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Abstract

The goal of this thesis is to investigate the equation xn +yn = zn from a number
theoretical viewpoint. The equation was proven to have no nontrivial solutions
for n > 2 by Andrew Wiles in the nineties. We will set out to find out when
the equation has solutions modulo a prime, and if there exist common solutions.
We rely on Fermat’s little theorem to help make some calculations easier, as
well as the Chinese Remainder Theorem when we look at common solutions.
The program Python was used to lessen some of the calculations. We will gain
a formula for figuring out how many solutions there are, given an exponent n
and a prime p, and a method for finding common solutions given a collection of
primes, a set of x, y and an exponent n.
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CHAPTER 1

Introduction

In this thesis I wanted to take a closer look at Fermat’s last theorem. Ever
since I read Simon Singh’s book, Fermat’s last theorem, I have been fascinated
by it. Fermat’s last Theorem was one of the last enigmas of the mathematical
world. Such a simple equation paired with such a simple sentence that even a
10-year old could understand it, yet it took more than three centuries to prove
it. The theorem is a widely known theorem in the mathematical world and
contains a very simple equation, namely

xn + yn = zn, (1.1)

where n ∈ N and x, y, z are positive integers. The theorem states that
Equation (1.1) has no non-trivial solutions when n > 2. In 1637 Pierre de
Fermat postulated this in the margin of a copy of Arithmetica:

“It is impossible for a cube to be a sum of two cubes, a fourth power to
be a sum of two fourth powers, or in general for any number that is a power
greater than the second to be the sum of two like powers. I have discovered a
truly remarkable proof [of this theorem], but this margin is too small to contain
it.”[Bri20]

For over 350 years this was only a claim because nobody was able to prove it.
It was not until Andrew Wiles gave the revised proof, published in 1995, that
this theorem was proven once and for all [Bri20]. In this thesis I will not give
the proof or discuss the proof of this theorem, but rather look at the equation
from a different perspective. I want to see what happens when we take this
equation modulo p, when p is prime. The equation that is the focus in this
thesis is therefore

xn + yn = zn (mod p), (1.2)

for x, y, z ∈ Zp, x, y, z 6≡ 0 (mod p), n ∈ N and where p is a prime. In this
thesis we will give some general results, but mostly restrict n to n ≤ 10 and p
to 2 < p < 50.

Some questions arise with this approach. When does a solutions exist? Are
there many or few solutions? Does there exist a smallest n such that there are
no solutions? For a given prime p, there could possibly be many solutions. Does
there then exist a set of x, y, z that is a common solution for multiple prime
moduli? I hope to have answered all of these questions by the end of this thesis.
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CHAPTER 2

Definitions and Theorems

To examine the equation

xn + yn ≡ zn (mod p), (2.1)
we will need some definitions and theorems, as well as some clarification on
notation.

When working in modular arithmetic we work with numbers in Z. The set
of integers modulo a prime form a group under addition, and is denoted Zp.
For the set of integers modulo p, where p is prime, with nonzero elements, I
will use the notation Z∗p. This is a group under multiplication and it has some
properties. First, the order of the group is p − 1. The group is also cyclic,
meaning that there exists an element g in Z∗p such that 〈g〉 = Z∗p. We then call
g a generator. 1 is a generator for Zp, but not for Z∗p. The generator for Z∗p is
not necessarily unique.

Primitive root

Another important definition in modular arithmetic is the notion of a primitive
root. A primitive root of 1 is an integer x such that xr ≡ 1 (mod p), where
the smallest integer r = p− 1. All the elements in Z∗p will be solutions, or roots
to this equation, but only the elements with order p − 1 are primitive roots.
Since a generator also has order p− 1, only the generators for the group Z∗p are
primitive roots of 1.

Example 2.0.1. Let’s take a look at Z∗3 and Z∗5. There are only two elements
in Z∗3, 1 and 2. 1 is not a generator, so let’s look at 2. 21 = 2 and 22 = 4 = 1.
So 2 is a generator and also a primitive root, since it satisfies the condition that
the smallest exponent r such that 2r is equivalent to 1 is r = p− 1, in this case
3− 1 = 2. So the group Z∗3 has only one generator.

Now for Z∗5. We can skip 1, and start with 2. 21 = 2, 22 = 4, 23 = 8 = 3
and 24 = 16 = 1. So 〈2〉 = Z∗5 and 2 is a generator and also a primitive root.
But it is not the only one. Let’s look at 3. 31 = 3, 32 = 9 = 4, 33 = 27 = 2 and
34 = 81 = 1. So 3 is also a generator and a primitive root. However 4 is not a
generator, because 41 = 4 and 42 = 16 = 1, so we can’t get all the elements in
Z∗5 by starting with 4. Clearly 44 = 1, but 4 is not the smallest such exponent
where this happens, and it is therefore not a primitive root either. So in Z∗5 we
have two generators, 2 and 3.
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2. Definitions and Theorems

Greatest Common Divisor

An important definition in number theory is the greatest common divisor. The
greatest common divisor of two positive integers is the largest positive
integer that divides each of the integers. For the integers m and n it is denoted
gcd (m,n) = d. If the greatest common divisor is 1 we say that the integers are
relatively prime.

Example 2.0.2. What is the greatest common divisor of 40 and 36? A fairly
easy approach with smaller numbers, is to write the numbers using their prime
components. 40 = 23 · 5 and 36 = 22 · 32. 40 and 36 have 22 = 4 in common,
and therefore gcd (40, 36) = 4.

Euler’s ϕ-Function

Before we can take a look at some definitions regarding the primitive root of
1, we introduce the Euler’s ϕ(n)-function. It is a function that is defined for
positive integers n and outputs the number of positive integers that are less
than or equal to n and relatively prime to n. It is denoted ϕ(n).

Example 2.0.3. Use of ϕ(n) Let’s look at n = 7.

ϕ(7) = 6, (2.2)

because there are six numbers less than or equal to 7 that are relatively prime
with 7, namely 1, 2, 3, 4, 5 and 6.

