rotating independently in time the coefficients in front of them
have to be zero. We therefore get two equations for u and v. Transforming to Fourier
space the equations read



~ω − (1− iγ)

[~2k2
2m + gρh

]
−(1− iγ)gρh

−(1 + iγ)gρh −~ω − (1 + iγ)
[~2k2

2m + gρh
]






ũ(k)

ṽ(k)


 = 0. (3.8)
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This can only give non-zero solutions if the determinant of the matrix vanishes. This
leads to the equation

(~ω)2 + 2iγ~ω
[
~2k2

2m
+ gρh

]
− (1 + γ2)

~2k2

2m

[
~2k2

2m
+ 2gρh

]
= 0. (3.9)

We then find the following dispersion relation for the exitations

~ω = −iγ
[
gρh +

~k2

2m

]
+

√
~2k2

2m

[
~2k2

2m
+ 2gρh

]
− γ2(gρh)2. (3.10)

From the decomposition of the perturbation δψ0 we see that the imaginary part of the
dispersion relation corresponds to exponential damping, while the real part corresponds
to rotation in the complex plane i.e oscillations. The imaginary part grows quadratic
with the wavenumber, such that high frequency exitations are damped faster than the
low frequency ones. The damping rate is proportional to the thermal drag and vanish
at zero temperature. The group and phase velocities of the waves can be found from
the real part of the dispersion relation. The group velocity is given as dRe(ω)/dk. It is
the velocity of a single wavepacket [1]. The phase velocity is defined as Re(ω)/k. This
is the propagation velocity of the waves phase. In the limit of small wavenumber the
group and phase velocities are

vg =
gρh
m ~k√

gρh
m ~2k2 − γ2(gρh)2

(3.11)

and

vp =

√
gρh
m
− γ2(gρh)2

~2k2
(3.12)

respectively. When k → 0 it seams like these velocities becomes imaginary. This
happens when γ2(gρh)2 > ~2k2(gρh)/m. This is not the case since the dispersion
relation also becomes purely imaginary for these values of k. This means that the
exitations with wavenumbers k2 ≤ γ2(gρhm)/~2 don’t propagate in the condensate.

In the limit of γ = 0 the dispersion relation becomes

(~ω)2 =
~2k2

2m

(
~2k2

2m
+ 2gρh

)
. (3.13)

Which is caled the Bogoliubov Spectrum [40]. In the limit of small momenta we get a
linear dispersion relation ω = ck. In this case the group and phase velocity coincides as
c =

√
gρh/m which we identified as the sound speed in section 2.7. In the other limit

with large momentum the dispersion relation reads ~ω = ~2k2/2m which is the same
as the relation for free particles.

The amplitudes u(r) and v(r) are then plane waves proportional to eik·r [40]. The
specific form of the proportionality constants are not needed to show that the momentum
of the exitations are ~k and that the energy spectrum is given by

ε(p) =
p√
2m

√(
p2

2m
+ 2gρh

)
, (3.14)
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Figure 3.2: Plot of the energy spectrum divided by the momentum for different inter-
action strengths g. We can see that the minimum is decreasing with g, and when g = 0
it vanishes. This is equivalent to saying that an ideal BEC is not a superfluid.

which follows directly from the momentum operator −i~∇ and the dispersion relation.
Eq. (3.3) tells us that the critical velocity is given as the minimum of the ratio ε(p)/p.
From the spectrum we see that the minimum of this ratio is vc =

√
gρh/m at p = 0. In

reality the critical velocity can be lower due to the nucleation of quantised vortices [11].
In figure 3.2 we plot this ratio for different values of g. We have here set 2m = ρh = 1,
so the critical velocity is given as

√
2g. In the high momentum limit the graphs joins

the line p/2m. At low momentum they split from this line and crosses the ε/p-axis
at the critical velocity. The height of this crossing are dependent on g, and for a
non-interacting condensate, g → 0, it crosses at the origin making the critical velocity
vanish. This means that an ideal Bose-Einstein condensate is not a superfluid.



Chapter 4

Hydrodynamics

In this chapter we discuss the classical analogue to the impurity submerged in a BEC.
In section 4.1 we introduce the Navier-Stokes equation, and in section 4.2 we use it to
find the equation of motion for a small sphere in the fluid. The systems discussed in
this chapter are in three dimensions.

4.1 The Navier-Stokes Equation

The equation that describes the flow of an incompressible fluid is the Navier-Stokes
equation [1]

∂tv + (v · ∇)v = −1

ρ
∇p+ ν∇2v + f . (4.1)

Together with the incompressibility condition

∇ · v = 0. (4.2)

Here v(x, t) is the fluids velocity field, p(x, t) is the pressure, ρ(x, t) is the density,
ν = µ/ρ is the kinematic viscosity and µ is the dynamic viscosity. f is here some
external force e.g gravity g. We will assume that there are no external forcing for the
rest of this section. The Navier-Stokes equation is in general hard to solve, but for some
special cases it can be simplified. We can do this by considering the Reynolds number[1]
of the flow. The Reynolds number is dimensionless and defined by

Re =
ul

ν
. (4.3)

Where u is the velocity of the main stream and l is a characteristic length. The Reynolds
number characterises a flow. If the Reynolds number is large we have a turbulent flow,
while if it is low the flow is laminar. We can simplify the Navier-Stokes equation by
changing the unit of length to l and the unit of velocity to u. The advection term (v·∇)v
is then of the magnitude u2/l. The term ν∇2v is of magnitude νu/l2. The ratios of
these magnitudes is the Reynolds number. So if we have a low Reynolds number we
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can neglect the advection term and the Navier-Stokes equation reduces to the Stokes
equation

∂tv = −1

ρ
∇p+ ν∇2v. (4.4)

This equation is relevant for flow with low velocity, small lengths or high viscosity.
If however the Reynolds number is large we can neglect the viscous term and the

Navier-Stokes equation reduces to the Euler equation

∂tv + (v · ∇)v = −1

ρ
∇p. (4.5)

This equation is relevant for flow with high velocity, large lengths or low viscosity. This
is the equation that is used to describe non-viscous ideal fluids [1].

4.2 The Maxey-Riley Equation

The equation of motion for a small sphere in a nonuniform incompresible fluid in the
low Reynolds number limit was derived by Maxey and Riley in 1983 [43]. Here is a
summary of their derivation.

The problem they considered was a small sphere of radius a, mass mp and position
rp(t) placed in a fluid that in the absence of the particle have the flow v(0), and the
goal is to find the equation of motion expressed in terms of this undisturbed flow.
The present of the particle changes the flow to v = v(0) + v(1), where v(1) is the flow
perturbations caused by the sphere. The modified flow v and the undisturbed flow v(0)

are described by the Navier-Stokes equation (4.1) with gravity as the external force and
the incompressibility condition eq. (4.2). The boundary conditions are the non-slip
boundary conditions and that the modified flow should reduce to the undisturbed flow
far away from the sphere. The equation of motion for the sphere is given by

mp
d

dt
Vp,i = mpgi +

∮

s
σijnjdS. (4.6)

Where the integral is taken over the surface of the sphere, n is the surface vector and
the time derivative is given by d/dt = ∂t + Vp · ∇. The problem is therefore to find the
stress tensor which is given as

σij = −pδij + µ (∂jvi + ∂ivj) . (4.7)

Since the equation of motion requires us to evaluate an integral on the sphere it is
convenient to transform to the frame comoving with it. The new variables are z =
r− rp(t), and w = v−Vp. The Navier-Stokes and the boundary conditions are in this
reference frame

ρ
[
∂tw + (w · ∇)w

]
= ρ(gi −

d

dt
Vp)−∇p+ µ∇2w, (4.8)

w(|z| = a, t) = Ω× z, (4.9)

w(|z| → ∞, t) = v(0) −Vp. (4.10)
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Where Ω is the particles angular velocity. The velocity field in the new frame can
also be decomposed into the velocity field in the absence of the particle w(0) and the
perturbations caused by it w(1). We decompose the pressure p and the stress tensor σij
in a similar way. The force is then naturally decomposed as

Fi = mpgi + F
(0)
i + F

(1)
i = mpgi +

∮

s
σ

(0)
ij njdS +

∮

s
σ

(1)
ij njdS. (4.11)

The force caused by the unperturbed flow F(0) as a function of v(0) can be found easily
from this. The unperturbed force is given as

F
(0)
i =

∮

s

[
−p(0)δij + µ

(
∂jw

(0)
i + ∂iw

(0)
j

)]
njdS. (4.12)

By applying the divergence theorem the integral reads

F
(0)
i =

∫
∂j

[
−p(0)δij + µ

(
∂jw

(0)
i + ∂iw

(0)
j

)]
dV =

∫
dV
[
−∂ip(0) + µ∂j∂jw

(0)
i

]
.

(4.13)
Where we have used the incompresibility condition. To solve this integral we assume
that the pressure gradient is nearly uniform inside the sphere and that we can express
the velocity as

w
(0)
i (z, t) = w

(0)
i (0, t) + zj∂jw

(0)
i |z=0 + zjzk∂j∂kw

(0)
i |z=0 (4.14)

inside the sphere. This approximation is valid if the sphere is small compared to the
length scale of variations in the undisturbed flow. The force is then

F
(0)
i =

4

3
πa3

(
−∂jp+ µ∇2

zw
(0)
i

)
z=0

. (4.15)

Using that w(0) and p(0) fulfils eq. (4.8) the force reads

F
(0)
i = −mfgi +mf

(
d

dt
Vp,i + ∂tw

(0)
i + w

(0)
j ∂jw

(0)
i

)

z=0

. (4.16)

Here we have introduced mf = 4
3πa

3ρ, which is the mass of the fluid displaced by the
particle. Transforming this into the original frame we get

F
(0)
i = −mfgi +mf

Dv
(0)
i

Dt
|r=rp . (4.17)

Were we have introduced the material derivative D/Dt = ∂t + v(0) · ∇. The term con-
taining the material derivative is the inertial term and it gives the sphere an acceleration
proportional to that of a small fluid sphere at the same position. The first term on the
right hand side is the buoyancy force. The equation of motion is now given by

mp
d

dt
Vp,i = (mp −mf )gi +mf

Dv
(0)
i

Dt
|r=rp + F

(1)
i . (4.18)
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To find the force caused by the disturbance flow we use that w and w(0) satisfies eq.
(4.8), and find that the equation of motion for w(1) is

ρ
(
∂tw

(1)
i + w

(1)
j ∂jw

(1)
i + w

(0)
j ∂jw

(1)
i + w

(1)
j ∂jw

(0)
i

)
= −∂p

(1)

∂zi
+ µ∂j∂jw

(1)
i . (4.19)

If we consider flows with low Reynolds number we can do the same dimension analysis
as in the previous section and we see that this reduces to the Stokes equation

ρ∂tw
(1)
i = −∂ip(1) + µ∇2w

(1)
i . (4.20)

With the boundary conditions

w(1)(|z| = a, t) = −w(0) + Ω× z, (4.21)

w(1)(|z→∞|, t) = 0, (4.22)

and the incompresibility condition eq. (4.2). One can then find the force by taking the
Laplace transform, and exploiting the symmetry
∮
dSnj

(
w̃

(0)
i σ̃

(1)
ij − w̃

(1)
i σ̃

(0)
ij

)
=

∫
dV
[
w

(0)
i (z, 0)w̃

(1)
i (z, s)− w(1)

i (z, 0)w̃
(0)
i (z, s)

]
,

(4.23)
for the two unsteady Stokes flow w(0) and w(1). This is used to make the disturbance
force F(1) depend on the undisturbed flow w(0) instead of the disturbance flow w(1).
One can then show that the force due to the disturbance flow is in the original frame
given as

F(1) = −6πaµ

(
Vp − v(0)(rp(t), t)−

1

6
a2∇2v(0)|rp(t)

)

− 1

2
mf

(
d

dt
Vp(t)−

D

Dt
v(0)|rp(t) −

1

10
a2 D

Dt
∇2v(0)|rp(t)

)

− 6πa2µ

∫ t

0
dτ
d/dτ

[
Vp(τ)− v(0)(rp(τ), τ)− 1

6a
2∇2v(0)|rp(τ)

]
√
πν(t− τ)

. (4.24)

When doing the calculation one will find that the time derivative in front of the un-
disturbed flow v(0) is given as d/dt and not D/Dt as we have written here. This is
because the difference between these derivatives vanishes in the limit of low Reynolds
number [43, 44]. The use of D/Dt has on physical grounds been established as more
correct, since it corresponds to the force being a result of the local accelerating in the
undisturbed fluid. The terms containing the Laplacian are the so called Faxén correc-
tion [43]. These can be neglected for a small sphere. The first term on the right hand
side is the Stokes’ drag. Ignoring the Faxén correction we see that this is a viscous
force proportional to the relative velocity between the sphere and the undisturbed fluid,
acting in the opposite direction. The second term is the added mass term [44]. This is
the force that is caused by the fluid the sphere have to move when accelerating. The
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last term is the Basset-history integral. It is a viscous force that resists the unsteady
motion of the particle [45]. The full equation of motion for the sphere is then

mp
d

dt
Vp(t) = (mp−mf )g−6πaµ

(
Vp − v(0)(rp(t), t)−

1

6
a2∇2v(0)|rp(t)

)
+mf

D

Dt
v(0)|rp(t)

− 1

2
mf

(
d

dt
Vp(t)−

D

Dt
v(0)|rp(t) −

1

10
a2 D

Dt
∇2v(0)|rp(t)

)

− 6πa2µ

∫ t

0
dτ
d/dτ

[
Vp(τ)− v(0)(rp(τ), τ)− 1

6a
2∇2v(0)|rp(τ)

]
√
πν(t− τ)

. (4.25)

This is called the Maxey-Riley equation. This equation is hard to solve numerically. We
can simplify it by considering a sphere that is sufficiently small, so that we can neglect
the Faxén correction and the Basset history integral [46]. The equation of motion is
then

(mp +
1

2
mf )

d

dt
Vp(t) = (mp −mf )g − 6πaµ(Vp(t)− v(0)(rp(t), t)) +

3

2
mf

D

Dt
v(0)|rp(t).

(4.26)
This form of the Maxey-Riley equation and modifications of it is used to study the
dynamics of inertial particles in classical flows. It is for example used to study the
dynamics of biogenic particles (e.g plankton) and feeding jellyfish [47, 48].
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Chapter 5

Dissipasion Near an Impurity

In this chapter we discus the effect of an obstacle in the BEC at zero temperature. First
we discuss the steady-state force on a small obstacle, then we discuss the heating this
force is causing in the condensate. In the last section we discuss the waves that are
created by an impurity that is moving at a constant velocity.

