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Abstract

A current challenge within neuroscience is to model the dynamics of biological net-
works. This thesis explores a model of the mouse primary visual cortex (V1) and
lateral geniculate nucleus (LGN), developed by the Allen Institute for Brain Science.
Spatial and temporal tuning properties of model cells are analysed. Of main focus
is two phenomena which have been observed in mice LGN and V1. The first, sur-
round suppression, refers to the neural response to a visual stimulus being inhibited
by a surrounding stimulus. The second is band-pass tuning in response to stimuli of
various spatial frequencies.

The original Allen model fails to exhibit both surround suppression and band-
pass tuning. It is therefore explored how the model could be improved, specifically by
modifying the LGN. To represent the center-surround organisation of receptive fields
found in mice, the Gaussian spatial filters of the LGN are replaced with Difference-
of-Gaussians (DoG). As a result, the modified model reproduces band-pass spatial
frequency tuning for grating stimuli and surround suppression for uniform stimuli.
However, no clear suppression is shown in response to patches of grating stimuli,
inconsistent with both previous findings in mice V1 and the LGN and V1 of other
mammals.

Surround suppression is thought to incorporate both linear and nonlinear mech-
anisms, where only the linear response can be accounted for by the DoG function.
How nonlinear suppression arises in the cortex is not yet fully understood, though one
potential source is input from LGN. Previous studies have suggested that responses
in the visual pathway are effectively normalised through neural inhibition. To model
this, the Allen LGN is modified so that firing rates are normalised with respect to
overall activity. Suppression is thus reproduced in both LGN and V1 for patch grat-
ing stimuli. However, the method has limitations when it comes to accounting for all
aspects of V1 suppression, such as time delay and dependence on stimuli orientation.
Another potential source of V1 suppression is network effects from within cortex.
Recurrent connections in the Allen V1, however, seem to have a limited effect on
size tuning. Future studies might therefore want to explore whether changes to these
connections could generate suppression.

For temporal frequency tuning of the Allen model, the results are closer to ex-
periments than for spatial tuning. However, the preferred frequencies in the Allen
V1 are somewhat higher than what was expected based on previous experiments on
mice. There is also overall less variation in tuning properties between model cells in
V1 than what has been observed experimentally, both regarding temporal and spatial
tuning. A wider range of tuning properties is displayed by the LGN, but the variation
seems to average out in V1. In the future, a greater variation in V1 frequency tuning
may be obtained by adjusting the cortical and thalamocortical connections according
to their preferred frequencies.
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Chapter 1

Introduction

1.1 Motivation

Understanding the underlying mechanisms of brain activity is a primary focus in
neuroscience [1]. Most of our current knowledge about the brain is obtained through
experimental cell recordings [2]. Descriptive and explanatory models have later been
developed based on observations of neuronal structures and activity. In 1963, Hodgkin
and Huxley received the Nobel Prize for their discoveries and ideas related to neuronal
signalling [3]. In 1952, based on experimental evidence using a single squid axon, they
proposed an explanation for how the neuron action potential is generated [4H8|. They
also introduced a mathematical framework for describing these mechanisms [4H8].
Their findings represent a milestone in neuroscience and the starting point of detailed
mathematical neuron models [9].

Simpler, more computationally efficient models have also been developed, such as
the Integrate-and-Fire neuron, which makes up the neuron models used in this thesis.
Although simple, the Integrate-and-Fire neuron is a good model for gaining insight
into the neuronal dynamics of the brain. Predictions from a single Integrate-and-Fire
neuron have been found to agree well with experimental recordings |9]. In addition,
networks of Integrate-and-Fire models are fairly good at reproducing qualitative as-
pects captured by more biologically detailed models [10H12].

With recent advances in computational power and speed, simulations of large,
complex neuronal networks have been made feasible [13]. Being able to model pro-
cesses in the brain is arguably necessary in order to understand the cortical functions
behind experimental data [12]. Additionally, if a model is representative of the real
system, it could be used to as an alternative to experiments [13]. One of the research
institutes aiming to develop such models is the Allen Institute for Brain Scienceﬂ

A large amount of empirical data is essential when aiming to create a realistic brain
model [14]. In 2019, after performing several electrical recordings and integrating data
from years of empirical neuroscience, the Allen Institute for Brain Science released
a model of the primary visual cortex in the mouse [12]. The model is a part of the
institute’s work towards understanding the human brain, and improving health by
gaining insight into illnesses, disorders and possible cures [12]. The model is still under
development, and several aspects of it remain to be explored [12]. Using experimental
data as a reference, its performance may be evaluated, regarding various stimuli and

IFurther information about the Allen Institute and what they do is available on their web page:
https://alleninstitute.org/what-we-do/brain-science/
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phenomena. This thesis investigates the model’s response to stimuli of different sizes,
spatial frequencies and temporal frequencies. In particular, two properties which
have been observed in the lateral geniculate nucleus and primary visual cortex of
real mice are considered. The first, surround suppression, is defined as the neural
activity in response to a visual stimulus being inhibited by a surrounding stimulus
[15]. The second is band-pass tuning of responses as a function of stimulus spatial
frequency. After considering the original model, the effects of modifying the LGN on
these properties is explored.

1.2 The Primary Visual Cortex Model

The model explored and tested in this thesis represents the mouse primary visual
cortex (V1) as a network of simplified neurons [12]. From here on, this will be referred
to as the Allen model. The model is available at two granularities: One where the
neurons are represented with spatially extended structures, and one where each cell
is reduced to a point [12]. The latter, made up of Generalised Integrate-and-Fire
neurons [12], is explored in this thesis. The cells in the network are developed based on
extensive experimental research, and are divided into 17 different neuron classes [12].
In addition to the V1 network, the Allen model includes a representation of the lateral
geniculate nucleus (LGN), where arbitrary visual input is processed [12]. The resulting
signals are relayed to V1 [12]. A more detailed description of the Allen model and its
structure is provided in chapter [6]

1.3 Thesis Structure

Chapters [2] and [3] of this thesis present background material. An introduction into
both the biology and the modelling methods relevant for this thesis is given. Chapter[2]
describes the visual system of the mouse and the properties of nerve cells. In chapter
well-established options for modelling neurons are presented, including the two
neuron representations which make up the Allen model: the Generalised Integrate-
and-Fire neuron and the Linear-Nonlinear-Poisson neuron. Additionally, methods
for modelling networks are explained. These are subsequently used to describe the
structure and properties of the Allen network.

A theoretical foundation of neuronal responses is given in chapter [@and[5] Chapter
[] introduces the spatial and temporal tuning properties explored in the Allen model.
A mathematical approach is taken in chapter [b] which explains how neuron responses
are described and modelled using linear filters. In this chapter, the linear response of
a neuron to different spatial features is derived. The analytical results are later used
to explain the responses measured in the LGN model.

The Allen model itself is described in chapter [6] partly by referring to the more
general descriptions in chapters [3] and In chapter [7] an overview of experimental
findings of spatial and temporal tuning in the mouse LGN and V1 is presented. An
evaluation of these simulation results is used to determine whether and how the model
should be modified. The reader may use this chapter as an overview to look to for
reference, and will find the most important findings listed in the provided tables and
summaries there.

Chapter [§] deals with the method for creating visual inputs, running the Allen
model, and extracting the tuning responses of the LGN and V1 cells. The method for
making modifications to the model is also described. This chapter concerns primarily



technical details, while the motivation for the analysis will be given in chapter [0 and
[1al

The findings from the Allen model simulations are presented in 0] and Chapter
[] consists of multiple parts, where the first considers the original model. Subsequent
sections present modifications made to the model and the resulting tuning curves. In
all cases, findings are compared to experimental observations in mice. While the main
focus of this thesis concerns the spatial properties in chapter [0] results of temporal
tuning properties have also been included through chapter

Finally, main findings and important key points will be summarised in chapter
followed by suggestions for further research.



Chapter 2

Neuroscience Background

2.1 The Mouse Visual Pathway

Out of the systems involving complex cortical processing, the visual pathway is maybe
the most extensively studied [16]. Recently, a large portion of these studies have been
performed on mice [16]. Using the mouse brain as a simplified model of the human
brain has several advantages. Mouse physiology is, in many ways, similar to that of
humans [17]. As much as 99% of the human genome is shared with mice [18]. In
the visual cortex specifically, humans and mice share the same neuron subtypes in
similar proportions, using a similar connectivity scheme [19]. It has also been argued
that the relative simplicity of the mouse visual cortex makes it a more tractable
model of the human brain, where general mechanisms can be more easily uncovered
than in for example primates [19]. Furthermore, the mouse is small and practical
to handle, easily available and inexpensive [20,[21]. Importantly, mouse cells can be
easily manipulated using genetic tools [20]. Hence, the mouse is arguably an ideal
subject for experimental researchers |18]. Therefore, much information now exists
about the visual system of mice [20]. An illustration of the mouse visual pathway
with its main components is provided in figure

The eyes

As for humans, the first step in the visual pathway of the mouse is the photoreception
[20,/22]. The process involves light being detected by rods and cones, which are
photoreceptors on the retina [20]. These are cells which convert the light into electric
nerve signals [20]. The signals are then filtered and shaped by retinal interneurons,
which relay them further to the eyes’ output neurons, called retinal ganglion cells
[23]. In mice, like in other mammals, the retinal ganglion cells transmit to different
structures in the brain, such as the lateral geniculate nucleus (LGN) in the thalamus
and the superior colliculus in the midbrain [24}25].

The lateral geniculate nucleus

The lateral geniculate nucleus (LGN) is a part of the visual system located in the
thalamus [28] (see figure[2.1)). It is the primary source of input to the visual cortex [25].
The LGN receives visual input directly from the retina, and relays the transformed
nerve signals to the primary visual cortex, V1 [29]. The processing of the LGN involves
spatial and temporal transformations, which modulate the input and decrease noise in
the visual signal [30,31]. Like in humans, the mouse LGN is located between the retina
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Figure 2.1: Illustration of the mouse visual system, from the retina in the eye to the
primary visual cortex (V1). The three nuclei in the thalamus are the dorsal lateral
geniculate nucleus (dLGN), the intergeniculate leaflet (IGL) and the pregeniculate
nucleus (PGN). The superior colliculus (SC) lies in the midbrain. The two visual
pathways each have one LGN and one SC [26L[27]. The contralateral and ipsilateral
RGC axons refer to “opposite side” and “same side” axons from retinal ganglion cells.
Adapted from Figure 1b in .

and the primary visual cortex . The lateral geniculate nucleus (LGN) in mice is
divided into the dorsal lateral geniculate nucleus (dLGN), the pregeniculate nucleus
(PGN, previously called the ventral lateral geniculate nucleus) and the intergeniculate
leaflet (IGL) [23l[24]. All three neuclei receive signals from the retina [23]. The dorsal
lateral geniculate nucleus is the largest part of the LGN, and the main transmitter of
visual signals for image formation in the brain [23]. It is also the area out of the three
which is most extensively studied . A lot less is known about the functions of the
pregeniculate nucleus and intergeniculate leaflet . Hence, dLGN is often simply

referred to as LGN [33135].

The primary visual cortex

The sensory cortex in mammals is organised into six layers (LI-LVI) which differ both
functionally and anatomically [36,[37]. The topmost layer, LI, has few cell bodies,
and consists primarily of axons and dendrites from deeper layers . Layer IT and
IIT are referred to as the external granule and external pyramidal layer respectively,
due to the regions being predominantly composed of granule and pyramidal cells .
In mice, the second and third layer cannot be distinguished in several areas, and are
therefore referred to collectively as LII/III . The internal granular cell layer, LIV,
also contains granule cells. Typically, visual input first reaches the fourth layer [36].
This is the main target layer for feedforward connections . The deepest layers are
the internal pyramidal layer, LV, and the multiform layer, LVI . The fifth layer
contains pyramidal cells , while neurons in the sixth and most dorsal layer are of
various types, such as pyramidal and fusiform cells . Both layers relay signals
to subcortical areas .
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Figure 2.2: Example celltypes across layers in the cerebral cortex. The bottom labels
note the destination or origin of the neural signals, illustrated by the arrows. Adapted
from Figure 32-4. in p.445].

Included in the sensory cortex is the visual cortex, which consists of different areas
with distinct anatomy and properties . Among these, the primary visual cortex
(V1) is, in mice, the largest . For most mammals, the neurons in V1 respond
to complex features such as orientation of features, motion direction, stimulus depth
(also called binocular disparity), as well as simpler features such as size . The effer-
ents of the mammal V1 are mainly to other areas in the visual cortex, but also back to
the LGN or to other areas in the visual pathway . An example is the feedback sent
to the LGN from layer VI of the primary visual cortex . Experimental evidence
points to feedback inputs and interactions within the cortical network as necessary
mechanisms for perception of complex images . This can be ascribed to feedback
signals carrying contextual information . Neurons may therefore adapt their func-
tion depending on influences related to experience, expectation, attention or the task
being performed [46]. One of the differences between the human and mouse V1 is the
columnar organisation which is found in humans, but lacking in mice. Each column in
the human V1 has a preference for specific visual features, such as orientation, color
and direction . Although the same structure is not found in mice, research shows
that their neuron architecture is still organised to some degree, where neurons with
similar orientation preference are weakly clustered together in smaller structures, so-
called minicolumns . Furthermore, similar to in humans, reproducible retinotopic
maps of the mouse visual cortex has successfully been created .



2.2 The Neuron - Structure and Properties

Sections [2.2.1] and are based on the books Neuronal Dynamics by Gerstner,
Kistler, Naud and Paninski ﬂgﬂ, Computational Neurogenetic Modeling by Benuskova
and Kasabov and Principles of Neural Science by Kandel, Schwartz and Jessell

25).

2.2.1 The nerve cell

The neuron consists of three main parts: the soma, axon and dendrites. A dendrite
receives input from another neuron via the synapse. The neuron which sends the signal
is called the presynaptic neuron, while the receiving neuron is called the postsynaptic
neuron. When a nerve signal from a presynaptic neuron reaches the synapse, the
presynaptic neuron sends out neurotransmitters: molecules which diffuse over to the
postsynaptic neuron and cause the opening specific ion channels, which in turn enables
current to flow through the neuron membrane. This causes a voltage response in the
postsynaptic neuron, and the electric signal is transmitted towards its soma. Provided
enough input reaches the soma, an action potential is initiated. The action potential
travels down the axon, which is connected to the dendrites of subsequent neurons. In
this manner, electric nerve impulses travel from neuron to neuron within the brain.
As most action potentials, or spikes, have a similar shape, the information is conveyed
by the timing and frequency of the spikes.

Contact with
Axon other neurans
Ya Y
. ' Direction of -
/ o £ signal
. N
Soma Nucleus
\ \J
Dendrites A\ 1 ( A p
connected / \ \ ) i Xon o
. | \ previous neuron
via S\
synapses \A—L /

Figure 2.3: An illustration of the neuron structure. Adapted from .

The state of a neuron is usually described in terms of its membrane potential, that
is, the voltage difference between the inside and outside of the cell. In the absence
of input, the neuron has a specific, negatively polarised membrane potential (~ —
65mV ﬂgﬂ), called the resting potential. When a neuron receives synaptic input, the
voltage changes. Synapses may be excitatory or inhibitory, which transmit positive
or negative electric signals respectively. A neuron can receive multiple excitatory and
inhibitory inputs from different synapses. Excitatory potentials cause depolarisation
of the neuron, which if sufficient, causes an action potential to be generated. The
inhibitory potentials have the opposite effect, as they prevent the neuron from spiking
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Figure 2.4: Recordings of several membrane potentials of a single neuron, aligned at
the peak of the action potential. An action potential has a characteristic shape, with
a rapid depolarisation, followed by a slower return to resting potential. Adapted from
Figure 1.3 in [9).

by inducing further depolarisation. The inhibitory input is therefore referred to as
being hyperpolarising. It is the total contribution from these inputs which decides
whether the neuron fires or not.

2.2.2 Receptive fields and center-surround organisation

Collectively, the neurons in the brain are able to respond to a large repertoire of
external stimuli. However, each neuron may only respond to a very specific stimulus.
For example, in V1, neurons only respond to input from a confined region of visual
space. This region is called the receptive field of the neuron. Recent descriptions
sometimes also include a temporal component in this term [50], which will be intro-
duced in section For now, the more traditional definition [9,25/51] concerning
spatial features is considered.

The ganglion cells in the eye have approximately circular receptive fields, which
correspond to an area on the retina [25]. Most fields are composed of two features:
the center and the surround, as illustrated by figure The center and surround
areas respond oppositely to light. The ganglion cells can be divided into two types
based on their response. For on-center cells, bright stimuli excites the center area,
while it inhibits the surround. In contrast, off-center cells have center regions that are
inhibited by bright stimuli, while the surround is activated by light. If both regions
are stimulated by the same light intensity, for example by a isoluminant screen, the
two contributions are almost or totally cancelled out, and little response is generated
by the cells. This structure is referred to as center-surround organisation, and not
only found in ganglion cells, but in various cells along the visual pathway [25].

Off

On

Figure 2.5: Illustration of circular center-surround receptive fields: on-center (left)
and off-center (right). Based on the description by [25].
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Figure 2.6: The receptive field of a simple V1 neuron (right) may arise from the

receptive fields of the LGN neurons projecting to it (left). Based on the idea and
description by Hubel and Wiesel [53].

The same center-surround structure of receptive fields have been found in the
LGN of various animals, such as cats, monkeys and mice [25,/52]. This includes
on-center and off-center neurons, and little response from cells to uniform, full field
illumination [25]. The strong correspondence between the receptive fields of ganglion
and LGN cells is partly due to only a small amount of ganglion cells projecting to each
LGN neuron, so that the latter’s receptive field structure is inherited from the ganglion
cells [25]. In section [7], the experimental evidence for center-surround organisation in
the LGN of mice will be considered in more detail.

In V1, the receptive fields are qualitatively different to previously in the visual
pathway. While neurons in the retina and LGN typically prefer circularly symmetric
stimuli, many neurons in V1 prefer elongated stimuli. The neurons of V1 can be
classified as either simple or complex cells. The former, like LGN and ganglion cells,
also have receptive fields with on and off regions. The latter often have elongated,
elliptical receptive fields. The elliptical form of V1 receptive fields is believed to arise
from the combination of LGN inputs transmitted to each V1 cell |25,/53]. Figure
illustrates this idea. For V1 cells with elliptical fields, the strongest response is
produced when the stimuli is aligned along the axis of the receptive field. Perpendic-
ularly oriented stimuli produces almost no response. The complex cells in V1 usually
have larger receptive fields, and have no particular preference for stimulus position.
Instead, stimulus orientation is the main determining factor for firing activity. There-
fore, a favourable stimulus for both single and complex V1 cells is typically a moving
bar, oriented along the cell’s preferred axes. As a result, experimentalists often use
moving bars or grating stimuli in order to produce the maximum neuron response in
V1 [9].

Classically, the LGN has been thought to only comprise of simple centre-surround
receptive fields, while the more complex mechanisms are found in V1. However, recent
studies on mice show that properties such as preference for direction and orientation,
as well as inhibition induced by visual contrast, is also found in the LGN [52]. Nev-
ertheless, later findings suggest that direction selectivity is generated anew in the
mouse visual cortex through integration of input with varying time delays and spatial
locations [54].



Chapter 3

Computational Neuroscience

For more detailed descriptions of neuronal modelling, see the books Neuronal Dy-
namics by Gerstner, Kistler, Naud and Paninski [9] and Principles of Computational
Modelling in Neuroscience by Sterratt, Graham, Gillies and Willshaw [13], which
provide the basis for the following chapter.

3.1 Mechanistic Neuron Modelling

There are several different ways of modelling neurons: from simple models with a
single dynamic variable to complex, biologically detailed models. In some situations,
simple models may perform equally well as complex ones. Heavily detailed models
may give more accurate results, but they are also less computationally efficient. Not
to mention, complex models are often more difficult to tune, and having additional
parameters is not necessarily an advantage if we do not know their function and how
to optimise them. The choice of neuron model depends primarily on the type of
stimuli, computational resources and modelling aim. For example, it is possible to
model the exact shape and time development of the action potential. However, if the
aim is to look at spike-times of a neuron, this may be an unnecessary level of detail.

In this section, different types of mechanistic neuron models will be introduced.
These models take input in the form of synaptic current and describe the membrane
potential dynamics which accounts for neuronal firing. First, the Hodgkin-Huxley
model will be introduced, a description marking a breakthrough in numerical mod-
elling of neuronal dynamics. It will then be explained how this relatively complex
model can be reduced into a Leaky Integrate-and-Fire neuron. Subsequently, the
Generalised Leaky Integrate-and-Fire model (GLIF) will be described. Various GLIF
models are the building blocks of the V1 Allen model [12], the neuronal network which
are explored in this thesis. Lastly, for the sake of completeness, options for modelling
the spatial structure of neurons will be mentioned.

3.1.1 The Hodgkin-Huxley model

Hodgkin and Huxley are often viewed as the first to successfully predict results in
experimental neuroscience using numerical methods. Their model describes the ion
fluxes and voltage changes in the neuron and how this gives rise to, and shapes the
action potential. The original Hodgkin-Huxley model includes three key types of
ion channels in the neuron membrane: the sodium, potassium and ”leak” channel.
The ”leak” channel correspond to the remaining, mainly chlorine, ions. The current

10



flowing through these three channels govern the cell’s voltage dynamics and generate
the action potential. The dynamics can be expressed as an electric circuit [9)

du
C =1t~ zi:[i(t) (3.1)

where C is the capacitance of the cell membrane, u is the membrane potential, I(t)
is the synaptic input current to the neuron and I;(t) is the current through the ion
channels of type i. The current through the ion channels is governed by [9]

> I = gnam®h(u — Ena) + gin*(u — Ex) + gr(u — EL) (3.2)

K2

where gna, gr and g7, are the conductances and En,, Fr and Er, the reversal poten-
tials of the sodium, potassium and leak channels respectively. The reversal potential
is the membrane potential at which the flow of a specific ion across the cell membrane
changes direction [13]. The “gating variables” m, h and n determine the probability
of a channel being open. They depend on the membrane potential via [9]

dx 1
G = @ o) (33)

where = represents m, n or h. In other words, each gating variable approaches its
own steady state value, xo(u), with a specific time constant 7,,(u) [9]. The Hodgkin-
Huxley model can be extended to incorporate other types of ion channels, so that it
may describe various types of neurons, synapses and more complex dynamics.

Following the Hodgkin-Huxley model, a large number of neuron models with differ-
ent levels of complexity have been established. One limitation of the Hodgkin-Huxley
model is that it is relatively complex. However, by approximating the evolution of the
gating variables by a single equation, the model is reduced to two dynamic variables:
the membrane potential and one effective gating variable. The model can then be
both visualised and analysed analytically. This decreases the computational load and
makes it easier to analyse certain aspects of neuron behaviour.

Going a step further, one can exploit the difference in time scales at which the
voltage and effective gating variable evolve. In the subthreshold regime, the gating
variables evolve slowly compared to the membrane potential. As long as the potential
is below threshold, one can therefore approximate the gating variables by a constant
value. As soon as the potential reaches the threshold, the spike itself can be replaced
by a simple reset of the voltage. We then arrive at the classic Integrate-and-Fire
neuron.

3.1.2 The Generalised Leaky Integrate-and-Fire model

In the Integrate-and-Fire model, one takes advantage of the fact that the action
potential has a characteristic voltage time development. When neurons generate
action potentials, the main information is contained in the timing of these spikes.
The Integrate-and-Fire model therefore reduces action potentials to events in time.
The simplest form of this model is called the Leaky Integrate-and-Fire model (LIF).
In this case, the spike events are modelled as a reset of the voltage to resting potential
whenever the membrane potential reaches a threshold. That is [9)],

if u(t) = Uthreshola then 5t_£%{glt>0u(t + 0t) = Urest- (3.4)
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Figure 3.1: (a) The dynamics of an Integrate-and-Fire neuron, as defined by equations
(13.4) and , can be represented by an electrical circuit. The switch closes when the
membrane potential reaches the firing threshold, so that the potential is reset to tyest.
Inspired by Figure 8.9a in |13 p.199]. (b) The membrane potential as a function of
time in response to a constant example input current. Given sufficiently strong input,
the membrane potential reaches the threshold at time ¢, at which point the neuron
fires and is reset to Urest-

where v is the membrane potential of the neuron. The voltage between the firing
times is governed by a single equation [9],

du

T = —(u(t) — urest) + RI(1), (3.5)

where 7 is the membrane time constant, R is the membrane resistance and I(¢) is the
synaptic input current. The equation above describes the charge leaking through the
neuron membrane. In order to make the model more realistic, one can for example
add a dynamic threshold or after-spike currents.

In the case of adding after-spike currents, spike induced effects over relatively
long timescales are taken into account. As described in section the initiation
of a spike causes certain ion channels to open. In addition to forming the rapid
and stereotypical action potential, some ion channels may have slower effects on the
membrane potential. These effects can be modelled as currents, activated by the
spiking of the neuron. An extra term is then added to equation , so that it
becomes [1]

du

T = —(u(t) — Upest) + RI(t) + sz: L(t), (3.6)

where } . Ij(t) is the sum of the after-spike currents. Each time the neuron spikes,
the value of the current is incremented by a;. Specifically [1],

if u(t) = Ughreshold then 6t—%f?t>olj (t + dt) = Ii(t — 0t) + a;. (3.7)

Between firing times, the after-spike current dynamics are governed by [1]
Iy (1)
dt

The above description, defined by equations (3.6 - (3.8), has been used to model
neurons in the Allen network [12}|55] which will be explored later (see chapter [6.1)).
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By adding after-spike currents or other modifications, while still maintaining a linear
voltage equation, the LIF model is extended to a Generalised Leaky Integrate-and-
Fire (GLIF) neuron.

The GLIF neuron is an example of a model which, despite being very simple,
may produce realistic results. For example, it accurately predicts the membrane
potential and spikes in a real neuron when driven by a varying input current [9].
Even though the model is a substantial simplification of the real neuron, it agrees
well with experimental observations and more biophysically detailed models [9H12].
In addition to providing a computationally efficient candidate for network simulations,
the simplicity of the LIF and GLIF cell make the network as a whole easier to analyse
[13].

3.1.3 Spatially extended models

While the above descriptions have focused on the generation of spikes in the soma,
a neuron model may also include spatially extended structures. Dendrites can be
represented as cylindrical segments which allow current to pass from synapses to the
soma. Complicated morphologies can be constructed by having cylindrical segments
of different diameter and length. Axons can be modelled in a similar way as dend-
rites. While dendrites usually have passive drift of current, the active properties
of the axon can be reproduced using the Hodgkin-Huxley description. Models with
cylindrical segments which represent the spatial structure of the neuron are called
compartmental models. They allow for a high level of variety and biophysical de-
tail. This enables us to reproduce distinct features of different neuron types. For
example, biophysically detailed models based off experimental classifications in the
Allen Cell Types Databaseﬂ were able to exhibit properties characteristic of different
cell types [56].

3.2 Statistical Neuron Modelling

The Hodgkin-Huxley and GLIF model in the form they are presented above do not
take visual stimuli as input, but rather synaptic current. A fundamental problem
in neuroscience is how stimuli is transformed from visual input to spike trains [57].
Models which have been used to describe this process are mainly statistical instead
of mechanistic [58]. That is, instead of modelling the membrane potential dynamics
of the neuron, the model describes the statistical relationship between stimuli and
neuron activity [59]. This relationship is found by optimising a set of variables against
experimental measurements [59]. Among the simplest statistical models for encoding
stimuli and estimating the resultant spike train is the Linear-Nonlinear Poisson (LNP)
model [60]. The LNP model is used to represent the LGN cells of the Allen network
[12] which is explored later.

3.2.1 The Linear-Nonlinear-Poisson model

The Linear-Nonlinear Poisson (LNP) cascade was introduced as a relatively simple
way of capturing neuron responses [60]. It is a different type of model to the Hodgkin-
Huxley and Integrate-and-Fire neuron in the sense that it does not consider the syn-
aptic input or voltage dynamics of the neuron. Instead, the LNP model gives a

IThe Allen Cell Types Database is available at: https://celltypes.brain-map.org/
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Figure 3.2: The LNP model takes visual stimuli as input. A linear filter is applied
to the input, and the result is passed through a non-linear function. This gives the
firing rate, R(t). Spikes are then generated from the firing rate via a Poisson process.

statistical description of the neuron’s response by taking the visual stimuli as in-
put directly. In contrast to the previously mentioned models, the LNP model does
not predict exact spike times, but instead produces stochastic spike times based on
calculated firing rates.

The steps of the LNP cascade are as follows. The model first performs a linear
operation on the stimulus. This operator may include both a spatial and a temporal
component, which describes how different spatial and temporal stimulus features are
processed [60]. The linear response of a neuron will be described mathematically in
section To avoid negative firing rates, it is necessary to introduce a non-linear
transformation, for example in the form of a threshold [50]. To make the description
general, the neuron activity in terms of its firing rate can be described by [60]

R(t) = N(L(t)) (3.9)

where the function N is an arbitrary non-linear function and L(¢) is the linear response
to the stimulus. One option for the non-linearity is to add a constant, spontaneous
firing rate to the linear response, and pass both terms through a rectifying unit, so
that the response becomes [12]

R(t) = TReLU(f,p + L(t)) (3.10)

where I' is a constant and f,, is a spontaneous firing rate independent of the input.
The Rectified Linear Unit function, ReLU (x) |61], is given by

flx) = {x =0 (3.11)

0, otherwise.

The non-linear function in equation is the description used for the Linear-
Nonlinear Poisson cells in the Allen LGN [12].

After calculating the firing rate of the neuron, the rate is converted to a spike
train through a Poisson process [60]. This process generates spikes randomly with a
probability defined by the instantaneous firing rate [60]. The model only uses visual
stimuli to predict firing rates. It cannot account for influences such as recurrent
connections between neurons [13| or previous spiking history [60]. The LNP model is
therefore a highly simplified description of real neuron responses.
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3.3 Modelling Networks

A neuronal network consists of neurons relaying and receiving spike input from each
other through their synapses. Multiple issues have to be considered when modelling
such a network. Some of these include choosing the appropriate neuron model, number
of cells, type of connections and synapse description.

Simplifications and variability

When creating models of neuronal networks, several simplifications have to be made.
While it can be reasonable to use detailed neuron models when looking at the be-
haviour of a single or a few cells, it is generally not feasible if the aim is to model
a large network. The larger the network, the simpler the neuron model required for
the simulations to be computationally efficient. Furthermore, if one wants to model a
part of the cortex containing thousands of nerve cells, the number of cells may have
to be scaled down and the connectivity between them appropriately adjusted.

Another aspect which needs to be addressed is the variability of cells. A network
of cells may consist of identical models with the same parameters. Realistically,
however, there will be some variation. This could be introduced into the model by
for example sampling the neuron parameters from a distribution, or by basing them
on experimental fits to different neuron types. Using a network of GLIF neurons as
an example, the values of threshold, membrane potential, membrane time constant
and resistance may vary between cells.

Connectivity

A major defining property of a neuronal network is the connections between cells.
Whether the network is scaled down or full size, there are many options to choose
from. While it is possible to have a so-called full connectivity, where every cell is
connected to every other cell, it is more realistic to have each cell connected to only
a fraction of the cells in the network. A common scheme is to randomly establish
connections between cells with a probability depending on the inter-cell distance.
One can for example use a Gaussian probability distribution [12],

P(r) = Ae™" /7 (3.12)
where r is the distance between cells, o,. is the standard deviation and A is a scaling
factor. The scaling factor influences the total number of connections established from
a cell [12]. The probability could also depend on which cortical column or layer a
neuron belongs to. Another option is to have the connectivity depend on the cells’
stimuli preferences and whether they are inhibitory or excitatory. The connectivity
between real neurons is not fully known, but there is experimental support for all the
above suggestions [9,/12].