When p is a prime, then

ϕ(p) = p− 1. (2.3)

Indices

We can use the notion of a generator to define what the index of an element in
Z∗p is. The index of a, for a ∈ Z∗p, with g as a generating element, is defined as

a ≡ gind a (mod p), (2.4)

or in other words, the index of a is which power of g that equals a. So,
the index may vary depending on the choice of generator, since the group Z∗p
may have more than one generator. The index of 1 ≡ 0 (mod ϕ(p)). With this
definition we get the following rules when taking indices:

ind (ab) ≡ ind a+ ind b (mod ϕ(p)) (2.5)
ind an ≡ n ind a (mod ϕ(p)). (2.6)

Example 2.0.4. Let’s take a look at the group Z∗5. What is the index of 2
in this case. Now, we must first choose a generator, since the group has two
generators. Let g = 3. To get 2, we must raise 3 to the third power, so 2 ≡ 33

(mod 5), and thus the index of 2 is then 3. But if we choose 2 as a generator,
the index is 1. So it is important to know if there are more generators, and if
so, make a choice of which one to use.
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nth-power residues

In Equation (1.2), we raise the x and y and z to the nth power, but to actually
check whether or not xn + yn is equivalent to a zn we need to reduce them
modulo p. In doing this we use the definition of nth-power residues.

Definition 2.0.5. An integer a is called an nth-power residue modulo m if
there exist an x such that

xn ≡ a (mod m). (2.7)

A special case of nth-power residues is when n = 2.

Definition 2.0.6. An integer a is called a quadratic residue modulo m if there
exists an n such that

x2 ≡ a (mod m) (2.8)

Another special case is when we let n = 3, we then call it a cubic residue.

Fermat’s little theorem

Some of the work in Chapter 3 uses a theorem often referred to as Fermat’s
little theorem.

Theorem 2.0.7. Fermat’s little theorem If p is a prime number, then for
any integer a, where p does not divide a, or a 6≡ 0 (mod p) the following holds

ap−1 ≡ 1 (mod p). (2.9)

Corollary 2.0.8. If a ∈ Z, then

ap ≡ a (mod p), (2.10)

for any prime p.

Because this is a widely known theorem that is easily proved, I will not give
the proof here. For the avid reader, one proof can be found on page 184 in
Fraleigh’s book, [Fra03].

Example 2.0.9. Let a = 2 and p = 7. Then 26 = 64 and 64 − 1 = 63 = 9 · 7,
which indeed is a multiple of 7.

Modular Multiplicative Inverses

We have now looked at some important definitions and theorems that will be
used in this thesis, but we still need to define inverses. What does it mean to
have a multiplicative inverse in modular arithmetic? A modular multiplicative
inverse of an integer a (mod n) is an integer x such that

ax ≡ 1 (mod n) (2.11)

for a given natural number n.

Example 2.0.10. In Z∗5 the inverse of 3 is 2, because 3 · 2 = 6 which is 1 in Z∗5.

5



2. Definitions and Theorems

This means that fractions as inverses can be rewritten as an integer. Let’s
look at 2−1. It is the inverse of 2, and can also be written as 1

2 in Q. But we
can’t write it as a fraction because we are working in Z∗p. Since 1

2 has 2 as an
inverse, and in e.g. Z∗5, 3 also has 2 as an inverse, we could argue that in fact
1
2 = 3 when we are working in Z∗5. Now we have a concise way of thinking about
inverses using conventional notation. This means that it is possible to find what
x−2, x−3... and so on is in Z∗p. For example is 2−2 =

(
2−1)2 = 32 = 9 = 4 in

Z∗5.
If we now look at xp−1 we see that

xp−1 ≡ xp · x−1 ≡ x1 · x−n ≡ x1−n ≡
(
x−1)n−1 (mod p). (2.12)

This result will be useful in the next chapter.

Common Solutions

The equation we are investigating is xn + yn ≡ zn (mod p). But what happens
when we want to look at common solutions? Here a common solution means a
set of x, y, z that solves the equation for multiple primes p at the same time, or
finding a solution to a system of congruences,

xn + yn ≡ zn (mod p1)
xn + yn ≡ zn (mod p2)

...
xn + yn ≡ zn (mod pi).

In essence this is finding an intersection for multiple arithmetic progressions,
and to do that we need another important result in number theory.

Theorem 2.0.11. Chinese Remainder Theorem If gcd (mi,mj) = 1 for
1 ≤ i < j ≤ r, then the system

x ≡ c1 (mod m1)
x ≡ c2 (mod m2)
...
x ≡ cr (mod mr)

has as its complete solution a single residue class (mod m1 · . . . ·mr)

The proof can be seen on page 60 in LeVeque’s book, [LeV77]. Now, how do
we use this theorem in our case? First we notice that since we are working with
prime moduli, the condition of gcd (pi, pj) = 1, for 1 ≤ i < j ≤ s, is always
true in our case. We are also not just looking at x, but at xn, for 3 ≤ n ≤ 10.
Let xn = x′. We then get

x′ ≡ c1 (mod p1)

6



x′ ≡ c2 (mod p2)
...

x′ ≡ cs (mod ps).

Let’s make the same system of congruences, but for y, where yn = y′,

y′ ≡d1 (mod p1)
y′ ≡d2 (mod p2)

...
y′ ≡ds (mod ps).

Now we add each of these linear congruences pairwise based on their moduli,

x′ + y′ ≡ c1 + d1 (mod p1)
x′ + y′ ≡ c2 + d2 (mod p2)

...
x′ + y′ ≡ cs + ds (mod ps).

Our task is to see if ∃z such that

z′ ≡c1 + d1 (mod p1)
z′ ≡c2 + d2 (mod p2)

...
z′ ≡cs + ds (mod ps),

where z′ = zn. By using the Chinese remainder theorem on this last system
of linear congruences we see that the complete solution must lie in the residue
class (mod p1 · . . . · ps). So for p = 3, 5, the solution must lie in (mod 15), and
for e.g. p = 3, 5, 7, 11 the solution lie in (mod 1155).

