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ABSTRACT

Context. Ambipolar diffusion is a physical mechanism related to the drift between charged and neutral particles in a partially ionized
plasma that is key to many different astrophysical systems. However, understanding its effects is challenging due to basic uncertainties
concerning relevant microphysical aspects and the strong constraints it imposes on the numerical modeling.

Aims. Our aim is to introduce a numerical tool that allows us to address complex problems involving ambipolar diffusion in which,
additionally, departures from ionization equilibrium are important or high resolution is needed. The primary application of this tool is
for solar atmosphere calculations, but the methods and results presented here may also have a potential impact on other astrophysical
systems.

Methods. We have developed a new module for the stellar atmosphere Bifrost code that improves its computational capabilities of
the ambipolar diffusion term in the generalized Ohm’s law. This module includes, among other things, collision terms adequate to
processes in the coolest regions in the solar chromosphere. As the main feature of the module, we have implemented the super time
stepping (STS) technique, which allows an important acceleration of the calculations. We have also introduced hyperdiffusion terms
to guarantee the stability of the code.

Results. We show that to have an accurate value for the ambipolar diffusion coefficient in the solar atmosphere it is necessary to
include as atomic elements in the equation of state not only hydrogen and helium, but also the main electron donors like sodium,
silicon, and potassium. In addition, we establish a range of criteria to set up an automatic selection of the free parameters of the STS
method that guarantees the best performance, optimizing the stability and speed for the ambipolar diffusion calculations. We validate

the STS implementation by comparison with a self-similar analytical solution.
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1. Introduction

When modeling astrophysical systems, the simplest magnetohy-
drodynamic (MHD) approximation is frequently used where the
plasma is considered a single fluid with total coupling between
its constituent microscopic species. This assumption is able to
satisfactorily describe the physics of many phenomena in differ-
ent astrophysical contexts; however, the approximation may no
longer be valid when the plasma is partially ionized and ions and
neutrals drift with respect to each other. This is the case for the
interstellar medium (e.g., Spitzer 1978; Zweibel 2002), molecu-
lar clouds (e.g., Zweibel & Josafatsson 1983; Padoan et al. 2000;
Basu & Ciolek 2004; Crutcher 2012), protoplanetary disks (e.g.,
Wardle 1999; Salmeron & Wardle 2008; Gressel et al. 2015;
Tomida et al. 2015), star formation (e.g., Mestel & Spitzer 1956;
Shu et al. 1987; Kudoh & Basu 2008), and the solar chromo-
sphere (e.g., Goodman 2004; Zweibel et al. 2011; Khomenko
& Collados 2012; Martinez-Sykora et al. 2015; Zweibel 2015;
Shelyag et al. 2016), among others.

It is possible to relax the MHD approximation to deal with
partially ionized gases, considering the relative speed and asso-
ciated friction between neutrals, ions, and electrons, and still
treating the plasma as a single fluid: the Generalized Ohm’s
Law (see the seminal books by Braginskii 1965; Mitchner &
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Kruger 1973; Cowling 1976). This way, the departure of the
MHD approximation can be handled by just extending the induc-
tion and energy equations by adding the ambipolar diffusion
term, which concerns the decoupling of neutral and charged
components, and the Hall effect, which takes the drift veloc-
ities between ions and electrons into account. This extension
has been applied in different codes by Mac Low et al. (1995),
Leake et al. (2005), O’Sullivan & Downes (2007), Cheung &
Cameron (2012), Martinez-Sykora et al. (2012), Masson et al.
(2012), Tomida et al. (2015), Gonzalez-Morales et al. (2018),
Grassi et al. (2019), among others, and has been shown to be
important to better understand the role of the ambipolar diffusion
and Hall terms in astrophysics. However, the inclusion of partial
ionization effects into advanced numerical codes confronts the
modeler with different difficulties. On the one hand, the impor-
tance of the new effects sensitively depends on the microscopic
constitution of the plasma, namely, on the abundances, the chem-
istry, the ionization degree and the collisions between different
species. For instance, in the solar atmosphere, Martinez-Sykora
et al. (2012) showed that the approximation chosen to deter-
mine the values of collision cross sections and frequencies is
crucial for ion-neutral interaction effects: there are significant
discrepancies in the ambipolar diffusion coefficient depending
on the assumption considered that lead to different results for
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the thermal properties, primarily in the chromosphere. In pro-
tostellar disc formation, Zhao et al. (2016) found that reducing
the number of very small grains enhances ambipolar diffusion.
In molecular clouds, Grassi et al. (2019) showed that cosmic
rays can impact on the ionization level of the molecular gases,
thus modifying the importance of the ambipolar diffusion. Those
are a few examples of how the inclusion of proper physics is
essential to obtain a realistic outcome when addressing partially
ionized plasma. On the other hand, the computations including
partial ionization effects (albeit addressed from a single-fluid
approach, thus avoiding the complexity of multifluid equations;
see, e.g., Leake et al. 2012; Alvarez Laguna et al. 2016) are
very slow when they are solved through explicit methods, due
to the strong constraints with respect to the timestep. Accord-
ing to the Courant-Friedrichs-Lewy (CFL) criterion (Courant
et al. 1928), the maximum timestep, Atcpr, for the numerical
solution of parabolic (e.g., diffusion) problems using explicit
schemes decreases as the square of the spatial resolution Ax (i.e.,
Atcrr, o« Ax?/D, where D is the diffusion coefficient). Wherever
high spatial resolution is required, this quadratic dependence can
strongly limit the calculation speed in comparison with non-
diffusive MHD computations, whose At is linearly dependent on
Ax. As a consequence, high-resolution experiments of diffusion
problems are virtually impossible to perform explicitly. Differ-
ent strategies have been carried out to alleviate this problem.
For instance, Nakamura & Li (2008), Li et al. (2011), Masson
et al. (2012) use different thresholds to decrease the ambipolar
term to avoid strongly restrictive timesteps when needed. Other
authors, such as Mac Low et al. (1995), Mellon & Li (2009),
Leake & Arber (2006) adopt a sub-cycling method in which the
induction equation is evolved separately from the rest of MHD
equations when the timestep corresponding to the ambipolar dif-
fusion is smaller than the dynamical timestep. An extension of
this method is used by Martinez-Sykora et al. (2012, 2017a,b)
to also consider sub-cycling the evolution of the energy equation
because of the dissipation due to ambipolar diffusion. Another
technique is super time stepping (STS; Alexiades et al. 1996),
which allows the restrictive CFL criterion to be relaxed to speed
up the explicit calculation of parabolic problems. This technique
was shown to efficiently accelerate heat conduction calculations
(see also Meyer et al. 2012; Iijima & Yokoyama 2015), and since
then it has been extensively used in ambipolar diffusion contexts
(Choi et al. 2009; Commergon et al. 2011; Tomida et al. 2015;
Gressel et al. 2015; Gonzalez-Morales et al. 2018). The draw-
back is that the STS method has two free input parameters, so
it is necessary to carefully choose their values not only to opti-
mize the performance, but also to avoid the destabilization of the
scheme which may lead to meaningless results (for more details
about numerical approaches in partially ionized systems see the
recent review by Ballester et al. 2018).