Synapse description

The synapses connecting the cells can be modelled in different ways. One option is
to use a circuit description, where the current depends on the membrane voltage and
conductivity as |9]

Loyn(t) = goyn (D) (u(t) = Buyn) (3.13)

where Igyn(t) is the synaptic current, gsyn(t) is the conductivity and Egyy is the
reversal potential of the synaptic ion channels. An increase in conductivity represents
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the effect of the neurotransmitters on the postsynaptic ion channels: As more ion
channels open, more current is able to flow through the neuron membrane, which
in turn generates a postsynaptic potential. The conductivity may depend on the
incoming spike times in the form of an alpha function [13]

t—ty

gsyn(t) = gsyn Bi(titf)/‘rsy“ @(t — tf) (314)

Tsyn
where g,y is the maximum conductance, t; is the arrival time of a spike, 74y, is the
synaptic time constant and ©(¢ — ts) is the Heaviside step function. The time de-
pendence can also take similar forms such as a single exponential decay or a difference
of exponentials. A simpler alternative to the conductance based synapse in equation
(3.13)) is to have the input current independent of membrane potential. This is called
a current based synapse and can for example be expressed as |13]

- t—=1
Isyn(t) = Isyn7_7166_(16_1510)/7—53”l @(t - tf)' (3‘15)
syn

where I_Syn is the maximum input current. Implicit in gy, or I:Syn is the overall strength
of the synapse, also called the synaptic weight. The weight is often a constant which
is either the same for all connections or set based on factors such as distance and
similarity between cells. It is also possible to use dynamic weights. One option is to
include a dependence on spiking arrival history, as this may influence for example the
availability of neurotransmitters.
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Chapter 4

Spatial and Temporal
Neuronal Response
Properties

This thesis explores selected properties of the Allen model: size tuning, spatial fre-
quency tuning and temporal frequency tuning. This chapter describes the different
properties and how they can be measured using various visual stimuli. As will be
seen in chapter [7] these are properties which are often investigated in real neurons;
they help classify neurons and describe their responses to basic visual stimuli. In the
following, cell qualities giving rise to different tuning behaviour will be presented. In
this way, the chapter explains what observed responses tells us about cells’ receptive
fields (see section on receptive fields), and hence provides a basis for how neur-
ons can be represented mathematically. This mathematical representation will be the
topic of chapter

4.1 Size Tuning

Size tuning refers to a cell’s response to stimuli as a function of stimuli size [62]. A
central property related to size tuning is called “surround suppression” [63]. The
latter refers to responses to stimuli centered in the receptive field being inhibited by
stimuli in the surround region [63]. Surround suppression is thought to be partly
responsible for the brain’s ability to distinguish borders, object contours and precise
line segments [25], by increasing the perceived contrast between an object and its
background [64]. For cells with surround suppression, a stimuli which is centered in

oo M (b ])

Figure 4.1: Example sets of stimuli for measuring the size tuning of a neuron. Patch
gratings (top) and white spots (bottom) of increasing sizes.
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the middle of a neurons receptive field can be used to measure suppression [63]. The
activity will increase as long as the stimuli is contained within the “center” region [63].
After reaching a certain, preferred size, the firing rate will start decreasing as the
stimuli extends into the “surround” area [63]. In this thesis, two main types of size
tuning stimuli are used: flashing spots of uniform luminosity and patch gratings,
both illustrated in figure [I.I] The second type of stimuli, patch gratings, consist of a
circular patch of a horizontally moving sinusoidal grating.

4.1.1 Linear and nonlinear surround suppression

Suppressive mechanisms in neuronal networks are usually divided into two categories:
linear (classical) and nonlinear (extraclassical) surround suppression [65]. While linear
suppression is relatively simple and can be explained by the structure of a neuron’s
receptive field, nonlinear suppression is a collective term used to describe suppressive
effects this does not account for [63}/66,/67].

Linear suppression

Section explains the on-off antagonism of receptive fields, in the form of circu-
lar center-surround cells in the LGN and either circular center-surround or adjacent
elliptical subfields in V1. These structures may give rise to what is referred to as
classical or linear surround suppression [65]. From linear algebra we know that a
transformation is linear if the following conditions apply [68]

f(z1+22) = f(21) + f(22) (4.1)
f(z) = Af(x). (4.2)

As will be seen in chapter the center-surround structure of a receptive field can
be described by a linear function of the stimulus luminosity. In this context, x;
and xo represent the stimuli, f is the receptive field response and A is a scaling
factor. Whether linear surround suppression occurs, depends on the type of neuron
and stimuli presented [63]. In general, a linear on-center cell will display surround
suppression in response to bright stimuli, and an off-center cell will show surround
suppression for dark stimuli [25]. In both cases, the neuron activity increases if said
stimuli covers more and more of the receptive field center, before decreasing as the
stimuli extends into the surround area [25].

Cell response

Ik

N Surround

{ - \

\ ) A Center

Figure 4.2: The response of an on-center neuron to bright circular stimuli depends on
stimuli size. The white circles represent the visual input covering various portions of
a cell’s center-surround receptive field.
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An example of the response of an on-center cell to bright stimuli is given in figure
2.5l The response to more complex stimuli will be discussed in section [5.2] Note that
in reality, it is not possible for a cell to behave completely linearly ﬂgﬂ At minimum,
there has to be some form of rectification of the linear response in order to avoid
negative firing rates ﬂgﬂ Nevertheless, suppression which can be explained by this
kind of cell is still referred to as linear suppression, since it arises from the on-off
antagonism of the linear receptive field .

Nonlinear suppression

Neuronal responses which cannot be explained by a linear receptive field, plus a
nonlinear saturation or threshold, have been observed in the visual pathway of various
animals . This involves modulatory effects from regions outside the classical
receptive field, as well as nonlinear responses within the classical receptive field (apart
from a simple threshold or response saturation) . These properties have been given
the collective name of extraclassical (or nonlinear) effects . One such effect is the
surround inhibition which is not accounted for by the antagonistic center-surround

structure .

Classical
receptive

field

"‘-\ /‘_-‘-‘\ y
] ‘ 1‘ \ i

/ \ / \
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Suppressed
response

No response Response

Figure 4.3: An example of nonlinear surround suppression. Stimuli in the extraclas-
sical surround does not by itself generate a response (left). It may, however,
suppress the response to a stimulus which is inside the classical receptive field
(right).

The classical, center-surround receptive field in section [2.2.2] refers to the region
where stimuli can produce neuronal firing. Stimuli outside this region alone does not
evoke neuronal activity, but can have a modulatory effect on stimuli within the clas-
sical receptive field . The outside region is a part of the extraclassical receptive
field . The existence of extraclassical receptive fields have been reported in the
retina, LGN and visual cortex of different animals . Stimuli in the extraclas-
sical surround can have either a facilitatory or inhibitory effect , but have usually
been found to be suppressive . For example, in mice V1, the response to
a patch grating within the classical receptive field is suppressed by a grating in the
extraclassical surround . Furthermore, this suppression is found to be orientation
dependent . That is, the suppression is stronger if the surround grating has the
same orientation as the center grating than if it is cross-oriented (see figure .

For stimuli contained within the classical receptive field, a number of proper-
ties separates extraclassical and classical suppression. In contrast to the on- and
off-regions of the center-surround receptive fields, nonlinear suppression may inhibit
activity for both bright and dark stimuli . This gives rise to size inhibition in
response to stimuli of varying luminosity, such as patch gratings, which is not fully
accounted for by a linear receptive field . For example, by fitting the receptive
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Figure 4.4: The response to a patch grating presented within the classical receptive
field can be suppressed by stimuli in the extraclassical receptive field [64]. The center
patch grating is the same in all three cases [64]. The suppression is stronger if the
surround grating is oriented along the same direction as the center (b), as opposed to
being cross-oriented (c) [64]. The illustration is inspired by results in [64].

fields of cat LGN cells to a linear model, Alitto and Usrey [63] found that the pre-
dicted suppression caused by the center-surround structure was substantially weaker
than what was observed. Another effect which indicates the presence of a nonlinear
surround is that the strength of suppression depends on stimuli contrast [63},70].

The origin of extraclassical surround suppression in the visual pathway is not yet
properly understood [65]. Many explanations have been proposed to account for the
phenomena, and past studies indicate that various mechanisms may be involved. For
example, one study suggests that neuronal circuits in various V1 layers may give rise
to extraclassical surround suppression in V1, as the orientation and contrast tuning
of the suppression varied across cortical layers [74]. Another experiment argues that
surround suppression in V1 may primarily be due to reduced input from the LGN [62].
Different delays in onset of suppression suggests the presence of at least two different
mechanisms: One may originate from feedforward inputs to V1 and another from
recurrent V1 connections or feedback from other cortical areas [75].

For extraclassical suppression in LGN, some findings suggest that cortical feedback
is involved, as cortical inactivation reduced the suppression in LGN [76H79]. An ex-
periment on mice LGN and V1 also showed that stimulation of cells in V1 suppressed
neuronal activity in LGN [80]. Others point to inhibitory recurrent connections in
LGN as possible sources [81]. A study on the macaque monkey concluded that non-
linear suppression in the LGN relies on feedforward projections from the retina [66).
Their argument partly rests on there being no significant difference of suppression
strength in the retina versus LGN [66]. Additionally, they report that suppression
in LGN arose too quickly to be the result of cortical feedback [66]. A later study
showed that about 70 % of the surround suppression in the cat LGN was also dis-
played in retinal cells [63]. Their results imply that feedforward signals play a major
role in extraclassical surround suppression, and that it first originates in the retina
before being amplified and modified in the LGN and V1 [63]. In conclusion, several
mechanisms appear to be involved in surround suppression of stimuli.

4.1.2 Suppression index

When analysing the dependence of neural responses on size in the Allen model, the de-
gree of suppression will be assessed qualitatively, by constructing the tuning curves of
each cell. All tuning curves will also be included for reference. However, when looking
at previous experiments, a suppression index (SI) is sometimes used to quantify and
present the degree of recorded suppression [64182/83]. In chapter [7] the suppression
index will therefore be used to refer to certain experimental findings. Where defined
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explicitly, the suppression index used in these studies has been given as [64
R eak — Rlar e
Sp = ket~ Are? 4.3
Rpeak ( )

where Rpcak is the activity at peak response and Riarge is the activity at the largest
stimuli. The value of SI ranges from 0 to 1. A suppression index of 0 corresponds
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Figure 4.5: Size tuning for three hypothetical cells with different surround suppression
index. From no suppression (SI = 0) to maximum suppression (SI = 1).

to no surround suppression, where the largest stimuli gives peak response. For SI
equal to 1 there is maximal suppression, with no response to the largest stimuli. The
response of three example cells with SI = 0, 0.5 and 1 are shown in figure 4.5

4.2 Spatial Frequency Tuning

Recording a neuron’s spatial frequency tuning has historically been a popular way
of assessing its response properties . Besides being relatively straightforward to
measure, spatial frequency tuning can tell us much about the spatial structure of a
cell’s receptive field . Studying a neurons receptive field via its spatial frequency
tuning is called “spatial frequency analysis” . It involves presenting a sinusoidal
grating of different spatial frequencies as visual stimuli to the neuron . Experi-
ments have shown that for a cell which behaves like a linear filter, grating stimuli can
be used to map its receptive field . Furthermore, responses to any stimuli, such
as flashing spots, can be predicted from the response of a linear cell to grating stim-
uli [85H87]. It is therefore possible to predict the size tuning of the cell and whether
it will exhibit linear surround suppression. The relationship between the frequency
tuning curves and surround suppression will be explained mathematically in chapter
0.2l
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Figure illustrates how the optimal spatial frequency (and orientation) of a
grating stimulus depends on the structure of the receptive field. Center-surround cells
(figure b) are typical in the retina and LGN, while elliptical on- and off-regions
(figure c,d) are often seen in V1 [25].
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Figure 4.6: Gratings with optimal spatial frequency (top) for a selection of receptive
fields (bottom). (a) A purely excitatory field gives largest response for uniform bright
stimuli (zero spatial frequency) \\ (b) An on-center receptive field has a non-zero
preferred spatial frequency . ¢, d) When the bars of the grating is aligned along
the orientation of the receptive fields, the elliptical on- and off-regions give rise to a
non-zero preferred spatial frequency .

A cell which is purely excitatory or inhibitory prefers stimuli which are uniform
or gratings of very low spatial frequencies, resulting in a so-called low-pass frequency
tuning curve (see figure b). By contrast, cells with center-surround organ-
isation have spatial frequency tuning curves with a band-pass shape, with a peak
response to a non-zero frequency (see example in figure a). Receptive fields
which consists of elliptical on- and off-regions can also give rise to band-pass tun-
ing . The larger the number of alternating on- and off-regions, the narrower the
bandwidth of the frequency tuning . Whether the receptive field of a cell consists
of a center-surround circle or alternating elliptical subfields, the band-pass tuning
arises from the antagonism between the excitatory and inhibitory regions .
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Figure 4.7: Two types of spatial frequency tuning. The illustrations below the graphs
show sinusoidal gratings of three different spatial frequencies. Spatial frequencies are
given in cycles per degree (cpd).

Spatial frequency analysis has been used extensively as a method for analysing
cells’ visual receptive fields for the last 50 years . The method has been applied
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to cells found in areas such as the retina, LGN and visual cortex [85]. Although
the visual pathway also contain nonlinear cells, the method provides a good starting
point for understanding cells in the visual pathway [91]. Practical reasons make
spatial frequency tuning curves a good alternative to size-tuning curves when mapping
neurons receptive fields. In particular, the full field grating stimuli does not require
knowledge about the visual center of a neuron [85]. In addition, no fine tuning of size
or use of very small stimuli is required, which makes it feasible to investigate even
very small receptive fields [85].

4.3 Temporal Frequency Tuning

The visual receptive field of a neuron was originally used to describe the region in
visual space for which the neuron is sensitive [51]. This is likely still the most common
definition [9], and concerns only the spatial tuning properties of the neuron. However,
recently the term has been expanded to include temporal selectivity, in a so-called
spatio-temporal receptive field [50]. Following this definition, one can think of tem-
poral frequency analysis as the analogue to the spatial frequency analysis presented
above.

As for spatial tuning, the preferred temporal frequency of a neuron depends on the
structure of its temporal receptive field [50]. Neurons typically prefer stimuli which
changes with time, such as drifting gratings and flashing spots, as opposed to static
gratings or spots [50]. This preference for non-zero temporal frequencies again arises
from antagonisms in the receptive fields, but now in the temporal component [50]. To
illustrate this point, figure shows a typical temporal response of a receptive field,
where the optimal luminosity has been superimposed on the receptive field function.
The illustration shows the response of the field as a function of time since stimulus,
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Figure 4.8: The temporal receptive field of a neuron (represented by the solid line)
is typically bi-phasic [50], giving rise to a preference for stimuli which changes with
time (background shading). The temporal field function is equal to the response of
the field as a function of time, 7, since showing a delta pulse of light [50]. Adapted
from Figure 2 in [12].

7. The response is so-called bi-phasic [92], were the field has a change in polarity over
time. Hence, the maximal response will be evoked when a dark stimuli switches to
a bright one [50]. Note that the value of 7 increases as we consider stimuli further
back in time. This preference is assuming the contribution from the spatial field is
positive, such as the on-cell in figure [{.6p. If the same temporal structure is found in
for example an off-cell, the shading in figure [I.8 would be opposite.

In summary, temporal receptive fields with changes in polarity will, analogous to
the spatial fields, give rise to band-pass temporal frequency tuning, as opposed to the
low-pass tuning which would be produced by a simply positive field.
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Chapter 5

Modelling Visual Receptive
Fields

5.1 Separable Receptive Fields

Although a cell model must include a non-linear rectification to prevent negative firing
rates, a linear description goes a long way in explaining neuronal properties [50]. A
neuron’s response to spatial and temporal features of visual stimuli may be referred
to as its spatio-temporal receptive field. The linear response of such a receptive field
can be written as an integral [50]

L(t) = /O h / / drdadyD(z,y, 7)S(z, . t — 1) (5.1)

where D(z,y, T) describes the effect of a stimulus at the point (z,y) and time ¢t — 7 on
the firing rate at time ¢. The parameter 7 hence refers to time since stimulus. L(t)
gives the neuron’s response in terms of its firing rate. If the filter is spatio-temporally
separable, D(x,y,7) can be expressed as a product of the spatial and temporal part,
so that the linear response is given by [50]

L(t) —/OOO//dexdst(:c,y)Dt(T)S(x,y,t —7) (5.2)

where D(x,y) is the spatial kernel, D;(7) is the temporal kernel and S(z,y,t — 7) is
the stimulus. Furthermore, given that the stimulus can be written as S(x,y,t —7) =
Ss(x,y)St(t — 7), the integral becomes [50]

L(t) = / " drDy(1)S (¢~ 7) [ [ dzaup (oSG0
= Lt(t)Lsa

(5.3)

where Ly and L;(t) describe the spatial and temporal response components respect-
ively.

The spatial kernel corresponds to the spatial receptive field. A simple example is
the circular 2D Gaussian function [12],

1 (2 2 o2
Dy(z,y) = 53¢ (a®+y%)/2 (5.4)
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were o is the standard deviation. A positive Gaussian represents an on-region, which
gives a positive response for bright stimuli [12]. Conversely, a negative Gaussian
describes an off-region [12]. A variety of spatial kernels have been used to model
receptive fields in neurons, such as the Difference-of-Gaussians [93] and the Gabor
filter, |94] which will be described in sections and respectively.

The temporal kernel defines the effect of previous visual input, at time ¢ — 7,
on the activity at time ¢ [50]. This may for example be expressed by a bi-phasic
function [12,/92]

log(t; + —dy) +1 log(ty + —dy)+1
Dt(T):wlcos( og(ty 27) 1) erzcos( og(ta 27) 2) (5.5)

where t; and to are time constants, wy and we are weights and d; and ds are offsets.
An illustration of this function, where w; and ws have opposite polarity, has been
shown in figure [£.§] in section

The two kernels given by equation and constitute the spatio-temporally
separable filter used by the Allen LGN model [12]. Since the complete kernel is sep-
arable, the response of the spatial filter can be analysed separately from the temporal
filter response [50].

5.2 The Difference-of-Gaussians Filter

The Difference-of-Gaussians (DoG) model was established by Rodieck in 1965 [93].
The function has subsequently been used to describe spatial receptive fields and re-
sponses of cells in the LGN, retina and, although less so, in the visual cortex of
different species |76/95]. The DoG model describes receptive fields with a center-
surround structure and linear surround inhibition [96]. The filter is composed of
two overlapping, concentric 2D Gaussian functions of opposite polarity [93]. An on-
center /off-surround field is represented by a narrower, positive center Gaussian and a
wider, negative surround Gaussian with a smaller amplitude [93]. An illustration of

— DoG
0.6 S ] e center
] surround

Kernel amplitude

T T T T T
-10 =5 0 5 10
Visual space (degrees)

Figure 5.1: Tllustration of the on-center/off-surround DoG filter given by equation
(5.6). The center and surround terms are shown by the dotted and gray line respect-
ively, while the sum of the two, the resultant DoG filter, is shown by the solid black
line. Parameters are A, = A, = 1.73, 0. = 2 and o, = 2.450.. Values for o and o,
refer to a representative cell in the LGN model, while the remaining parameter are
the same as those which will be used for simulations later.

this filter is show in figure For an off-center /on-surround receptive field, the cen-
ter Gaussian is negative, while the surround is positive. Mathematically, the model
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can be expressed by [93]

A 2 2 2 A 2 2 2
— [ e —@+yT)/ 200 _ 78 —(z7+y7)/20]
Dy(z,y) :l:[27mge 27‘_0_36 ] (5.6)

where A, and Ay are scaling factors for the center and surround component, and o,
and o, defines the spread of the center and surround. The + sign indicates whether
the receptive field is on-center (+) or off-center (—).

5.3 Responses of Spatial Filters

In the following, the response of the single Gaussian and an on-center Difference-of-
Gaussians spatial filter to two different stimuli is calculated from equation . For
the off-center filter, the response is just the inverse of this result. The stimuli are
full-field drifting gratings and flashing spots of uniform luminosity. In addition, the
response of the on-center DoG filter to patches of drifting grating will be described.
More specifically, in subsection the spatial frequency dependence of the response
to drifting gratings is shown. Subsection describes how the response to flashing
spots varies as a function of spot diameter. The diameter dependence of the response
to drifting patch gratings is considerably more complex, but will be briefly discussed
in section [5.3.3] The three stimuli will later be used as visual input to drive the Allen
model.

5.3.1 Response to full-field drifting gratings

Using horizontally moving gratings as visual input, we have
S(z,y,t —7) = Acos (kx —w(t — 7)) (5.7)

where A is the contrast, k is the wavenumber k = 27 and w is the angular frequency
w = 2w f. The spatial and temporal frequencies, v and f, are measured in cycles
per degree (cpd) and Hz respectively. The contrast A was set to one and omitted in
the following. By using the two-dimensional Gaussian function in equation as
a spatial filter, we can integrate over the spatial component in equation . For a
full field drifting grating, the spatial boundaries in this integral extend from minus
infinity to infinity. The resulting spatial frequency dependence of the response is thus

Ly(k) = e K%/, (5.8)

where o defines the spread of the Gaussian.

To model center-surround rather than center-only receptive fields, the spatial filter
model can be modified from a simple Gaussian to the Difference-of-Gaussians [93] in
equation . Using this and equation , the result is a filter response with the
spatial frequency dependence of

Ly(k) = Ace ¥ o2/2 _ g oW 00/2, (5.9)

The derivations of equation and are presented in appendix The two
results are illustrated in figure[5.2] The single Gaussian produces a pure low-pass re-
sponse, while the double Gaussian gives rise to the band-pass tuning curve associated
with linear surround suppression. The total response of a DoG filter is given by

L(t) = [A(w)| [Ace_kz"g/2 - Ase_k2”§/2] cos (wt — B(w)). (5.10)
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Figure 5.2: The analytical solution to the response amplitude of Gaussian spatial
filters as a function of spatial frequency of full field drifting gratings. The dashed black
line show the response given by equation with 0 = 2, for single 2D Gaussian
spatial kernels. The solid grey line shows the DoG response, given by equation ,
with parameters A, = A = 1.73, 0. = 2 and o5 = 2.450.. The value of ¢ and o,
refer to a representative cell in the LGN model, while the remaining DoG parameter
are the same as those which will be used for simulations later.

where |A(w)| and 6(w) is determined by the temporal filter (see appendix |A]). Hence,
the response is an oscillation as a function of time, where equation ives the
spatial dependence of the amplitude. The curves in figure therefore show the
tuning of the mean firing rate amplitude, rather than just the mean firing rate.

5.3.2 Response to flashing spots

The spatial filter response to an isoluminant spot can be expressed mathematically
as a function of spot diameter. For a circular, isoluminant stimuli of a fixed radius,
integral becomes the integral over a circular disc. The stimulus is now a constant
in time, so that the spatial response is defined by the integral of Ds(r) over the
circle. If a single Gaussian is substituted for Ds(r), one can calculate the diameter
dependence of the response to be

Ly(a) o (1 — e~ /20%) (5.11)

where a is the radius of the circle. If the double Gaussian in equation (5.6)) is used as
the kernel, the result is

Ly(a) o [Ap(1 —e®/278) — A (1 — 7@ /290)]. (5.12)

See appendix [A] for more details on the derivation of equations [5.11] and [5.12} Figure
illustrates the solutions given by equation and @ The single filter
creates a response which reaches a maximum when the stimulus covers the whole
spatial kernel, and does not decrease for larger stimuli. For the double Gaussian on
the other hand, the response has a peak when the stimuli covers the whole center
Gaussian, but stimuli larger than this will inhibit the activity. That is, the filter
exhibits surround suppression of uniform stimuli.
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Figure 5.3: The analytical solution to the response of a Gaussian filter, given by
to an isoluminant circle, plotted as a function of stimulus diameter. A single 2D
Gaussian spatial kernel produces the response illustrated by the dashed black line,
given by equation , where 0 = 2. The DoG response is shown by the solid grey
line, given by equation (5.12). The parameters for the DoG are A, = Ay = 1.73,
0. = 2 and o5 = 2.450.. The value of o and o, refer to a representative cell in the
LGN model, while the remaining DoG parameter are the same as those which will be
used for simulations later.

5.3.3 Response to patch gratings

In section [5.3.2] it is explained how the DoG filter generates surround inhibition for
increasing sizes of uniform, bright stimuli. For increasing sizes of circular patches of
drifting grating, the response is more complex. In this case, the activity predicted
by the DoG filter will not have the same diameter dependence as for uniform stimuli.
In fact, for certain combinations of spatial frequencies and filter parameters, the
surround effect can turn in to surround enhancement [95]. Similarly for flashing spots
and full field drifting gratings, the response of the spatial kernel in integral [5.2] can be
evaluated for circular patch gratings. This response can be expressed as a function of
the wavevector, k and radius, a. The final result, as derived by [95], is given by

ag ag
Ly(a, k) = AcX (——,V20.k) — A, X (——, V20 .k
(a, k) (\/ia ock) (\/ia osk) (5.13)
with
X(y,2) s L 3 l(5)2" Fi(n+1;2; —1/4y%) (5.14)
) 4y2 e ’Il' D) 141 ) 4y .

where z = 2ayk and 1 F} is a series called “confluent hypergeometric function” [95].
Consequently, a large variety of responses may be generated with the DoG filter
from circular patch grating stimuli. Some example curves are shown in figure
The size tuning of a cell in this case depends on the combination of the grating’s
spatial frequency and the DoG parameters. Two distinct cases leading to surround
enhancement and surround suppression can be seen in figure In the top of figure
the DoG has parameters so that the ON-center Gaussian overlaps the light region
at the same time as the OFF-surround overlaps (mostly) dark areas. Since ON-regions
respond to bright stimuli, and OFF-regions respond to dark stimuli, this combination
of center and surround causes a higher activity than the response of the DoG to
uniform input of the same diameter. The grating therefore has the preferred spatial
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Figure 5.4: Response of the DoG filter model versus diameter of a patch of drifting
grating for different values of k. The dashed lines show surround suppression (k = 2)
and surround enhancement (k = 4.4). The grey line corresponds to & = 10. The solid
black line illustrates a case where k = 0, which is an isoluminant spot. Note that the
DoG parameters are different to those in figure [5.1] [5.2] and Adapted from Figure

3 in [95].
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Figure 5.5: A combination of a DoG filter and patch grating which would lead to
surround enhancement (top) and surround suppression (bottom).

frequency for this DoG filter. The figure also illustrates why activity continues to
increase with stimuli size until it covers both the center and surround, and thereby
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giving surround enhancement. The bottom figure shows an example where the DoG
center and surround is small compared to the grating spatial frequency. In this
case, the response of the DoG to the grating approaches the response to uniform
stimuli, and surround suppression can be observed. Similarly, Einevoll and Plesser [95]
predicted more surround suppression for low spatial frequencies compared to high, as
demonstrated in figure [5.4]

5.4 The Gabor Filter

The single Gaussian and Difference-of-Gaussians are not the only functions used to
describe receptive fields. A different, but related, model is the Gabor function. The
function was described by Dennis Gabor in 1946 [94]. A few decades later, it was
extended to two dimensions and used to describe receptive fields of cells in the visual
cortex [97H99]. The model is able to describe the spatial frequency tuning of the
cells, as well as their preference for orientation and localised regions in space [99,{100].
The spatial filter, corresponding to the real part of the complex Gabor function, is a
product of a sinusoidal function and a Gaussian envelope [50],

1

Troa e AW cos (ke — 9) (5.15)

Dy(z,y) =

where o, and o, define the size of the receptive field and k and ¢ are the preferred
spatial frequency and phase of the filter.

While the circular center-surround receptive fields in LGN and retina cells are
well approximated by the Difference-of-Gaussian, the Gabor function is often the
preferred model for visual cortex cells [101]. Comparisons between the mathematical
model and experiments show that the behaviour of cells in the visual cortex agree
well with the Gabor filter description [98,/99//102]. That said, while some refer to the
Gabor function as the most robust model for V1 receptive fields [103], others argue
that in comparisons with other filters, alternate models have provided better fits to
V1 experimental data, including the Difference-of-Gaussians [104] and the related
Gaussian derivative model [101,/105].
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Chapter 6

The Allen Model

The following chapter is primarily based on the pre-print publication on the Allen
model by Billeh, et al. [12], as well as on the Allen model scripts and data, available
from [106].

6.1 The Allen Network Model

This thesis explores the behaviour of a mouse primary visual cortex (V1) model.
The model was developed by the Allen Institute for Brain Science, as a step towards
gaining insight into the human brain. It was constructed on the basis of large-scale
literature reviews and experimental measurements. The V1 network is made up of
point neurons in the form of GLIF cells with after-spike currents |55]. For a general
description of this type of model and its dynamics, see section [3.1.2 The GLIF
network is one of two analogous V1 models developed by the Allen Institute. The other
uses a biophysically detailed representation of the neuron. Otherwise, the two models
are identical, having the same connections, coordinates and distribution of cell classes.
The reason for choosing to work with the GLIF model is primarily the computational
efficiency (~ 8000 times faster than its counterpart, according to the Allen Institute
[12]). This enables simulations to be run outside a supercomputer. Additionally, the
two models perform very similarly, both qualitatively and quantitatively [12].

The Allen V1 model consists of 230 924 cells, compared to the 360 000 nerve cells
in real mice [107]. The cells are distributed uniformly in the physical space, so that
the network forms a cylinder with a 845 pm radius. Similar to real mice, the network
is divided into the cortical layers LI, LII/III, LIV, LV and LVI, as illustrated in figure
Cell coordinates and connections are set by well-defined stochastic processes.
Individual neurons are randomly drawn from models of 17 different classes. Each
class and model is based of real neuron types, fit to electrophysiological data from the
Allen Institute’s own database. The neurons are divided into classes based on their
gene expression related to electrophysiological responses [108].

As illustrated in figure each V1 layer consist of a specific set of neuron classes.
Neurons in LI are of a serotonin-expressing (Htr3a) inhibitory class. The remaining
layers contain both excitatory and inhibitory neurons. The inhibitory neurons are
separated into the classes of Htr3a, somatostatin-expressing (Sst) and parvalbumin-
expressing (Pvalb) cells, which have been found to make up most of the inhibitory cells
in V1 of real mice |109]. The excitatory class is separated into one E-class per layer.
The proportions of excitatory and inhibitory neurons are 85% and 15% respectively.
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Figure 6.1: A representation of the Allen LGN and V1 model. The LGN receives
visual input and sends its output to V1. The illustration shows the cell classes and
the six (practically five) layers of the V1. The classes are further subdivided into

different models, based on slice electrophysiology measurements performed by the
Allen Institute. Reprinted from Figure 1 in .

The V1 model requires input in the form of neuronal spike trains. For this purpose,
the Allen Institute developed a representation of the LGN in the form of spatio-
temporal filters units. The LGN module takes arbitrary visual stimuli as input and
generates spike trains which are relayed to V1. The V1 neurons which receive LGN
input are E - and Pvalb cells in LII/III-LVI, as well as Htr3a cells in LI. The Sst and
Htr3a neurons in LIT/III, on the other hand, receive no such input. The probability
that a specific V1 cell receives LGN input further depends on the neuron class and
layer. In accordance with experiments , more LGN axons transmit to LIV than
any other layes.

