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 A Constrained Metropolis-Hastings Robbins-Monro Algorithm for Q Matrix 

Estimation in DINA Models 

Abstract 

In diagnostic classification models (DCMs) the Q matrix encodes which attributes are 

required for each item. The Q matrix is usually predetermined by the researcher but may in 

practice be misspecified which yields incorrect statistical inference. Instead of using a 

predetermined Q matrix it is possible to estimate it simultaneously with the item and 

structural parameters of the DCM. Unfortunately, current methods are computationally 

intensive when there are many attributes and items. In addition, the identification constraints 

necessary for DCMs are not always enforced in the estimation algorithms which can lead to 

non-identified models being considered. We address these problems by simultaneously 

estimating the item, structural and Q matrix parameters of the Deterministic Input Noisy 

“And” gate model (DINA) using a constrained Metropolis-Hastings Robbins-Monro 

(cMHRM) algorithm. Simulations show that the new method is computationally efficient and 

can outperform previously proposed Bayesian Markov chain Monte-Carlo algorithms in 

terms of Q matrix recovery, and item and structural parameter estimation. We also illustrate 

our approach using Tatsuoka's fraction-subtraction data and Certificate of Proficiency in 

English data. 

Keywords: diagnostic classification models, Q matrix, stochastic algorithm 

Introduction 

 Diagnostic classification models (DCMs) for item responses, also called cognitive 

diagnostic models, have been developed to detect the presence or absence of multiple fine-

grained attributes. Areas of application have mainly been educational measurement (e.g., to 

infer whether specific math skills have been mastered by students) and psychiatry (e.g., to 

infer if a patient has specific mental problems). Several DCMs serve this diagnostic purpose, 

such as the Deterministic Input Noisy “And” gate model (DINA; Haertel, 1989; Junker & 

Sijtsma, 2001; Macready & Dayton, 1977), the Deterministic Input Noisy “Or” gate model 

(DINO; Templin & Henson, 2006) and the reduced Reparameterized Unified model (r-RUM; 

Hartz, 2002). General frameworks of DCMs that subsume the above models have been 
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developed via the log-linear cognitive diagnosis model (LCDM; Henson, Templin, & Willse, 

2009) and the generalized DINA model (G-DINA; de la Torre, 2011). Parameter estimation 

for DCMs has in previous studies mainly focused on marginal maximum likelihood 

implemented via the expectation maximization (EM) algorithm and Bayesian Markov chain 

Monte Carlo (MCMC) (for a review, see Rupp, Templin, & Henson, 2010, p. 250). Xu (2017) 

established a set of sufficient conditions for the identification of the above models. However, 

the Q matrix is typically assumed known and correctly specified. In practice, Q matrices may 

be misspecified which could lead to misleading classification of individuals and lack of fit to 

the data (Rupp & Templin, 2008; Wang, 2017). Estimating the Q matrix from data could 

provide information regarding the validity of expert-defined Q matrices. 

 Research on the identification and consistent estimation of Q matrices has recently been 

presented in the cognitive diagnostic literature (e.g., Chen, Liu, Xu, & Ying, 2015; Liu, Xu, 

& Ying, 2012; Xu & Shang, 2017). Liu, Xu, and Ying (2013) showed that the Q matrix is 

identifiable under certain conditions given that the guessing parameters of the DINA model 

are known. However, the values of the guessing parameters are usually unknown. Chen et al. 

(2015) further proved that the Q matrices of DINA and DINO models are identifiable given 

unknown item parameters and structural parameters under certain conditions. Xu and Shang 

(2017) extended the work of Chen et al. (2015) and established a set of identification results 

for various DCMs. Their theoretical results enhance the understanding of Q matrix estimation 

and can be used in any estimation procedure.  

Several studies have developed validation approaches to detect misspecified elements of 

Q matrices (e.g., de la Torre, 2008; de la Torre & Chiu, 2016; DeCarlo, 2012; Liu et al., 2012; 

Wang et al., 2018). Unfortunately, many of them do not or only partially address the 

estimation problem, rely on partial knowledge of Q, require provisional starting values of Q, 

need expensive computations, or depend on particular cutoff values. Furthermore, incorrect 

partial knowledge of the Q matrix could compromise the consistency of Q validation 

approaches (Liu, 2017). In this study, we propose a data-driven approach that mitigates the 

above problems.  

Data-driven approaches to estimating the Q matrix have been proposed previously. For 
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example, a method based on regularization that penalizes appropriate parameters to zero to 

identify the best model with a range of regularization values has been proposed (Chen et al., 

2015). A second approach is a Bayesian MCMC algorithm that uses either Metropolis or 

Gibbs sampling given appropriate identification (Chen, Culpepper, Chen, & Douglas, 2017). 

