
Sopor: An extensible watchOS
application for sleep session
recording

Candidate: hwbakker
Master’s Thesis Spring 2020

Blank page.

1

Abstract
Most medical examinations require a user or patient to be present at a hospital
to be examined. However, with technology being increasingly more available
and capable we can move this examination closer to the patient’s home, thus
reducing both the effort required by the patient and the strain and stress on the
healthcare system. In the CESAR project, our goal is to increase the percentage
of diagnosed obstructive sleep apnea cases, reduce the time it takes to get a
diagnosis, and allow user-friendly and cost-efficient tools to be used for diagnosis
at home.

Mobile wrist-worn devices are becoming increasingly more powerful and they are
equipped with a growing number of on-device sensors. This paper implements an
extensible watchOS application, allowing users to collect data from the sensors
on the watch. To achieve this we designed and implemented an application
named Sopor which collects and processes data collected by the watch. The
application collects data from the sensors on the watch and passes them on to
a sink which allows events to be aggregated, stored locally or offloaded to an
online location. In addition to Sopor, an application named Virga is developed,
which allows data stored online to be retrieved and processed on a computer.
Virga connects to an iCloud database and downloads data stored by Sopor.

Several experiments are performed showing Sopor’s battery usage, resource
efficiency, and extensibility. The experiments show that the application is stable
and suitable for long-running sleeping sessions. When Sopor runs on the watch,
results show that the application can run for eight hours depleting less than 50%
of the battery. Experiments show that the CPU and memory usage on average is
low and predictable. The final experiment performed shows that the application
is extensible without requiring global knowledge of the application. The thesis
concludes with some open problems and ideas for future work.

2

Blank page.

3

Acknowledgments
I would like to express my great appreciation to my supervisor Dr. Thomas
Plagemann. His door is always open and he is always ready for a good discussion.
Your thoughts, insights, and feedback have been invaluable. Thanks for allowing
me to work with and contribute to the CESAR project.

I would like to thank my partner, Michelle, for supporting and pushing me
through the development and writing of this thesis. Thanks for helping me with
planning and developing a strategy on how to approach the subject.

I also want to thank my friends, family, and my co-workers for many interesting
discussions around different aspects of the implementation of Sopor and Virga.

This project would not have been possible without your help.
Thank you.

4

Blank page.

5

Contents

I Introduction 16

1 Introduction 16
1.1 Problem statement . 17
1.2 Contributions . 17
1.3 Thesis structure . 18

II Physiological Computing 20

2 Physiological computing 20
2.1 Physiological computing alternatives 20

2.1.1 Non-watch alternatives . 20
2.1.2 Watch Alternatives . 21

2.2 Comparison . 23
2.3 User interaction on the Apple Watch 25

III watchOS 27

3 watchOS 27
3.1 Application architecture . 27

3.1.1 Core OS . 28
3.1.2 Core Services . 28
3.1.3 Media . 28
3.1.4 Cocoa Touch . 28

3.2 Application lifecycle . 28
3.3 iOS and watchOS coupling . 30
3.4 Energy consumption . 30
3.5 Requesting access . 31
3.6 The Swift programming language 32

3.6.1 Language features of Swift 32
3.7 Application design with SwiftUI 34
3.8 Sensors on iOS and watchOS . 36

3.8.1 Accelerometer . 36
3.8.2 Gyroscope . 36
3.8.3 Microphone . 37
3.8.4 Optical heart sensor . 37
3.8.5 Electrocardiogram sensor 37

3.9 Distributing applications . 37
3.9.1 Testflight . 38
3.9.2 App Store . 38

6

IV Design and Implementation 39

4 Design 39
4.1 Requirements . 39

4.1.1 Extensibility . 39
4.1.2 Resource efficiency . 39
4.1.3 Data collection . 40
4.1.4 Privacy . 40
4.1.5 Storage . 41
4.1.6 Stakeholders . 41

4.2 Separation of concerns . 42
4.2.1 Session Recording . 42
4.2.2 Sensors . 43
4.2.3 Event Management and Storage 44
4.2.4 Sink . 45
4.2.5 User interface . 47
4.2.6 Summary of concerns . 48

4.3 High level design . 48
4.3.1 The initial design . 48
4.3.2 The improved design . 49
4.3.3 The final design . 50

4.4 The Data Format . 52
4.4.1 Event Types . 55

5 Implementation 59
5.1 Application components . 59

5.1.1 Sensor . 59
5.1.2 Events . 60
5.1.3 Session . 62
5.1.4 Session Controller . 62
5.1.5 Session Config . 62
5.1.6 Session Splitter . 63
5.1.7 Sinks . 64

5.2 Implementation of concerns . 64
5.2.1 Sensors . 64
5.2.2 Session Recording . 71
5.2.3 Sink . 76
5.2.4 Event Management and Storage 83
5.2.5 User interface . 84

5.3 Miscellaneous . 86
5.3.1 Chaining sinks . 86
5.3.2 Using Machine Learning on events 86
5.3.3 Delay-tolerant CloudKit uploads 87
5.3.4 Long-running sessions . 88
5.3.5 Virga - Data processing application 89

7

V Evaluation and Conclusion 99

6 Evaluation 99
6.1 Practical experiments . 99

6.1.1 Experiment 1 - Battery usage 99
6.1.2 Experiment 2 - CPU usage and memory usage 102
6.1.3 Experiment 3 - Extensibility 106

6.2 Examination of requirements . 109

7 Conclusion 112
7.1 Summary . 112
7.2 Open problems . 113
7.3 Future work . 113

8 References 115

Appendices 122

A Cloning the project 122

B Creating a new Sensor class 122
B.1 Add the file to the project . 122
B.2 Create the class . 123
B.3 Add the sensor to the configuration 123
B.4 Build and run . 123

C Creating a new Sink class 123

D Setting up CloudKit 124
D.1 Activate the iCloud capability . 124
D.2 Create an CloudKit container . 124
D.3 Create the schema in CloudKit 124
D.4 Getting the CloudKit token . 126
D.5 CloudKit documentation . 127

E Virga 127
E.1 Set up Virga . 127
E.2 SessionDomain record types . 128
E.3 Body queries for the CloudKit API 129

E.3.1 Body for Session records 129
E.3.2 Body for full Bucket records 130
E.3.3 Body for Bucket records 131
E.3.4 Body for SamplingData records 132

E.4 Data types for the CloudKitProcessor.fs module 132

F Data from experiments 135

8

F.1 Experiment 1 . 135
F.1.1 Data-points . 135
F.1.2 Battery graphs . 136

F.2 Experiment 2 . 141

9

List of Figures
1 Garmin Fenix 5 [14] . 21
2 Fitbit Ionic [18] . 22
3 Apple Watch [23] . 23
4 Illustration of the Apple Watch [28]. 25
5 Screenshot of a watch face. 26
6 iOS and watchOS application architecture [30] 27
7 iOS and watchOS application states. [34] 29
8 List view using SwiftUI . 35
9 Session Recording lifecycle . 42
10 Sensor lifecycle . 44
11 Event management . 45
12 Sink management . 46
13 User Interface management . 47
14 Initial design . 49
15 Improved design . 50
16 Final design . 51
17 Sensor inheritance in Sopor . 65
18 Sopor start session screenshot . 72
19 Sopor starting the data acquisition 73
20 How data is collected and sent to the Session 74
21 Sopor active session screenshot 75
22 Sopor splitting flow . 76
23 Splunk event . 81
24 Gyroscope timechart in Splunk 82
25 Setting the correct entitlement in Xcode 89
26 Virga program flow . 91
27 Relationship schema for the records 92
28 Example of battery events in a chart 97
29 Example of heart rate events chart 97
30 Example of aggregated events count chart 98
31 Heart rate graphed for a complete sleep session 98
32 Xcode CPU gauge . 103
33 Xcode memory gauge . 103
34 CPU spikes every BatchFrequency 105
35 Predictable memory usage . 105
36 Step 1 . 107
37 Step 2 . 107
38 Adding the file to the project . 122
39 Activate iCloud and CloudKit in Xcode 124
40 Creating a new container . 124
41 CloudKit overview . 125
42 Bucket record type . 125
43 SamplingData record type . 126
44 Session record type . 126

10

45 Steps for creating CloudKit token 127
46 Running Virga . 128

11

List of Tables
1 Comparing Garmin Fenix 5, Fitbit Ionic, and the Apple Watch . 24
2 Sensors on the iPhone and the Apple Watch 36
3 Table of Concerns . 48
4 Core objects . 52
5 Storage estimation . 54
6 The supported sensors in Sopor 60
7 Events correlation to sensor-classes in Sopor 61
8 Showing the different views of Sopor 84
9 F# project files . 90
10 CloudKit parameters . 92
11 Sensors used in Experiment 1 . 100
12 Variable changes for Experiment 1 100
13 Results from Experiment 1 . 101
14 Number of events collected . 101
15 Apple Watch configuration for Experiment 2 104
16 Results of Experiment 2 . 104
17 Summary of requirements . 111
18 Experiments 1 results 1/2 . 135
19 Experiments 1 results 2/2 . 136
20 Battery graphs for Run 1 . 137
21 Battery graphs for Run 2 . 138
22 Battery graphs for Run 3 . 139
23 Battery graphs for Run 4 . 140
24 Results of Experiment 2 . 141

12

List of Listings
1 Asking the user for access to the HealthKit database 32
2 Checking for optional values in Swift 33
3 Extension syntax in Swift . 33
4 Extending the Double class . 33
5 Type inference in Swift . 34
6 List view example. Source code from [46] 35
7 Accelerometer event in Swift . 52
8 Accelerometer event in XML . 53
9 Accelerometer event in CSV . 53
10 Accelerometer event in JSON . 54
11 Start meta event 1/2 . 55
12 Start meta event 2/2 . 56
13 End meta event . 57
14 Example of a heart rate event . 57
15 Example of a battery event . 58
16 Example of a accelerometer event 58
17 Sensor interface . 59
18 EventProtocol . 61
19 Accelerometer event struct . 61
20 AggregatedMetric struct . 62
21 Get the sink configuration . 63
22 Splitting the events . 64
23 Sink protocol . 64
24 Starting the accelerometer . 66
25 Collecting accelerometer events 66
26 Creating heart rate query . 68
27 Starting battery monitoring . 69
28 BatterySensor: Collect event . 69
29 BatterySensor: Create event . 70
30 Microphone sensor pseudocode. Code from [70]. 71
31 Starting a Session in the SessionController class 72
32 Starting Sensors in parallel . 73
33 Sink protocol . 76
34 Pseudocode for filtering out events 77
35 Aggregation of heart rate events 1/2 78
36 Aggregation of heart rate events 2/2 78
37 File structure created by the File Sink 80
38 Pseudocode for the CloudKit Sink 81
39 SPL for charting gyroscope data 82
40 Pseudocode for keeping event on change 83
41 Declarative user interface for starting a Session 85
42 View for an active session . 85
43 Enhanced runSinks method . 86
44 Pseudocode for delay tolerant file upload 88

13

45 Simple Program.fs . 90
46 CloudKit module implementation 93
47 Get all Buckets recursive implementation 94
48 Fetching Bucket data asset . 94
49 Fetching SamplingData records 95
50 Adding XPlot.GoogleCharts to the project 95
51 Convert timestamp to correct format 96
52 Creating a battery chart . 96
53 Sink setup in Experiment 1 . 100
54 The runSink method for MinMaxHRSink 108
55 Changed configuration for Experiment 3 108
56 Clone projects from GitHub . 122
57 A NewSensor class . 123
58 Adding the NewSensor to the sensorList 123
59 Running Virga from the terminal 127
60 The Sensor event record type . 129
61 Session body . 129
62 Bucket body with continuation marker 130
63 Bucket body . 131
64 Sample body with Session ID . 132
65 Types should be able to be defined this way 133
66 How complex types actually are defined (1/2) 134
67 How complex types actually are defined (2/2) 135

14

Blank page.

15

Part I

Introduction

1 Introduction
Sleep apnea is a disorder that has become a significant health issue for many
individuals all over the world. It is a disorder that causes breathing stops or
shallow breathing during sleep [1]. The most common type of sleep apnea is
Obstructive Sleep Apnea (OSA), and is caused by obstructions in the patients’
airway [2]. Individuals are often not aware of their disorder, and it is estimated
that 80% of the cases go undiagnosed [3]. In 2007, the World Health Organization
(WHO), estimated that more than 100 million people are affected by this disorder
[4]. A more recent study performed by ResMed in 2018, indicates that sleep
apnea in general impacts nearly one billion people [5].

There are usually two ways to detect whether or not an individual suffers from
OSA. The classical approach to diagnose OSA is to perform a polysomnography
(PSG). This means to sleep overnight at a dedicated sleep center, where the
medical doctors attach a vast array of sensors to the individual’s body. Another
is to get equipment by your physician in order to perform tests at home [2].
Both of these are high-effort options, meaning that they do require individuals to
communicate and often take a trip to their medical practitioner, in addition, these
options are expensive. There are few, if any, low-efforts options for individuals
to use at home to detect occurrences of OSA.

In recent years, there has been a tremendous increase in processing power
on mobile phones and wearable devices. By utilizing wearable devices and
applications for these devices it is possible to collect huge amounts of biometric
data. The CESAR project at UIO1 aims to provide alternatives to performing
diagnosis using PSG with these kinds of devices. This approach may reduce the
threshold to perform clinical diagnosis of OSA and reduce the time it takes to
get a diagnosis for sufferers of OSA.

During the research phase of the project, three smartwatches are investigated, 1)
Garmin Fenix 5, 2) Fitbit Ionic and 3) Apple Watch. The research find that the
different watches excels in different areas, and it is decided to move forward with
the Apple Watch. In addition to being the watch that excels in most areas, Apple
has a focus on health and while not released, it is rumored that the company
has a strong focus on sleep tracking [6]. This opens up possibilities of more
sensors becoming available directly on the watch, which should be accessible to
developers through APIs.

The main motivation of this thesis is to develop a simple-to-use extensible watch
1Information about the CESAR project can be found at https://www.mn.uio.no/ifi/englis

h/research/projects/cesar/

16

https://www.mn.uio.no/ifi/english/research/projects/cesar/
https://www.mn.uio.no/ifi/english/research/projects/cesar/

application that collects biometrical data, thus paving the road for developers to
create more sophisticated sensor-wrappers and sinks2. For the CESAR project,
this thesis aims to create a foundation that future researchers can build upon.
In addition to developing the application, another goal of the thesis is to expand
our knowledge of what the small devices we wear on our wrists are capable of
doing.

1.1 Problem statement
Smart wrist-worn devices are becoming more popular every year. Small devices
collecting and sending data to a smartphone companion app or even small
computers doing all the work themselves are here to stay. Making use of these
devices and showing that these devices can be used in a research-setting is
valuable for future researchers. These small computers on our wrists are used for
everything between notifying us of new incoming messages to collecting valuable
health information during the day. During the night, most of these devices
have to be charged. While sleeping, there are interesting data-points that can
be collected and inform us of a user’s health situation. These data-points are
not collected if the device is charging and not worn during the night, thus we
are losing a lot of valuable information. Therefore, we look into designing and
implementing a watchOS application, Sopor, that collects and processes sensor
data from the watch. From this we define three main goals that the thesis need
to cover:

Goal 1 Creating an application that can collect data without using too much
battery, thus allowing the user to top-up their battery once waking up and using
the watch as they normally would.

Goal 2 Integrate multiple sensors from the watch to the application and allowing
it to easily be extended with new sensors.

Goal 3 Verifying that the data collected by the watch can be fetched from an
online location to process the data.

These three goals are what we want to accomplish in this thesis. Satisfying them
will give us an indication into how useful these wrist-worn devices are and how
they can be used to further develop knowledge about a user’s health situation.

1.2 Contributions
This thesis aims to demonstrate that it is possible to create an application
that collects, processes, and stores data from sensors on the watch. It also
demonstrates that a user can utilize the watch as he or she normally would
with regards to battery life. The collected data is shown to be accessible from
multiple online locations, paving the road for further analysis of sensor events.

2See Section 4.2.4 for a description of sinks.

17

The contributions from Sopor is a modular and extensible Apple Watch appli-
cation capable of collecting sensor data. It allows collected events to be sent
to multiple sinks to be processed and stored. In addition, Sopor performs its
operations with a focus on resource efficiency especially with regards to battery
usage. With this foundation, researchers may improve and develop new features
for the application allowing us to learn more about the potential of wrist-worn
devices in a healthcare setting. Virga contributes by allowing researchers to
download data from iCloud to their local machine. This is useful as it empowers
researchers to analyze, process, and gather insights into the collected data-points.
For CESAR, the created applications act as a foundation for future researchers
and developers. They support the project by creating a low-threshold and
non-intrusive way to extract events which can be used as a part of more complex
event processing and analysis.

1.3 Thesis structure
In this thesis, the foundation of an extensible data collection application for
Apple Watch is created. The application collects and processes data from sensors
on the watch and sends them to online storage locations. The application can
be extended with new input and output sources. The thesis is divided into five
parts and seven chapters.

The motivation, contributions, and thesis structure are outlined in Part 1. Part
2 contains one chapter discussing physiological computing for both watch- and
non-watch alternatives. Further, a comparison between the three considered
watches is performed comparing the hardware with each other focusing on sensor
accuracy, efficiency, and market share.

Part 3 gives an introduction to the Apple Watch operating system, watchOS.
First, an overview of the general application architecture is given, then the
application lifecycle, communication, and energy consumption are discussed.
The chapter concludes with an overview of the available sensors and how to
distribute applications on the Apple platforms.

The fourth part consists of two chapters. The first chapter goes deep into the
design of the application, starting with a requirement analysis. The analysis is
done in order to highlight what the application needs to be able to perform. Next,
the application components are separated out into different concerns, where all
components solve their own issues. The design iterations are shown next, starting
with the initial design and ending with the final design implemented in Chapter
5. Finally, Chapter 4 ends with a discussion of the data formats that can be used
in the application. Chapter 5 starts with an overview of the different application
components and their responsibility. Next, the different concerns identified in
Chapter 4 are implemented. Chapter 5 concludes with a few miscellaneous
items including how to use multiple sinks, discussing long-running sessions, and
detailing Virga the data processing application that can process data stored
online using Apple’s CloudKit framework.

18

The final part, Part 5, consists of two chapters. Chapter 6 evaluates the imple-
mented application. The chapter is divided into two sub-sections where the first
one involves performing three practical experiments showing that the application
performs according to the hypothesis outlined in the problem statement of the
thesis. The second part of Chapter 6 examines the requirements outlined in
Chapter 4 and discusses to what extent they have been met. The final chapter,
Chapter 7, wraps up and concludes with some open problems and outlines items
for future work.

19

Part II

Physiological Computing

2 Physiological computing
Physiological computing concerns technological systems and devices that record
quantitative data generated by human use, and that can display the data on
the user interface of the device or connected devices. Activities like walking,
thinking, and breathing are activities that can be recorded and data-points
can be generated which in turn can be analyzed. Physiological computing
can be seen as an extension of physical computing. While physical computing
concerns primitive events such as movement, physiological computing concerns
the more delicate aspects such as heart rate or oxygen saturation [7]. [8] argues
that physiological computing has enormous potential to revolutionize human-
computer interaction (HCI). Computers have seen an exponential increase in
computing power during the last few decades, often referred to as Moore’s law
[9]. While the exponential curve has reduced somewhat in later years [10], there
are still performance and capability performances in computing devices every
year. In terms of physiological computing, power and battery improvements have
allowed the development of smartwatches and other physiological computers.

2.1 Physiological computing alternatives
The following section presents an assortment of different non-watch and watch
alternatives with respect to physiological computing. The non-watch alternatives
are provided in order to give increased insights to the reader about different
physiological options. In the end, the selection as to which watch to move
forward with in this thesis is presented.

2.1.1 Non-watch alternatives

Multiple non-watch alternatives are interesting to discuss, the following are low-
cost physiological computing devices that have been considered and investigated
by [7] and [11]. All the devices are built on open platforms and allow the sensors
to be used in different projects as discussed in [11].

BITalino is an open-source, low-cost toolkit used to create prototype applications
using biosensors collecting body signals. This small programmable computer
allows connecting multiple sensors to measure body signals. It features Blue-
tooth for communication and can be attached to a rechargeable battery [7].
The BITalino is a hardware unit where you need to make use of its software
development kit (SDK), and do some programming before you can get data from
the device. Another option is hardware from Shimmer, which produces wearable
wireless sensors. These sensors are used to monitor different health aspects, their

20

technology allows for simple capture and transmission to other devices such as a
phone or computer [7]. In addition, it also features an SDK that can be used to
integrate with Shimmer devices and other hardware devices such as phones [12].

These non-watch alternatives are devices that can be used to create prototypes
and test new sensors, however, they are not low-threshold options for the average
Joe, as they require a rather huge investment in terms of time and money as
compared to something like a smartwatch.

2.1.2 Watch Alternatives

For this thesis, three watches are considered; 1) Garmin’s Fenix 5, 2) Fitbit’s
Ionic, and 3) Apple’s Apple Watch. These were chosen due to their feature set,
availability, and development SDKs.

2.1.2.1 Garmin Fenix 5

The Garmin Fenix 5 is the watch with the highest starting price of the three
watches, with a starting price of $500. Released in June 2018, it packs a lot
of sensors and is a device focused on outdoor activities [13]. It has a round
display and is advertised with having more than 20 hours of battery life with
GPS activated. The watch is rather big with a volume of 0.034 cubic meters,
and with a weight of 85 grams [13].

Figure 1: Garmin Fenix 5 [14]

With the Garmin Fenix 5 you can, as a developer, get access to among other
sensors the heart rate- and accelerometer sensor. Garmin sells a lot of different
devices with different features, and following their documentation is it easy
to understand which watches have access to the different sensor APIs. When
creating applications for the Garmin watch, you essentially create two separate
applications, one for the watch and one for the phone.

According to an estimation by the International Data Corporation, IDC, Garmin
shipped 1.5 million wearable devices in Q2 of 2018 [15]. This number consists
of all wearable devices that Garmin sells; thus, the actual sales figure of the

21

Garmin Fenix 5 is lower. Although these estimated numbers have to be taken
with a grain of salt, they give a good indication of the distribution of sales by
the different companies. In IDC’s Q4 2018 report Garmin was not mentioned
among the top brands [16].

2.1.2.2 Fitbit Ionic

The Fitbit Ionic was released on October 1st, 2017. The starting price of
the watch is currently $270, the cheapest of the three. Some of its advertised
features are multi-day battery life, heart rate sensor and built-in GPS, as well
as incorporating wallet-free payments [17].

Figure 2: Fitbit Ionic [18]

Creating applications for Fitbit is done using the Fitbit Studio application.
The development language is JavaScript combined with CSS and HTML. It
can resemble Node.js or React [19]. Through the development API, you have
access to the heart rate sensor which samples in near real-time, as well as the
accelerometer and gyroscope. The sampling rate cannot be found on Fitbit’s
SDK website, however, on user forums, numbers ranging from 30 samples per
minute to 10 samples per second are discussed [20].

According to IDC’s estimates, Fitbit shipped 5.5 million units and their market
share was estimated to be 9.4% in Q4 of 2018, down from 11.9% during Q4 2017
[16]. Again, these numbers are likely to be lower due to the fact that Fitbit
has many products within the wearable category, and they do not reveal sales
numbers for individual products [21].

2.1.2.3 Apple Watch

The Apple Watch was first released in 2015, since then there have been several
new versions. The Apple Watch Series 4 and 5, features an ECG sensor that can
indicate whether or not your heart rhythm displays signs of atrial fibrillation.
Another addition of the Series 4 and the Series 5 is fall detection, which gives
the watch the ability to contact emergency services and relatives if it detects
that the owner has fallen and is unable to move. The smaller of the two Apple

22

Watches (40mm) weighs in at 68 grams and has a volume of 0.015 cubic meters
[22], about half that of the Garmin Fenix 5.

Figure 3: Apple Watch [23]

The Apple Watch features amongst other things an accelerometer sensor, a heart
rate sensor, and a microphone [22]. Access to these is provided through the
SDK. With the Watch Connectivity framework that Apple provides you are
able to implement two-way communication between an Apple Watch and an
iPhone. The HealthKit framework makes it easy to gather sensor data on the
watch and send the data to the phone for processing. Since the Apple Watch
and the iPhone are programmed using the same programming languages, Swift
and Objective-C, the implementation should be simpler as compared to the
Garmin Fenix 5 and Fitbit Ionic. Regardless of the Apple Watch series, the
development API is the same, disregarding some of the improvements and sensor
upgrades in the latest models. The Apple Watch is capable of monitoring heart
rate variability, however, the API is limited [24].