5.1 Potential Force

Ehrenfest’s theorem states that the equations for the mean of position, momentum and
force in a quantum mechanical system are the same as the classical equations of motion
[49]. The force on the condensate due to a potential U is then

〈F〉 = −〈∇U〉. (5.1)

If the potential is due to an impurity then the force acting on the impurity from the
condensate is

Fp =

∫
d2r∇Upρ. (5.2)

Doing an integration by parts it becomes

Fp = −
∫
d2rUp∇ρ. (5.3)

In the dimensionless units that we discused in section 2.7 the force is Fp = µ2ξ
g F′p. From

here on all calculations are done in the dimensionless units and the primes are removed.
We now want to find an expression for the force on an impurity that is moving

linearly in the condensate at T = 0. To model the impurity we use the Gaussian
potential

Up(r− rp(t)) =
gp

2πa2
e−(r−rp(t))2/2a2 (5.4)

Here a is the size of the particle, rp(t) is the position and gp is the coupling constant
between the impurity and the condensate. We will consider a weakly interacting im-
purity with gp << 1 that is moving with a constant speed Vp, such that the position is
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given by rp(t) = Vpt. We will follow the derivation of the drag force from the papers
[26, 25]. Notice that [26] is using a different convention for the units than we are.

We consider an impurity that is suspended in an uniform BEC. Since we consider a
weakly interacting impurity we can write the wavefunction as ψ = ψ0+gpδψ1. Where ψ0

is the wavefunction of the condensate without the impurity and δψ1 is the perturbations
due to the interaction with the impurity. In this section we will assume that we have
an uniform condensate where all perturbations are due to the impurity. This means
that the wavefunction without the impurity is given by the Thomas-Fermi ground state
ψ0 = 1. The density of the condensate to linear order in gp is then given by ρ = 1+gpδρ1,
where δρ1 = δψ1 + δψ∗1. The force due to the density perturbations in the condensate
becomes

F(1) = −gp
∫
d2rUp∇δρ1. (5.5)

Notice that since Up is linear in gp this force is quadratic in gp. To find the density
perturbation δψ1 we insert the wavefunction into eq. (2.31) with γ = 0 and neglecting
terms that is of order O(g2

p). It becomes

i∂tδψ1 = −1

2
∇2δψ1 +

1

2πa2
e−(r−rp)2/2a2 + δψ∗1 + δψ1. (5.6)

We now do a Galilean transformation into the frame that is comoving with the particle.
The transformation laws are given by

z = r− rp t′ = t

∂t = ∂t′ −Vp · ∇z ∇ = ∇z (5.7)

Using these laws eq. (5.6) is transformed into

i(∂t′ −Vp · ∇z)δψ′1 = −1

2
∇2

zδψ
′
1 +

1

2πa2
e−z

2/2a2 + δψ′∗1 + δψ′1. (5.8)

From this point we are removing the primes. We want to look for solutions that are in
the steady state in the frame comoving with the particle. We then have

− iVp · ∇zδψ1 = −1

2
∇2

zδψ1 +
1

2πa2
e−z

2/2a2 + δψ∗1 + δψ1. (5.9)

This equation can be solved for δψ1 by transforming it into Fourier space. Taking the
Fourier transform and doing a complex conjugation we get the two equations

[−2Vp · ik + i(k2 + 2)]δψ̃1(k) + 2iδψ̃∗1(−k) = −2ie−k
2a2/2,

[−2Vp · ik− i(k2 + 2)]δψ̃∗1(−k)− 2iδψ̃1(k) = 2ie−k
2a2/2. (5.10)

We use the first equation to find an expression for δψ∗1(−k). Inserting it into the second
equation we get that the Fourier modes of the perturbed wavefunction are

δψ̃1(k) = e−k
2a2/2 4Vp · k + 2k2

4(Vp · k)2 − k2(k2 + 4)
. (5.11)
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We can now turn our attention to the force. Using the convolution theorem on eq. (5.5)
in the comoving frame we get that the force on the impurity is given by

F(1) = − gp
(2π)2

∫
d2kikŨp(−k)(δψ̃1(k) + δψ̃∗1(−k)). (5.12)

Inserting the expression for δψ̃1(k) the force becomes

F(1) = −
g2
p

(2π)2

∫
d2k

4k2ik

4(Vp · k)2 − k2(k2 + 4)
e−k

2a2 . (5.13)

We now consider the component that is parallel to the velocity of the impurity, since the
tangential component vanishes due to symmetry. In polar coordinates this component
becomes

F
(1)
‖ = −

g2
p

(2π)2

∫ ∞

0

∫ 2π

0

4ik2 cos θ

4V 2
p cos2 θ − (k2 + 4)

e−k
2a2dθdk. (5.14)

We see that if Vp < 1 the integral is zero because of the cosine. This is consistent with
the critical velocity we found in chapter 3.2. If Vp > 1 the integrand have poles, so we
have to take some extra care. We see that for k > 2

√
V 2
p − 1 = kmax the integral over

θ is trivial. For Vp > 1 we therefore change the limits and consider the integral

F
(1)
‖ = −

g2
p

(2π)2

∫ kmax

0

∫ 2π

0

4ik2 cos θ

4V 2
p cos2 θ − (k2 + 4)

e−k
2a2dθdk. (5.15)

We first want to do the integration over θ. We start by doing a change of variables to
x = cos θ, such that the integral becomes

F
(1)
‖ =

2g2
pρe

π2

∫ kmax

0

∫ 1

−1

ik2xe−k
2a2dxdk

[4V 2
p x

2 − (4ρe + k2)]
√

1− x2
(5.16)

This integral has 4 poles at x = ±1 and at x = ±
√

4ρe+k2

2Vp
. Defining x0 =

√
4ρe+k2

2Vp
and

noticing that
∫ −1

−R

k2xe−k
2a2dx

4V 2
p (x− x0)(x+ xo)i

√
x2 − 1

+

∫ R

1

k2xe−k
2a2dx

4V 2
p (x− x0)(x+ xo)i

√
x2 − 1

= 0, (5.17)

because of symmetry. We can rewrite the integral as

F
(1)
‖ =

2g2
p

π2
lim
R→∞

∫ kmax

0

∫ R

−R

ik2xe−k
2a2dxdk

4V 2
p (x− x0)(x+ x0)

√
1− x2

. (5.18)

The integral over x can now be preformed by finding the Principal values. We have by
Cauchy’s residue theorem that [50]

PV
∫ ∞

−∞
f(x)dx = πi

∑
Resf(z). (5.19)
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And the force takes the form

F
(1)
‖ =

−g2
p

Vpπ

∫ kmax

0

k2e−k
2a2dk√

k2
max − k2

. (5.20)

This last integral can be solved by using mathematica. The parallel component of the
force for Vp > 1 becomes at last

F
(1)
‖ = −

g2
p

4Vp
k2
maxe

−a2k2max/2
[
I0

(
a2k2

max

2

)
− I1

(
a2k2

max

2

)]
. (5.21)

Where In is the modified Bessel function of the first kind. Note that this expression
doesn’t work in the presence of vortices. This is because the vortex state is not a steady
state, and the density perturbations δψ1 is not small when the impurity nucleates vor-
tices. The expression works well for small impurities, since they have a low probability
of nucleating vortices [25].

5.2 Heating

When doing experiments on the superfluidity in BECs one typical approach is to meas-
ure the heating of the condensate due to a moving laser [25, 51]. The laser can be
modeled in the same way as the impurity we considered above. Dependent on the
wavelength of the laser the potential can be either repulsive or attractive [51]. From eq.
(2.18) we have that the heating of the condensate due to a time dependent potential is

∂tH =

∫
|ψ|2∂tUpd2r. (5.22)

We now use that Up(r, t) = Up(r− rp(t)). Applying the chain rule we get

∂tUp =
∂U
∂zi

∂tzi. (5.23)

Where z = r − rp(t) and ∂tzi = −ṙp,i(t) for a laser that is moving in the condensate.
Inserting this into eq. (5.22) we get

∂tH = −Vp ·
∫
|ψ|2∇Upd2r. (5.24)

Notice that the integral is the force we calculated in the last section. The negative of
this force is the force that the laser is exerting on the condensate. The heating due to
a laser that is moving linearly in an otherwise uniform BEC is then given by

∂tH = −Vp · F(1), (5.25)

in the steady-state [25]. Which we also could have guessed without doing the calculation.
The force and the velocity are pointing in the opposite direction such that the effect of
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stirring the condensate is to increase its energy. Inserting the expression of the force
from eq. (5.21) we get

∂tH =
g2
p

4
k2
maxe

−a2k2max/2
[
I0

(
a2k2

max

2

)
− I1

(
a2k2

max

2

)]
. (5.26)

This is the same expression as was found in [51] by another method. They also simulated

Figure 5.1: The figure shows the heating in a BEC. The green continuous line is the
analytical expression similar to eq. (5.26), while the red squares conected by doted line
are the values mesured in a simulation. The green doted line is the heating for a lattice
system. Figure from [51].

the heating in a BEC and compared it to the analytical formula. The result of this is
shown in figure 5.1. We see that eq. (5.26) captures the main behavior of the force well,
except right above the critical velocity.

5.3 The Bogoliubov-C̆erenkov Wake

We are now going to have a qualitative discussion on the shape of the exitations in the
superfluid. We will show that the emitted waves in the long wavelength limit creates
a conical wake similar to the wave cone associated with C̆erenkov emission which is
observed when charged particles are moving at relativistic velocities in a dielectricum.
After that we will show that the short wavelengths are associated with parabolic wave-
fronts in front of the impurity. We are following the discussion in [52].

We start by considering the long wavelength exitations. In the comoving frame we
can write the Fourier modes of the perturbed density as

δρ̃1(k) =
k2e−k

2a2/2

(Vp · k)2 − ω2
. (5.27)

Where ω is the dispersion relation for γ = 0. From this we see that the dominant modes
are those with wavenumber satisfying the equation

ω2 = (Vp · k)2. (5.28)
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For small wavenumbers the dispersion relation is linear and the dominant exitations
satisfy

k2
y = (V 2

p − 1)k2
x. (5.29)

We have here assumed that the impurity is moving with constant velocity Vp in the x
direction. This equation have real solutions only when Vp > 1. In this case the solutions
makes the two lines

ky = ±
√
V 2
p − 1kx. (5.30)

Which is plotted on the top of figure 5.2. One can show that the angle between the

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
kx

3

2

1

0

1

2

3

k y

θ

2.0 1.5 1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y 2φ

Figure 5.2: The top figure shows the wavevectors that dominates the integral in eq.
(5.27). The bottom plots shows the mach cone that the long wavelength waves create
in the condensate. The condensate is unperturbed everywhere except on the surface of
the cone.

kx-axis and the line satisfies cos θ = 1/Vp, by using simple trigonometric relations on
the triangle that is shown in the figure. This is the k-space C̆erenkov cone. The waves
with wavevector lying on the surface of this cone have a constant group velocity given
by vr = ∇k(ω − k ·Vp) = 1

Vp

[
(1− V 2

p )ẑx ±
√
V 2
p − 1ẑy

]
in the comoving frame. The

different modes are therefore propagating in the same two directions as seen from the
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particle. The group velocities defines a conical surface given by

z2
y =

z2
x

V 2
p − 1

, (5.31)

with |zx| < 0. This lines are plotted in the bottom of figure 5.2. The waves that are
propagating from the particle have a continuous range of wavevectors satisfying eq.
(5.29). They are therefore interfering destructively everywhere except on the surface
of the cone. This cone is referred to as the mach cone in analogy to the cone that is
generated by supersonic particles in a classical fluid. The angle of the surfaces satisfies
the relation sinφ = 1/Vp, and it is clear that it narrows when the speed of the impurity
increases.

The dispersion relation for the condensate is only linear in the small k limit. The
waves with larger k values will also contribute to the shape of the emitted waves.
If we now consider the limit with small wavelengths the dispersion relation becomes
approximately ω = k2

2 . We can find the approximate shape of the waves by assuming
that we have a point like defect, i.e taking the limit a→ 0 where the potential is a delta
function. The perturbed wavefunction is then

δψ1(z) = −
∫

d2k

(2π)2

(2k2 + 4Vp · k)eik·z

k4 − 4(k ·Vp)2
. (5.32)

This can be rewriten to

δψ1(z) = −
∫

d2k

(2π)2

eik·z

k2

2 − k ·Vp

= −
∫

d2k

(2π)2

eik·zeiVp·z

k2

2 −
V 2
p

2

. (5.33)

Where we in the last integral have taken the coordinate transform k → k + Vp. This
integral is solved in [52] by noticing that it is the Greens function for the two-dimensional
Helmholtz equation [53]. The Greens function is proportional to the Hankel function
H

(1)
0 (Vpz) and the wavefunction becomes

δψ1(z) = −2πiC2√
z
eiVpzeiVpzx , (5.34)

in the limit z >> 1 [54]. Here C2 is a constant that is proportional to 1/
√
Vp. The

perturbed density is then

δρ1 =
4πC2√
z

sin (Vp(z + zx)). (5.35)

A plot of this density is shown in figure 5.3 for Vp = 1.6. The wavefronts that is
defined by this density makes parabolic surfaces in the condensate. We can show this
by considering the wave tops. These are defined as the surfaces where the argument of
the sine is π/2 plus an integer multiple of 2π. They therefore satisfy

Vp

√
z2
x + z2

y + Vpzx = 2πN +
π

2
, (5.36)
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where N is an integer. By squaring this equation we see that the fronts are the parabolas

V 2
p z

2
y = π2(2N +

1

2
)2 − 2π(2N +

1

2
)Vpzx. (5.37)
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Figure 5.3: Figure of the density perturbation for a condensate with a quadratic dis-
persion relation. The impurity’s velocity is Vp = 1.6 in the x-direction. We can see that
the wavefronts makes parabolic surfaces. This surfaces are given by eq. (5.37).

We have now seen how the exitations behaves in the short and long wavelength
limit. In the long wavelength limit the exitations makes a wake of angle sinφ = 1/Vp
behind the impurity, while the short wavelength exitations makes parabolic waves in
front of it. In the intermediate range we expect the behavior to go gradually between
the regimes when the wavelength is changed.



Chapter 6

Numerical Methods

In this chapter we discuss the numerical methods that were used in this project. We
start by discussing the exponential time differencing method that we use to solve the
damped Gross-Pitaevskii equation. Then we discuss the numerical setup in detail.

6.1 Time Exponentiation

When considering a non-linear partial differential equation(PDE) with periodic bound-
ary conditions on an uniform lattice it is convenient to transform it to Fourier space
where one get one ordinary differential equation(ODE) for each Fourier mode [55]. The
ODEs one gets are in general stiff, so they require some care to get accurate solution
in an efficient way. The stiffness is often due to the linear part of the equation. We
are therefore going to use the method of time exponentiation, where we solve the linear
part exactly and find an approximation for the integral over the non-linear terms.