Many of these results and definitions will be used throughout the thesis, but
Fermat’s little theorem is especially important for the next chapter. In the last
part of chapter 5 we will rely on the Chinese Remainder Theorem to help us
analyse the situation.
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CHAPTER 3

Pre-program work

It is obvious that the equation xn +yn ≡ zn (mod p) has many trivial solutions.
A trivial solution means a solution where x, y, z are all zero, or x, y, z are 0
(mod p). Another fairly trivial solution is when one of them is equal to 0. Then
the equation become either x = z, y = z or x = −y, which all have infinite
solutions. Thus, in this chapter, I will focus on solutions where, x, y, x 6= 0 and
x, y, z 6≡ 0 (mod p).

If an integer is a quadratic residue, as stated in Definition 2.0.6, that would
mean that the exponent n in Equation (1.2) is equal to 2. This is the same as
finding pythagorean triples, which there are infinitely many of, as proven by
Euclid, and is not in the scope of this thesis. This means that whenever we
end up with an exponent n = 2 or n = −2, we already know if there are any
solutions or not.

Now I want to take a look at different exponents. Let’s take a closer look at
n = p± r for certain r and see what happens with our equation.

3.1 Exponent n=p+1

I wanted to reduce the number of calculations as much as possible before actually
having to program them, in order to limit the data output. Therefore I started
looking at what happens when the exponent n in Equation (1.2) is greater than
the prime p. We know from Equation (2.9) that ap ≡ a (mod p). I first want
to look at n = p+ 1. Equation (1.2) then becomes

xp+1 + yp+1 = zp+1 (mod p), (3.1)

which can be rewritten as

xp · x+ yp · y = zp · z (mod p). (3.2)

And by Fermat’s little theorem we get

x · x+ y · y = z · z, (3.3)

that becomes

x2 + y2 = z2 (mod p) (3.4)

9



3. Pre-program work

which we know have infinitely many solutions for x, y, z ∈ Z.
When we increase the exponent by 1, we get

xp+2 + yp+2 = zp+2 (mod p), (3.5)

which by Fermat’s little theorem then becomes

x · x2 + y · y2 = z · z2 (mod p) (3.6)
x3 + y3 = z3 (mod p) (3.7)

By this we see a pattern emerging. Let us rephrase the initial statement
that n > p, and say that n = a · (p− 1) + r, for some r < p− 1, and r ∈ N. We
need only look at r < p − 1, because whenever r = p − 1, by Fermat’s little
theorem we get

x1 + y1 = z1 (mod p), (3.8)

which we know has infinitely many solutions.

x(p−1)+r + y(p−1)+r = z(p−1)+r (mod p), (3.9)

we get

xr + yr = zr (mod p) (3.10)

by Fermat’s little theorem. And since r < (p − 1) we don’t need to concern
ourselves with an exponent n > (p− 1). This only reduce the problem for p = 3,
p = 5, p = 7, and p = 11 since for all other cases n < (p− 1).

3.2 Exponent n=p-1

When the set the exponent n = p− 1 we get

xp−1 + yp−1 = zp−1 (mod p), (3.11)

which by Fermat’s little theorem becomes

x · x−1 + y · y−1 = z · z−1 (mod p), (3.12)

and we get

1 + 1 = 1 (mod p), (3.13)

which obviously has no solutions.

3.3 Exponent n=p-2

When we set the exponent n = p− 2 we get

xp−2 + yp−2 = zp−2 (mod p), (3.14)

which by Fermat’s little theorem becomes

10



3.4. Exponent n=p-r

x1 · x−2 + y1 · y−2 = z1 · z−2 (mod p), (3.15)

which in turn is

x−1 + y−1 = z−1 (mod p). (3.16)

This is equivalent to the equation

x+ y ≡ z (mod p), (3.17)

and it has a solution in Z∗p for every x, y ∈ Z∗p such that x, y 6≡ 0.

3.4 Exponent n=p-r

As we continue with this pattern we will get −2, −3,... as the value of the
exponent and eventually come back to an exponent we have already investigated,
only with a negative value.

In modular arithmetic this turns out to be the same as the positive exponent,
and we get an upper constraint on the exponent, namely p−1

2 .
Let’s replace n with p−1

2 . We then get

x
p−1

2 + y
p−1

2 = z
p−1

2 (mod p). (3.18)

When restating this we get

(xp−1) 1
2 + (yp−1) 1

2 = (zp−1) 1
2 (mod p). (3.19)

By Fermat’s little theorem we then get

1 1
2 + 1 1

2 = 1 1
2 , (3.20)

which of course is

± 1± 1 = ±1. (3.21)

These are only solutions in Z∗3, for 1 + 1 = −1 and −1 + −1 = 1. For all
other Z∗p with p > 3 these 4 possibilities will not yield a valid solution, and we
get a restriction for the exponent.

Lemma 3.4.1. Exponent restriction Let p > 3 and x, y, z 6≡ 0. When the
exponent n in the equation xn + yn ≡ zn (mod p) is equal to p−1

2 there is no
solution.

All of the results stated in this chapter will help reduce the output and
calculation time for the codes presented in the next chapter.

11





CHAPTER 4

Programming

To calculate all possible solutions to xn +yn ≡ zn (mod p) by hand is extremely
tedious and takes way too long. I therefore made some small codes to help me
with the workload.

4.1 Code for finding nth-power residues

To be able to look at solutions for the equation in question, I first looked at
nth-power residues. To make it easier to calculate the residues from the different
powers modulo a prime, I wrote a code to do it for me. The code can be seen
below.

import numpy as np
primes=[3,5,7,11,13,17,19,23,29,31,37,41,43,47]

expo=[3,4,5,6,7,8,9,10]

n=6

for p in primes:
pnew=p-1
a= [None]*pnew
for i in range(pnew):

a[i]=i+1
b=[None]*pnew
for i in range (pnew):

b[i]=a[i]**n %p
print(b)

The residues that this code calculates can be seen in Appendix A, when the
exponent n goes from 3 to 10.