The connections between the LGN and V1 were established stochastically, with the
aim of generating orientation and direction selectivity in V1. Connection probabilities
depend on the type of cell and their spatial position. For each V1 cell, two elliptical
regions within its receptive field were defined, aligned along the axis of the neuron’s
preferred orientation. Connections were then established between the V1 cell and a
set of LGN cells with receptive fields within these regions. From one region, LGN
cells with sustained (slow) kinetics were sampled, while for the second region, LGN
cells with transient (fast) responses were selected. This creates different V1 responses
to stimuli of opposing directions, due to different timings of LGN input in the two
cases. Figure[6.2] illustrates how connections from LGN cells to a single V1 cell were
selected, and how this gives rise to direction selectivity in the V1 cell.

Connection probability and synaptic strength for recurrent connections within
V1 were set depending on distance, cell type and similarity in preferred orientation,
phase and direction of motion of the visual stimulus. Rules for synaptic connections
are based on experimental literature, as well as measurements performed at the Allen
institute. These rules depend on the classes of the connected pairs, and typically, cells
with similar stimuli preferences have stronger synaptic weights and higher probabil-
ities for establishing connections.

The distance-dependence of connections follows the Gaussian function in equation
, with parameters o, and A. The standard deviation, o, takes different values
between 85 and 120 nm, depending on cell types (E, Sst, Pvalb, Htr3a; independent
of layers). The connection probability therefore decreases with distance measured in
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Figure 6.2: The connections between LGN and V1 cells are selected to allow for
orientation and direction selectivity in the V1 cells. For stimuli in the preferred
direction, the slow and fast responses would overlap in time, causing the membrane
potential in the V1 neuron to exceed the firing threshold. For the opposing direction,

however, the input does not overlap, resulting in a weak or no V1 response. Adapted
from Figure 2 in .

3

the cortical plane. Distance in cortical depth was not considered. The scaling factor
A, however, depends on both cell types and layers, were cells in the same layer are
generally more likely to be connected than cells from different layers. The GLIF model
uses current-based synapses, as described in section with dynamics governed by

equation ((3.15)).
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Figure 6.3: Example raster plot of the output from a V1 simulation. The model
produces output in the form of neuronal spike trains. Each spike is represented by its
firing time and each neuron by its neuron ID. Spike trains for a proportion of the V1
neurons is shown. For this example, the visual stimulus was a drifting grating of 2 Hz
and 0.04 cpd, preceded by a grey screen of 500 ms duration. Adapted from Figure 5a

in .

In addition to receiving input from the LGN and other V1 neurons, V1 neurons
receive “background input” in the form of a Poisson spike train, to approximate the
input from other brain areas. The Poisson spike train has a constant frequency of
1000 Hz and is relayed to all V1 cells. The connection strengths from the background

33



input were tuned so that each neuron generated the right amount of spontaneous
activity according to experiments.

The receptive field centers of V1 neurons are defined via a mapping between the
visual space and the physical cell locations. Each location in the cortical plane of
the V1, spanned by the x and z-axes, correspond to coordinates in the visual input
space. The center of the two spaces are mapped onto each other, and from here, one
millimeter in the cortex correspond to 40 °/mm in elevation and 70 °/mm in azimuth
in the visual space.

The output from the V1 model takes the form of neuronal spike trains. An ex-
ample raster plot of results from a single simulation is illustrated in figure [6.3] The
figure gives an overview of the different layers in the model and shows the relatlve
proportions of the various cell types.

6.2 The Allen LGN Model

The Allen V1 model receive spike train inputs from the LGN. These spike trains are
created in an LGN module consisting of 17 400 units. In comparison, the mouse
LGN contains approximately 18 000 neurons [107]. LGN cells are modelled as Linear-
Nonlinear Poisson neurons (see section . Each cell takes visual stimuli of di-
mensions 240°x120° as input, on which it performs a linear transformation. This
linear transformation takes the form of a separable spatio-temporal filter (see section
5.1). The output is then passed through a nonlinear rectifier, which includes adding
a spontaneous firing rate and applying a threshold to avoid negative firing rates. The
rectifying function is given by equation . The result is a time series of firing
rates for each unit [12]. After calculating the firing rates, spike trains are generated
from the rates through a Poisson process. See figure [6.4] for an illustration of how the
visual input is transformed into spike trains.
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Figure 6.4: The Allen LGN model is a type of Linear-Nonlinear Poisson model. Linear
spatial and temporal filters are first applied to the input. The result is then passed
through a non-linearity, giving the instantaneous firing rate of the neuron. A Poisson
process is then used to generate stochastic spike trains based on the firing rate. The
temporal and spatial filter illustrations are examples for the sON-TF8 cell type and
are adapted from Figure 2 of the Allen documentation [12].

Four classes of cells were developed, based on experimental responses measured
by |16] and [52]. These were one sustained ON class, a sustained OFF class, a transient

OFF class and a group of ON/OFF cells. These classes are further divided into
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subclasses (TF1, TF2, TF4, TF8 and TF15), according to their preferred temporal
frequency of stimuli. Temporal selectivity depends on the shape of the temporal filter.
This filter is defined in equation and illustrated in figure where parameters
are different for each cell. The sustained and transient units have slow or fast kinetics
respectively, depending on the width of the temporal filter.

The coordinates of the LGN cells refer to points in visual space, rather than
explicitly modelling their physical location. The cells are distributed over a 240°x120°
visual plane, with coordinates specifying the center of their spatial filters. The ON
or OFF type cells have a single circular filters, while the ON/OFF cells consist of
two circular subunits: one ON region, and one OFF region. The majority of cells
are either a simple ON or OFF unit. The spatial filter for a single ON or OFF cell
takes the form of the two-dimensional Gaussian kernel in equation . The spatial
field sizes vary between cells, as defined by o € [0.67°73.31°]|H The ON-cells have
positive Gaussians, while the OFF-cells have negative. For the ON/OFF cells, the
spatial filter consist of two 2D Gaussians with opposite polarity, separated by a few
degrees |111]. The Gaussian of one subunit has a larger amplitude and dominates the
other [111].

IThe value of o is defined in the script 1gn_functions.py |111] as “spatial size” divided by 3.
Here the values have been calculated using the “spatial size” parameter for each cell, extracted from
lgn_full_col_cells_3.csv [112].
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Chapter 7

Experimental Findings

In this chapter, experimentally obtained spatial and temporal tuning properties of
mice LGN and V1 are presented. The aim is to establish the phenomena observed
in the mouse brain, in order to evaluate the performance of the Allen model. Im-
portantly, experimentally observed spatial properties have been used as a basis for
modifying the Allen model. The properties looked at are size tuning, spatial frequency
tuning and temporal frequency tuning.

As described in section different mechanisms are likely involved in size sup-
pression of different stimuli. For example, a linear receptive field with on-off antagon-
isms can explain suppression in response to uniform stimuli. However, size suppres-
sion which can only be explained by nonlinear mechanisms have also been found in
mammals (see section 4.1.1]). This type of suppression is better measured with patch
gratings, as the suppressive effect of linear mechanisms is usually much smaller for
this type of stimuli [63,/66] (see section for a mathematical explanation). When
looking at experiments in mice, it is therefore preferable to include size tuning exper-
iments with both uniform and patch grating stimuli. However, no studies on mouse
LGN with patch gratings have been found.

Nevertheless, experiments on LGN and V1 in mice for a variety of stimuli are
described in this chapter. The studies on both LGN and V1 investigated spatial and
temporal frequency tuning using drifting gratings, as well as size tuning using flashing
spots. In addition, studies on V1 investigated size tuning with patch gratings. This
chapter primarily describes the studies which will later be referenced when comparing
the Allen model to real mice. Each study is briefly summarised with respect to the
property of interest. For a general overview, each subsection is concluded with a short
summary and tables conveying the most important findings. In addition, each section
includes a discussion of possible effects of anaesthesia on the results.

7.1 Spatial Tuning in the Mouse

7.1.1 LGN
Grubb and Thompson [113]

Grubb and Thompson [113] measured the response of single neurons in LGN of adult
anaesthetised mice. Full field drifting gratings were used as visual stimuli to invest-
igate spatial frequency preference. Keeping the contrast at 70 % and the temporal
frequency at 1 Hz, gratings of different spatial frequencies were presented. Difference
of Gaussian curves were successfully fitted to 92 cells. The majority of cells showed
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band-pass spatial frequency tuning, with a preferred frequency of ~ 0.03 cpd (cycles
per degree). Additionally, receptive fields were identified in 133 out of 199 cells by
using stimuli of various sized black or white flashing squares. The remaining cells did
not have clearly defined regions which reacted reliably to visual stimuli. The recept-
ive fields were circularly symmetric, with a large proportion showing center-surround
antagonisms. |113]

Piscopo et al. [52]

Piscopo et al. [52] is one of the experimental studies on which the Allen Institute
based their LGN model [12]. The study recorded various response properties in the
LGN of 16 adult anesthesised mice. Neurons were classified into six groups based on
their properties. The first three groups consisted of sustained ON (sON), sustained
off (sSOFF) and transient OFF (tOFF) cells, from a total 134 out of the 214 responsive
neurons. These cells were found to have center-surround receptive fields. In addition,
other cell types with more complex properties were also discovered. Among these
were orientation and direction selective neurons, a group of slowly responding neurons
and a group of cells that were suppressed by nearly all types of stimuli. Flashing,
uniformly black or white spots of increasing diameters were used to measure surround
suppression of the SON, sSOFF and tOFF cells. Close to all neurons in the three center-
surround groups (sON, sOFF and tOFF) demonstrated strong surround suppression
by a decrease in firing rate for diameters larger than preferred size. In the same study,
they also measured the response of these cells to drifting gratings of different spatial
frequencies. The responses showed band-pass tuning with peak activity at 0.05, 0.03
and 0.02 cpd for the sON, sOFF and tOFF cells respectively. [52]

Tang et al. [28]

Tang et al. [28] recorded neurons in the LGN of aneasthetised, adult mice. After
excluding non-responsive neurons, receptive fields were mapped in 185 cells, using
movies of stochastic noise with varying contrasts. All recorded cells displayed center-
surround antagonistic receptive fields. Full-field drifting gratings were then presented
as stimuli for spatial frequencies of 0.02 to 0.96 cpd. The spatial frequency tuning of
each cell was then successfully fitted to a DoG function for 92/185 cells. Preferred
spatial frequencies were taken as the peak calculated from this DoG function. 51 %
of the cells preferred spatial frequencies below 0.02 cpd, and were hence classified
as showing low pass tuning. The remaining 49% showed band-pass tuning, with a
median preferred spatial frequency of 0.035. [2§]

Durand et al. [16]

Durand et al. [16] studied properties including the optimal spatial frequencies of cells
in LGN. While previous studies on mice LGN have focused on anaesthetised anim-
als, this study included measurements on adult mice in the awake and anaesthetised
state. The number of LGN cells recorded from were 456 and 164 in the awake and
anaesthetised state respectively. Along with the study by Piscopo et al. [52], this
experiment was used as a benchmark by the Allen Institute when developing LGN
filters and tuning the cell parameters [12]. Spatial frequency tuning curves were con-
structed for single cells, and the proportion of cells firing optimally over a range of
frequencies was measured. The distribution of peak frequencies was found to follow a
wide curve, with preferred spatial frequencies in the range 0.02 - 0.64 cpd. In awake
mice LGN, the median optimal spatial frequency was 0.08 cpd. [16]
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amount
. . of
study stimuli state .
size
suppression
nearly
. . all sON,
6151:16. Ol%;l ﬂs;gizg anaesthetised sOFF &
tOFF
cells
Tschetter | flashing mean SI:
et al. [83] spots awake 0.53
Grubb & flashing large
Thompson anaesthetised .
[113] spots proportion

Table 7.1: Overview of experiments measuring size suppression in the mouse LGN.
The column “amount of size suppression” is the degree of surround suppression found,
either given with suppression index (SI) or as the amount of tested cells that show
surround suppression. For the study by Tschetter et al., only results for for adult
mice are included.

Tschetter et al. [83]

Tschetter et al. [83] compared surround effects in the LGN of mice of different age
groups. Measurements were made on awake mice. Circular black or white flashing
spots of different diameters were presented. The study was conducted by performing
measurements on mice across groups depending on age. 228 cells were recorded in a
group of 17 adult mice (45 to 60 days old). Groups of developing mice of 14-16, 17-21
and 22-24 days old consisted of 7, 22 and 7 mice respectively. The numbers of neurons
recorded were respectively 102, 298 and 115. The size tuning curve showed qualitative
differences between developing mice and adult mice. The youngest group showed a
strong increase in firing rate with diameters up to full field luminance. Adult mice,
however, showed size suppression, with increased response up to a preferred diameter,
and then a decrease in firing rate. The preferred spot diameter in adult mice was 8.6°,
and the suppression index was 0.53. The largest suppression index, 0.61, was found
in mice aged 22-24 days. (Recall section for a definition of suppression index.)
Flashing spots at different locations in visual space were used to map receptive fields,
which often revealed center-surround structures. The spatial frequency tuning curves
were also measured for the different age groups. The results were consistent with the
age dependence described above. There was an increase in preferred frequency from
0.02 cpd in the youngest group to a peak at 0.12 cpd in the group aged 22-24 days.
For adult mice, the preferred spatial frequency was 0.09 cpd. [83]

Summary of findings

In this section, the findings of five studies on the mouse LGN are summarised. The
main relevant results are shown in the tables and for size tuning and spatial
frequency analysis respectively. The studies on size tuning all found cells with sur-
round suppression [52,|83/113]. The exact number of cells showing size suppression
was not specified for all studies, but the property was found in a large proportion of
cells in the three relevant studies [52}83,/113]. Consistent with this, the same exper-
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pref
study stimuli state sf
(cpd)
means:
Piscopo full-field . 0.05 (sON),
et al. [52] | grating anaesthetised 0.03 ((SOFF)),
0.02 (tOFF)
Durand full-field awake & median:
et al. |[16] | grating | anaesthetised | 0.08 (awake)ﬂ
Tschetter | full-field mean:
et al. [83] | grating awake 0.09
Grubb & most
Thompson full—ﬁeld anaesthetised cells:
fitg) | &retine ~ 0.03
median:
Tan 51% of cells:
et af full—ﬁeld anaesthetised <0.02
= grating 49% of colls:
0.035

Table 7.2: Overview of experiments studying spatial frequency tuning in the mouse
LGN, using full-field drifting grating as stimuli. For the study by Tschetter et al. [33],

only results for adult mice are included.

9Durand et al. [16] performed measurements in awake and anaesthetised mice, but the median

preferred frequency was only reported for awake mice. However, anesthesia was said not to affect

the spatial frequency preference [16].
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iments found that a large number of cells had receptive fields with center-surround
antagonisms [52,83\113]. Also compatible with this, a large proportion of cells showed
band-pass spatial frequency tuning [16}28/[52//83113]. Different preferences for spatial
frequencies were found in the five studies. In the three studies looking at anaesthet-
ised mice, a large portion of cells had peak frequencies around 0.03 cpd [28}/52/113].
In the two studies recording neurons in awake mice, the LGN neurons had preferred
spatial frequencies of 0.08 cpd (median) [16] and 0.09 cpd (mean) [83]. Still, Durand
et al. [16] found no statistically significant difference between the mean peak frequen-
cies of awake and anaesthetised mice. Durand et al. |[16] suggests that the difference
between the optimal spatial frequencies can be ascribed to the use of different tem-
poral frequencies. In previous studies, temporal frequencies of 1 Hz [113] and 2 and
8 Hz [52] were used to find the peak spatial frequencies, while Durand et al. [16] used
1, 2, 4, 8 and 15 Hz. Tschetter et al. [83] found that surround suppression is age-
dependent, mostly manifesting in mice of around 22 days and older. Mice classified
as aduhﬂ (45 to 60 days) showed significant surround suppression, whilst very young
mice did not [83]. In conclusion, the studies imply that a large amount of LGN cells
demonstrates surround suppression in response to uniform stimuli, consistent with
the band-pass spatial frequency tuning results.

7.1.2 V1
Schuett et al. [48]

Schuett et al. [48] mapped neurons in several areas of the mouse cortex, including
V1. Measurements were made for mice in the anaesthetised state. As stimuli they
used square patches of drifting square wave gratings at different positions in the
visual field. This stimuli induced increasing activity when presented in the center of a
neuron’s receptive field. An activity below the spontaneous firing rate was considered
as surround inhibition. Out of 22 recorded cells, 17 displayed surround inhibition. [4§]

Durand et al. [16]

In addition to investigating cells in LGN, Durand et al. [16] studied how cells in V1
responded to different stimuli. For awake mice, 232 V1 cells were recorded, while
80 V1 cells were recorded in aneasthetised mice. As when measuring LGN cells,
they used drifting gratings of different spatial and temporal frequencies, and thus
determined the optimal spatial frequencies for the V1 cells. Compared to in the LGN,
the distribution of peak spatial frequencies where narrower, but still ranged from 0.02
to 0.32 cpd. For awake mice, the median optimal spatial frequency was 0.05 cpd in the
V1, compared to 0.08 in the LGN, but this difference was not statistically significant.
The optimal frequency for anaesthetised mice was not specified, but was reported not
to be statistically different from that in awake mice. [16]

Adesnik et al. [115]

Adesnik et al. [115] recorded neuronal activity in V1 layer 2/3 of 1-3 months old awake
mice. Mice were presented with drifting patch gratings of 0.04 cpd spatial frequency
as visual stimuli. Patch sizes were varied from 8° to 96 ° in diameter. Out of recordings
from 53 random single neurons, 33 neurons showed significant surround suppression,

IThe definition of adulthood in mice varies across literature, and has been reported to start
anywhere from 6 to 20 weeks old |114].
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with a preferred diameter of 22° + 2°. The mean suppression index (as defined in
section for single cell recordings was 0.9. In addition, targeted recordings of
somatostatin expressing neurons (Sst) and parvalbumin expressing neurons (Pvalb)
were performed. The mean suppression indices for Pvalb and Sst neurons were 0.46
and 0.09 respectively. While 6 out of 11 cells showed significant surround suppression
in Pvalb neurons, the suppression was not significant in any of the 8 recorded Sst
cells. This indicates that size tuning depends on the type of neuron.

Additionally, the study looked into recurrent connections in V1 and how these
may give rise to some of the suppression observed. In particular, they found that
the activity of Sst neurons increased consistently as a function of stimuli diameter,
for diameters up to 900 pm. As Sst neurons receive little or no input from LGN
neurons [12,/115], the increase in firing rate was taken as being due to excitatory
input from LII/III pyramidal cells, which were found to provide the main input to
Sst neurons. To further confirm this, direct light stimulation of slices of V1 were used.
It was then found that creating two vertical cuts through LII/III prevented the firing
rate in Sst neurons from increasing for stimuli extending past these cuts. The findings
suggest the existence of far reaching horizontal connections within V1, which gives
rise to a preference for large stimuli in Sst neurons. The increased inhibition by Sst
neurons for large stimuli could in turn cause surround suppression in the remaining
cell types. [115]

Self et al. [64]

Self et al. |64] performed measurements on different layers of V1 in 5-8 weeks old an-
aesthetised mice. Drifting gratings of various spatial frequencies, temporal frequencies
and orientation were presented, and the most common preferred parameters for the
recorded group of cells were found. Surround suppression was then measured using
these parameters, for drifting gratings of various sizes. 106 neurons were measured,
and significant differences in the strength of surround suppression between V1 layers
were found. Single neuron recordings gave a median suppression index (as defined in
section of 0.37 in LIV. Multi cell recordings in deep layers (-500 to -100 pm
cortical depth), LIV (0 to 100 pm) and superficial layers (200 to 400 nm) gave median
suppression indices of 0.06, 0.25 and 0.18 respectively. Median preferred stimulus sizes
ranged from 17.5° in LIV to 54° in LVI. [64]

Van den Bergh et al. [116]

Van den Bergh et al. [116] recorded 69 neurons in V1 of eight adult anaesthetised
mice. In order to determine size tuning properties of the V1 neurons, circular patches
of drifting gratings of diameters in the range 1° - 70° were presented. The spatial
frequency, temporal frequency, contrast and orientation of the grating were set to
optimal values for each recorded neuron. Pronounced surround suppression was found
in most of the recorded V1 neurons, although about 40 % of units did not show
surround suppression. The mean suppression index was 0.24. The median preferred
diameter was 28.9°. In addition to size tuning, the spatial frequency tuning of V1
cells was measured. The mean preferred spatial frequency was 0.04 cpd. [116]

Vaiceliunaite et al. [82]

Vaiceliunaite et al. [82] used circular patch gratings of increasing sizes to measure the
size tuning of V1 cells of the adult mice. The spatial and temporal frequencies were
set to the average optimal values, and diameters ranged from 4° to 67°. Measurements
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amount
o of
study stimuli state .
size
suppression
efiﬁ?iﬂlgl gf;i;};s anaesthetised 17/22
any type:
33/53, mean SI: 0.9
Adesnik patch Pvalb:
et al. [115] | gratings awake 6/11, mean SI: 0.46
Sst:
0/8, mean SI: 0.0qﬂ
mean SI, single:
0.37 (LIV)
Self patch . . mean SI, multi rec:
et al. [64] gratings anaesthetised 0.06 (deep layers)
0.25 (LIV)
0.18 (superficial layers)
Van den
Bergh pat.ch anaesthetised ~ 60 %
ot al. [116] | S*2tnes
Vaiceliunaite | patch awake & 65% (awake)
et al. [82] gratings | anaesthetised | 47% (anaesthetised)
flashing laree
Dréger [117] | spots & | anaesthetised 8¢
bars proportion

Table 7.3: Experimental studies on size suppression in the mouse primary visual
cortex. The column “amount of size suppression” is the degree of surround suppression
found, given with suppression index (SI) or as the amount of tested cells that showed
significant suppression.

% Although mean SI was 0.09, the observed suppression was not statistically significant in any Sst
cells |115].
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pref
study stimuli state sf
(cpd)
Durand | full-field |  awake & mgdolg“:
et al. |16] | gratings | anaesthetised )
(awake)ﬂ
Vanden ¢ geld . mean:
Bergh . anaesthetised
ot al. [116] gratings 0.04
Marshel full-field . . mean:
ot al. [118] | gratings | enacsthetised |y o1

Table 7.4: Experimental studies on spatial frequency tuning in the mouse primary
visual cortex.

%Only the median preferred spatial frequency for cells in awake mice, not anaesthetised, was
specified by Durand et al. [16], though optimal frequency was reported not to be affected by state.

were performed in both awake (68 cells) and anaesthetised mice (163 cells). Most cells
(65%) in the awake mouse showed size tuning consistent with surround inhibition,
while 47% showed suppression in the anaesthetised mouse. [82]

Marshel et al. [118]

Marshel et al. [118] mapped spatial frequency tuning in multiple cortical areas of mice,
including V1. The 28 mice were anaesthetised during the recordings. The stimuli
consisted of drifting gratings of five different spatial frequencies, from 0.01 to 0.16
cpd. A total of 728 neurons were responsive and reliable for the V1 spatial frequency
analysis and hence included in the analysis. The mean preferred spatial frequency
was 0.045 cpd. There was a large variation between peak spatial frequencies, with
most cells showing band-pass tuning, a large fraction showing high-pass tuning and
fewest cells showing low-pass tuning. [118]

Drager [117]

Dréger [117] measured the receptive field structure of cells in the primary visual cortex
of mice. Recordings were made from 400 single cells and some cell clusters in 4 to
8 months old anaesthetised mice. Cells were categorised into subgroups, based on
their responses to flashes of light and various moving stimuli. One group preferred
moving, elongated stimuli of a certain orientation (45% of cells). The other group had
circularly symmetric receptive fields with no orientation preference (55%). Stationary
flashes of light were used to map the cells’ receptive fields. Out of the circularly
symmetric cells, over half had a center-surround structure with an on-off antagonism,
where the surround region inhibited the response of the center. The others had no
opposing surround. Out of the orientation selective cells, the simple cellSE| (17% of
all cells) had elongated, antagonistic on-off areas. Most common was an elliptic on-
region in between two off-regions, so that responses to flashing stimuli was inhibited
when stimuli extended into the off-regions. The remaining cells preferring oriented
stimuli, termed complex and hypercomplex, had apparently uniform receptive fields.

2Recall section for the definition of simple and complex cells.
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All types of cells responded in general weakly or not at all to full-field changes in
luminosity. [117]

Summary of findings

The studies on mouse V1 found that a large proportion of cells show band-pass spatial
frequency tuning. The preferred frequencies found were 0.04 cpd (mean) [116], 0.045
cpd (mean) [118] and 0.05 cpd (median) |16]). This is consistent with on-off ant-
agonistic receptive fields (see section . Surround inhibition was found for patch
gratings of various spatial frequencies in a large portion of recorded V1 cells, but
with high variability between layers [64] and cell types [115]. Indications were also
found that suppression may partly arise from network effects within V1, in the form
of inhibition from Sst neurons [115]. One study used flashing spots to map receptive
fields, finding that 32 % of recorded cells had circular fields with an antagonistic sur-
round |117]. The study further found that, for so-called simple cells (17%), most had
fields with elliptical, antagonistic sub-regions [117]. That is, the side regions inhibited
the center region’s responses to flashing light |[117]. The remaining cells showed no
clear on and off-regions and responded mainly to moving bars [117]. A summary of
the experimental findings of the mentioned studies are shown in tables and

7.1.3 Effect of anaesthesia

Most studies conducted on the mouse LGN have used anaesthetised mice, while only a
few experiments have used awake mice [16]/83]. However, the studies which have been
presented in this section imply that suppression is at least equally strong in awake
mice. In order to determine to which degree the LGN and V1 results in anaesthetised
mice is representative of awake mice, Durand et al. |[16] did a comparison. They
found little effect on spatial processing. Specifically, the preferred spatial frequency
and receptive field area was not significantly altered. Nevertheless, it is possible that
the spatial tuning curve in the anaesthetic state is scaled by a factor compared to the
awake state, in a way that does not influence the optimal frequency. This has also
been found in V1 neurons in rabbits [119].

For size tuning measurements, Self et al. [64] found a strong reduction in surround
suppression with strength of anaesthesia when measuring neurons in V1. In LIV
of V1, reducing the strength of anaesthesia increased the median suppression index
from 0.04 to 0.37 [64]. This is consistent with findings by a Vaiceliunaite et al.
[82], who compared V1 neurons in awake vs anaesthetised mice. They found that
neurons in awake mice displayed the strongest surround suppression [82]. Specifically,
65% of cells in awake mice demonstrated significant surround suppression, against
47% in anaesthetised mice [82]. Additionally, the strength of suppression, classified
by the suppression index (SI), was higher for awake mice (SI = 0.70) compared to
anaesthetised mice (SI = 0.45) [82]. Adesnik et al. [115] also found that anaesthesia
had an effect on size tuning in V1. Neurons in awake mice were significantly more
suppressed (SI = 0.93) than the anaesthetised mice (SI = 0.33) in response to large
stimuli [115]. One can therefore assume that the findings of surround suppression in
anaesthetised mice is not caused by, but rather limited by the anaesthesia, and that
the behaviour is also to be found in awake mice.
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7.2 Temporal Tuning in the Mouse

7.2.1 LGN
Durand et al. [16]

As well as looking at spatial frequency tuning, Durand et al. [16] mapped the temporal
frequency tuning of LGN cells in awake and anaesthetised adult mice. The same neur-
ons were used as for spatial frequency tuning (456 in awake mice, 164 in anaesthetised
mice). The visual stimuli were drifting gratings of various temporal frequencies, spa-
tial frequencies, contrasts and orientations, where the optimal combinations of spatial
settings were used to determine the preferred temporal frequencies. The mean op-
timal frequency was 6.27 Hz in awake mice vs 4.07 Hz in anaesthetised mice. The
gratings preferred by most cells had frequencies of 8 Hz and 4 Hz in the two states
respectively. For all tested frequencies (1, 2, 4, 8, 15 Hz), there were at least some
cells responding optimally, indicating that preferred frequencies in LGN span from at
least 1 to 15 Hz. [16]

Grubb and Thompson [113]

In addition to their spatial tuning measurements, Grubb and Thompson [113] recor-
ded temporal tuning of LGN cells in adult anaesthetised mice. The temporal tuning
was measured using full-field drifting vertical gratings of 70% contrast and the op-
timal spatial frequency of the cell. The optimal temporal frequency was calculated in
47 cells. The cells showed band-pass tuning, where most cells preferred frequencies
around 4 Hz, although preferences ranged from about 1 to 10 Hz. The mean recorded
optimal frequency was 3.8 Hz. [113]

Tang et al. 28]

Tang et al. |28] also looked at temporal frequency tuning in addition to their spatial
tuning measurements. They recorded from the LGN of adult anaesthetised mice, and
the temporal tuning of 58 cells was determined. The stimuli used were sinusoidal
gratings of 0.03 cpd spatial frequency and 98% contrast, with temporal frequencies
ranging from 0.3 to 9.6 Hz. Most cells (85%) displayed band-pass tuning, and in
this group, preferred frequencies ranged from 2.0 to 5.5 Hz, with a median of 3.2 Hz.
Out of the remaining cells, neurons with both low-pass and high-pass tuning were
found. [2§]

Summary of findings

Three studies looking at temporal frequency tuning in the mouse LGN have been
presented. Durand et al. [16] looked at both awake and anaesthetised mice, finding
mean preferred frequencies of 6.27 Hz and 4.07 Hz respectively. Grubb and Thompson
[113] and Tang et al. [28] recorded only from anaesthetised mice, and reported mean
peak frequencies of 3.9 Hz [113] and 3.2 [28]. The results in relation to anaesthesia
will be discussed in section[7.2.3] Key points from the three studies are listed in table
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pref
study stimuli state tf
(H2)
mean:
Durand full-field awake & 6.27 (awake)
et al. |16] grating | anaesthetised vs 4.07
(anaesthetised)
Grubb full-field , mean:
& . anaesthetised
Thompson [113] grating 3-8
Tang full-field . mean:
et al. |2§] grating anaesthetised 3.2 E

Table 7.5: Experimental studies on temporal frequency tuning in the mouse LGN.

%This mean value was calculated only using cells with band-pass tuning (85% of cells).