The analysis performed by IDC estimates Apple Watch shipments at 10.4 million
Apple Watches during the Q4 quarter of 2018, maintaining its position at the top
of the smartwatch market with 27.4% market share [16]. Healthcare providers are
said to tinker with the idea of bundling Apple Watches with insurance packages,
this could greatly increase shipments for the Apple Watch [25].

2.2 Comparison
Although little research has been put into measuring the accuracy of different
smartwatches, the Apple Watch is seen to receive the lowest error rate [26]
among a handful of smartwatches. One problem for this study is that none of
the two other watches was included, however, a handful of other comparable
watches was tested. Another test performed by [27], showed that the overall
average heart rate variance of the Apple Watch vs. a regular chest strap was
0.67, compared to the Garmin Fenix 5 who has a variance of 1 and the Fitbit
Ionic came out last with a variance of 5.67.

23

Table 1 shows the different features of every watch. This is the foundation used
to decide which watch we move forward with.

Table 1: Comparing Garmin Fenix 5, Fitbit Ionic, and the Apple Watch

Garmin Fenix
5 Fitbit Ionic

Apple
Watch

Heart rate sensor Yes Yes Yes
Tomsguide heart rate test,
overall variance [27]

1 5.67 0.67

Accelerometer Yes Yes Yes
Gyroscope Yes Yes Yes
Oximeter Yes3 Yes4 Yes5

Storage 16GB 2.5GB6 16GB
Weight 85 grams 50 grams 68 grams
Battery life 14 days7 5 days8 18 hours
Development Language Java JavaScript Swift
Phone development language Java/Swift Java/Swift Swift9

Price $499.99 $269.95 $399
Shipment Volume
(Q42018)10

2.5M 5.5M 10.4M

Year-over-year growth
(Q42017->Q42018)11

N/A 3.0% 21.5%

Market Share (wearable
category) (Q42018)12

6.5% 9.4% 27.4%

By all accounts, the watches are similar when it comes to sensors. The accuracy
of the sensors is important, [27] and [26] has found that the Apple Watch is
more accurate than the two other watches. When it comes to battery life,
the Garmin Fenix 5 features the longest battery life, with the Apple Watch
having the shortest battery life. When it comes to the development of the watch
application, Apple Watch development uses the same development language
and is strongly connected to the iPhone. This allows synergies if an application
for the phone is needed as well. The two other watches use a combination of
languages, and the Fitbit has to be written in two different languages. With the
Garmin watch, one can develop on the Android platform and thus only having to

3Sampling rate unknown.
4No public API is available at this point in time.
5Apple Watch is capable of measuring blood oxygen, but the sensor is not activated.
6No official numbers have been released from Fitbit.
7Smartwatch mode with activity tracking and 24/7 wrist-based heart rate monitoring.
8Battery life lasts up to five days but when GPS is active the battery life is up to 10 hours.
9Application will only be available for iOS devices.

10Analysis performed by IDC. Garmin numbers are from Q417.
11Analysis performed by IDC.
12Analysis performed by IDC. Garmin numbers are from Q417.

24

stick to one language, which is the same case as the Apple Watch. The Garmin
watch performs poorly both when it comes to price and prevalence, compared to
the other watches. Although the Apple Watch is more expensive than the Fitbit
Ionic, it performs better with respect to sales and has a larger market share.

Based on the findings the Apple Watch is chosen as the watch to use for this
Master Thesis. The reason for this choice is the accuracy and prevalence of the
Apple Watch as well as the tight integration between the iPhone and the Apple
Watch which will make for a simpler application stack.

2.3 User interaction on the Apple Watch
Applications on the Apple Watch behave similarly to phone applications, however,
on a much smaller screen. On the hardware side, the Apple Watch has a touch
screen used for tapping the correct UI elements. As seen in Figure 4, the Apple
Watch has the Digital Crown on the top right side. It works as a home button
when pressed and acts as a scroll wheel whenever scrolling lists on the watch. In
addition, the button can be used to activate Siri, by press-and-hold-ing. The side
button is used to show the Dock when performing a single press. This button
can also activate Apple Pay, by double-clicking, and turn off the watch by using
a long press and swiping on the screen to confirm.

Figure 4: Illustration of the Apple Watch [28].

On the software side, there are buttons, labels, tables, and other UI elements
such as on the phone. In addition to the application itself, an app can provide
complications and notifications. A complication is a small UI-element that
presents some item of information on the watch face. As exemplified in Figure 5,
there is a complication showing the current weather at the bottom left of the
watch face.

25

Figure 5: Screenshot of a watch face.

26

Part III

watchOS

3 watchOS
This section mainly discusses the watchOS platform. We start by discussing
the fundamental architecture of watchOS which is inherited from iOS. Then, we
move to themes like watchOS and iOS coupling, energy consumption, accessing
user information, the Swift programming language, Apple Watch sensors, and
lastly, some words about distributing applications on both the iOS and watchOS
platforms.

3.1 Application architecture
Every iOS and watchOS application has to interact with some or all of the
different layers of the application architecture hierarchy. On a high level, there
are four layers; Core OS, Core Services, Media, Cocoa Touch [29], these are
shown in Figure 6. These layers communicate with each other to prohibit direct
communication with the hardware. The lower layers concern basic operating
system services, while the higher layers provide access to the user interface,
and other high-level APIs. All these layers work together to create a unified
experience for the user as well as the developer. Every layer has a large suite of
frameworks that provides different APIs to control most aspects of the watch
and phone. The following sections present these layers.

Figure 6: iOS and watchOS application architecture [30]

27

3.1.1 Core OS

The Core OS layer operates the operating system and a variety of low-level
services such as the file system, sockets, and security-related services such as the
Keychain and the Certificate framework. This layer is inherited from macOS
and acts as a foundation providing access to the underlying hardware [31].

3.1.2 Core Services

This is an object-oriented layer that sits on top of and provides an abstraction to
the Core OS layer. Core Services allows you to manage and access key operating
system functionalities such as location, network, and threading services. It also
acts as a foundation for the layers above it [31].

3.1.3 Media

The media layer provides access to different media APIs, everything from audio
to images and video is provided and manipulated through this layer. In this layer,
you will find graphical frameworks such as Core Graphics and Core Animation
which allow the creation of graphical interfaces, images, and animations. On
the audio-side frameworks like the Core Audio and the Media Player framework
allows to create, record, and manipulate audio [31].

3.1.4 Cocoa Touch

Cocoa Touch is the user interface layer and framework used to create the graphical
user interfaces in the applications. The layer provides an abstraction layer and
gives access to a set of control elements for the graphical interface. The layer
follows the Model-View-Controller (MVC), software architecture pattern. Cocoa
Touch is the touch variant of Cocoa which is used on macOS [32].

3.2 Application lifecycle
Every application created on both iOS and watchOS follows the same application
lifecycle pattern states. There are five distinct states an application can have;
(1) Not running, (2) Inactive, (3) Active, (4) Background, and (5) Suspended.

Figure 7 shows how the five possible application states are related. The ap-
plication can have the state not running which is the simplest state where no
application processes are running. The inactive state is where an application is
not receiving events, however, it is allowed to execute code. When the application
transitions to the active state, execution of program code is being performed
and the application is receiving events. In the background state the application
is allowed to execute code and perform requests, however, the application is not
in the foreground, meaning the user is not able to see the application or the
application is not in the user’s viewport on the phone. In the suspended state,
the application is in memory, but not executing. This means that it can be
terminated by the system without notice [33].

28

Figure 7: iOS and watchOS application states. [34]

Both iOS and watchOS use delegation heavily through delegation objects. These
objects perform actions on behalf of another. This allows an object to just relay
a message to another object which returns the required result. An example from
iOS would be to delegate interactions within a class that extends the UITableView
to a class that extends the UITableViewDelegate, by doing this, you may create
two different table views which use the same interaction mechanisms and/or
connects to the same underlying data. Whenever the application state is changed,
the system calls the respective delegate methods. This allows a developer to
save state or performs certain actions on state changes [35].

29

3.3 iOS and watchOS coupling
In all watchOS versions up to 6.0, all watch applications created had to be
connected to an iOS application. This changed in watchOS version 6.0. From
this version, developers are allowed to create stand-alone watch applications [36].
The previous versions made use of the WatchConnectivity framework which
handled two-way communication between the iPhone and Apple Watch. In the
first few watchOS versions, most of the application rendering happened on the
phone and was sent to the watch to be displayed, this resulted in poor application
performance. Applications created with the WatchKit framework can work on
its own completely without any input from the phone. This allows for better
performance and reduces the somewhat complex application logic found in the
WatchConnectivity framework. When creating a completely independent watch
application, there’s no way to directly communicate with the phone. Therefore,
the best solution is to use some sort of cloud storage, such as CloudKit to share
data between the watch and phone application.

Communication using the WatchConnectivity has been seen by developers to
be unreliable and unstable. The individual watch applications are not given
control over when data transfer happens; sometimes it is immediate, and other
times it may take a while for the application to be allowed to send data to
the phone. This issue has been discussed online on multiple forums such as on
[37] and [38]. Because of this, allowing stand-alone applications is a welcomed
feature.

3.4 Energy consumption
Both platforms take measures to decrease energy consumption whenever possible.
Apple touts 18 hours of battery life on their latest Apple Watch [39]. This is
enough to get through a day without depleting the battery 100%. By utilizing
different methods they can achieve the stated battery life. Apple’s chips are
created specifically for maximizing power savings. One technique they use is to
batch CPU operations. This way the fixed overhead that is common for each
action (e.g., waking up the device) only needs to happen once while handling
many operations, thus effectively batching actions before turning idle again
[40]. Apple provides complete documentation on how to create power-efficient
applications, presented in [41].

Networking is one of the biggest drains on both the phone and the watch
battery [40]. Therefore Apple’s guideline is to minimize network requests. Again,
batching is useful here as well. By batching network requests, the radios on the
watch or phone do not have to power up and down all the time. Activating the
radio and then batching network requests minimizes the fixed overhead cost.

Specifically, on the watch side, Apple recommends offloading complex and/or
lengthy operations to the phone or a back-end server in order to reduce power
consumption on the watch [40]. In addition, a watch application may not have
enough time to finish the operations before the application is suspended. Taking

30

this into account, there’s are limitations as to what kind of and how often
operations can be done on the watch.

3.5 Requesting access
A user expects to have control of their personal information and sensor data like
the microphone and camera, therefore an application that wants access to this
data and control these sensors needs to ask for the user’s permission [42]. This is
done through system APIs, and the platform itself has control over which apps
have been granted access and which have not.

Apple provides some guidelines as to how access should be requested, with
respect to the user experience. An app should only ask for personal data/sensor
data when it needs it [42]. There is no reason for an RSS-reader to have access
to the microphone, therefore the application should not ask for that access. On
the other hand, an application that does VoIP needs access to the microphone,
in that case asking for permission should be no problem. When asking for a
user’s permission a purpose string is needed, which should describe what the
purpose and need of the access is. The VoIP application may want to use “The
app records your voice during phone calls” as its purpose string.

Applications requesting access to health data need to specifically ask for the
specific items the application wants to read or write. On both iOS and watchOS
HealthKit is the framework where this type of data can be accessed. HealthKit
acts as a central repository for generated health and fitness data, and an applica-
tion can perform read and write operations once the application has been given
sufficient access to the HealthKit database. In order to access HealthKit data,
the application has to ask for explicit permission from the user. In HealthKit
this is done through the HKHealthStore().requestAuthorization()-method.
In order to ask for the user’s permission, the Privacy - Health Update Usage
Description and the Privacy - Health Share Usage Description purpose
string needs to be present in the Info.plist file.13 Being able to collect all
this data and storing it in a central place allows multiple applications to work
together and help to give the user a better experience. For example, a sleep
tracking application can look at a user’s workout data and deduce that the days
a user performs a workout, he or she usually sleeps better. Listing 1 shows an ex-
ample of code that asks the user for permission to access the HealthKit database.
The dataTypes variable is a set containing HKObjectType-objects which the
application asks for access to read/write in the requestAuthorization() call14.

13Further documentation for the Info.Plist file can be found here: https://developer.apple.
com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/A
boutInformationPropertyListFiles.html

14Further documentation for the requestAuthorization method can be found
here: https://developer.apple.com/documentation/healthkit/hkhealthstore/1614152-
requestauthorization15.

31

https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/AboutInformationPropertyListFiles.html
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/AboutInformationPropertyListFiles.html
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/AboutInformationPropertyListFiles.html

Listing 1 Asking the user for access to the HealthKit database
let healthStore = HKHealthStore()
let dataTypes = Set(arrayLiteral: quantityType)
healthStore.requestAuthorization(toShare: nil, read: dataTypes)
{ (success, error) -> Void in

if (success){
print("Authorized to use HealthKit.")

}else{
print("Not authorized to use HealthKit.")
print("Error: " + error?.localizedDescription)

}
}

An application is not required to write to all HealthKit data types, in fact doing
so is not recommended. Apple touts that collaboration is key when working
with HealthKit data, thus a developer is encouraged only to focus on a subset of
tasks that he or she knows about. This also allows the user to choose the right
app for him- or herself.

3.6 The Swift programming language
Swift is a general-purpose programming language created by Apple. It first
launched in Q2 of 2014 as an open-source project, and has been in active
development ever since. The language is set to replace Apple’s Objective-C
language sometime in the future, however, as of now, they live side-by-side. The
language is strongly typed, allowing for type safety during development. Swift
allows for optionals and class extensions. These and other language features are
further described in Section 3.6.1. The language’s compiler is highly optimized
enhancing and speeding up the performance as well as ensuring static type safety
optimizing development speed [43].

3.6.1 Language features of Swift

There are several language-specific features in the Swift language. These are
described in the following section. We focus on features that are not widely
present in other popular programming languages.

3.6.1.1 Optionals in Swift

Swift optionals allow variables to either have a value or be null, i.e., a variable is
optional. This implies that optional types may experience null-pointer exceptions,
whereas non-optional types may not. This language feature allows code to be
performed depending on whether or not a variable is present using guard, as
shown in Listing 2. The guard keyword allows an application to stop executing if
a value is not present and it will proceed if the value is present. In Listing 2, the
hr variable is seen as unwrapped and non-optional after the guard, which allows

32

the developer to be certain that no null-pointer exception will be experienced on
that variable after the guard statement.

Listing 2 Checking for optional values in Swift
let heartRate = Optional<Int>
// some other code here
guard let hr = heartRate else
{

// handle the error case here.
// heartRate is null
// must exit scope of current method

}
// continue, knowing that hr is not nil

3.6.1.2 Extending classes

Extending Swift classes is a nifty feature that allows a developer to extend
classes not written by themselves and without having direct access to the class’
source code. This is known as retroactive modeling [44]. With extensions it is
possible to define new instance methods, type methods, and computed properties.
However, an extension may not override existing functionality. If functionality
has to be overridden, then sub-classing the specific class is the way to go.

Listing 3 Extension syntax in Swift
extension SomeClass {

// add methods or properties here.
// they will be available for all
// instances of the SomeClass class.

}

The extension syntax is shown in Listing 3, once inside the brackets of SomeClass
you can write functions and properties just as you would in any other class.
In Listing 4 we extend the Double class with a method called rounded. When
creating a Double object in a Swift project, this method is just as much a method
of the Double class as any other method of that class.

Listing 4 Extending the Double class
extension Double {

/// Rounds the double to decimal places value
func rounded(toPlaces places:Int) -> Double {

let divisor = pow(10.0, Double(places))
return (self * divisor).rounded() / divisor

}
}

33

3.6.1.3 Automatic Reference Counting

Memory management in Swift can be thought of as “it just works”, however,
in the background the Automatic Reference Counting, ARC, system runs. It
is somewhat similar to Java’s garbage collector feature. ARC means that the
developer does not need to think about managing the application’s memory. The
ARC frees up memory used by classes whose instances are no longer reachable
in the code. The ARC only works on reference types such as instances of classes.
ARC does not work on structs and enumerations, as those are value types. If
the ARC malfunctions and deallocates an object that the application still needs
and at some point references, it will crash. To ensure that this does not happen,
the ARC system tracks the number of properties, constants, and variables that
reference the given instance. Once no element references the instance it can
safely be deallocated.

3.6.1.4 Type inference

Type inference is a feature of Swift. Although present in many modern languages
it is a noteworthy feature and worth mentioning. In old-fashion languages, a
developer explicitly has to give the data type for the variable in question, with
type inference this is not necessary as the compiler itself can deduce which data
type the variable is. Type inference is exemplified in Listing 5.

Listing 5 Type inference in Swift
let n:Int = 10 // explicitly typed
let m = 5 // compiler deduces that this is an Int
let q = 3 // same as m
let p = m + q // compiler knows p has to be Int

3.7 Application design with SwiftUI
Launched in 2019, SwiftUI is a brand new way to develop user interfaces across
all of Apple’s platforms. SwiftUI allows a developer to build views for watchOS,
iOS, iPadOS, and macOS in one single file. It uses a declarative syntax, meaning
the developer tells the system what the user interface should do, and the system
will make sure that it happens. It is different from imperative syntax where
statements are used to change the state of the user interface. The imperative
syntax takes commands and performs them whereas a declarative syntax takes
some logic describing the user interface and behind the scenes makes sure that
the view is created [45]. Previous design frameworks such as UIKit, AppKit, and
WatchKit used the imperative syntax. Notice that all the platforms use different
frameworks, meaning if you knew something about UIKit used on iOS that did
not directly apply to AppKit which is used on the Mac, this is not the case with
SwiftUI. With SwiftUI you can learn one design framework and be proficient
and create user interfaces for all Apple platforms. While there are optimizations
possible for the different platforms, it is a game-changer for developers of apps

34

on the Apple platforms and allows quicker design and development cycles across
platforms. The code in Listing 6 describes a list-view with rows containing an
image, some text and potentially a yellow star indicating the item is a favorite.
Figure 8 shows the resulting user-interface of the code snippet. Writing the same
view using UIKit would require a lot more work and method delegates.

Listing 6 List view example. Source code from [46]
import SwiftUI

struct ListView: View {
var body: some View {

List(landmarks) { landmark in
HStack {

Image(landmark.thumbnail)
Text(landmark.name)
Spacer()

if landmark.isFavorite {
Image(systemName: "star.fill")

.foregroundColor(.yellow)
}

}
}

}
}

Figure 8: List view using SwiftUI

35

3.8 Sensors on iOS and watchOS
For the thesis, it is useful to have some knowledge about the sensors that are
available on both the iPhone and the Apple Watch. The available sensors on
each device are shown in Table 2. Following the sensor-table, is a description of
the sensors specifically available on the Apple Watch.

Table 2: Sensors on the iPhone and the Apple Watch

iPhone Apple Watch
Accelerometer Yes Yes16

Gyroscope Yes Yes
Microphone Yes Yes
Camera Yes No
Optical heart sensor17 No Yes
Electrocardiogram sensor No Yes

3.8.1 Accelerometer

An accelerometer is a sensor that measures the acceleration of an object, or its
change in velocity [47]. On the iPhone and Apple Watch, the accelerometer
sensor measures the acceleration the user imposes on the device. It can track
velocity in three dimensions, often referred to as x, y, and z. On the iPhone,
it can also be used for games, such as steering a car or plane. On the Apple
Watch, this sensor is mainly used for health and fitness-related activities. [48]
showed that it is possible to track “Jumping Jacks” using the Apple Watch and
the watch’s accelerometer.

3.8.2 Gyroscope

A gyroscope is used to measure a device’s orientation and angular velocity.
Gyroscopes are used in airplanes, cars, and small electronic consumer devices.
The sensor itself consists of a disc that can spin rapidly since it is able to alter
its direction freely. A gyroscope is used to indicate which way is “down” [49].
Both the iPhone and the Apple Watch has this sensor built-in. For the Apple
Watch, the gyroscope helps in knowing when the user turns their wrists to look
at the device, making sure the device wakes up. The gyroscope sensor, together
with the accelerometer sensor in the watch, is able to detect if a user falls. If
the watch detects a fall and that the user is not moving for two minutes, it will
notify the user’s emergency contacts [50].

16Up to 32 g-forces
17Allows heart rate to be measured.

36

3.8.3 Microphone

A microphone is a device that converts sound waves into electrical signals [51].
This device is used in many different situations, everything from capturing sound
during a phone call to capturing sound from a live concert. watchOS 6 introduced
a feature that measures ambient sound around the user, sending a notification to
the user if the decibel level is at a level that can damage the hearing of the user
[52]. Both the iPhone and the Apple Watch have a microphone sensor available,
however, the iPhone’s microphone is more accurate according to [53].

3.8.4 Optical heart sensor

An optical heart sensor is capable to measure a user’s heart-rate. It works by
shining a light through the skin and measure how the lighting scatters off the
user’s blood vessels [54]. Some devices using this technology are also able to
measure blood oxygen saturation, SpO2. On the Apple Watch, the optical heart
sensor is capable to measure heart-rates within the range of 30-210 beats per
minute. The watch can also notify users if it detects irregular heart rhythms, so
a user can contact a medical doctor to investigate the irregularity further. A
teardown of the sensor has revealed that the watch is also capable of detecting
oxygen blood levels, however, this feature is not activated as of watchOS 6. It
may be activated in the future as discussed in [55].

3.8.5 Electrocardiogram sensor

An electrocardiogram (ECG), sensor monitors and measures the user’s heart
rhythm and tries to detect any problems in the rhythm. It can be used to
understand the physical health of the user under monitoring. Normally, this
sensor is only found in expensive medical equipment, however, since the Apple
Watch Series 4, the watch has been equipped with this sensor. The sensor is
cleared by the Food and Drug Administration, FDA, meaning it is classified
as a “Class 2 Medical Device” [50]. With the ECG sensor in the Apple Watch,
the user can take an electrocardiogram in just 30 seconds. After 30 seconds the
watch will notify the user with a rhythm classification, essentially telling the
user either “you are fine” or “you need to see a medical doctor”.

3.9 Distributing applications
Applications cannot be freely distributed on an iPhone or Apple Watch. All
applications that a developer wants to share with other users has to go through
a review process performed by Apple. This also applies if the developer wants
to distribute the application to testers. Applications in development can be
distributed to users through Testflight, and applications ready for production
have to be distributed through the Apple App Store.

37

3.9.1 Testflight

During the development process of an application, there may come a point where
the developer needs to give access to testers who can test the application and
report back to the developer if there are any major issues or give feedback.
Distributing an application to testers is done through Testflight, a service
provided by Apple that allows users to download new builds of an application.
Testflight allows up to 10,000 external testers to test the application. Inviting
testers to try the application is as simple as sharing a link with them.

3.9.2 App Store

When the application is ready for production, the application can be distributed
through Apple’s App Store. This is the only way to distribute production
applications on iOS, iPadOS, tvOS, and watchOS. For an application to be
allowed on the App Store, it has to go through a vetting process performed by
Apple. In the early days of the App Store, the review time was around seven
days. Today, Apple states that 50% of applications are reviewed within 24 hours
and 90% of applications are reviewed in 48 hours [56].

38

Part IV

Design and Implementation

4 Design
The design section is introduced with a set of requirements that the application
should satisfy. Section 4.2 discusses different application parts which are de-
scribed using the separation of concerns design paradigm. Section 4.3 introduces
and discusses different potential designs of the application. Section 4.4 presents
different data format options that can be used in the application.

4.1 Requirements
In the following part, the requirements for the application are outlined and
described. These requirements should be met by the application to provide a
good user experience as well as creating the foundation for future development.

4.1.1 Extensibility

The application should enable future growth and development. Extending the
use-case of the application by adding new sensors for data collections or sinks
for data-processing should be simple for a developer. Low coupling and high
cohesion is a requirement when making the application since this reduces the
code complexity. As discussed in [57] an application is extensible if new features
can be added without having global knowledge of the system. The application
and its documentation should also be made freely available which would allow
for open source contributions.

4.1.2 Resource efficiency

When creating an application for a wrist-worn device, resource usage, and
resource efficiency is of high importance. One issue is the limited battery on
these devices as well as the limited CPU and memory performance. Although
the performance keeps improving with every iteration of the Apple Watch, it is
important to keep resource efficiency in mind when developing applications.

Battery

It is important to not deplete the battery 100% during a tracking session. Often
a user would like to use their watch during the day as well as the night, therefore
the application should reduce energy consumption as much as possible. The
requirement is that the user should be able to charge the watch for about an
hour at the end of the day, sleep with their watch on and then in the morning,
recharge the watch before putting it back on and have a battery that lasts the
whole day.