The purpose of this paper is to introduce a numerical tool that
allows us to confront the numerical challenges due to ambipolar
diffusion in the solar atmosphere. To this end, we have developed
a new module in the Bifrost code (Gudiksen et al. 2011), taking
care, among other things, of the number of elements included
in the calculations and their ionization state. Due to the numer-
ical stiffness imposed by the ambipolar diffusion, its numerical
implementation must be efficient to be able to calculate complex
problems in which high resolution is mandatory.

The layout of this work is as follows. Section 2 details the rel-
evant equations of the Generalized Ohm’s Law to establish the
context for the subsequent parts of the paper. Section 3 describes
the implementation of the collision cross sections and frequen-
cies necessary to compute the ambipolar diffusion coefficient.
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Section 4 addresses the computation of the ionization state for
the ambipolar diffusion term when assuming local thermody-
namic equilibrium (LTE), or nonequilibrium (NEQ) ionization
and recombination of hydrogen and helium. In Sect. 5 we explain
the STS method, together with its implementation in the Bifrost
code. Section 6 contains the recipes of the hyperdiffusion terms
to guarantee stability for the code. Section 7 presents the valida-
tion test. Finally, Sect. 8 summarizes the main conclusions of the
present work.

2. Generalized Ohm’s law

The generalized Ohm’s law is a relation between the electric field
and the electric current that makes it possible to overcome the
difficulties of dealing with multifluid plasmas, such as extremely
high magnetic field mediated wave speeds, a large number of
equations, and stiff systems (e.g., Ballester et al. 2018, and refer-
ences therein). This is doable by using a one-fluid approximation
that requires a high level of (but not infinite) coupling between
neutrals and the charged species. In a reference frame locally
moving with a plasma element, it can be shown that this relation
is given by

(J' xB')x B’
B>

(J' x B')

E' =nJ" = 1amb UHallTa (1

where E’ is the electric field, B’ the magnetic field, and J’ the
current density all measured in that reference frame. The coeffi-
cient 77 is the standard ohmic diffusion given by

_ Me(Ven + Vei) |

2
"qu
the ambipolar diffusion coefficient, 17,mp, is defined as
(on/P)*B'2 .,
amb = ———— = B'|%; 3
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and the Hall coefficient ny,) is given by
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NMHall = ——— = nHa]]lB l. “4)

Here ¢. is the electron charge; n. the density number of elec-
trons; m, the electron mass; p, is the density of the neutral ele-
ment n; py the total neutral mass density (oy = Z,0n); o the total
mass density; ve, and v, the collision frequency of electrons with
neutrals and ions, respectively; and Vi is the reduced neutral-ion
collision frequency, which we explain in Sect. 3. It is important
to realize that to obtain Eq. (1), the relative velocity between
charged species is considered negligible, and similarly between
neutral species (see Zaqarashvili et al. 2011; Khomenko et al.
2014; Shelyag et al. 2016, among others). This is an assumption
that has been widely made in the literature to simplify the multi-
fluid equations to a single fluid equation, and it implies that the
collision times between charged species and the neutral-neutral
species must both be much smaller than the mixed charged-
neutral collision times, and that all of the foregoing must be
much smaller than the macroscopic timescales. On the other
hand, we note that the focus of this paper is on the ambipolar
diffusion term and its new implementation in the Bifrost code.
The implementation of the Hall term has been presented in the
papers by Martinez-Sykora et al. (2012, 2017b).
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2.1. Induction equation

We now discuss the laboratory reference frame where the plasma
element moves with a velocity u, and the electric field, the elec-
tric current and the magnetic field are given by E = E’ —u X B,
J = J’,and B = B’, respectively. Using Faraday’s induc-
tion equation and Eq. (1), we obtain a generalized induction
equation:

B

66_t =Vx[uxB—n;lau(JxB)+anb(J><B)><B—nJ] (®)]
This induction equation contains two additional terms in com-
parison to the one from the classic resistive MHD: one term pro-
portional to J X B associated with the Hall effect and another
term proportional to (J X B) X B associated with the ambipolar
diffusion. These terms cannot lead to changes in the magnetic
topology, and consequently neither produce magnetic reconnec-
tion. This can be seen if we define

UHal = _771*_1311] (6)
and
Uymb = UZmb(J X B) @)

for the Hall and ambipolar terms, respectively. With these
notations,

B

86_1‘ =Vx [(u + UHan +uamb)XB_77J]» 3
which means that the magnetic field is no longer frozen into
the plasma flow, but it is frozen into a pseudo-flow with speed
U + Uy, + Uamp. Even though these terms cannot lead to changes
in the magnetic topology, they can significantly change the
behavior of reconnection, for example by a rapid thinning of the
current sheet or an interplay with the plasmoid instability (see,
e.g., Huang et al. 2011; Ni et al. 2015); when 1 = 0, the topology
is preserved and there is no magnetic reconnection.

2.2. Energy equation

From basic electrodynamics, the power exerted by the electro-
magnetic field on the plasma is given by J’ - E’. Using the gen-
eralized Ohm’s law (Eq. (1)), in addition to the classic ohmic
dissipation nJ2, a new term appears that leads to an irreversible
entropy increase, i.e.,

Qamb = Tlambfi, (9)

where J, is the current component perpendicular to the mag-
netic field. This dissipation term is associated with the collisions
between neutrals and ions, hereafter referred to as ambipolar dif-
fusion heating. As a consequence, when taking ion-neutral inter-
action effects into account, a new entropy source has to be added
to the energy equation as

de
— ==V (eu) = PV-u+nJ* + NampJ: + Orad + Ospitzs

Ey (10)

where e is the internal energy per unit volume, P the gas pres-
sure, Or,q represents all the entropy sources due to radiation, and
Ospit, 1s the entropy source due to the thermal Spitzer conductiv-
ity. The Hall term does not cause any energy dissipation since it
is perpendicular to J.

3. Collision frequency and cross section

Collision frequency and cross section are important quantities
when determining the rate at which electrons and the different
ions and neutrals interact with each other. For this reason, we
have to take the state-of-the-art models and measurements of the
mentioned parameters into consideration.

3.1. Collision frequency

The reduced neutral-ion collision frequency, v, is given by
: 8KpT\'?
V:i = @ni m( 5 ) (11)
My Ty

where n; is the ion number density, Kz the Boltzmann constant,
T the temperature, and my; = mym;/(my,+m;) the reduced mass of
the neutral and ion species. In the solar atmosphere the most fre-
quent collisions are those of the most abundant elements, H and
He, with ions of other elements (Khomenko et al. 2014). There-
fore, we consider the following ion-neutral interactions: neutral
hydrogen (H) and helium (He) atoms colliding with singly ion-
ized ions of the 16 most important elements (either high abun-
dance or low ionization potential) in the Sun and electrons, as
well as neutral hydrogen molecules (H,) colliding with protons
(p) and electrons (e). Thus, the denominator of the ambipolar
diffusion coeflicient (Eq. (3)) in our case is

2, ZionVy = PHEVIL + Vit + PHeCiViie; + Vi)

+PH2(V1*{2,p + Vi) (12)

3.2. Cross section

The cross section for elastic scattering between a given neutral
and a charged particle, op;, is implemented through tables calcu-
lated on the basis of values given by different authors:

Neutral hydrogen atoms with protons (H-p). From 10 to
102 eV in the center of mass of the collision (Ecy), the cross
section values are based on quantum-mechanical indistinguisha-
bility calculations, additionally including charge transfer (see
Krsti¢ & Schultz 1999a; Glassgold et al. 2005; Vranjes & Kirstic
2013)'. In Fig. 1 we plot this cross section, as a solid red curve,
in the range Ecy = [~0.1, 100] eV, which corresponds to typ-
ical solar temperatures T = [10%,~10°1K (1eV = 11604K).
For comparison purposes, we have also plotted, as a dashed
red line, the constant cross section for collisions between neu-
tral hydrogen atoms and protons used by other authors such
as Khodachenko et al. (2004), Leake & Arber (2006), Soler
et al. (2009), Khomenko & Collados (2012), among others.
For temperatures below 10* K, the constant definition underesti-
mates, by approximately an order of magnitude, the temperature-
dependent cross section.

Neutral hydrogen atoms with electrons (H-e). The val-
ues are extracted from Vranjes & Krstic (2013) and references
therein. In Fig. 1, this cross section is shown as a pink line from
0.1to 10eV.

Neutral helium atoms with protons (He—p). The elastic scat-
tering cross sections are taken from Vranjes & Krstic (2013) and
shown in Fig. 1 as a yellow curve.

! For higher values of the energy Ecy, i.€., 10? to 10° eV, see Schultz
et al. (2008).
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Neutral helium atoms with singly ionized helium (He—He*).
The values are obtained from the second chapter of the book by
Franz (2009). In Fig. 1, this cross section is shown in blue from
~4to 100eV.

Neutral helium atoms with electrons (He—e). These val-
ues are extracted from Vranjes & Krstic (2013) and references
therein. In Fig. 1, this cross section is plotted in green from 0.1
to 10eV.

H> molecules with protons (Ho—p). This cross section is
based on the fully quantum-mechanical calculations by Krstic
& Schultz (1999b) and is shown in Fig. 1 as a black line.

H> molecules with electrons (H.—e). Values of this elastic
scattering cross section are extracted from a data base compiled
by Yoon et al. (2008) and shown in Fig. 1 as a gray line.