7.2.2 V1
Durand et al. [16]

Besides previously mentioned measurements, Durand et al. [16] mapped the temporal
frequency tuning in all layers of V1 in awake and anaesthetised adult mice. The same
cells as used for spatial tuning were recorded, which were 232 and 80 cells from the
two states respectively. The visual stimuli were drifting gratings of various temporal
frequencies, spatial frequencies, contrasts and orientations. Optimal combinations
of spatial settings were used to determine preferred temporal frequencies. The mean
preferred frequencies were 2.99 Hz (awake) and 2.8 Hz (anaesthetised). In both states,
most cells responded optimally to the lowest frequency (1 Hz). However, a number
of cells showed peak response even for the maximum frequency of 15 Hz. [16]

Van den Bergh et al. [116]

Van den Bergh et al. [116] measured temporal frequency tuning in 69 neurons from all
layers of V1 in adult, anaesthetised mice. The optimal temporal frequency was found
by using drifting gratings as stimuli. Temporal frequencies were varied from 2 to 15
Hz, with orientation and spatial frequency tuned to each cell’s preferred values. The
mean and median preferred frequencies were reported as 3.4 and 3.79 Hz respectively.
A large proportion of cells with both low-pass and band-pass tuning were found. [116]

Andermann et al. [120]

Andermann et al. [120] mapped temporal frequency tuning in LII/IIT of V1 in awake
adult mice. Patches of drifting gratings were used as visual stimuli. The temporal
tuning was obtained from 87 responsive V1 cells. Seven temporal frequencies of 0.5
to 24 Hz and five spatial frequencies from 0.02 to 0.32 cpd were used to determine
the optimal values. A broad distribution of preferred temporal frequencies was found,
covering the full range of tested values. The median optimal frequency was 3 Hz. [120]
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LeDue et al. [121]

LeDue et al. [121] recorded preferences for temporal frequency in anaesthetised adult
mice. 188 responsive cells were selected for analysis. The visual stimuli were patch
gratings of full contrast, using each cell’s optimal orientation and drifting direction.
Spatial and temporal frequencies were in the ranges 0.01 - 0.32 cpd and 0.25 - 8
Hz. The mean preferred temporal frequency was 1.77 Hz, with a broad distribution
spanning the whole range of presented frequencies. [121]

Gao et al. [122]

Gao et al. [122] measured V1 tuning preferences in 10-14 weeks old anaesthetised
mice. Responses were recorded in 220 cells sampled from LII/IIT to LVI. Drifting
sinusoidal gratings were used as stimuli. Temporal tuning measurements were made
using maximum contrast gratings of optimal orientation and a spatial frequency of
0.03 cpd. Temporal frequencies were then varied from 0.5 to 16 Hz. 90% of cells
showed significant temporal selectivity, out of which 44% showed low-pass tuning
and 56% showed band-pass tuning. The low-pass and band-pass populations had
significantly different median preferred frequencies of 1.2 and 1.9 Hz respectively. [122]

Niell and Stryker [123]

Niell and Stryker [123] measured tuning properties of V1 in anaesthetised adult mice.
Temporal frequency tuning measurements were made using sinusoidally contrast-
reversing gratings of optimal orientation, with a spatial frequency of 0.04 cpd. The
response to temporal frequencies of 1, 2, 4 and 8 Hz were then recorded. The overall
median preferred frequency was 1.68 Hz, and most cells responded optimally to the
frequency of 2 Hz. A significantly different temporal tuning behaviour was however
displayed by neurons in LIV, where the preferred frequencies had a median of 2 Hz
and mean around 4 Hz. [123]

Summary of findings

Six studies have been presented which measured temporal frequency tuning in the
mouse V1. A large variation between cells is found, with cells preferring a range of
different frequencies. Gao et al. [122] found about equal amounts of low-pass and
band-pass tuned cells. Niell and Stryker [123] reported a significant difference in
tuning between layers, with LIV preferring higher frequencies. Preferred frequencies
were also found to vary between studies, as presented in table [7.6] This could have
been influenced by the choice of grating parameters, such as the temporal frequencies
presented. For example, the relatively high frequencies reported by Van den Bergh et
al. [116] could have been influenced by only presenting frequencies down to 2 Hz, which
is higher than some of the mean [121] and median |122}|123] frequencies reported by
other studies. Another cause could for example be different sampling from the various
layers between the studies.

7.2.3 Effect of anaesthesia

Durand et al. [16] compared the temporal tuning in awake and anaesthetised mice.
They found no statistically significant difference in preferred frequencies between the
states in V1 [16], consistent with previous findings in rabbit V1 [16,|119]. In LGN
however, there was a significant difference between preferred frequencies: 6.27 Hz for
awake mice vs 4.07 Hz in anaesthetised mice. This difference is also consistent with
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pref
study stimuli state tf
(H2)
mean:
Durand full-field awake & 2.99 (awake)
et al. |16] gratings | anaesthetised vs 2.8
(anaesthetised)
mean:
Vanden | gl field . 3.4
Bergh . anaesthetised .
ot al. [116] gratings med;an.
' 3.79
Andermann patch awake mean:
et al. [120] | gratings W 3
Ledue patch R mean:
et al. [121] | gratings anaesthetised 1.77
median:
Gao full-field . A% of cells:
ot al. [122) ratines anaesthetised 1.2
' Srating 56% of cells:
1.9
Niell & full-field anaesthetised median:
Stryker [123] | gratings SThets 1.68

Table 7.6:

Experimental studies on temporal frequency tuning in the mouse V1.

recordings from rabbit LGN [16,/124]. When later comparing temporal tuning in the
Allen LGN to experiments, most emphasis will therefore be put on the findings by
Durand et al. [16] in the awake mouse. For V1 on the other hand, the state will not
be considered when referring to experiments.
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Chapter 8

Simulation Method

8.1 The Versions of the Allen Model

Simulation measurements were run using different versions of the Allen LGN model.
The first is the original model, where the spatial filters of the LGN ON and OFF
cells are simple 2D Gaussians. The second will be referred to as the M1 LGN, where
the Gaussians have been replaced with DoG filters, given by equation , with
parameters A, = A; = 1.73 and 0, = 2.450.. In addition, four DoG filters with other
parameters are used, which will be collectively denoted by M1x. The parameters for
these filters are given in section A qualitatively different model, denoted M2,
refers to an LGN where firing rates have been normalised, but spatial filters remain
unchanged. In all the above cases, it is only the LGN which has been changed, not
V1. However, to easier separate between them, the corresponding V1 will be referred
to as the original, M1, M1x or M2 models, depending on which LGN is used to drive
the network. For certain measurements, the M1 V1 model was run without recurrent
connections between V1 cells, which will be called the M1,,orec model. An overview
of the different modifications are given in table

Model Description

Original The original model.

LGN spatial filters are DoGs from equation (5.6)),

M1
where A. = A, = 1.73 and o, = 2.450..
M1s Similar to M1, but with four new sets of
DoG parameters (see list in section .
M1, 0rec As in M1, but without recurrent connections in V1.

M2 LGN responses are normalised via equations and

Table 8.1: The versions of the Allen model used to run simulations. For the M1, Mx
and M2 models, changes were made only to the LGN, while for M1,,,,ec both LGN
and V1 has been modified.
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8.1.1 The M1 model

The spatial filters of the Allen LGN were modified so that each single Gaussian was
replaced by a Difference-of-Gaussians (DoG), as given by equation (5.6). The modified
script defining the DoG filters is available via GitHu

Choice of DoG parameters

A neuron in the original LGN model has a receptive field size defined by o, drawn from
a triangular distribution with an experimentally supported range [12//16]. The spatial
filter was modified by adding an inhibitory surround, keeping the single Gaussian as
the center component. Specifically, the equation for the spatial filter was changed
from [5.4] to [5.6] where the parameters needing to be specified are

e A.: amplitude of the center Gaussian

e A,: amplitude of the surround Gaussian
e o.: spread of the center Gaussian

e 0, spread of the surround Gaussian

The amplitude of the center and surround Gaussian, A. and A, were set equal
in order to obtain maximum surround suppression, since the aim was to determine
whether surround suppression could be observed in the model. The two amplitudes
were scaled by the same constant, so that the firing rate for the preferred spatial
frequency of the DoG model matches the firing rate for the preferred spatial frequency
of the original LGN model. The scaling factor was found by comparing the analytical
spatial frequency tuning curves of the original and DoG spatial filter, as illustrated
in figure [5.2

The parameter o of the single Gaussian became o, of the center in the DoG filter.
There was then only one free parameter left, the sigma of the surround Gaussian
function, o, which was set to C'o., where C' is a fitting constant. The distribution
of preferred spatial frequencies found by Durand et al. [16] was used as a reference
when determining the value of C'. Specifically, C' can be set so that the median
preferred frequency matches the experimentally measured median of 0.08 cpd [16].
This was achieved by calculating the optimal spatial frequencies of all the LGN cells,
as described below.

Calculating optimal spatial frequencies of LGN cells

To find the preferred spatial frequencies of LGN cells, the spatial frequency tuning of
each cell was calculated using equation . The spread of the surround Gaussians
was determined by setting o = Co., where C was a variable to be adjusted. The
values of o, ( = o) for each cell were obtained from the parameters listed in the
file 1gn_full_col_cells_3.cst| in the LGN model. This file gives a parameter
named the “spatial size” of each cell , equal to 3¢ [111]. Hence, o, was set equal to
“spatial size” /3. With the values of o, and o, determined, equation was used
to calculate the spatial frequency tuning of each cell. The optimal frequency was
taken as the peak of the tuning curve. The median optimal frequency of all LGN cells

I The code for creating the DoG filters is available at https://github.com/lenamyk/Exploring_
the_Allen_model/blob/master/adapted_from_Allen_Institute/LGN_modifications

2See [112] for link to lgn_full_col_cells_3.csv.
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was then calculated. The constant scaling factor, C, was subsequently adjusted to
obtain a median optimal spatial frequency of 0.08 cpd, the same as found by Durand
et al. |[16]. The Python script used for calculating peak frequencies and finding the
median is given in the appendix

8.1.2 The M1x models

In addition to the M1 model, four different DoG filters were tested. The new model
variations were used for analysing size tuning in V1 in response to patch grating
stimuli. Stimuli parameters are given in table [8:2k. The aim was to check whether
the lack of suppression in the M1 model was consistent across the models, as opposed
to the result of the chosen DoG parameters. The parameters of the new filters are

e A.=A,=1.2 and o5 = 50,

e A.= A, =1.06 and o5 = 100,

e A.=A, =1 and o, = 500,

e A, =15 A; =054, and o5 = 2.450,.

As before, the amplitudes have been scaled so that the peak activity corresponds to
the peak activity in the original LGN model. The scaling factors were determined by
comparing analytical spatial frequency tuning curves of the selected filter with the
original model (see example illustration in figure .

8.1.3 The M1,,rec model

The response of the M1 V1 model was compared to the same model, but without
recurrent connections: M1,orec. The motivation for this was to look into the effect of
recurrent connections on size tuning, since these connections have been suggested to
be involved in surround suppression [115[125]. The recurrent connections were turned
off by removing the ﬁle&ﬂ specifying the connectivity between V1 cells from the list
of V1 inputs in the file config.jsorﬁ .

8.1.4 The M2 model

To model nonlinear suppression in the LGN, the activity of each cell per time step
was normalised based on the net LGN activity per time. The modified LGN script
which includes this normalisation is uploaded on GitHuHﬂ The M2 LGN was then
driven with patch gratings (see table of stimuli parameters) to measure its size
tuning. The output was further used to drive the V1 model, to see how nonlinear
suppression in the LGN may influence the size tuning of V1 cells.
Starting with the original Allen model, the LGN was modified so that the norm-
alised firing rates for each cell are given by
r (1) =« rilt) 8.1
norm,z( ) ﬂ{»(% Zgzork(t)) ( )

3V1 recurrent connection are specified in v1_v1_edges.h5 [126] and vi_v1i_edge_types.csv [127].
4See [128] for link to config. json.

5The modified LGN script which normalises the final firing rates, 1gn_functions_normalise_
rates.py, is available at: https://github.com/lenamyk/Exploring_the_Allen_model/blob/master/
adapted_from_Allen_Institute/LGN_modifications
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where 7;(t) is the unnormalised firing rate of cell 7 at time ¢ and N is the number of
LGN cells to sum over. The form of the equation is inspired by [129]. The parameter
B was set equal to one. The number of cells, N, here includes all cells, but may
be changed to include only specific cells, based on for example proximity or type.
The scaling parameter o was chosen so that the spontaneous rates of the cells are
unchanged, that is

1 N
a=p+(5 > Tepont, k) (8.2)
k=0

=484 (8.3)

An illustrative example of an LGN cell before (black) and after (blue) being nor-
malised is shown in figure 8.1} showing that both models have the same spontaneous
activity (grey) and a similar peak rate.

)

N
1

]
1

Firing rate
(spikes/sec
#

5 20 80 240
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Figure 8.1: Size tuning of an SON-TF8 neuron in the M2 LGN (blue) and the original
LGN (black) in response to patch gratings with temporal frequency of 4 Hz and spatial
frequency of 0.04 cpd. The spontaneous rate of both models (overlapping) is marked
by the grey line.

8.2 Running the Models

Since the Allen model is still under development, a few modifications had to be made
to the LGN module before running it. A slightly modified version of nwb.py from
the Brain Modeling Toolkit (BMTK) [130] was substituted and imported instead of
see_engine.nwb, since the latter, which was needed for spike train generation, was
not found amongst the LGN scripts. The modified nwb. py file is uploaded on GitHub
as nwb,copy.pyﬁ In addition, the LGN scripts were updated to be compatible with
Python 3. The model is run via simulate_drifting_gratings.pyﬂ which calls
the functions for creating visual input, calculating firing rates and generating spike
output.

The spike train output from the LGN module were used as input for the V1
model. The main simulation parameters and input for running the V1 model are
specified in the configuration file GLIF _network/config. jsorﬂ This allows turning
on and off input from the LGN, background noise and recurrent connections. The V1
simulations were then run from the script run_pointnet .pyﬂ

6 A modified copy of the nwb_copy.py is available at: https://github.com/lenamyk/Exploring_
the_Allen_model/tree/master/adapted_from_Allen_Institute/LGN_modifications

7See [131] for link to simulate_drifting_gratings.py.
8See [128] for link to config.json.

9See 132] for link to run_pointnet.py.
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8.3 Visual Stimuli

Incorporated in the Allen LGN model is a script that creates full-field drifting gratings,
movie d@ The visual stimuli created by modifying this script are available through
GitHu The following sections describes the various visual stimuli used to drive
the Allen model, how they were created and the parameters that where chosen. For
simulations where spatial filter responses were analysed, the parameters are listed
in table B2} For temporal frequency tuning, the parameters are listed in table [8:3]
Common for all simulations is that they have a 3-second duration and a time step of
0.001 seconds (1 ms).

Creating drifting gratings

The grating stimuli used were sinusoidally varying drifting gratings. Before running
different grating simulations, various parameters were specified, including

e Orientation of the grating
e Total duration of visual input

e Duration of initial grey screen

Spatial resolution

Spatial frequency

Temporal frequency
e Intensity contrast

For full-field drifting gratings and patch gratings, a gray screen input is presented
during the first 0.2 seconds. The gray screen frames were initially used in order to let
the network stabilise, however this was not found to make much difference. Still, the
gray screen was kept to make it easier to identify spontaneous activity and calculate
the firing rates of LGN cells. The contrast for both types of gratings was set to 1
(100%).

Full-field gratings

Full-field gratings, like the one shown in figure were used for spatial and temporal
frequency tuning measurements. Horizontally drifting gratings with vertical bars
(orientation 0°) were used, corresponding to equation . These simulations were
originally only for analysing LGN cells, where the majority of cells are either ON or
OFF with no orientation preference. For the single cell analyses, only these cells were
examined. Hence the orientation was arbitrarily chosen.

When measuring spatial frequency tuning, the temporal frequency was set to 4
Hz, which is the median preferred temporal frequency of the LGN and V1 neurons
(see section . Measurements were taken for spatial frequencies 0.005, 0.04, 0.08,
0.12, 0.16, 0.20, 0.24, 0.28 and 0.32 cpd. Since frequencies up to 0.32 cpd were used,
the gratings used for spatial tuning measurements required higher resolution than the

10See [133] for link to movie.py

11The modified scripts for creating patch gratings and flashing spots are available at:
https://github.com/lenamyk/Exploring_the_Allen_model/tree/master/adapted_from_Allen_
Institute/LGN_modifications
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Figure 8.2: A full-field grating of spatial frequency 0.12 cpd, as used to drive the LGN
model. The dimensions of the input are 240° x 120°. Visual coordinates are measured
from bottom left. Azimuth and elevation refers to the horizontal and vertical angular
coordinates respectively.

other stimuli. It was found that a resolution of 2 pixels per degree was sufficient to
give a fairly good fit to the analytical spatial frequency tuning curve, as will be seen
in section [0.2.4l This resolution was therefore chosen for the final measurements.

For temporal frequency tuning in the original model, the spatial frequency was
set to 0.04 cpd. For temporal frequency tuning in M1, the spatial frequency was set
to 0.08 cpd, which is the median preferred spatial frequency of the M1 LGN (section
and M1 V1 (section which were used to run the measurements. The
temporal frequencies used were 1, 2, 4, 8, 15 and 30 Hz. All frequencies were selected
so that responses over an integer number of oscillation periods could be measured.
These frequencies also include those used to record temporal tuning by Durand et
al. , the study which has been used to optimise the Allen LGN cells .

Patch gratings

Circular patches of moving gratings were used for measuring size tuning in the original
and modified Allen model. The stimuli were created using the same input script as
for full-field drifting gratings. In order to create patches of different diameters, a
circular mask of a specified radius was applied to the grating, using the standard
circle equation

2 = (z = x0)* + (y — 0)? (8.4)
where (zog = 120, yo = 60) is the spacial center of the input matrix. Diameters of 5°,
10°, 20°, 40°, 80°, 160° and 240° were used, where 240° is the width of the visual input
frame. Note that the patches with diameters 160° and 240° are therefore not fully
circular, but restricted by the maximum height of the input.

The orientation of the patch gratings was set to 155.26°. This angle was chosen
as it is the preferred orientation of the most centered V1 neuron, which was the
first neuron to be analysed. The aim was to ensure that the stimuli evoked a strong
response in the analysed neuron. Multiple other neurons near the center were also
found to respond strongly to this stimulus, even though the orientation was not their
preferred. Hence, the measurements were not repeated for any other orientations,
and the angle was kept at 155.26 ° for all patch grating simulations.

The resolution for the patch grating stimulus was set automatically, depending on
the spatial frequency, by the input script provided by Allen LGN model. This is the
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Figure 8.3: One of the patches of drifting grating used to drive the LGN model.
The spatial frequency is 0.12 cpd, and the grating is aligned along the preferred
orientation of the most centered V1 neuron, at 155.26°. The dimensions of the input
are 240°x120°, and the patch has a diameter of 40°. Visual coordinates are measured
from bottom left. Azimuth and elevation refers to the horizontal and vertical angular
coordinates respectively.

resolution needed to visualise all the gratings with the same amount of gray scales.
Stimuli with low resolution are also significantly faster to simulate. The temporal
frequency for all patch gratings was 4 Hz, which is the median preferred value of the
LGN and V1 (chapter [L0).

The original, M1x and M2 Allen models were driven with patch gratings of 0.04
cpd spatial frequency. For the M1 Allen model, patch gratings of several spatial fre-
quencies were used, in order to evaluate the consistency of the size tuning across fre-
quencies. Initially, measurements were repeated for 0.04, 0.08, 0.12, 0.16 and 0.20 cpd,
which covers the range of preferred spatial frequencies found in section Later,
the measurements were also run for 0.02 cpd, since calculations by suggested that
more surround suppression is observed for lower spatial frequencies. Comparisons of
size tuning between the M1 and M1,y model were made for patch gratings with
spatial frequency of 0.08 cpd, which was the preferred frequency of the V1 MI1.

Flashing spots

Flashing spots were also used for size tuning measurements in the original and M1
Allen model. The stimulus was composed of an alternation between equal durations
of white circles and full-field grey frames. For both the original and modified Allen
model, a sequence of 20 spots (75 ms flash duration) was presented during each
trial. Additionally, to see if the results varied with flash duration, measurements were
repeated with 5 flashes (300 ms duration) per trial in the modified Allen model. First,
a sequence of gray and white frames were created. Then, the spots were defined by
applying the circular mask given by equation to the white full field frames. Like
for patch gratings, diameters of 5°, 10°, 20°, 40°, 80°, 160° and 240° were used, where
240° is the full width of the visual input. All spots were centered at the middle of
the visual input. The resolution was set to 1 pixel per degree, so that flashing spots
down to 5° in diameter could be reasonably accurately visualised in the model.
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Figure 8.4: A flashing spot of 40° diameter which was used as input to the LGN
model. The dimensions of the input are 240° x 120°. Visual coordinates are measured
from bottom left. Azimuth and elevation refers to the horizontal and vertical angular
coordinates respectively.
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timul ori total grey res sf tf contrast
S () | dur (s) | dur (s) | (pix/*) | (cpd) | (Hz) | (%)
full-
field | 0 3 0.2 2 ogo;ﬁ 4| 100
grating ’
patch | ooo6 | 3 0.2 0.4 0.04 | 4 100
grating
flashing |\ N 3 0 1 NaN | NaN | NaN
spots

(a) Original model
stimulus ori total grey res st tf contrast

(°) | dur(s) | dur(s) | (pix/°) | (cpd) | (Hz) (%)

full-
field 0 3 0.2 2 0_.%0?5)2@ 4 100
grating '
patch | o0 o6 3 0.2 02 [ 0.02[ [ 100
grating ) - 0.2
flashing |\ 3 0 1 NaN | NaN | NaN
spots

(b) M1 model
timul ori total grey res sf tf contrast
S () | dur (s) | dur (s) | (pix/*) | (cpd) | (Hz) | (%)
patch 1 o0 o6 3 0.2 0.8 0.08 | 4 100
grating

(¢) Mlnorec model
timul ori total grey res sf tf contrast
TS () | dur (s) | dur (s) | (pix/*) | (cpd) | (Hz) | (%)
patch 0 o6 3 0.2 0.4 004 | 4 100
grating

(d) M1* models
timulus ori total grey res sf tf contrast
S () | dur (s) | dur (s) | (pix/*) | (cpd) | (Hz) | (%)
patch 0 o6 3 0.2 0.4 004 | 4 100
grating

Table 8.2: The parameters used in the simulations for studying spatial properties of
the LGN and V1 model, grouped by the type of model. The columns show, from left
to right, stimulus, orientation of grating, total duration of visual input, duration of
grey screen before stimulus, spatial resolution (in pixels per degree), spatial frequency,

(e) M2 model

temporal frequency and intensity contrast.

“Measurements at 0.005, 0.04, 0.08, 0.12, 0.16, 0.20, 0.24, 0.28 and 0.32 cpd

bMeasurements at 0.005, 0.04, 0.08, 0.12, 0.16, 0.20, 0.24, 0.28 and 0.32 cpd

¢Measurements at 0.02, 0.04, 0.08, 0.12, 0.16 and 0.20 pix/°

dMeasurements at 0.02, 0.04, 0.08, 0.12, 0.16 and 0.20 cpd
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stimulus ori | total grey res st tf contrast
() | dur (s) | dur () | ix/?) | (cpd) | (Hz) | (%)
full-
field 0 3 0.2 0.4 0.04 | 1-30|4 100
grating
(a) Original model
stimulus ori | total grey res sf tf contrast
() | dur () | dur () | (ix/") | (cpd) | (Hz) | (%)
full-
field 0 3 0.2 0.8 0.08 | 1-30/° 100
grating

Table 8.3: Parameters of the visual stimuli used for temporal frequency tuning in the
original and M1 model. The columns show, from left to right, stimulus, orientation of
grating, total duration of visual input, duration of grey screen before stimulus, spatial
resolution (in pixels per degree), spatial frequency, temporal frequency and intensity

contrast.

(b) M1 model

“Measurements at 1, 2, 4, 8, 15 and 30 Hz

bMeasurements at 1, 2, 4, 8, 15 and 30 Hz

58




8.4 Calculating Firing Rates

8.4.1 Time average vs average modulation

Depending on the linearity of a neuron, drifting grating stimuli may evoke different
types of responses in the cell. The two responses are quantified by the time averaged
mean firing rate (F0) and the mean modulation amplitude (F1) [134]. Both are
commonly used measures for quantifying neuron responses in model cells and in the
real mouse [12,(164[52}/134].

b)

o |

Figure 8.5: Firing rates for three types of neurons in response to a grating stimulus.
(a) A hypothetical, purely linear neuron will respond to grating stimuli by a firing rate
modulation with the same temporal frequency as the grating [52]. (b) An LNP neuron
such as an Allen LGN cell responds to grating stimuli by a firing rate modulation,
where negative firing rates are set to zero by a threshold (dashed line) [12]. (c) A
nonlinear neuron responds to grating stimuli by an increase in mean firing rate, but
with little or no modulation [135].

For a hypothetical, completely linear response, the activity will oscillate around a
constant spontaneous rate, with modulations having the same temporal frequency as
the grating [52] (figure [8.5p). In this case, the response will only be in terms of F1,
with no change in FO from the base value. A nonlinear neuron, on the other hand,
will react to the drifting grating stimuli by an increase in F0O, while the firing rate as a
function of time is mainly constant during the grating stimulation (figure [8.5f) [135].
For neurons such as the Allen LGN cells, which have linear responses rectified at zero
(equation ), the F1 and FO tuning responses usually follow each other [16}134].
This is because the rectification, which prevents negative rates, causes the mean firing
rate to increase when the rate’s modulation amplitude increases.

Figure [8.6] demonstrates this result. The plot shows the spatial frequency tuning
curves of an M1 LGN neuron, measured in terms of the FO and F1 responses. For low
activities, the modulation amplitudes are too small to reach the zero-threshold of the
rectifier. The FO response is therefore just the spontaneous rate, while the amplitude
is positive (see rate at 0.16 cpd in figure . For higher activity, the two tuning
curves have similar shapes, with the same peak frequency.

In the main result sections of this thesis, activity in response to grating stimuli
will, as with flashing spots, be referred to in terms of the total mean firing rate, FO.
The exception is when comparing LGN spatial frequency tuning to the analytical
solutions in equations and . These equations give the spatial frequency
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Figure 8.6: Spatial frequency tuning of an M1 LGN neuron, quantified by the nor-
malised FO (cyan) and F1 (dark blue) responses. The stimuli is a full-field drifting
grating with temporal frequency of 4 Hz.

dependence of the F1 response, and will therefore be compared with the simulated
F1 response. Comparisons between the FO and F1 responses for one example LGN
and V1 neuron from each population are shown in the appendix, for size tuning with
patch gratings (B.8§] , as well as spatial and
temporal ) frequency tuning with full-field gratings. Tuning curves include
both the original and M1 model. In all cases, the F1 and FO tuning responses were
found to follow each other.

8.4.2 LGN firing rates

In the LGN model, the visual input is transformed and firing rates are calculated for
each neuron . Different trials of spike trains are then generated by a Poisson pro-
cess based on the firing rates . For all measurements of the LGN response, the raw
firing rate output was used directly, instead of going via spike trains and converting
this back to a firing rate. Since the LGN firing rates are generated deterministically
in the model, this avoids introducing the measurement uncertainty caused by the
stochastic spike generation. The output from the LGN model includes firing rates
for each neuron for the simulated time-duration. The output for an example neuron
is shown in figure and for drifting grating and flashing spot stimuli. For an
example of the code used to analyse LGN firing rates, see section[C.1]in the appendix.
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Figure 8.7: Example firing rate for an example LGN neuron (id = 8018). The simu-
lation duration is 3 seconds, with 0.2 seconds initial grey screen. The visual stimuli is
a full-field drifting grating with spatial frequency of 0.08 cpd and temporal frequency
of 4 Hz.

The time averaged response was taken as the mean firing rate over an interval of
periodic activity. The rate was measured starting at half the simulation time (1500
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Figure 8.8: Example firing rate for an example LGN neuron (id = 8018). The stimuli
is a sequence of flashing spots of 20 degrees diameter and 75 ms durations. The total
length of the simulation is 3 seconds.

ms), to ensure that oscillations had stabilised. For grating stimuli, firing rates were
measured over a 1000 ms interval. This corresponds to an integer number of periods
for all temporal frequencies used: 1, 2, 4, 8, 15, and 30 Hz. For flashing spots, the
time averaged activity was measured over a 1200 ms interval, which corresponds to
the onset of one flash to one later in the simulation.

The F1 response to grating stimuli was found by taking the discrete Fourier trans-
form (DFT) of the firing rate. The DFT can be defined as

N—-1
X(k) = Z A(m)e?™m/N. = 0,1,..,N —1 (8.5)
m=0

where A(m) are complex-valued Fourier coefficients and N = T'/dt the number of
samples. The amplitudes as a function of frequency are then given by the normalised
absolute values of the transform, 2N~ | X (k)|, for k = fNdt . The time step
dt, used for all simulations was set to 0.001 seconds. The measurement window, of
length T, was the same as when computing the time average, 1000 ms. The DTF
of the firing rate was computed with the Fast Fourier Transform (FFT) algorithm
, using the numpy.fft.fft function in Python. The amplitude spectrum of an
example LGN neuron as a function of frequency is shown in figure[8.9] The frequencies
corresponding to each element of the amplitude spectrum were extracted via the
np.fft.fftfreq function in Python. The amplitude spectrum was then evaluated at

10 4 |
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Figure 8.9: Amplitude spectrum for an example LGN neuron in response to full-field
gratings with temporal and spatial frequencies of 4 Hz and 0.08 cpd respectively. The
FO0 response is the zero-frequency in the middle of the plot, while the F1 response is
the amplitude at the frequency of the grating, at 4 Hz.

the frequency of the grating stimuli to get the F1 response. By evaluating the zero-
frequency component of the amplitude spectrum, one can also find the time averaged
rate, FO. This was confirmed to give the same value as when measuring the mean
rate over an oscillation period.
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8.4.3 V1 firing rates

For V1 neurons, firing rates were averaged over 20 trials of 3-second simulations.
For each V1 trial, a different LGN trial was used as input. Hence for each average
calculated, there were 20 trials of spike generation from the LGN and a corresponding
20 trials of V1 simulation. Section shows an example of the code which was used
to calculate and visualise firing rates in V1 cells.

The time averaged activity for a V1 neuron was found from the firing rate as
a function of time, by calculating the mean rate over the stimulation duration. To
obtain firing rates as a function of time, the spike times for the specific neuron were
first extracted from the V1 output. The spike train was then converted to a discrete
firing rate, by counting the number of spikes per time step, and multiplying by the
number of time steps per seconds (1000). An example of the discrete firing rate as a
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Figure 8.10: Spike trains for an example V1 neuron. The mean firing rate is calculated
over 20 trials. Blue curves show discrete firing rates per trial, and the orange curve
show the trial average. The visual input used is a full-field drifting grating of 4 Hz
temporal frequency. The blue vertical line in the bottom row shows the grating stimuli
onset.

function of time for drifting grating stimuli is illustrated in figure When looking
at a single trial, the spike times seem to be almost random. However, the figure shows
that the mean rate over 20 trials oscillates periodically as a function of time, following
the temporal frequency of the grating (4 Hz). The time average for each trial was
found, and the total mean over all trials was then calculated.

The mean F1 response was taken as the average modulation over all trials. The
modulation amplitude was found for each trial by computing the FFT of the rate,
again by using the numpy.fft.fft function in Python, and evaluating the amplitude
spectrum at the frequency of the grating. For V1 rates, the time window used to
calculate the F1 response was set from 500 ms to the end of simulation (3000 ms).
The initial 500 ms were excluded to make sure that the oscillation amplitude had
stabilised. The amplitude spectrum from a single trial for an example V1 neuron is
shown in figure B:11] The amplitude for each trial was found, and the F1 response
was taken as the mean amplitude over trials.
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Figure 8.11: Amplitude spectrum for an example V1 neuron in response to full-field
gratings with temporal and spatial frequencies of 4 Hz and 0.04 cpd respectively.
The zero-frequency component shows the time averaged neuron response. The mean
modulation amplitude of the firing rate was was evaluated at the frequency of the
grating, at 4 Hz.

8.5 Spatial Frequency Tuning

LGN

To create spatial frequency tuning curves from LGN simulations, full-field drifting
gratings of increasing spatial frequencies (see table were used as visual input.
The measurements were first run for the original model. After having determined the
parameters of the DoG filter for the M1 model, the simulations were repeated in the
M1 LGN. Tuning curves of the F1 responses were compared with the analytical F1
tuning results from equations [5.8] and Neurons with minimum, maximum and
midsized receptive fields were considered. This way, tuning curves covering the whole
range of preferred frequencies of the LGN cells could be compared to the analytical
results. Since equations[5.8 and [5.9]only give the shape of the tuning curves, but with
no scaling factor, the analytical curve was scaled to best fit the simulation results.
There are two reasons for establishing that LGN output follows the analytical
prediction. First, the analytical solution serves as a benchmark for both the original
and M1 Allen model. Second, if the spatial frequency tuning of the LGN cells can
be found analytically, the effect of modifying the DoG parameters can be determined
without having to run numerous simulations. This is used in section [B.I.1] to specify
the value of C in o, = Co. from equation . By tuning C, the same median
preferred frequency as found by Durand et al. [16] was obtained for LGN cells.