39

It takes about 1,5 hours to charge an Apple Watch up to 80% from a fully
depleted battery [58]. While not 100% correct as batteries charges slower when
it fills up [59], this gives a recharging rate of 0,89% per minute. The scenario
we need to account for is that a user should have enough battery when going
to work, allowing the watch to last the whole day. Having around 80% battery
when the user is ready to go to work would be suitable. A person usually needs
anywhere from 30 to 90 minutes to get ready in the morning [60]. Let’s take
the median, 60 minutes, in order to get to 80% the battery should be at 26,6%
(80 − 60 ∗ 0, 89) when waking up, this allows the Apple Watch to deplete 73.4%
during the night, if the user goes to bed with 100% battery. However, it is
unreasonable to assume that the user would be able to charge the watch to 100%
every night. Therefore, a requirement should be to not let the battery deplete
more than 50%. This would allow the user to go to bed with around 80% and
wake up with somewhere around 30% battery left on the device.

Networking

When it comes to networking there are two main requirements the application
should handle.

1. The application should not use excessive bandwidth. If the application
is supposed to send data to some online location, it is a requirement to
reduce the amount of data transmitted over the network.

2. The application should allow for delay-tolerant transport, meaning if no
network connection is available the data should be tried again at a later
date and not be discarded.

CPU and memory usage

The application should not use excessive memory, and is should minimize CPU
usage. In addition, it is important for the application to not have any memory
leaks as it will run for multiple hours at a time, doing pretty much the same
hundreds of times, therefore even a small memory leak can result in crashes [61].

4.1.3 Data collection

The application needs to be able to collect data from sensors on the watch, which
will allow the processing of data. Without being able to collect data no value can
be extracted from the application. In addition, it is essential for the application
to provide useful data and insights to all stakeholders of the application.

4.1.4 Privacy

The application will handle sensitive health and biometric data for users. There-
fore, it is a requirement that the data collected is stored and processed in a
safe manner. The data should be handled in accordance with the General Data
Protection Regulation (GDPR) [62], thus allowing individuals control over their
personal data among other things.

40

4.1.5 Storage

The Apple Watch has limited storage. It comes with 16GB of storage, but much
of this space is taken up by the operating system, apps, and artifacts (music,
images, etc.). Therefore, the application should limit the local storage needs on
the watch. Temporary storage is feasible, but will not work in the long run due
to the limited capacity, therefore offloading should be part of the solution.

4.1.6 Stakeholders

A stakeholder is an individual or a business that has a specified interest that
can affect or be affected by the application [63]. During the design phase there
has been identified three stakeholders of the application.

1) End-users

With the application, we are targeting a variety of different users with respect
to age and technical understanding. Therefore, the application needs to be easy
to use and should be usable for everyone. The end-users will be the ones who
will request new functionality for the watch application.

2) Researchers and Medical Doctors

These are not direct users of the application, but rather users of the collected
data. They process data collected by the application for the user, they are likely
the ones requesting new sensor wrappers and sinks.

3) Developers

The developer who builds upon the application should be able to simply under-
stand the data flow of the application. A developer should be able to write new
sensor wrappers or create new sinks as needed without having deep knowledge
of the inner workings of the application. Therefore, it is a requirement that the
different parts of the application have strict and understandable contractual
obligations towards each other.

Recap

We have discussed the requirements the application should meet or take into
consideration, to recap they are:

1. Allow for extensibility
2. Use resources efficiently
3. Collect data from sensors
4. Handle user data with care
5. Reduce local storage needs
6. Be usable for different stakeholders

41

4.2 Separation of concerns
Separation of concerns is a design paradigm that is used to separate parts of a
program into distinct parts, allowing for simple and more understandable projects
[64]. By using this principle, complexity is reduced and the application becomes
more modular. Modular programming is used throughout the application to
reduce coupling and allowing for testable units of code. Each module is given
an interface it abides to, this makes it easy to extend and build upon. This
section discusses and proposes different separations and connects each concern
with applicable requirements outlined in Section 4.1.

4.2.1 Session Recording

Whenever the user is wearing the watch to do recordings, there are a lot of
things happening in the application. First and foremost, every sensor is sampling
events and posting them to some array. Figure 9 shows the lifecycle of a session
recording. The session recording concern is a vital part in order to satisfy the
data collection requirement as presented in Section 4.1.3.

Figure 9: Session Recording lifecycle

Initialize: Sets up all connected sensors with the correct configuration.

42

Start Session: Starts the session, creating the first meta-event and tell all
connected sensors to start collecting data.

Monitor : A timer that fires on some configurable frequency to make sure that
the events can be handled. This is an ongoing task.

Collect Events: Every sensor initialized collects its events and sends them to the
Session.events array.

Event Management: A function on a timer that handles the events. In the
configuration, the programmer can add sinks that can parse, process, and handle
the events.

Stop: When the user presses the end-recording button, the application proceeds
to tear down the session.

Stop Sensors: The sensors are called and asked to stop collecting events.

Stop Session: Once the sensors has been stopped the session itself can stop. The
application returns to a stale state where the user can start a new session.

4.2.2 Sensors

A sensor’s lifecycle depends on the Session, whose responsibility is to tell the
sensor to start and to stop as well as where to send the events to. The data
collection requirement, presented in Section 4.1.3, is satisfied by the sensors. The
sensors are the objects that collect data-points and emits them to the correct
location. Figure 10 shows the lifecycle of a single sensor. There can be multiple
sensors running in parallel.

43

Figure 10: Sensor lifecycle

Initialize: Different sensors have different configurations, therefore all sensors take
some given number of arguments during its initialization. During initialization
the required variables are instantiated.

Start: When starting a sensor the sensor’s collector function starts running,
collecting events at a given interval, or when pushed from the hardware.

Collect: The collect function is responsible for collecting the event from the
hardware.

Emit Event: The sensor needs to emit the event as a JSON data object to the
Session.events array.

Stop: The sensor stops collecting events.

4.2.3 Event Management and Storage

While it is possible to store the data directly on the watch, this is not feasible in
the long run since the watch has limited storage, as discussed in Section 4.1.5.
Therefore, the data collected by the application should be offloaded to some
storage location. One possibility is to offload data to the user’s iCloud storage, or

44

some other third-party storage option. Using Apple’s CloudKit framework makes
the development lifecycle simpler, and reduces third-party API dependencies.

Figure 11: Event management

Get Events: Get the events as strings from the Session.events array.

Call Sinks: Sinks can be configured to be called every time new events are
retrieved from the event array. When called the application waits for x seconds
before it calls the Get Events function again.

4.2.4 Sink

When using the sink-pattern, all events are dropped into the given sink when
retrieved. This allows every sink to handle the events on their own terms. A sink
can, for example, send the data to stdout and another can take the same data
and send to the cloud, or a sink can parse and aggregate data before sending to
another sink which can do analysis on the data. This pattern allows for flexibility
and makes the code more extensible as a developer can create a sink and just
configure the SessionController to call the respective sink when retrieving
events.

45

Figure 12: Sink management

Sink 1 : Events are passed to the sink. The event array is processed and handled
in isolation in this sink.

Handle [event]: Does some operation on the event array. Examples include
uploading to the cloud, remove uninteresting events, or perform an aggregation
operation on the events.

Return: Returns to the caller, no further action is made by the sink.

Sink n: A sink can call another sink. This allows a sink to do x on the input, z,
transforming them to z' and passing z' into sink n.

When creating Sinks, it is important to understand where the data is sent.
Developers who extend this part of the application need to pay close respect to
the privacy requirement as outlined in Section 4.1.4. The developers have access
to biometrical data from the users which are classified as sensitive, therefore
handling the events should be done carefully. This means that creating sinks
whose task is to send data over the Internet should be created in a secure fashion.

46

4.2.5 User interface

It is a requirement that the user interface should be easy and simple to understand
in addition to be useable for different types of users. In Figure 13, the state
machine of the user interface is presented. It is designed in a way such that no
user should have any difficulties maneuvering the user interface.

Figure 13: User Interface management

Home View: This is the initial view of the application.

Settings View: From the Home View the user has the option to go to the Settings
View. Here the user is able to set different configurations and control the behavior
of the application. The view is modal and can be dismissed in order to return to
the Home View.

Ready View: This view tells the user that the watch is ready. It waits for the
user to press the Start Session button.

Active Session View: This is the view that will be active most of the time. It
displays data relevant to the current session.

Ended Session View: If the user decides to end the session by pressing the End
Session button, he or she will end up in this view. Some statistics regarding the

47

session are shown. The user can press the Go Home button to get back to the
initial view.

4.2.6 Summary of concerns

Table 3 presents a summary of the concerns discussed in this chapter. The
concerns are implemented in Section 5.2.

Table 3: Table of Concerns

Concern Description
Session
Recording

Controlling and administrating the sensors and other data
objects needed to record a sleep session.

Sensors Collecting, retrieving, and pushing data-points.
Event
Management
and Storage

Handling the events and making sure they are stored.

Sink Processing and sending data to correct places.
User Interface Creating a simple and intuitive user interface that can be

used by users with different skill levels

4.3 High level design
The design of the application went through a few iterations, the initial design
was a proof of concept, the second design improved upon this and the final
architectural design was a complete rethinking of how the application should
handle the events. In this part, all design iterations are presented discussing
reasons for the design and why it may not be perfect and what was learned from
the implementation of the designs.

4.3.1 The initial design

The initial design, as presented in Figure 14, is a bare-bones watch application
whose focus is to save the session to local storage on the watch. During the first
iteration, the application had to be bundled together with an iOS application,
allowing for communication between the watch and the phone. Therefore, the
watch application was supposed to collect sensor data, store it on the watch
and later, the phone would transfer the data from the watch back to the phone.
While it seemed like a good idea at the time, communication between the watch
and phone introduced a lot of complexity as well as unreliability. The developer
has no real control over when a file is transferred back to the phone as discussed
in [37] and [38]. This introduces uncertainty as to whether or not all data-points
have been transferred over to the phone, meaning real-time processing is not
possible.

48

Figure 14: Initial design

In this design, every sensor-wrapper object is supposed to hold all events it collects
in memory until the session is stopped, at which point the SessionController
calls the collectEvents method on every sensor and writes the contents to disk
on the watch. The initial design was implemented and was shown to work, but
due to the connectivity issues and unreliableness of the communication between
the phone and watch it was decided that the application should be implemented
as a standalone application. In addition, Apple has on multiple occasions during
the past few years paved the road for stand-alone watch applications, and with
watchOS 6.0 they now allow users to download applications directly from the
watch removing the need for the phone to install third-party applications [65].
Due to these two factors, we regard implementing the watch as an independent
application the most correct and forward-thinking way to go.

4.3.2 The improved design

The improved design, shown in Figure 15, uses many ideas of the initial design,
however, the implementation is done as a standalone application. Creating a
standalone application introduces complexity with regard to how users would
be able to access their data. The solution in this design is to use the CloudKit
framework to upload data to iCloud, which allows the application to upload
data to the cloud. This design also allows the phone to get access to the user’s
data if the same iCloud account is used.

49

Figure 15: Improved design

As with the initial design, all sensor wrappers are required to hold their events un-
til the session is stopped, then the events are collected by the SessionController.
The SessionController then handles the events by sending them to file storage
or to the cloud depending on the configuration.

This design works better than the initial design. However, when running the
application for more than two hours it crashes due to some bug. After investi-
gating, it was found that the error is caused by a memory issue which resulted
in the application receiving a low-memory warning and eventually being killed
by the operating system. The memory warning comes from the event collection,
and the fact that the collection is done in-memory over long time periods. This
makes the application basically unusable for long sleep sessions since it does not
have the ability to save the collected data to disk or send to the cloud before
being killed.

In retrospect, the improved design is simple enough, but the degree to which
it is extensible can be discussed. As the design is described in Figure 15 it is
difficult to see that it is extensible, and when implementing this design there
were many hurdles when trying to add more sensors and handlers. Due to the
memory issue and extensibility question, it was decided that the application
design should be rethought.

4.3.3 The final design

In the final design, learnings were taken from the previous iterations. First and
foremost, the sensor wrappers in this design emit events to the Session.events
array, thus the controller has one single place to retrieve events. This makes
the design between the Session and the SessionController simpler since the

50

SessionController has no knowledge of the sensor wrappers, e.g., how many
sensors there are or their internal methods, as it communicates with the Session
class.

Figure 16: Final design

In order to handle the low-memory issue, the new design has a SessionSplitter
class whose task is to split the Session.event-array into batches at a config-
urable interval. This class is triggered by a timer, and when it fires it fetches all
events from the events property of the Session object and returns them to the
SessionController for it to handle and process.

When designing this iteration we introduce the concept of sinks. In our design,
a sink is a class designed to handle a batch of events. The SessionController
should allow for multiple sinks to run in parallel. While not shown in Figure 16,
a sink is also able to pass events to another sink, i.e. chaining sinks.

This design allows the application to easily be extended. If a new sensor comes
along, a sensor wrapper needs to be created and it only has to adhere to a
few contractual obligations towards the Session class. The Sink idea allows
a developer to build features on top of the collected data such as aggregation
functions, reducing functions, and storing the collected data elsewhere than local
storage. With these choices, the extensibility requirements outlined in Section 4.1
should be met.

51

Core design elements

In the design phases, some core design elements were found, these are presented
in Table 4

Table 4: Core objects

Name Description
Event Representing an event generated by a sensor.
Sensor This class is a wrapper around the underlying hardware sensor

on the watch. Its purpose is to generate events at a specified
interval.

Session The Session class is responsible for the current sleep session.
Session-
Controller

This controller class manages the Session object, handling the
start and stop of the session.

Sink This object handles the batches of events sent from the
SessionController.

4.4 The Data Format
The following section discusses some of the different data formats that are
applicable for use in the application. During the creation of the application
three possible data formats were considered; 1) Extensible markup language
(XML), 2) Comma-separated values (CSV) and 3) Javascript Object Notation
(JSON). When investigating the requirements, the focus was put on the format
being extensible and storage efficient. When discussing the different options, we
exemplify with an accelerometer event as shown in Listing 7.

Listing 7 Accelerometer event in Swift
struct AccelerometerEvent:EventProtocol{

var sessionIdentifier: String
var sensorName: String
var timestamp: TimeInterval
private var event:EventData

private struct EventData:Codable{
var x:Double
var y:Double
var z:Double

}
}

XML

XML was designed in 1996, and in 1998 it officially became a W3C standard

52

[66]. It was developed in order to provide simplicity, generality, and easy data
exchange across the Internet as well as being in a human-readable format. Each
XML document consists of one or more elements surrounded by tags (< >).
The format provides hierarchical data structures, thus it is can easily support
complex data. Listing 8 exemplifies the accelerometer event in XML. Adding
another type of sensor is as easy as changing some of the tags, and can easily be
accounted for in an application.

Listing 8 Accelerometer event in XML
<sensor_event>

<sessionIdentifier>someString</sessionIdentifier>
<sensorName>Accelerometer</sensorName>
<timestamp>1578476733554</timestamp>
<event>

<x>3.14159</x>
<y>1.74421</y>
<z>-2.88329</z>

</event>
</sensor_event>

The versatile format has one big caveat, which is size. The data format can be
up to three times as large as CSV, and twice as large as the JSON format. The
data in Listing 8 is 210 bytes when using a minifier (removing whitespace and
line-shifts).

CSV

While the CSV file format has been available since the 1970s, the file format
was officially standardized in 2005 [67]. A CSV file uses a comma (or another
specified delimiter) to separate values. Every line is regarded as one record, with
one type of record this works fine, for example, a list with data from one single
sensor.

Listing 9 Accelerometer event in CSV
sessionIdentifier,sensorName,timestamp,x,y,z
someString,Accelerometer,1578476733554,3.14159,1.74421,-2.88329

Listing 9 shows how an accelerometer event may look in a CSV file. The problem
with this format is that it does not support data hierarchies, which is important
for the application we are creating. While it is possible to create a custom parser
allowing for more complex data structures, it will cause a lot of pain to maintain
the parser when improving and changing the application. Therefore, this file
format is not versatile enough for use in this thesis.

53

JSON

The JSON format was originally specified by Douglas Crockford in the early
2000s. The format is language independent, however, it takes cues from popular
programming languages. The format is seen as a replacement for XML. The
format shaves the end-tags (</tagname>) known from XML, saving space. In
addition, the format supports complex data structures and is very versatile. An
example of an accelerometer event in JSON is shown in Listing 10.

Listing 10 Accelerometer event in JSON
{

"sessionIdentifier":"someString",
"timestamp":1578476733554,
"sensorName":"Accelerometer",
"event":{

"x":3.14159,
"y":1.74421,
"z":-2.88329

}
}

The minified version of the event in JSON is 136 bytes, a reduction of 35%
compared to the XML format. Other events may have even bigger reductions in
size. Due to the versatility and space savings, the JSON format is used as the
storage format for the data collected from the sensors.

Table 5 shows the connection between a sensor’s sampling rate, number of sensors,
and the amount of data when an emitted event is 136 bytes. On the lowest
end, a sleep session will collect just under 4 megabytes of data, whereas on the
highest side the data collected will be just under 4 gigabytes.

Table 5: Storage estimation

Sampling
rate

Number of
sensors
connected

Data pr.
Minute (mb)

Data pr.
Hour (mb)

Data pr. sleep
session (8h) (mb)

1 1 0,00816 0,4896 3,9168
1 3 0,02448 1,4688 11,7504
1 5 0,0408 2,448 19,584
10 1 0,0816 4,896 39,168
10 3 0,2448 14,688 117,504
10 5 0,408 24,48 195,84
25 1 0,204 12,24 97,92
25 3 0,612 36,72 293,76

54

Sampling
rate

Number of
sensors
connected

Data pr.
Minute (mb)

Data pr.
Hour (mb)

Data pr. sleep
session (8h) (mb)

25 5 1,02 61,2 489,6
50 1 0,408 24,48 195,84
50 3 1,224 73,44 587,52
50 5 2,04 122,4 979,2
100 1 0,816 48,96 391,68
100 3 2,448 146,88 1175,04
100 5 4,08 244,8 1958,4
200 1 1,632 97,92 783,36
200 3 4,896 293,76 2350,08
200 5 8,16 489,6 3916,8

4.4.1 Event Types

In general, the application creates two types of events; meta events and sensor
events. The following part will explain these two event types.

Meta Event

This event is emitted at the start and the end of every session. The start-
meta event, shown in Listing 11 and Listing 12, contains information about
every sensor applied to the given session, as well as other metadata important
for analyzing the dataset. The end-meta event, shown in Listing 13, contains
aggregated information about the session, such as total events captured, running
time of the session, and the total decrease in battery level during the session.
Both the start and end meta event contains a session identifier in order to relate
the meta event to the sensor events.

Listing 11 Start meta event 1/2
{

"userID": "UUID",
"userInfo": {

"age": 25,
"gender": "male",
"weight": 85.5,
"height": 193

}
...

55

Listing 12 Start meta event 2/2
{

...
"sessionIdentifier": "UUID",
"timestamp": 1578483807.661,
"sensor": "MetaSensor",
"event": {

"type": "Start",
"device": "Apple Watch",
"version": "Version string of device",
"date": "somedate",
"Sensors": ["list of applied sensors and their configs"]

}
}

Description of Start-Meta Event

UserID: An UUID identifying the current user.

UserInfo: JSON object containing data about the user.

SessionIdentifier: A UUID as string identifying the given session.

Timestamp: Epoch timestamp for the event.

Sensor: Name of the given sensor. MetaSensor here.

Type: Type of event in for the given sensor.

Device: Which device the session is running on.

Sensors: A list of sensors as a JSON object. All the sensors
will have a meta-event themselves with information related to
how the sensor collects data.

56

Listing 13 End meta event
{

"userID": "UUID",
"sessionIdentifier": "UUID",
"timestamp": 1578483807.661,
"sensor": "MetaSensor",
"event": {

"type": "End",
"eventCount": 100,
"runningTime": 67807.142

}
}

Description of Stop-Meta Event

Event Count: Number of events collected during the session.

Total Running Time: The total running time of the session.

Sensor events

Every sensor that creates an event follows the same event format. The fields
sessionIdentifier, sensorName, timestamp, and event must be present in
every data-point emitted from the sensor. The event field is its own JSON
object. It is custom for each sensor, therefore specific sensor data is added in
this object. The events created by the heart-rate, battery and accelerometer
sensor are presented and exemplified in Listing 14, Listing 15, and Listing 16.

Listing 14 Example of a heart rate event
{

"sessionIdentifier":"426AB2BF-CA06-4CD2-8882-EB471E2CBDFF",
"timestamp":1578483807.6612411,
"sensorName":"Heart Rate",
"event":{

"heartRate":62
}

}

57

Listing 15 Example of a battery event
{

"sessionIdentifier":"426AB2BF-CA06-4CD2-8882-EB471E2CBDFF",
"timestamp":1578483809.7238933,
"sensorName":"Battery",
"event":{

"batteryPercent":81,
"batteryState":1

}
}

Listing 16 Example of a accelerometer event
{

"sessionIdentifier":"426AB2BF-CA06-4CD2-8882-EB471E2CBDFF",
"timestamp":1578483810.3035579,
"sensorName":"Accelerometer",
"event":{

"x":0.01434326171875,
"y":-0.0277252197265625,
"z":-0.9988861083984375

}
}

58

5 Implementation
This chapter describes the implementation of an app called Sopor.18 Based
on the final design from Chapter 4, the different application components are
presented as well as how the separate concerns identified are solved.

5.1 Application components
In Sopor, the different application components are given specified tasks to be in
control of and perform. Some components have contractual obligations towards
other components, meaning that the components’ interfaces should not change.
This is useful for further development since the components can be improved
internally without introducing change to the outside world. In addition, it
increases the stability of the software since changes to the components’ APIs are
not introduced without careful consideration. In this section, the implementation
of the components is presented.

5.1.1 Sensor

At the heart of Sopor, we have the sensor wrappers for the sensors in the Apple
Watch. All sensors are required to follow the interface described in Listing 17.
Furthermore, all sensors can extend the interface to account for special cases for
the given sensor.

Listing 17 Sensor interface
protocol SensorInterface {

var sensorName:SensorEnumeration { get }
func startSensor(session:Session) -> Bool
func stopSensor() -> Bool
func collectEvent()
func storeEvent(data:Data)

}

Description of the sensor interface

sensorName: All sensors have a given sensor name that uniquely identifies them.
The sensorName has to be defined as a SensorEnumeration19.

startSensor(): Whenever the session starts, the Session class calls the
StartSensor method. This function handles the initiation of the sensor. Every
sensor needs a different implementation of this method. The method takes a
Session object, which is referenced multiple times during the session. It returns
a boolean value detailing if the sensor was successfully started or not.

18Latin for “deep sleep”.
19The SensorEnumeration.swift file contains a KV-store of all sensor wrappers.

59

stopSensor(): This method is called by the Session and indicates that the sensor
should stop collecting events. This function is called when the user has ended
the session, or if for some reason the application is required to shut down, such
as in the event in which the watch is completely drained for its battery.

collectEvent(): The sensors implemented in Sopor use different collection methods
for gathering events. The heart rate sensor wrapper subscribes to the heart rate
sensor in the watch and is notified for every new event, whereas the accelerometer
sensor can be given a sampling rate to follow. Regardless of the data collection
method, the collectEvent method is called to handle the new data-points.

storeEvent(): All sensors that inherit from the base Sensor class20 get this
function for free. This function takes an encoded JSON event and stores it in
the current session’s events array.

A sensor wrapper is not required to follow any given initializer, since different
sensors may be set up with different arguments. The SensorInterface is an
interface defining which functions and properties a sensor wrapper should have,
and since every sensor often has some special implementation detail the interface
leaves some work for the developer. The interface makes every sensor conform
to the contractual obligation between the Sensor class and the Session class.
Table 6 shows the implemented sensors in Sopor.

Table 6: The supported sensors in Sopor

Sensor Responsibility Configurable21

Accelerometer Collects accelerometer data Yes
Battery Collects battery information Yes
Heart Rate Collects heart rate of user No
Meta Collects metadata about a session No
Gyroscope Collects gyroscope data Yes

5.1.2 Events

Events represent data-points collected from the sensors, these are in essence
simple struct objects. All Event structs follow the EventProtocol. The meta-
data the struct needs to implement is shown in Listing 18. These properties
are necessary in order to figure out from which sensor the event comes from,
at what time the event is created, and which session it belongs to. In addition,
events have an internal structure for the specific event data that the specific
event-struct needs to represent, this is shown in Listing 19. The internal struct
describes the actual information the event collects when retrieving the data.