13



4. Programming

4.2 Code for finding solutions to xn + yn ≡ zn (mod p)

There are many many solutions to xn + yn ≡ zn (mod p). I wrote the following
code to get the different solutions to this equation, for 3 ≤ p < 50 and the
exponent n ranging from 3 to 10.

primes=[3,5,7,11,13,17,19,23,29,31,37,41,43,47]

expo=[3,4,5,6,7,8,9,10]

n=8

def unique(array):
return list(dict.fromkeys(array))

for p in primes:
pnew=p-1
a= [None]*pnew
for i in range(pnew):

a[i]=i+1
b=[None]*pnew
for i in range (pnew):

b[i]=a[i]**n %p
final_list=unique(b)
array_list = []
for x in final_list:

for y in final_list:
for z in final_list:

if (x+y)%p==z:
array_list.append([x,y,z])
print(x,y,z)

frame = pd.DataFrame(array_list, columns=['','',''])
print(frame.to_latex(index=False,column_format='ccc',
caption='Solutions to Fermat in $\Z_%d^*$' % p,label='sol-n-z%d' % p))

This code uses the nth-power residues and checks whether or not an xn, yn

and zn satisfies Equation (1.2). If so, the code outputs xn, yn, zn (mod p) as
an array, and then gives that array as a row in a table with LATEX syntax.
The results from this program can be seen in Appendix B. In this Appendix
a few complete tables of solutions are listed, and the number of solutions are
listed for the rest.

14



4.3. Common solutions

4.3 Common solutions

To check common solutions manually was fairly easy with very small p. But
when I wanted to check for more p and larger p, like common solutions for
p = 3, p = 5, p = 7 and p = 11, it was too many solutions to check by hand. In
stead I wrote a code that outputs all the sets of x, y, z that is a solution for a
given n and all primes 3 ≤ p < 50. The code doesn’t check if any of the sets are
common for the different p, but rather outputs all of them as a .txt file. The
code can be seen below.

import functools
import operator

primes=[3,5,7,11]
n=3

f=open('Common_sol_n=3_p=11.txt', 'w')
tot_mod=functools.reduce(operator.mul,primes)

for p in primes:
f.write('Modulus:'+str(p)+'\n')
for x in range(1,tot_mod+1):

xmod=x%p
a=pow(xmod,n,p)
for y in range(1,tot_mod+1):

ymod=y%p
b=pow(ymod,n,p)
d=(a+b)%p
for z in range(1,tot_mod+1):

zmod=z%p
c=(zmod,n,p)
if d==c:

sol=[x,y,z]
sol_str= ",".join(str(i) for i in sol)
f.write(sol_str + '\n')

f.close()

The data from this program is then imported into Excel, and then I used
Excel’s IF function to check if any of the sets of x, y, z were common for the
different primes. The result of the Excel-processed data can be seen in Table 5.2.
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CHAPTER 5

Analyzing results

The codes in Chapter 4 yields many tables seen in Appendix A and Appendix B.
By analyzing them and looking closer I wanted to see if I could find a pattern
that may lead to a result.

5.1 Number of residues

When looking at the tables in Appendix A, we see that when the gcd (p−1, n) = 1
there are p− 1 number of unique nth-power residues. When gcd(p− 1, n) > 1
there are p−1

gcd (p−1,n) number of nth-power residues. These results are generalized
in the following theorem.

Theorem 5.1.1. Let p be a prime and d =gcd(n, ϕ(p)). The equation

xn ≡ a (mod p) (5.1)

then has a solution for a fixed a ∈ Z∗p if and only if

aϕ(p)/d ≡ 1 (mod p). (5.2)

Furthermore the number of unique nth-power residues in Z∗p is ϕ(p)
d .

Proof. First, since d divides n, let n = k · d for some k ∈ Z. Suppose that there
is a a solution to Equation (5.1), namely xn = a. Then

aϕ(p)/d ≡ (xn)ϕ(p)/d ≡ xk·ϕ(p) ≡ x(p−1)·k ≡
(
x(p−1)

)k

≡ 1k ≡ 1 (mod p),
(5.3)

by Fermat’s little theorem and the results from Section 3.2.
Now assume that

aϕ(p)/d ≡ 1 (mod p). (5.4)

Taking indices yields

ϕ(p)
d

ind a ≡ ind 1 (mod ϕ(p)). (5.5)

The index of 1 is by definition 0 (mod ϕ(p)). For simplicity, call ind x = α
and ind a = β. We then get
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5. Analyzing results

p− 1
d

β ≡ 0 (mod p− 1), (5.6)

which is equivalent to

β ≡ 0 (mod d). (5.7)

This in turn is equivalent to d | β. And with d = gcd (n, ϕ(p)), this means that
the equation

nα ≡ β (mod ϕ(p)) (5.8)

is solvable, and that the equation

xn ≡ a (mod p) (5.9)

has a solution.
Now for number of solutions. If g is a primitive root, meaning in this case

that 〈g〉 = Z∗p, then the ϕ(p)/d numbers gd, g2d, . . . ,(ϕ(p)/d)d are distinct (mod
p) and satisfy Equation (5.2), and there must be ϕ(p)/d of them. �

Corollary 5.1.2. If (p− 1, n) = 1, there are p− 1 nth-power residues in Z∗p.

With this Corollary we can stipulate that when gcd (p− 1, n) = 1 we have
many nth-power residues to check for a solution, and there are probably many.
We will come back to this in the next section.

5.2 Solutions

Many tables in Appendix B list the possible solutions to Equation (1.2). The
first 2 tables show the solutions, and Table B.4 show how many soutions there
are for a given prime p and a given exponent n. To see if there was a certain
pattern for when there was a solution or not, I made a table that shows exactly
that. Table 5.1 is a truth table of whether or not there exist a solution to
Equation (1.2) for a prime p, and an exponent n, where 3 ≤ p < 50 and
n = 3, 4, . . . , 10.