Vi1

Spatial frequency tuning measurements for V1 neurons were obtained through simu-
lations, using the original and M1 models. Cells were divided into groups based on
the 17 V1 classes, and 10 responsive neurons were selected from each group. The
mean firing rate at each frequency was then calculated and plotted as tuning curves
for each cell. To get an overview of the preferred spatial frequencies of V1 neurons, a
distribution of optimal frequencies of a 1000 randomly sampled neurons was also plot-
ted. Additionally, optimal frequencies within each cell class were found by sampling
and analysing 50 neurons of each type. The optimal frequencies were found by de-
termining which frequency evoked maximum activity in each cell. Cells which did not
spike in response to gratings of any frequency were discarded from the analysis.
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8.6 Temporal Frequency Tuning

LGN

The original and M1 LGN model was driven with full-field drifting gratings of different
temporal frequencies (table. One example neuron was first selected from each cell
type. The mean firing rate was calculated for each temporal frequency in both the
original and M1 model. The results where compared for the two models, confirming
that they have the same temporal tuningE The remaining analysis was done for
the M1 model. To obtain a distribution of preferred frequencies in the LGN, the
frequencies producing peak mean firing rates were found for all LGN neurons. The
results were plotted in a histogram. Furthermore, 50 neurons of each class were
randomly sampled. The preferred frequencies of the sampled cells were found and
presented in histograms according to cell type. The neurons which did not respond
to any of the frequencies were omitted from the plots.

Vi1

Temporal frequency tuning measurements for V1 neurons were obtained through sim-
ulations in the original and M1 model. As for the LGN, tuning curves for the original
and M1 model were compared, ensuring that the two models have the same temporal
tuning. Further analysis was then done for the M1 model. The method for analysing
temporal tuning in V1 was the same as that used for spatial tuning (see subsection in
. In summary, tuning curves of the mean firing rates were obtained for 10 neurons
of each type. Additionally, the peak temporal frequencies of 1000 V1 neurons were
plotted, as well as the peak frequencies of 50 neurons of each class. As before, the
non-responsive neurons were not included in the analysis.

8.7 Size Tuning

LGN

To examine if the Allen model displayed size suppression, flashing spot and patch
grating stimuli of increasing diameters were used as visual input to the LGN (see
table . LGN firing rates were analysed for the original, M1 and M2 models.
Ideally, the stimulus origin should be at the visual center for the examined neuron.
Thus, only response of neurons with receptive field centers near the stimulus center
were analysed. As described in section the LGN neurons are not represented
with physical coordinates. Instead, each LGN cell has a location in visual space
representing its receptive field center [12]. The coordinates for each LGN cell are
defined in the file 1gn_full_col_cells_3. csvlﬂ where = 120°, y = 60° is the center
of the visual input. From each class, the neuron with the receptive field center closest
to stimulus center was selected for analysis. For white flashing spot stimuli, responses
of ON and OFF neurons were compared, seeing as they have different preferences
for luminosity. For this, the eight ON and eight OFF neurons with fields closest to
the center were selected. To illustrate how the LGN receptive fields are positioned in
visual space, the fields of selected ON-neurons are shown in figure [8.12

12Since the LGN filters are spatio-temporally separable, the original and M1 model have the same

temporal tuning, as it is only the spatial filter which is different between the two.

13Gee [112] for link to 1gn_full col_cells_3.csv.
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Figure 8.12: Receptive fields of the eight ON-neurons selected for analysing stimulus
diameter vs firing rate. The visual center for each neuron is illustrated by the dark
dots. The coloured circles represent the full extent of the simple 2D Gaussian receptive
fields of the Allen LGN model. Only the middle section of the 240°x120° visual
frame is shown. Azimuth and elevation refers to the horizontal and vertical angular
coordinates in visual space.

V1

The output activities from the size tuning simulations in the original, M1, M1x,
M1,0rec and M2 LGN were used to drive the V1 model, for parameters listed in table
As in the LGN, the neurons selected for size tuning analysis should have visual
centers as close as possible to the stimulus center. Section describes the mapping
between the receptive fields and somatic coordinates of V1 cells. These somatic
coordinates are loaded in from the file GLIF _network/network/v1_nodes.hdd when
running the model. Neurons were selected based on their somatic coordinates as listed
in this file. All neurons within a 70 pm radius from the center of cortex (x = 0, z
= O)|E| were locatedﬂ This corresponds to all neurons with receptive field centers
within 4.9° azimuth or 2.8° elevation from the stimuli center. For the original, M1,
M10rec and M2 model, up to ten neurons from each population were selected for
analysis, depending on how many were within the 70 pm radius. Size tuning curves
where then plotted for all the recorded neurons. For comparisons between the M1
and M1,,o,ec model, six neurons were selected from each population receiving LGN
input. These are i1Htr3a, i23Pvalb, i4Pvalb, i5Pvalb, i6Pvalb, €23, e4, €5 and e6.
Tuning curves from the two models where then compared for each neuron. For the
M= models, size tuning of five example neurons within a 70 pm radius were plotted.

14Gee [139] for link to GLIF_network/network/v1_nodes.h5.

15 Somatic coordinates of V1 are given by x,y,z, where z,z spans the cortical plane, while y
measures cortical depth.

16 Script for selecting neurons for size tuning analysis: https://github.com/lenamyk/Exploring_

the_Allen_model/blob/master/code_and_analysis/select_neurons_for_size_tuning.py
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Chapter 9

Size and Spatial Frequency
Tuning of the Allen Model

This chapter looks at the spatial response properties of the Allen model, in particular
size tuning and spatial frequency tuning. The model is driven by stimuli similar to
those used in the experiments referenced in chapter |7} white flashing spots, circular
patches of drifting grating and full-field drifting gratings. Initially, the properties
of the original Allen model are explored. LGN and V1 simulation results are then
compared to the experimental findings of chapter

Chapter [7] referred to several studies on mice LGN and V1. The studies reported
that band-pass spatial frequency tuning was observed in both LGN [16}[28}|52}(83}(113]
and V1 [16,{116[118]. In LGN, surround inhibition in response to isoluminous flashing
spots was found [52}[83l[113]. Size tuning with patch gratings [48,64,82,/115,/116] and
flashing spots [117] also showed surround suppression in V1. No experimental studies
with patch gratings stimuli were found for mice LGN. Hence, for patch gratings, only
the V1 response is compared directly to empirical results.

Simulations from the original Allen model show no size suppression and mainly
low-pass spatial frequency tuning in LGN and V1. These results are in contrast to
the experimental findings mentioned above. The next step is therefore to explore
modifications for making the model more realistic in terms of these properties. As
discrepancies are found for both LGN and V1, the approach is to first look at the
LGN, to see how changes might affect both the LGN and V1.

One feature separating the Allen LGN from that of real mice is the center-only
organisation of the cells’ receptive fields. Based on chapters [4 and [b| a lack of center-
surround LGN fields could account for the discrepancies seen in spatial frequency
tuning and size tuning for flashing spots. In chapter the DoG model [93] was
introduced, a model for describing center-surround organisation of receptive fields.
Using this model, the LGN spatial filters are modified from center-only to center-
surround. The simulations are then repeated to explore the effect of this modification
on the LGN and V1. Bear in mind that the derived responses apply to simple circular
and center-surround receptive fields, corresponding to ON and OFF cells. A fraction
of cells in the LGN model are ON/OFF cells, which have more complex responses.
Since there are relatively few of these cells (11.4 %) [12], the focus will be on the
response of the ON and OFF cells, although it will be shown that similar results were
found for the ON/OFF cells.

One type of experimental finding not fully explained by the center-surround re-
ceptive fields of the LGN is size suppression for patch gratings in V1. As explained
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in section [£.1.1] the mechanisms behind this suppression are not yet understood, and
may include network effects within LGN, V1 or both, as well as feedback and feed-
forward signaling. Similarly, there is not yet agreement on how to best model this
phenomena [70}{1251/129]. Some findings suggest strong involvement of horizontal con-
nections in V1 [115]. Size tuning curves of the V1 model with and without recurrent
connections are therefore compared, in order to look at the influence of recurrent con-
nections in the model. As an alternative to modelling network effects in a mechanistic
way, divisive normalisation has been used by previous studies to represent size sup-
pression in LGN and V1 [704/129]. To test how this could be used in the Allen model,
the LGN were modified so that firing rates are normalised with respect to overall
activity. The effect of this modification on size tuning in LGN and V1 is presented.

9.1 The Original Allen Model

9.1.1 Spatial frequency tuning - full-field gratings
LGN

The spatial frequency tuning of two LGN neurons (one ON, one OFF cell) in response
to full-field drifting gratings is shown in figure The two neurons have receptive
field sizes from each end of the size range, defined by equation , with o = 3.31°
and o = 0.67°. These parameters give rise to the lowest and highest preferred spatial
frequencies of the LGN cells respectively. Tuning curves for an additional two neurons
having receptive field sizes defined by ¢ = 2.45° and o = 1.56° are given in the
appendix (see figure . The results from simulations (black dots) are compared
with the result predicted by equation (grey line), in order to confirm that the
LGN behaved as expected. This will be particularly important in section where
a key assumption is that the spatial frequency tuning of the LGN neurons can be
predicted analytically.

The analysed cells display low-pass spatial frequency tuning. This type of tuning is
a property of linearly behaving cells without surround antagonism (see section and
, such as the ON and OFF cells in the original LGN model. The other type of LGN
neurons, the ON/OFF cells, have receptive fields consisting of two Gaussian filters
separated by a few degrees in visual space: one main Gaussian spatial filter and one
smaller Gaussian of opposite sign (see section. Unlike the ON and OFF neurons,
their spatial frequency tuning can therefore not be predicted by equation . Still,
all ten analysed cells from each of the ON/OFF groups (sONsOFF, sONtOFF) also
display low-pass tuning, as seen in figures and in the appendix.

The frequency tuning in figure [0:1h and that of the two ON cells in the appendix
(figure follow the analytical solution. For high spatial frequencies however, the
analytical and simulated results diverge (figure ) This is most likely caused by
the inadequate resolution of visual stimuli with high frequencies. Better agreement
between the model and analytic solution was found for increasing grating resolutions.
The resolution of the visual input was set to 2 pixels per degree, which cannot ac-
curately represent gratings of the highest spatial frequencies, but was chosen as a
compromise with computational run-time. It will therefore be assumed that for grat-
ing input which is exactly described by equation 7 the LGN output follows the
analytical tuning curve.

In summary, the ON and OFF cells seem to follow the analytical solution, which
is defined by equation as being low-pass. Additionally, all analysed ON/OFF
cells (a class comprising 11.4% of LGN cells) display low-pass tuning. This suggests
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Figure 9.1: Spatial frequency tuning of two neurons in the original Allen LGN model.
The F1 response of the analytical solution from equation (grey line) and simu-
lated results (black dots) are compared. The neurons have receptive field sizes defined
by equation (5.4), with o = 3.31° (a) and ¢ = 0.67° (b). The neuron ids and classes
are 17173, sOFF-TF8 (a) and 3099, sSON-TF4 (b).

that the LGN model consists of exclusively or nearly exclusively of cells with low-
pass spatial frequency tuning. In contrast, experiments on mice LGN have measured
band-pass tuning in a large proportion of cells (see section [7.1.1)).

V1

Spatial frequency tuning curves were obtained for V1 neurons in the Allen model.
The V1 network was driven by the output rates of the LGN, generated in response to
full-field drifting gratings of various spatial frequencies. The results for 10 responsive
neurons from each of the V1 cells types are shown in figure (9.2l Figure [9.3] presents
the optimal frequencies of V1 neurons by type. 50 cells have been sampled from each
cell class, and only responsive neurons are included in the analysis. Representing
the full V1 network, figure shows the preferred frequencies of the responsive cells
among 1000 randomly sampled V1 neurons.

The majority of V1 neurons show similar low-pass tuning to that of the LGN cells.
67% of cells (615/908 responsive units) prefer the lowest spatial frequency used for
visual input (0.005 cpd). On the other hand, 27% of cells (244/908 responsive units)
have a peak in activity at 0.04 cpd (figure . This preference for frequencies above
the lowest presented value was not observed in the LGN. This implies that, in some
cases, there is a small change in preferred frequencies from LGN to V1. This can be
explained by network effects in V1. Since inhibitory V1 cells, like most neurons, show
low-pass tuning, inhibition within the network will be strongest at 0.005 cpd. This
may lead to cells having higher activities for frequencies above 0.005 cpd, and hence
cause the observed variation in preferred frequencies.

Although a number cells show slight band-pass behaviour, most neurons display
low-pass tuning, with a median peak frequency of 0.005 cpd. Contrastingly, experi-
mental studies (see section found that V1 cells, on average, displayed band-pass
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Figure 9.2: Spatial frequency tuning of V1 neurons in the original Allen model. Each
subplot shows 10 responsive neurons from the respective classes. Curves show the
mean over 20 trials of 3-second simulations, with error bars indicating the standard
deviation. The y-axes limits are chosen to show the tuning shape of all the popula-
tions. For an overview of how activity vary between populations, look to appendix
ﬁgure@ where the same scale is used for all subplots.

tuning, with median and mean preferred spatial frequencies between 0.04 and 0.5

epd (L6/T161T8).
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9.1.2 Size tuning - flashing spots
LGN

LGN neurons were driven with flashing white spots. Alternating sequences of white
spots and grey screen, both of 75 ms intervals, were presented over 3-second simula-
tions. Figure [0.5shows the activity of (a) eight ON and (b) eight OFF LGN neurons
as a function of spot size. These neurons were selected as their receptive field centers
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Figure 9.5: Size tuning (blue line) of LGN ON cells (a) and OFF cells (b). The stimuli
was a 3-second sequence of 75ms flashes of a white spot. The spatial LGN filter is
the single Gaussian in the original model. Labels indicate the neuron class.

were closest to stimulus center. The rates are the deterministic firing rates generated
in the model, rather than recovered from spiking activity. All the recorded LGN
cells show the same behaviour for stimuli of increasing sizes: the firing rate increases
for diameters up to a certain size, around 10° to 20°, from which point the average
activity is constant. This indicates that there is no surround suppression in LGN for
flashing spot stimuli.

As explained in section the cells in the LGN are modelled as LNP cells with
Gaussian receptive fields [12]. Recall that LNP cells act as linear filters coupled with a
non-linear rectifier. The rectifying function, given in equation , sets all negative
rates to zero and is linear above zero. The term rectifier is here used with reference
this function. The analytic results presented in section (see figure give the

71



(a)

L
w
I

—— flashing spot
—— spontaneous
\/ flashing spot - mean

Firing rate (Hz)
w
o
1

4.5 4
T T T T T
0 50 100 150 200
Time (ms)

(b) ’%‘ —— flashing spot
< 201 —— spontaneous
*é flashing spot - mean
=, 104
£
e
£ ol L

T T T T T
0 50 100 150 200
Time (ms)

Figure 9.6: Firing rate as a function of time (blue line) and rate average (grey line) for
an example OFF neuron (id = 8013) in response to a white flashing spot. The white
and grey backgrounds indicate when the white spot is turned on and off respectively.
(a) For a spot size of 5° diameter, the momentary firing rate does not reach below
the zero-threshold, and the time-averaged response of an OFF-neuron is decreased
compared to its spontaneous rate. (b) Spot sizes of 20° diameter evokes a stronger
response to both flash onset and offset. Negative firing rates are set to zero by
the rectifier, which can cause the time averaged activity to become higher than the
spontaneous rate.

linear response of an ON-cell modelled as a single positive Gaussian, and predicts
no size suppression for uniform spots of light. The tuning curves in figure [0.5h are
consistent with this result.

For an OFF cell, the linear dependence on spot size, as derived in section [5.2] is
a tuning curve which is the inverse of the ON cell’s. That is, a decrease in firing rate
with spot size. This contrasts the tuning curves we see in figure 0.5p. As will be
explained below, these seemingly anomalous responses are caused by the rectification
of the linear response.

Recall that it is the spatial dependence of mean activity which is predicted in
section [5.2] while the response still varies periodically in time. It is therefore the time
average of the linear response which follows the shape of the derived tuning curves.
The instantaneous response depends on the shape of the temporal receptive field. The
temporal kernel in equation defines the effect of earlier visual stimuli on LGN
activity. The filter changes from positive to negative with increased time since input
(see figure[4.8), so that the effect of the current stimulus and that of some milliseconds
earlier is opposite [50]. For an LGN OFF-unit, the maximum response will be evoked
by stimuli which switches from bright to dark. A spot of high luminosity being
switched off can therefore momentarily increase the firing rate in OFF-cells to above
the spontaneous rate, as shown in For a purely linear OFF-cell, the average
activity will still be decreased by the white flashing spots, due to the dip in activity
during the flash onset. However, the LGN cells have nonlinear rectifiers preventing
the firing rate from becoming negative. This restricts the decrease in firing rate during
flash onset, and allows the time averaged activity to increase above the spontaneous
rate.

The form of the temporal kernel, combined with the non-linear rectifier, influences
the size tuning curve of the OFF-neurons in response to white flashing spots. In
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accordance with the linear prediction, the activity initially decreases as a function of
stimulus diameter. An illustration of this is the example neuron in figure which is
inhibited by a white flashing spot of 5° diameter (figure ) For a certain size, the
momentary response to the flash onset reaches the zero-threshold. For stimuli larger
than this, the activity will start increasing with stimulus size. For a spot size of 20°
diameter, the time averaged activity is above the spontaneous rate (figure[9.6p). The
same dependence on stimulus size is seen in the size tuning results of the OFF cells
in figure 9.5

Consistent with the Allen LGN cells, Piscopo et al. [52] found experimentally that
both ON and OFF cells may be excited by white flashing spots, although ON cells
respond more strongly. However, cell recordings summarised in section found
size suppression for a large proportion of cells in response to flashing spots, something
not reproduced by the Allen LGN cells.

Vi1

For each flashing spot size, the output of the 20 LGN trials were used to drive the
V1 model. Size tuning curves were then obtained for single V1 neurons. Up to
ten neurons from each population are plotted, depending on the number of cells
within a 70 pm radius of the stimulus center (see section . Figure shows the
resulting tuning curves, averaged over the 20 trials. The varying degrees of activity
between different neurons is influences by several factors, including the amount of
input received from LGN and other V1 cells, as well as model parameters such as
the spontaneous rate. The activity increases before reaching a plateau for stimuli of
around 20° to 40° diameter. This implies that there is no surround suppression in V1
in response to flashing spots.

For comparison, one study in section [7] used flashing spots to map receptive fields
in the mouse V1 [117]. The study found that out of the cells with circularly symmetric
fields (55%), over half had surround regions which opposed the response of the center
[117]. In addition, for the type referred to as simple cells (17%), most cells showed
size inhibition as stimuli expanded past the elliptical ON region into the elliptical
OFF-regions [117]. Importantly, all cells responded in general either weakly or not at
all to full-field changes in luminosity [117]. This is in contrast to the results for the
Allen V1 cells, where all responsive units fire optimally for full-field flashes.
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Figure 9.7: Size tuning in V1 for white flashing spots of 75 ms duration. Up to
ten neurons from each population are included, depending on the number of cells
within 70 pm of stimuli center. For the i5Htr3a class, there were no cells within this
radius. The spatial LGN filter is the single Gaussian in the original model. The
measurements show mean response over 20 trials of 3-second simulations, with error
bars representing the standard deviation. The y-axes limits are chosen to show the
tuning shape of all the populations. For an overview of how degree of activity vary
between populations, look to appendix figure [B.7} where the same scale is used for all

subplots.
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9.1.3 Size tuning - patch gratings

The second type of stimulus used for size tuning measurements was patch gratings.
Initially, simulations with static patch gratings were tested. No measurable response
was detected in V1 for averages of up to 60 trials, neither for the standard grating
nor for one with an inverted greyscale. Drifting stimuli were therefore used instead,
which generated a considerably larger response.

LGN

The LGN model was driven with circular patches of drifting grating over a 3-second
simulation. As with flashing spots, different sizes of patch grating were presented,
and activity was plotted as a function of stimuli size. Figure [0.§ shows the size
tuning of LGN neurons, one from each cell class. The rates are based directly on the
deterministic firing rates generated by the LGN model, rather than recovered from
spiking activity. Their responses are similar to those for flashing spots, showing no
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Figure 9.8: Size tuning of LGN neurons for patch grating stimuli. The tuning curve
of one example neuron from each cell class is plotted. The LGN spatial filters used
are the single Gaussians of the original model.

size suppression for any of the recorded cells. As before, this can be explained by
the cells being linear filters (except for a nonlinear rectification), with no surround
antagonism to oppose the center.

Vi1

For size tuning with patch gratings, the spike trains from 20 LGN trials were used
to drive the V1 model. The results are shown in figure [0.9] The figure presents the
activity of up to ten V1 neurons from each population, depending on the number
of cells within a 70 pm radius of the cortex center. The activity represent the time
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average over 20 trials. The neurons are the same as those measured for flashing spots.
As for flashing spots, the V1 neurons do not display surround suppression for patch
gratings. This is in contrast to the experimental findings of size suppression in V1 in

response to patch gratings (section [7.1.2)).
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Figure 9.9: Size tuning of V1 neurons for patch grating stimuli in the original Allen
model. Up to ten neurons from each population are included, depending on the
number of cells within 70 pm of stimuli center. For the i5Htr3a class, there were no
cells within this radius. Mean firing rates over 20 trials of 3-second simulations are
plotted, with error bars showing the standard deviation. The y-axes limits are chosen
to show the tuning shape of all the populations. For an overview of how degree of
activity vary between populations, look to appendix figure [B-10] for which the same
scale is used for all subplots.
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9.2 The M1 Allen Model

The M1 model refers to a modified version of the Allen model. In particular, the single
Gaussian spatial filters of the original LGN have been replaced with DoG filters,
defined by equation , with A, = A; = 1.73 and o5 = 2.450.. The following
section explains the motivation for modifying the model. Analytical results used for
tuning the DoG parameters are then presented, before moving on to LGN and V1
simulation results.

9.2.1 Motivation for modifying the model

The results for the original Allen LGN model show no surround suppression for flash-
ing spots or patch gratings. In addition, all the LGN cell types display low-pass
tuning, preferring the lowest spatial frequency presented (0.005 cpd). Each LGN cell
consists of a linear filter coupled with a non-linear rectifier, as defined by equation
(3.10). The low-pass tuning and lack of surround inhibition in the model can be
explained by the cells having only an excitatory or inhibitory center region, so that
there is no on-off antagonism that can give rise to band-pass tuning or size suppres-
sion, neither for flashing spots nor patch grating stimuli.

While the Allen LGN is an LNP filter model, the Allen V1 is a nonlinear model
with multiple recurrent connections, where neurons receive input from both LGN
neurons and other V1 neurons [12]. In real mice, the recurrent connections in V1 have
been suggested to be at least partly responsible for nonlinear surround suppression
[74]. However, none of the analysed V1 cells show surround suppression for flashing
spots or patch grating stimuli. While a substantial proportion of V1 cells prefer
gratings with spatial frequency of 0.4 cpd, most cells prefer the lowest frequency of
0.005 cpd.

In contrast, experimental studies found surround suppression in LGN in response
to flashing spots [52/83l]113], and in V1 in response to patch gratings [48,64,82/115/116]
and flashing spots |[117] (see chapter[7)). For experiments measuring spatial frequency
preferences, band-pass tuning was found in the majority of LGN [16}28,[52}|83}/113]
and V1 cells [16,[116},/118|. The further aim was therefore to modify the Allen LGN
so that the full network model will exhibit these properties.

In section [5.3] analytical solutions for the spatial-filter response to bright spots
and drifting gratings are calculated. It is explained how the DoG function is able
to account for surround suppression in response to uniform bright stimuli and for
the spatial frequency tuning curves which are found experimentally in mice. In some
cases, the DoG filter also exhibits surround suppression with patch gratings, although
this requires specific combinations of spatial frequency of stimuli and filter parameters.

To reproduce band-pass tuning and surround suppression in the Allen LGN, the
spatial filter was modified from the single Gaussian in equation to the DoG
function in equation . The following chapter presents the resultant LGN tuning
properties. The effect of the modification on V1 is also explored, by repeating the
same measurements as when using input from the original LGN model.

9.2.2 The DoG filter

The method for modifying the Allen LGN model and choosing parameters is described
in section In short, the equation of the spatial filter was changed from to
[6.6] with the following parameters.
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e A, = A, =1.73. The values of A, and A, are set equal in order to obtain max-
imal surround inhibition, as the aim was to see clearly which properties were
displayed by the model. For a weaker, and possibly more realistic suppressive
effect (see experimental findings one might want to use a smaller amp-
litude of the surround Gaussian. Both amplitudes have been scaled (see section
8.1.1)) so that the peak firing rate of the DoG spatial frequency tuning curve
matches the corresponding peak rate of the original Gaussian filter.

e o, for each cell is equal to the value of ¢ which was used in the original model.
The original receptive field sizes in the LGN model are based on recordings
by Durand et al. [16], and are similar to the sizes of the ON and OFF areas
reported in this study.

e 0, is defined by o = Co., where C' = 2.45 has been tuned (see section [8.1.1]) so
that the median preferred frequency is 0.08 cpd, the same as found empirically
by Durand et al. [16]. This will be described in further detail in section
below.

9.2.3 Analytical parameter tuning: peak LGN frequencies

Section [4.2]explains the relationship between size tuning and spatial frequency tuning
in cells with a high degree of linearity. Section[5.3.1]describes mathematically how the
center-surround organisation which explains surround suppression for uniform stimuli
also gives rise to band-pass spatial frequency tuning. The value of the peak frequency
depends on the size of the center and surround of the receptive field. The relationship
between spatial frequency tuning and receptive field structure was used to determine
the size of the inhibitory Gaussian in the DoG filter.

Specifically, equation was used to find the optimal spatial frequencies of all
the LGN cells. This rests on the assumption that the cells’ spatial frequency tuning
follow the analytical solution, as supported by findings in the original LGN (see section
and appendix . The parameter defining the size of the inhibitory Gaussian,
C = 2.45, was then set to give a median optimal frequency of 0.08 cpd across all LGN
cells (see method in section [8.1.1)). This is the median value which was found in real
awake mice LGN by [16].

The resulting histogram of preferred spatial frequencies for all DoG LGN neurons
is shown in figure As an approximation, all the LGN neurons are considered as
simple ON or OFF cells. This includes the ON/OFF neurons (11.4% of all cells [12]),
which are treated as having a single, circular receptive field, as opposed to one large
and one small circular region. The left and right sharp peaks belong to the sONtOFF
and sONsOFF cells, for which o, is equal to 3 and 2 degrees respectively. The range
of preferred spatial frequencies were 0.041 to 0.201 cpd, which is narrower than the
range from 0.02 to 0.64, as found experimentally by Durand et al. |[16]. To approach
the range measured in |16], one could have increased the variation of peak frequencies
by letting C in o5 = Co,. vary between cells. One option is to draw C from some
distribution. The distribution could then have been adjusted to obtain a range more
similar to that in |16]. However, for now the primary aim was to see which phenomena
could be reproduced in the resulting modified model, rather than fine tuning all the
parameters.
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Figure 9.10: Histogram of predicted preferred spatial frequencies for all the 17 400
neurons in the LGN, based on equation , where o4 = 2.450.. The width of each
bin is 0.001 c¢pd. The median preferred spatial frequency is 0.08 cpd. The two large
peaks are SONtOFF (left) and sONsOFF (right) cells, for which o is equal to 3 and
2 degrees respectively.

9.2.4 Spatial frequency tuning - full-field gratings
LGN

An important assumption when calculating peak spatial frequencies in LGN, and thus
determining C in o, = Co,., was that the spatial frequency tuning curves could be
predicted analytically. The spatial frequency tuning of the LGN cells in response
to full-field drifting gratings was therefore compared with the analytical result for
the selected DoG filter. In this way, the analytical solution served as a benchmark,
ensuring that the modified DoG model behaved as expected. Figure [0.11] shows the
comparison for an ON and an OFF cell. The cells have receptive field sizes from each
end of the size range, with o, = 3.31° and o, = 0.67°, giving rise to the lowest and
highest preferred spatial frequencies for the LGN neurons respectively. Curves for
two additional cells with receptive field sizes defined by 0. = 2.44° and 0. = 1.56° are
given in the appendix (figure .

The simulation output overlaps the analytical prediction for the cell in figure[0.11h
and for the two neurons in the appendix (figure . For the cell preferring high
spatial frequencies, the analytical and simulated results diverge (figure (9.11p). The
same was found for the original Allen LGN (see section and appendix|B.1|). This
could be explained by a grating resolution too low to resolve high spatial frequencies
(see section . It is therefore assumed that for visual inputs which are exactly a
sinusoidal grating, the ON and OFF cells reproduce the analytical results given by
equation .

The simulated tuning curves of the ON/OFF cells are presented in figure
and in the appendix. For the majority of the analysed ON/OFF cells, their
preferred frequencies were similar to the analytical prediction, where the neurons
were approximated as simple ON or OFF cells. This implies that even with this
approximation, the predicted peak frequencies for the ON/OFF cells in figure
correspond well with the simulations.
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Figure 9.11: Spatial frequency tuning for two neurons from the modified LGN model.
The analytical solution from equation (grey line) and simulated results (black
dots) are compared. The neurons have spatial receptive fields defined by equation
(5.6). (a) The neuron (id = 17173, type = sOFF-TF8) has receptive field size with
o. = 3.31. (b) The neuron (id = 3099, type = sON-TF4) has a receptive field size
with o, = 0.67.

V1

Spatial frequency tuning curves for V1 were found from model simulations, using the
same method as for the original Allen model. Tuning curves for 10 neurons from each
of the V1 cell classes are shown in figure [9.12 Out of 50 cells sampled from each
class, the preferred frequencies of the responsive neurons are shown in figure [9.13] To
represent the total V1 network, the peak spatial frequencies of the responsive neurons
out of a 1000 randomly chosen cells are shown in figure [9.14}

All recorded cells display band-pass tuning. The median preferred frequency in
V1 is 0.08 cpd, the same as for LGN neurons. Durand et al. |16] found a slightly
lower optimal frequency (median = 0.05 cpd) in V1 of awake mice (see chapter [7)).
However, the difference between this value and their LGN results (median = 0.08 cpd)
was not significant, indicating no discrepancy with the Allen results. Nevertheless,
similar results in other studies (mean = 0.04 |116] and 0.045 [118]) indicate that the
preferred spatial frequency may be slightly lower in real mice neurons than in the
Allen neurons.