20The Sensor class is defined in Sensor.swift.
21A sensor is considered configurable if the sampling rate can be changed.

60

Listing 18 EventProtocol
protocol EventProtocol:Codable {

var timestamp:UInt64 { get set }
var sensorName:String { get set }
var sessionIdentifier:String { get set }

}

Listing 19 Accelerometer event struct
struct AccelerometerEvent:EventProtocol{

var sessionIdentifier: String
var sensorName: String
var timestamp: UInt64
private var event:EventData

private struct EventData:Codable{
var x:Double
var y:Double
var z:Double

}
}

Event objects have no methods, this is by design as the events are only data-
points and should not perform any actions. Table 7 shows the Events that are
available in Sopor.

Table 7: Events correlation to sensor-classes in Sopor

Event name Connected To Sensor-Class
GyroscopeEvent GyroscopeSensor
HeartRateEvent HeartRateSensor
BatteryEvent BatterySensorWatch
AccelerometerEvent AccelerometerSensor
MetaEvent MetaSensor
MetaStopEvent MetaSensor

In addition to events related directly to Sensor classes, it is possible to describe
events that happen outside of sensors, such as in the AggregationSink, described
in Section 5.2.3.3, where multiple events are aggregated and reduced to one
single event. One such event is defined in AggregatedMetric.swift, shown in
Listing 20. This struct is essentially identical to the other event structs shown
in Table 7, having a custom internal representation of the data, in addition to
conforming to the EventProtocol representation.

61

Listing 20 AggregatedMetric struct
struct AggregatedMetric:EventProtocol{

var sensorName: String
var timestamp: UInt64
var sessionIdentifier:String
private var event:EventData

private struct EventData:Codable{
var metricValue:Double
var type:String

}
}

5.1.3 Session

The Session class handles a single session. The class has a list of sensors, stored
in the sensorList variable and the Session object is responsible for interfacing
with the sensors, i.e. calling their start and stop methods. The Session class
also holds the list of events emitted by the sensors in the events:[Data] array.
During the first design and proof-of-concept, the session class was responsible for
pulling data from the sensors at a given interval, this was rethought in the final
design and it was decided that the sensors were responsible for pushing the events
to the active Session. The Session also have a few helper functions, such as
getLatestBatteryWatchEvent() which returns the latest battery information
and getLatestHREvent() which returns the latest heart rate for the user. These
methods are called by the SessionController class and serve the function of
giving feedback to the user interface thus being informational to the end-user.

5.1.4 Session Controller

The SessionController handles the interaction between the user interface, the
Session class and other helper modules. Whenever a user wants to start a
session the SessionController calls the Session’s startSensors() method,
the same goes when the user wants to end a session, the session’s endSession()
method is called. The user interface classes may call the SessionController
in order to get the latest data-points. This class is also responsible for starting
and triggering the timer that will call the SessionSplitter’s splitSession
function, the trigger frequency is given by the BATCHFREQUENCY as discussed in
Section 5.1.5. The return value of the splitSession function is an array of
Data objects which the SessionController sends to the configured Sinks.

5.1.5 Session Config

The SessionConfig class allows the developer to set up the sensors with dif-
ferent configurations. The ease of configurability has been a valuable feature
during the development of Sopor. The getSensorList() function initializes

62

a list of sensors and passes them back to the caller. The getSinkMethod(),
shown in Listing 21, is a function that the SessionController can use when
handling the batch of events, this way the developer can easily change the
behavior of the sinks. It is also in the SessionConfig class where the fre-
quency of the SessionSplitter.splitSession() function can be set through
the BATCHFREQUENCY property. As a default, this is set to 120 seconds.

Listing 21 Get the sink configuration
static func getSinkMethod() -> ([Data], String) -> [Data] {

return runSinks // Return the configured Sink-workflow
}

static private func runSinks(events:[Data], UUID:String) -> [Data]
{

let filtered = FilterSink.runSink(
events: events,
sensorsToRemove: ["Battery"]

)
let aggregated = AggregationSink.runSink(

events: filtered,
sessionIdentifier: UUID

)
return aggregated

}

In the future, the SessionConfig class should also handle different user-set
configurations. A user may want to only collect data from some sensors, or
control the sampling rate for a given set of sensors where applicable. This class
can be used to set and get these user-specified configurations.

5.1.6 Session Splitter

This class was implemented in response to a memory issue that caused the
application to crash every two hours when using the initial and improved design
of the application, as discussed in Section 4.3.2. Whenever Sopor collected data
for too long, the application would essentially run out of available memory and
crash. This class is the solution to that problem. The function splitSession()
handles the logic of splitting and copying all events to a new array and removing
the elements from the active Session’s events array.

Listing 22 shows the splitSession() method. First, it fetches the number
of elements in the Session’s events array and stores this in the eventCount
variable. Then it moves the sub-range 0->eventCount to a new array. When
it removes the subrange in the events array, the function essentially clears out
the array. Finally, the elements removed from the events array are returned
to the caller. This method is partially thread-safe. Other threads may append

63

to the events array while this method runs, prepending and other operations
are not thread-safe in the current implementation. One way to implement full
thread-safety requires to introduce a lock to the splitSession method, this
allows the thread to execute knowing no-one else can access the events array
at the same time. One issue with this could be that that the removeSubrange
would take so much time to complete such that the sensors would be waiting
for a long time before being allowed access to the events array. The current
implementation is sufficient enough for its use.

Listing 22 Splitting the events
func splitSession(session:Session) -> [Data]{

let eventCount = session.events.count - 1
// Index starts at 0

let splittedEvents = Array(session.events[0...eventCount])
session.events.removeSubrange(0...eventCount)
return splittedEvents

}

5.1.7 Sinks

A Sink in Sopor is essentially an event consumer. It is responsible for applying
some function on the events it consumes. All Sink classes need only to implement
one function which is presented in Listing 23. In Sopor, a sink takes an array of
Data objects, it processes them and then returns the same or possibly a mutated
array to the caller. Since a Sink returns a Data array to the caller, multiple
Sinks can be used on the same batch of events. This pattern allows, for example,
a sink to aggregate some data, then pass it to a sink which filters out events
based on some function, and lastly the final array can be passed to a sink whose
task is to store the data, either locally or online in the cloud.

Listing 23 Sink protocol
protocol Sink {

static func runSink(events:[Data]) -> [Data]
}

5.2 Implementation of concerns
In Section 4.2, different components are conceptualized and decomposed into
separate concerns. This section discusses and presents the specific implementation
details in Sopor of the concerns described in Section 4.2.

5.2.1 Sensors

In Sopor, all sensor wrappers adhere to a strict basic interface as presented in
Listing 17. This interface defines methods that each sensor must follow. The

64

different wrappers are presented in Table 6. In this section, each wrapper is
presented and specific implementation details are discussed.

5.2.1.1 Sensor inheritance

All sensors in Sopor inherit from the Sensor class.22 Inheritance allows some
methods to only be implemented in this class while being available for all sub-
classes. In the current implementation, this applies only to the storeEvent()
method. The inheritance model is presented in Figure 17.

Figure 17: Sensor inheritance in Sopor

5.2.1.2 Accelerometer

When collecting Accelerometer data, the CMMotionManager23 object needs to
be instantiated. The CMMotionManager object makes sure that the data that
is made available for collection has been processed to remove environmen-
tal bias, such as gravity effects. This object provides methods for start-
ing, stopping, and managing motion services on the device. By using the
CMMotionManager’s isAccelerometerAvailable method one can make sure
that the accelerometer sensor is available on the given watch. Next, one has to
set the accelerometerUpdateInterval property in order to set the sampling
rate for the sensor. Finally, the sensor updates have to be started using the
startAccelerometerUpdates method. Listing 24 shows how the accelerometer
sensor is started.

22Defined in the Sensor.swift file.
23Part of the Core Motion framework.

65

Listing 24 Starting the accelerometer
func startAccelerometers() {

// Make sure the accelerometer hardware is available.
if self.motion.isAccelerometerAvailable {

self.motion.accelerometerUpdateInterval = 1.0/60.0
self.motion.startAccelerometerUpdates()
// other setup can happen here.

}else{
log.information("Accelerometer is not available")

}
}

When the session runs, a timer triggers at the same frequency as the sampling
rate given in the startAccelerometer() method. The trigger activates the
collectEvent() method that collects and stores the collected event, as shown
in Listing 25.

Listing 25 Collecting accelerometer events
func collectEvent() {

let event = createEvent()
if let unwrappedEvent = event{

let encodedEvent = self.encodeEvent(event: unwrappedEvent)
storeEvent(data:encodedEvent)

}else{
fatalError("AccelerometerEvent is nil")

}
}

func createEvent() -> AccelerometerEvent {
if let data = self.motion.accelerometerData {

let timestamp = NSDate()
let x = data.acceleration.x
let y = data.acceleration.y
let z = data.acceleration.z

return AccelerometerEvent(x: x,
y: y,
z: z,
timestamp: timestamp,
sessionIdentifier: self.sessionId?.description ?? "NA")

}
return nil // accelerometerData not available

}

66

5.2.1.3 Gyroscope

In general, this sensor behaves much like the accelerometer sensor described
in Section 5.2.1.2. As with the accelerometer, the gyroscope can be accessed
using the CMMotionManager object. By calling the CMMotionManager’s
isGyroAvailable() method, one can make sure the device has a gyroscope
available. On earlier models of the Apple Watch, this sensor is not available.
However, newer Apple Watches allow access to the collected gyroscope data.
One can set the sampling rate using the gyroUpdateInterval() method, and
start subscribing to updates by calling the startGyroUpdates() method.

5.2.1.4 Heart rate

The heart rate sensor on the Apple Watch cannot be accessed directly, as getting
the raw heart rate readings is not allowed [68]. The application can, however,
access the near real-time heart rate by starting an HKWorkoutSession, which
streams data to given methods once the data becomes available. Therefore, the
delay in getting the heart rate is reduced when running in this mode. Another
method of retrieving the heart rate data is to query the HealthKit database.
This has one big drawback which is that the data is not readily available, and
often it is delayed by minutes. Due to this, the first option is implemented,
which essentially makes the application a workout application in Apple’s eyes.

Before the heart rate sensor can be started, the workout session needs to be
configured and the query for the heart rate has to be created. Creating the
heart rate query is shown in Listing 26. Essentially the query will query for the
HKQuantityTypeIdentifier.heartRate sample. The heart rate sensor wrapper
is defined in the HeartRateSensor class.24

24Defined in the HeartRateSensor.swift file.

67

Listing 26 Creating heart rate query
func createHRStreamingQuery(_ workoutStartDate: Date) -> HKQuery? {

guard let quantityType = HKObjectType.quantityType(
forIdentifier: HKQuantityTypeIdentifier.heartRate)

else { return nil }

let datePredicate = HKQuery
.predicateForSamples(withStart: workoutStartDate,

end: nil, options: .strictEndDate)
let predicate = NSCompoundPredicate(

andPredicateWithSubpredicates:[datePredicate])

let heartRateQuery = HKAnchoredObjectQuery(type: quantityType,
predicate: predicate, anchor: nil,
limit: Int(HKObjectQueryNoLimit)) {(query,

sampleObjects, deletedObjects, newAnchor,
error) -> Void in

self.collectEvent(sampleObjects)
}

heartRateQuery.updateHandler = {(query, samples, deleteObjects,
newAnchor, error) -> Void in self.collectEvent(samples)

}
return heartRateQuery

}

All workout sessions need to have an HKHealthStore object available, which
in the HeartRateSensor class is bound to the healthStore variable. The
HKHealthStore object is the access point for all HealthKit managed data. This
object is also used when instantiating the HealthKit query created by the function
shown in Listing 26.

5.2.1.5 Battery

The BatterySensorWatch class25 measures the watch’s battery level. This is
useful in order to understand the resource usage of Sopor. The collect function
for this sensor runs on a configurable timer set by the samplingRate variable.

To start collecting battery information from the watch, the operating system
needs to be notified that the application wants to monitor the battery state
by setting the isBatteryMonitoringEnabled property to true. In addition,
a timer has to be instantiated in order to collect the battery data at a given
interval. This is shown in Listing 27.

25Defined in the BatterySensorWatch.swift file.

68

Listing 27 Starting battery monitoring
override func startSensor(session:Session) -> Bool {

currentSession = session

// Enable battery monitoring
WKInterfaceDevice.current().isBatteryMonitoringEnabled = true

// Configure a timer to fetch the battery data.
self.timer = Timer(

fire: Date(),
interval: (self.samplingRate),
repeats: true, block: { (timer) in

// Get the battery data on an interval.
self.collectEvent()

})

// Add the timer to the current run loop.
RunLoop.current.add(self.timer!, forMode: .default)

return true
}

Every time the timer in the battery sensor triggers, the collectEvent is called.
This event calls two helper functions, createEvent and encodeEvent, in order
to create the BatteryEvent which is stored in the Session’s events array.
When creating the BatteryEvent the WKInterfaceDevice class is invoked and
multiple helper methods are called in order to get the data-points needed for the
BatteryEvent. The collectEvent and the createEvent method is presented
in Listing 28 and Listing 29 respectively.

Listing 28 BatterySensor: Collect event
func collectEvent(){

let event = createEvent()

// Convert the BatteryEvent object to a data object
let encodedEvent = encodeEvent(event:event)
storeEvent(data:jsonEncodedEvent)

}

69

Listing 29 BatterySensor: Create event
func createEvent() -> BatteryEvent{

let batteryLevel = WKInterfaceDevice.current()
.batteryLevel

let batteryState = WKInterfaceDevice.current()
.batteryState
.rawValue

let device = WKInterfaceDevice.current()
.model

let event = BatteryEvent(device: device,
batteryLevel: batteryLevel,
batteryState: batteryState,
sID: sessionID.description)

return event
}

5.2.1.6 Microphone

The Apple Watch is equipped with a microphone which is accessible for developers
using different APIs. One API that can be used is the AVAudioRecorder which
allows recordings to be made. While not implemented in the final delivery, it
is easy to get started with voice recording on the Apple Watch, as shown in
Listing 30, however, getting a fully-fledged recording setup is more complicated.
One major hurdle is whether or not to record the whole session, or just record
parts of the session based on some trigger. Recording for more than a few hours
can drain the battery heavily while recording only parts of a session would
potentially leave out important data-points. Another way to tackle the issue
would be to record using the phone which presumably is next to the user when
sleeping. Since the phone is often connected to power during the night the
battery issue is reduced to a trivial point. In addition, recording with the phone
allows the sound to be recorded all the time regardless of the user’s sleeping
position. Sleeping positions are rather dependent on the individual in question
as concluded in [69] and some users even sleep with their hands under the pillow,
thus any sound will be muffled or not noticeable at all. Therefore, an application
on the phone would be better at picking up sounds created by the user.

70

Listing 30 Microphone sensor pseudocode. Code from [70].
let dirPath = getDirectory()
let pathArray = [dirPath, "audio.m4a"]
guard let filePath = URL(string: pathArray.joined(separator: "/"))

else { return }

let settings = [AVFormatIDKey: Int(kAudioFormatMPEG4AAC),
AVSampleRateKey:12000,
AVNumberOfChannelsKey:1,
AVEncoderAudioQualityKey:

AVAudioQuality.high.rawValue]

//start recording
do {

audioRecorder = try AVAudioRecorder(url: filePath,
settings: settings)

audioRecorder.delegate = self
audioRecorder.record()

} catch {
print("Recording Failed")

}

5.2.1.7 Meta sensor

At the start and the end of each session, a meta event is created by the
MetaSensor.26 As shown in Section 4.4.1, the meta events collect metadata
about the session. When starting it captures a snapshot of the available data
about the user and the connected sensors. At the end of a session, the end-meta
event collects aggregated data such as the total event count and the running time
of the session. There are no sampling rate, queries, or timers required for this
sensor, it creates events when its startSensor() and stopSensor() methods
are called.

5.2.2 Session Recording

When a user presses the Start Session button shown in Figure 18, the but-
ton’s associated action calls the SessionController’s startSession() method
shown in Listing 31. This method initializes a new Session object and calls the
currentSession’s startSensors() method.

26Defined in the MetaSensor.swift file.

71

Figure 18: Sopor start session screenshot

Listing 31 Starting a Session in the SessionController class
func startSession(wakeUpTime:Date) -> Session{

let SESSION_UUID = UUID()
let sensorList = SessionConfig.getSensorList(

SESSION_UUID: SESSION_UUID
)

currentSession = Session(wakeUpTime: wakeUpTime,
sensorList: sensorList,
sessionIdentifier: SESSION_UUID

)
currentSession.startSession()
setupBatchTimer(interval: SessionConfig.BATCHFREQUENCY)
return currentSession

}

5.2.2.1 Data acquisition

There are essentially three phases of the data acquisition; 1) starting, 2) collecting,
and 3) stopping. During the start phase, all sensors are started. In the collection
phase, sensor wrappers make sure to collect the emitted events. During the
stop phase, all sensors are turned off in order to preserve battery life and avoid
memory leaks. The phases are described in detail in the following section.

Starting the data acquisition

Figure 19 shows the flow of events when starting the Session. The

72

SessionController calls the Session in order to initialize all sensors. When
the Session is initialized and its startSensors() method is invoked the sensors
are started one by one. The Sensors starts to collect events from the hardware.

Figure 19: Sopor starting the data acquisition

In the current implementation, all startSensor() methods are called syn-
chronously. One could improve the current implementation by setting up the
method calls in such a way that they are run in parallel as shown in the pseu-
docode presented in Listing 32. Since this does not give a noteworthy speed
increase in the current implementation due to the fact that all sensors are local
to the Apple Watch it has not been implemented. Once starting to work with
sensors that need to connect through Bluetooth which takes longer to set up,
performing the setup in parallel would give a beneficial speed increase.

Listing 32 Starting Sensors in parallel
func startSensors(currentsession:Session) -> Bool {

let asyncTask = async {
sensors.parallelMap {$0.startSensor(session:currentsession)}

}
asyncTask.start()
asyncTask.wait()
return asyncTask.isSuccessfullyCompleted

}

Collecting

When the user is in an active session, the sensors are constantly emitting events
to the Session’s events array. Depending on the sampling rate of the connected

73

sensors this array may grow with everything from 5-200 events every second. The
implementation of how the data is collected by the different sensors is discussed
in Section 5.2.1.

Since all sensors inherit from the base Sensor class, every sensor also inherits
the storeEvent() method. The storeEvent() method takes a Data object
and calls the appendToEventArray() method of the Session object. This is
the main way of collecting events for all the sensors, and every sensor has a
contractual obligation to emit events to the storeEvent() method. Figure 20
shows how the created Data object is passed to the current Session object.

Figure 20: How data is collected and sent to the Session

Stopping the data acquisition

Once the user wakes up and wants to end the recording session, the user needs to
hit the End Session button in the user interface. The touch triggers the Session
to terminate and thus the Sensors are told to stop collecting events. Hitting
the End Session button, as shown in Figure 21, essentially trigger the same
operations as shown in Figure 19 replacing start methods with stop methods.

74

Figure 21: Sopor active session screenshot

5.2.2.2 Splitting and batching

As discussed in Section 4.3.2 and Section 5.1.6, there was a memory issue
that occurred when running the application for a long time before storing the
collected events in a different manner than just in-memory. Therefore, the
design was rethought and the SessionSplitter class was created. This design
allows batching of events, i.e. collecting for x seconds then handling those events
and then discarding them from the array they were stored. This reduces the
in-memory requirements and usage since memory is freed after each batch-period.
This, however, introduces higher CPU usage as the processing of the events is
not “free”.

Figure 22 shows the complete batching flow. The sensors continuously emit
events to the Sensor object. Once the timer triggers, which is based on the
BATCHFREQUENCY value set in the configuration file, the SessionController
calls the handleBatch() method which triggers the splitSession method
in the SessionSplitter class. The splitSession method, shown in List-
ing 22, returns a subset of the events in the Session’s events array to the
SessionController which calls the Sinks with the returned array of data
objects.

75

Figure 22: Sopor splitting flow

The current implementation triggers the handleBatch() method based on the
elapsed time between the last invocation of the timer. Another solution possible
solution could be to trigger the handleBatch() method based on how many
objects are stored in the events array. The timer-based trigger was implemented
since it was simpler to implement and easy to reason about in the code. For
developers, the implementation is also easy to understand and the timer-approach
is used multiple places in the codebase.

5.2.3 Sink

As discussed in Section 5.1.7, the Sinks are essentially event consumers returning
the same or a mutated array of data objects, i.e., an event array where a function
has been applied to the events. All Sinks implements the simple protocol shown
in Listing 33, the protocol ensures that all Sinks take the same input- and
output object type, namely an array of Data objects.

Listing 33 Sink protocol
protocol Sink {

static func runSink(events:[Data],
options:[(String, Any)]
) -> [Data]

}

For the initial work of Sopor, six different Sinks have been created. These are

76

created in order to show different uses of sinks. Future development may use
implemented sinks as a base when developing new ones. The sinks are discussed
in the following subsections.

5.2.3.1 Console Sink

This is the simplest Sink that has been created in Sopor and is mainly used for
development and debugging purposes. This is the purest Sink as well, it takes
the input array and decodes it, prints it to the console, and then returns the
initial array.

The use for this sink is mainly for the developer of a new sensor, it makes it easy
for the developer to see what data is being passed to the sink and if the format
is correct and according to the specifications.

5.2.3.2 Filter Sink

The Filter Sink takes an input array and an array of key-value pairs where
one key needs to be named sensorToRemove and contains an array of Strings
where each string represents one sensor to remove. Given the array of Strings,
it removes all events that originate from a sensor in that array, and returns the
filtered array. The pseudocode of the method is shown in Listing 34. This sink
is useful in order to remove events from specific sensors, and is designed to be
used in conjunction with other sinks. A trivial addition to the filter sink would
be the keep-sink, which retains all events from a given sensor.

Listing 34 Pseudocode for filtering out events
func runSink(...){

let sensors = options["sensorToRemove"] // gives [String]
var mutatedEvents = events.filter({$0.sensorName in sensors})
return mutatedEvents

}

5.2.3.3 Aggregation Sink

When running the sensors there may be times when it is unnecessary to handle
every single event and instead only the average of a value in a given interval
is interesting. One such example could be the accelerometer sensor which by
default has a sampling rate of 30 events every second. For storing purposes,
only storing the average accelerometer data for every second instead of 30 events
for the same second is useful and saves storage space. In addition to reducing
the storage requirements, the aggregation sink also contributes to reducing the
number of bytes required to transfer when offloading data to the cloud, without
loosing too much precision in the collected data-set

In the current implementation, the events that should be aggregated are removed
from the list the method returns. It would also be useful to extend the function-

77

ality in such a way that the original events are not removed in the aggregation
sink, however, such a feature would remove some of the benefits of reducing
storage needs as discussed above.

In Sopor, there are a few aggregation functions that have been created, and
some are only described here and have yet to be implemented.

Listing 35 Aggregation of heart rate events 1/2
static func runSink(events: [Data], sID:String) -> [Data] {

var mutableEvents = events
var aggregationEvents:[Int] = []

mutableEvents.removeAll(where: {event in
let json = // Function that gives an deserialized event
let sensorName = json["sensorName"]
if(sensorName == "Heart Rate"){

let hr = json["event"]["heartRate"]
aggregationEvents.append(hr)

}
return (sensorName == "Heart Rate")

})

mutableEvents.append(
getAggHREvent(aggEv: aggregationEvents,

sessionIdentifier: sID))
return mutableEvents

}

Listing 36 Aggregation of heart rate events 2/2
static func getAggHREvent(aggEv: [Int], sID:String) -> Data{

if (aggregationEvents.count == 0) {return Data()};
let sumHR = aggregationEvents.reduce(0, +)

let aggEvent = AggregatedMetric(
metricValue: Double(sumHR/aggregationEvents.count),
type: "Avg(hr)",
sessionIdentifier: sID)

return AggregatedMetric.encodeEvent(event: aggEvent)
}

Average heart rate

This method takes the average heart-rate events and creates a single event
containing only the average heart-rate for the given batch. The implementation

78

of this sink is shown in Listing 35 and Listing 36. This implementation also
removes all heart-rate events, while retaining all other events and the single
aggregated heart rate metric. Variations of this aggregation function have yet
to be implemented such as Min and Max of the batch as well as Average over
a given timespan instead of the whole batch. The Min and Max functions are
trivial to implement, however, an average over a given timespan requires more
logic, and possibly a temporary storage location if the timespan crosses two or
more batches.