Chen et al. (2017) developed a Bayesian approach that respects the identification conditions 

for Q matrices developed by Chen et al. (2015). However, both approaches have 

disadvantages. The regularization approach does not directly impose the identification 

constraints on Q, relies on the EM algorithm and a regularization algorithm that is time-

consuming when using a wide range of regularization parameter values, and requires a two-

stage estimation procedure where Q must be estimated first and the remaining parameters are 

estimated given the estimated Q (Chen et al., 2015). Meanwhile, the MCMC algorithm (see 

Chen et al., 2017) performed unsatisfactorily regarding Q matrix recovery for the DINA 

model with large sample sizes (i.e., 2000 and 4000). Conversely, the regularization approach 

(Chen et al., 2015) performed badly for small sample sizes (e.g., 500). This prompted us to 

develop a new algorithm that is both computationally efficient and can simultaneously 

estimate the Q matrix, and item and structural parameters. 

 Inspired by the successful Metropolis-Hastings Robbins-Monro (MHRM) algorithm for 

item response models with multidimensional continuous latent variables (Cai, 2010), and the 

proposal distribution developed for the Q matrix in the MCMC algorithm (Chen et al., 2017), 

we propose a constrained Metropolis-Hastings Robbins-Monro (cMHRM) algorithm that 

enjoys the computational efficiency of the MHRM and can estimate the item and structural 

parameters and the Q matrix simultaneously without any prior knowledge of Q.  

   The basic idea of cMHRM is straightforward. First, we treat the binary latent attributes 

and the binary Q matrix as missing data (i.e., latent variables) and sample them by means of 

MCMC algorithms with appropriate model constraints. Second, the item parameters and 

structural parameters are estimated by maximum likelihood estimation (MLE) given the 

known missing data. Third, the Monte Carlo errors from the MCMC algorithm are averaged 

out by means of the Robbins-Monro (RM) algorithm (Robbins & Monro, 1951). Cai (2010) 

conducted a range of simulation studies for multidimensional item response models and 
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showed that the parameter recovery of MHRM was almost identical to the EM algorithm with 

numerical quadrature. However, MHRM is not directly applicable to DCMs and our new 

cMHRM is particularly designed for DCMs with unknown model parameters and an 

unknown Q matrix. In this study, we use the DINA model to illustrate use of the cMHRM 

algorithm. Importantly, we also demonstrate that existing Bayesian algorithms (including the 

cGibbs sampler proposed by Chen et al., 2017) require multiple sets of starting values to 

perform well.  

The outline of this article is as follows. First, the general DCM (GDCM) and the DINA 

model are introduced. Second, the identification conditions for Q matrix estimation are 

described. Third, the cMHRM algorithm is introduced and described in detail, and relevant 

issues pertaining to computation, standard error estimation, latent attribute estimation, and Q 

estimation, are summarized. Fourth, a series of Monte Carlo studies of parameter recovery 

are conducted. Fifth, we use cMHRM to analyze two datasets: (i) Tatsuoka’s fraction-

subtraction data and (ii) Examination for the Certificate of Proficiency in English data. 

Finally, we close the article with some concluding remarks.  

Model Formulation 

Let N denote the number of individuals, J denote the number of items, K denote the 

number of attributes, and yij denote the dichotomous responses in the N × J matrix for 

individual i and item j. With DCMs, there are binary attribute parameters of individuals 

1K ∈ (0, 1)K, item parameters , structural parameters , and a J × K Q matrix ∈ 

(0, 1)J × K that catalogs the binary attributes of items that are required for individuals to 

master. The Q matrix consists of binary elements (q1 ,…, qJ)
T, where (qj1 ,…, qjK) is the j-th 

row of Q.  

The GDCM can be formulated as 

      , 0 ' '' 12...
1 1 ' 1

Pr
jj j

j

KK K

j j jk jk k jk jk k k jk kj kk j K
k k k k k

f q q q q
   

              .  (1) 

Here, the j0 are intercept parameters, the jk represent the K attributes’ main effects, the j(kk’) 

represent two-way interactions between attributes, the remaining terms represent higher-order 
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interactions, f(.) is a link function, and Prj, is a user-defined item response probability for 

item j and latent attributes . The GDCM subsumes, for instance, the LCDM by specifying 

f(.) to be the logit function. The GDCM can subsume various DCMs as a special cases, for 

example the DINA and DINO models (Henson et al., 2009).  