The histogram in figure is quite narrow, with 73% of V1 cells (651/889 re-
sponsive cells) preferring the grating of 0.08 c¢pd. This variation is much less than
that seen in LGN. A possible reason could be that input from LGN cells average out,
so that V1 cells receive the most input for 0.08 c¢pd, the median preferred frequency of
the LGN. By contrast, the cells studied by Durand et al. [16] had a broad distribution
of peak frequencies, with a large proportion of cells firing in the range 0.02 — 0.32
cpd. Similarly, the study by Marshel et al. [118] (see chapter|7]) showed a high variety
of optimal frequencies, with cells displaying both low-pass, high-pass and band-pass
behaviour. In other words, more variation was found in the real mouse V1 neurons
than in the simulated Allen V1 neurons in terms of preference for spatial frequency.
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Figure 9.12: Spatial frequency tuning of V1 neurons in the M1 Allen model. Each
subplot shows 10 responsive neurons from the respective classes. Curves show the
mean over 20 trials of 3-second simulations, with error bars indicating the standard
deviation. The y-axes limits are chosen to show the tuning shape of all the popula-
tions. For an overview of how the degree of activity vary between populations, look
to appendix figure @ where the same scale is used for all subplots
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Figure 9.13: Optimal spatial frequencies of V1 neurons in the M1 Allen model. The
labels represents the different V1 classes. For each class, 50 cells are analysed, and
the preferred frequencies of the responsive neurons are shown. Gratings of spatial
frequencies 0.005, 0.04, 0.08, 0.12, 0.16, 0.20, 0.24, 0.28 and 0.32 cpd are used as
visual stimuli. The frequencies 0.005 cpd and 0.20 - 0.32 cpd, to which none of the
neurons showed a preference, are omitted from the figure. Preferred frequencies are
based of mean firing rates over 20 trials of 3-second simulations.
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Figure 9.14: Optimal spatial frequencies of 889 responsive cells out of 1000 randomly
drawn neurons in V1 for the M1 Allen model. The activity was measured in response
to gratings of spatial frequencies 0.005, 0.04, 0.08, 0.12, 0.16, 0.20, 0.24, 0.28 and 0.32
cpd, each frequency represented by a separate bin. Preferred frequencies are based of
mean firing rates over 20 trials of 3-second simulations.
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9.2.5 Size tuning - flashing spots
LGN
LGN neurons were driven with an alternating sequence of white spots and grey screen,

each of 75 ms intervals, over 3-second simulations. Figure [0.15] shows the activity of
eight M1 ON and OFF neurons in the LGN as a function of spot size. These are the
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Figure 9.15: Size tuning for eight ON (a) and OFF (b) cells in the M1 LGN. Flashes
of white spots with 75 ms duration were used as stimuli to drive the neurons. Blue
dots show measured average firing rate for the different spot sizes, while the grey line
marks the spontaneous activity of the neuron. The marks %, % and * * x are for use
in the main text when referring to subfigures.

ON and OFF neurons with visual centers closest to the spot center. The rates are the
deterministic firing rates generated by the model, rather than rates recovered from
spiking activity.

Figure shows that surround suppression is displayed by ON cells in the M1
LGN model. This agrees with the analytical linear response of section [5.3.2] which
predicts size suppression for on-center/off-surround receptive fields in response to
bright stimuli. The results are also consistent with empirical observations in mice
[16,(28](52,[83L[113]. The largest firing rate in LGN was measured for spots of 10°
diameter, which implies that the preferred stimuli spot diameter for most ON cells is
around 10°. Similarly, Tschetter et al. [83] found that LGN cells had a mean preferred
diameter of 8.6°, and Piscopo et al. [52] reported a mean optimal diameter of 11.6°
for sON LGN cells, the same type of cells which are analysed here.
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Figure[0.15p shows surround suppression for most of the recorded OFF cells in the
M1 LGN. The size tuning of the cells may seem to contradict the response predicted
analytically in section In section the size tuning of an on-center cell for
bright stimuli was described. In the case of an off-center cell, the linear dependence
on stimulus size is the inverse of the DoG response in figure[5.3] However, as explained
in section the nonlinear rectifier of the OFF cells changes the shape of their size
tuning. Section also describes how this depends on the temporal kernel.
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Figure 9.16: Firing rate average (grey line) and as a function of time (blue line) for M1
OFF neurons in response to white flashing spots of 10° diameter. The black line marks
the spontaneous firing rate. The time window is chosen for a time where the amplitude
has stabilised. The background colour indicates the alternation between white spots
and grey screen. (a) The neuron has a low spontaneous rate compared to the peak
in activity, which leads to a time average which is higher than the spontaneous rate.
This leads to surround suppression (bottom right, figure ) (b) The neuron has
a high spontaneous rate compared to the peak in activity, so that the time average
is lower than the spontaneous rate. This does not lead to surround suppression (top

left, figure )

The size tuning of the M1 OFF cells can be explained by referring to the activity
of neurons (marked *, sk, x % %) in figure . That is, initially, the response is
linear, and the activity decreases below the spontaneous rate (5° diameter). As soon
as the inhibition by the flash onset causes the momentary firing rate to dip below zero,
the threshold comes into effect, preventing negative firing rates. Since the excitatory
effect of flash termination (the “rebound”) is unaffected, this causes the firing rate to
start increasing as a function of spot diameter (10° diameter). As the stimuli diameter
increases into the surround area, the on-off contributions start cancelling out, and the
rate will decrease again (20° diameter). When the momentary inhibitory response
to flash onset does no longer reach the zero-threshold, the response becomes linear
again and increases until the on-off contributions have completely cancelled, giving
the spontaneous firing rate (40° diameter).

If the spontaneous rate is sufficiently low compared to the excitatory rebound, the
average activity in the M1 OFF-cells can be increased above the spontaneous rate.
This is illustrated by the example neuron in figure [0.16p. Then, since the activity
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for large enough stimuli is just the spontaneous rate, this neuron displays surround
suppression (bottom right, figure ) In ﬁgure on the other hand, the neuron
has a relatively high spontaneous rate compared to the rebound from the flash offset.
The average activity is therefore either lower or equal to the spontaneous rate for all
measured diameters, so that no surround suppression is seen (top left, figure )

To summarise, all M1 ON neurons show surround suppression for white flashing
spots. For OFF cells, the response is much weaker, and some show surround sup-
pression, while some do not. To see if the result was affected by spot duration, the
measurements were repeated for white flashing spots of 300 ms duration (appendix
figure and . The same results were found in this case, with all ON cells and
some OFF cells showing suppression. Correspondingly, the studies on mouse LGN in
chapter [7] reported a large proportion of cells with surround suppression for flashing
spots. Similar to in M1 LGN cells, Piscopo et al. [52] also reported that OFF cells
could be excited by white flashing spots, but that the response was weaker than that
of ON cells.

V1

The LGN responses to the 75 ms flashing spots were used to drive the V1 network.
For each spot size, the 20 LGN trials were used to create 20 corresponding spike trains
in V1. The responses of same V1 neurons as previously were then analysed, and their
size tuning plotted in figure In addition to the 75 ms flashes, measurements
were repeated for 300 ms flashes (see figure in the appendix), which gave the
same type of size tuning.

Most of the neurons show size suppression for flashing spot stimuli, a property
also reported by Dréger et al. [117]. Furthermore, according to spatial frequency
analysis (section 7 size suppression in response to flashing spots is consistent with
band-pass spatial frequency tuning, which was also found experimentally in mice V1
[16L{116}/118]. The cells show different preferred diameters, lying somewhere between
10° and 40°. In comparison, the experimental literature gave very varying results,
ranging all the way from 17.5° (median) to 86° (mean), depending on cell type and
degree of anaesthesia [64,82,/115/116].

The peak responses are fairly weak compared to those of the original model. This
may be because the response of each LGN neuron which transmits to a V1 cell be-
gins to diminish after stimuli exceed the center of the LGN’s receptive field. To get
a stronger response in V1 cells, the surround amplitude of the DoG filter could be
decreased compared to the center amplitude. This would make the surround effect
weaker, and probably also more realistic, as the experimental mean suppression index
reported in LGN was 0.53 [83]. (Recall section for an explanation of suppres-
sion index.) The M1 model, however, has equal values of A. and Ay for the center
and surround Gaussians in equation . This maximises surround suppression in
response to uniform stimuli, giving SI values of 1 in LGN and decreased input to V1.
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Figure 9.17: Size tuning of V1 neurons from the M1 Allen model, using stimuli
consisting of 75 ms flashes of white spots. Up to ten neurons from each population
are included, depending on the number of cells within 70 pm of stimulus center. For
the i5Htr3a class, there were no cells within this radius. The measurements show
mean response over 20 trials of 3-second simulations, with error bars representing the
standard deviation. The different y-axes limits are chosen to show the tuning shape
of all the populations. For an overview of how the degree of activity vary between
populations, look to appendix figure for which the same scale is used for all
subplots.
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9.2.6 Size tuning - patch gratings
LGN

Patches of drifting gratings were presented as stimuli to the LGN model, and activity
as a function of stimuli size was measured. Simulations were run for gratings with
spatial frequencies of 0.02, 0.04, 0.08, 0.12, 0.16 and 0.20 cpd. Figure |9.18] shows
the resulting size tuning of M1 LGN neurons for patch grating stimuli of frequency
0.04 cpd. Tuning curves for the remaining frequencies are given in figures (0.02
cpd), (0.08 cpd), (0.12 cpd), (0.16 cpd) and (0.20 cpd) in the

appendix. The tuning curves in figure [0.18] show a variety of responses, where some
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Figure 9.18: Size tuning for one example neuron of each class in the M1 LGN. The
stimuli is a patch grating of spatial frequency 0.04 cpd. The spontaneous rates of the
cells are marked by the horizontal grey lines.

show surround suppression and some do not. Similarly, the results for the remaining
frequencies included cells both with and without surround suppression.

In section the response of DoG filters to patch gratings is described. In
particular, we see that size tuning depends on the parameters o, and oy, as well as
the grating’s spatial frequency. These results can be used to explain the tuning curves
in figure[9.18] The input to all the LGN neurons has the same spatial frequency, that
of the grating, while each o. and o, differ. For each cell, o, = 2.450., where o, is
drawn from a distribution centred around the experimentally observed value. It is
therefore expected that each neuron has a distinct size tuning curve. As predicted
in section the size tuning for low spatial frequencies (0.02 cpd) is similar to
that for flashing spots. For this frequency, all responsive neurons showed suppression,
however most neurons responded weakly or not at all. This suppression can be un-
derstood by looking at figure (bottom), where the low spatial frequency results in
an approximately uniform stimuli in the receptive field area. Also consistent with the
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analytical results, less suppression was seen for higher spatial frequencies. Most vari-
ation in size tuning was seen for the frequency 0.04 cpd, while for higher frequencies,
only a few of the measured cells show size suppression. In short, some neurons dis-
play surround suppression and some do not, depending on the combination of grating
spatial frequency and filter size.

V1

The next question then becomes how this variation of LGN responses affects the size
tuning of V1. To address this, the above LGN output was used to drive the V1.
As for previous size tuning measurements, up to ten neurons from each population
were analysed, depending on the number of cells within a 70 pm radius of the visual
center. The response of a representative example neuron to all stimuli is shown in
figure The figure shows the response to increasing sizes of patch gratings. The
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Figure 9.19: Size tuning of a representative V1 neuron (id = 109362, class = i23Htr3a)
from the M1 Allen model. The visual stimuli was patches of drifting grating. The
mean is calculated over 20 trials for 3-second simulations. Error bars show the stand-
ard deviation of the mean.

differences in scale of activity between the curves comes from the neuron’s preference
for different spatial frequencies. Only the curve for 0.02 cpd show a small amount
of surround inhibition, while the remaining frequencies show no suppression. Results
for all recorded neurons for all stimulus frequencies are included in the appendix, in
figures [B.28] [B.29] [B.30] [B.31] and The general trend of the remaining
neurons is similar to that in figure [9.19] with a small degree of size suppression seen
for the frequency 0.02 cpd, but no suppression observed for higher frequencies.

In contrast, the experiments with patch gratings described in chapter [7, which
all used different spatial frequencies, including the peak frequencies for each cell, all
found cells with surround suppression. In conclusion, the surround effect which is
observed experimentally for patch gratings in V1 is not reproduced by this particular
M1 Allen model.
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9.3 DoG Filters with Various Parameters

Up until now, only one set of parameters have been used for the DoG filter in equation
when running simulations. These parameters are A, = A; = 1.73 and o5 =
2.450.. For this case, no surround suppression is observed in V1 when using patch
grating stimuli. To look into whether this is a result of the choice of DoG parameters,
four new DoG filters were tested. Size tuning curves were then obtained for V1 cells
in response to the same patch grating stimuli.

First, three filters with differently sized inhibitory Gaussians were tested. The
scaling factor, C, in 04, = Co,. was set to 5, 10 and 50 in the three cases. For the
fourth DoG filter, the amplitudes were changed to Ay = 0.5Ac, while the size of the
inhibitory Gaussian was the same as in the M1 model. As in the M1 model, all the
amplitudes have been scaled so that peak LGN activity matches the peak activity in
the original model (method . The new LGN spatial filters then have parameters

e A.=A,=1.2 and o, = 50,

e A, = A, =1.06 and o, = 100,

e A.= A, =1 and o5 = 500,

e A, =15, A, =0.5A4, and o5 = 2.450,.
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Figure 9.20: Size tuning curves for an example V1 neuron (id = 23428, class = e4).
For each tuning curve, a different set of parameters for the DoG filters, defined by
equation ([5.6)), is used. The parameters of each filter are indicated by the labels.

The size tuning of an example V1 neuron for the four new DoG filters is shown in
figure [0.20] Similar curves for another four neurons are given in the appendix. Like
for the M1 V1 model, all tuning curves show an increase in firing rate with diameter
up to a point where the activity stabilises. This suggests that there is little or no
surround effect in V1 for patch grating stimuli for any of the tested DoG filters.
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9.4 Contributions to Size Tuning in V1
9.4.1 Effect of LGN input

So far, surround suppression has been observed in the M1 V1 for flashing spots, and in
some cases for patch gratings with low spatial frequency (0.02 cpd). The suppression
was generated after the spatial filters of the LGN, which transmit signals to V1, had
been changed to describe center-surround receptive fields. If the receptive field of an
Allen V1 cell is mainly inherited from the LGN cells transmitting to it, the suppression
seen in V1 is arguably produced by an on-off antagonism in its receptive field. To
illustrate this point, the sum of receptive fields of the M1 LGN cells relaying to each
of two example M1 V1 cells is shown in figure [9.21
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Figure 9.21: Tllustration of the receptive fields of the M1 LGN neurons innervating
two example V1 neurons. Left: LGN neurons relaying to V1 neuron 23428 (class =
e4) consist of sSON and tOFF cells. Right: LGN neurouns relaying to V1 neuron 25515
(class = eb) consist of SOFF and tOFF cells. The two colours represent the center
and surround fields of the M1 LGN neurons. On-regions are marked in yellow, while
off-regions are marked in red. Azimuth and elevation refers to the horizontal and
vertical angular coordinates in visual space.

Figure in section shows how the LGN cells transmitting to each V1 neuron
are selected from two elliptical sub-regions in visual space. However, because of the
LGN cells’ large receptive fields, the sum of of the fields in the M1 model construct al-
most circular center-surround structures. As described in section center-surround
antagonisms can explain suppression in response to uniform spots, but fails to account
for suppression in response to patch gratings for some spatial frequencies (see section
5.3.3). Furthermore, the suppression is most pronounced for low frequencies [95].
This description is consistent with the size tuning behaviour of M1 V1 cells, suggest-
ing that the V1 receptive fields are in fact similar to the sum of M1 LGN receptive
fields illustrated in figure If V1 cells have mainly linear receptive fields with an
on-off antagonism, this would explain the size tuning behaviour of the V1 cells, in that
surround suppression is mostly seen for uniform spots rather than patch gratings.

However, the receptive fields of V1 cells may also be shaped by the recurrent
connections between the V1 cells. To see how the spatial summation of V1 cells is
influenced by network effects, size tuning was measured for a version of the M1 V1
model without recurrent connections.

9.4.2 Effect of recurrent connections in V1

In contrast to findings in the Allen model, experimental recordings in V1 show sur-
round suppression in response to patch gratings for a range of different spatial frequen-
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cies, including the cells’ preferred frequencies. This implies that there are suppressive
mechanisms in the real mouse’s visual system not accounted for by the Allen model.
What these mechanisms are, is, as seen in section far from established. Some
argue that suppression partly arises from within the V1 network itself, as a result of
inhibition from other neurons [75}/140}/141].

To explore network effects on size tuning in V1, the M1 model was run without
recurrent connections, using increasing sizes of patch gratings (see M1,orec model
in table . The same neurons as previously selected for size tuning were initially
analysed. For the resultant plots, showing the activity of different cell types, see figure
in the appendix. Tuning curves were then compared to those obtained from the
M1 model with recurrent connections. For this, six neurons were selected from each
class that receives LGN input. These are the inhibitory Htr3a class in LI, and the
excitatory and Pvalb classes in LII/III to LVI [12]. Comparisons for all 54 neurons
are shown in figure and in the appendix. Results for four example neurons,
illustrating the different responses observed, are shown in figure [9.22
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Figure 9.22: Comparison of size tuning for the M1 V1 model with (black) and without
(red / blue) recurrent connections. The results for four representative cells are shown,
illustrating the different responses displayed by the analysed cells. The tuning is
measured in response to patch gratings with spatial frequency of 0.08 cpd.

The degree to which recurrent connections influence size tuning vary across layers
and cell type. Without V1 connections, the activity depends on cell parameters such
as the firing threshold, as well as the amount of LGN input, the latter of which LIV
receives the most [39,/110]. Many V1 cells have similar tuning with and without
recurrent connections, such as the e4 class (figure top left). Other classes show
only weak or no activity without V1 connections, such as the e6 and i23Pvalb cells,
exemplified in figure Variation was also seen within the different classes.

For cells which are active both with and without recurrent connections, the shape
of the tuning curves are similar between the two cases. This could be explained by
looking at the connectivity scheme in the model, which is described briefly in sec-
tion Whether connections are established depends, among other factors, on the
distance between cells, where closer cells are more likely to be connected [12]. The
probability distribution is given by equation , where the parameter o, takes
different values between 85 and 120 pm, depending on cell types |12]. Using the map-
ping of visual to physical space in the Allen model [12], this corresponds to 6° — 8.4°
azimuth and 3.4° —4.8° elevation. Distance is only measured across the cortical plane,
while the cortical depth was not taken into account [12|. As a result of using this
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distribution, connections are established mainly between neurons closely positioned
in the horizontal cortical plane. Therefore, only cells with similarly positioned recept-
ive fields are connected. Furthermore, the tuning curves of all recorded cells reach
maximum response at a similar patch size, of around 20° to 40°, suggesting similar
receptive fields sizes. If connections are only between neurons with similarly sized
and positioned receptive fields, this can explain why stimuli from regions far away
from the visual center do not seem to influence the response of the neurons, neither
by suppressing nor enhancing their activity.

In contrast, inhibitory surrounds up 92.5° in diameter have been observed in the
real mouse V1 for patch gratings, while the median size producing maximum response
was found to be 28.9° diameter [116]. Other studies report suppressive effects over
similar ranges [641/115], suggesting that suppressive effects extend a great deal further
than the intracortical connections in the Allen model.

The idea that connection lengths in the Allen V1 may be too short to account
for far extending suppressive effects does not necessarily imply that the model should
have longer intracortical connections. Mostﬂ connection lengths between the Allen
V1 cells are based on experimental observations [12], and it has in fact been argued
that connection lengths in real mice V1 are too short to account for at least the most
remote surround effects [73]. On the other hand, recordings made by Adesnik et
al. [115] suggest the existence of long reaching horizontal connections in LIT/III, from
the excitatory pyramidal cells to the inhibitory Sst neurons, which could effectively
give the Sst neurons receptive fields spanning up to about 900 pm in diameter |12].
(See section for a short description of this study.) In other words, the horizontal
connections from excitatory neurons to Sst neurons may extend further than those of
the Allen model. The same study also found that while the activity of Sst neurons
increased with stimuli size, other neuron types displayed surround suppression [115].
Hence, increased inhibition from Sst neurons for large stimuli was suggested as a
probable source of non-linear suppression in V1 [115].

In summary, recurrent connections in the Allen V1 do not seem to generate either
surround suppression or enhancement, as connections are restricted to cells that have
receptive fields of similar size and position. While some experiments support this con-
nectivity scheme [12}|73], others find evidence of long reaching horizontal connections
in mice V1 [115] which may be able to account for some of the missing suppression
in the Allen network.

9.5 Modelling Nonlinear Surround Suppression

Different models have been used to generate and describe surround suppression in the
visual pathway. The normalisation model was first introduced as a descriptive model
for nonlinear inhibitory phenomena observed in the cortex [142]. These phenomena
included the saturation of neuron activity in response to increasing contrast, as well
as nonspecific suppression evoked by a range of stimuli when superimposed on the
preferred stimulus [142]. According to the normalisation model, the activity of a
neuron is determined by the neuron’s individual response, divided by the summed
activity of a population of neurons [129].

INot all connections in the V1 are based on experimental observations, due to lack of data.
However, the connections most relevant for this section, from E to Sst cells, are based on experiments
112].
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9.5.1 Divisive normalisation in LGN

Some have suggested that much of the nonlinear suppression seen in V1 first arises
in the retina or LGN [63]/65,79]. It was therefore interesting to see how nonlinear
suppression in the LGN might affect the size tuning of V1 in the Allen model. The
LGN was therefore modified from the original model to one which normalised the
computed firing rates via equations and Specifically, for each time step, the
firing rate of each cell was normalised based on the net LGN activity at that time.
The LGN was then driven with patch gratings, for which it shows a high degree of
size suppression, as seen in figure Similar tuning is also seen in V1, as shown in
figure [0.:24] This points to divisive normalisation as a possible option for modelling
nonlinear suppression in the Allen model.

SON-TF1 SON-TF2 sON-TF4 sON-TF8
54 * 1 10 4 e . 12.5 - . 1. ¥ .
4 . . . |10.0 : 30 ..
3 - o3 *l 7.5 1 * | 254
5 2I0 BID 2310 5 2I0 BID 2310 5 2I0 BID 2510 5 2I0 BID 2510
SOFF-TF1 SOFF-TF2 SOFF-TF4 SOFF-TF8
—_ ¥ . ¥ ® [ T e 7.5 L
§ 6 . 75 . 1.5 . . .
uﬁ_’. 5 20 80 240 5 20 80 240 5 20 80 240 5 20 80 240
b sOFF-TF15 tOFF-TF4 tOFF-TF8 tOFF-TF15
" |y . ¥ L) 1 = L
E 7.5 1 . - 7.5 " . 34 . - 2 . ]
L::' 507 T T - F 207 T T T 24 T T - T 1 T T T
5 20 80 240 5 20 80 240 5 20 80 240 5 20 80 240
sONsOFF-001 sONtOFF-001
20 . | s 12.5 A e .
., 10.0 ~
10 1 754 ° .

T T T T
5 20 80 240 5 20 80 240
Diameter (degrees)

Figure 9.23: Size tuning (blue) of one LGN neuron per cell class from the normalised
model. The spontaneous rate is marked by the grey line. The stimuli were patch
gratings with spatial and temporal frequencies of 0.04 cpd and 4 Hz.

Note however that the normalisation approach taken here is a simple one, used
primarily to demonstrate the suppressive effect and the fact that the property is
transferred to V1. Compared to the strong suppressive effect in figure and
experimental observations from mouse V1 suggest a weaker suppressive effect for
patch grating stimuli (see chapter|7)). This could for example be achieved by choosing
a higher value of 3 in equations and . Additionally, instead of summing
over all LGN cells in the denominator of equation (8.1)), a pool of cells could be chosen
based on for example proximity [70] or similarity between cells, effectively creating a
suppressive field for each neuron. This could be used to ensure that the response to
large patch gratings do not suppress the activity below the spontaneous rate in the
way demonstrated by the sON-TF1 cell in figure [0.23] For instance, a pool of cells
could be created, consisting of only cells with similar tuning and spontaneous rates
(e.g. other sON-TF1 cells).
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Figure 9.24: Size tuning of V1 neurons from the Allen model with normalised LGN
responses. The plots show average measurements over 20 trials of 3-second simula-
tions, with error bars representing the standard deviation. The visual stimuli were
patch gratings with spatial and temporal frequencies of 0.04 cpd and 4 Hz. Up to
ten neurons from each population are included, depending on the number of cells
within 70 pm of stimuli center. For the i5Htr3a class, there were no cells within this
radius. The different y-axes limits are chosen to show the tuning shape of all the
populations. For an overview of how the degree of activity vary between populations,
look to appendix figure for which the same scale is used for all subplots.

Alternatively, instead of applying the normalisation after computing the firing
rates, one approach is to perform normalisation directly on the linear output of the
receptive field, before applying the rectification . Bonin et al. used this to
model suppression in the LGN. In their description, however, the sum in the denom-
inator of equation is substituted with a suppressive field, which depends on the
standard deviation of contrast in the local region [70]. Hence a patch grating would
evoke nonlinear suppression in the model. This method has been shown to successfully
describe nonlinear properties of the cat LGN .

In addition to explaining nonlinear size suppression, divisive normalisation has
also been shown to describe the saturation of responses to increasing grating con-
trasts, and nonlinear suppression caused by masking (superimposing another stimuli
on the original one), both of which have been observed in the mammal LGN .
A number of mechanisms may underlie the processes which effectively normalise the
LGN responses, including, as described in section suppression inherited from
the retina, inhibition from other LGN cells or feedback from V1. While findings that
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70% of suppression in the cat LGN is accounted for by the retina [63] suggest the first,
stimulation of mouse V1 cells have been found to suppress LGN cells [80], implying
that both feedforward and feedback mechanisms are involved.

Limitations of the normalisation model

A critique of the normalisation description is that on its own it does not explain sur-
round facilitation in response to weak center stimuli [125], a phenomenon reported
by multiple studies [143l|144]. However, Cavanaugh et al. [73] argue that facilitation
from surrounding regions are in fact just excitatory responses from areas within the
classical receptive field with lower sensitivity to stimulation. In other words, stimula-
tion of these areas alone only gives subthreshold responses |73|. It is therefore possible
that the facilitatory effects are generated by a different mechanism than the suppress-
ive effect of the surround. Cavanaugh et al. [73] further show how facilitation from
peripheral regions can be effectively described using a contrast dependent receptive
field size, showing that facilitatory effects could be incorporated in a variation of the
normalisation model [73)].

Considering the V1 in particular, another limitation relates to findings of orienta-
tion dependent suppression in real mice [64]. For example, when presenting a center
patch grating surrounded by another grating, V1 suppression has been found to de-
pend on the orientation of the latter [64] (see section . In particular, weaker
suppression has been observed when the surround grating is oriented perpendicular
to the center grating, than when oriented along the same axis |64]. In contrast, the
suppression generated by normalising the Allen LGN responses is independent of ori-
entation. In fact, a lack of orientation selectivity of LGN suppression in the cat [70]
has been used to argue that LGN suppression is unable to fully account for suppres-
sion in V1, and that other areas must be involved. However, while the Allen LGN
cells are independent of orientation, orientation-tuning has been shown to be present
in the mouse LGN [52], although less so than in V1 [64]. One can therefore not
exclude the possibility that orientation specific suppression in V1 partly stems from
the LGN in mice. If so, orientation selectivity could be incorporated into LGN cells
by for example modifying the DoG filter to an elliptical shape, oriented along some
specified axis. In this case, the neurons contributing to suppression would have to
be sampled based on orientation preferences, rather than using the sum of all LGN
neurons like in equation .

Another property that is not described by the current model is delayed suppres-
sion. This delay has also been used to argue that other sources, besides the LGN, give
rise to suppression in V1 [145]. Different delays have been recorded for surround sup-
pression in V1 [145], including two separate delays found in the same study, indicating
that more than one mechanism is involved [64].

In addition, it has to be emphasised that normalisation is a descriptive model
which does not explicitly model the mechanisms behind nonlinear suppression. These
mechanisms could for example include inhibitory connections within LGN or feedback
from V1. To model these connections, one would have to replace the LNP filter with
a mechanistic cell model such as the GLIF cell. Recurrent connections could for
example be incorporated into an LGN network and adjusted to obtain suppression.
Such an LGN description has in fact been developed by Mobarhan et al. [146]. In
particular, the model is successfully able to generate surround suppression via network
properties [146]. The study therefore gives an idea for how a mechanistic alternative
to the Allen LGN could be implemented. That being said, a normalisation description
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may be further used to represent nonlinear suppression in the Allen LGN, and provide
insight into how the phenomena is transmitted to V1.
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Chapter 10

Temporal Frequency Tuning
of the Allen Model

In previous chapters, only the spatial tuning of the Allen model is explored. A
second defining property of a visual stimulus is its temporal attributes. Similarly
to other animals, mice are selective regarding the temporal features of stimuli, and
multiple experimental studies have mapped the temporal frequency tuning of mice
neurons [16,/116,120-122,/147].

In section a mathematical representation of a spatio-temporal receptive field
is presented. The structure of the temporal filter component gives rise to the temporal
tuning properties of the neuron. The Allen LGN cells, as described in section
consist of separable spatio-temporal filters, with a temporal kernel given by equation
, as illustrated in figure The kernel changes from positive to negative with
time since stimulus, 7. This gives a preference for stimuli where the luminosity at
a given location changes with time [50], for example drifting gratings. The optimal
temporal frequency of the grating further depends on the shape of the filter.

The individual cell class parameters of the temporal filters in the Allen LGN [12]
have been optimised on the basis of experimental cell recordings by Durand et al. [16]
and Piscopo et al. [52]. However, the Allen documentation does not so far include
tuning curves for all classes or the distributions of the preferred frequencies across
the complete LGN and V1 models. In the following, the temporal tuning curves of
the LGN and V1 cells will be presented. The tuning results are subsequently used to
create distributions of preferred frequencies across populations of cells. The temporal
selectivity of the Allen neurons are then compared to experimental findings.

The tuning properties were obtained using full-field drifting gratings of various
temporal frequencies (see method [8.3] and to drive the Allen model. Results for
the M1 model is presented in this chapter. However, the original and M1 models
were found to have the same temporal tuning (see appendix and . This is
because the LGN filters are spatio-temporally separable [12] (see section . Hence,
a modification of these spatial filters from single Gaussians (original model) to DoG
functions (M1 model) do not affect the temporal tuning.
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10.1 LGN

The tuning curves in figure show the firing rate dependence of LGN neurons on
the temporal frequency of a grating. One neuron of each cell type is presented. For
reference, the Allen model documentation includes a similar plot for the sON-TFS8
class [12], displaying the same frequency tuning as found for the sON-TF8 in figure
Peak frequencies for each cell type are shown in figure [10.2}

Note that although the preferred frequencies in general agree with what is indic-
ated by the cell class (e.g. TF1 denote a preference for 1 Hz), there is some incon-
sistency for the classes SON-TF1, sOFF-TF1, sOFF-TF2, sOFF-TF8 and tOFF-TFS.
This could be due to an actual difference in the models and the classes they were
based on [16], or it could be the result of different ways of measuring activity. Here,
the mean activity over time, FO0, is used, although some discrepancy was also found
when using F1 as a measure (appendix .
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Figure 10.1: Temporal frequency tuning of LGN neurons. One example neuron from
each cell class is included. The spontaneous rates are marked by the grey lines.

Figure gives the total distribution of preferred frequencies across all LGN
neurons. The median temporal frequency is 4 Hz, to which 48% (8385/17 400) of
cells responded optimally. In comparison, Durand et al. [16], whose findings are used
for fitting the LGN models, found that most cells responded optimally to 8 Hz in awake
mice vs 4 Hz in in anaesthetised mice. The study reported mean peak frequencies
of 6.27 Hz and 4.07 in the two states respectively. The values were obtained using
gratings of 1, 2, 4, 8 and 15 Hz, comparable to the values used here (1, 2, 4, 8, 15
and 30 Hz).

Others have also looked at temporal tuning in the mouse LGN, reporting optimal
frequencies of 3.8 Hz (mean) [113] and 3.2 Hz (median) [28]. However, both studies
used anaesthetised animals, which were found by Durand et al. [16] to prefer signific-
antly lower frequencies than the awake animal. If the Allen LGN is compared to the
awake animal only, the optimal frequencies of the model are skewed towards slightly
lower frequencies than in real mice.
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when driven by gratings of frequencies 1, 2, 4, 8, 15 and 30 Hz. 50 cells were analysed
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of the neurons showed a preference.
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Figure 10.3: Preferred temporal frequencies for all neurons in the LGN.

10.2 V1

Temporal frequency tuning curves for 10 neurons of each cell type are presented in
figure[10.4} The peak temporal frequencies of 50 neurons from each cell type is shown
in figure [10.5] To represent the full V1 network, the preferred frequencies of 1000
randomly sampled neurons are shown in figure In all cases, the unresponsive
neurons have been excluded from the analysis. The recorded cells all display band-
pass tuning, and nearly all V1 neurons prefer the temporal frequency of 4 Hz.