Average accelerometer

The accelerometer on the Apple Watch can handle a high sampling rate over
a long period of time, however, if the purpose is to store or transfer this data
it can be storage intensive. Instead of setting down the sampling rate of the
accelerometer sensor, the sampling rate is kept high but the average is calculated
in this sink. With this design, the accelerometer data is as accurate as possible,
while still keeping the storage needs low. One possible improvement over the
current aggregation sinks is to make a single generalized aggregation sink. This
sink would take a list of sensors to aggregate the data on, thus removing the
need for specialized aggregation sinks.

5.2.3.4 File Sink

The File Sink writes the contents of the events to local storage. This is useful
if the network connection is unreliable or not present, in addition, it can be used
to extend the application to perform on-device analysis after a session has been
completed. The File Sink introduces the concept of buckets, i.e., a folder with a
certain number of batches, the number of batches in each bucket is determined in
the initial configuration of the Sink. When using the File Sink, every session cre-
ates a directory on the format Session_starttime_UUID. Every Bucket is named
according to the earliest and the latest event in that single bucket, therefore the
directory name is often changed multiple times during a session, the naming con-
vention is Bucket_start-timestamp_end-timestamp. The filename for which a
batch is created has the format earliest-timestamp_latest-timestamp and
is never changed once created. The File Structure created by the File Sink is
exemplified in Listing 37.

79

Listing 37 File structure created by the File Sink
|-- Session_1580335200237_3a7de1c9-eb15-4ae9-8cf5-fc4fc8377074
| |-- Bucket_1580335200237_1580335260887
| | |-- 1580335200237_1580335210301.json
| | |-- 1580335210322_1580335220873.json
| | |-- ...
| | |-- ...
| | |-- 1580335250206_1580335260887.json
| |-- Bucket_1580335260891_1580335320938
| | |-- 1580335260891_1580335270653.json
| | |-- 1580335270702_1580335280762.json
| | |-- ...
| | |-- ...
| | |-- 1580335250322_1580335320938.json
| |-- Bucket_...
| | |-- ...
| | |-- ...
| | |-- ...

Using this tree structure makes it easier to traverse the data since each batch
file has the timestamps associated with it. This makes analyzing parts of the
night easier due to the fact that the structure reduces the time it takes to find
events that occurred at a certain time.

5.2.3.5 CloudKit Sink

In order to reduce the amount of data stored on the watch, a proof-of-concept
CloudKit Sink is created. This Sink sends data to iCloud, and stores it in
either a public or private database as described in [71]. When storing the data
in the public database, data is accessible for all users. Storing the collected data
in a public database is not something that should be put into production, but is
useful for testing. When using this in a production setting, the data should be
stored in the user’s private database.

The CloudKit sink checks whether or not the user is connected to the Internet,
if the user is online the data is stored in the user’s private database, if not the
data is stored to local storage and the application will try to upload the data
once the session has finished. Pseudocode of the implementation is presented
in Listing 38. In CloudKit, a schema has been created and is similar to the file
structure described in Section 5.2.3.4, the complete schema is shown in Appendix
Section D.3.

80

Listing 38 Pseudocode for the CloudKit Sink
func runSink(...){

try:
var container = CloudKit.getDefaultContainer();
let privateDatabase = container.privateCloudDatabase;
privateDatabase.saveRecords(events)

catch:
// Error occurred
// Save to disk instead
FileSink.runSink(events)

}

5.2.3.6 Splunk Sink

Splunk is an enterprise product created by Splunk Inc, it facilitates capturing,
indexing and correlation of data in near real-time [72]. The product can also
create graphs, reports, dashboards, and other visualizations. This Splunk Sink
has been created in order to send data to the platform, showing that the data
can be sent to multiple online locations. From the Splunk back-end, it is possible
to create visualizations from sensor data that have been created. Splunk has a
search query language called Search Processing Language (SPL), which is similar
to Structured Query Language (SQL), and can be used to query the sensor data
that Sopor has captured.

Figure 23: Splunk event

Figure 23 represents one searchable Gyroscope event inside of Splunk. The
JSON format is interpreted and neatly formatted by the Splunk system, and is
searchable using SPL. The field event in the JSON structure contains the data
collected by the Gyroscope sensor. Using the query in Listing 39 it is possible
to generate graphs such as the one shown in Figure 24. The chart shows the
average values every 50 milliseconds for the different axis of the gyroscope over
a timespan of 15 seconds.

81

Listing 39 SPL for charting gyroscope data
sessionIdentifier="4347F479-..." host=Apple_Watch
| timechart span=50ms

avg(event.x), avg(event.y), avg(event.z)

Figure 24: Gyroscope timechart in Splunk

5.2.3.7 State change Sink

When going through the batch it would be of interest to only keep an event
if the datapoint has changed since last time, i.e., a change in the state. This
Sink has yet to be implemented, but a possible version written in pseudocode
is shown in Listing 40. The idea here is that while we sample the battery level
every 10 seconds it often returns the same value, therefore it is unnecessary to
store what is essentially the same event more than once. This sink filters out the
same events and only keep the event if there is a change from the last known
data-point. An extension of this would be if the data-point is within x% of the
previous stored data-point, this would allow only spikes in data-points to be
stored.

82

Listing 40 Pseudocode for keeping event on change
func runSink(...){

let batterySensor = "Battery" // Gives [String]
var lastBatteryStatus = // Last stored battery statys
var mutatedEvents = events.filter(

{
if ($0.sensorName == batterySensor){

if (lastBatteryStatus == $0.batteryLevel){
return true // Remove

}else{
// New battery level
lastBatteryStatus = $0.batteryLevel
return false // Do not remove

}
}else{

return false // Do not remove
}

})
return mutatedEvents

}

5.2.4 Event Management and Storage

In Sopor, the event management is handled by the SessionController. It could
very well have been implemented in a separate class, however, to keep it simple
and not introduce unnecessary complexity it is added to the SessionController.
The different sensor classes are responsible for putting the events in the specified
array in the Session object for the currently running session. From here the
event management of the SessionController takes over.

Every x seconds, defined by the BATCHFREQUENCY configuration vari-
able, the SessionController’s event management function calls the
SessionSplitter.splitSession() method. This method splits the cur-
rent event-array into two arrays, one which is passed through the event
management process and a second one, the original, is just emptied. Next,
the event management process calls the sink functions as defined in the
SessionConfig class, see Section 5.1.5. Once events are passed to the sinks it
is the sink’s responsibility to handle the events and for example, if it is a storage
sink; store them in the specified location. Making sure the events are stored
correctly is out of the scope of the event management process, as it only makes
sure to collect the events and pass them on to the specified sinks. The sinks
themselves are responsible for handling potential errors and failures.

83

5.2.5 User interface

The user interface in Sopor is written in SwiftUI, Apple’s declarative UI language
which launched in 2019. When starting the development of Sopor SwiftUI was
in early beta stages. Therefore, during the development, multiple rewrites had
to be done. In the end, the interface was made rather clean in order to serve all
types of users as well as reducing the amount of code in case another rewrite
has to be performed. The declarative nature of SwiftUI makes it easy to take
the user interface and port it to other Apple platforms since the language only
expresses the logic behind the view but not the actual control flow.

Table 8: Showing the different views of Sopor

A B C D

Table 8-A shows the Home view for the application. In the current implementation,
there is only one button that takes the user to the Ready view in Table 8-B. In
future versions, there should be a button to a Settings-view. In a Settings
view, the user could make adjustments to the out-of-the-box configurations, such
as removing or adding which sensors to activate, changing the sampling rate,
and changing the BATCHFREQUENCY.

Before starting the session, the user is presented with the view shown in Table 8-
B. This is a very simple view, and is defined in Listing 41. When presented with
this view there’s not much for the user to do except hitting the Start session
button. This triggers the startSession() method as described in Section 5.2.2.
The view in Table 8-C is shown in Listing 42, and the most complex view in
Sopor. It gives information about the current Session, and has one button to
end the session, which takes the user to the view shown in Table 8-D.

84

Listing 41 Declarative user interface for starting a Session
var body: some View {

VStack{
if(sessionStarted){

// ...
}else{

Text("Watch ready")
Button(action: {

self.sessionStarted = true;
_ = self.sessionController.startSession(

wakeUpTime: Date());
}) {

Text("Start session")
}

}
}

}

Listing 42 View for an active session
var body: some View {

VStack{
if(sessionStarted){

VStack(alignment: .leading){
Text("Active session").font(.caption)
Text("# Events: \(self.numberOfEvents)")
Text("Time: \(self.current_time)")
Text("Duration: \(self.duration_string)")
Text("HR: \(self.hr_rate)")
Text("Battery: \(self.batteryPerc)")
Spacer()
Button(action: {

// End button pressed
self.sessionEnded = true;
self.sessionController.endSession()

}) {Text("End session")}
}else{

// ...
}

}
}

85

5.3 Miscellaneous
5.3.1 Chaining sinks

In the SessionConfig class, it is possible to configure the way the sinks are
used when processing the batch of events. Listing 43 shows an example of how
multiple Sinks can be chained together, the first sink prints directly to the
console, the next one filters out all battery events, then all heart rate events
are aggregated. Finally, the remaining events are sent to Splunk through the
SplunkSink. This pattern makes it easy to extend Sopor with new functionality
and new Sinks can simply be added to the chain or replace parts of it. The sink
pattern also gives the developer a lot of options when it comes to parsing and
handling the batch of events that are collected by Sopor.

Listing 43 Enhanced runSinks method
static private func runSinks(events:[Data], UUID:String)
{

let eventsPrinted = ConsoleSink.runSink(events: events, [])
let filtered = FilterSink.runSink(events: eventsPrinted,

options: [(sensorsToRemove,
["Battery"])

])
let aggregated = AggregationSink.runSink(events: filtered,

options: [(uuid,sessionUUID),
(aggregate,
"HeartRate")

])
let uploadedToSplunk = SplunkSink.runSink(events: aggregated,

[])
}

5.3.2 Using Machine Learning on events

The scope of this thesis does not touch analysis of the data, however, a reflection
upon it is important in order to understand the usage of the data-points which
the application collects. Analyzing in this context is processing the data in such
a way that useful information can be derived from the data. In the case of Sopor,
data from the sensors may be able to assist in discovering useful information
about a user’s sleep pattern and improve the knowledge of the usefulness of
smartwatches as a wearable device that can collect data in a useful manner.

Due to the amount of data that can be collected from the watch, it would be
useful to use an approach that can analyze a lot of data automatically such
as a machine learning algorithm in order to make sense of the collected data.
One example would be training a machine learning model to detect which sleep
stage a user is in by using the accelerometer and heart rate data collected from
the watch like [73]. One approach is to use the data and use unsupervised

86

learning and the clustering approach in order to make clusters of the data-points.
Another approach is to collect data from medical equipment while at the same
time collecting data from the application. By using the medical data-points to
label the watch data a trained model can be made. The latter is an example of
a supervised learning approach using classification.

In Sopor, machine learning could be used with a trained machine learning model
using Apple’s CoreML framework. This framework allows machine learning
models to be created using among other methods, labeled data, which can be
used by the watch to classify collected data. One concrete example would be to
label sleep stages based on heart rate data collected by the application in order
to create a machine learning model. This model can then be bundled with the
application and used while collecting heart rate data from new sessions. The
model will be able to predict which sleep stage the user is in based on the heart
rate, or a range of heart rate samples.

5.3.3 Delay-tolerant CloudKit uploads

One area that has not been implemented, but that should be implemented in
the future is delay-tolerant upload of data. In the current implementation, if the
upload fails the data is lost and no re-upload is tried. This poses a problem if
the user’s network is down for some period of time or if there are intermittent
networking issues. This section outlines how delay tolerance can be implemented
in Sopor. One solution is already discussed in Section 5.2.3.5, the proposed
solution in this section handles the errors somewhat differently.

The theorized solution focuses on changing the implementation details of how
the Sinks behave, specifically the CloudKit sink. Some error handling is already
present if the CloudKit API fails to upload the data, the error handling can be
extended to store the data it was unable to upload locally until the network is
up and running again. There are essentially two ways to handle this error, one is
to store the failed upload as a file in the file system, another is to store the data
in memory until network connectivity is restored. For the theorized solution,
we suggest storing the data in local storage as to not receive a low-memory
warning from the system and possibly being killed by the operating system, if
the network is down for large periods at a time.

Storing the data to disk means giving each batch a filename. One option is to
name the file with failed_first-timestamp_last-timestamp, borrowing the
file naming from Section 5.2.3.4. These files should be stored in a separate direc-
tory, e.g. failed_uploads/, this way the application knows in which directory
to look for files when the network connection comes back up.

The sink essentially runs as usual, if an error is received the file is stored locally.
Every time it successfully uploads a data-packet, it checks for any file in the
failed_uploads/ directory and tries to re-upload that file. The steps in the
proposed solution are shown in Listing 44. If there is no Internet connection
during the whole period of the session, the files will still be present in the

87

failed_uploads directory upon completing the session. If this is the case, the
files can be stored until the next session starts, where the user hopefully has
been able to get the Internet connection back up. A delete strategy would need
to be implemented as well. If there is not enough storage on the device the
locally stored files would need to be removed to make space for new files that
the application is unable to upload. A FIFO queuing system may be used if you
want to remove old un-uploaded data to make space for the new data points,
or a LIFO queuing system may be used, where the newest data is deleted and
disregarded due to storage capacity.

Listing 44 Pseudocode for delay tolerant file upload
func successHandler(...){

let files = getFilesFromDir("./failed_uploads/")
for file in files{

if(runSink(file)){
// Is success
// Delete file from disk
deleteFile(file)

}
}

}

func runSink(...) -> Bool{
var container = CloudKit.getDefaultContainer();
let privateDatabase = container.privateCloudDatabase;
let success = privateDatabase.saveRecords(events)
if (success){

// Network connection has been restored
successHandler()

}else{
// Error occurred
// Save to disk instead
FileHandler.storeAsFile(events,

"./failed_uploads/failed_first-timestamp_last-timestamp")
}
return success

}

5.3.4 Long-running sessions

One of the major issues when creating a watch application is to be able to
collect data also while the user is not actively looking at the watch, i.e. when
the screen turns black. Once the screen turns black the application would
normally enter background mode and eventually it will be suspended. In early
implementations of Sopor, this was an issue, however, it took some time before

88

this bug was discovered. When using the Xcode, the IDE used to create iOS and
watchOS applications, the application runs in the foreground and will never enter
background mode even though the screen turns black. Due to this, it seemed
that the application worked nicely even when the wrist was turned away from
the user and the screen turned off. Since most early testing was done through
the IDE, this was not an issue, however, when starting testing the application
during the night this quickly became a major issue.

Once the application runs without the IDE, the application collects data when
the screen is on and in the foreground, however, once the watch display turns off
the data collection immediately stops. This is not the behavior Sopor should
have since the collection of data should continue in the background even while
the watch display is turned off.

Searching online and reading Apple’s documentation it was clear that applications
that start workout sessions using the HKWorkoutSession API were allowed to
run in the background for the whole duration of the workout session. In Sopor
this had to be done anyway due to the fact that we want to get near-real-time
access to the heart rate data. Simple enough, however, what was not clearly
described at the time of implementation was the fact that the application not
only has to start a workout session, it also needs to have the correct entitlements
in order to being allowed to run in the background. Thus, implementing the
workout session by itself is not enough as it does not resolve the issue. The
application needs to apply for the workout processing entitlement in order to be
allowed to process data in background mode. Once the correct entitlement is
given to the application, as shown in Figure 25, Sopor can run in the background
without any modifications to the code.

Figure 25: Setting the correct entitlement in Xcode

5.3.5 Virga - Data processing application

One issue with storing the data in the cloud is that it is not readily available
for processing and an application to get the data is needed. This has been
implemented in an application called Virga.27 This application fetches data

27Latin for precipitation from the cloud.

89

from iCloud and creates charts based on the collected data. Virga is written in
F# which is a programming language designed by Microsoft. It is a functional
and a strongly-typed programming language. Due to these paradigms, it is easy
to reason about and understand the code.

The application is divided into five separate parts, described in Table 9. These
parts are elaborated upon in this section. At the end of this section, there are
some examples of data collected by Sopor and processed using Virga.

Table 9: F# project files

File Description
Program.fs Main program lives here.
CloudKit.fs Gets the location (HTTP endpoints) for the data

which will be processed.
CloudKitProcessor.fs Handles fetching and processing of data.
Charts.fs Responsible for creating the charts.
SensorDomain.fs Contains record types for the Sensor Events. Shown

in Appendix, Section E.2.

5.3.5.1 Program.fs

The main program is defined in the Program.fs file, it administrates calling
the functions in the other modules. Due to this, there is not much logic in
this module, just a few helper functions allowing for quick composition of new
variations of the same application. The general flow of the application is shown
in Figure 26, and a code snippet of a bare-bones Program.fs implementation
is shown in Listing 45. In simple terms, the application first fetches a list of
sessions, then it gets all data from that particular session by calling the correct
CloudKit APIs, finally, it creates the charts needed to display a sleep session.

Listing 45 Simple Program.fs
let main argv =

printfn "** Loading sessions..."
let chosenSession = getSessionList () |> chooseSession

let samplingData =
chosenSession.sessionIdentifier
|> CloudKitProcessor.fetchSamplingData

if samplingData.Length = 0 then raise (Exception "Empty List")
let batteryChart = Charts.createBatteryChart samplingData
batteryChart.Show()

90

Figure 26: Virga program flow

5.3.5.2 CloudKit.fs

The current Sopor version is configured to use the CloudKit sink which uploads
data to iCloud. This is an easy and reliable integration, however, getting the
data back from iCloud is a little more tricky. Luckily, Apple provides a REST
API that can be used to collect the stored data. Since the iCloud container is
essentially a database, it is possible to filter out elements by passing queries in
the body of the HTTP call to the back-end server. The CloudKit module in
Virga is responsible for fetching data from iCloud.

When first setting up the CloudKit backend for use with Sopor, a schema has
to be defined. This schema is shown in Figure 27 and presented in detail in
Appendix Section D.3. Figure 27 essentially describes that a session record
has a foreign key to two record types; 1) a bucket containing the raw sensor
data as well as an event-count and 2) a samplingEvent type consisting of the
aggregated number of events as well as the battery level. In addition, there are
default system fields, i.e., metadata,28 which are not shown.

28The metadata fields can be found here: https://developer.apple.com/documentation/clou
dkit/ckrecord.

91

https://developer.apple.com/documentation/cloudkit/ckrecord
https://developer.apple.com/documentation/cloudkit/ckrecord

Figure 27: Relationship schema for the records

When fetching data from the container the application needs to per-
form a POST call to the CloudKit back-end, passing the appropriate
query. The REST API endpoint is built up with the following elements:
[path]/database/[version]/[container]/[environment]/[database]/records/
query?ckAPIToken=“token”, all of which are described in Table 10.

Table 10: CloudKit parameters

API Parameter Description
path The URL to the CloudKit web service.
database Static parameter. It indicates that we want to access a

database.
version The version of the API. The current version is 1.
container The container of the application. This is unique for all

applications.
environment Environment of which the application is running in. It is

either production or development. If not on the App Store
this should be development.

database The database of which the data is stored. Possible values
are public, private and shared.

records Static parameter. It indicates that we want to fetch
records.

query Static parameter. It indicates that we want to perform a
query on the data.

ckAPIToken Token used to authenticate the request.

When calling the CloudKit API the response is an array describing the results
of the query and the optional filter. The JSON response contains one or two
keys; 1) records and potentially, 2) continuationMarker. The records value
is an array of data objects described in the CloudKit schema, in general one of
the three record types described in Figure 27. The continuationMarker is an

92

optional value in the response and if the response contains more than 200 records,
a continuation marker is passed which indicates that a follow-up REST call is
necessary since there are more records available to be fetched. It is important to
note that the continuationMarker has a limited time to live and will be invalid
after some period of time.29 When Virga sends the API request to the CloudKit
back-end the HTTP request body needs to contain multiple fields, essentially
telling CloudKit which records it wants to fetch. The different bodies used in
the application are described in the Appendix, Section E.3.

Besides the different bodies used in the HTTP Request, the pure implementation
of the CloudKit module in Virga is rather simple and most of it is shown in
Listing 46. In addition, there is also a simple HTTP GET request function which
is used to get a specific asset in the Bucket records.

Listing 46 CloudKit module implementation
module CloudKit

let fetch queryBody =
let token = Environment.GetEnvironmentVariable "CLOUDKIT_TOKEN"
let url = "https://api.apple-cloudkit.com/database/1/

iCloud.com.bakkertechnologies.osa-tracker-watch.
watchkitapp.watchkitextension/development/public
/records/query?ckAPIToken=" + token

Http.RequestString
(url, httpMethod = "POST", body = TextRequest queryBody,
headers =

["Content-Type", "application/json"
"Accept", HttpContentTypes.Json
"User-Agent", "PostmanRuntime/7.22.0"
"Host", "api.apple-cloudkit.com"

])

5.3.5.3 CloudKitProcessor.fs

The CloudKitProcessor.fs module handles business logic by calling the Cloud-
Kit module and serializing the API response to the correct types. The defined
record types are shown in the Appendix, Section E.4. This module provides three
services, fetching all buckets, fetching the sampling data records and fetching a
single data bucket. The services are described in the following paragraphs.

Fetching the Bucket list: When fetching Bucket records stored in iCloud one
has to take into account the Continuation Marker that may come as a response
from the API Call to CloudKit. If present it indicates that there are more
records that matches the given query. Due to this, a recursive implementation

29The exact number of minutes is not described in the documentation. But through trial
and error during development, this is between 30 to 60 minutes.

93

of the generic version of getting a bucket has been implemented and is shown in
Listing 47. Essentially, the function fetches and parses a list of Bucket records,
and then checks for the continuation marker and if present it recursively fetches
them, if not it will return.

Listing 47 Get all Buckets recursive implementation
let rec getAllBuckets sID (contMarker: string option) i =

printf "\rFetching bucket list: %d" i

match contMarker with
| Some x -> CloudKit.fetch (CloudKit.fullBodyBucket sID x)
| None -> CloudKit.fetch (CloudKit.bodyBucketWithFilter sID)

|> fun x -> (JsonConvert.DeserializeObject<CloudRecord>
(x, JsonSerializerSettings(

MissingMemberHandling =
MissingMemberHandling.Ignore)

))
|> fun x -> (if isNull x.continuationMarker

then x.records
else x.records @ (getAllBuckets sID

(Some x.continuationMarker) (i+1)))

Upon return of the getAllBuckets() function it returns a list of Bucket records
as described in the Appendix, Section E.4. These Bucket records can then be
used to fetch the actual collected data from the Sopor application using the
fields.data.value.downloadURL value for that Bucket, as shown in Listing 48.

Listing 48 Fetching Bucket data asset
let fetchBucketData i filterOut (bucket: Bucket) =

printf "\rGetting bucket data nr: %d" i
bucket.fields.data.value.downloadURL
|> CloudKit.fetchBucket
|> fun x ->

(JsonConvert.DeserializeObject<SensorDomain.Event list>
(x, JsonSerializerSettings(

MissingMemberHandling =
MissingMemberHandling.Ignore)))

|> fun events ->
match filterOut with
| Some filter ->

events
|> List.filter (fun x -> (x.sensorName = filter))

| None -> events

94

Fetching samplingData records: In addition to the buckets, there are
also samplingData records uploaded to iCloud, these records contain useful
information with regards to the experiments run in Section 6.1.1. These
records are fetched and deserialized to SamplingDataRecord types using the
fetchSamplingData function as shown in Listing 49. The returned Sampling-
Data list can be used to create charts as discussed in Section 5.3.5.4.

Listing 49 Fetching SamplingData records
let getSamplingDataWithSession sID (cloudRecordStr: string) =

(JsonConvert.DeserializeObject<SamplingDataRecord>
(cloudRecordStr, JsonSerializerSettings(

MissingMemberHandling =
MissingMemberHandling.Ignore)))

|> fun x -> x.records
|> List.filter (fun x -> x.fields.sessionIdentifier.value = sID)

let fetchSamplingData sID =
sID
|> CloudKit.sampleBodyWithSessionID
|> CloudKit.fetch
|> getSamplingDataWithSession sID

5.3.5.4 Charts.fs

To create charts Virga makes use of the XPlot package,30 which is added to
the project as shown in Listing 50. This package is an F# wrapper around the
Google Chart API.31 The Charts.fs module connects the different record types
defined in Virga and creates plots using this package.