Consider a general non-linear PDE that can be written on the form [41, 55]

∂tψ(r, t) = ω(∇)ψ(r, t) +N(ψ, t). (6.1)

Here ω(∇) is a linear differential operator and N(r, t) is a general function representing
the non-linear part. To ease the notation we have assumed that all spacial dependence
of N is through ψ. The derivation is still valid if this is not the case. Evaluating this
in Fourier space we get

∂tψ̃(k, t) = ω̃(k)ψ̃(k, t) + Ñ(ψ, t). (6.2)

Multiplying with an integrating factor e−ω̃t and moving the linear operator to the left
hand side the equation becomes

∂t(e
−ω̃tψ̃) = e−ω̃tÑ . (6.3)

Integrating this from t to t+ ∆t we find the solution

ψ̃(k, t+ ∆t)e−ω̃(k)(t+∆t) = ψ̃(k, t)e−ω̃(k)t +

∫ t+∆t

t
Ñ(ψ, t′)e−ω̃t

′
dt′. (6.4)
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Dividing by e−ω̃(k)(t+∆t), and substituting τ = t′ − t we get

ψ̃(k, t+ ∆t) = ψ̃(k, t)eω̃(k)∆t + eω̃∆t

∫ ∆t

0
Ñ(ψ, t+ τ)e−ω̃τdτ. (6.5)

In order to compute the integral we approximate Ñ(ψ, t + τ) = Ñ0 to be constant on
the interval τ ∈ (0,∆t) [41, 55]. Inserting this into the above expression gives

ψ̃(k, t+ ∆t) = ψ̃(k, t)eω̃(k)∆t + eω̃∆t

∫ ∆t

0
Ñ0e

−ω̃τdτ (6.6)

After preforming the integral we get the following expression for ψ̃

ψ̃(k, t+ ∆t) = ψ̃(k, t)eω̃(k)∆t +
Ñ0

ω̃(k)
(eω̃(k)∆t − 1) (6.7)

This is a first order scheme for ψ analog to the Euler method. We can improve
it by using the newly obtained value for ψ to find an estimate for N(ψ, t + ∆t).
In other words we approximate the non-linear part as N (ψ(t+ τ), t+ τ) = N0 +
[N (ψ0(t+ ∆t), t+ ∆t)−N0] τ/∆t. Where ψ0 is the wavefunction calculated above.
Inserting this approximation into the integral in eq. (6.5) we obtain the following
scheme

ψ̃0 = ψ̃(k, t)eω̃(k)∆t +
Ñ0

ω̃(k)
(eω̃(k)∆t − 1),

ψ̃(k, t+ ∆t) = ψ̃0 +
(
Ñ(ψ0, t+ ∆t)−N0

) 1

ω̃

(
(eω̃∆t − 1)

1

ω̃∆t
− 1

)
. (6.8)

This is a second order scheme analog to the improved Euler method [55].

6.2 Numerical Setup

To test the analytical predictions that will be presented in chapter 7 we consider a
system of size 256× 128 in units of ξ. The distance between grid points on the lattice
is dx = 0.25ξ and time is discretized in units of dt = 0.01τ . The impurity is situated in
the middle of the domain at position (128ξ, 64ξ), and the simulations are done in the
comoving frame of the particle. We use the fringe method from [56] to avoid that density
perturbations created by the impurity are recycled by the periodic boundary conditions.
This is done by adding buffer(fringe) regions around the computation domain with a
large value of γ as illustrated in figure 6.1. The buffer regions are damping out the
perturbations and making the incoming flow steady. γ then becomes spatially dependent
and is given by γ(r) = max [γ(x), γ(y)] with

γ(x) =
1

2

(
2 + tanh [(x− xp − wx)/d]− tanh [(x− xp + wx)/d]

)
+ γ0, (6.9)

and similarly for γ(y). Here (xp, yp) is the position of the particle, and γ0 is the
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Figure 6.1: The figure shows the buffer regions far away from the impurity, where the
thermal drag is large in order to remove any disturbances in the recycled flow. The
picture is showing the density in the steady state in the comoving frame for Vp = 1.6
and γ = 0. The direction of the flow is indicated with the arrows.

thermal drag inside the bulk region. The parameters wx and wy sets the extent of the
bulk region. On the x-axis it goes from x = xp − wx to x = xp + wx, and equivalent
for the y-axis. The parameter d is controlling how fast the value of γ is changing on
the border of the buffer region. It is important that this parameter is not to small,
since that would cause the exitations to be reflected by the fringe. The values we are
using for these parameters are wx = 100ξ, wy = 50ξ and d = 7ξ. As mentioned we are
simulating the system in the frame comoving with the particle. In this frame the dGPE
takes the form

∂tψ −Vp · ∇ψ = (i+ γ)

[
1

2
∇2ψ +

(
1− Up − |ψ|2

)
ψ

]
. (6.10)

To model the impurity we use the Gaussian potensial in eq. (5.4) with a = 1 and
gp = 0.01. As an initial condition we start with the Thomas-Fermi ground state and
evolve it in imaginary time with Vp = 0 and γ = 0 to find the ground state of the
condensate with the particle at rest. At t = 0 we solve eq. (6.10) with the numerical
scheme given by eq. (6.8). For the imaginary time evolution the ω and N in eq. (6.8) are
ω = (1 + 1

2∇2) and N(r, t) = −(Up+ |ψ|2)ψ. When we solve the dGPE in the comoving
frame they are ω = i(1+ 1

2∇2)+Vp ·∇ and N(r, t) = −(i+γ)(Up+|ψ|2)ψ+γψ+ 1
2γ∇2ψ.

It is important to remember that γ is a function of space when preforming the Fourier
transform.
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This setup is ideal for studying the steady-state and transient behaviour of an impur-
ity traveling linearly in an infinite system, since the buffer regions prevent the particle
form interacting with itself. Another way of modeling this could have been to consider
the system in the lab frame, i.e the frame with the condensate at rest, and stop the
simulation before the perturbations comes back to the particle. The drawback of this is
that one needs a larger system in order to reach the steady-state. Especially when the
velocity of the impurity gets close to the critical velocity. Another weakness of this is
that the restriction to short time intervals is making the calculated averages less certain.

The fringe method don’t have this shortcomings, since we don’t have to worry about
the perturbations coming back. This setup is also ideal for studying the vortex shedding
from the impurity, and this is what it is used for in [56]. Here they classify the different
vortex regimes that one can observe in the stirred condensate. They observe three
regimes the dipole regime, the charge 2 Von Kármán regime and the turbulent regime.
In figure 6.2 one can see how this buffer regions work in two of these vortex regimes. In
order to create vortices one have to consider an impurity that is strongly coupled, and
not to small.

In figure 6.2 we have used an impurity with potential Up = 0.8e(r−rp)2/2·42 . The
thermal drag is zero in the bulk and the velocity of the impurity is 0.6 on the top and
0.8 on the bottom. The top picture in the figure is from the dipole regime. This system
have reached an ordered state where the impurity nucleates vortices in dipoles at a
constant rate. One can find the nucleation frequency by Fourier transforming the force
that is acting on the particle. When the dipoles reaches the buffer region the distance
between the vortex and antivortex decreases and they annihilate each other. This is
because the large thermal drag is making the counter rotating vortices approach each
other until they collide. When they collide they make waves that are damped inside
the region. It is important that the fringe is large enough that the vortices have time to
collide. In the bottom picture we are in the turbulent regime, and we don’t observe the
ordered state that we see at the top. Here the vortices are shed seemingly at random and
not only dipoles, but also free vortices and clusters are shed. We observes two problems
in this regime. The first is that some of the vortices that are shed in dipoles are so
far away from each other that they don’t have the time to collide when they are in the
buffer. Another problem is that the vortics can’t gradualy decay, as discussed in section
2.9, so the free vortices and clusters are not removed by the buffer and comes around in
the incoming flow. This is also a problem in the Von Kármán regime where the vortices
are shed in clousters of corotating vortices. When these vortices are coming around
they will interact with the particle and other vortices. This recycling is something we
want to avoid, since we want to model an impurity moving linearly in an otherwise
uniform condensate. We can prevent that the dipoles comes around by enlarging the
buffer region, but this is only a temporary fix and we will still have problems with the
free vortices and the clusters.

In [56] they deal with this problem by phase imprinting a vortex-antivortex pair
on top of the vortices inside the buffer region. This annihilates the dipoles and moves
the vortices without a counter rotating partner back to the start of the region so that
it is not recycled into the bulk. Since there are vortices continuously moving into the
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buffer they will eventually be annihilated. The energy that is added when imprinting
the dipole is removed by the high dissipation in the buffer. We have not added this
phase imprinting of vortex-antivortex pairs, since we are considering impurities that are
too weak to produce vortices. This is because the expressions that we are testing are
found by assuming that the coupling between the condensate and the impurity is weak,
and we have assumed that there are only small perturbations in the condensate. In
order to create vortices the impurity can’t be too small, and nucleation of vortices are
associated with large perturbations near the impurity.
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Figure 6.2: Snapshot of condensate that is stirred by a large impurity. Here the impurity
is large enough to produce vortices, and we can see two different vortex regimes. The
top snapshot shows the dipole regime. In this regime the buffer region have no trouble
annihilating the vortex-antivortex pairs. The bottom picture is in the turbulent regime.
Here we see the appearance of free vortices. On the right we see the vortices that are
recycled into the incoming flow. Both pictures are taken at the time t = 1800.
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Chapter 7

Analogy to Classical Forces

In this chapter we discus the force acting on an impurity submerged in the BEC at
finite temperatures, and compare with the classical analog eq. (4.25). In section 7.1 we
obtain theoretical expresions for the force. In section 7.2 we use the numerical scheme
discused in chapter 6 to compare the analytical obtained expressions with eq. (5.3). The
content in this chapter was submited in ref. [32]. Note that the derivation and content
in section 7.1.2 deviates a bit from the discussion in the manuscript. We have here
included an expression for the Fourier modes of the disturbed density for an arbitrary
moving impurity.

In this chapter we have only considered the interactions between the impurity and
the condensate. In addition the impurity will interact with the thermal cloud. The
additional forces that comes from these interactions are beyond the scope of this project.
However at sufficiently low temperatures the thermal cloud is sparsely populated, so
that the scattering rate between the impurity and the exited states is low. The drag
from the thermal cloud is therefore small as long as we are considering low temperatures.

7.1 Perturbation Theory

We will now consider an impurity in the condensate at finite temperature. This cor-
responds to having γ > 0 in eq. (2.31). As in chapter 5 we are modeling the impurity
with the potential

Up(r− rp(t)) =
gp

2πa2
e−(r−rp(t))2/2a2 , (7.1)

and considers a weakly coupled impurity with gp << 1. As in section 5.1 we decompose
the wavefunction into the wavefunction that is undisturbed by the impurity ψ0 and the
perturbations due to the interaction with the impurity δψ1. The unpdisturbed part can
again be decomposed into ψ0 = 1 + δψ0, allowing for small perturbations away from
the uniform equilibrium state. These small perturbations can be due to an external
stirring potential or from non-equilibrium initial conditions. We will assume that any
stirring potential is far away so that the only potential we need to worry about is the
impurity. Using this decomposition we get the following first order expansions for the



40 Analogy to Classical Forces

wavefunction, density and velocity

ψ = 1 + δψ0 + gpδψ1, (7.2)
ρ = 1 + δρ0 + gpδρ1, (7.3)

v = δv(0) + gpδv
(1). (7.4)

Where the density and the velocity perturbations are given by

δρi = δψi + δψ∗i , (7.5)

δv(i) =
1

2i
∇(δψi − δψ∗i ). (7.6)

The densities can now be inserted into eq. (5.3) to find the force. Like in the classical
analog in section 4.2 the force can be decomposed as F = F(0) + F(1) where

F(0) = − gp
2πa2

∫
d2re−(r−rp(t))2/2a2∇δρ0(r, t), (7.7)

F(1) = −
g2
p

2πa2

∫
d2re−(r−rp(t))2/2a2∇δρ1(r, t). (7.8)

Here F(0) is the force caused by the density variations in the fluid in the absence of the
impurity. The classical analog are the inertial force eq. (4.17) and we will therefore
refer to F(0) as the inertial force. The F(1) component is the force that is caused by
the flow perturbations that the particle are inducing in the fluid. We therefore refer
to it as the self-induced force. We wish to find an equation of motion for the impurity
that is analog to the classical expressions. To do this we need to express the two force
components in terms of the particle velocity Vp and the unperturbed velocity field δv0.
For F(0) we are able to do this for an arbitrary moving impurity. While for F(1) we are
able to find an expression for arbitrary moving impurities, but it does not depend on
the undisturbed flow. However in the steady-state we manage to reduce this expression
to a force analog to the Stokes’ drag in the classical fluid.

To find the forces F(0) and F(1) we need to find the density perturbations. We find
these from the wavefunction. Inserting the perturbed wavefunctions eq. (7.2) into the
dimentionles dGPE eq. (2.31) gives the two linearized equations

∂tδψ0 = (i+ γ)(
1

2
∇2 − 1)δψ0 − (i+ γ)δψ∗0, (7.9)

∂tδψ1 = (i+ γ)(
1

2
∇2 − 1)δψ1 − (i+ γ)δψ∗1 − (i+ γ)

1

2πa2
e−(r−rp)2/2a2 . (7.10)

The problem is now to solve these linearized equations to find how the density fields
depend on the undisturbed velocity field.

7.1.1 The Inertial Force

First we consider the Inertial force given by eq. (7.7). We start by considering eq.
(7.9) to find an expression for the perturbed density variations δρ0 as a function of the
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unperturbed velocity δv0. If we subtract the equation by its complex conjugate it gives

∂t(δψ0 − δψ∗0) = i(
1

2
∇2 − 2)(δψ0 + δψ∗0) + γ

1

2
∇2(δψ0 − δψ∗0). (7.11)

Taking the gradient of this equation it becomes

(∂t −
γ

2
∇2)∇(δψ0 − δψ0) = i(

1

2
∇2 − 2)∇(δψ0 + δψ∗0). (7.12)

Using the expression for the perturbed densities and velocities eq. (7.5) and (7.6) this
expression becomes

(∇2 − 4)∇δρ0 = 4(∂t −
γ

2
∇2)δv0. (7.13)

Since the equation for the force eq. (7.7) is integrating the density around the impurity
it is convenient to work in a coordinate system that has it as it center. We therefore
change our coordinates to z = r−rp(t). The velocity field in the new coordinate system
is given by δw0 = δv0 −Vp, where Vp = ṙp. Equation 7.13 in the comoving frame is

(∇2
z − 4)∇zδρ0 = 4(∂t −Vp · ∇z −

γ

2
∇2

z)δw(0) + 4V̇p. (7.14)

We solve this equation by finding the Greens function for the operator (∇2
z − 4). The

equation for the Greens function is

(∇2
z − 4)G(z) = δ(z). (7.15)

With the boundary condition G(|z| → ∞) → 0, since we expect ∇zδρ0 to vanish at
infinity. The solution to this equation is G(z) = −K0(2|z|)/(2π), where K0 is the
modified Bessel function of the second kind of order zero. One finds this by using the
Greens function for the Helmholtz equation and the expression K0(x) = πiH

(1)
0 (ix)/2,

where H(1)
0 (x) is the Hankel function [50, 53, 54]. The gradient of the perturbed density

is then given by the Greens function as

∇zδρ0(z, t) = − 2

π

∫
d2z′K0(2|z− z′|)

[
(∂t −Vp · ∇z′ −

γ

2
∇2

z′)δw
(0) + V̇p

]
. (7.16)

Inserting this into eq. (7.7) we get that the force is given by

F(0)(t) = − gp
π2a2

∫
d2ze−z

2/2a2
∫
d2z′K0(2|z− z′|)

[
(∂t−Vp · ∇z′ −

γ

2
∇2

z′)δw
(0) + V̇p

]
.