The study used for fitting Allen LGN parameters also includes recordings from V1
cells . They found that the proportion of V1 cells responding optimally decreases
with grating frequency, with mean preferred frequencies of 2.99 Hz (awake) vs 2.8
Hz (anaesthetised) |16]. A number of different preferred frequencies have also been
reported by other studies on mice V1 . Both anaesthetised and awake
mice have been used in these studies, though this was found by Durand et al.
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Figure 10.4: Temporal frequency tuning of V1 neurons in the M1 Allen model. Each
subplot shows 10 responsive neurons from the respective classes. Curves show the
mean over 20 trials of 3-second simulations, with error bars indicating the standard
deviation. The different y-axes limits are chosen to show the tuning shape of all the
populations. For an overview of how the degree of activity vary between populations,
look to appendix figure where the same scale is used for all subplots.

not to influence temporal tuning in V1. In one experiement, Niell and Stryker [123]
observed that neurons in LIV preferred significantly higher frequencies compared to
other layers, with a mean peak of around 4 Hz vs around 2 Hz. The overall median
peak frequency was found to be 1.68 Hz . LeDue, Zou and Crowder [121] re-
corded optimal frequencies in the range 0.25 - 8 Hz, with a mean of 1.77 Hz. Gao,
DeAngelis and Burkhalter [122] reported that about half the V1 neurons in LII/III -
LVI had low-pass properties, with a median preferred frequency of 1.2 Hz, while the
remaining neurons showed band-pass tuning, with a significantly higher median at 1.9
Hz. Van den Bergh et al. and Andermann et al. measured median optimal
frequencies of 3.4 Hz (all layers) and 3 Hz (LII/III) respectively. These reported peak
frequencies in V1 are, on average, lower than those reported from LGN [16][28][113].
Correspondingly, Durand et al. found that V1 preferred significantly lower fre-
quencies than LGN.

When comparing these recordings with the Allen V1, there is a shift towards lower
preferred frequencies in real mice, going from LGN to V1, which is not displayed by
the Allen model. In contrast, the Allen V1 cells have the same median peak frequency
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Figure 10.5: Optimal temporal frequencies of V1 neurons in the M1 Allen model. The
labels represents the different V1 classes. For each class, 50 cells are analysed, and
the preferred frequencies of the responsive neurons are shown. Gratings of temporal
frequencies 1, 2, 4, 8, 15 and 30 Hz are used as visual stimuli. The frequencies 1, 15
and 30 Hz, to which none of the selected neurons showed a preference, are omitted
from the figure. Preferred frequencies are based of mean firing rates over 20 trials of
3-second simulations.
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Figure 10.6: Preferred temporal frequencies for 877 responsive cells out of 1000 ran-
domly drawn V1 neurons from the M1 Allen model.

of 4 Hz as the Allen LGN. This could imply that the temporal tuning in the Allen V1
is largely determined by the temporal tuning of the Allen LGN. Similar results were
found for spatial frequency tuning in chapter [0 As a result, the optimal temporal
frequencies in the Allen V1 are higher than those observed in the real mouse V1.
The experimental studies also show that different V1 neurons display a range of
preferred frequencies. This variety is not exhibited by the V1 neurons in the Allen
model, which are relatively homogeneous (figure . The distribution of preferred
frequencies in the V1 model is substantially narrower than in the LGN model, with 80
% (704/877 respousive cells) preferring the 4 Hz grating, compared to 48 % (8385/17
400 responsive cells) in the LGN. This could be due to preferences inherited from
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the LGN cells averaging out, as several different LGN neurons transmit to each V1
cell. There is some dependence on temporal tuning preferences in the connectivity
between LGN and V1 in the Allen model, where some LGN classes are more likely to
be connected to certain V1 cell types [12]. However, LGN cells with different temporal
preferences still project the same V1 cells. As an example, one single neuron (id =
25515) receives input from LGN cells preferring the frequencies 1, 2, 4, 8, and 15
Hz |148]. Recurrent connections likely also influence the temporal selectivity in V1,
an effect which could be looked into by for example turning off recurrent connections
in V1 and repeating the temporal tuning analysis.

In summary, Allen V1 cells prefer higher temporal frequencies than in real mice.
While the LGN and V1 models have the same optimal frequency, real mice have a shift
towards lower preferred frequencies from LGN to V1. Furthermore, mice V1 display
a wider variety of optimal frequencies that the V1 model. The frequency tuning of
the Allen model can largely be explained by LGN preferences being transmitted to,
and averaging out in V1. Therefore, there may be network effects in the real mice
influencing the temporal tuning which are not accounted for by the model.
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Chapter 11

Summary, Conclusion and
Future Work

Spatial and temporal properties of the Allen model have been explored. Specifically,
spatial and temporal frequency tuning and size tuning of LGN and V1 cells have been
measured. For this, three types of visual stimuli have been used: full-field gratings,
patch gratings and flashing spots. The results have then been compared to findings
from experiments on real mice.

11.1 Size and Spatial Frequency Tuning

First, the behaviour of the original Allen model is considered. This is followed by a
discussion of the modified versions. The results from both models are compared to
experimental recordings. To make sure that modifications were based on consistent
experimental findings, a selection of relevant studies on real mice have been presented
in chapter [7}

11.1.1 Original model
LGN

The Allen model consists of two modules: the LGN and V1. The first step for
running simulations is to present visual input to the LGN. The resulting output is
then used to drive the V1 model. We start by considering the LGN responses. Since
the LGN cells are modelled as Linear-Nonlinear-Poisson filters, their behaviour is
largely that of a linear receptive field. In section the spatial tuning of such a field
is either derived or described for the relevant stimuli. In chapter [9] when looking at
simulation output from the Allen LGN, none of the analysed LGN cells showed size
suppression in response to flashing spots or patch grating stimuli. This is in contrast
to previous studies with flashing spots, which reported size suppression in a large
proportion of cells [52,[83/113]. Furthermore, all analysed Allen LGN cells showed
low-pass spatial frequency tuning, inconsistent with the band-pass tuning reported
by previous experiments [16}28,/52,/83,/113].

Both the low-pass tuning and lack of size suppression in the Allen LGN can be
explained by the fact that its receptive field consists of a simple 2D Gaussian function.
Since there is no on-off antagonism, there is no mechanism to cause preference for
stimuli which are non-uniform in space, as explained in section This agrees
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with the mathematical predictions of 5.3] Experimental studies, on the other hand,
found that LGN cells had receptive fields with on-off antagonisms in center-surround
structures [52,/83,/113].

Vi1

In contrast to the LGN, the Allen V1 comprises a network of GLIF neurons. Each
neuron may receive input from both LGN cells and other V1 cells. In addition, each
cell is subject to a constant background activity. The behaviour of V1 is therefore
more complex than that of LGN and not easily predicted. Nevertheless, similar spatial
frequency and size tuning was found in V1 and LGN. The analysed V1 cells showed no
surround suppression for either patch gratings or flashing spots. In contrast, studies
report that most cells showed size suppression for patch-gratings [481(64},/82,/115./116].
One study using flashing spots also found size suppression for a large proportion of
cells [117]. Looking at spatial frequency tuning, most Allen V1 cells showed low-
pass behaviour, with peak response at the lowest presented spatial frequency (0.005
cpd). Some V1 cells also preferred slightly higher frequencies, something which was
not seen in LGN. Since most inhibitory cells also showed low-pass tuning, inhibition
will be strongest at the lowest frequency. In some cases, this may cause another
cell’s activity to peak at higher frequencies, and could be the reason for the observed
variation in preferred frequencies. In comparison to the Allen V1, studies on real
mice found that the average cell showed spatial frequency tuning with band-pass
behaviour [16}/116,|118]. To summarise the results, the original Allen model show
low-pass tuning and fail to exhibit size suppression for both flashing spots and patch
gratings. There is therefore a discrepancy between measurements in the model and in
real mice, the latter which have been found to exhibit size suppression and band-pass
tuning.

11.1.2 M1 models
Motivation

As described above, the size and spatial frequency tuning of the original Allen model is
not consistent with that found in real mice. The further aim was therefore to make the
model more realistic in terms of these properties. Hence, modifications for reproducing
the phenomena in the model were explored. Since the differences observed between
the Allen V1 and real mice could potentially be due to the LGN input, the first step
was to look at the LGN. Accordingly, the LGN receptive fields, consisting of a center-
only structure, were replaced by the center-surround structure found in real mice.
The center-surround fields were represented by a DoG function, with the size of the
surround field chosen to give a median preferred spatial frequency of 0.08 cpd, equal
to that measured by Durand et al. |[16]. The center and surround amplitudes were
chosen to give maximum suppression, although realistically, the surround amplitude
may be about half that of the center, as the mean suppression index in LGN has been
measured to be 0.53 [83]. With this modification, the analytical linear prediction
of the cell responses, as presented in section follow experimental recordings by
exhibiting size suppression for uniform stimuli and band-pass spatial frequency tuning.
The next step was then to explore the effect of this modification on LGN and V1.
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LGN

The properties of the M1 model were measured by repeating the same simulations as
in the original model, both for LGN and V1. The M1 LGN cells showed band-pass
spatial frequency tuning, with preferred frequencies in the range 0.041 to 0.201 cpd.
Although the range is smaller, this is similar to the variation seen in real mice [16].
To create a wider range of preferred frequencies, the inhibitory surrounds of the DoG
filters can be chosen so that there is a larger variation in size. For the size tuning
measurements, the cells showed surround suppression for isoluminous flashing spots,
with a preferred size (~ 10°) similar to that measured in real mice [52,83]. For patch
grating stimuli, the cells showed mixed responses, depending on the stimulus spatial
frequency and the cell’s DoG parameters. Some neurons showed varying degree of
surround suppression, while some showed no surround effect. The LGN responses
were consistent with the analytical predictions of a DoG receptive field to the various
stimuli (full-field gratings, uniform spots and patch gratings).

V1

The M1 V1, like the M1 LGN, showed size suppression for flashing spots and band-
pass spatial tuning, with a median preferred frequency of 0.08 cpd. As in the original
V1, there was some variation in preferred frequency, although the majority of cells
preferred the grating with frequency of 0.08 cpd. In comparison, V1 cells in real
mice show a large variation in optimal spatial frequencies |16}/118]. For patch grating
stimuli, weak surround inhibition was found for spatial frequencies of 0.02 cpd, while
no suppression was seen for frequencies 0.04, 0.08, 0,12, 0.16 or 0.2 cpd. In contrast,
experimental findings of surround inhibition in V1 were found for gratings of various
spatial frequencies, including the preferred frequency of single cells [64}82}/115}/116],
which for the Allen M1 V1 was around 0.08 cpd. To make sure the lack of suppres-
sion was not due to the choice of DoG parameters, four DoG filters with different
parameters where tested, of which none showed surround suppression. To summarise,
the M1 model was able to reproduce band-pass tuning and surround suppression for
flashing spots. However, the model does not account for suppression in response to
patch gratings.

11.1.3 Origin of tuning properties in V1

Analytical solutions go a long way in explaining the observed properties of the Allen
model. As a filter model, the LGN largely follows the linear prediction of the spatial
receptive field function (section . Also in the V1 network, the tuning properties
are suggestive of a predominantly linear spatial summation. First, the cells show
either low-pass tuning and no size suppression (original model) or band-pass tuning
and size suppression for flashing spots (M1 model). This relationship between size
and frequency tuning is as described by linear spatial frequency analysis in section
Second, the M1 model show weak suppression for low spatial frequencies, and no
clear suppression for higher frequencies, which is similar to the behaviour of a DoG
filter [95] (see section [5.3.3). In fact, when looking at the LGN neurons relaying to a
single V1 cell, their receptive fields construct an almost center-surround structure.
For a single V1 neuron, there are two potential sources for influencing its tuning
properties: LGN input and recurrent connectionsﬂ While the results above makes

IEach V1 cell also receives a background input, but since the strength of this input is a constant

for each cell, this influence is not considered.
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it seem as if the receptive field of a V1 neuron is purely inherited from the LGN
neurons transmitting to it, many V1 neurons do not receive any LGN input, but
still respond to stimuli. Hence, the recurrent connections in V1 must necessarily also
play a role in shaping the cells’ receptive fields. To explore this effect, additional
size tuning simulations were run without recurrent connections in V1. The recurrent
connections in the Allen V1 did not seem to qualitatively influence the tuning curve,
except for giving rise to activity in otherwise silent neurons. This can be ascribed to
the connections primarily being between cells at similar horizontal positions (position
in the cortical plane). The connected V1 cells therefore have similar receptive fields,
causing the effect of the recurrent connections to primarily be a scaling of the size
tuning curve, rather than an influence on its shape. To summarise, the qualitative
tuning properties of V1 seem to be largely determined by the LGN input, while
recurrent connections have a limited role. As a consequence, the V1 tuning results
are similar to that of the LGN cells.

Although only the size tuning of V1 cells was measured without recurrent connec-
tions, it could be interesting to do the same for spatial frequency tuning. V1 and LGN
has the same mean optimal frequencies, however a lot less variation is seen across cells
in V1. Tuning measurements without recurrent connections could therefore be done
to check whether preferences average out due to network effects or because multiple
LGN cells project to each V1 cell. From here, one could look into ways of gener-
ating more variation of preferred frequencies in V1. One suggestion is to modify
the connections between LGN and V1, and consider the preferred spatial frequencies
when determining which LGN neurons should transmit to each V1 cell. Connections
could then be established mainly between cells of similar frequency tuning. Recur-
rent connections in V1 could also be adjusted according to the cells’ preferred spatial
frequencies.

11.1.4 Modelling nonlinear suppression

By exploring the M1 model, we have seen that center-surround receptive fields are
able to account for band-pass tuning and size suppression for flashing spots in LGN,
and that these properties are propagated further to V1. However, neither the original
nor M1 models describe the size suppression seen in V1 for patch gratings. A likely
explanation is that spatial summation in the Allen V1 seems predominantly linear,
which cannot fully account for the suppression seen in response to patch gratings (see
section . This type of suppression is therefore often referred to as nonlinear
suppression.

The understanding of nonlinear suppression and how it originates in real animals is
currently lacking [65], although recurrent connections and feedback inhibition between
and within the LGN and V1 are thought to play a role [741/76-79,/81L[149] (see section
[4.1.1). It has also been suggested that the mechanism first arises in the retinal ganglion
cells and is inherited by the LGN and V1 [63]. Nevertheless, the simulations from the
original and M1 Allen model indicate that there exists some nonlinear mechanisms
in the real mouse visual pathway which are not accounted for by the model. In
the following, different approaches for modelling nonlinear suppression are discussed.
This thesis explores one such method, divisive normalisation in LGN, as a way of
generating suppression for patch gratings. Other options involve modelling recurrent
connections in V1 or various feedback contributions, and will be suggested as potential
topics for further research.
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Divisive normalisation in LGN

Although no experimental studies on extraclassical surround inhibition were found
for mouse LGN, the property has been found in the LGN of other animals, such as
cats and monkeys [63}/65,/66,(79]. It was therefore interesting to explore how this
can be reproduced in the Allen LGN and in what way it affects size tuning in V1.
The LGN was modified to use a simple form of divisive normalisation, where the cell
activity at each time step was scaled according to the net sum of LGN activity at that
time, as given by equation . It was then shown that the resulting suppression is
propagated from LGN to V1.

This suggests LGN normalisation as an alternative for modelling nonlinear sup-
pression, although the form of normalisation would probably have to be adjusted to
make it more realistic. One option is to adopt a scheme similar to that presented by
Bonin et al. [70], where the response of a center-surround receptive field is divided
by that of a larger, suppressive field, before a rectification is applied to give the final
firing rates. This scheme has been shown to predict not only size suppression, but
other nonlinear effects such as response saturation with increasing contrast [70].

One limitation of modelling nonlinear suppression in the Allen V1 as completely
inherited from the LGN is the lack of orientation selectivity of the Allen LGN cells.
Suppression of grating stimuli in the mouse V1 is sensitive to orientation [64], and
although mouse LGN cells have been found to display some orientation selectivity [52],
the lack of similar selectivity in other mammal LGNs has been used to argue that
nonlinear suppression in LGN and V1 either arises partly independently [70] or at
least undergoes some sort of modification from the LGN to V1 [63]. Nevertheless,
a normalisation approach could be used to incorporate nonlinear effects in the Allen
LGN, and its effect on size tuning and possibly contrast saturation are interesting
topics to explore further.

While nonlinear suppression in LGN has been investigated for mammals such as
the cat [66,/70] and monkey [63], similar experiments in mice are currently lacking.
To be able to accurately compare the results of the Allen LGN with real mice, further
experimental studies are required. It could therefore be useful to look at size tuning
in response to for example patch gratings in the real mouse LGN, and compare the
results with the findings of this thesis.

Inhibition via recurrent connections in V1

Another option for introducing suppression in the Allen model is through recurrent
connections in V1. Rather than just describing observed results, this allows for model-
ling underlying physical mechanisms for suppression. Furthermore, properties which
are not here accounted for by normalising the LGN responses, such as delayed or
orientation dependent suppression, might be explained by V1 network effects. In
real mice, opinions about the role of horizontal intracortical connections in surround
suppression are divided. While some studies suggest connections are too short to ac-
count for size suppression 73], others have found evidence for long reaching horizontal
connections from excitatory cells to the inhibitory Sst class in LIT/III [115]. The in-
creased activity in Sst neurons with stimuli size, together with findings of suppression
in other cells types, suggest that inhibition from Sst neurons with increased stimuli
size could play a role in nonlinear suppression [115]. In relation to the Allen model,
horizontal connections from the E to Sst class could be extended to the same scale as
found by Adesnik et al. [115]. In addition, the synaptic strengths could be adjusted
so that, according to the findings by Adesnik et al. |115], the main driving force of
Sst cells would be E cells from the same layer. By making these modifications, one
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could explore if nonlinear surround suppression in the Allen V1 may be modelled in
a mechanistic way, using properties observed in the real mouse V1.

Feedback and feedforward contributions

Some studies suggest that suppression arises through interactions between different
areas in the visual pathway. For example, recordings have shown that stimulation of
V1 cells has the potential to suppress responses in LGN [80]. Cortical inactivation
has also been found to reduce LGN suppression [76H78|. Analogously, some studies
point to feedback from higher cortical areas as likely sources of V1 suppression [145].
Since the Allen model consist of separate LGN and V1 modules, potential feedback
effects were not explored in this thesis.

In the future, it could be interesting to replace the LGN filters with mechanistic
neuron models, and extend the Allen network to include an interaction between LGN
and V1. Similarly, Mobarhan et al. [146] has developed a network model for exploring
the effects of cortical feedback on LGN. The network successfully generated surround
suppression for both circular spots and patch gratings [146]. In future studies, the
model by Mobarhan et al. [146] could be used as a starting point for determining the
form of feedback connections in a modified Allen model. This feedback could include
connections from V1 to LGN, or input from cells representing higher cortical areas.

11.2 Temporal Frequency Tuning

In addition to looking at spatial tuning properties of the Allen model, the temporal
frequency tuning of the model was briefly explored. In the Allen model, LGN and
V1 have the same average peak temporal frequency of 4 Hz. When comparing with
experiments, there is a shift in preferred frequencies, going from LGN to V1 in real
mice, not observed in the Allen model [16]. The preferred frequencies of Allen V1 cells
were therefore higher than that observed experimentally [116}/120H123|. A suggestion
for further research is to explore mechanisms which could cause this shift. Niell and
Stryker [123] reported a significantly higher frequency preference in LIV compared to
other layers |123]. Recall that LIV is the main target of LGN input [36]. This suggests
the involvement of network effects within V1 or feedback from higher cortical areas
in the shift towards lower frequencies.

Furthermore, experiments show large variability in temporal selectivity across V1
cells [16,/121H123|. This is in contrast to the Allen V1 network, which is relatively
homogenous, with the vast majority of V1 cells preferring the same frequency of 4 Hz.
This similarity across cells was found for both spatial and temporal tuning, suggesting
less variety between cells in the Allen V1 network than in the real mouse. The LGN
model on the other hand, has a much broader range of preferred frequencies. In the
Allen model, established connections from LGN to V1 depend, to some degree, on
temporal tuning properties [12]. Specifically, some LGN classes are more likely to
be connected to certain V1 cells [12]. Still, multiple LGN cells preferring different
temporal frequencies project to the same V1 cells. This can lead to preferences of
LGN cells averaging out in V1. A connection scheme between LGN and V1 with a
higher selectivity of temporal tuning may give rise to more variation in V1. Recurrent
connections in V1 may also be adjusted to depend on temporal frequency preferences.
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11.3 Conclusion

In this project, selected properties of the Allen model have been explored. The
main focus has been on spatial tuning, namely spatial frequency tuning and size
tuning. In addition, the temporal frequency tuning of cells has been analysed. The
temporal tuning of LGN cells, developed and optimised according to experiments |16,
52|, was first mapped. The same tuning analysis was then done for V1, where optimal
frequencies were found to be somewhat higher than experimental values [16}/116/120-
123]. In addition, less variability was found in the Allen V1 than in experiments
[16,[121H123], something which also applied to the spatial tuning measurements.

Looking at the original Allen model, the spatial tuning results reveal inconsisten-
cies with experimental evidence on mice, namely lack of size suppression and primarily
low-pass tuning in both LGN and V1. Therefore, ways of improving the model were
considered. In order to make sure that the modifications were grounded in literat-
ure, multiple experiments on real mice were reviewed. This resulted in two different
approaches to modifying the model.

The first addressed the spatial structure of LGN receptive fields, which have been
reported to have a center-surround structure [52},/83}/113]. The receptive fields of the
Allen LGN model, in contrast, had center-only structures. In section we see how
a center-surround structure can account for properties such as band-pass tuning and
size suppression of uniform stimuli. Indeed, when modifying the LGN spatial fields
from Gaussian to DoG filters, these properties were generated in both LGN and V1.

For patch grating stimuli however, the first modification barely gave rise to size
suppression in V1, in contrast to what has been observed in mice [4864,82,/115.116].
For this, some form of nonlinear suppression had to be introduced into the model.
Hence, the LGN was modified to apply a simple divisive normalisation on the firing
rates. The resultant suppression generated in the LGN model was shown to propagate
to V1. Therefore, normalisation has potential as a descriptive model for nonlinear
suppression in the Allen LGN. However, properties of suppression in V1, such as
orientation selectivity [64] and different delays in onset [64L145], suggest the existence
of multiple mechanisms contributing to the suppression in V1.

Another potential source of nonlinear suppression is recurrent connections within
V1. In the Allen model, these connections are generally between cells with similar
receptive fields, and do not seem to give rise to either surround enhancement or
suppression. This is in contrast to one study, reporting long-reaching horizontal con-
nections from excitatory pyramidal cells to Sst neurons in LII/III, with the former
being the main source of input for the latter [115]. Adjusting the Allen V1 to integ-
rate these findings could therefore be an option for further exploration of nonlinear
suppression in Allen V1.

11.4 Further Research

Being a model based on real mice, the Allen model opens up opportunities to ex-
plore several properties and test the results against experiments. As the unanswered
questions in this thesis mainly concerns nonlinear suppression, a few suggestions for
exploring this property are made below. Suggestions for looking into spatial and
temporal tuning behaviour are also proposed.

e Based on findings by Adesnik et al. [115], one could extend horizontal connec-
tions from E cells to Sst cells in V1, and scale the synaptic strengths so that
horizontal connections from E cells becomes the main input to Sst cells. This can
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further be used to test if large Sst receptive fields could introduce suppression
in other V1 neurons.

Further develop the normalisation model for nonlinear suppression in LGN, for
example by integrating a suppressive field in combination with a center-surround
structure, according to the scheme proposed in |70].

Measure size tuning in real mice LGN in response to patch gratings of multiple
spatial frequencies. Findings can then be compared to the behaviour of the Allen
LGN, so that a more accurate model of possible nonlinear LGN suppression can
be developed, for example in the form of divisive normalisation.

Model contributions of feedback on surround suppression in LGN and V1. One
could look into ways of modelling feedback from V1 or from higher cortical
areas. A network model of LGN, developed by Mobarhan et al. [146], has been
used to model the effect of cortical feedback on surround suppression. This
description could therefore be used as a starting point for determining how to
best model feedback effects in a modified version of the Allen model.

Look for ways to increase the variation in V1 cells regarding spatial and temporal
frequency tuning. The model could first be driven without recurrent connections
for determining to what extent LGN input and network effects influence the
frequency tuning. Connections within V1 or between LGN and V1 could then
be adjusted according to the cells preferred frequencies.

Look into sources of the experimentally observed shift towards lower preferred
frequencies when going from LGN to V1 in real mice. The next step would be
to explore how the Allen model could be modified to reproduce this behaviour.
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Appendix A

Derivations of Filter
Responses

Response to full-field grating

The spatial frequency tuning of the DoG filter in equation can be found from
integral The full-field drifting grating stimuli is described by equation 7
where the contrast, A, is set to unity. Substituting for the stimulus and spatial filter,
the integral becomes

o=/ Oo/_oo/ Dy(r) cos(lkz — w(t — 7))

y {ce (o) /207 _ f“se<m2+y"‘>/za.’:} drddy.

2mo2 2ro2

(A1)

Expressing cos(kz — w(t — 7)) as Re {e!**=%(=7)1 and extracting the terms inde-
pendent of the spatial coordinates, this can be simplified to

7110.) — (T 0'2
L(t) =Re t/_ / [27r02 (@?+y?)/207

_ Ase(m?+y2)/2as] e“””dxdy}

2
2mos

(A.2)

where A(w) represents the integral over 7, which is the contribution of the temporal
kernel. The integral over y is a standard Gaussian integral [150, p. 155], giving

L(t) = Re{ Afw)e™t /

T=—00

T=00

A 25 2
€ T /207
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Furthermore, A(w) can be written as a complex number, |A(w)| ), with magnitude
|A(w)| and phase f(w). The remaining integral over x can be solved using a Fourier

(A.3)
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transformation |150, p. 168], which gives the result
L(t) = Re{ Aw)| ei‘)(w)e*iwt} [Ace*k%iﬂ
_ Ase*k%f/?].
= |A(w)| cos(wt — O(w)) [Ace—kzaiﬂ (A4)
_ Ase’k%?/z]
— Ly(t)L..

This equation describes the response of the DoG filter to the grating stimuli. The
spatial frequency tuning is defined by the term in square brackets. The temporal
dependency is an oscillatory cos-term depending on the temporal frequency of the
grating. For A, = 0, the DoG filter reduces to a single Gaussian filter, and the
response becomes

L(t) = |A(w)] Ace™¥7/2 cos(wt — O(w)). (A.5)

The spatial frequency tuning of equation (A.4]) and (A.5|) correspond to Ls in equation
(5.9) and respectively.

Response to an isoluminous spot

The response of a DoG filter to an isoluminous spot can be derived from the integral
The limits on the integral will now define the radius of the circle. For maximum
luminance, the stimulus S(z,y,t — 7) is equal to one. Substituting the DoG filter
for the spatial kernel and changing to polar coordinates, one gets
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—o |2mo? 2o
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S

(A.6)

S

where a is the radius of the spot. The second integral can be solved by using the
substitution u = r2, giving

L(t) [Ac(l — e /290y A (1 - e_“2/2"§)} (A7)
which is the equation (5.12). A single Gaussian spatial filter has A; = 0, so that the
result is reduced to

L(t) [(1 e /%c)} : (A.8)
that is, equation (5.11)).
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Appendix B

Figures

B.1 Original Allen Model

B.1.1 Spatial frequency tuning - full-field gratings
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Figure B.1: Spatial frequency tuning of two neurons in the original Allen LGN model.
The analytical solution from equation (grey line) and simulated results (black
dots) are compared. The neurons have receptive field sizes defined by equation ,
with ¢ = 2.44° (a) and o = 1.56° (b). The neuron ids and classes are 24, sSON-TF8

(a) and 2775, sON-TF4 (b).
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Figure B.2: Spatial frequency tuning curves of ten randomly selected SONsOFF neur-
ons, obtained from LGN simulations. The sONsOFF have receptive fields consisting of
two Gaussians filters (equation ) of opposite polarity, separated by a few degrees.
Each subfilter has o = 2°.
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Figure B.3: Spatial frequency tuning curves of ten randomly selected sSONtOFF neur-
ons in the LGN, obtained from simulations. The SONtOFF have receptive fields con-
sisting of two Gaussians filters (equation ) of opposite polarity, separated by a
few degrees. Each subfilter has o = 3°.
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Figure B.4: Spatial frequency tuning of original LGN neurons, quantified by the
normalised FO (cyan) and F1 (dark blue) responses. The stimuli were full-field drifting
gratings with a temporal frequency of 4 Hz.
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Figure B.5: Spatial frequency tuning of original V1 neurons, quantified by the nor-
malised FO (cyan) and F1 (dark blue) responses. The stimuli were full-field drifting
gratings with a temporal frequency of 4 Hz. Curves show the mean over 20 trials of
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Figure B.6: Spatial frequency tuning of V1 neurons in the original Allen model.
Each subplot shows 10 responsive neurons from the respective classes. The stimuli
were a full-field drifting gratings with temporal frequency of 4 Hz. Curves show the
mean over 20 trials of 3-second simulations, with error bars indicating the standard
deviation.
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B.1.2 Size tuning - flashing spots

Vi
ilHtr3a
25 -
' 1 11
e e
5 20 80 240
e23 i23Htr3a i23Pvalb i235st
254 25 1 25 , ; | 25 A e
(¥
@ : Y/ aatmant. S ==C
2 ol o b——— o ol
U 5 20 80 240 5 20 80 240 5 20 80 240 5 20 80 240
= ed i4Htr3a i4Pvalb i4Sst
W
w 25 25 1 25 A 25
ZEEn
o 0+ ? e 0 =f ! T .f 0+ T T 0-— T T
E 5 20 80 240 5 20 80 240 5 20 80 240 5 20 80 240
= e5 (i5Htr3a) i5Pvalb i5Sst
=
3 25 25 4 bty 25
= B S
0 Tt 0t o ; —
5 20 80 240 B ) 5 20 80 240 5 20 80 240
eb i6Htr3a i6Pvalb i65st
14
25 25 A 25 Lo 251
e g i
0+ — 1 0 B —| Q- T T 0 + T T
5 20 80 240 5 20 80 240 5 20 80 240 5 20 80 240

Diameter (degrees)

Figure B.7: Size tuning in the original V1 for white flashing spots of 75 ms duration.
Up to ten neurons from each population are included, depending on the number of
cells within 70 pm of stimuli center. For the i5Htr3a class, there were no cells within
this radius. The measurements show mean responses over 20 trials, with error bars
representing the standard deviation.
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B.1.3 Size tuning - patch gratings
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Figure B.8: Size tuning of original LGN neurons, quantified by the normalised FO
(cyan) and F1 (dark blue) responses. The stimuli were patches of drifting grating
with temporal and spatial frequencies of 4 Hz and 0.04 cpd.
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Figure B.9: Size tuning of original V1 neurons, quantified by the normalised FO
(cyan) and F1 (dark blue) responses. The stimuli were patch grating with spatial and
temporal frequencies of 0.04 cpd and 4 Hz.
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Figure B.10: Size tuning of V1 neurons for patch grating stimuli in the original
Allen model. Up to ten neurons from each population are included, depending on
the number of cells within 70pm of stimuli center. For the i5Htr3a class, there were
no cells within this radius.
bars showing the standard deviation. The patch gratings had spatial and temporal
frequencies of 0.04 cpd and 4 Hz.
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B.2 M1 Allen Model

B.2.1 Spatial frequency tuning - full-field gratings
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Figure B.11: Spatial frequency tuning for two neurons from the M1 LGN model. The
analytical solution from equation (grey line) and simulated results (black dots)
are compared. The neurons have receptive fields defined by equation . (a) The
neuron (id = 24, type = sON-TF8) has receptive field size with o, = 2.44°. (b) The
neuron (id = 2775, type = sON-TF4) has a receptive field size with o, = 1.56°.
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Figure B.12: Spatial frequency tuning curves of ten randomly selected sONsOFF
neurons, obtained from LGN simulations. The vertical black line indicates the pre-
dicted preferred spatial frequency obtained when treating the neurons as a single ON
or OFF cell with a circular receptive field. This value (0.067 cpd) is used as the
estimated optimal frequency of the sONSOFF cells in histogram section [9.2.3]
The sONsOFF neurons have receptive fields consisting of two DoG filters (equation
) of opposite polarity, separated by a few degrees. Each subfilter has o. = 2°.
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Figure B.13: Spatial frequency tuning curves of ten randomly selected sONtOFF
neurons in the LGN. The curves show results from model simulations, while the ver-
tical black line shows the analytical approximation used to map the preferred spatial
frequencies of all LGN cells in histogram section This value (0.045 cpd) is
the peak frequency obtained analytically when treating the neurons’ receptive fields
as a single, circular region. The sONtOFF neurons have receptive fields consisting
of two DoG filters (equation ) of opposite polarity, separated by a few degrees.
Each subfilter has o, = 3°.
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Figure B.14: Spatial frequency tuning of M1 LGN neurons, quantified by the nor-
malised FO (cyan) and F1 (dark blue) responses. The stimuli were full-field drifting
gratings with a temporal frequency of 4 Hz.
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Figure B.15: Spatial frequency tuning of M1 V1 neurons, quantified by the normalised
FO (cyan) and F1 (dark blue) responses. The stimuli were full-field drifting gratings
with a temporal frequency of 4 Hz. Curves show the mean over 20 trials of 3-second
simulations, with error bars indicating the standard deviation.