DINA Model 

 The DINA model (Haertel, 1989; Junker & Sijtsma, 2001; Macready & Dayton, 1977) 

specifies a conjunctive relationship between latent attributes i and observed binary 

responses yij, which means that the probability of a correct response is high if all the required 

attributes have been mastered by individual i. Specifically, the probability of a correct 

response is  

      1

,Pr Pr 1| , , 1
ij ij

j ij ik j j j jY s g s g
 

     ,  (2) 

where sj is a slipping parameter and gj is a guessing parameter, and ij is a binary variable 

characterized by the conjunctive relationship  

 
1

jk

K
q

ij ik

k

   .  (3) 

The conjunctive relationship classifies examinees into two groups— one with examinees who 

have all the required attributes to answer item j correctly with high probability (i.e., 1– sj), 

and another containing examinees who do not have all the required attributes and can only 

answer item j correctly with low probability (i.e., gj). This conjunctive relationship can be 

compactly expressed as 𝛂 ≽ 𝒒𝑗 which means that α𝑘 ≥ 𝑞𝑗𝑘 for all k. Equation (3) also 

possesses the non-compensatory property that mastering part of the required attributes cannot 

compensate for other non-mastered attributes in probability. Junker and Sijtsma (2001) 

suggested to impose the constraint 0 ≤ gj < 1 – sj ≤ 1 to ensure monotonicity of the item 

response function.  

 The DINA model can be reparameterized as a GDCM by only retaining the intercept and 

highest order interaction parameters, and letting f(.) be the identity function: 

 
   

0 0

,
012... 12...

                      
Pr

j j

j j

j
jj K j K

  
    




if 𝛂 ⋡ 𝒒𝑗
if 𝛂 ≽ 𝒒𝑗

,  (4) 
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where j0 = gj is the guessing parameter, j(12…Kj) = 1 – sj is one minus the slipping parameter 

and β𝑗(12…𝐾𝑗)
> 0 to ensure monotonicity.  

In conventional applications of DCMs, the components of the Q matrix are assumed to 

be correctly specified by content experts and Q is thus fixed in parameter estimation. 

Allowing the elements of the Q matrix to be estimated is possible, but the required constraints 

on Q are usually not imposed.  

Identifiability of the Q Matrix  

 Chen et al. (2015) obtained necessary conditions for an identified Q matrix for the DINA 

model, given unknown item parameters, structural parameters and Q matrix components. 

Chen et al. (2017) summarized the identification conditions as follows: 

C1. There exists a J × J permutation matrix P, so the Q can be transformed as 

 
*

K

K

 
 


 
  

I

P IQ

Q

,  (5) 

where IK is a K × K identity matrix, Q* is a (J – 2K) × K matrix, and J – 2K ≥ 2.  

C2. Each attribute is measured by at least three items; namely we define the column margin 

such that Q
k

T
1j ≥ 3, where Q

k

T
 is the transposed k-th column of Q.  

C3. Each item loads onto at least one attribute; namely we define the row margin such that  

𝒒𝑗1j ≥ 1, where qj is the j-th row of Q.  

 Xu and Shang (2017) proved more general identifiability conditions for the LCDM 

which subsumes the DINA, r-RUM, and DINO models. They showed that C1 and the 

following condition are sufficient for identifying the Q matrix: 

C4. There exists at least one item in Q* such that the probability of a positive response to the 

item is different for individuals with attribute profiles  and 𝛂′, where 𝛂 ≠ 𝛂′ and 𝛂 ≽

𝛂′, where 𝛂 ≽ 𝛂′ means that α𝑘 ≥ α𝑘
′  for all k.  

Note that C3 should be respected in parameter estimation, because each item measures at 

least one attribute in practice. Under conditions C1, C3, and C4, the Q matrix and model 

parameters are identifiable. A condition that ensures this is using three identity submatrices in 

the Q matrix (Xu & Shang, 2017). If this is not easy to achieve in practice, Xu and Shang 
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(2017) alternatively suggest a more lenient condition with at least two ‘complete’ matrices 

(i.e., C1), where each attribute is measured by at least three items (i.e., C2), and each item is 

linked to at least one attribute (i.e., C3). This condition is identical to the condition proposed 

by Chen et al. (2015). In Xu and Shang’s (2017) simulation studies the Q matrix of the DINA 

model and the LCDM were well recovered under the more lenient condition when (1) sample 

sizes were 500, 1000, and 2000 for K = 3, and (2) sample sizes were 1000, and 2000 for K = 

4 and 5. Thus, we adhered to the lenient condition that satisfies C1, C2, and C3 for the DINA 

model in the subsequent simulation studies.  