Listing 50 Adding XPlot.GoogleCharts to the project

dotnet add package XPlot.GoogleCharts --version 3.0.1

All events created by Sopor have a timestamp associated with it, defined in Unix
time,32 therefore two helper functions have been created in order to convert the
Unix timestamp to the format HH:MM. This format looks better when generating
the charts. Listing 51 shows these two functions. The milliOrSeconds function
takes a timestamp string, and depending on the length of the string it will return
the DateTimeOffset from Unix time seconds or milliseconds. The getHHMM
function essentially converts the DateTimeOffset to the correct format. When

30The XPlot package can be found here: https://fslab.org/XPlot/.
31The Google Chart API documentation can be found here: https://developers.google.com/

chart.
32Information about Unix Time can be found here: https://en.wikipedia.org/wiki/Unix_t

ime.

95

https://fslab.org/XPlot/
https://developers.google.com/chart
https://developers.google.com/chart
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time

working with the XPlot package it is important to pass in the correct timestamp
in order for the chart to make sense.

Listing 51 Convert timestamp to correct format
let milliOrSeconds (timestamp:string) =

let timestampInt64 = (timestamp |> int64)
let secondsLength = 10 // e.g. 1582991605
if timestamp.Length = (secondsLength) then

DateTimeOffset.FromUnixTimeSeconds(timestampInt64)
else

DateTimeOffset.FromUnixTimeMilliseconds(timestampInt64)

let getHHMM timestamp =
let dateTimeOffset = milliOrSeconds timestamp
let dateTime = dateTimeOffset.UtcDateTime;
dateTime.ToString("HH:mm")

Battery Chart: Using the samplingData records fetched from CloudKit a
battery chart can be created. The function for creating the chart that is shown
in Listing 52. It takes a list of CloudKitProcessor.SamplingData records and
returns a Chart object. Upon return one just has to call the Show() method
on the Chart object. Creating a chart consists of a few steps. First, a few
configurations are defined and attached to the options value, then piping is
used in order to define the variables for the chart itself, and finally, the chart
is returned. Once everything is wired up correctly Virga will produce battery
graphs like the one shown in Figure 28

Listing 52 Creating a battery chart
let createBatteryChart (data: CloudKitProcessor.SamplingData List) =

let axis = Axis(minValue=0, maxValue=100)
let options =

Options
(title = "Sopor - Sleep Session Battery Life",

legend = Legend(position = "bottom"), vAxis=axis)

data
|> List.map (fun x ->

(getHHMM x.created.timestamp, x.fields.batteryLevel.value))
|> List.toSeq
|> Chart.Line
|> Chart.WithLabel "Battery Level %"
|> Chart.WithOptions options
|> Chart.WithLegend true
|> Chart.WithSize (1000, 500)

96

Figure 28: Example of battery events in a chart

In addition to the battery chart function, there are also functions defined to
create graphs of a user’s heart rate, shown in Figure 29, and the aggregated
event count for a session as shown in Figure 30. Figure 31 shows data-points for
a complete sleeping session, here it is possible to see when the user is in deep
sleep, and when the user is more awake.

Figure 29: Example of heart rate events chart

97

Figure 30: Example of aggregated events count chart

Figure 31: Heart rate graphed for a complete sleep session

98

Part V

Evaluation and Conclusion

6 Evaluation
In order to evaluate the application, three experiments are performed. The first
two regards the actual performance of Sopor and the last one examines its ease
of extensibility. Next, an evaluation is performed focusing on whether or not
the high-level requirements, defined in Section 4.1, have been met and to which
extent the functionality of the application has been fulfilled.

6.1 Practical experiments
To show that Sopor fulfills the requirements defined in Section 4.1 a series of
experiments are performed. These practical experiments focus on running the
application and analyzing the results and the collected data. The first experiment
examines the application’s battery usage, the second focuses on the CPU and
memory usage during a session and the last one shows whether or not it is easy
to extend the application. For the experiments, an Apple Watch Series 3 42mm
GPS purchased in October 2017 has been used.

6.1.1 Experiment 1 - Battery usage

This experiment is done to explore whether or not Sopor can collect data for
a full sleep session, i.e., eight hours. Battery loss is inevitable while using the
application, but as discussed in Section 4.1.2 one requirement should be that the
application should not deplete the battery more than 50% in order to allow the
user to use the watch during the day as well. This experiment also demonstrates
whether or not the application is suitable for collecting data over a longer period
of time.

Description

The experiment is done in multiple runs using different configuration settings.
Each session collects data for eight hours. The hypothesis is that the battery life
is given mostly by the BatchFrequency variable and the sampling rate of the
accelerometer. The network request performed on each BatchFrequency-trigger
is likely to affect the results the most. A control run is also performed which
includes not running the application when wearing the watch for eight hours
while sleeping. This test enables us to see how much battery is drained just
by running the operating system and regular tasks on the watch. In addition,
the test allows us to calculate the actual contribution with regards to battery
drainage of the Sopor application.

The sensors used in this experiment are outlined in Table 11.

99

Table 11: Sensors used in Experiment 1

Applied sensor wrappers
BatterysensorWatch
AccelerometerSensor
HeartRateSensor
MetaSensor

The only sink used in this experiment is the CloudKit sink without any modifi-
cations to the data-set. This is done in order to more easily analyze the data-set
upon completion. The runSink configuration function is shown in Listing 53.

Listing 53 Sink setup in Experiment 1
static private func runSinks(events:[Data], UUID:String){

let _ = CloudKitSink.runSink(events: events)
}

Variables

During the different runs, different variables are changed, these are shown
in Table 12. This is done in order to see how different watch settings affect
the results. During the different runs, we changed the BatchFrequency and
the Accelerometer sampling rate as the hypothesis is that these two variables
contribute the most to battery usage.

Table 12: Variable changes for Experiment 1

Setting Run 1 Run 2 Run 3 Run 4
BatchFrequency 1

5
1

60
1

60
1

120
Accelerometer Sample Rate 60Hz 60Hz 30Hz 30Hz
Battery Sample Rate 5 seconds 5 seconds 5 seconds 5 seconds
Heart rate Collecting Collecting Collecting Collecting

Experiment setup

The experiment is run during the night in bed at home for eight hours, using the
Apple Watch Series 3 42mm Aluminum version. Before the experiment starts the
watch is charged to 100% and restarted as to start fresh. During the experiment,
the watch is set to Do Not Disturb mode and Theatre Mode is activated. The
application is turned on once in bed and turned off when waking up after eight
hours. If the subject sleeps more than eight hours, the data for the first eight
hours of the session is used. Each Run, shown in Table 12, is performed three
times and the average over the three different sessions is used as the result for

100

the specific run.

Results

The results from the different runs are presented in Table 13 and Table 14.

Table 13: Results from Experiment 1

Run
Avg. Battery %
depleted

Max Battery %
depleted

Min Battery %
depleted

Standard
deviation

1 76,33% 78% 73% 2,887
2 57,00% 63% 49% 5.888
3 50,66% 54% 45% 4,933
4 45,00% 48% 42% 3,000
Control 9,33% 15% 6% 4,028

Table 14: Number of events collected

Run Avg. Number of Events collected
1 1.700.133
2 1.695.387
3 871.484
4 876.142

The results clearly show that it is the BatchFrequency that has the biggest effect
on battery life. Run 1 depleted nearly 20% more battery than Run 2, where the
only configuration difference was the BatchFrequency. Reducing the frequency
of the accelerometer sensor also contributed positively to the battery, depleting
~5.5% less battery with the lower frequency. Reducing the BatchFrequency
from 1

60 to 1
120 , i.e., uploading every 120 seconds instead of every 60 seconds,

also contributed positively to the battery life, ensuring ~5% less battery drain
during the eight hours.

Discussion

The results show that it is possible to use the application for a total of eight
hours without completely draining the battery. However, depending on the
configuration the battery usage is different. The hypothesis that frequently
offloading data increases the battery usage is clearly shown between Run 1 and
Run 2. Between Run 3 and Run 4 the improved battery life is not as drastic,
but it is noticeable. Between Run 1 and Run 4 the battery usage decreased with
~31% showing a clear improvement by reducing the frequency of the accelerometer
and most importantly reducing the BatchFrequency.

During a session, it is difficult to know whether or not the watch is performing

101

other background tasks. If the watch suddenly starts background tasks it will
impact the battery life, this is not something we can control. This is one of the
reasons why there are large standard deviations in each run. Taking into account
that the operating system is running tasks in the background as well, the actual
results show that Sopor contributes somewhere around ~36% when using Run 4
and the Control Run as the data-points.

It is important to note that the Apple Watch used in the experiments has been
heavily used over a few years, meaning the battery has become weaker, i.e., not
having the maximum capacity when performing the experiments as compared to
a brand new watch. This gives a better insight into the real-life situation for
most users of the application. Most people will use the application on a watch
that has been used for some time. A newer Apple Watch would probably have
depleted less battery than the watch used in the experiment.

Conclusion

The goal of Experiment 1 is to show that the watch can function during a
complete sleep session and show that the application uses less than 50% battery.
The results of the experiment show that the requirements of the application have
been met. The configuration in Run 3 and Run 4 shows that it is possible to
have a configuration that depletes less than ~50% of the battery. Given the age
of the test device, this is promising. A new version of the Apple Watch would
more than likely have better performance and decreased resource usage.

6.1.2 Experiment 2 - CPU usage and memory usage

When running the application on the watch it is important to reduce the amount
of CPU and memory the application uses. If the application uses too much CPU
time over a given period, it will be killed or suspended by the operating system
due to excessive resource usage [74]. In addition, it is important to reduce the
memory usage to a minimum as the application may be killed as well when using
too much memory. Finally, the experiment shows whether or not there are any
memory leaks in the application.

This experiment gives insight into how well the application performs with regards
to the two variables, CPU and memory usage. While no numbers are given by
Apple with regards to the CPU % and memory usage, Xcode gives an indication
of CPU usage through a gauge chart as shown in Figure 32 and Figure 33.

102

Figure 32: Xcode CPU gauge

Figure 33: Xcode memory gauge

Description

The experiment is performed using Xcode and the built-in tools of the IDE. The
same Series 3 Apple Watch as used in Experiment 1 is used. Newer versions of
the Apple Watch have increased CPU and memory capacity, meaning that if the
Series 3 Apple Watch can tackle the load, it is reasonable to think that newer
Apple Watches can handle the load as well.

For this experiment, we hypothesize that the CPU usage will be constantly at
a reasonable level with spikes every time the Sink is called, due to the CPU
intensive operations that are performed in the sinks. The memory usage should
be steadily increasing between batch uploads and reduced once data is offloaded.

Variables

In this experiment, the best configuration from Experiment 1 is used (Run 4), the
configuration used in the experiment is shown in Table 15. In addition to being
the best configuration from Experiment 1, the reduced batch frequency gives a
better understanding and insight into the memory usage in the application.

103

Table 15: Apple Watch configuration for Experiment 2

Setting Configuration
BatchFrequency 120 seconds
Accelerometer Sample Rate 30Hz
Battery Sample Rate 5 seconds
Heart rate Collecting

Experiment setup

The experiment is performed three times, every time the application runs for
one hour, collecting as it would do normally using the CloudKitSink. One hour
is enough to understand the CPU and memory usage of the application. As
with Experiment 1, the watch is charged to 100% and restarted before starting
the experiment. During the experiment, the watch is set to Do Not Disturb
mode, and Theatre Mode is activated. Each run is performed once with the same
configuration each time.

Results

The results from the experiment are shown in Table 16. The results show that
there is no excessive CPU or memory usage in the application, and at no point did
the application receive any warnings from the operating system to reduce CPU
or memory usage, which indicates that the application is behaving according to
Apple’s rules.

Table 16: Results of Experiment 2

Run Avg. CPU usage Max CPU usage Max memory usage
1 3% 71% 18,4MB
2 4% 49% 17,9MB
3 4% 69% 17,8MB

There are spikes in CPU usage every BatchFrequency seconds as shown in
Figure 34, indicating that the hypothesis presented earlier is correct. Every time
the watch has to perform a network operation the CPU usage increases. The
spikes are also caused by the amount of processing the watch has to perform to
make sure all data-points are ready to be uploaded. By using additional sinks
one can assume that both the average CPU usage and the maximum CPU usage
would increase.

104

Figure 34: CPU spikes every BatchFrequency

An interesting observation is the memory usage of the application, it has a very
predictable graph as shown in Figure 35. The memory usage keeps increasing
until it can offload the data to CloudKit. Once offloaded, the cycle repeats.

Figure 35: Predictable memory usage

Discussion

The application is well within the limits of the operating system when running.
The low CPU usage indicates that the application is able to function well over
long a period of time. Figure 34 shows a red dotted line which is a line added
by the Xcode IDE that indicates that an average CPU usage above this line
would result in receiving a high CPU usage warning. Sopor is only above this
line whenever it makes a network request which does not contribute enough to
impact the average CPU usage. There is also no indication of memory leaks in
the application which is a very good thing. In an application like Sopor, a tiny
memory issue could be fatal as it would build up over time and eventually crash
the application.

Conclusion

The purpose of Experiment 2 is to show that the application has an average low
CPU and memory usage when running on-device, as well as showing that what

105

happens around the uploading of the data causes spikes in the CPU usage, these
have all been shown in the experiment. At no point during the experiment did
the application receive a low memory warning or indications of excessive CPU
usage. The results show that the application satisfies the CPU and memory
requirements presented in Section 4.1.

6.1.3 Experiment 3 - Extensibility

The goal of the following experiment is to show that Sopor can easily be extended.
In this experiment, the application should be extended with a new sink. In
order to show that it is easy to extend, a step by step guide is created. This
should be sufficient to show that the application can be extended with multiple
new features. According to [57] a system is extensible if new features can safely
be added without having global knowledge of the system. This is what the
experiment aims to demonstrate. This experiment also demonstrates that it is
possible to chain multiple sinks together.

Description and setup

The sink to be created is a sink that finds the maximum and minimum heart
rate for a given batch. It should then remove all other events, only keeping the
two events collected. The experiment is performed using the same codebase
as used in Experiments 1 and 2 which is the final version of the code in the
thesis. In the following part, the experiment is performed and all the steps are
documented as a step-by-step guide.

Step-by-step guide

1. When first creating a new Sink a new Swift file has to be created. We
create a file named MinMaxHRSink.swift. When creating the file make
sure to add the file to the project’s Shared directory and that and the
correct target (osa_tracker_watch WatchKit Extension) is checked, as
shown in Figure 36.

106

Figure 36: Step 1

2. Next, we need to create the class and make it conform to the Sink protocol.
We add the class definition and make it adhere to the Sink protocol. In
Xcode, we can then build the project, and the compiler warns us that we
need to add the stubs of the Sink protocol, that can be done by clicking
fix as shown in Figure 37. Once hitting fix, Xcode updates the editor with
the static runSink() method.

Figure 37: Step 2

3. Step three involves finding the min and max heart rate of the batch. This
is where we implement the actual logic of the sink. The implemented idea
involves looping through all events in the batch, serializing them from a
string object to a JSON object, and checking for min and max. Finally, it
returns only the two heart-rate events. The complete method is shown in
Listing 54.

107

Listing 54 The runSink method for MinMaxHRSink
static func runSink(events: [Data]) -> [Data] {

var min, max = -1
var minEvent:Data? = nil
var maxEvent:Data? = nil

for event in events{
let serJson = try? JSONSerialization.jsonObject(

with: event, options: []) as? [String:AnyObject]

if("Heart Rate" == serJson!["sensorName"] as! String){
let hr = serJson!["event"]!["heartRate"] as! Int
// Check if the HR is min or max
if(hr < min || min == -1){

minEvent = event
min = hr

}else if(hr > max || max == -1){
maxEvent = event
max = hr

}
}

}
return [minEvent!, maxEvent!]

}

4. After the class and its methods are implemented, the sink configuration
needs to be changed. In this experiment, we add the MinMaxHRSink’s
runSink() method before the CloudKitSink’s runSink() method, resulting
in only storing the minimum and maximum heart-rate for the batch. The
final configuration is shown in Listing 55.

Listing 55 Changed configuration for Experiment 3
static func runSinks(events:[Data], UUID:String)

{
let hrMinMaxEvents = MinMaxHRSink.runSink(events: events)
let _ = CloudKitSink.runSink(events: hrMinMaxEvents,

sessionIdentifier: UUID)
}

5. Finally, build and run the project. That’s it.

Results

The step-by-step guide from the experiment shows that only five steps are
required to extend the application with more sinks. This without having a deep
understanding of how the sensors collect data. The most challenging part of

108

the experiment is creating the actual logic of the sink itself. By adhering to the
contract and protocols that are described in Section 5.2.3 it is simple to extend
the application as shown in this experiment.

Discussion

While it is easy to add and remove sinks, the developer still needs some knowledge
of the actual representation of the events. Therefore, users would need to know
details about how the events are structured in the JSON format. A developer
also has to have some knowledge about the sink-structure, when working with
sinks, however, this is to be expected when working with a sink-model. More
knowledge about other items than the JSON-structure and sink-model is not
required for a developer to start extending the application with more sinks.

Conclusion

The goal of the experiment is to show that there is no need for a developer to
have a complete understanding of the application in order to write features that
will extend the functionality of the application. This experiment has shown that
it is easy to write modules extending the functionality of the application without
having global knowledge of the system.

6.2 Examination of requirements
This section concerns examining the high-level requirements defined in Section 4.1
and that the functionality of the application works as expected. When examining
the requirements the results from the experiments performed in Section 6.1 are
taken into consideration when performing the evaluation. The requirements are
discussed individually and a summary is given at the end of the section.

Extensibility

Allowing Sopor to be extensible is an important aspect of the application. This
requirement is shown to be met in Section 6.1.3, which shows that implementing
a new Sink can easily be done using a few simple steps. Having global knowledge
of the application is not required when extending the application. However, a
user needs to have some basic understanding of the architecture and the event-
structure when developing. The architecture and event-structure are described
in Section 4 and should be easy to follow. Based on this, this requirement is
seen as met.

Resource efficiency

The resource efficiency requirement concerned battery-, networking-, CPU-, and
memory usage. When evaluating this requirement Experiment 1 and 2 are taken
into consideration. From Experiment 1, insight is given into how much battery
is depleted for a set of configurations. When outlining the requirement, it was
decided that the watch should not deplete more than 50% during the night. Even
the most aggressive configuration left the device with more than 20% battery
left on average. The best configuration used 45% of battery on average. For an

109

Apple Watch which has been used for more than two years, this is impressive
and is a good indication that the requirement has been met.

The networking requirement is somewhat more tricky to give a good indication
as to how well it has been met. However, using JSON as the data format reduced
the file uploads size with around 35% as shown in Section 4.4. In addition,
using the CloudKit API allows the watch to have some control over the file
upload. One improvement that has not been implemented is to zip the file before
uploading, this could have reduced the file size a lot since there are a lot of
repetitive sections in each uploaded file. In addition to zip-ing the file, the events
generated could have been different abbreviations, thus reducing the size of each
event. When it comes to the second sub-requirement, delay-tolerant networking,
this has not been implemented, but a solution to the problem is outlined in
Section 5.3.3.

Finally, the CPU and memory usage of the application is examined in Sec-
tion 6.1.2, which showed that Sopor does not use excessive memory and CPU.
In addition, there is no trace of memory leaks in the application. Therefore, this
requirement is seen as met.

Data collection

The data collection part is satisfied in the application, the application is able to
collect data from a variety of sensors on the watch. In the future, implementing
other sensors would be beneficial to collect even more data. As the watches
become more powerful one can assume that the watch is able to connect more
sensors while still having reasonable resource efficiency.

Privacy

In the current implementation of Sopor, the application does not store data that
can be used to track which user performed a given session, this makes the work
of correctly processing the data somewhat difficult if the application gets more
than a few users. The current implementation does not allow users to delete their
data in an easy way. This needs to be improved if the application should be used
by more users. The application does not take the current GDPR[ˆgdpr_link]
rules into account, thus before the application can be used outside of a controlled
group, a solution to allow users to delete and give explicit consent to collect user
data has to be implemented.

In addition, if the application is to be used in a patient-medical doctor scenario,
there needs to be some way for the patient to get the data and send the dataset
to the doctor. This has not been implemented, but is not in the scope of this
thesis.

Storage

Is was clear early on in the development cycle that storing full sessions on the
Apple Watch would pose a challenge since it would fill up the available storage
pretty quickly. However, using the method of offloading the data to a secondary

110

storage location proved to be an efficient way to reduce the storage needs on the
device. Two storage options have been implemented, the CloudKitSink using
the CloudKit APIs, and the SplunkSink using regular HTTP GET calls to send
the data to the Splunk server. As discussed in Section 5.3.3, it is possible to
store data on the watch if the network connection is down, thus allowing for
intermittent and temporary watch storage if necessary.

Stakeholders

In Section 4.1.6, three potential users are described: 1) end-users, 2) researchers
and medical doctors, and 3) developers. It is a requirement that all these users
should be able to use the application and make use of the data collected. For
the end-users, the focus is on the user-interface. The application’s user interface
is simplistic and not hard to use. For group 2, researchers and medical doctors,
it is important to be able to retrieve and process the data. This requirement
is met by creating Virga the data processing application that can be used in
conjunction with Sopor. Virga allows researchers and medical doctors to get
access to the data-points generated by Sopor. Sopor also uses a data format and
a data model that is easy to understand, the common JSON structure makes
it easy to understand what a single data-point describes. The last group of
stakeholders is the developers. A developer should be able to understand the
application flow and the high-level design. This requirement is also seen as met
since we can point to Section 4.3.3 to show the high-level design and all the
components are discussed in Section 5.2. Finally, Experiment 3, in Section 6.1.3,
shows that it is simple to extend the application. Therefore, this thesis meets
the requirements with regards to the stakeholders outlined in Section 4.1.6.

Summary of requirements

Table 17 shows a summary of all the requirements and whether or not the
requirement has been met.

Table 17: Summary of requirements

Requirement Summary
Extensibility This requirement has been met, as shown in Section 6.1.3.
Resource
Efficiency

Requirement has been met, as shown in Section 6.1.1 and
Section 6.1.2.

Data
Collection

The experiments performed in Section 6.1.1 and Section 6.1.2
shows that this requirement has been met.

Privacy This requirement has partially been met. In needs further work.
Storage Multiple solutions to this requirement has been discussed and

implemented.
Stakeholders Requirement has been met.

111

7 Conclusion
7.1 Summary
This thesis is motivated by the ability to extend the CESAR project by creating
a watch application that can be used to collect sensor data from a wrist-worn
device. The goal is that the application should lay the groundwork and to ensure
that a foundation is created for the future development of the CESAR project.
By creating an application that allows different sensors to send data to a unified
location and an application that can download and parse the data the goal of
this thesis is met.

To achieve the goals, a watch application is designed and implemented. All
identified concerns are separated, implemented, and finalized in an application
named Sopor. The application allows users to record their sleep with little effort,
thus having a low barrier to entry. The design chapter outlines five areas that
are implemented: 1) Session recording, 2) Sensors, 3) Event Management and
Storage, 4) Sink, and 5) User interface. The Session Recording is implemented
using a controller class and a session class, these two interacting closely together.
Multiple sensor wrappers are also implemented, giving access to valuable test-
data for the experiments. The Event Management and Storage are handled by
the controller class, making sure that the data collected is able to be accessed by
the sinks. A sink pattern is implemented, and a contract is established between
the session controller and the respective sinks. The contract states that once the
sink has received the events it is the responsibility of the sink to make sure the
data is stored correctly. Finally, a simple user interface is implemented allowing
the user to see some data-points and information during the sleep session.

In addition to Sopor, an application named Virga is created. It allows the
user to download data collected by Sopor which is stored in iCloud. By calling
the CloudKit API and using the XPlot F# library the application is able to
download the assets stored in iCloud and create graphs showing the data-points.
This application is necessary to create in order to be able to retrieve and visualize
the data. While there are no experiment testing Virga’s features, it is used
heavily in Experiment 1 to fetch the data-points and to generate the graphs
needed to answer whether or not Sopor satisfies the outlined requirements.