(7.17)
This expression is the weighted average of properties of the fluids velocity in a neigh-
borhood around the impurity. We can compare it with the classical analog eq. (4.13).
In the classical expression the volume integral is over the volume of the sphere, while in
the condensate the integrals are over all space weighted by the Bessel function and the
Gaussian. The Gaussian and the Bessel function are restricting the size of the neighbor-
hood that is affecting the particle. The size of this neighborhood is given by the range
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of the Gaussian and the size of the Bessel functions kernel. The range of the Gaussian,
a, corresponds to the radius of the sphere in the classical case. The size of the Bessel
functions kernel is in dimensional units in the order of the correlation length ξ. This
have no analog in the classical case, and is due to quantum effects. If the condensates
velocity field is slowly varying on scales below a and ξ we can approximate it with a
Taylor expansion as we did in the classical case. First we consider an expansion around
z as

δw
(0)
i (z′, t) = δw

(0)
i (z, t) + eij(z, t)(z

′
j − zj) + eijk(z, t)(z

′
j − zj)(z′k − zk) + .... (7.18)

Where repeated indices are summed over. Here eij(z, t) = ∂jδw
(0)
i (z, t) and eijk(z, t) =

∂j∂kδw
(0)
i (z, t). Inserting the above expansion into eq. (7.17) and using that terms

linear in z′ vanish upon integration, the integral over the Bessel function reads
∫
d2z′K0(2|z− z′|)

[
∂tδw

(0)
i (z, t)− Vp · ∇zδw(0)

i −
γ

2
∇2
zδw

(0)
i

+
1

2
∂teijk(z, t)(z

′
j − zj)(z′k − zk) + V̇p,i

]
. (7.19)

Using that
∫
d2zK0(2|z|) = 2π

∫∞
0 dzzK0(2z) = π/2 and∫

d2zK0(2|z|)zizj = δij/2
∫∞

0 dz2πz3K0(2|z|) = πδij/4, the expresion above becomes

π

2

(
∂tδw

(0)
i −Vp · ∇zδw(0)

i −
γ

2
∇2δw

(0)
i + V̇p,i +

1

4
∂t∇2δw

(0)
i

)
. (7.20)

We insert this into eq. (7.17) and arrive at

F(0) =
gp

2πa2

∫
d2ze−

z2

2a2

([
∂t −Vp · ∇z −

γ

2
∇2 +

1

4
∂t∇2

]
δw

(0)
i + V̇p

)
. (7.21)

We now repeat the procedure to get rid of the Gaussian. The expansion of the velocity
around z = 0 is

δw
(0)
i (z, t) = δw

(0)
i (0, t) + eij(0, t)zj + eijk(0, t)zjzk + .... (7.22)

Inserting this expansion into eq. (7.21) and removing terms proportional to z since they
vanish upon integration we get

F(0) =
gp

2πa2

∫
d2ze−

z2

2a2

[
∂tδw

(0)
i (t) +

1

2
∂teijk(t)zkzj − Vp,jeij(t)−

γ

2
eijj(t) +

1

4
∂teijj(t)

]
.

(7.23)
Using that

∫
d2ze−z

2/2a2 = 2πa2 and
∫
d2zzjzke

−z2/2a2 = 2πa4δjk the inertial force
becomes at last

F(0) = gpV̇p(t) + gp

[
∂t −Vp(t) · ∇z +

a2

2
∂t∇2

z −
γ

2
∇2
z +

1

4
∂t∇2

z

]
δw(0)(z, t)|z=0.

(7.24)
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The terms containing the Laplacian are analog to the Faxén corrections in the classical
equations of motion eq. (4.25). In the classical case the Faxén corrections appears
because of the finite size of the particle. Here they comes both from the effective size of
the impurity a, the coherent length ξ and the interactions between the condensate and
the thermal cloud γ. The last two effect remains even for a point particle in the limit
a→ 0.

If the flow inhomogenities are small on the scale of a and ξ we can neglect the Faxén
corrections. Going back to the variables (r, t) the equation for the force reads

F(0) = gp∂tδv
(0)(r, t)|r=rp . (7.25)

As for the classical case [43, 44] the difference of the partial derivative ∂t and the
material derivative D/Dt vanish here to leading order. Also in this case we think using
D/Dt is more correct on physical grounds. If we consider a point like particle a→ 0 the
interaction potential between the condensate and the impurity becomes a delta function.
Since the interactions between the condensate particles are also a delta function( see
section 2.3), one will expect that the acceleration of the impurity and a condensate
particle is proportional. The force is then

F(0) = gp
D

Dt
δv(0)(r, t)|r=rp . (7.26)

This corresponds to the classical inertial force eq. (4.17). In dimensional units this
force is

F(0) =
gp
g
m
D

Dt
δv(0)(r, t)|r=rp . (7.27)

Here gpm/g corresponds to the displaced mass in the classical expression. Where gp/g
have the same roll as the volume of fluid displaced by the sphere in the classical case.

7.1.2 Self-Induced Force.

We now turn our attention to the self induced force F(1). As in the classical case our
goal is to express this as a function of the impurities velocity Vp and the undisturbed
condensate velocity v(0). In this case we have only managed to find an expression for the
density in Fourier space. We use this general expression to find the force on an impurity
that is moving with a constant linear velocity in the steady-state. This expression is in
the low velocity limit analogous to the Stoke drag, second term in eq. (4.25), in classical
fluids.

As above we start by finding an equation for the density perturbation. We do this
by considering eq. (7.10) and its complex conjugate

∂tψ1 = (i+ γ)(
∇2

2
− 1)ψ1 − (i+ γ)up(r− rp)− (i+ γ)ψ∗1, (7.28)

∂tψ
∗
1 = (γ − i)(∇

2

2
− 1)ψ∗1 − (γ − i)up(r− rp)− (γ − i)ψ1. (7.29)
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Where we have here written the potential on the form Up(r − rp) = gpup(r − rp). By
adding and subtracting these two equations they can be rewritten to

[
∂t − γ(

1

2
∇2 − 2)

]
(δψ1 + δψ∗1) =

i

2
∇2(δψ1 − δψ∗1)− 2γup, (7.30)

(∂t −
1

2
γ∇2)(δψ1 − δψ∗1) = i(

1

2
∇2 − 2)(δψ1 + δψ∗1)− 2iup. (7.31)

We could use this to find an expression for δρ1 as a function of δv(1), but as stated
before we want an expression that are only dependent on the velocity of the undisturbed
flow δv(0). We therefore remove the dependence on δv(1) by acting with the operator
(∂t − 1

2γ∇2) on eq. (7.30) and using eq. (7.31). Using that δρ1 = δψ1 + δψ∗1 we get the
folowing expression for the perturbed density
[
∂2
t + γ∂t(2−∇2)− (1 + γ2)∇2

(
1− 1

4
∇2
)]
δρ1 =

[
(1 + γ2)∇2 − 2γ∂t

]
up. (7.32)

This equation is a damped wave equation with
[
(1 + γ2)∇2 − 2γ∂t

]
up as a source term.

Notice that the square bracket on the left and the quadratic equation for the dispersion
relation eq. (3.9) are the same. This is expected since waves that are far away from
the impurity should follow the dispersion relation. We can solve this equation by first
taking the Fourier transform and then the Laplace transform. The solution reads

δρ̃(k, s) = e−k
2a2/2 2γe−ik·rp(0) −

[
(1 + γ2)k2 + 2γs

]
L(k, s)

s2 + γs(2 + k2) + (1 + γ2)k2(1 + 1
4k

2)
. (7.33)

Here L(k, s) =
∫∞

0 e−ik·rp(t)e−stdt. We have assumed the initial conditions δρ1 =
∂tδρ1 = 0, i.e the impurity is put into the condensate at t = 0+. Taking the inverse
Laplacian transform of this one get

δρ̃(k, t) = e−k
2a2/2

[
2γe−αt sin Ωt

Ω
e−ik·rp(0)

−
∫ t

0
dτe−ik·rp(τ)e−α(t−τ)

(
(1− γ2)k2 − 2γα

Ω
sin Ω(t− τ) + 2γ cos Ω(t− τ)

)]
.

(7.34)

We have introduced the constants Ω2 = (1 + γ2)k2(1 + k2

4 ) − α2 and α = γ(1 + k2

2 ).
Note that α and Ω are the imaginary and real part of the dispersion relation eq. (3.13).
We see that α have taken the roll of a damping factor, while Ω is the frequency of the
oscillations.

Equation (7.33) and (7.34) are the expressions for the density perturbations induced
by an arbitrary moving impurity. In the general case it have been hard to transform the
force obtained back to real space to compare it to the classical force. We have however
managed to do this in the special case where the impurity is moving with constant low
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velocity in the steady-state. Considering a constant velocity after t = 0 the solution of
the integral in eq. (7.34) is

δρ̃ = e−k
2a2/2

[
2γe−αt sin Ωt

Ω

−
(

(1− γ2)k2 − 2γα

)
e−αt

Ωe(α−ik·Vp)t − (α− ik ·Vp) sin Ωt− Ω cos Ωt

Ω[(α− ik ·Vp)2 + Ω2]

− 2γe−αt
(α− ik ·Vp)e

(α−ik·Vp)t − (α− ik ·Vp) cos Ωt+ Ω sin Ωt

(α− ik ·Vp)2 + Ω2

]
. (7.35)

Where we have assumed that rp(t = 0) = 0. Assuming that the system have evolved to
the steady-state we remove the terms that are decaying. We then get

δρ̃1 = −ek2a2/2e−ik·Vpt (1 + γ2)k2 − 2γα+ 2γ(α− ik ·Vp)

(α− ik ·Vp)2 + Ω2
. (7.36)

The factor e−ik·Vpt is removed when transforming to the comoving frame. After some
cleaning we see that the density perturbations induced by the particle is

δρ̃1 = e−k
2a2/2 4(1 + γ2)k2 − 8γik ·Vp

4(k ·Vp)(k ·Vp + 2iγ + iγk2)− (1 + γ2)k2(4 + k2)
. (7.37)

We now insert the obtained expression for the density perturbations into eq. (7.8)
and use the convolution theorem. The force is

F(1) = −
g2
p

(2π)2

∫
d2kikδρ̃1e

−k2a2/2. (7.38)

As in section 5.1 we decompose it into the component parallel with the velocity Vp and
the component perpendicular to it. The component perpendicular to the velocity is
zero because of symmetry. Inserting the expression for the Fourier modes of the density
perturbations the parallel component of the force becomes

F
(1)
‖ = −i

g2
p

(2π)2

∫
k cos θ[4k2(1 + γ2)− 8iγkVp cos θ]e−k

2a2kdkdθ

4kVp cos θ(Vpk cos θ + iγk2 + 2iγ)− k2(4 + k2)(1 + γ2)
. (7.39)

In the limit γ → 0 this becomes eq. (5.14). As stated above we want to find an
expression similar to the Stokes’ drag for classical fluids. To do that we assume that
Vp << 1 and Taylor expand the integrand to first order in Vp. The force is then

F
(1)
‖ = −4gp

π2

γ

1 + γ2
Vp

∫ ∞

0

∫ 2π

0

k3 cos2 θe−k
2a2

k2 + 4
dθdk. (7.40)

After integrating out θ it looks like

F
(1)
‖ = −2gp

π2

γ

1 + γ2
Vp

∫ ∞

0

k3e−k
2a2

k2 + 4
dk. (7.41)
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We can solve the integral by change of variables to u = a2(k2 + 4). We then get

F
(1)
‖ = −Vp

γ

1 + γ2
gp

1

π

[
e4a2E1(4a2)(1 + 4a2)− 1

]
. (7.42)

Here E1(x) =
∫∞
x due−uu−1 is the positive exponential integral. The force in the low

Vp limit is similar to the Stoke drag in the classical case (second term eq. (4.25)).
This force is caused by condensate particles scattering on the impurity, and it is related
to a local heating of the condensate. Since there is not produced any exitations in the
condensate it is implied that condensate particles are exited into the thermal cloud. The
force vanishes at γ = 0 as it should. For a small particle we can expand the positive
exponential integral as

E1(4a2) = −γE − ln 4a2. (7.43)

Where γE = 0.577... is the Euler-Mascheroni constant. The expression for the force
then becomes

F‖ = −Vp
γ

1 + γ2
g2
p

1

π
[−γE − 1− ln 4a2] = −Vp

γ

1 + γ2
g2
R

1

π
. (7.44)

Where g2
R = g2

p[−γE − 1− ln 4a2] is the renormalized coupling constant. In the limit of
a point like particle a→ 0 it diverges.
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7.2 Comparison With Numerics

7.2.1 Density Variations and Self-Induced Drag

When we start the simulation as described in chapter 6 the impurity emits waves. This
is because we start the simulation in the condensates ground state with the impurity at
rest, and then start to move the impurity with velocity Vp at time t = 0. The ground
state with the impurity at rest is not the ground state with the impurity moving at
constant velocity Vp, which causes the system to emit exitations. The simulation is
done in the comoving frame of the impurity. In this cordinate frame the impurity is
stationary, and Vp is the far field velocity of the condensate. We refer to the velocity Vp

as the impurity’s velocity, since the condensate is stationary in the lab frame. The initial
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Figure 7.1: Snapshots of the density profile of the condensate for Vp = 0.9 and γ = 0.
The top picture is taken at time t = 200 and shows the initial waves have detached
from the impurity and are propagating away from it. The waves traveling down stream
have already reached the buffer region. The botom picture is taken at time t = 2000.
Here all the density perturbations have reached the buffer region and have dissipated
out of the system. The condensate have become symmetric around the impurity.

waves created around the impurity will propagate away from the particle following the
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dispersion relation in eq. (3.10). As we can see from eq. (3.11) the group velocity for
waves in the long wavelength limit is for γ = 0 the Landau critical velocity vc = 1 in
dimensionless units. The waves with short wavelength travels faster. The behaviour of
the system is depending on whether the impurity is moving slower or faster than the
critical velocity.
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Figure 7.2: One dimensional density profile of the condensate. In (a) γ = 0 and we
can see that up to Vp = 1 the density is symmetric around the impurity. If one look
close one can see that the Vp = 1 curve is slightly asymmetrical. In figure (b) and (c)
the velocity is fixed as 0.9 and 1.6 respectively so that we can see the effect of γ. In
(b) we see the asymmetries that are caused by the finite γ, while in (c) we see that γ
is damping out the oscillations in front of the impurity. From eq. (5.3) we see that an
asymmetric density is related to a non-zero force on the impurity.

If the impurity is moving with velocity Vp < 1 the waves moves faster than the
particle, and they will eventually reach the buffer region with large γ and be dissipated.
This is illustrated in figure 7.1. Which shows the condensate for Vp = 0.9 and γ = 0
in the transient regime and the steady-state. We can see that the waves have detached
from the impurity and eventually dissipates out of the system. The time it takes for the
waves to reach the buffer region increases with the impurity velocity, since the relative
velocity between the waves and the impurity becomes smaller. When the initial waves
have left the system it reaches a steady-state. For γ = 0 the density in the steady-
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state is symmetric. This is shown in figure 7.2 (a) for different velocities up to Vp = 1.
In the Vp = 1 case the density goes towards the symmetric state asymptotically, but
we never see it reach a symmetric state. For γ > 0 the system also reaches a steady-
state. However in this case the density does not become symmetric around the impurity.
This is illustrated in figure 7.2 (b). Where we see the one dimensional profile of the
condensate density for Vp = 0.9 and different values for γ. Here one can see that the
density becomes asymmetric for non-zero γ. From the expression of the force eq. (5.3)
we see that an asymmetric density means that there is a non-zero force acting on the
impurity. This is consistent with the self-induced drag force in the steady-state eq.
(7.39), which for subsonic velocities only gives a non-zero force for γ > 0.
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Figure 7.3: Snapshot of density profile of the condensate for large velocities in the
steady-state for γ = 0. The top picture is at Vp = 1.4 and the bottom is Vp = 1.6.
One can see that there are formed fringes in front of the impurity and a wake behind.
The angle of the wake φ is marked with the doted lines. This angle decreases when the
velocity increases. The parabolas given by eq. (5.37) are also plotted as doted lines. It
looks like the parabolas describes the wave tops fare from the particle better than the
one that are close. The waves that are fare from the particle is a bit hard to see.