From Table 5.1 we can see that @ n such that Equation (1.2) is solvable ∀
p. However, ∃ p such that Equation (1.2) is solvable ∀ n. These p are p = 23
and p = 47. By checking the gcd (n, ϕ(p)) and the number of solutions for
given n and p, I noticed that there is a pattern to the solutions whenever gcd
(n, ϕ(p)) = 1. This is generalized in the following theorem.

Theorem 5.2.1. If the gcd (n, ϕ(p) = 1), then the number of solutions to
Equation (1.2) is (p− 1) · (p− 2), if we let xn + yn ≡ zn be a different solution
from yn + xn ≡ zn.

Proof. When the gcd (n, ϕ(p)) = 1 we know from Corollary 5.1.2 that the
number of nth-power residues is p− 1. This means that we have p− 1 choices
for xn. When this is chosen we cannot choose a yn that is equivalent to p− xn

(mod p) because that would yield 0 which we do not allow as a solution. Thus we
are left with p−2 choices for yn. We can permute these choices in (p−1) ·(p−2)
different ways. The number of solutions to Equation (1.2) for a given n and p
such that gcd (n, ϕ(p)) = 1 is then (p− 1) · (p− 2). �
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5.2. Solutions

p
n 3 4 5 6 7 8 9 10

3 1 - - - - - - -
5 1 - - - - - - -
7 0 - - - - - - -
11 1 1 0 - - - - -
13 0 0 1 0 - - - -
17 1 0 1 1 1 0 - -
19 1 1 1 0 1 1 0 -
23 1 1 1 1 1 1 1 1
29 1 1 1 1 0 1 1 1
31 1 1 1 1 1 1 1 0
37 1 1 1 1 1 1 0 1
41 1 0 0 1 1 0 1 0
43 1 1 1 0 1 1 1 1
47 1 1 1 1 1 1 1 1

Table 5.1: Truth table for whether there exists a solution to Equation (1.2) for
certain p and n when x, y, z 6= 0.

Example 5.2.2. Let p = 5 and n = 3. gcd (3, 4) = 1. Then the number of
solutions is 4 · 3 = 12. This is also easy to count. We start with 1 + 1 = 2,
1 + 2 = 3, 1 + 3 = 4. Here we have 3 solutions. For the next set we start with
2 + 1 = 3, then 2 + 2 = 4, we skip 2 + 3 = 5 = 0 since 0 6∈ Z∗p and go straight to
2 + 4. We now also have 3 solutions. We will get 3 new solutions when starting
with 3 as our xn, and as well as for 4, and we get the total of 4 · 3 = 12 number
of solutions.

If we now take in to consideration that the operation + is commutative in
the group Z∗p and let xn + yn ≡ zn be the same solution as yn + xn ≡ zn, we
get a smaller number of purely unique solutions.

Theorem 5.2.3. If the gcd (n, ϕ(p)) = 1, then the number of unique solutions
to Equation (1.2) is

(p− 1)2

2 .

Proof. I will prove this by counting. First we must have that gcd (n, ϕ(p)) = 1,
since that gives us p− 1 number of nth-power residues to make solutions from.
I split the possible solutions in to distinct sets, based on the first term of the
solution. So set no. 1, S1 will be comprised of all solutions of the form 1 + a,
for any a ∈ Z∗p. Now S1 will consist of the following solutions

1 + 1
1 + 2
...
1 + (p− 1)

These are all the permutations of the nth-power residues with 1 as the first
term, and there are (p− 1) of them. However, we must discard one of them,
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5. Analyzing results

the last one. This is because it yields 0 in Z∗p, and 0 6∈ Z∗p. This leaves us with
(p− 2) solutions for the first set. For the second set, S2, we list all the possible
solutions first, and then see if we need to discard any of them.

2 + 1
2 + 2
...
2 + (p− 2)
2 + (p− 1).

For S2 we see that we must discard two solutions. 2 + 1 since it has already
been counted as 1 + 2 in S1, as well as 2 + (p − 2) since this yields 0 in Z∗p.
That leaves us with (p − 3) solutions. One could imagine that we could just
follow this pattern until we reach the last set, which must contain 1. But since
S1 consist of (p− 2) solutions, S2 of (p− 3) and so on, the set containing one
solution, (p− 1) + (p− 1) is the second to last set, Sp−2 and not Sp−1. So what
went wrong?

Let’s take closer look at the group Z∗p = {1, 2, . . . , a, b, . . . , p − 2, p − 1}.
where a = p−1

2 and b = a+ 1. We follow out initial pattern all the way to the
set Sa which consist of the following possible solutions

a+ 1
a+ 2
...
a+ a

a+ b

...
a+ (p− 1).

We end up discarding all the possible solutions before the solution a+ a, which
there are p−1

2 − 1 of, as well as the solution a+ (p − a), meaning we discard
a total of p−1

2 solutions, and we are left with p−1
2 solutions, since there were

(p− 1) possibilities to begin with.

Now the problem arises when we get to the set Sb. We list the possible
solutions,

b+ 1
b+ 2
...
b+ a
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5.3. Common solutions

b+ b

...
b+ (p− 1).

Note that we automatically discard all solutions before b+ b, since these have
been counted in the previous sets. And then we usually discard an extra solution,
b+ (p− b). But in this case, the extra solution we discard, because it yields 0, is
in fact b+a, since b+(p−b) = p = 1+(p−1) = 1+ p−1

2 + p−1
2 = 1+a+a = b+a.

We have already discarded this solution, and we can’t discard it twice, so we get
one more solution than expected. Thus the number of solutions in Sb we count
is also p−1

2 . Now the next set Sb+1 will have the same issue. We have already
discarded the solution that yields 0, so we are left with p−1

2 − 1 solutions. This
new pattern leads us all the way down to Sp−1 which now correctly gives us
one solution to count.

For the total number of unique solutions we count the valid solutions in all
the sets and get the following sum

(p− 2) + (p− 3) + . . .+ p− 1
2 + p− 1

2 +
(
p− 1

2 − 1
)

+ . . .+ 2 + 1.