The collision cross sections for hydrogen (or helium) and
heavier elements are not well known, so we adopt the same
assumption as made by Vranjes et al. (2008): we take the cross
section between hydrogen (or helium) and protons multiplied by
m;/my (or m;/my.), where m; is the mass of the heavier element.

4. lonization state

The number of elements considered and their ionization states
are also crucial to properly determine the ambipolar diffusion
coefficient. For this reason, the module presented in this paper
has been developed to compute 7, in a consistent way with the
different existing available equation of state (EOS) modules in
the Bifrost code. We have set up two methods to calculate 7,mp
according to the EOS used: obtaining the ambipolar diffusion
coefficient through precomputed tabulated values, which is only
possible when using an EOS that assumes LTE (Sect. 4.1), or
getting the ambipolar diffusion coefficient on the fly, which is
mandatory for NEQ ionization and recombination calculations
(Sect. 4.2).

4.1. LTE

For LTE numerical experiments, Bifrost has an EOS based on
tables generated by the Uppsala Opacity Package (Gustafsson
et al. 1975), which computes instantaneous molecular dissoci-
ation equilibria and the LTE ionization balance of the 16 most
important elements: elements with a high abundance (greater
than 7 on a logarithmic scale) complemented with elements with
an abundance down to 5 but with low ionization potential, and
therefore important as electron donors at low temperatures (see
Gudiksen et al. 2011, for details). Table 1 shows the list of
those 16 elements together with the abundances, A, and atomic
mass. Abundances were kept at the original values of Gustafsson
et al. (1975) to ensure compatibility with simulations by Stein &
Nordlund (2000).

In order to tabulate the ambipolar diffusion coefficient, we
create a table for the nzmb coefficient, defined through Eq. (3),
which does not depend on the magnetic field, and can therefore
be given as a function of the density, p, and internal energy per
unit volume, e. When executing numerical experiments, inter-
polations are carried out to get the ambipolar diffusion coef-
ficient at the input energy and density. Figure 2 shows 7,
as a function of p and e from the EOS table with tempera-
ture isocontours superimposed. The zero-point for the excita-
tion/ionization/dissociation energy part of the internal energy
is arbitrary. We chose this energy to be 5eV for a completely
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Fig. 1. Elastic scattering cross section, o;, implemented in the Bifrost
code to calculate 7,,,. The different lines correspond to H—p collisions
including temperature dependency and charge exchange (solid red line),
H-e (pink), He—p (yellow), He-He™ (blue), He—e (green), H,—p (black),
and H,—e (gray). For comparison purposes, the constant o,; curve has
been added, corresponding to H—p collisions frequently used in the lit-
erature (dashed red line).

neutral gas with no molecules. This ensures a positive internal
energy even when all hydrogen is bound in molecular form.

We find that the ambipolar diffusion coefficient has a strong
dependence on the number of elements considered in the EOS.
In order to show this important fact, in Fig. 3 we compare 7, ,
as a function of p and T, obtained using modified versions of the
EOS of Bifrost. The figure shows the complete EOS of Bifrost
(panel A); an EOS only considering atoms of H, He, Na, Si,
Mg, K, and molecules of H, (panel B); an EOS just taking H,
H,, and He into account (panel C); and an EOS only includ-
ing atomic H (panel D). Comparing panels A and D, we see
that considering a pure hydrogen plasma leads to an overesti-
mation of the role of the ambipolar diffusion by several orders of
magnitude in the coolest temperatures. The reason is that as the
temperature decreases and hydrogen becomes neutral, the total
number of ions drops more quickly than when heavier elements
are present, resulting in larger values of the ambipolar diffusion
coeflficient. Assuming a pure hydrogen plasma also underesti-
mates the ambipolar diffusion above log(T) ~ 3.8, in this case
because as the temperature increases, hydrogen becomes ion-
ized leading to a lack of neutrals. Looking at panels A and C
now, it is clear that introducing helium helps obtain the correct
values of 7 . above log(T) ~ 3.8. Introducing molecules of
H, slightly modifies the behavior in the range of temperature
below log(T) ~ 3.4 (see the changes in the isocontours of the
color scale); however, the values of nzmb are still overestimated
in this regime due to the lack of the main electron donors. Panel
B shows that we can start to get the right order of magnitude of
the ambipolar diffusion coefficient once we introduce some of
the main electron donors in the chromosphere, such as sodium,
silicon, magnesium, and potassium.

4.2. NEQ

In the previous section we show that the inclusion of elements
heavier than hydrogen hugely impacts on the ambipolar diffusion
coefficient calculation. This is illustrated through different LTE
EOS; nonetheless, in the solar atmosphere, there are important
departures from ionization equilibrium (see the seminal papers
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Table 1. Abundances (A) (Gustafsson et al. 1975) and atomic mass (Z) for the 16 elements (El.) used in the EOS of Bifrost.