If the impurity moves with velocity Vp > 1 it starts to emit exitations other than
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the initial waves. In this case there are formed fringes in front of the impurity and a
wake behind it as we have discussed in section 5.3. This is shown in figure 7.3, which
shows a snapshot of the density of the condensate for γ = 0 and Vp = 1.4 and 1.6. We
have also plotted the lines given by eq. (5.31) and the parabolas given by eq. (5.37)
with N = 4, 8, ..., 40. There is preformed a coordinate change since we don’t have the
particle at the origin. We can see that the waves that are attached to the particle are
described by the conical surface with an angle obeying sinφ = 1/Vp, while far away the
waves become parabolic. The parabolas in eq. (5.37) describes the waves poorly close
to the particle, but further away it looks like the fit is getting better. The parabolas
does however not describe the tops perfectly and predict that the tops should be closer
than they are. This poor fit of the parabolas are caused by the waves with intermediate
wavelengths that are not described by neither the linear nor the quadratic dispersion
relation, but has to be described by the full relation.
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Figure 7.4: Snapshot of the condensate in the steady-state for an impurity traveling
at Vp = 1.6 for different values of the thermal drag γ. On the top γ = 0.01 while on
the bottom γ = 0.1. It is clear that a higher value of γ is damping the waves in the
condensate.

For non-zero γ the fringes becomes damped. The damping effect of γ is shown in
figure 7.4 and 7.2 (c). In the former we see the one dimensional density profile of the
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condensate at Vp = 1.6 for different values of γ. In figure 7.4 we see the snapshots of
the condensate for Vp = 1.6 for two different values of γ. We can here see that a higher
value is related to a stronger damping of the waves, in agreement with the imaginary
part of the dispersion relation eq. (3.10).

The numerically obtained force on the impurity in the steady-state as a function of
velocity is shown in figure 7.5, together with the analytical predictions from eq. (7.39)
and (7.42). We can see that the force is split in two regimes. The first regime is for
Vp < 1. Here the impurity doesn’t produce any exitations after the emission of the initial
waves. For γ > 0 there is a non-zero drag force acting on the particle in this regime.
This force in the steady-state is associated with a local heating, which is implying that
condensate particles are escaping into the thermal cloud. We see that it increases with
γ as long as γ << 1. In the insertion of the figure we see the low velocity limit. In
this limit the drag force is linearly dependent on the velocity, and eq. (7.42) captures
the behavior well. From the proportionality constant we can see that this Stokes like
drag force is caused by the thermal drag. For Vp > 1 the impurity starts to emit waves.
The emission of waves is related to a non-zero force even in the γ = 0 case. We can see
that the size of the force is decreasing when γ increases. This is because the damping
factor in the dispersion relation is proportional to γ and therefore the state becomes
less asymmetric with increasing γ. If we look at the values for γ = 0 we can see a clear
transition from a superfluid flow at Vp = 1. Looking close at the numerically obtained
value at Vp = 1 one notice that it is slightly larger than zero. This is because we did
not evolve the system long enough for the density to become symmetric. The curves for
γ > 0 does also have a transition with an abrupt change in the behaviour of the force
close to Vp = 1. This transition is more visible for small γ.
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Figure 7.5: The figure shows the self-induced drag force on the impurity in the steady-
state as a function of the velocity. The symbols are the average values of the force from
eq. (5.3) in the steady-state based on simulations of the dGPE in the comoving frame
as discussed in chapter 6. The dashed lines are the analytical predictions eq. (5.21) for
γ = 0 and eq. (7.39) for γ > 0. The insertion shows the small Vp behavior for γ > 0.
The solid lines are the linear approximation given by eq. (7.42).
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7.2.2 Inertial Force

To measure the inertial force we consider test particles moving with the impurity. The
test particles have a potential similar to the impurity eq. (7.1), with coupling strength
g′ and size a′. These potentials are not coupled to the condensate, such that the test
particles are not altering the flow. The force on the particles are therefore only caused
by the density perturbations induced by the impurity, and can be described by eq. (7.7).
We can therefore approximate this force to leading order as eq. (7.25). We don’t use
eq. (7.26) since the difference between the expressions are small for the systems we
are testing. A comparison between the potential force eq. (5.3) and the leading order
approximation on a test particle located at position (10, 20) relative to the impurity is
shown in figure 7.6. The figure shows the x component of the force for different particle
sizes and stirring velocities.

For small particles the approximation follows the main behavior of the potential
force well, but it predicts a bit larger amplitudes. When we increase the size of the
particle the approximation overshoots more and shows oscillations that is not present
in the potential force. If one look at the second order corrections eq. (7.24) one should
expect that a larger size of the test particle will cause larger deviation from the first
order approximations. For a′ = 1 the corrections due to the size of the particle should
be twice the corrections due to the coherence length. At this impurity size we are at
the limit of where we expect the Taylor expansion that were used to integrated out
the Gaussian when deriving eq. (7.24) to be valid. The expansion is valid as long as
the range of the Gaussian is small compared to variations in the condensate, but when
a = 1 the particle size is the healing length ξ which sets the scales of variations. When
a > 1/2 the Gaussian is falling off slower than the Bessel Function.

When we increase the velocity the overshoot of the amplitudes gets a bit larger,
but the leading order approximation is still giving a good estimate for the small test
particles for velocities up to the critical velocity Vp = 1. If we put the test particles
at different positions in the condensate the forces would be similar, but the time the
initial waves uses to pas the particles varies making the extent of the force different.
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Figure 7.6: Plot of the x component of the inertial force Fx/g′p on a test particle at
relative position (10, 20) with respect to the impurity that are creating the perturbations
in the flow, for γ = 0.01 and a′ = 0.25, 0.5 and 1. The cyan line is the force calculated
from eq. (5.3), while the doted black line is the approximation given by eq. (7.25) in
the comoving frame. The velocity Vp is the same for the impurity and the test particle.
The size a′ refers only to the size of the test particle. The size of the impurity is fixed
as a = 1.
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Chapter 8

Conclusion and Outlook

In this thesis we have studied the coupled dynamics between a two dimensional Bose-
Einstein condensate and an impurity at finite temperatures. By theoretical analysis
of the damped Gross-Pitaevskii equation we found the hydrodynamic forces acting on
a small impurity placed in the condensate. The force on the impurity was treated
analytical in the regime of a small impurity-condensate coupling gp and thermal drag
γ. We decomposed it into the self-induced force that was due to the perturbations
caused by the particle and the inertial force that was caused by the undisturbed flow.
We showed that the later was proportional to the local condensate acceleration in the
limit where the condensate was slowly varying on the scales of the particle size and the
healing length. This is in analogy to the inertial term in the Maxey-Riley equation for
an inertial particle in a classical incompresible fluid. The corrections due to the finite
size of the particle, the thermal drag and the healing length takes the same form as the
Faxén corrections that are caused by the finite size of the sphere submerged into the
classical fluid. The self-induced force was then found for a system in the steady-state
in the impurity’s reference frame, and we showed that in the low velocity limit this is
proportional to the relative velocity between the impurity and the condensate. This is
equivalent to the classical Stokes’ drag. The proportionality constant is dependent on
the thermal drag γ and the particle size a. In the limit where γ = 0 the drag force
vanishes, allowing for a dissipationless flow. The full expression we found reduces to
the known equation for the force in the γ = 0 limit. The obtained expressions was then
tested numerically by integrating the damped Gross-Pitaevskii equation for a condensate
that is stirred by an impurity moving with a constant velocity. We compared the forces
with the force given by the Erhenfest theorem. The tests show that the inertial force
agrees well with the analytical expression as long as the particle is small. The self-
induced force shows good agreement in the steady-state for the parameters considered.
During the testing we also observed several well known properties of the condensate like
superfluid flow and the Bogoliubov-C̆erenkov wake.

When working with the thesis there have come up some questions that can set the
direction for further studies. One thing to notice is that the expression we found for
the self-induced force is only valid in the steady-state, so we have not found a general
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hydrodynamic equation for the motion of the impurity. We do expect that such an
equation will include terms analog with the classical Basset-history integral and the
added mass force. Also the forces we have gotten are not valid close to vortices, or
for strongly coupled or large impurities. It would therefore be interesting to extend
our discussion to the regions where the impurity is close to or nucleates vortices, and
study the vortex-impurity interactions. Also it would be interesting to see which effect
the noise terms that are neglected in the dGPE have on the interaction between the
condensate and the impurity.

Another thing that would be interesting to look more into is how the impurity
potential are changing the Landau critical velocity. In the discussion in section 3.2 we
found an expression for the critical velocity in a condensate that was unaffected by any
potential. It would be interesting to investigate numerically and analytically how a
non-zero potential will affect the critical velocity. Also the wave pattern that is created
by an impurity traveling at velocities larger than the critical velocity looks qualitatively
the same regardless of the value of γ, but the waves becomes more damped. It would
therefore be interesting to have a more detailed study of this, and see what the effects
of γ is both analytically and numerically.
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Abstract.
We study the hydrodynamic forces acting on a small impurity moving in a two-

dimensional Bose-Einstein condensate at non-zero temperature. The condensate is
modelled by the damped-Gross Pitaevskii (dGPE) equation and the impurity by
a Gaussian repulsive potential coupled to the condensate. For weak coupling, we
obtain analytical expressions for the forces acting on the impurity, and compare them
with those computed through direct numerical simulations of the dGPE and with the
corresponding expressions for classical forces. For non-steady flows, there is a time-
dependent force dominated by inertial effects and which has a correspondence in the
Maxey-Riley theory for particles in classical fluids. In the steady-state regime, the
force is dominated by a self-induced drag. Unlike at zero temperature, where the drag
force vanishes below a critical velocity, at low temperatures the impurity experiences
a net drag even at small velocities, as a consequence of the energy dissipation through
interactions of the condensate with the thermal cloud. This dissipative force due to
thermal drag is similar to the classical Stokes’ drag. There is still a critical velocity
above which steady-state drag is dominated by acoustic excitations and behaves non-
monotonically with impurity’s speed.
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1. Introduction

The motion of an impurity suspended in a quantum fluid depends on several key factors
such as the superfluid nature and flow regime, as well as the size of the impurity and its
interaction with the surrounding fluid [1, 2, 3, 4, 5]. Therefore, it is disputable whether
the forces acting on an impurity in a quantum fluid should bear any resemblance to
classical hydrodynamic forces. In the case of an impurity immersed in superfluid liquid
helium, classical equations of motion and hydrodynamic forces are assumed a priori [6],
since impurities are typically much larger than the coherence length and then quantum
hydrodynamic effects like the quantum pressure can be neglected. For Bose-Einstein
condensates (BEC) in dilute atomic gases, impurities can be neutral atoms [7], ion
impurities [8, 9] or quasiparticles [10]. The size of an impurity in a BEC is typically
of the same order of magnitude or smaller than the coherence length, and quantum
hydrodynamic effects cannot be readily ignored.

There are several theoretical and computational studies of the interaction force
between an impurity and a BEC at zero absolute temperature, using different approaches
depending on the nature of the particle and its interaction with the condensate. A
microscopic approach is used to analyse the interaction of a rigid particle with a
BEC by solving the Gross-Pitaevskii equation (GPE) for the condensate macroscopic
wavefunction and using boundary conditions such that the condensate density vanishes
at the particle boundary [11]. This methodology allows to study complex phenomena
such as vortex nucleation and flow instabilities, but it is more oriented to find the effects
of an obstacle on the flow rather than the coupled particle-flow dynamics. In addition,
the boundary condition introduces severe nonlinearities which can only be addressed
numerically. At a more fundamental level of description, the impurity is treated as a
quantum particle with its own wavefunction described by the Schrödinger equation and
that is coupled with the GPE for the macroscopic wavefunction of the BEC [12]. A
more versatile model for the interaction of impurities with the BEC has been explored
in several papers [3, 4, 13, 14, 5, 15]. Here, an additional repulsive interaction (a
Gaussian or delta-function potential) is added to model scattering of the condensate
particles with the impurity. The force on the impurity is determined by this repulsion
potential and the superfluid density through the Ehrenfest theorem. The strong-
coupling limit of this repulsive potential would be equivalent to the rigid boundary-
condition approach. Within this modelling approach, some works have studied the
complex motion of particles interacting with vortices in the flow, and the indirect
interactions between them arising from the presence of the fluid [4, 14]. Another line of
research using this type of modelling focused mainly on the superfluidity criterion of an
equilibrium BEC [3, 16, 17, 18, 19, 5] and non-equilibrium BEC at zero temperature [20].
Within the Bogoliubov perturbation analysis for a small impurity with weak coupling,
analytical expressions can be derived for the steady-state force on the impurity. At
zero temperature, this force vanishes below a critical velocity and corresponds to the
dissipationless motion. Above this velocity identified through Landau criterion as the
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speed of the long-wavelength sound waves, there is a net drag force and the motion of
the impurity is damped by acoustic excitations. While this is a form of drag, in that the
force opposes motion by dissipating energy, it is not the same as the classical Stokes’
drag in viscous fluids. Recent experiments probing superfluidity in a BEC are able to
indirectly estimate the drag force by measuring the local heating rate in the vicinity of
the moving laser beam and show that there is still a critical velocity even at non-zero
temperatures and that the critical velocity is lower for a repulsive potential than for an
attractive one [21].

In this paper, we study the forces exerted on an impurity moving in a two-
dimensional BEC at low temperature, using an approach similar to [3, 4, 13, 14, 5], in
which a repulsive Gaussian potential is used to describe the interaction of the particle
with the BEC, but using a dissipative version of the GPE. Our aim is to bridge this
microscopic approach with the phenomenological descriptions [6] that assume that the
forces from the superfluid are the same as those from a classical fluid in the inviscid
and irrotational case. As in the classical-fluid case, we find that the force is made
of two contributions: One of them, dominant for very weak fluid-particle interaction,
bears a rather complete analogy with the corresponding force in classical fluids (inertial
or pressure-gradient force), which depends on local fluid acceleration and includes the
so-called Faxén corrections arising from velocity inhomogeneities close to the particle
position [22]. The difference is that, in a classical fluid, these corrections arise from
the finite size of the particle and vanish when the particle size becomes zero. In
the BEC, Faxén-type corrections arise both from the particle size (modeled by the
range of the particle repulsion potential) and from the BEC coherence length. As
fluid-particle interaction becomes more important, a second contribution to the force
becomes noticeable, which takes into account the drag on the particle arising from the
perturbation of the flow produced by the presence of the particle. This is also called the
particle self-induced force. We are able to obtain explicit formulae for the steady-state
motion of the particle in an otherwise homogeneous and steady BEC. This drag is a
dissipative (damping) force due to thermal drag of the BEC with the thermal cloud.
It occurs in addition to the drag due to acoustic excitations in the condensate that
occurs only above a critical velocity. It can be compared with the corresponding force
in classical fluids, namely the viscous Stokes drag. We find an analytical expression
for this self-induced drag at arbitrary speeds and show that in the low speed limit, it
reduces to a linear dependence on speed akin to the classical Stokes drag.