By adding these together in a clever way, we get

[1 + (p− 2)] + [2 + (p− 3)] + . . .+ [p− 1
2 + p− 1

2 ].

Each of these part sums yield p− 1 and there are p−1
2 of them. That gives us

p− 1
2 · (p− 1) = (p− 1)2

2

�

Example 5.2.4. Let p = 5 and n = 3. gcd (3, 4) = 1, so we can use the formula
in Theorem 5.2.3. Then the number of unique solutions is (5−1)2

2 = 16
2 = 8.

This is also easy to count. For the first set, we have the solutions comprised of
nth-power residues: 1 + 1 = 2, 1 + 2 = 3 and 1 + 3 = 4. Same as the previous
example. For the next set, we have the valid solutions 2 + 2 = 4 and 2 + 4 = 1.
For the third set, we get 3 + 3 = 1 and 3 + 4 = 2 and for the last set we have
4 + 4 = 3. In total this is 8 unique solutions, as expected.

5.3 Common solutions

I also wanted to take a look at common solutions, meaning a set of x, y, z that
yields a solution for several moduli. There does not exist a common solution
(x, y, z), to Equation (1.2) for all primes under 20 because n = 3 is the only
exponent worth investigating for the smaller primes 3, 5 and 7, and for n = 3
there are no solutions with p = 7 or p = 13, with x, y, z 6≡ 0 (mod p). But to
properly check for common solutions we must lift the restriction x, y, z 6≡ 0
(mod p) since we are looking at different moduli. Therefore we cannot use
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5. Analyzing results

Table 5.1 as a basis for our investigation, but rather look at a larger set of
values for x, y, z. Now, since we are looking for solutions in multiple moduli the
allowed values for x, y and z will range from 1 to the product of all the moduli,
as stated in Chapter 2, as a result of the Chinese Remainder Theorem. Let’s
see if we can find a common solution for small p and n.

Example 5.3.1. Let n = 3 and p = 3 and p = 5. Does there exist common
solutions when we allow x, y, z ≡ 0 (mod p)? The answer is yes. Look at
e.g. the set (x, y, z) = (1, 4, 5). In Z3 these x, y, z to the third power yield
1 + 1 = 2 which is a solution. In Z5 we get 13 + 43 ≡ 1 + 4 = 0, which is also a
solution. In fact for these two primes with n = 3 we have a set of 225 common
solutions. We get a total of 225 solutions for n = 3 and p = 3, 5, because we let
x, y, z ∈ {1, . . . , 15}, since 3 · 5 = 15.

Example 5.3.2. If we now take a look at the primes 3, 5 and 7, and the exponent
n = 3, the set of {x, y, z} = {1, 3, 7} yields a solution for all the moduli. This
is fairly easy to calculate. In Z3 13 + 33 = 1 + 0 = 1 and 73 = 1 so it is a
solution. In Z5 we get 13 + 33 = 1 + 2 = 3 = 73, and is also a solution. In Z7
13 + 33 = 1 + 6 = 0 = 73.

If we look at a set of larger primes, and thus a larger set of moduli, we get an
increasing number of allowed values for our set of {x, y, z}. For example for all
primes up to 47, the allowed values ranges from 1 to 307, 444, 891, 294, 245, 705.
So naturally one can expect that the numbers of common solutions will increase,
when we increase the number of moduli. This can be seen for primes up to 11
in Table 5.2.

pi

n 3 4 5 6 7 8 9 10

5 225 297 225 225 225 297 225 225
7 12375 14553 11025 16425 11025 14553 12375 11025
11 1497375 1760913 1664775 1987425 1334025 1760193 1497375 2216025

Table 5.2: Number of common solutions for all primes less than or equal to pi,
n from 3 to 10, and x, y, z between 1 and P , where P =

∏s
i=1 pi.

As we can see from Table 5.2, when we increase the number of primes we
look for common solutions for, the number of solutions increase quite a lot. I
wanted to see if I could get to common solutions for all primes up to 47, but I
was limited by my program. When trying to generate this much data, not only
did my program not terminate, and I had to manually terminate it, but the
txt file that was generated was too big for many of my text editors. I managed
to open one of the txt files, only to discover that it consisted of over a million
lines of solutions and after about a minute the editor crashed. Thus, the table
is somewhat limited compared to what I wanted. But, we might be able to get
some results from the limited data.

First, there will always be at least one solution for all moduli, namely
P + P = P , where P =

∏s
i=1 pi. This will yield 0 + 0 = 0 inn all moduli, since

the product of all the primes will be a multiple of the given prime modulus. I
denote this solution the trivial common solution. E.g for primes 3, 5 this trivial
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5.4. Conclusion

common solution will be 15n + 15n = 15n, since this yields 0 + 0 = 0 in both
Z3 and Z5, regardless of the value of n.

We can also find a common solution x, y, z when we have a pair of {x, y}.
Our task then, if possible, is to find the z as stated in Chapter 2. Let x = 10
and y = 23. Let’s try and find a common solution for the prime moduli 3, 5, 7
and n = 3. First we find what xn and yn is modulus the primes.

103 ≡ 1 (mod 3) and 233 ≡ 2 (mod 3),
103 ≡ 0 (mod 5) and 233 ≡ 2 (mod 5),
103 ≡ 6 (mod 7) and 233 ≡ 1 (mod 7).

Now we sum,

1 + 2 ≡ 0 (mod 3)
0 + 2 ≡ 2 (mod 5)
6 + 1 ≡ 0 (mod 7).

Now we make use of the fact that the moduli are pairwise relatively prime,
and create the system

P

pi
zi ≡ 1 (mod pi).

In our case that yields the congruences

35 · z1 ≡ 1 (mod 3),
21 · z2 ≡ 1 (mod 5),
15 · z3 ≡ 1 (mod 7),

and they have solutions z1 = 2, z2 = 1 and z3 = 1. We then get that

z3 ≡ 35 · 2 · 0 + 21 · 1 · 2 + 15 · 1 · 0
≡ 42 (mod 105).