El. H He C N o Ne Na Mg Al Si S K Ca Cr Fe Ni
A 1200 11.00 855 793 877 851 6.18 748 640 755 721 505 633 547 750 5.08
Z 1.01 4.00 12.01 14.01 16.00 20.18 23.00 24.32 26.97 28.06 32.06 39.10 40.08 52.01 55.85 58.69
nt o (em? 672 57 4.2.2. NEQ of hydrogen and helium
107" 10° 10'° 10 The Bifrost code also has the capability of computing the NEQ
[ T i ionization and recombination of helium by means of a mod-

logyole (g cm™)]

13.2
logyale {dyn cm™)]

124 126 128 130 134 13.6

Fig. 2. Tabulated 7}, as a function of density, p, and internal energy per
unit volume, €. The values for € are shifted by 5eV to obtain a positive
internal energy when having hydrogen molecules (see main text). Tem-
perature isocontours are superimposed as dashed lines for (from left to
right) 3 x 103K, 6 x 10*°K, 10*K, 2 x 10*K, and 10° K.

by Klein et al. 1976, 1978; Kneer 1980; Carlsson & Stein 1992,
2002), mainly in the chromosphere and transition region (e.g.,
Bradshaw & Mason 2003; Bradshaw & Cargill 2006; Olluri et al.
2013, 2015; Martinez-Sykora et al. 2016; Nébrega-Siverio et al.
2018; Kerr et al. 2019; Rutten 2019). This means that it is not
only important to include all the relevant elements, but also to
obtain the ion and neutral number density for them through a
nonequilibrium ionization calculation. Moreover, it is crucial to
compute the ambipolar diffusion coefficient due to its strong
dependency on the number density of ions and neutrals. In the
following, the cases of nonequilibrium ionization of hydrogen
and helium are commented separately.

4.2.1. NEQ of hydrogen

The Bifrost code has a module available that calculates the ion-
ization and recombination of atomic hydrogen and the formation
and dissociation of molecular hydrogen, H,, under NEQ condi-
tions (see Leenaarts et al. 2007, 2011, for details about this mod-
ule). The ambipolar diffusion module presented in this paper can
take the atomic and molecular hydrogen number densities from
this NEQ module to compute the collision frequency (Eq. (11))
and the ambipolar diffusion coefficient (Eq. (3)), while the ion-
ization state of the rest of the elements is assumed in LTE. Using
the NEQ of hydrogen module together with the new ambipolar
diffusion module presented here, Nébrega-Siverio et al. (2020)
recently showed that the LTE assumption can lead to an impor-
tant underestimation of the ionization fraction in magnetic flux
emerging regions of up to 2-3 orders of magnitude. This means
that flux emergence experiments carried out under the LTE
assumption significantly overestimate the role of the ambipolar
diffusion.

ule developed by Golding et al. (2016). The NEQ ionization
and recombination of helium is important in the upper chromo-
sphere, where the helium ion fractions considerably depart from
their equilibrium values. This module always works together
with the NEQ module of hydrogen, so when running ambipo-
lar diffusion experiments, we take the atomic and molecular
hydrogen, and the atomic helium number densities from this
module to calculate vy and n,mp, while the rest of elements
are assumed in LTE. The combination of these modules largely
impacts the ambipolar diffusion distribution and changes the
ambipolar heating in comparison to computations under the LTE
assumption (Martinez-Sykora et al. 2020a), which can provide a
completely new interpretation of the observations in the chromo-
sphere (Martinez-Sykora et al. 2020b).

5. Super time stepping (STS) method

Super time stepping (STS; Alexiades et al. 1996) is a technique
that can be used to accelerate explicit parabolic calculations. It
is based on the stability properties of the Chebyshev polyno-
mials, which allow us to relax the CFL condition and take a
larger timestep, Afsts. The method uses two input parameters,
n, a positive integer, and v € (0, 1), which is a damping factor.
The timestep allowed by the STS method is then given by

2 _ (1 _ 2n
Atsrs = 2’\1/‘_/ 8 1 g;Zn N 8 — ﬁih} Atap crL, (13)
and is divided into n sub-timesteps 7; as
Atsts = > (14)
with -
T; = AtAD CFL [(v— l)cos(7$)+(v+ 1) B , (15)

where Afap crr is the timestep of the parabolic problem (in our
case, ambipolar diffusion) given by the classic CFL condition. It
is important to note that the intermediate values computed along
the n sub-timesteps have no approximating properties: it is only
after the whole Afsts has been reached that the results approxi-
mate the solution and, consequently, have a physical meaning.

The above expressions can be easily implemented to improve
the calculation efficiency of ambipolar diffusion experiments;
nevertheless, the drawback is that the STS is a first-order scheme
in time. In addition, the method has two free parameters, n and
v, and it is necessary to carefully choose their values to optimize
the performance while keeping numerical stability. The maxi-
mum ratio Atgts/AtcpL that can be reached for any given n cor-
responds to the following limit:

Atsts n [(1+ \/1_/)2" -(1- \/1_/)2'1 2
1m = |lim =n
v=0 Atapcr. v=0 24 | (1 + AW + (1 — A\

(16)
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Fig. 3. Tabulated 77, , as a function of the density, p, and temperature, T, for different EOS. Panel A: Complete EOS of Bifrost. Panel B: EOS only
considering atoms of H, He, Na, Si, Mg, K, and molecules of H,. Panel C: EOS taking only H, H,, and He into account. Panel D: EOS including

only atomic H.

In this limit, the CFL criterion would need n? steps to reach

one Atgrs, while the STS method requires just n, as explained
above (Eq. (15)). Assuming a similar computing load for each
step, whether in the STS or in the CFL-limited calculation, this
implies that the STS method would be n times faster than the
simple CFL-limited one. However, it is necessary to impose a
lower threshold for v because v = 0 is a stability limit, and choos-
ing low values of v can make the STS method very sensitive to
round-off errors (Alexiades et al. 1996). In the next subsection,
we explain our choices made for v and n.