The rest of the paper is structured as follows. In Sect. 2, we discuss the general
modelling setup and in Sect. 3 a perturbation analysis is used to derive the linearised
equations for the perturbations in the wavefunction related to non-steady condensate
flow and the particle repulsive potential. Subsections 3.1 and 3.2 derive analytical
expressions within perturbation theory for the two contributions to the force experienced
by the particle. In Section 4, we compare our theoretical predictions with numerical
simulations of the dissipative GPE coupled to the impurity, and the final section
summarises our conclusions.
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2. Modelling approach

We model the interaction between the impurity and a two-dimensional (2D) BEC
through a Gaussian repulsive potential which can be reduced to a delta-function limit
similar to previous studies [3, 5]. The BEC at low temperatures is well-described
by the damped Gross Pitaevskii equation (dGPE) for the condensate wavefunction
ψ(r, t) [23, 24, 25, 26, 27, 28, 29]:

i~∂tψ = (1− iγ)

(
− ~2

2m
∇2 + g|ψ|2 − µ+ Vext + gpUp

)
ψ, (1)

where g is an effective scattering parameter between condensate atoms. Vext is any
external potential used to confine or stir the condensate. The damping coefficient γ > 0

also called the thermal drag is related to the net exchange of atoms through collisions
between thermal atoms with each other or with the condensate at fixed chemical
potential µ. In the low-temperature limit, this damping γ is very small and can be
expressed as a function of temperature T [30, 25]. The dGPE is a phenomenological
model that can also be derived from the stochastic GPE in the low temperature limit
where noise is negligible [23, 24]. The dGPE has been used extensively to study different
vortex regimes from vortex lattices [25] to quantum turbulence [28, 31, 27, 26, 32] and
was shown to capture well, at least qualitatively, experimental observations [32].

A hydrodynamic description of the BEC uses the Madelung transformation of the
wavefunction ψ = |ψ|eiφ to define the condensate density as ρ(r, t) = |ψ(r, t)|2 and the
condensate velocity as v(r, t) = (~/m)∇φ(r, t). This velocity can also be obtained from
the superfluid current J(r, t) as

J =
~

2mi
(ψ∗∇ψ − ψ∇ψ∗) = ρv, (2)

where ψ∗ denotes the complex conjugate of ψ. In addition to damping the BEC velocity,
the presence of γ 6= 0 in the dGPE also singles out the value ρh = |ψ|2 = g/µ as the
steady homogeneous density value when the phase is constant and Vext = 0.

The interaction potential Up(r − rp) between the condensate and the impurity is
modelled by a Gaussian potential Up(r − rp) = µ/(2πσ2)e−(r−rp)2/(2σ2). The parameter
gp > 0 is the weak coupling constant for repulsive impurity-condensate interaction,
rp = rp(t) denotes the center-of-mass position of the impurity, and σ its effective size.
Here we consider an impurity of size σ of the order the coherence length ξ = ~/√mµ
of the condensate. The impurity is too small to nucleate vortices in its wake [33].
Instead, it will create acoustic excitations with Bogoliubov-C̆erenkov wake. Similar wave
fringes in the condensate density have been reported numerically in [2] for a different
realisation of non-equilibrium Bose-Einstein condensates. In the limit of a point-like
impurity, the Gaussian interaction potential converges to a two-body scattering potential
Up(r−rp, t) = µδ(r−rp(t)) that has been used in previous analytical studies [3, 4, 13, 14].
Note that we are modelling only the interaction of the particle with the BEC, so that
the viscous-like drag we obtain arises from the indirect coupling to the thermal bath
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via the BEC. Any direct interaction of the particle with the thermal cloud will lead to
additional forces which could be important at high temperatures, and which are not
included here.

In order to gain insight into the forces and their relationship with the classical case,
we keep the set-up as simple as possible. We consider a 2D condensate and assume that
the size of the condensate is large enough so that we can neglect inhomogeneities in the
confining part of Vext. Also, we consider a neutrally buoyant impurity so that effects
of gravity can be neglected. This would imply Vext = 0 except if an external forcing
is introduced to stir the system, in which case we assume the support of this external
force is sufficiently far from the impurity.

The impurity and the condensate will exert an interaction force on each other
that is determined by the Ehrenfest theorem for the evolution of the center-of-mass
momentum of the particle. The potential force −gp∇Up(r − rp) is the force exerted by
an impurity on a condensate particle at position r. By space averaging over condensate
density, we then determine the force exerted by the impurity on the condensate as
−gp

∫
dr|ψ(r, t)|2∇Up(r − rp) [14]. Hence, the force acting on the impurity has the

opposite sign and is equal to

Fp(t) = + gp

∫
d2r|ψ(r, t)|2∇Up(r − rp) (3)

which, through an integration by parts, is equivalent to

Fp(t) = − gp
∫
d2r Up(r − rp, t)∇|ψ(r, t)|2. (4)

Note that this last expression can also be used, reversing the sign, to give the force
exserted on the BEC by a laser of beam profile given by Up.

At zero temperature, i.e. γ = 0, and if we neglect the effect of quantum
fluctuations [17, 16, 18, 19], the impurity moves without any drag through a uniform
condensate below a critical velocity, which is the low-wavelength speed of sound
c =

√
µ/m, as determined by the condensate linear excitation spectrum, in agreement

with Landau’s criterion of superfluidity [3]. Above the critical speed, the impurity will
create excitations, and depending on the size of the impurity these excitations range from
acoustic waves (Bogoliubov excitation spectrum) to vortex dipoles and to von-Karman
street of vortex pairs [33]. Previous studies focused on the theoretical investigations of
the self-induced drag force and energy dissipation rate in the presence of Bogoliubov
excitations emitted by a pointwise [3, 16, 19] or finite-size [5] particle, or numerical
investigations of the drag force due to vortex emissions [1, 13, 14]. The energy dissipation
rate depends on whether the impurity is heavier, neutral or lighter with respect to the
mass of the condensate particles [14]. The dependence on the velocity of the self-induced
drag force above the critical velocity changes with the spatial dimensions [3]. This means
that the energy dissipation rate is also dependent on the spatial dimensions. If instead of
a single impurity one considers many of them there will be, besides direct inter-particle
interactions, additional forces between the impurities mediated by the flow, leading to
a much more complex many-body dynamics even in an otherwise uniform condensate,
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as discussed in [4]. Here we neglect all these effects and consider a single impurity in a
2D BEC.

We rewrite the dGPE in dimensionless units by using the characteristic units of
space and time in terms of the long-wavelength speed of sound c =

√
µ/m in the

homogeneous condensate and the coherence length ξ = ~/(mc) = ~/√mµ. Space is
rescaled as r → r̃ξ and time as t→ t̃ξ/c. In addition, the wavefunction is also rescaled
ψ → ψ̃

√
µ/g, where g/µ is the equilibrium particle-number density corresponding to

the solution with constant phase if Vext,Up = 0. The external potential, Vext = µṼext,
and the interaction potential, gpUp = µg̃pŨp, are measured in units of the chemical
potential µ with Ũp = 1/(2πa2)e−(r̃−r̃p)2/(2a2), and a = σ/ξ, g̃p = gp/(ξ

2µ). Henceforth,
the dimensionless form of the dGPE reads as

∂̃tψ̃ = (i+ γ)

(
1

2
∇̃2 + 1− Ṽext − g̃pŨp − |ψ̃|2

)
ψ̃. (5)

In these dimensionless units, the force from Eq. (4) exerted on an impurity reads
as Fp = (µ2ξ/g)F̃p, where

F̃p(t) = −g̃p
∫
d2r̃Ũp(r − rp)∇̃|ψ̃(r̃, t)|2. (6)

For the rest of the paper, we will now omit the tildes over the dimensionless quantities.
In the limit of a point-like particle, Up = δ(r− rp), the force from Eq. (6) becomes

Fp(t) = −gp∇|ψ(r, t)|2|r=rp(t). (7)

3. Perturbation analysis

For a weakly-interacting impurity, the condensate wavefunction ψ can be decomposed
into an unperturbed wavefunction ψ0(r) describing the motion and density of the fluid in
the absence of the particle and the perturbation δψ1(r) due to the impurity’s repulsive
interaction with the condensate, hence ψ = ψ0 + gpδψ1. Weak particle-condensate
interaction condition is that max(gpUp) � 1, or gp � 2πa2, which means that the
particle-condensate interaction of strength gp and range σ is small compared with the
energy scale given by the chemical potential µ = 1 (dimensionless units).

The unperturbed wavefunction ψ0(r, t) can be spatially-dependent, if it is initialised
in a nonequilibrium configuration, or if external forces characterised by Vext are at
play. Here, we consider deviations with respect to the steady and uniform equilibrium
state (ψh = 1 in dimensionless units). As stated before, we do not consider large
extended inhomogeneities produced by a trapping potential, and assume that any
stirring force acting on the BEC is far from the particle. Thus, we treat inhomogeneities
close to the particle as small perturbations to the uniform state ψh = 1: ψ0(r, t) =

1 + δψ0(r, t). Combining the two types of perturbations, and using the relationships of
the wavefunction to the density, velocity and current (Eq. (2), which in dimensionless
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units reads ρv = (ψ∗∇ψ − ψ∇ψ∗)/(2i)) we find

ψ = 1 + δψ0 + gpδψ1 (8)

ρ = 1 + δρ0 + gpδρ1, (9)

v = δv(0) + gpδv
(1), (10)

where

δρ0 = δψ0 + δψ∗0, δρ1 = δψ1 + δψ∗1, (11)

δv(0) =
1

2i
∇ (δψ0 − δψ∗0) , δv(1) =

1

2i
∇(δψ1 − δψ∗1).

(12)

Combining Eq. (6) with the expressions for the density perturbations, we have that
the total force can be split into the contribution from the density variations in the BEC
by causes external to the particle (initial preparation, stirring forces in Vext, ...), and
the density perturbations due to the presence of the particle Fp = F (0) + F (1):

F (0)(t) = − gp
2πa2

∫
d2re−

(r−rp(t))
2

2a2 ∇δρ0(r, t), (13)

F (1)(t) = − g2
p

2πa2

∫
d2re−

(r−rp(t))
2

2a2 ∇δρ1(r, t). (14)

The perturbative splitting of the force in these two contributions is completely
analogous to the corresponding classical-fluid case in the incompressible [22] and in
the compressible [34] situations. The F (0) contribution is the equivalent to the classical
inertial or pressure-gradient force on a test particle, which does not disturb the fluid, in a
inhomogeneous and unsteady flow. We call this the inertial force. The F (1) contribution
takes into account perturbatively the modifications on the flow induced by the presence
of the particle, and it is called the self-induced drag on the particle. To complete the
comparison with the classical expressions [22, 34], we need to express Eqs. (13) and
(14) in terms of the unperturbed velocity field v(0)(r, t) = δv(0)(r, t) and of the particle
speed Vp(t) = ṙp(t). We are able to do so in a general situation for the inertial force
F (0). For F (1), we obtain analytical expressions in the simple case where the impurity
is moving with a constant velocity in an otherwise uniform BEC.

The desired relationships between ∇δρ0 and ∇δρ1 in Eqs. (13)-(14), and δv(0) and
Vp will be obtained from the linearization of the dGPE Eq. (5) around the uniform
steady state ψh = 1:

∂tδψ0 = (i+ γ)

(
1

2
∇2 − 1

)
δψ0 − (i+ γ)δψ∗0, (15)

∂tδψ1 = (i+ γ)

(
1

2
∇2 − 1

)
δψ1 − (i+ γ)δψ∗1 − (i+ γ)Up(r − rp) . (16)

Terms containing Vext are not included in Eq. (15) because of our assumption of
sufficient distance between possible stirring sources and the neighborhood of the particle
position, the only region that–as we will see– will enter into the calculation of the forces.
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In the next sections we solve these linearised equations to relate density perturbations
to undisturbed velocity field and particle velocity.

3.1. Inertial force

To convert Eq. (13) for the inertial force into an expression suitable for comparison
with the corresponding term in classical fluids, we need to express ∇δρ0 in terms of the
undisturbed velocity field v(0)(r, t) = δv(0)(r, t). To this end, we substract Eq. (15)
from its complex conjugate, obtaining:

(
∇2 − 4

)
∇δρ0 = 4

(
∂t −

γ

2
∇2
)
δv(0), (17)

where we have used Eqs. (11) and (12). Since the force formulae require to obtain the
condensate density in a neighbourhood of the particle position, it is convenient to move
to frame co-moving with the particle. Thus we change variables from (r, t) to (z, t),
with z = r − rp(t), and the velocity field will be now referred to the particle velocity
Vp(t) = ṙp(t): δw(0)(z, t) = δv(0)(r, t)− Vp(t). Equation (17) becomes:

(
∇2
z − 4

)
∇zδρ0 =

4
(
∂t − Vp · ∇z −

γ

2
∇2
z

)
δw(0) + V̇p(t), (18)

which has the corresponding equation for its Green’s function given by
(
∇2
z − 4

)
G(z) = δ(z) (19)

with the boundary condition G(|z| → ∞) → 0 (corresponding to vanishing ∇zδρ0(r)

at |r| = ∞). The solution is given by the zeroth order modified Bessel function
G(z) = −K0(2|z|)/(2π). Hence, the gradient of the density perturbation can be written
as the convolution with the Green’s function:

∇zδρ0(z, t) = − 2

π

∫
dz′K0(2|z − z′|)

[(
∂t − Vp · ∇z′ −

γ

2
∇2

z′

)
δw(0)(z′, t) + V̇p(t)

]
,

(20)
and the expression for the force (13), using the comoving variables (z, t), becomes:

F (0)(t) = − gp
π2a2

∫
dze−

z2

2a2

∫
dz′K0(2|z−z′|)

[(
∂t − Vp · ∇z′ −

γ

2
∇2

z′

)
δw(0)(z′, t) + V̇p(t)

]
.

(21)
The above expression is a weighted average of contributions from properties of the

fluid velocity in a neighborhood of the impurity center-of-mass position (z = 0 in the
comoving frame). The size of this neighborhood is given by the combination of the
range of the Bessel function kernel, which in dimensional units would be the correlation
length ξ, and the range of the Gaussian potential, a, giving an effective particle size.
In classical fluids, the analogous force on a spherical particle involves the average of
properties of the undisturbed velocity field within the sphere size [34], and there is no
equivalent to the role of ξ.