We get that our z = 63, since 633 ≡ 42 (mod 105). Our set of {x, y, z} is
then {10, 23, 63}. However if we were to choose {x, y} = {1, 2} we would by
following the same method end up with the equation z3 ≡ 9 (mod 105), which
has no solution. So these values for x and y yield no solution.

5.4 Conclusion

As the previous sections shows, there are indeed solutions to xn + yn ≡ zn

(mod p) when we are working in the cyclic group Z∗p. By Theorem 5.2.1 we now
know that if gcd(n, p− 1) = 1 there are (p− 1) · (p− 2) solutions. As Table 5.1
shows, not all combinations of n and p yields a solution, but many do. For the
primes p = 23 and p = 47 there are at least one solution ∀n, when n = 3, . . . 10.
The results from Section 3.4 is clearly visible in Table 5.1. For example for
n = 3 and p = 7, we see that there is no solution, because 7−1

2 = 3, and our
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lemma then states that there can be no solutions. The same is the case for the
pairs (n, p) = {(5, 11), (6, 13), (8, 17), (9, 19)}. So there will never be solutions
when the exponent n = p−1

2 .

When we then look at common solutions, we see that we must make use of
the Chinese Remainder Theorem. First we see that we must increase our allowed
values for x, y, z, from p− 1 to the multiple of the prime moduli. This action
lifts the restriction x, y, z 6≡ 0 (mod pi) for any prime modulus pi. Second,
there are many common solutions, for at least the primes up to p = 11. Third,
if we choose a set of x and y and an n, we can find a common a solution for
several prime moduli by using the method showed in Section 5.3. If no such
solution exist, we end up with an insolvable modulus equation of the form,
zn ≡ d (mod P ), where P is the product of all the prime moduli.

We can also use Table 5.1 to tell us something about the composition of our
x, y, z in a common solution. E.g a common solution for n = 3 and p = 3, 5, 7
must have that 7 | xyz. This is because we know from the table that there are
no solutions to x3 + y3 ≡ z3 (mod 7) when x, y, z 6≡ 0 (mod 7). So to have a
solution when we are in (mod 7), at least one the x, y, z must be a multiple of
seven. The same happens for common solutions when n = 4. If we then look at
common solutions up to p = 47, we get that the product of x, y, z must be a
multiple of 13, 17 and 41, or 13 · 17 · 41 | xyz. So whenever we look at common
solutions with a collection of primes, we now know that if for a given n and p,
the equation has no nontrivial solutions, a common solution must then have
that the prime p | xyz.
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APPENDIX A

nth-power residues in Z∗
p

A.1 Cubic Residues

The cubic residues in Z∗p for a prime p and with 3 ≤ p < 50 are listed in the
following tables

Z∗3 gcd(2, 3) = 1
1 13 ≡ 1 (mod 3)
2 23 ≡ 2 (mod 3)

Table A.1: Cubic residues in Z∗3

Z∗5 gcd(4, 3) = 1
1 13 ≡ 1 (mod 5)
2 23 ≡ 3 (mod 5)
3 33 ≡ 2 (mod 5)
4 43 ≡ 4 (mod 5)

Table A.2: Cubic residues in Z∗5

Z∗7 gcd(6, 3) = 3
1 13 ≡ 1 (mod 7)
2 23 ≡ 1 (mod 7)
3 33 ≡ 6 (mod 7)
4 43 ≡ 1 (mod 7)
5 53 ≡ 6 (mod 7)
6 63 ≡ 6 (mod 7)

Table A.3: Cubic residues in Z7
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A. nth-power residues in Z∗p

Group Cubic residues
Z11∗ All elementens in Z11∗
Z13∗ {1, 5, 8, 12}
Z17∗ All elements in Z∗17
Z19∗ {1, 7, 8, 11, 12, 18}
Z23∗ All elements in Z23
Z29∗ All elements in Z29
Z31∗ {1, 2, 4, 8, 15, 16, 23, 27, 29, 30}
Z37∗ {1, 6, 8, 10, 11, 14, 23, 26, 27, 29, 31, 36}
Z41∗ All elements in Z41
Z43∗ {1, 2, 4, 8, 11, 16, 21, 22, 27, 32, 35, 39, 41, 42}
Z47∗ All elements in Z47

Table A.4: Cubic residues for Z∗11 to Z∗47

A.2 4th-Power Residues

The 4th power residues in Z∗p for a prime p and with 9 ≤ p < 50 are listed in
the following table

Group 4th-power residues
Z11∗ {1, 3, 4, 5, 9}
Z13∗ {1, 3, 9}
Z17∗ {1, 4, 13, 16}
Z19∗ {1, 4, 5, 6, 7, 9, 11, 16, 17}
Z23∗ {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}
Z29∗ {1, 7, 16, 20, 23, 24, 25}
Z31∗ {1, 2, 4, 5, 7, 8, 9, 10, 14, 16, 18, 19, 20, 25, 28}
Z37∗ {1, 7, 9, 10, 12, 16, 26, 33, 34}
Z41∗ {1, 4, 10, 16, 18, 23, 25, 31, 37, 40}
Z43∗ {1, 4, 6, 9, 10, 11, 13, 14, 15, 16, 17, 21, 23, 24, 25, 31, 35, 36, 38, 40, 41}
Z47∗ {1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 17, 18, 21, 24, 25, 27, 28, 32, 34, 36, 37, 42}

Table A.5: 4th-power residues for Z∗11 to Z∗47

A.3 5th Power Residues

The 5th power residues in Z∗p for a prime p and with 11 ≤ p < 50 are listed in
the following table
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A.4. 6th-Power Residues

Group 5th-power residues
Z11∗ {1, 10}
Z13∗ All elements in Z∗13
Z17∗ All elements in Z∗17
Z19∗ All elements in Z∗19
Z23∗ All elements in Z∗23
Z29∗ All elements in Z∗29
Z31∗ {1, 5, 6, 25, 26, 30}
Z37∗ All elements in Z∗37
Z41∗ {1, 3, 9, 14, 27, 32, 38, 40}
Z43∗ All elements in Z∗43
Z47∗ All elements in Z∗47