5.1. Implementation of the STS method in the Bifrost code

In this section we show the STS implementation in the Bifrost
code and the choice of the n and v parameters. To this end,
we use an operator splitting scheme, which is a standard tech-
nique to advance in time the solution at each timestep separately
for groups of terms that contain different physics, hence with
different numerical requirements, while keeping codes modu-
lar. In our case, the induction and energy equations (Egs. (5)
and (10), respectively) are separated and solved over a timestep
At determined by the minimum of the two following values:
(1) the standard timestep given by the MHD and radiation terms
considered in the Bifrost code (see Gudiksen et al. 2011, for
further details); and (2) the timestep imposed by the ambipo-
lar and Hall term that appear in the generalized Ohm’s law from
Eq. (1). In particular, we take advantage of the operator split-
ting to solve separately the ambipolar diffusion term using, when
necessary, the STS method. In order to determine whether the
STS method can be efficiently applied, let us assume a system
in which

C eR*. a7
In this equation Atypp crr is the timestep given by the CFL cri-
terion for the standard MHD part, and Afap cpr is the timestep
for the ambipolar diffusion term. For any acceleration method
like the STS to be of interest, it is obviously necessary that
Atyup crL > AfapcrL (ie., C > 1).

Atyvp,crL = C AfapcrL,

5.2. Choice of the free parameters n and v

In the literature, even though STS has been broadly implemented
in various codes and physical processes (see Sect. 1), there is no
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thorough analysis of the choice of the n and v parameters, so the
use of the STS method is not precisely specified. We have inves-
tigated several properties of these STS free parameters. In the
following, we detail various aspects that should be considered:

1. Atsts should not be larger than the timestep imposed by
the general MHD and radiation terms (Afyup crL) since the time
advance of the system is limited by the minimum of all applica-
ble timestep conditions. Consequently,

Atap,crL < Atsts < Afvip,CFL- (13)
This condition can be rewritten using Egs. (13) and (17) as
L+ W) = (1 - ™
n_ [ V- - V) (19

L ar wEra - o

with v € (0,1) and C > 1. The above is the minimum require-
ment to apply the STS method. For n = 1 the function at the
center of the inequality is below 1 for all v > 0; therefore, since
n is an integer, Eq. (19) implies n > 2.

2. In addition, we tighten the lower bound of Egs. (18)
and (19) as follows: for the STS method to be computationally
advantageous, its n substeps must permit a greater advance in
time than n times the timestep Afap crr. Thus, in Eq. (18) we set
nAtap.crL < Atsts, so the lower bound of Eq. (19) becomes

_n (s - Y
2V [(1+ V2 + (1= oy

For simplicity, we have introduced the symbol f(n,v) for the
term on the right-hand side of the expression. It can be shown
that the constraint (20) imposes a maximum value for v. As
proof, in Fig. 4 we have plotted f(n,v) against n for different
values of v (dashed lines). In the image the solid red curve is
f(n,v) = n?, which corresponds to the limit of stability (v = 0).
The solid black curve is simply the straight f(n,v) = n that
allows us to identify which combinations of n and v verify the
above inequality. As seen in the figure, f(n,v) = n roughly
coincides with the curve v = 0.25. Through a limit analysis of

f(n,v)/n,
A B R e eV B
ne 24y [(1+ W2+ (1= )2t 24

we find that the constraint f(n,v)/n = 1 gives us an asymptotic
limit of v = 0.25, the maximum value of v that results from

= f(n,v) (20)

21
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Fig. 4. Plot showing f(n,v) vs. n for different values of v (dashed
curves). Solid lines represent f(n,v) = n® (red) and f(n,v) = n
(black).

the optimization constraint (20). In the code, to avoid working
with asymptotic limits, we use as the upper limit of v the value
obtained for the lowest possible n (i.e.,n=2):v < V5 —2.

3. There is also a strong constraint concerning the use of
large n. In principle it is mathematically possible to have any
value of n; nonetheless, numerically, large values of n can be
problematic. This is true because, during the n sub-cycling
shown in Eq. (15), the inner values obtained within the loop
do not have any physical meaning, as already mentioned, and
can reach very large values that compromise the accuracy of the
calculations due to the limited precision. There are three ways
to alleviate this problem: (a) increasing from single to double
precision, which allows calculations with larger values of n, but
increases the memory requirements; (b) introducing an elaborate
normalization, which helps to avoid Infinity or !NAN values, but
increases the number of operations and complicates its imple-
mentation; (c) imposing a strict maximum of n according to the
experience. The last is the solution we adopted; it requires some
testing to determine the valid n that will keep the simulations sta-
ble. We find that » starts to be problematic above approximately
12. In order to ensure greatest stability, we decided to impose
as a maximum n = 10. This, together with the previous con-
siderations, gives us the two following ranges we must fulfill:
0<v< Y5-2and2 < n < 10. In Fig. 5, the valid parameter-
space derived from these ranges is shown within the three solid
red lines of the image.

4. The final step to determine the optimum combination of
n and v can now be taken. The ideal situation would be to
reach Afypp crL in the minimum number of stable n steps with-
out compromising the accuracy of the solution. To this end, we
impose

Atsts = Atyup cFL (22)
which implies the following relationship between n and v:

1 2n _ 1= 2n
Fonv) = " L+ VW) == V™| _ c 23)

230 [(1+ VP + (1= oy

We could obtain the minimum number of substeps # in the limit
v — 0, so, from Eq. (16) and considering that n has to be an

integer, n = int( \/E). However, since v = 0 corresponds to the
limit of stability, we need to consider n > int( V). The first

option is to use n = \C + 1; nevertheless, the associated v could
still be small to affect our calculations by round-off errors as

g v=0.005[

] v=0.028[

] v=0.048

] v=0.069]

? 60__ I‘(n‘u)=n2 . e -
c ] L :
= 40 1 ",-— f(n=10‘p) i
V=0A1785

207 _—::-—-.- -emnti v=0.198

o f{n,y=5'7-2) i

? 4 6 8 10 12

n

Fig. 5. Plot showing f(n,v) versus n for different values of v (dashed
curves). Solid lines represent the boundaries of the parameter-space
considering the constraints described in the text related to optimization

and stability, namely f(n,v) = n?, f(n=10,v) and, f(n,v = \/§ -2).