Classical analogies for the force acting on an impurity in a Bose-Einstein condensate 9

As in the classical case [22, 34], if fluid velocity variations are weak at scales below
a and ξ, we can approximate the condensate velocity by a Taylor expansion near the
impurity, i.e.:

δw
(0)
i (z′, t) ≈ δw

(0)
i (t) +

∑

j

eij(t)z
′
j +

1

2

∑

jk

eijk(t)z
′
jz
′
k + . . . , (22)

where the indices i, j, k = x, y denote the coordinate components. eij(t) =

∂jδw
(0)
i (z, t)|z=0 and eijk(t) = ∂j∂kδw

(0)
i (z, t)|z=0 are gradients of the unperturbed

condensate relative velocity. Inserting this expansion into Eq. (21), and performing the
integrals of the Gaussian and of the Bessel function (using for example

∫
K0(2|z|)dz =

π/2 and
∫
zizjK0(2|z|)dz = (δij/2)

∫∞
0

2πz3K0(2z)dz = δijπ/4), we obtain:

F (0)(t) ≈ gpV̇p(t) + gp

[
∂t − Vp(t) · ∇z +

a2

2
∂t∇2

z −
γ

2
∇2
z +

1

4
∂t∇2

z

]
δw(0)(z, t)|z=0 .

(23)
The terms containing Laplacians are analogous to the Faxén corrections in classical

fluids [22] which arise for particles with finite size. Here, they arise from a combination
of the finite effective size of the particle, a, and of the quantum coherence length, ξ = 1.
This last effect remains even in the limit of vanishing particle size a→ 0. Interestingly,
one of the two terms in these quantum corrections depend on γ hence indirectly on the
presence of the thermal cloud.

As in the classical case, if flow inhomogeneities are unimportant below the scales
a and ξ, we can neglect the Laplacian terms in Eq. (23). Returning to the variables
(r, t) in the lab frame of reference, the terms containing Vp cancel out, showing that the
inertial force is mainly given by the local fluid acceleration:

F (0)(t) = gp∂tδv
(0)(r, t)

∣∣
r=rp(t)

. (24)

We have assumed a small non-uniform unperturbed velocity field v(0)(r, t) = δv(0)(r, t).
To leading order in velocity, the partial derivative ∂tδv(0) and the material derivative
Dδv(0)/Dt = ∂tδv

(0) + δv(0) · ∇δv(0) are identical. In classical fluids the same
ambiguity occurs and it has been established, on physical grounds and by going beyond
linearisation, that using the material derivative is more correct [22]. After all, using
this material derivative in the equation of motion simply means that, under the above
approximations and in places where stirring and other external forces are absent, the
local acceleration on the impurity arises from the corresponding acceleration of the
condensate. Since for a→ 0 the condensate-impurity interaction has a similar scattering
potential (delta function) as that for the interaction between condensate particles,
similar accelerations would be experienced by a condensate particle and by the impurity,
just modulated by a different coupling constant. Thus, replacing ∂t by D/Dt in (24)
the approximate inertial force becomes:

F (0)(t) = gp
Dv(0)

Dt

∣∣∣∣
r=rp(t)

, (25)
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or, if we return back to dimensional variables:

F (0)(t) =
gp
g
m
Dv(0)

Dt

∣∣∣∣
r=rp(t)

. (26)

This is equivalent to the equation for the inertial force in classical fluids [22] except
that the coefficient of the material derivative in the classical case is the mass of the
fluid fitting in the size of the impurity. In the comoving frame, replacement of the
partial by the material derivative amounts to replace (∂t−Vp ·∇z′)δw

(0) in Eq. (21) by
Dδw(0)/Dt. Eq. (25) is expected to be valid for small values of gp and in regions where
fluid velocity and density inhomogeneities are both small and weakly varying. At this
level of approximation neither compressibility nor dissipation effects appear explicitly
in the inertial force, in analogy with classical compressible fluids [34]. But these effects
are indirectly present by determining the structure of the field v(0)(r, t).

3.2. Self-induced drag force

The consideration of the self-induced force on a particle moving through a classical fluids
leads to different terms, namely [22, 34] the viscous (Stokes) drag, the unsteady-inviscid
term that in the incompressible case becomes the added-mass force, and the unsteady-
viscous term that in the incompressible case becomes the Basset history force. They
are expressed in terms of the undisturbed velocity flow v(0) and the particle velocity
Vp(t). Here, for the BEC case, we are able to obtain the self-induced force only for a
particle moving at constant speed on the condensate. For the classical fluid case, in this
situation the only non-vanishing force is the Stokes drag, so that this is the force we
have to compare our result with. We note that the condensate itself in the absence of
the particle perturbation can be in any state of (weak) motion since in our perturbative
approach summarised in Eqs (15)-(16), the inhomogeneity δψ0 and the gp-perturbation
δψ1 are uncoupled.

It is convenient to transform the problem to the co-moving frame (r, t) → (z, t)

with z = r − rp(t), so that Eq. (16) becomes

∂tδψ1 − Vp · ∇δψ1 = (i+ γ)

(
1

2
∇2 − 1

)
δψ1 − (i+ γ)δψ∗1 − (i+ γ)U(r) . (27)

Note that such Galilean transformations of the GPE using a constant Vp are often
accompanied by a multiplication of the transformed wavefunction by a phase factor
exp(iVp ·z+ i

2
V 2
p t), in order to transform the condensate velocity (see below) to the new

frame of reference, and account for the shift in kinetic energy. Indeed, such a combined
transformation leaves the GPE unchanged at γ = 0 [35] (but not for γ > 0). The density
perturbation δρ1 is already given correctly by δψ1 + δψ∗1, where δψ1(z, t) is the solution
of (27), without the need of any additional phase factor. The velocity in the co-moving
frame would need to be corrected as δω(1)(z, t) = δv(1) − Vp, with δv(1) given by Eq.
(12) in terms of the solution of Eq. (27).
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Eq. (27) in the steady-state can be solved by using the Fourier transform
δψ1(z) = 1/(2π)2

∫
d2keik·zδψ̂1(k). It follows that the linear system of equations for

δψ̂1(k) and δψ̂∗1(−k) is given by
[
−2ik · Vp + (i+ γ)(k2 + 2)

]
δψ̂1 + 2(i+ γ)δψ̂∗1 = −2(i+ γ)e−

a2k2

2 ,
[
−2ik · Vp + (−i+ γ)(k2 + 2)

]
δψ̂∗1 + 2(−i+ γ)δψ̂1 = −2(−i+ γ)e−

a2k2

2 .

(28)

By solving these equations, we find δψ̂1(k) and δψ̂∗1(−k), and the Fourier transform of
the density perturbation δρ1 = δψ∗1 + δψ1 then follows as

δρ̂1 =
e−

k2a2

2 (4k2(1 + γ2)− 8iγk · Vp)
4k · Vp(Vp · k + iγk2 + 2iγ)− k2(4 + k2)(1 + γ2)

. (29)

Using the convolution theorem, we can express the self-induced force (14) (in the co-
moving frame, i.e. with rp = 0) in terms of δρ̂1 as

F (1) = − g2
p

(2π)2

∫
d2kikδρ̂1(k)e−

k2a2

2 . (30)

This force can be decomposed into the normal and tangential components relative to
the particle velocity Vp: F (1) = F‖e‖+F⊥e⊥. Due to symmetry, the normal component
vanishes upon polar integration, and we are left with the tangential, or drag, force

F‖ = − g2
p

(2π)2

∫ ∞

0

dk

∫ 2π

0

dθe−k
2a2 ik2 cos(θ) [4k2(1 + γ2)− 8iγkVp cos(θ)]

4kVp cos(θ)(kVp cos(θ) + iγk2 + 2iγ)− k2(4 + k2)(1 + γ2)
.

(31)
Vp is the modulus of Vp. At zero temperature, i.e. when γ = 0, the drag force reduces
to the one that has also been calculated for a point particle in Refs. [3] and in [5] for a
finite-a particle:

F‖ = − g
2
p

π2

∫ ∞

0

dk

∫ 2π

0

dθ
ik2 cos θe−k

2a2

4V 2
p cos2 θ − (4 + k2)

, (32)

which is zero for particle speed smaller than the critical value given by the long-
wavelength sound speed, Vp < c = 1. Above the critical speed, the integral has poles
and acquires a non-zero value given by

F‖ = −g
2
pk

2
max

4Vp
e−

a2k2max
2

[
I0

(
a2k2

max

2

)
− I1

(
a2k2

max

2

)]
(33)

in terms of the modified Bessel functions of the first kind In(x) and where kmax =

2
√
V 2
p − 1. For vanishing a the dominant term is proportional to (V 2

p − 1)/Vp [3]. This
drag is pertaining to energy dissipation by radiating sound waves in the condensate
away from the impurity. We emphasise again that a is small enough such that emission
of other excitations, such as vortex pairs, does not occur. It is important to note [3, 5]
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Figure 1. Panels (a)-(c) show 2D snapshots of the condensate density for γ = 0. The
impurity is at x/ξ = 128 and y/ξ = 64. (a) is at Vp = 0.9 and at time t = 200, with
transient waves still in the system. (b) is for the same Vp = 0.9 and at t = 2000, when
the final steady state has been reached. Panel (c) is for Vp = 1.6 > 1, for which some
waves remain attached to the impurity as front fringes and the Bogoliubov-C̆erenkov
wake with sin(φ) = 1/Vp. Panels (d-f) show cross-section profiles along the x direction
of the steady-state condensate density around the impurity. Panel (d) shows the front-
rear symmetry of the steady profiles when Vp ≤ 1 and γ = 0. An asymmetry develops
(panel (e)) for γ > 0, which relates to the net viscous-like drag. Panel (f) displays
density profiles for Vp = 1.6 > 1 and different values of γ. The asymmetric density
profile corresponds to waves trapped in front of the moving particle. With increasing
γ, these waves are damped out.

that in order to obtain a real value for the force in Eq. (33) one has to consider that
it has been obtained from the limit γ → 0+ in (31), which implies that an infinitesimal
positive imaginary part needs to be considered in the denominator to properly deal with
the poles in the integral.

In general, for a non-zero γ, Eq. (31) simplifies upon an expansion in powers of Vp
to the leading order. For the linear term in Vp, we can perform the polar integration
and arrive at

F‖ = − 2

π
Vp

γ

1 + γ2
g2
p

∫
k3e−a

2k2

(4 + k2)2
dk . (34)

Substituting u = a2(k2 + 4), we find

F‖ = −Vp
γ

1 + γ2
g2
p

1

π

[
e4a2E1(4a2)(1 + 4a2)− 1

]
,

(35)

where E1(x) denotes the positive exponential integral. When a → 0, the expression
inside the bracket diverges as −γE − 1 − ln(4a2) with γE begin the Euler-Mascheroni
constant. It is therefore necessary to keep a finite size a.



Classical analogies for the force acting on an impurity in a Bose-Einstein condensate13

0 20 40 60 80 100
t

0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

F x
/g

′ p

×10 6 a′ = 0.25, Vp = 0.1
Potential force
Inertial force

(a)

0 20 40 60 80 100
t

4

2

0

2

4

F x
/g

′ p

×10 5 a′ = 0.25, Vp = 0.8
Potential force
Inertial force

(b)

0 20 40 60 80 100
t

1.5

1.0

0.5

0.0

0.5

1.0

F x
/g

′ p

×10 4 a′ = 0.25, Vp = 1
Potential force
Inertial force

(c)

0 20 40 60 80 100
t

0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

F x
/g

′ p

×10 6 a′ = 0.5, Vp = 0.1
Potential force
Inertial force

(d)

0 20 40 60 80 100
t

4

2

0

2

4

F x
/g

′ p
×10 5 a′ = 0.5, Vp = 0.8

Potential force
Inertial force

(e)

0 20 40 60 80 100
t

1.5

1.0

0.5

0.0

0.5

1.0

F x
/g

′ p

×10 4 a′ = 0.5, Vp = 1
Potential force
Inertial force

(f)

0 20 40 60 80 100
t

0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

F x
/g

′ p

×10 6 a′ = 1, Vp = 0.1
Potential force
Inertial force

(g)

0 20 40 60 80 100
t

4

2

0

2

4

F x
/g

′ p

×10 5 a′ = 1, Vp = 0.8
Potential force
Inertial force

(h)

0 20 40 60 80 100
t

1.5

1.0

0.5

0.0

0.5

1.0

F x
/g

′ p

×10 4 a′ = 1, Vp = 1
Potential force
Inertial force

(i)

Figure 2. x component of the time-dependent force Fx/g
′
p, using direct numerical

simulations of the dGPE Eq. (36), on a test particle of size a′ = 0.25, 0.5, 1 at a relative
position (∆x,∆y) = (10, 20) with respect to the position of the particle producing the
flow perturbation. The speed of both particles is Vp = 0.1, 0.8, 1, and γ = 0. Cyan
continuous lines correspond to the full force (x component) from the exact expression
Eq. (6). They are labeled as ‘potential force’ because of the rather explicit appearance
of the interaction potential in this formula. Black dotted lines are the predictions for
the inertial force from the approximation Eq. (25) (computed in the comoving frame
as explained in the text).

This drag force is akin to the viscous Stokes drag in classical fluids, but it is due
to loss of energy in the condensate through its interaction with the thermal cloud.
The effective drag coefficient depends on the thermal drag such that it vanishes at
zero temperature. But it also depends non-trivially on the size of the impurity and it
diverges in the limit of point-like particle. Faxén corrections involving derivatives of the
unperturbed flow are not present here because of the decoupling between δψ0 and δψ1

arising in the perturbative approach leading to (15)-(16).

4. Numerical results

To test the analytical predictions of the inertial force and the self-induced drag deduced
above from the total force expression Eq. (6), we performed numerical simulations of
the dGPE. Actually, our simulations are done in the co-moving frame of the impurity
moving at constant velocity Vp, so that the equation we solve is (see numerical details
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in the Appendix):

∂tψ − Vp · ∇ψ = (i+ γ)

[
1

2
∇2ψ +

(
1− gpUp − |ψ|2

)
ψ

]
,

(36)

where the impurity is described by the Gaussian potential of intensity gp = 0.01 and
effective size a = 1 (in units of ξ), and is situated in the middle of the domain with
the coordinates (x, y) = (128, 64) (in units of ξ). As an initial condition, we start
with the condensate being at rest and in equilibrium with the impurity. This is done
by imaginary time integration of Eq. (36) for Vp = 0 and γ = 0. Then, at t = 0,
we solve the full Eq. (36), and as a consequence, sound waves are emitted from the
neighbourhood of the impurity. Their speed is determined by the dispersion relation
ω(k) giving the frequency as a function of the wavenumber and can be obtained by
looking for plane-wave solutions to Eq. (15). If γ = 0, ω(k) is given by the Bogoliubov
dispersion relation [36] ω(k) = k

√
1 + k2/4. Note that the smallest velocity, c = 1,

is that of long wavelengths, and that waves of smaller wavelength travel faster. For
γ > 0, the planar waves are dampened out and the dispersion relation becomes
ω(k) = −iγ(k2/2 + 1) +

√
k2 + k4/4− γ2. The damping rate is determined by γ and

increases quadratically with the wavenumber. Also, in this case all waves have a group
velocity faster than a minimum one that for small γ is close to c = 1.