By performing Experiment 1, we show that the application is able to collect
data over an eight hour period and that there are configurations that allow the
watch to retain more than 50% of the battery at the end of a sleep session. The
results show that reducing the BatchFrequency contributes a lot to the reduction
in battery depletion, by setting the BatchFrequency variable to 1

120 , i.e., 120
seconds, the application is able to maintain more than 50% battery after eight
hours. Experiment 2 shows that there are no memory leaks or excessive CPU
usage. The experiment confirms the hypothesis that there are CPU spikes every
time the application uploads data to CloudKit. The memory graph is shown
to be predictable, building up towards every BatchFrequency seconds and then

112

quickly reducing whenever data is offloaded. The final experiment, Experiment
3, gives an indication as to how easy it is to extend the application. The results
show that a few steps are needed to add another sink. Being extensible allows
other developers to continue the work, easily improve the application, and add
new features.

7.2 Open problems
The thesis leaves a few problems which still need to be resolved and improved
upon before the application can be pushed to production. The first issue that
needs to be tackled is allowing the setup of Bluetooth sensors. There are multiple
solutions to this problem, however, with the foundation that is created with
Sopor, it should not be an issue to implement a sensor once the connectivity to
the device is solved. This allows other sensors to contribute with data-points
which would be useful for data processing.

Another open problem is how to pick up sounds from the environment and the
user. As elaborated upon in Section 5.2.1.6 using the built-in microphone on the
watch could be impractical, as the user might have their hand and wrist under
their pillow, thus muffling any sounds created. The proposed solution to use a
phone as the recording device is an open problem to implement and correlate
data-points with the data from Sopor.

During Experiment 1, some bugs were found, which have yet to be fixed. One of
which is that the workout session is not always stopped. Some time was given
to solve this problem, but no solution has been found. It could very well be an
issue with the API itself, this needs further investigation.

Finally, the last open problem to tackle is how to store the data in a privacy-
friendly way. The only individuals who should have access to the data-points
are the user and the medical professional once the correct approvals have been
given. This problem is not tackled in this thesis, and needs to be designed and
implemented before the application can be used in a medical setting.

7.3 Future work
There are many different roads the work from this thesis can take, there are
tasks, experiments, and improvements that have been left for the future due
to lack of time. Since one experiment often takes multiple 8-hour sessions, or
multiple individuals to complete there is still much that can be investigated. In
addition, some features would have taken too much time to implement for this
thesis, thus they are left for future developers to implement. The following is a
list of items that future developers should focus on:

1. It would be interesting to use machine learning on the data-set collected
by the application. As discussed in Section 5.3.2, there are frameworks
that allows labeled data-sets to train a machine learning model. This
can be implemented in different ways, using Virga to download the data

113

and process locally on a machine, or improve Sopor to handle real-time
machine learning processing of the collected data.

2. As discussed in Section 7.2, there is still no solution for storing the data in
a privacy friendly way. In addition, the data should be stored in compliance
with GDPR rules. This is important as the data collected and processed
by the application contains sensitive information about the user. The
application needs to implement the ability for the user to give consent to
the application to allow it to process the collected data and allow a user
to remove their data.

3. Together with medical professionals, the application should be tested in a
controlled environment allowing data-points to be correlated with medical
data-collection devices. Since medical equipment has high accuracy, it will
be interesting to see how sensors on the watch compare to the equipment
used by professionals.

4. Left for the future is also the implementation of more sensor wrappers.
When new sensors become available on the watch, wrappers for these need
to be implemented to allow data to be collected from them. The task
to design and implement Bluetooth sensors is one that can be tackled
immediately.

The designed, implemented, and tested applications, Sopor and Virga, creates a
foundation for future work on the Apple platforms for the CESAR project. Left
for the future are multiple open problems and suggestions for future work. Re-
searchers can take the work from this thesis and further move our understanding
of how wrist-worn devices can be used in a medical setting.

114

8 References
[1] U.S. Department of Health and Human Services, “NHLBI: Health Information
for the Public,” 2012 [Online]. Available: https://www.nhlbi.nih.gov/health-
topics/sleep-apnea. [Accessed: 10-Mar-2019]

[2] Mayo Clinic, “Sleep apnea - Diagnosis and treatment - Mayo Clinic” [Online].
Available: https://www.mayoclinic.org/diseases-conditions/sleep-apnea/diag
nosis-treatment/drc-20377636. [Accessed: 10-Mar-2019]

[3] American Sleep Apnea Association, “Sleep Apnea Information for Clinicians,”
SleepApnea.org, Jan. 2017 [Online]. Available: https://www.sleepapnea.org/lea
rn/sleep-apnea-information-clinicians/

[4] World Health Organization, Ed., Global surveillance, prevention and control
of chronic respiratory diseases: A comprehensive approach. Geneva: WHO, 2007.

[5] ResMed Inc., “Nearly 1 Billion People Worldwide Have Sleep Apnea, In-
ternational Sleep Experts Estimate.” 21-May-2018 [Online]. Available: http:
//investors.resmed.com/investor-relations/events-and-presentations/press-
releases/press-release-details/2018/Nearly-1-Billion-People-Worldwide-Have-
Sleep-Apnea-International-Sleep-Experts-Estimate/default.aspx. [Accessed:
10-Mar-2019]

[6] D. Bohn, “Will Apple Watch sleep tracking in watchOS 7 Sherlock third
party apps?” The Verge, 10-Mar-2020 [Online]. Available: https://www.thev
erge.com/tech/2020/3/10/21172386/apple-watch-sleep-tracking-sherlocking.
[Accessed: 16-Apr-2020]

[7] S. P. Gjøby, “Extensible data acquisition tool for Android,” 2016 [Online].
Available: https://www.duo.uio.no/handle/10852/53004. [Accessed: 12-Mar-
2019]

[8] S. H. Fairclough, “Fundamentals of physiological computing,” Elsevier, Oct.
2008 [Online]. Available: https://www.cs.tufts.edu/~jacob/250hci/Fairclo
ugh2009Fundamentalsofphysiologicalcomputing-annotated.pdf. [Accessed:
02-Oct-2019]

[9] C. Tardi, “Moore’s law,” Investopedia. 05-Sep-2019 [Online]. Available:
https://www.investopedia.com/terms/m/mooreslaw.asp. [Accessed: 02-Oct-
2019]

[10] S. Tibken, “CES 2019: Moore’s Law is dead, says Nvidia’s CEO - CNET,”
09-Jan-2019. [Online]. Available: https://www.cnet.com/news/moores-law-is-
dead-nvidias-ceo-jensen-huang-says-at-ces-2019/. [Accessed: 16-Apr-2020]

[11] P. D. Bugajski, “Extensible data streams dispatching tool for Android,” 2017
[Online]. Available: https://www.duo.uio.no/handle/10852/60350. [Accessed:
12-Mar-2019]

115

https://www.nhlbi.nih.gov/health-topics/sleep-apnea
https://www.nhlbi.nih.gov/health-topics/sleep-apnea
https://www.mayoclinic.org/diseases-conditions/sleep-apnea/diagnosis-treatment/drc-20377636
https://www.mayoclinic.org/diseases-conditions/sleep-apnea/diagnosis-treatment/drc-20377636
https://www.sleepapnea.org/learn/sleep-apnea-information-clinicians/
https://www.sleepapnea.org/learn/sleep-apnea-information-clinicians/
http://investors.resmed.com/investor-relations/events-and-presentations/press-releases/press-release-details/2018/Nearly-1-Billion-People-Worldwide-Have-Sleep-Apnea-International-Sleep-Experts-Estimate/default.aspx
http://investors.resmed.com/investor-relations/events-and-presentations/press-releases/press-release-details/2018/Nearly-1-Billion-People-Worldwide-Have-Sleep-Apnea-International-Sleep-Experts-Estimate/default.aspx
http://investors.resmed.com/investor-relations/events-and-presentations/press-releases/press-release-details/2018/Nearly-1-Billion-People-Worldwide-Have-Sleep-Apnea-International-Sleep-Experts-Estimate/default.aspx
http://investors.resmed.com/investor-relations/events-and-presentations/press-releases/press-release-details/2018/Nearly-1-Billion-People-Worldwide-Have-Sleep-Apnea-International-Sleep-Experts-Estimate/default.aspx
https://www.theverge.com/tech/2020/3/10/21172386/apple-watch-sleep-tracking-sherlocking
https://www.theverge.com/tech/2020/3/10/21172386/apple-watch-sleep-tracking-sherlocking
https://www.duo.uio.no/handle/10852/53004
https://www.cs.tufts.edu/~jacob/250hci/Fairclough2009Fundamentalsofphysiologicalcomputing-annotated.pdf
https://www.cs.tufts.edu/~jacob/250hci/Fairclough2009Fundamentalsofphysiologicalcomputing-annotated.pdf
https://www.investopedia.com/terms/m/mooreslaw.asp
https://www.cnet.com/news/moores-law-is-dead-nvidias-ceo-jensen-huang-says-at-ces-2019/
https://www.cnet.com/news/moores-law-is-dead-nvidias-ceo-jensen-huang-says-at-ces-2019/
https://www.duo.uio.no/handle/10852/60350

[12] Shimmer, “Shimmer Java/Android API.” [Online]. Available: https://www.
shimmersensing.com/products/shimmer-android-id. [Accessed: 31-Oct-2019]

[13] Garmin Ltd., “Fēnix® 5 - Multisport GPS Watch,” Garmin. [Online].
Available: https://buy.garmin.com/en-US/US/p/552982. [Accessed: 10-Mar-
2019]

[14] Sport Tiedje GmbH., “Garmin Sport Watch Fenix 5X Sapphire.” [Online].
Available: https://www.sport-tiedje.co.uk/garmin-sport-watch-fenix-5x-
sapphire-ga-010-01733-01. [Accessed: 31-Oct-2019]

[15] R. Llamas, J. Ubrani, and M. Shirer, “Worldwide Wearables Market Ticks
Up 5.5% Due to Gains in Emerging Markets, Says IDC,” Bloomberg, 04-Sep-2018.
[Online]. Available: https://www.bloomberg.com/press-releases/2018-09-04
/worldwide-wearables-market-ticks-up-5-5-due-to-emerging-markets-says-idc.
[Accessed: 10-Mar-2019]

[16] International Data Corporation, “IDC Reports Strong Growth in the World-
wide Wearables Market, Led by Holiday Shipments of Smartwatches, Wrist
Bands, and Ear-Worn Devices,” IDC: The premier global market intelligence
company. 09-Mar-2019 [Online]. Available: https://www.idc.com/getdoc.jsp?c
ontainerId=prUS44901819. [Accessed: 10-Mar-2019]

[17] Fitbit Inc., “Fitbit Ionic™ Watch.” [Online]. Available: https://www.fitbit.
com/ionic. [Accessed: 10-Mar-2019]

[18] Fitbit Inc., “Press kit.” [Online]. Available: https://investor.fitbit.com/pres
s/press-kit/default.aspx. [Accessed: 31-Oct-2019]

[19] C. Grugan, “Writing JS apps for Fitbit Ionic,” JavaScript January. Jan-2018
[Online]. Available: https://www.javascriptjanuary.com/blog/writing-js-apps-
for-fitbit-ionic. [Accessed: 10-Mar-2019]

[20] “Max sampling rate of heart rate sensor of Ionic?” Aug-2017 [Online].
Available: https://community.fitbit.com/t5/SDK-Development/Max-sampling-
rate-of-heart-rate-sensor-of-Ionic/m-p/2166062#M53. [Accessed: 10-Mar-2019]

[21] A. Pressman, “How Fitbit Plans to Boost Falling Sales,” Fortune. 27-Feb-
2018 [Online]. Available: http://fortune.com/2018/02/27/fitbit-ionic-stock-
price/. [Accessed: 10-Mar-2019]

[22] Apple Inc., “Apple Watch Series 4 - Technical Specifications.” 02-Apr-2020
[Online]. Available: https://support.apple.com/kb/SP778?locale=en_GB.
[Accessed: 15-Apr-2020]

[23] Apple Inc., “Apple Watch Series 5 - Titanium Case.” [Online]. Available: ht
tps://www.apple.com/shop/buy-watch/apple-watch/titanium-case. [Accessed:
31-Oct-2019]

[24] S. Caldwell, “How to measure heart rate variability (HRV) on your Apple
Watch,” iMore. 29-Apr-2018 [Online]. Available: https://www.imore.com/how-
measure-heart-rate-variability-hrv-your-apple-watch. [Accessed: 27-Mar-2019]

116

https://www.shimmersensing.com/products/shimmer-android-id
https://www.shimmersensing.com/products/shimmer-android-id
https://buy.garmin.com/en-US/US/p/552982
https://www.sport-tiedje.co.uk/garmin-sport-watch-fenix-5x-sapphire-ga-010-01733-01
https://www.sport-tiedje.co.uk/garmin-sport-watch-fenix-5x-sapphire-ga-010-01733-01
https://www.bloomberg.com/press-releases/2018-09-04/worldwide-wearables-market-ticks-up-5-5-due-to-emerging-markets-says-idc
https://www.bloomberg.com/press-releases/2018-09-04/worldwide-wearables-market-ticks-up-5-5-due-to-emerging-markets-says-idc
https://www.idc.com/getdoc.jsp?containerId=prUS44901819
https://www.idc.com/getdoc.jsp?containerId=prUS44901819
https://www.fitbit.com/ionic
https://www.fitbit.com/ionic
https://investor.fitbit.com/press/press-kit/default.aspx
https://investor.fitbit.com/press/press-kit/default.aspx
https://www.javascriptjanuary.com/blog/writing-js-apps-for-fitbit-ionic
https://www.javascriptjanuary.com/blog/writing-js-apps-for-fitbit-ionic
https://community.fitbit.com/t5/SDK-Development/Max-sampling-rate-of-heart-rate-sensor-of-Ionic/m-p/2166062#M53
https://community.fitbit.com/t5/SDK-Development/Max-sampling-rate-of-heart-rate-sensor-of-Ionic/m-p/2166062#M53
http://fortune.com/2018/02/27/fitbit-ionic-stock-price/
http://fortune.com/2018/02/27/fitbit-ionic-stock-price/
https://support.apple.com/kb/SP778?locale=en_GB
https://www.apple.com/shop/buy-watch/apple-watch/titanium-case
https://www.apple.com/shop/buy-watch/apple-watch/titanium-case
https://www.imore.com/how-measure-heart-rate-variability-hrv-your-apple-watch
https://www.imore.com/how-measure-heart-rate-variability-hrv-your-apple-watch

[25] P. Cao, “IDC: Apple continues to lead wearable space, 10.4 million Apple
Watches sold in Q4 2018,” 9to5Mac. 05-Mar-2019 [Online]. Available: https://
9to5mac.com/2019/03/05/idc-apple-watch-wearables-figures-q418/. [Accessed:
10-Mar-2019]

[26] A. Shcherbina et al., “Accuracy in Wrist-Worn, Sensor-Based Measure-
ments of Heart Rate and Energy Expenditure in a Diverse Cohort,” Jour-
nal of Personalized Medicine, vol. 7, no. 2, May 2017 [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491979/. [Accessed:
10-Mar-2019]

[27] C. McGarry, “Who Has the Most Accurate Heart Rate Monitor?” Tom’s
Guide. 11-Oct-2018 [Online]. Available: https://www.tomsguide.com/us/heart-
rate-monitor,review-2885.html. [Accessed: 10-Mar-2019]

[28] Apple Inc., “How to use your Apple Watch.” [Online]. Available: https:
//support.apple.com/en-us/HT205552. [Accessed: 31-Oct-2019]

[29] P. Hegarty, “Overview of iOS.” Stanford University; University Lecture,
11-Nov-2017 [Online]. Available: https://www.youtube.com/watch?v=z9IXfYH
hKYI&index=1&list=PL_l7vS8VbNDFBiKIL3fEQhkKXTYsncsvN. [Accessed:
12-Mar-2019]

[30] R. Barnes, “Apple iOS Architecture.” [Online]. Available: https://www.tu
torialspoint.com/apple-ios-architecture. [Accessed: 31-Oct-2019]

[31] Apple Inc., “Core os layer.” [Online]. Available: https://developer.apple.
com/library/archive/documentation/MacOSX/Conceptual/OSX_Technolog
y_Overview/CoreOSLayer/CoreOSLayer.html. [Accessed: 28-Oct-2019]

[32] A. M. Wood, “Cocoa and Cocoa Touch: How to Get Started Build Mac and
iOS Apps,” 13-Feb-2018. [Online]. Available: https://www.whoishostingthis.c
om/resources/cocoa/. [Accessed: 08-Apr-2020]

[33] Apple Inc., “WKExtensionDelegate - WatchKit - Apple Developer Docu-
mentation.” [Online]. Available: https://developer.apple.com/documentation/
watchkit/wkextensiondelegate. [Accessed: 10-Mar-2019]

[34] Apple Inc., “Managing Your App’s Life Cycle - Apple Developer Documen-
tation.” [Online]. Available: https://developer.apple.com/documentation/ui
kit/app_and_environment/managing_your_app_s_life_cycle. [Accessed:
22-Aug-2019]

[35] Apple Inc., “Managing Your App’s Life Cycle - Apple Developer Documen-
tation,” 14-Apr-2020. [Online]. Available: https://developer.apple.com/docu
mentation/uikit/app_and_environment/managing_your_app_s_life_cycle.
[Accessed: 14-Apr-2020]

[36] Apple Inc., “Creating Independent watchOS Apps - Apple Developer Doc-
umentation,” 08-Apr-2020. [Online]. Available: https://developer.apple.com/

117

https://9to5mac.com/2019/03/05/idc-apple-watch-wearables-figures-q418/
https://9to5mac.com/2019/03/05/idc-apple-watch-wearables-figures-q418/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491979/
https://www.tomsguide.com/us/heart-rate-monitor,review-2885.html
https://www.tomsguide.com/us/heart-rate-monitor,review-2885.html
https://support.apple.com/en-us/HT205552
https://support.apple.com/en-us/HT205552
https://www.youtube.com/watch?v=z9IXfYHhKYI&index=1&list=PL_l7vS8VbNDFBiKIL3fEQhkKXTYsncsvN
https://www.youtube.com/watch?v=z9IXfYHhKYI&index=1&list=PL_l7vS8VbNDFBiKIL3fEQhkKXTYsncsvN
https://www.tutorialspoint.com/apple-ios-architecture
https://www.tutorialspoint.com/apple-ios-architecture
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/OSX_Technology_Overview/CoreOSLayer/CoreOSLayer.html
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/OSX_Technology_Overview/CoreOSLayer/CoreOSLayer.html
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/OSX_Technology_Overview/CoreOSLayer/CoreOSLayer.html
https://www.whoishostingthis.com/resources/cocoa/
https://www.whoishostingthis.com/resources/cocoa/
https://developer.apple.com/documentation/watchkit/wkextensiondelegate
https://developer.apple.com/documentation/watchkit/wkextensiondelegate
https://developer.apple.com/documentation/uikit/app_and_environment/managing_your_app_s_life_cycle
https://developer.apple.com/documentation/uikit/app_and_environment/managing_your_app_s_life_cycle
https://developer.apple.com/documentation/uikit/app_and_environment/managing_your_app_s_life_cycle
https://developer.apple.com/documentation/uikit/app_and_environment/managing_your_app_s_life_cycle
https://developer.apple.com/documentation/watchkit/creating_independent_watchos_apps
https://developer.apple.com/documentation/watchkit/creating_independent_watchos_apps

documentation/watchkit/creating_independent_watchos_apps. [Accessed:
08-Apr-2020]

[37] Apple Inc., “TransferFile - WCSession - Apple Developer Documentation,”
15-Jan-2020. [Online]. Available: https://developer.apple.com/documentation/
watchconnectivity/wcsession/1615667-transferfile. [Accessed: 15-Jan-2020]

[38] Open Planet Software, “I have recordings on my Apple Watch that have not
transferred to my iPhone. – Product Support,” 08-Jan-2018. [Online]. Available:
https://openplanet.zendesk.com/hc/en-gb/articles/115004471413-I-have-
recordings-on-my-Apple-Watch-that-have-not-transferred-to-my-iPhone-.
[Accessed: 15-Jan-2020]

[39] Apple Inc., “Apple Watch Series 5 - Technical Specifications.” 19-Sep-2019
[Online]. Available: https://support.apple.com/kb/SP808?locale=en_US.
[Accessed: 31-Oct-2019]

[40] Apple Inc., “Energy Efficiency Guide for iOS Apps - Fundemental Concepts.”
2018 [Online]. Available: https://developer.apple.com/library/archive/docume
ntation/Performance/Conceptual/EnergyGuide-iOS/FundamentalConcepts.ht
ml. [Accessed: 31-Oct-2019]

[41] Apple Inc., “Energy Efficiency Guide for iOS Apps: Energy Efficiency and
the User Experience,” 2018. [Online]. Available: https://developer.apple.co
m/library/archive/documentation/Performance/Conceptual/EnergyGuide-
iOS/index.html. [Accessed: 14-Apr-2020]

[42] Apple Inc., “Human Interface Guidelines - Requesting Permission.” [Online].
Available: https://developer.apple.com/design/human-interface-guidelines/ios
/app-architecture/requesting-permission/. [Accessed: 01-Nov-2019]

[43] Apple Inc., “The Basics — The Swift Programming Language (Swift 5.2),”
24-Mar-2020. [Online]. Available: https://docs.swift.org/swift-book/LanguageG
uide/TheBasics.html. [Accessed: 16-Apr-2020]

[44] A. Inc., “Extensions — The Swift Programming Language (Swift 5.2),”
24-Mar-2020. [Online]. Available: https://docs.swift.org/swift-book/LanguageG
uide/Extensions.html. [Accessed: 08-Apr-2020]

[45] R. Mejia, “Declarative and Imperative Programming using SwiftUI and
UIKit,” 08-Apr-2020. [Online]. Available: https://medium.com/flawless-app-
stories/declarative-and-imperative-programming-using-swiftui-and-uikit-
c91f1f104252. [Accessed: 08-Apr-2020]

[46] Apple Inc., “SwiftUI Tutorials - Apple Developer Documentation,” 2019.
[Online]. Available: https://developer.apple.com/tutorials/swiftui/. [Accessed:
08-Apr-2020]

[47] R. F. Tinder, Relativistic Flight Mechanics and Space Travel: A Primer for
Students, Engineers and Scientists, 1st ed. Morgan; Claypool Publishers, 2006.

118

https://developer.apple.com/documentation/watchkit/creating_independent_watchos_apps
https://developer.apple.com/documentation/watchkit/creating_independent_watchos_apps
https://developer.apple.com/documentation/watchconnectivity/wcsession/1615667-transferfile
https://developer.apple.com/documentation/watchconnectivity/wcsession/1615667-transferfile
https://openplanet.zendesk.com/hc/en-gb/articles/115004471413-I-have-recordings-on-my-Apple-Watch-that-have-not-transferred-to-my-iPhone-
https://openplanet.zendesk.com/hc/en-gb/articles/115004471413-I-have-recordings-on-my-Apple-Watch-that-have-not-transferred-to-my-iPhone-
https://support.apple.com/kb/SP808?locale=en_US
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/FundamentalConcepts.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/FundamentalConcepts.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/FundamentalConcepts.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/index.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/index.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/index.html
https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/requesting-permission/
https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/requesting-permission/
https://docs.swift.org/swift-book/LanguageGuide/TheBasics.html
https://docs.swift.org/swift-book/LanguageGuide/TheBasics.html
https://docs.swift.org/swift-book/LanguageGuide/Extensions.html
https://docs.swift.org/swift-book/LanguageGuide/Extensions.html
https://medium.com/flawless-app-stories/declarative-and-imperative-programming-using-swiftui-and-uikit-c91f1f104252
https://medium.com/flawless-app-stories/declarative-and-imperative-programming-using-swiftui-and-uikit-c91f1f104252
https://medium.com/flawless-app-stories/declarative-and-imperative-programming-using-swiftui-and-uikit-c91f1f104252
https://developer.apple.com/tutorials/swiftui/

[48] E. Hsiao, “Introduction to Apple WatchKit with Core Motion — Tracking
Jumping Jacks,” 17-Feb-2018. [Online]. Available: https://heartbeat.fritz.ai
/introduction-to-apple-watchkit-with-core-motion-tracking-jumping-jacks-
259ee80d1210. [Accessed: 08-Apr-2020]

[49] C. McFadden, “Gyroscopes: What they are, how they work and why they
are important,” 04-Sep-2017. [Online]. Available: https://interestingengineering
.com/gyroscopes-what-they-are-how-they-work-and-why-they-are-important.
[Accessed: 08-Apr-2020]

[50] J. Su, “Apple Watch 4 Is Now An FDA Class 2 Medical Device: Detects
Falls, Irregular Heart Rhythm,” 14-Sep-2018. [Online]. Available: https://www.
forbes.com/sites/jeanbaptiste/2018/09/14/apple-watch-4-is-now-an-fda-class-
2-medical-device-detects-falls-irregular-heart-rhythm/. [Accessed: 08-Apr-2020]

[51] R. E. Berg, “Electromechanical transducer,” 24-Oct-2018. [Online]. Avail-
able: https://www.britannica.com/technology/electromechanical-transducer.
[Accessed: 16-Apr-2020]

[52] Apple Inc., “Measure noise levels with Apple Watch - Apple Support,”
08-Apr-2020. [Online]. Available: https://support.apple.com/en-gb/guide/wat
ch/apd00a43a9cb/watchos. [Accessed: 08-Apr-2020]

[53] G. Riches, R. Martinez, J. Maison, M. Klosterman, and M. Griffin, Apple
Watch for Developers Advice & Techniques from Five Top Professionals. Apress,
2015.