135



i1Htr3a

50
ol a3 =] 1
0.0 0.2 -
e23 i23Htr3a i23Pvalb i23Sst
50 50 50 50
+
My
— . ) P == o, ¥ : t
é ola_nl = 0lg .:on- OIL-"'!I;i_i_- Olll i!?.!-.
5 0.0 0.2 0.0 0.2 0. 02 0. 02
2 ed i4Htr3a i4Pvalb i4Sst
2 5p 50 50 50
W +
[ A
* * + ¥ B
g’ 0 |“‘ i 1 o4 e Y . 0 Lt ! s i !I'l il | 0 I_L et T
& 00 0.2 0.0 0.2 00 02 0.0 02
H e5 iSHtr3a i5Pvalb i5Sst
8]} _ i i i
2 50 50 50 ~y 50
4 t
e +
* l 3 ! + + t * + * .
H H : -y, 3 - -
Pr=====| 04 =" . 0 If S 55 B — 0l 3 =2
0.0 0.2 0.0 0.2 0.0 0.0 0.2
eb i6Htr3a i6Pvall i6Sst
50 50 50 [ 50
L)
a +
. N i a,
— b . i
0¥ — T 0 . T 0 |Li L = i 0L i
0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2

Spatial frequency (cpd)

Figure B.16: Spatial frequency tuning of V1 neurons in the M1 Allen model. Each
subplot shows 10 responsive neurons from the respective classes. The stimuli were full-
field drifting gratings with a temporal frequency of 4 Hz. Curves show the mean over
20 trials of 3-second simulations, with error bars indicating the standard deviation.
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B.2.2 Size tuning - flashing spots
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Figure B.17: Size tuning of eight ON-neurons in the M1 LGN, driven by 300 ms
flashes of white spots. The tuning of one example neuron from each cell class is
shown. The spontaneous rate of each neuron is indicated by the grey horizontal line.
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Figure B.18: Size tuning of eight OFF-neurons in the M1 LGN, driven by 300 ms
flashes of white spots. The tuning of one example neuron from each cell class is shown.
The spontaneous rate of each neuron is indicated by the grey horizontal line.
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Figure B.19: Size tuning of V1 neurons from the M1 Allen model, using 75ms flashes
of white spots as stimuli. Up to ten neurons from each population are included,
depending on the number of cells within 70 pm of stimuli center. For the i5Htr3a class,
there were no cells within this radius. The measurements show mean response over
20 trials of 3-second simulations, with error bars representing the standard deviation.
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Figure B.20: Size tuning of V1 neurons from the M1 Allen model, using 300 ms
flashes of white spots as stimuli. Up to ten neurons from each population are included,
depending on the number of cells within 70 pm of stimuli center. For the i5Htr3a class,
there were no cells within this radius. The measurements show mean response over
20 trials of 3-second simulations, with error bars representing the standard deviation.
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B.2.3 Size tuning - patch gratings
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Figure B.21: Size tuning for one example neuron of each class in the M1 LGN. The
stimuli were patch gratings with spatial and temporal frequencies of 0.02 c¢pd and 4
Hz. The spontaneous rate of the cell is marked by the grey line.
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Figure B.22: Size tuning for one example neuron of each class in the M1 LGN. The
stimuli were patch gratings with spatial and temporal frequencies of 0.08 cpd and 4
Hz. The spontaneous rate of the cell is marked by the grey line.
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Figure B.23: Size tuning for one example neuron of each class in the M1 LGN. The
stimuli were patch gratings with spatial and temporal frequencies of 0.12 cpd and 4
Hz. The spontaneous rate of the cell is marked by the grey line.
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Figure B.24: Size tuning for one example neuron of each class in the M1 LGN. The
stimuli were patch gratings with spatial and temporal frequencies of 0.16 cpd and 4

Hz. The spontaneous rate of the cell is marked by the grey line.
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Figure B.25: Size tuning for one example neuron of each class in the M1 LGN. The
stimuli were patch gratings with spatial and temporal frequencies of 0.2 c¢pd and 4

Hz. The spontaneous rate of the cell is marked by the grey line.

142



SON-TF1 SON-TF2 sON-TF4 sON-TF8

1.0 4 . & v v &% 104 s ¥ v w9 104 3 1.0 + (3

- " " 5 5 8 o - & ® &8
. . .
0.5 0.5 051 0.5
5I 2I0 SID 24'0 5 ZID BID 20:0 5 2I0 SID 2&0 5 ZID BID 20:0
SOFF-TF1 SOFF-TF2 SOFF-TF4 SOFF-TF8
1.0 4 s & &% 1.0 7 & v &% 104 s %% 1.0 . ¥ v ¥
-~ g .
2054 094 * |
gosq 08, ) 0.5,
[3] u T T T t T T T u T T T t T T T
: 5 20 80 240 5 20 80 240 5 20 80 240 5 20 80 240
2 SOFF-TF15 tOFF-TF4 tOFF-TF8 tOFF-TF15
@© 1.0 o o 99 L00 ] —+ o & o9 10 o o o% 100 , * * v
@ ¥
o .
0.5 0.75 ¢ 0.75 1
* T T T ; T T  0.5-% T T T ; T T T
5 20 80 240 5 20 80 240 5 20 80 240 5 20 80 240
sONsOFF-001 sONtOFF-001
1.0 4 . —% &8 104 . & # ® F8
0.5 1
Y 0513
5 20 80 240 5 20 80 240

Diameter (degrees)

Figure B.26: Size tuning of M1 LGN neurons, quantified by the normalised F0 (cyan)
and F1 (dark blue) responses. The stimuli were patch gratings with spatial and
temporal frequencies of 0.08 cpd and 4 Hz.
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Figure B.27: Size tuning of M1 V1 neurons, quantified by the normalised F0 (cyan)
The stimuli were patch gratings with spatial and
temporal frequencies of 0.08 cpd and 4 Hz. The neurons are selected from within
70pm of stimulus center. For the iSHtr3a class, there were no cells within this radius.
The mean F1 and FO responses are calculated over 20 trials for 3-second simulations.
Error bars show the standard deviation of the mean.

and F1 (dark blue) responses.
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Figure B.28: Size tuning of V1 neurons from the Allen M1 model. The stimuli were
patch gratings with spatial and temporal frequencies of 0.02 cpd and 4 Hz. Up to ten
neurons from each population are included, depending on the number of cells within
70pm of stimulus center. For the i5Htr3a class, there were no cells within this radius.
The mean is calculated over 20 trials for 3-second simulations. Error bars show the
standard deviation of the mean.
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Figure B.29: Size tuning of V1 neurons from the Allen M1 model. The stimuli were
patch gratings with spatial and temporal frequencies of 0.04 cpd and 4 Hz. Up to ten
neurons from each population are included, depending on the number of cells within
70nm of stimulus center. For the i5Htr3a class, there were no cells within this radius.
The mean is calculated over 20 trials for 3-second simulations. Error bars show the
standard deviation of the mean.
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Figure B.30: Size tuning of V1 neurons from the Allen M1 model. The stimuli were
patch gratings with spatial and temporal frequencies of 0.08 c¢pd and 4 Hz. Up to ten
neurons from each population are included, depending on the number of cells within
70pum of stimulus center. For the i5Htr3a class, there were no cells within this radius.
The mean is calculated over 20 trials for 3-second simulations. Error bars show the
standard deviation of the mean.
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Figure B.31: Size tuning of V1 neurons from the Allen M1 model. The stimuli were
patch gratings with spatial and temporal frequencies of 0.12 cpd and 4 Hz. Up to ten
neurons from each population are included, depending on the number of cells within
70pm of stimulus center. For the i5Htr3a class, there were no cells within this radius.
The mean is calculated over 20 trials for 3-second simulations. Error bars show the
standard deviation of the mean.
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Figure B.32: Size tuning of V1 neurons from the Allen M1 model. The stimuli were
patch gratings with spatial and temporal frequencies of 0.16 cpd and 4 Hz. Up to ten
neurons from each population are included, depending on the number of cells within
70pm of stimulus center. For the i5Htr3a class, there were no cells within this radius.
The mean is calculated over 20 trials for 3-second simulations. Error bars show the
standard deviation of the mean.
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Figure B.33: Size tuning of V1 neurons from the Allen M1 model. The stimuli were
patch gratings with spatial and temporal frequencies of 0.2 cpd and 4 Hz. Up to ten
neurons from each population are included, depending on the number of cells within
70pum of stimulus center. For the i5Htr3a class, there were no cells within this radius.
The mean is calculated over 20 trials for 3-second simulations. Error bars show the
standard deviation of the mean.
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B.3 DoG Filters with Various Parameters

Size tuning for patch grating in V1

) | s A =A;=12 0.=50;
¥ 6 } | Ac=A;=1.06,0;=

¢ ) $ . c=As=1.06, 0 =100,
]

% 54 T * Ac=A;=1,0,=500,
n 4l g o A;=15,A;=0.5A;, 0;=2.450,
g

i

o 31 .

£

E 24 -

E *

o 1

=

5 10 20 0 80 160 240

Diameter (degrees)
Figure B.34: Size tuning of a V1 neuron (id = 25515, type = e5). The labels show
the parameters used for the DoG filters (equation (5.6))) in the LGN, which is used to
drive the V1 model. Patches of drifting grating with spatial and temporal frequencies

of 0.04 cpd and 4 Hz were used as stimuli. The mean is calculated over 20 trials for
3-second simulations. Error bars show the standard deviation of the mean.
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Figure B.35: Size tuning of a V1 neuron (id = 99626, type = e4). The labels show
the parameters used for the DoG filters (equation (5.6)) in the LGN, which is used to
drive the V1 model. Patches of drifting grating with spatial and temporal frequencies
of 0.04 cpd and 4 Hz were used as stimuli. The mean is calculated over 20 trials for
3-second simulations. Error bars show the standard deviation of the mean.
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Figure B.36: Size tuning of a V1 neuron (id = 109331, type = i23Htr3a). The labels
show the parameters used for the DoG filters (equation (.6))) in the LGN, which is
used to drive the V1 model. Patches of drifting grating with spatial and temporal
frequencies of 0.04 cpd and 4 Hz were used as stimuli. The mean is calculated over 20
trials for 3-second simulations. Error bars show the standard deviation of the mean.
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Figure B.37: Size tuning of a V1 neuron (id = 109362, type = i23Htr3a). The labels
show the parameters used for the DoG filters (equation ) in the LGN, which is
used to drive the V1 model. Patches of drifting grating with spatial and temporal
frequencies of 0.04 cpd and 4 Hz were used as stimuli. The mean is calculated over 20
trials for 3-second simulations. Error bars show the standard deviation of the mean.
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B.4 V1 Without Recurrent Connection

Size tuning with patch gratings
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Figure B.38: Size tuning for cells in the M1,ec V1 model. No response is generated
by cells in the Sst and Htr3a classes in LII/III - LVI. These are the classes which do
not receive LGN input. The i23Pvalb, i6Pvalb and E6 cells generate either weak or
no activity. Most activity is seen for the i1Htr3a, i4Pvalb, i5Pvalb, and e4 cells. The
tuning is measured in response to patch gratings with spatial and temporal frequencies
of 0.08 cpd and 4 Hz. Up to ten neurons from each population are included, depending
on the number of cells within 70pm of stimulus center. For the i5Htr3a class, there
were no cells within this radius. The mean is calculated over 20 trials for 3-second
simulations. Error bars show the standard deviation of the mean.
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Figure B.39: Comparison of size tuning for two versions of the M1 V1 model: with
(black) and without (red) recurrent connections. The tuning is measured in response
to patch gratings with spatial and temporal frequencies of 0.08 cpd and 4 Hz. Six
excitatory neurons is included from each layer, from LII/III to LVI. The mean is
calculated over 20 trials for 3-second simulations. Error bars show the standard
deviation of the mean.
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Figure B.40: Comparison of size tuning for two versions of the M1 V1 model: with
(black) and without (blue) recurrent connections. The tuning is measured in response
to patch gratings with spatial and temporal frequencies of 0.08 cpd and 4 Hz. Six
inhibitory neurons is included from each layer, from LI to LVI. The mean is calculated
over 20 trials for 3-second simulations. Error bars show the standard deviation of the
mean.
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B.5 Modelling nonlinear suppression
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Figure B.41: Size tuning of V1 neurons for the Allen model with normalised LGN
responses. The visual stimuli were increasing sizes of patch gratings with spatial and
temporal frequencies of 0.04 cpd and 4 Hz. Up to ten neurons from each population
are included, depending on the number of cells within 70um of stimulus center. For
the i5Htr3a class, there were no cells within this radius. The mean is calculated over

20 trials for 3-second simulations.
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B.6 Temporal frequency tuning
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Figure B.42: Temporal frequency tuning of LGN neurons. The normalised tuning
curves of the original (orange) and M1 (purple) model overlap. Full-field drifting
gratings with spatial frequencies of 0.04 cpd (original) and 0.08 cpd (M1) are used as
stimuli.
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Figure B.43: Peak temporal frequencies LGN neurons, measured by their F1 re-
sponses. The stimulus is a full-field drifting grating, with spatial frequency of 0.08
cpd and temporal frequencies 1, 2, 4, 8, 15 and 30 Hz. 50 cells were analysed for each
class. Not included in the figure are frequencies 1 and 30 Hz, to which none of the of
the neurons showed a preference.
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Figure B.44: Temporal frequency tuning of M1 LGN neurons, quantified by the nor-
malised FO (cyan) and F1 (dark blue) responses. The stimuli is a full-field drifting
grating with spatial frequency of 0.08 cpd.
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Figure B.45: Temporal frequency tuning of V1 neurons. The normalised tuning curves
of the original (orange) and M1 (purple) model overlap. Full-field drifting gratings
with spatial frequencies of 0.04 cpd (original) and 0.08 cpd (M1) are used as stimuli.
Curves show the mean over 20 trials of 3-second simulations, with error bars indicating
the standard deviation.
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Figure B.46: Temporal frequency tuning of M1 V1 neurons, quantified by the norm-
alised FO (cyan) and F1 (dark blue) responses. The stimuli used are full-field drifting
gratings with a spatial frequency of 0.08 cpd. Curves show the mean over 20 trials of
3-second simulations, with error bars indicating the standard deviation.
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Figure B.47: Temporal frequency tuning of V1 neurons in the M1 Allen model. Each

subplot shows 10 responsive neurons from the respective classes. The stimuli used
are full-field drifting gratings with a spatial frequency of 0.08 c¢pd. Curves show the
mean over 20 trials of 3-second simulations, with error bars indicating the standard

deviation.
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Appendix C

Code

The main code written for this thesis is available through GitHub at https://github.
com/lenamyk/Exploring_the_Allen_model. The repository provides code used for
analysis, creating visual input, and for creating the M1 and M2 models based on
the original LGN. The modified files are included, along with an overview of the
modifications made to each script. The original Allen model is available from: https:
//www .dropbox.com/sh/xb7xasih3d8027u/AAAbKXe0Zmk8603_y1iPVPCLa?d1=0.

C.1 Example Code

Below, three scripts showing the main calculations for this thesis is demonstrated.
The first presents how the preferred spatial frequencies of LGN cells were calculated
from their receptive field parameters. The second and third demonstrate how firing
rates and tuning curves were obtained from simulation outputs.

Calculate preferred spatial frequencies of LGN cells

Receptive field sizes are first loaded in for each LGN cell from a list of the “spatial
size” parameter for each LGN cell. Here the list is contained in spatialfilter.csv,
a subset of the file 1gn_full col _cells_3. csvﬂ The preferred spatial frequencies are
then computed for all LGN cells, based on the analytical formula for spatial frequency
tuning of a DoG filter (equation (5.9)).

#!/usr/bin/env python2
# —*- coding: utf-8 —*-

nimnn

Parameters
nu : spatial frequency
k: wavevector
Ac: amplitude of center Gaussian
As: amplitude of surround Gaussian
spatial_sizes: receptive field sizes
defined by the Allen model <in

1See [112] for link to 1gn full col cells_3.csv.
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"LGN/LGN/lgn_full_col_cells_3.csv"
sigma_c: width of center Gaussian
defined in the Allen model as the spatial size divided by 3
sigma_s: width of surround Gaussian

sc: scaling factor for determining sigma_s
mmnn

import numpy as np

import matplotlib.pyplot as plt
import math

import pandas as pd

Ac = 1.73
As = 1%*Ac
sc = 2.45

spatial_sizes = pd.read_csv('spatialfilter.csv', delimiter='\t')
sigma_c = spatial_sizes.values/3
sigma_s = sc*sigma_c

nu = np.arange(0, 1, 0.001)

k = nu*2*np.pi

mean_f = np.zeros(len(peaks),len(k)) # mean frequency response
peaks = np.zeros(len(sigma_c)) # preferred frequency

# Calculate spatial frequency tuning for each cell:
for i in range(len(peaks)):
ind = 0

for j in k:
mean_f [i,ind] = (Ac*math.exp((-j**2 xsigma_c[i]**2)/2)
- As*math.exp((-j**2 *(sigma_s[i])**2)/2))
ind = ind + 1

peaks_ind = np.argmax(mean_f[i,:])
peaks[i] = nul[peaks_ind]

# Plot preferred frequencies:
plt.hist(peaks,
bins=250,
weights=np.zeros_like(peaks) + 1/peaks.size,
range=(0, 0.25))
plt.xlabel('Spatial frequency (cpd)')
plt.ylabel('Fraction of cells')

# Find median, minimum and mazimum preferred frequency:
median = np.median(peaks)
minimum = np.amin(peaks)

maximum = np.amax(peaks)
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Calculate firing rates of LGN cells

Firing rates from LGN simulations were analysed for multiple neurons. The script
below shows how firing rates for an example neuron were calculated and plotted as
size tuning curves. The same methods were used for spatial and temporal frequency
tuning. Scripts for the three cases are available on GitHub [}

#!/usr/bin/env python3
# —*- coding: utf-8 —*-

mnnn

Parameters

neuron_id: neuron to be analysed

simlength: length of simulation (ms)

tsteps_per_sec: temporal resolution (time steps per seconds)
tf: temporal frequency (Hz)

sf: spatial frequency (cpd)

tuning_array: set of stimult diameters for the tuning curve
normalise_rates: set to 'True' <f rates should be normalised
stim_type: type of stimuli, set to either 'flash' or 'grating'
grat_interval: measurement window for grating stimult

flash_interval: measurement window for flashing stimuli
mmnn

import hbpy
import numpy as np
import matplotlib.pyplot as plt

neuron_id = 8018

simlength = 3000
tsteps_per_sec = 1000
tf = 4

sf = 0.04

tuning_array = np.array([5,10,20,40,80,160,240])
normalise_rates = False

stim_type = 'grating'

grat_interval = 1000

flash_interval = 1200

# Firing rates (FO and F1) for each stimuli size:
mean_FO0 = np.zeros(len(tuning_array))
mean_F1 = np.zeros(len(tuning_array))

for i in range(len(tuning_array)):

2 Code for calculating and visualising firing rates for size tuning, spatial frequency tuning and tem-
poral frequency tuning: https://github.com/lenamyk/Exploring_the_Allen_model/tree/master/

code_and_analysis/analyse_simulation_output
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# Read in firing rates from an example LGN output file:

f = hbpy.File('LGN/m1/%spix/3s_0.2gray_155d_4tf_0.04cpd.h5" \
% (tuning_array[il), 'r')

fr = f['firing_rates_Hz']

t = f['time']

fr = np.asarray(fr)

t = np.asarray(t)

time = np.arange(len(fr([1, :]1))

ids = np.arange(len(fr[:, 1]1))

# Set measurement window:

if stim_type == 'grating':
interval = grat_interval
elif stim_type == 'flash':

interval = flash_interval
period_start = int(simlength/2)
period_end = period_start + interval

# Calculate F1:

if stim_type == 'grating':
signal = fr[neuron_id,period_start:period_end]
ff = np.fft.fft(signal)
ff_freq = np.fft.fftfreq(signal.size)*tsteps_per_sec
amplitude_spectum = np.abs(ff)*2/(period_end - period_start)
amp_ind = np.where(ff_freq == tf)
mean_F1[i] = amplitude_spectum[amp_ind]

# Calculate time average (or FO):
mean_FO[i] = np.mean(fr[neuron_id, period_start:period_end])

# Normalise firing rates:
if normalise_rates and stim_type == 'grating':
mean_FO = mean_FO/np.amax(mean_FO)
mean_F1 = mean_F1/np.amax(mean_F1)
ylab = 'Relative activity'
else:
ylab = 'Firing rate (spikes/sec)'

# Plot firing rates as a function of stimulil size:

if stim_type == 'grating':
plt.plot(tuning_array, mean_F1, linestyle='-', marker='.',
linewidth=0.2, c='mediumblue', label='F1')
plt.plot(tuning_array, mean_FO, linestyle='-', marker='.',
linewidth=0.2, c='tab:cyan', label='F0')
else:
plt.plot(tuning_array, mean_FO, linestyle='-', marker='.',
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linewidth=0.2, c='tab:cyan', label='Mean firing rate ')
plt.xlabel('Diameter (degrees)')
plt.ylabel(ylab)
plt.figlegend()

Calculate firing rates of V1 cells

Spike trains from V1 simulations were analysed for multiple neurons in V1. The
code below shows how firing rates were visualised and calculated, by using the size
tuning of a single neuron as an example. The same methods were used for spatial and
temporal frequency tuning. Scripts for the three cases are available on GitHubrﬂ The
spike trains in the code below are read in from a list of spike times for the selected
neuron. The list was created by extracting the spike times from the V1 simulation
output. A bash script which shows how spike trains were extracted is included in the
same GitHub repository.

#!/usr/bin/env python2
# —*- coding: utf-8 —*-

mimn

Parameters

nrid: neuron to be analysed

simlength: length of simulation (ms)

tsteps_per_sec: temporal resolution (time steps per seconds)
trials: array of trial numbers

sf: spatial frequency (cpd)

tf: temporal frequency (Hz)

stim_type: type of stimuli, set to either 'flash' or 'grating'’
dogparam: parameters of DoG filter

tuning_array: set of stimult diameters for the tuning curve

normalise_rates: set to 'True' if rates should be normalised
mnimn

import numpy as np
import matplotlib.pyplot as plt
import statistics

nrid = '103609'

simlength = 3000
tsteps_per_sec = 1000

trials = np.arange(20)

sf = '0.08'

tf = 4

stim_type = 'grating'
dogparam = '1.73ac_las_2.45sc'

3 Code for calculating and visualising firing rates for size tuning, spatial frequency tuning and tem-
poral frequency tuning: https://github.com/lenamyk/Exploring_the_Allen_model/tree/master/
code_and_analysis/analyse_simulation_output
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tuning_array = np.array([5,10,20,40,80,160,240])
normalise_rates = False

#Firing rates (FO and F1) for each stimuls:
mean_FO = np.zeros(len(tuning_array))

sd_FO = np.zeros(len(tuning_array))

mean_F1 = np.zeros(len(tuning_array))

sd_F1 = np.zeros(len(tuning_array))

for j in range(len(tuning_array)):
matrix_of_firing rates = np.zeros((simlength,len(trials)))
time_average_per_trial = np.zeros(len(trials))
mean_amplitude_per_trial = np.zeros(len(trials))
fig = plt.figure()

for i in trials:
# Read in spike output:
filename = "mi1/id%s/%dpix/3s_155d_4tf_0.08cpd_ls_trd.txt" \
% (nrid, tuning_arrayl[jl, dogparam, i)
a = open(filename, 'r+')
spike_times = a.readlines()
spike_times = np.array(spike_times, dtype=float)
a.close()

#Create discrete firing rate:

t = np.linspace(0, simlength + 1, simlength)
firing_rate = np.zeros_like(t)

entries = np.digitize(spike_times, t)

firing rate[entries] = Ixtsteps_per_sec
matrix_of_firing rates[:,i] = firing_ rate

#Calculate time average (or FO) per trial:
time_average_per_trial[i] \
= np.mean(matrix_of_firing rates[200:, i])

#Calculate F1 per trial:

if stim_type == 'grating':
start_measuring = 500
signal = firing rate[start_measuring:simlength]
ff = np.fft. fft(signal)
ff_freq = np.fft.fftfreq(signal.size)*tsteps_per_sec
amp_spectr = np.abs(ff)*2/(simlength - start_measuring)
ff_freq_pos = ff_freql:int(len(ff_freq)/2)]
amp_spectr_pos = amp_spectr[:int(len(amp_spectr)/2)]
mean_amplitude_per_trial[i] = np.interp(tf,
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ff_freq_pos,
amp_spectr_pos)

# Plot firing rate for each trial:

title = "trial %d" % (1 + 1)

ax = fig.add_subplot(len(trials) + 1, 1, i + 1)
ax.set_title(title, loc='left', x=1.01, y=0)
ax.plot(t, matrix_of_firing rates[:,i], linewidth=0.5)
ax.set_xticklabels([])

#Calculate trial averages of firing rates:
mean_spikes = np.mean(matrix_of_firing rates, axis=1)
mean_FO[j] = np.mean(mean_spikes)
sd_FO[j] = statistics.stdev(time_average_per_trial)
if stim_type == 'grating':
mean_F1[j] = np.mean(mean_amplitude_per_trial)
sd_F1[j] = statistics.stdev(mean_amplitude_per_trial)

# Plot trial averaged firing rate:

ax = fig.add_subplot(len(trials)+1, 1, len(trials)+1)
ax.plot(t, mean_spikes,c='tab:orange', linewidth=0.5)
ax.set_title('mean', loc='left', x=1.01, y=0)
ax.set_title('/s degrees diameter' Y (tuning_array[jl), y=21)
ax.set_xlabel('Time (ms)')

plt.subplots_adjust (hspace=0)

plt.tight_layout ()

#Normalise rates:
if normalise_rates and stim_type == 'grating':

sd_F1 = sd_F1/np.amax(mean_F1)
sd_FO = sd_FO/np.amax(mean_FO0)
mean_F1 = mean_F1/np.amax(mean_F1)
mean_FO = mean_FO/np.amax(mean_FO)
ylab = 'Relative activity'

else:

ylab = 'Firing rate (spikes/sec)'

# Plot firing rates as a function of stimuli size:
fig = plt.figure()
if stim_type == 'grating':

plt.errorbar(tuning_array, mean_FO, yerr=sd_FO, marker='.',
label='FO', c='tab:cyan')

plt.errorbar(tuning_array, mean_F1, yerr=sd_F1, marker='.',
label='F1', c='mediumblue')

else:

plt.errorbar(tuning_array, mean_FO, yerr=sd_FO, marker='.',
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label='Mean firing rate',c='tab:cyan')
plt.xlabel('Diameter (degrees)')
plt.ylabel(ylab)
plt.xscale('log')
plt.figlegend()

169



	Introduction
	Motivation
	The Primary Visual Cortex Model
	Thesis Structure

	Neuroscience Background
	The Mouse Visual Pathway
	The Neuron - Structure and Properties
	The nerve cell
	Receptive fields and center-surround organisation


	Computational Neuroscience
	Mechanistic Neuron Modelling
	The Hodgkin-Huxley model
	The Generalised Leaky Integrate-and-Fire model
	Spatially extended models

	Statistical Neuron Modelling
	The Linear-Nonlinear-Poisson model

	Modelling Networks

	Spatial and Temporal Neuronal Response Properties
	Size Tuning
	Linear and nonlinear surround suppression
	Suppression index

	Spatial Frequency Tuning
	Temporal Frequency Tuning

	Modelling Visual Receptive Fields
	Separable Receptive Fields
	The Difference-of-Gaussians Filter
	Responses of Spatial Filters
	Response to full-field drifting gratings
	Response to flashing spots
	Response to patch gratings

	The Gabor Filter

	The Allen Model
	The Allen Network Model
	The Allen LGN Model

	Experimental Findings
	Spatial Tuning in the Mouse
	LGN
	V1
	Effect of anaesthesia

	Temporal Tuning in the Mouse
	LGN
	V1
	Effect of anaesthesia


	Simulation Method
	The Versions of the Allen Model
	The M1 model
	The M1* models
	The M1norec model
	The M2 model

	Running the Models
	Visual Stimuli
	Calculating Firing Rates
	Time average vs average modulation
	LGN firing rates
	V1 firing rates

	Spatial Frequency Tuning
	Temporal Frequency Tuning
	Size Tuning

	Size and Spatial Frequency Tuning of the Allen Model
	The Original Allen Model
	Spatial frequency tuning - full-field gratings
	Size tuning - flashing spots
	Size tuning - patch gratings

	The M1 Allen Model
	Motivation for modifying the model
	The DoG filter
	Analytical parameter tuning: peak LGN frequencies
	Spatial frequency tuning - full-field gratings
	Size tuning - flashing spots
	Size tuning - patch gratings

	DoG Filters with Various Parameters
	Contributions to Size Tuning in V1
	Effect of LGN input
	Effect of recurrent connections in V1

	Modelling Nonlinear Surround Suppression
	Divisive normalisation in LGN


	Temporal Frequency Tuning of the Allen Model
	LGN
	V1

	Summary, Conclusion and Future Work
	Size and Spatial Frequency Tuning
	Original model
	M1 models
	Origin of tuning properties in V1
	Modelling nonlinear suppression

	Temporal Frequency Tuning
	Conclusion
	Further Research

	Appendix Derivations of Filter Responses
	Appendix Figures
	Original Allen Model
	Spatial frequency tuning - full-field gratings
	Size tuning - flashing spots
	Size tuning - patch gratings

	M1 Allen Model
	Spatial frequency tuning - full-field gratings
	Size tuning - flashing spots
	Size tuning - patch gratings

	DoG Filters with Various Parameters
	V1 Without Recurrent Connection
	Modelling nonlinear suppression
	Temporal frequency tuning

	Appendix Code
	Example Code