When Vp < 1 all the waves escape the neighbourhood of the impurity (see an
example in Fig. 1(a)) and are dissipated in a boundary buffer region that has large γ (see
numerical details in the Appendix and Supplemental Material [37]). After a transient
the condensate achieves a steady state. Fig. 1(b) shows a steady spatial configuration for
γ = 0 and Vp = 0.9. Figs. 1(d-e) show different profiles of the condensate density along
the x direction across the impurity position for Vp. The condensate density is depleted
near the impurity due to the repulsive interaction, and its general shape depends on
the speed Vp and thermal drag γ. If γ = 0 and Vp ≤ 1 the density of this steady state
has a rear-front symmetry with respect to the particle position (see specially Fig. 1(d)),
so that under integration in Eq. (6) the net force is zero. The presence of dissipation
(γ > 0) breaks this symmetry even if Vp < 1 so that a net drag will appear in agreement
with the calculation of Sect. 3.2. When Vp > 1, there are waves that can not escape
from the neighbourhood of the impurity, forming parabolic fringes in front of it and the
Bogoliubov-C̆erenkov wake behind it. (see Fig. 1(c) and 1(f) and Supplemental material
[37]). The opening angle of the C̆erenkov cone is determined by the dispersion relation of
the waves with long-wavelength and satisfy the relation sin(φ) = 1/Vp as shown in Fig.
1(c). It is clear that it narrows when the speed increases. The consequence is that there
is a net drag induced by these fringes even when γ = 0, and that it would eventually
decrease at very large velocity as the angle of the wake decreases. Similar gringes in
the condensate density around an obstacle in supersonic flows has also been observed
experimentally [38]. Movies showing the transient and long-time density behaviour for
several values of Vp and at γ = 0 are included as Supplemental Material [37]. The fluid
suddenly starts to move towards the negative x direction, and its density approaches a
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steady state after the transient. Note that during all the dynamics, the density deviation
with respect to the equilibrium value ρ = 1 is very small, justifying the perturbative
approach of Sect. 3. The time evolution for γ > 0 is qualitatively similar to the γ = 0

shown in the movies, except that the waves become damped and that there is a front-rear
asymmetry in the steady state.

Our numerical setup is well suited to measure the force produced by the
perturbation of the impurity on the fluid, i.e. the self-induced drag. Nevertheless, in
the absence of the impurity the unperturbed state is the trivial ψ = 1, so that δψ0 = 0

and the inertial force is identically zero. In order to test the accuracy of our expressions
for the inertial force without the need of additional simulations under a different set-up,
we still use the computed condensate density and velocity dynamics, produced by the
impurity introduced in the system at t = 0, but we evaluate the inertial force exerted by
this flow on another test particle located at a different position. In fact, there is no need
to think on the flow as being produced by an impurity: it can be produced by a moving
laser beam that can modelled by an external potential Vext and the only impurity present
in the system is the test particle on which the force is evaluated. In the following we
evaluate the inertial and the self-induced drag forces on the different particles from the
general expressions Eqs. (13)-(14) and from the approximate expressions of Sects. 3.1
and 3.2.

4.1. Numerical evaluation of the inertial force

We consider a test particle traveling at the same speed Vp as the impurity or laser beam
producing the flow, but located at a distance of 10 coherence lengths in front of it, and
20 coherence lengths in the y direction apart from it. This distance is sufficient to avoid
inclusion of Up or Vext in Eq. (15) for the neighborhood of the test particle. Condensate
and test particle interact via a coupling constant g′p sufficiently small so that the full
force on the later, Eq. (6), is well approximated by the inertial part Eq. (13), being
the perturbation the particle induces on the flow, and thus the force (14) completely
negligible.

Figure (2) shows, for different values of Vp = 0.1, 0.8, 1 at γ = 0, the x component
of the time-dependent force produced by the transient flow inhomogeneities hitting the
test particle in the form of sound waves. The size of the test particle, taking several
values, is called a′ to distinguish it from the size a of the particle producing the flow
perturbation. Blue lines are computed from the exact Eq. (6) or equivalently from
Eq. (13) to which it reduces for sufficiently small g′p. Because of the rather explicit
appearance of the interaction potential in this formula, we label the blue lines in
Fig. (2) as ‘potential force’. High frequency waves arrive before low-frequency ones,
because its larger sound speed. We also see how the frequencies become Doppler-
shifted for increasing Vp. We have derived in Sect. 3.1 several approximate expressions
for the inertial force. First, Eq. (21) is obtained with the sole assumption (besides
gp sufficiently small) of smallness of the unsteady and/or inhomogeneous part δψ0
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of the wavefunction, which allows linearization. Eq. (23) assumes in addition weak
inhomogeneities below scales a and ξ, and finally Eqs. (25) and (26) (equivalent under
the previous linearization approximation) completely neglects such inhomogeneities (or
equivalently, they correspond to a, ξ → 0). We show as black lines in Fig. (2) the
prediction of this last approximation, similar to the most standard classical expressions.
Since we have computed the wavefunction ψ = 1 + δψ0 in the comoving frame from
Eq. (36), we actually use expression (23) without the Faxén Laplacian terms, with
δω(0) = ∇(δψ0−δψ∗0)/(2i)−Vp, and V̇p = 0. Fig. (36) shows that the full force computed
from Eq. (6) is well-captured by the approximate expression of the inertial force for small
test-particle size a′. Accuracy progressively deteriorates for increasing a′, and also for
increasing Vp, but this classical expression remains a reasonable approximation until
a′ ≈ 1. The accuracy can be improved by considering higher-order Faxén corrections,
Eq. (23), or even better, by considering the integral form in Eq. (21). We have explicitly
checked that keeping the full Gaussian integration in Eq. (21) but approximating the
integrand in the Bessel integral by its value at the particle position gives a very good
approximation to the exact force even for a′ = 1.

4.2. Numerical evaluation of the drag force
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Figure 3. Self-induced drag in the steady-state regime as function of the speed Vp.
Dashed lines are the analytical predictions based on Eq. (33) (for γ = 0) and Eq. (31)
(for γ > 0). The symbols correspond to the numerically computed force from Eq. (6)
based on direct simulations of the dGPE Eq. (36). The inset figure shows the small
Vp behavior, with solid straight lines giving the linear dependence of the drag force on
the speed for γ > 0, in the small-Vp approximation given by Eq. (35). We use a = 1

and gp = 0.01.

We now return to the situation in which there is a single impurity in the system,
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with size a = ξ = 1 and gp = 0.01. It moves in the positive x direction with speed
Vp producing a perturbation on the uniform and steady condensate state ψ = 1. We
compute it in the comoving frame, in which the particle is at rest and fluid moves
with speed −Vp, by using Eq. (36). Since in the absence of the impurity there is no
inhomogeneity nor time dependence, δψ0 = 0 and the exact force on the impurity, Eq.
(6), is also given by the self-induced drag expression given by Eq. (8). After a transient,
that in analogy with the results for compressible classical fluids [39, 34] we expect to be
of the order of the time needed by the sound waves to cross a region of size a or ξ, the
condensate density near the particle achieves a steady state, and we then measure the
steady drag on the particle. Fig. (3) shows this force, for several values of Vp and γ, as
dots.

The approximate value of the drag force that is obtained under the assumption of
small perturbation (small gp) that allows linearisation is shown as dashed lines. It is
computed from Eq. (33) for γ = 0 and Eq. (31) for γ > 0. The agreement is excellent.
As shown in the inset figure, in the regime of small velocities, the self-induced drag is
indeed linearly dependent on the speed with an effective drag coefficient that is well
captured by Eq. (35). This Stokes-like drag at small speeds is due to energy dissipation
through collisions between the condensate atoms and thermal atoms, quantified by the
thermal drag γ. We notice that the dependence of the drag force on Vp is consistent
with having a critical velocity for superfluidity even at γ > 0, in the sense that there is
still a relatively abrupt change in the force (sharper for smaller γ) around a particular
impurity speed. The superfluidity of BECs at finite temperature is still an open question.
Recent experiments [40, 41] report superfluid below a critical velocity which is related
to the onset of fringes [42]. In the dGPE, the steady state drag is always nonzero.
Nonetheless, there is a critical velocity associated to the breakdown of superfluidity due
to energy dissipation through acoustic excitations. This is the regime where the drag
force is dominated by the interaction of the impurity with the supersonic shock waves
to produce the C̆erenkov wake as seen in Fig. 1(c) and observed experimentally [38].
The maximum drag force occurs near the velocity for which the cusp lines forming the
wake still retain an angle close to π. With increasing speed, this angle becomes more
acute (Fig. 1(f)), and this lowers the density gradient around the impurity.

5. Conclusions

We have studied, from analytic and numerical analysis of the dGPE, the hydrodynamic
forces acting on a small moving impurity suspended in a 2D BEC at low temperature.
In the regime of small coupling constant gp and thermal drag γ, the force arising from
the gradient of the condensate density can be decomposed onto the inertial force that is
produced by the inhomogeneities and time-dependence of the condensate in the absence
of the particle, and the self-induced force which is determined by the perturbation
produced by the impurity on the condensate. When the unperturbed flow can be
considered homogeneous on scales below the particle size and the condensate coherence
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length, the classical Maxey and Riley expression [22], giving the inertial force in terms
of the local or material fluid acceleration, is a good description of the force. When
inhomogeneities become relevant below these scales, Faxén-type corrections arise, similar
to the classical ones in the presence of a finite-size particle, but here the coherence length
plays a role similar to the particle size. In addition, the condensate thermal drag enters
into these expressions, at difference with the classical viscous case. We also determined
the self-induced force in the steady-state regime and shown that it is non-zero at any
velocity Vp of the moving impurity if γ > 0. For small Vp, this force is given as a Stokes
drag which is linearly proportional to Vp with a drag coefficient dependent on the thermal
drag γ. The energy dissipation associated with this drag is due to the loss of condensate
atoms into the thermal cloud and is mediated by the thermal drag coefficient. In this
sense, the drag on the impurity relates to the way the condensate dissipates energy at low
temperature through particle exchanges with the thermal cloud. We have not considered
the additional drag arising from direct interactions of impurity with the thermal cloud,
since these are negligible in the low-temperature regime but maybe important at higher
temperature. With increasing velocities, there are corrections to the linear drag and
above a critical speed Vc = 1, the self-induced drag is dominated by the interactions of
the impurity with the emitted shock waves.

We have checked our analytical expressions with numerical simulations in the
situation in which the impurity moves at constant velocity, possibly driven by external
forces different from the hydrodynamic ones analysed here. When the coupling constant
gp is sufficiently small so that only the inertial force is relevant, the equation of motion of
the impurity under the sole action of the inertial force would be mpdVp(t)/dt = F (0)(t),
with mp the mass of the particle and F (0)(t) one of the suitable approximations to the
inertial force given in Sect. 3.1. For larger gp, when the condensate becomes distorted
by the impurity, we have computed the self-induced drag only in the steady case. In
analogy with classical compressible flows [39, 34], we expect history-dependent forces in
this unsteady situation. The dependence on the thermal drag, however, would be quite
different from that of viscous classical fluids, because of the lack of viscous boundary
layers in the BEC case.

In this study, we have focused on a small impurity that can only shed acoustic
waves. Another interesting extension of this would be to further investigate the drag
and inertial forces for larger impurity sizes, which can emit vortices, and study the
effect of vortex-impurity interactions on the hydrodynamics forces. Following the recent
experimental progress on testing the superfluidity in BEC at finite temperature [21],
it would be interesting to test experimentally our prediction of the linear drag on the
impurity due to the condensate thermal drag at small velocities by using measurements
of the local heating rate. For probing the inertial force, it would be interesting to
experimentally tracking the position of the impurity during non-steady superfluid flow.



Classical analogies for the force acting on an impurity in a Bose-Einstein condensate19

Acknowledgments

We are thankful to Vidar Skogvoll, Kristian Olsen, Zakarias Laberg Hejlesen and Per
Arne Rikvold for stimulating discussions. This work was partly supported by the
Research Council of Norway through its centers of Excellence funding scheme, Project
No. 262644, and by Spanish MINECO/AEI/FEDER through the María de Maeztu
Program for Units of Excellence in R&D (MDM- 2017-0711).

Appendix: Numerical integration of dGPE
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Figure 4. Simulation domain showing the buffer region, outside the main simulation
region, in which thermal drag is greatly enhanced to eliminate the emitted waves
sufficiently far from the moving particle (which is at x/ξ = 128, y/ξ = 64). The
density shown is the steady state (in the comoving frame, hence the direction of the
arrows indicating the flow velocity in this frame) for Vp = 1.6 and γ = 0.

Numerical simulations of dGPE Eq. (36) are run for a system size of 128× 256 (in
units of ξ) corresponding to the grid size dx = 0.25ξ, and dt = 0.01ξ/c. To simulate an
infinite domain where the density variations emitted by the impurity do not recirculate
under periodic boundary conditions, we use the fringe method from [33]. This means
that we define buffer (fringe) regions around the outer rim of the computational domain
(see Fig. 4) where the thermal drag γ is much larger than its value inside the domain,
such that any density perturbation far from the impurity is quickly damped out and a
steady inflow is maintained. The thermal drag becomes thus spatially-dependent and
given by γ(r) = max[γ(x), γ(y)], where

γ(x) =
1

2

(
2 + tanh [(x− xp − wx)/d]

− tanh [(x− xp + wx)/d]
)

+ γ0, (37)



Classical analogies for the force acting on an impurity in a Bose-Einstein condensate20

and similarly for γ(y). Here rp = (xp, yp) = (128ξ, 64ξ) is the position of the impurity
and γ0 is the constant thermal drag inside the buffer regions (bulk region). We set the
fringe domain as wx = 100ξ, wy = 50ξ and d = 7ξ as illustrated in Figure 4.

By separating the linear and non-linear terms in Eq. (36), we can write the dGPE
formally as [43]

∂tψ = ω̂(−i∇)ψ +N(r, t), (38)

where ω̂(−i∇) = i[1
2
∇2 + 1] + Vp · ∇ is the linear differential operator and N(r, t) =

−(i + γ)(Up + |ψ|2)ψ + γψ + 1
2
γ∇2ψ is the nonlinear function including the spatially-

dependent γ and Up. Taking the Fourier transform, we obtain ordinary differential
equations for Fourier coefficients ψ(k, t) as

∂tψ̂(k, t) = ω̂(k)ψ̂(k, t) + N̂(k, t), (39)

which can be solved by an operator-splitting and exponential-time differentiating
method [44]. It means that we exploit the fact that the linear part of Eq. (39) can
be solved exactly by multiplying with the integrating factor e−ω̂(k)t. This leads to

∂t

(
ψ̂(k, t)e−ω̂(k)t

)
= e−ω̂(k)tN̂(k, t). (40)

The nonlinear term N̂(k, t) is linearly approximated in time for a small time-interval
(t, t+ ∆t), i.e

N̂(k, t+ τ) = N0 +
N1

∆t
τ (41)

where N0 = N̂(t) and N1 = N̂(t+∆t)−N0. Inserting this into Eq. (40) and integrating
from t to t+ ∆t we get

ψ̂(k, t+ ∆t) = ψ̂(k, t)eω̂(k)∆t +
N0

ω̂(k)

(
eω̂(k)∆t − 1

)

+
N1

ω̂(k)

[
1

ω̂(k)∆t
(eω̂(k)∆t − 1)− 1

]
. (42)

Since computing the value of N1 requires knowledge of the state at t + ∆t before we
have computed it, we start by setting it to zero and find a value for the state at t+ ∆t

given that N̂(t) is constant in the interval. We then use this state to calculate N1, and
add corrections to the value we got when assuming N1 = 0.
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