Table A.6: 5th-power residues for Z∗11 to Z∗47

A.4 6th-Power Residues

The 6th power residues in Z∗p for a prime p and with 13 ≤ p < 50 are listed in
the following table

Group 6th-power residues
Z13∗ {1, 12}
Z17∗ {1, 2, 4, 8, 9, 13, 15, 16}
Z19∗ {1, 7, 11}
Z23∗ {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}
Z29∗ {1, 4, 5, 6, 7, 9, 13, 16, 20, 22, 23, 24, 25, 28}
Z31∗ {1, 2, 4, 8, 16}
Z37∗ {1, 10, 11, 26, 27, 36}
Z41∗ {1, 2, 4, 5, 8, 9, 10, 16, 18, 20, 21, 23, 25, 31, 32, 33, 36, 37, 39, 40}
Z43∗ {1, 4, 11, 16, 21, 35, 41}
Z47∗ {1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 17, 18, 21, 24, 25, 27, 28, 32, 34, 36, 37, 42}

Table A.7: 6th-power residues for Z∗13 to Z∗47
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A.5 7th Power Residues

The 7th power residues in Z∗p for a prime p and with 15 ≤ p < 50 are listed in
the following tables

Group 7th-power residues
Z17∗ All elements in Z∗17
Z19∗ All elements in Z∗19
Z23∗ All elements in Z∗23
Z29∗ {1, 12, 17, 28}
Z31∗ All elements in Z∗31
Z37∗ All elements in Z∗37
Z41∗ All elements in Z∗41
Z43∗ {1, 6, 7, 36, 37, 42}
Z47∗ All elements in Z∗47

Table A.8: 7th-power residues for Z∗17 to Z∗47

A.6 8th Power Residues

The 8th power residues in Z∗p for a prime p and with 17 ≤ p < 50 are listed in
the following table.

Group 8th-power residues
Z17∗ {1, 16}
Z19∗ {1, 4, 5, 6, 7, 9, 11, 16, 17}
Z23∗ {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}
Z29∗ {1, 7, 16, 20, 23, 24, 25}
Z31∗ {1, 2, 4, 5, 7, 8, 9, 10, 14, 16, 18, 19, 20, 25, 28}
Z37∗ {1, 7, 9, 10, 12, 16, 26, 33, 34}
Z41∗ {1, 10, 16, 18, 37}
Z43∗ {1, 4, 6, 9, 10, 11, 13, 14, 15, 16, 17, 21, 23, 24, 25, 31, 35, 36, 38, 40, 41}
Z47∗ {1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 17, 18, 21, 24, 25, 27, 28, 32, 34, 36, 37, 42}

Table A.9: 8th-power residues for Z∗17 to Z∗47
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A.7. 9th Power Residues

A.7 9th Power Residues

The 9th power residues in Z∗p for a prime p and with 19 ≤ p < 50 are listed in
the following table.

Group 9th-power residues
Z19∗ {1, 18}
Z23∗ All elements in Z∗23
Z29∗ All elements in Z29
Z31∗ {1, 2, 4, 8, 15, 16, 23, 27, 29, 30}
Z37∗ {1, 6, 31, 36}
Z41∗ All elements in Z∗41
Z43∗ {1, 2, 4, 8, 11, 16, 21, 22, 27, 32, 35, 39, 41, 42}
Z47∗ All elements in Z∗47

Table A.10: 9th-power residues for Z∗19 to Z∗47

A.8 10th power residues

The 10th power residues in Z∗p for a prime p and with 21 ≤ p < 50 are listed in
the following table.

Group 10th-power residues
Z19∗ {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}
Z29∗ {1, 4, 5, 6, 7, 9, 16, 20, 22, 23, 24, 25, 28}
Z31∗ {1, 5, 25}
Z37∗ {1, 3, 4, 7, 9, 10, 11, 12, 25, 26, 27, 28, 30, 33, 34, 36}
Z41∗ {1, 9, 32, 40}
Z43∗ {1, 4, 6, 9, 10, 11, 13, 14, 15, 16, 17, 21, 23, 24, 25, 31, 35, 36, 38, 40, 41}
Z47∗ {1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 17, 18, 21, 24, 25, 27, 28, 32, 34, 36, 37, 42}

Table A.11: 10th-power residues for Z∗19 to Z∗47
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APPENDIX B

Solutions to xn + yn ≡ zn

(mod p)

B.1 Examples of solutions when n = 3

Table B.1: Solutions to Equation (1.2) in Z∗3
x3+ y3 ≡ z3 (mod 3)
1 1 2
2 2 1

Table B.2: Solutions to Equation (1.2) in Z∗5
x3+ y3 ≡ z3 (mod 5)
1 1 2
1 3 4
1 2 3
3 1 4
3 3 1
3 4 2
2 1 3
2 2 4
2 4 1
4 3 2
4 2 1
4 4 3

Table B.3: Solutions to Equation (1.2) in Z∗7
No solutions

33



B. Solutions to xn + yn ≡ zn (mod p)

B.2 Number of solutions to xn + yn ≡ zn (mod p)

p
n 3 4 5 6 7 8 9 10

3 2 - - - - - - -
5 12 - - - - - - -
7 0 - - - - - - -
11 90 10 0 - - - - -
13 0 0 132 0 - - - -
17 240 0 240 24 240 0 - -
19 12 36 306 0 306 36 0 -
23 462 55 462 55 462 55 462 55
29 756 14 756 84 0 14 756 84
31 30 105 12 5 870 105 30 0
37 24 18 1260 12 1260 18 0 144
41 1560 0 0 182 1560 0 1560 0
43 42 210 1722 0 12 210 42 210
47 2070 253 2070 253 2070 253 2070 253

Table B.4: Number of solutions to Equation (1.2) for certain p and n when
x, y, z 6= 0.
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