Fig. 6. Two-dimensional map of C/n showing the combinations of n
and v that verify Eq. (23) for C > 4. In the image the horizontal dashed

lines indicate the values v = V5 — 2 (red) and the value of v for the
maximum n = 10 (v ~ 0.00185, black).

pointed out by Alexiades et al. (1996). For this reason, in our
STS calculations we impose
n=int(VC)+2 with C>4 (24)
For the cases when 2 < C < 4, instead of STS we apply the sub-
cycling method described by Martinez-Sykora et al. (2017b),
that is, only the induction and energy equation are evolved sep-
arately from the rest of MHD equations; when 1 < C < 2 we
follow the CFL criterion.

Having determined n, to apply the STS method, we can see
that for each n there is a limited range of values of v that satisfies
Eq. (23) for C > 4. This is illustrated in Fig. 6 through a 2D map
of C/n showing the range of v that satisfy that condition for each
n as a colored patch. The corresponding values of C/n are given
in the color bar. In the image, we overplot a red horizontal line to
delimitvy = V5— 2, and a black one that delineates the minimum
value of v for the maximum »n = 10 (v ~ 0.00185). We see that
with this implementation, we can speed up the calculations by a
factor 8. Using the criteria just indicated for the choice of the v
and n parameters, we can get the best performance, optimizing
the speed for the ambipolar diffusion calculations in the Bifrost
code.
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6. Hyperdiffusion

In order to maintain the stability of the code, we have imple-
mented hyperdiffusion terms related to the ambipolar diffusion.
The diffusive operator for the induction equation follows the
idea originally described by Galsgaard & Nordlund (1995) and
later implemented in the Bifrost code (Gudiksen et al. 2011)
and in its preexisting non-STS generalized Ohm’s law module
(Martinez-Sykora et al. 2017b). In the following, for brevity, we
only describe the hyperdiffusion operator for the induction equa-
tion in the x direction. Equivalent explanations can be given for
the other two directions.

OB, _ d[Ax 4y > annaf9B), ]
o —...+a—z>7(vx + vy +Vx)Q ox Jy_
08z 0y, o 0) 2B |
+ 72| 2 (vz +v7 + v )Q 2 Jy
O [Ax iy, @, )08
_B_yET(VX + Vv vy )Q E Jz
O [y, o, o) 008
- a_y »7 (V} + Vy + Vy ) Q ay z|» (25)

where Ax, Ay, and Az are the grid spacing in the x, y, and z direc-
tion, respectively; Q is a positive definite quenching factor (see
Galsgaard & Nordlund 1995; Gudiksen et al. 2011; Martinez-
Sykora et al. 2017b); and v(].l), v(l.z) , and v(;) are the three hyper-
diffusion terms in the x, y, or z direction that we describe in the
following.

—»Pisa hyperdiffusion term proportional to the ambipolar
diffusion coeflicient that damps waves with the shortest wave-
lengths, i.e., the largest wavenumber: the Nyquist wavenumber.
The term is
MO T

= VlnambA—j,

(26)
where VB is a dimensionless coefficient of order 1072

- v(l.z is a hyperdiffusion term related to the advective trans-
port of magnetic field attached to the charged species, or more
precisely to the electrons. It is defined as

e

, @7)

= V2|uamb,j|7

where v, is a dimensionless coefficient of order 1072. The Bifrost
code already has a hyperdiffusion term because of the advection
of the magnetic field with the velocity u, and for that reason
here we only need to consider the extra part due to ambipolar
diffusion.

~vWisa hyperdiffusion term related to magnetic shocks.
The magnetic field is only influenced by the perpendicular veloc-
ity field, so it is possible to adopt a hyperdiffusion term that
depends on the convergence of the velocity field. As in the pre-
vious term, Bifrost has already implemented a term for u,, so
here we only have to implement one for the ambipolar diffusion
velocity. Since this velocity field is already perpendicular, the

vf) term is
3 .
W = V3 AJIV - s,

(28)

where V is a first-order finite difference operator and v; a dimen-
sionless coefficient of order 1072,
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7. Validation test

After programming the STS following the parameter choice
described in Sect. 5 and explaining the hyperdiffusion terms in
Sect. 6, we need to verify that the STS is correctly implemented
in the Bifrost code. To that end, we performed a test that has
the advantage of allowing us to verify the method in 2.5D MHD
scenarios for different initial conditions. This is possible thanks
to the existence of a self-similar analytical solution (see Pattle
1959). In the following, we describe this analytical solution and
the goodness of our STS implementation.

7.1. Self-similar solution for ambipolar diffusion problems

The test we intend to carry out is based on the induction equa-
tion when only taking the ambipolar term into account, in other
words the pure ambipolar diffusion case. If we also assume that
the ambipolar coefficient 77}, is homogeneous, the induction
equation (Eq. (5)) becomes

OB .