[54] R. Metz, “Using Your Ear to Track Your Heart,” 01-Aug-2014. [Online].
Available: https://www.technologyreview.com/2014/08/01/171915/using-your-
ear-to-track-your-heart/. [Accessed: 08-Apr-2020]

[55] M. Chin, “Apple Watches may soon detect blood oxygen levels.” The Verge,
08-Apr-2020 [Online]. Available: https://www.theverge.com/2020/3/9/21
171483/apple-watch-ios-14-code-blood-oxygen-features-update. [Accessed:
08-Apr-2020]

[56] Apple Inc., “App Review - App Store - Apple Developer.” [Online]. Available:
https://developer.apple.com/app-store/review/. [Accessed: 08-Apr-2020]

[57] C. Szyperski, “Independently Extensible Systems - Software Engineering
Potential and Challenges,” in In Proceedings of the 19th Australasian Computer
Science Conference, 1996.

[58] M. Swider, “Apple Watch battery life: how many hours does it last?” 24-Apr-
2015. [Online]. Available: https://www.techradar.com/news/wearables/apple-
watch-battery-life-how-many-hours-does-it-last-1291435. [Accessed: 06-Nov-
2019]

[59] I. Buchmann, “Fast and ultra-fast chargers - battery university,” 12-Apr-
2019. [Online]. Available: https://batteryuniversity.com/learn/article/ultra_fas
t_chargers. [Accessed: 06-Apr-2020]

119

https://heartbeat.fritz.ai/introduction-to-apple-watchkit-with-core-motion-tracking-jumping-jacks-259ee80d1210
https://heartbeat.fritz.ai/introduction-to-apple-watchkit-with-core-motion-tracking-jumping-jacks-259ee80d1210
https://heartbeat.fritz.ai/introduction-to-apple-watchkit-with-core-motion-tracking-jumping-jacks-259ee80d1210
https://interestingengineering.com/gyroscopes-what-they-are-how-they-work-and-why-they-are-important
https://interestingengineering.com/gyroscopes-what-they-are-how-they-work-and-why-they-are-important
https://www.forbes.com/sites/jeanbaptiste/2018/09/14/apple-watch-4-is-now-an-fda-class-2-medical-device-detects-falls-irregular-heart-rhythm/
https://www.forbes.com/sites/jeanbaptiste/2018/09/14/apple-watch-4-is-now-an-fda-class-2-medical-device-detects-falls-irregular-heart-rhythm/
https://www.forbes.com/sites/jeanbaptiste/2018/09/14/apple-watch-4-is-now-an-fda-class-2-medical-device-detects-falls-irregular-heart-rhythm/
https://www.britannica.com/technology/electromechanical-transducer
https://support.apple.com/en-gb/guide/watch/apd00a43a9cb/watchos
https://support.apple.com/en-gb/guide/watch/apd00a43a9cb/watchos
https://www.technologyreview.com/2014/08/01/171915/using-your-ear-to-track-your-heart/
https://www.technologyreview.com/2014/08/01/171915/using-your-ear-to-track-your-heart/
https://www.theverge.com/2020/3/9/21171483/apple-watch-ios-14-code-blood-oxygen-features-update
https://www.theverge.com/2020/3/9/21171483/apple-watch-ios-14-code-blood-oxygen-features-update
https://developer.apple.com/app-store/review/
https://www.techradar.com/news/wearables/apple-watch-battery-life-how-many-hours-does-it-last-1291435
https://www.techradar.com/news/wearables/apple-watch-battery-life-how-many-hours-does-it-last-1291435
https://batteryuniversity.com/learn/article/ultra_fast_chargers
https://batteryuniversity.com/learn/article/ultra_fast_chargers

[60] J. Clarke, “How to Use a Morning Routine to Be More Productive,” 17-Mar-
2020. [Online]. Available: https://www.verywellmind.com/morning-routine-
4174576. [Accessed: 06-Apr-2020]

[61] E. Boersma, “Memory leak detection - How to find, eliminate, and avoid,”
09-Jan-2020. [Online]. Available: https://raygun.com/blog/memory-leak-
detection/. [Accessed: 06-Apr-2020]

[62] “General Data Protection Regulation (GDPR) – Official Legal Text,” 04-
May-2016. [Online]. Available: https://gdpr-info.eu/. [Accessed: 06-Apr-2020]

[63] J. Chen, “Stakeholder definition,” 04-Mar-2020. [Online]. Available: https:
//www.investopedia.com/terms/s/stakeholder.asp. [Accessed: 25-Apr-2020]

[64] P. A. Laplante, What Every Engineer Should Know about Software Engi-
neering. Routledge, 2007 [Online]. Available: https://www.xarg.org/ref/a/084
9372283/. [Accessed: 17-Feb-2020]

[65] Apple Inc., “Creating Independent watchOS Apps - Apple Developer Doc-
umentation,” 08-Feb-2020. [Online]. Available: https://developer.apple.com/
documentation/watchkit/creating_independent_watchos_apps. [Accessed:
08-Feb-2020]

[66] T. Bray, J. Paoli, and C. M. Sperberg-McQueen, “Extensible Markup
Language (XML) 1.0,” 02-Oct-2017. [Online]. Available: https://www.w3.org/T
R/1998/REC-xml-19980210. [Accessed: 06-Apr-2020]

[67] A. Seaborne, “SPARQL 1.1 Query Results CSV and TSV Formats,” 21-Mar-
2013. [Online]. Available: https://www.w3.org/TR/sparql11-results-csv-tsv/.
[Accessed: 08-Jan-2020]

[68] S. Tan and A. Shortlidge, “What’s New in HealthKit - WWDC 2015 - Videos
- Apple Developer,” 2015. [Online]. Available: https://developer.apple.com/vide
os/play/wwdc2015/203/. [Accessed: 27-Mar-2020]

[69] E. S. Skarpsno, P. J. Mork, T. I. L. Nilsen, and A. Holtermann, “Sleep
positions and nocturnal body movements based on free-living accelerometer
recordings: association with demographics, lifestyle, and insomnia symptoms,”
Nat Sci Sleep, vol. 9, pp. 267–275, 2017 [Online]. Available: https://www.ncbi
.nlm.nih.gov/pmc/articles/PMC5677378/. [Accessed: 21-Mar-2020]

[70] D. Kyslenko, “Swift - Recording audio on WatchOS over AVAudioRecorder
- Stack Overflow,” 21-Mar-2020. [Online]. Available: https://stackoverflow.
com/questions/56407339/recording-audio-on-watchos-over-avaudiorecorder.
[Accessed: 21-Mar-2020]

[71] Apple Inc., “CloudKit Database - CloudKit - Apple Developer Documenta-
tion,” 30-Jan-2020. [Online]. Available: https://developer.apple.com/document
ation/cloudkitjs/cloudkit/database. [Accessed: 30-Jan-2020]

[72] Splunk Inc., “Splunk® Enterprise.” [Online]. Available: https://www.splu
nk.com/en_us/software/splunk-enterprise.html. [Accessed: 30-Jan-2020]

120

https://www.verywellmind.com/morning-routine-4174576
https://www.verywellmind.com/morning-routine-4174576
https://raygun.com/blog/memory-leak-detection/
https://raygun.com/blog/memory-leak-detection/
https://gdpr-info.eu/
https://www.investopedia.com/terms/s/stakeholder.asp
https://www.investopedia.com/terms/s/stakeholder.asp
https://www.xarg.org/ref/a/0849372283/
https://www.xarg.org/ref/a/0849372283/
https://developer.apple.com/documentation/watchkit/creating_independent_watchos_apps
https://developer.apple.com/documentation/watchkit/creating_independent_watchos_apps
https://www.w3.org/TR/1998/REC-xml-19980210
https://www.w3.org/TR/1998/REC-xml-19980210
https://www.w3.org/TR/sparql11-results-csv-tsv/
https://developer.apple.com/videos/play/wwdc2015/203/
https://developer.apple.com/videos/play/wwdc2015/203/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677378/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677378/
https://stackoverflow.com/questions/56407339/recording-audio-on-watchos-over-avaudiorecorder
https://stackoverflow.com/questions/56407339/recording-audio-on-watchos-over-avaudiorecorder
https://developer.apple.com/documentation/cloudkitjs/cloudkit/database
https://developer.apple.com/documentation/cloudkitjs/cloudkit/database
https://www.splunk.com/en_us/software/splunk-enterprise.html
https://www.splunk.com/en_us/software/splunk-enterprise.html

[73] O. Walch, Y. Huang, D. Forger, and C. Goldstein, “Sleep stage prediction
with raw acceleration and photoplethysmography heart rate data derived from a
consumer wearable device,” Sleep, vol. 42, no. 12, Aug. 2019 [Online]. Available:
https://doi.org/10.1093/sleep/zsz180

[74] Apple Inc., “Running Workout Sessions - Apple Developer Documentation.”
[Online]. Available: https://developer.apple.com/documentation/healthkit/
workouts_and_activity_rings/running_workout_sessions?language=objc.
[Accessed: 22-Mar-2020]

121

https://doi.org/10.1093/sleep/zsz180
https://developer.apple.com/documentation/healthkit/workouts_and_activity_rings/running_workout_sessions?language=objc
https://developer.apple.com/documentation/healthkit/workouts_and_activity_rings/running_workout_sessions?language=objc

Appendices

A Cloning the project
The projects presented in this thesis are open source and can freely be cloned
from GitHub. Both Sopor33 and Virga34 are available to download. This is done
as shown in Listing 56.

Listing 56 Clone projects from GitHub
Clone Sopor
git clone https://github.com/HaakonBakker/master_thesis_dev.git

Clone Virga
git clone https://github.com/HaakonBakker/sopor-event-processor.git

B Creating a new Sensor class
A new sensor can be added to the project using the steps outlined in this part.

B.1 Add the file to the project
In Figure 38, three steps has to be taken to add the file to the project. Give the
file the correct name (1), and make sure the WatchKit Extension is targeted (2)
and add it to the correct directory (3).

Figure 38: Adding the file to the project
33https://github.com/HaakonBakker/master_thesis_dev
34https://github.com/HaakonBakker/sopor-event-processor

122

https://github.com/HaakonBakker/master_thesis_dev
https://github.com/HaakonBakker/sopor-event-processor

B.2 Create the class
Creating the class and make it inherit from the base Sensor class is done as shown
in Listing 57. From here methods from the base Sensor class35 can be overridden.
The following two methods have to be overridden: 1) the startSensor() method
and 2) the stopSensor() method, these have also been added to Listing 57.

Listing 57 A NewSensor class
class NewSensor:Sensor{

override func startSensor(session:Session) -> Bool{
return true

}

override func stopSensor() -> Bool{
return true

}
}

B.3 Add the sensor to the configuration
First, you need to add the new Sensor class to the SensorEnumeration enum file,
defined in SensorEnumeration.swift. Next, add the NewSensor class to the list
of sensors defined in the SensorConfiguration.swift, as shown in Listing 58.

Listing 58 Adding the NewSensor to the sensorList
let sensorList =

[GyroscopeSensor(sessionIdentifier: SESSION_UUID),
MicrophoneSensor(sessionIdentifier: SESSION_UUID),
BatterySensor(samplingRate: 5.0,

sessionIdentifier: SESSION_UUID),
MetaSensor(sessionIdentifier: SESSION_UUID),
NewSensor(sensorEnum: SensorEnumeration.NewSensor,

sessionIdentifier: SESSION_UUID)]

B.4 Build and run
Finally, you have to build and run the project to take advantage of the newly
created sensor.

C Creating a new Sink class
This is shown and described in detail Section 6.1.3.

35Defined in the Sensor.swift file.

123

D Setting up CloudKit
To get CloudKit to work in the application there are a few steps that need to be
taken.

D.1 Activate the iCloud capability
In Xcode, you have to activate the iCloud capability for the application. Next,
the CloudKit service needs to be checked and the correct CloudKit containers
need to be added see Section D.2. It should look something like Figure 39
depending on which version of Xcode is running.

Figure 39: Activate iCloud and CloudKit in Xcode

D.2 Create an CloudKit container
Also in Xcode, you have to create the containers for the application. This is
done by hitting the “+” icon shown in Figure 39. Next, you need to fill in the
name for the container in the dialog shown in Figure 40.

Figure 40: Creating a new container

D.3 Create the schema in CloudKit
By clicking the CloudKit Dashboard button shown in Figure 39 you will be
taken to the CloudKit Dashboard where you will be asked to log in. Next, find
the container you added in Section D.2. Click the “Schema” button shown in
Figure 41.

124

Figure 41: CloudKit overview

Next, a few record types need to be created. Start creating by clicking “New
Type”. The three record types need to be created: 1) “Buckets”, 2) “Sampling-
Data” and 3) “Session”. These three records need to be configured as shown in
Figure 42, Figure 43 and Figure 44. Make sure to set the indexes and the field
types correctly.

Figure 42: Bucket record type

125

Figure 43: SamplingData record type

Figure 44: Session record type

D.4 Getting the CloudKit token
At the main dashboard, shown in Figure 41, click the “API Access” button.
Next, follow the steps outlined in Figure 45. (1) Click “New”. (2) Click “New
API Token”. (3) Give the token a name. Leave the rest as is. Hit “Save Changes”.
Your API key will become visible, copy this and store securely.

126

Figure 45: Steps for creating CloudKit token

D.5 CloudKit documentation
The documentation for getting CloudKit JS is available at Apple’s website36 as
well as the CloudKit Web Services37 webpage.

E Virga
E.1 Set up Virga
Virga requires the .NET framework and F# to be installed. When checked out
from the GitHub repo, the steps showed in Listing 59 can be performed to run
the project. Running those commands will result in an output like the one shown
in Figure 46. You need to export the CloudKit token to the shell. Getting the
token is shown in Section D.4. Setting the token as an environment variable
allows the application to access the token without it being visible in code.

Listing 59 Running Virga from the terminal
cd virga/
export CLOUDKIT_TOKEN=YourCloudKitToken
dotnet build
dotnet run

36https://developer.apple.com/documentation/cloudkitjs
37https://developer.apple.com/library/archive/documentation/DataManagement/Concept

ual/CloudKitWebServicesReference/index.html#//apple_ref/doc/uid/TP40015240

127

https://developer.apple.com/documentation/cloudkitjs
https://developer.apple.com/library/archive/documentation/DataManagement/Conceptual/CloudKitWebServicesReference/index.html#//apple_ref/doc/uid/TP40015240
https://developer.apple.com/library/archive/documentation/DataManagement/Conceptual/CloudKitWebServicesReference/index.html#//apple_ref/doc/uid/TP40015240

Figure 46: Running Virga

E.2 SessionDomain record types
To deserialize the JSON from CloudKit, the module shown in Listing 60 is
created. The Event type encapsulates the EventData type.

128

Listing 60 The Sensor event record type
module SensorDomain

type EventData = {
x: double
y: double
z: double
batteryLevel: double
batteryState : int
heartRate : double
unit : string

}

type Event = {
sessionIdentifier : string
timestamp : string
sensorName : string
event: EventData

}

E.3 Body queries for the CloudKit API
This part describes the different HTTP request bodies used in the CloudKit API
calls.

E.3.1 Body for Session records

This body shown in Listing 61 is used to query all Session records.

Listing 61 Session body
let sessionBody = """{

"query": {
"recordType": "Session",
"sortBy": [

{
"systemFieldName": "createdTimestamp",
"ascending": true

}
]

}
}"""

129

E.3.2 Body for full Bucket records

Listing 62 Bucket body with continuation marker
let fullBodyBucket sID contMarker =

sprintf """{
"query": {

"filterBy": [
{

"fieldName": "sessionIdentifier",
"comparator": "EQUALS",
"fieldValue": {

"value": "%s",
"type": "STRING"

}
}

],
"recordType": "Buckets",
"sortBy": [

{
"systemFieldName": "createdTimestamp",
"ascending": true

}
]

},
"continuationMarker": "%s"

}""" sID contMarker

130

E.3.3 Body for Bucket records

Listing 63 Bucket body
let bodyBucketWithFilter sID =

sprintf """{
"query": {

"filterBy": [
{

"fieldName": "sessionIdentifier",
"comparator": "EQUALS",
"fieldValue": {

"value": "%s",
"type": "STRING"

}
}

],
"recordType": "Buckets",
"sortBy": [

{
"systemFieldName": "createdTimestamp",
"ascending": true

}
]

}
}""" sID

131

E.3.4 Body for SamplingData records

Listing 64 Sample body with Session ID
let sampleBodyWithSessionID sID =

sprintf """{
"query": {

"filterBy": [
{

"fieldName": "sessionIdentifier",
"comparator": "EQUALS",
"fieldValue": {

"value": "%s",
"type": "STRING"

}
}

],
"recordType": "SamplingData",
"sortBy": [

{
"systemFieldName": "createdTimestamp",
"ascending": true

}
]

}
}""" sID

E.4 Data types for the CloudKitProcessor.fs module
When serializing the JSON response F# needs to serialize to given data types
to keep the strong typing paradigm. Unfortunately, a type cannot be defined
directly inside a type record such as shown in Listing 65, all complex types have
to be divided down to its simple types as shown in Listing 66 and Listing 67.

132

Listing 65 Types should be able to be defined this way
type Buckets =

{ bucket :
{

recordName: string
recordType: string
fields:
{

data:
{

fileChecksum: string
size: int
downloadURL: string

}
eventCount: {value: int}
sessionIdentifier: {value: string}

}
}

}

133

Listing 66 How complex types actually are defined (1/2)
// Simple Value Records
type DataInt =

{ value: int }

type DataStr =
{ value: string }

type DataDouble =
{ value: double }

// Bucket Types:
type CKAssetValue =

{ fileChecksum: string
size: int
downloadURL: string }

type CKAsset =
{ value: CKAssetValue }

type Fields =
{ data: CKAsset

eventCount: DataInt
sessionIdentifier: DataStr }

type Bucket =
{ recordName: string

recordType: string
fields: Fields }

type CloudRecord =
{ records: Bucket list

continuationMarker: string }

134

Listing 67 How complex types actually are defined (2/2)
// SamplingData Types:
type SamplingDataFields =

{ aggregatedEventCount: DataInt
sessionIdentifier: DataStr
batteryLevel: DataDouble }

type Created =
{ timestamp: string

userRecordName: string
deviceID: string }

type SamplingData =
{ recordName: string

recordType: string
fields: SamplingDataFields
created: Created }

type SamplingDataRecord =
{ records: SamplingData list }

// Session
type SessionData =

{ recordName: string
recordType: string
fields: SamplingDataFields
created: Created }

type SessionDataRecord =
{ records: SessionData list }

F Data from experiments
F.1 Experiment 1
F.1.1 Data-points

The data-points from every sleep session for experiment 1 are presented in
Table 18 and Table 19.

Table 18: Experiments 1 results 1/2

Run Start % % after 8h % Depleted # events 8h Date
1 - Take 1 100% 27% 73% 1700184 Mar 08-09, 20
1 - Take 2 100% 22% 78% 1702165 Mar 09-10, 20

135

Run Start % % after 8h % Depleted # events 8h Date
1 - Take 3 100% 22% 78% 1698051 Mar 11-12, 20
2 - Take 1 100% 51% 49% 1686210 Mar 15-16, 20
2 - Take 2 100% 41% 59% 1698218 Mar 16-17, 20
2 - Take 3 100% 37% 63% 1701734 Mar 17-18, 20
3 - Take 1 100% 47% 53% 875413 Mar 21-22, 20
3 - Take 2 100% 46% 54% 868747 Mar 22-23, 20
3 - Take 3 100% 55% 45% 870293 Mar 23-24, 20
4 - Take 1 100% 58% 42% 871380 Mar 24-25, 20
4 - Take 2 100% 52% 48% 880367 Mar 25-26, 20
4 - Take 3 100% 55% 45% 876680 Mar 26-27, 20
Control - 1 100% 93% 7% 0 Mar 28-29, 20
Control - 2 100% 85% 15% 0 Mar 29-30, 20
Control - 3 100% 94% 6% 0 Mar 30-31, 20

Table 19: Experiments 1 results 2/2

Run
Avg Battery %
Depleted

Max Battery %
Depleted

Min Battery %
Depleted

Standard
deviation

1 76,33% 78% 73% 2,887
2 57,00% 63% 49% 5.888
3 50,66% 54% 45% 4,933
4 45,00% 48% 42% 3,000
Control 9,33% 15% 6% 4,028

F.1.2 Battery graphs

In table Table 20, Table 21, Table 22, Table 23 the collected battery graphs for
the different runs are presented.

136

Table 20: Battery graphs for Run 1

Take Graph

1

2

3

137

Table 21: Battery graphs for Run 2

Take Graph

1

2

3

138

Table 22: Battery graphs for Run 3

Take Graph

1

2

3

139

Table 23: Battery graphs for Run 4

Take Graph

1

2

3

140

F.2 Experiment 2
The results from experiment two are presented in Table 24.

Table 24: Results of Experiment 2

Run Avg. CPU Usage Max CPU usage Max memory usage
1 3% 71% 18,4MB
2 4% 49% 17,9MB
3 4% 69% 17,8MB
AVG 3,667% 63% 18,03MB

141

	I Introduction
	Introduction
	Problem statement
	Contributions
	Thesis structure

	II Physiological Computing
	Physiological computing
	Physiological computing alternatives
	Non-watch alternatives
	Watch Alternatives

	Comparison
	User interaction on the Apple Watch

	III watchOS
	watchOS
	Application architecture
	Core OS
	Core Services
	Media
	Cocoa Touch

	Application lifecycle
	iOS and watchOS coupling
	Energy consumption
	Requesting access
	The Swift programming language
	Language features of Swift

	Application design with SwiftUI
	Sensors on iOS and watchOS
	Accelerometer
	Gyroscope
	Microphone
	Optical heart sensor
	Electrocardiogram sensor

	Distributing applications
	Testflight
	App Store

	IV Design and Implementation
	Design
	Requirements
	Extensibility
	Resource efficiency
	Data collection
	Privacy
	Storage
	Stakeholders

	Separation of concerns
	Session Recording
	Sensors
	Event Management and Storage
	Sink
	User interface
	Summary of concerns

	High level design
	The initial design
	The improved design
	The final design

	The Data Format
	Event Types

	Implementation
	Application components
	Sensor
	Events
	Session
	Session Controller
	Session Config
	Session Splitter
	Sinks

	Implementation of concerns
	Sensors
	Session Recording
	Sink
	Event Management and Storage
	User interface

	Miscellaneous
	Chaining sinks
	Using Machine Learning on events
	Delay-tolerant CloudKit uploads
	Long-running sessions
	Virga - Data processing application

	V Evaluation and Conclusion
	Evaluation
	Practical experiments
	Experiment 1 - Battery usage
	Experiment 2 - CPU usage and memory usage
	Experiment 3 - Extensibility

	Examination of requirements

	Conclusion
	Summary
	Open problems
	Future work

	References

	Appendices
	Cloning the project
	Creating a new Sensor class
	Add the file to the project
	Create the class
	Add the sensor to the configuration
	Build and run

	Creating a new Sink class
	Setting up CloudKit
	Activate the iCloud capability
	Create an CloudKit container
	Create the schema in CloudKit
	Getting the CloudKit token
	CloudKit documentation

	Virga
	Set up Virga
	SessionDomain record types
	Body queries for the CloudKit API
	Body for Session records
	Body for full Bucket records
	Body for Bucket records
	Body for SamplingData records

	Data types for the CloudKitProcessor.fs module

	Data from experiments
	Experiment 1
	Data-points
	Battery graphs

	Experiment 2