E = nameX [(J XB)XB] (29)
In a 2D domain with polar coordinates, this equation becomes a
nonlinear diffusion equation when considering an axisymmetric
function for B. Pattle’s self-similar solution is of the form

o 1/3 2 2
B,(r,t 11— —— 30
W)_ﬁ@mgﬂ [ R%J G0
for r < R(t), and O otherwise, where
1/3
3[ . (@)
R (t) — 3 [4nambt(;) ] . (3D

Here @ is the magnetic flux, y is the symmetry axis, and r> =
(x — x9)> + (z — z0)*>. From these expressions it is clear that
By o t71/% and R o /5. The problem has the additional fea-
ture that any single-lobed initial condition with total flux @ is
expected to tend, asymptotically in time, to the shape given in
Egs. (30) and (31) (Zel’dovich & Raizer 1967). This is a robust
multidimensional test to check whether the STS method was
properly implemented in the code.

7.2. Numerical test

In order to test the STS method with that self-similar solution,
we create a 2.5D snapshot of 1024 x 1024 points. The physical
domain spans from -5.0 < x < 7.5Mm to —-5.0 < z < 7.5 Mm,
with a numerical resolution of Ax = Az = 12 km. In that domain,
we define as initial condition the following axisymmetric func-
tion for the magnetic field:

ByO(x’ ?) = Boe—[(x—x0)2+(z—zo)2]/wz , (32)
where By = 0.8 G, xo = 0Mm, zp = 0 Mm, and w = 0.5 Mm. The
rest of parameters are representative of the chromosphere: the
initial internal energy per unit volume is eg = 4 x 107> ergcm™3;
the initial density po = 10~ gcm™; and the ambipolar diffusion
coefficient is set to a constant, namely 7} . = 10" cm?s' G2
This initial condition does indeed converge to the self-similar
solution with the same integrated magnetic flux after an initial
transient phase. The results for the self-similar stage are shown
in Fig. 7. In the image the top panel illustrates the evolution
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Fig. 7. Results of the STS validation test for the self-similar solution.
Top panel: evolution of the maximum of the magnetic field with time
(black asterisks) and power-law fit (red line). Bottom panel: evolution

of X, with time (black asterisks) and power-law fit (red line). Above
each panel is shown the resulting fit formula.

of the maximum of the magnetic field with time through black
asterisks. The power-law fit to that curve is

B, =0.100 %32, (33)
and it is shown as a red curve in the figure. The exponent in
(33) agrees quite well with the predicted value, —1/3, shown in
Eq. (30). On the other hand, the bottom panel contains the evo-
lution of Xj, (one of the Cartesian components of R) with time
(black asterisks) and its power-law fit (red). The power-law fit
yields

Xy = —1.732 216 (34)
which again agrees with the expected value 1/6 from Eq. (31).
This tests indicates that our STS implementation is correct. In
addition, to ascertain the speed-up factor that we gain by means
of the STS, we ran the same test with the same number of CPUs
under the CFL criterion and also using the sub-cycling method
described by Martinez-Sykora et al. (2017b). The results show
that for this test, STS can lead to a speed-up factor of 8 and 4
with respect to the CFL and sub-cycling method, respectively.

8. Conclusions

In this paper, we described the implementation of a new mod-
ule in the Bifrost code to efficiently address ambipolar diffusion
problems in the solar atmosphere with the state-of-the-art micro-
physics, pursuing a fourfold purpose:

— We reviewed the existing literature to implement the most
accurate collision cross sections and frequencies, which are cru-
cial for proper calculation of the ambipolar diffusion coeffi-
cient. For instance, we considered the temperature-dependent
cross section of the collisions between hydrogen and protons
(Vranjes & Krstic 2013), which can be roughly one order of

magnitude larger than the constant value usually taken in the lit-
erature (e.g., Khodachenko et al. 2004; Leake & Arber 2006;
Soler et al. 2009) for temperatures below 10*K. In addition,
we included the cross sections of collisions with hydrogen
molecules that may be important in the coolest regions of the
Sun, such as sunspot umbrae, where estimations from observa-
tions reveal that there is a substantial H, molecule formation
present (Jaeggli et al. 2012).

— Through an analysis of the elements included in the EOS,
we showed that in the solar atmosphere it is necessary to include
heavier elements than hydrogen, primarily helium and the most
important electron donors, to properly estimate the role of the
ambipolar diffusion. Considering a pure hydrogen plasma can
lead to an overestimation of the ambipolar diffusion coefficient
by several orders of magnitude.

— Since the correct determination of the ionization fraction
is also relevant for the ambipolar diffusion calculation, we also
made this new module compatible with previous Bifrost modules
that compute the NEQ ionization and recombination of hydro-
gen and helium as well as the H, formation under NEQ con-
ditions (Leenaarts et al. 2011; Golding et al. 2016). This way,
we opened a new avenue to address partial ionization effects
together with departures of the ionization state from the LTE
in the solar atmosphere. In fact, NEQ ionization and recombi-
nation effects of hydrogen are shown to be key for the under-
standing of the ambipolar diffusion in magnetic flux emergence
processes in the Sun (Nébrega-Siverio et al. 2020). In addi-
tion, Martinez-Sykora et al. (2020a), combining the module pre-
sented in this paper together with the two above-mentioned NEQ
modules of hydrogen and helium, have shown the important
variations in the thermodynamics in the chromosphere and tran-
sition region with respect to calculations carried out assuming
LTE.

— We also implemented the STS method in the Bifrost code,
carrying out a thorough analysis of the choice of the two free
parameters of the STS method to obtain the best performance.
This choice allows us to speed up single-precision computations
including the ambipolar diffusion term up to a factor 8 in com-
parison with the same calculation run under the CFL criterion.
In addition, we described the hyperdiffusion terms that maintain
the stability of the code when ambipolar diffusion is taken into
account.

The numerical techniques presented in this paper may give
hints to address ambipolar diffusion problems in other astrophys-
ical systems.
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