Constrained Metropolis-Hastings Robbins-Monro (cMHRM) Algorithm  

We now formulate the likelihood function we intend to maximize and discuss some 

numerical problems that may be encountered. Given the observed responses y and a known 

Q, the marginal log-likelihood function of the unknown parameters of DCMs is in 

proportional form given by 

  
2

1 1 1

, , log Pr( | , , )

K JN

c ij c j j

i c j

l y
  

 
  

 
  ξ y ξ Q Q ,  (6) 

where  is the collection of all item parameters and where the structural parameter c ≡ Pr(i 

= c| ) represents the prior probability of latent attribute configuration c with ∑ π𝑐
𝐶
𝑐=1 = 1, 

0 ≤ π𝑐 ≤ 1. Letting Q be treated as an unknown latent variable, we note that Q resides in a 

binary parameter space, whereas  and  are in truncated continuous parameter spaces. 

Instead of resorting to mixed discrete-continuous optimization, we propose to marginalize 

over both  and Q. Thus, the marginal log-likelihood function is defined as 

    
2 2

( ) ( )

1 1 1 1

, log Pr Pr( | , , )

K JK JN

c b ij c j j b

i c b j

l y
   

 
  

 
   ξ y ξ Q Q ,  (7) 

where Pr(Q(b)) is the prior information for Q(b), where the identified elements have uniform 

mass whereas the nonidentified elements have zero mass. We have not yet imposed 

identification constraints on the parameter space of Q, but will address this issue when we 

discuss how to estimate Q matrices.  

 The marginal log-likelihood function will be maximized with respect to  and  to 
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obtain maximum likelihood estimates. However, the summation over  and Q is inside the 

logarithm function, which may lead to very slow computation in maximizing the marginal 

log-likelihood function (Bock & Lieberman, 1970). To circumvent the difficulty of directly 

maximizing l(, ; y), we use the EM algorithm (Dempster, Laird, & Rubin, 1977) to 

maximize a surrogate function: 

    
2 2

* old old

( ) ( )

1 1 1 1

, Pr , | , log log Pr( | , , )

K JKN J

c b i c ij c j j b

i c b j

Q y
   

 
   

 
 y ξ    Q Q . (8) 

This is proportional to a lower bound on l(, ; y), where old ∈ (old, old) is the collection of 

parameter estimates from the previous iteration in the EM. The posterior distribution of c 

and Q(b) is  

  

old old

( )

1old

( ) 2 2
old old

( )

1 1 1

Pr( | , , )

Pr , | ,

Pr( | , , )

K JK

J

c ij c j j b

j

c b i J

c ij c j j b

c b j

y

y



  









 

ξ

y

ξ



 



Q

Q

Q

.  (9) 

 The obvious difficulty in maximizing the Q* function is that computation becomes 

extremely expensive, even when J and K are small. For instance, for a test with J = 20 and K 

= 5, 25 × 220 × 5 calculations are required in the denominator of equation (9) per iteration. To 

address this challenge, the Q* function can be considered as a regular Monte Carlo 

integration problem (Wei & Tanner, 1990) and approximated by 

 

  old

( )

( )* old

, | ,
1 1

( )1 ( ) ( )

( )

1 1 1

, log log Pr( | , , )

log log Pr( | , , )

i c

i

m
i c

N J
I

ij i j j

i j

N M J
I m m

ij i j j b

i m j

Q E y

M y



 



  

 
   

 

 
   

 

 

  

y
ξ

ξ

 

 

 

  



Q
Q

Q

.  (10) 

Here M is a large number of Monte Carlo samples drawn from the posterior distribution of 

and Q, I(𝛂𝑖
(𝑚)

= 𝛂𝑐) is an indicator function equal to 1 if 𝛂𝑖
(𝑚)

 is equal to the attribute 

pattern in class c and otherwise 0. Cai (2010) proposed using the Metropolis-Hastings (MH) 

algorithm for item response models with multidimensional continuous latent variables. 

 Bayesian MCMC is promising for efficient sampling  and Q. However, the sample 

space of  and Q is binary and the identification constraints on Q have to be imposed when 

sampling the elements of Q. Therefore, we need a binary sampler for  that is unconditional 
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(i.e., having no sampling constraints) and a binary sampler for Q that respects identification 

constraints. 

In this study, we propose to use the modified MH sampler (Madigan, York, & Allard, 

1995) for sampling . This sampler has been shown to be more efficient than the Gibbs 

sampler (Liu, 1996) and has been used in Bayesian variable selection problems (George & 

McCulloch, 1997). Moreover, the modified MH sampler is straightforward to implement in 

practice. For sampling Q, we propose a constrained modified MH sampler which is closely 

related to the constrained Gibbs sampler proposed by Chen et al. (2017), as both respect the 

parameter constraints for Q. The basic idea of our cMHRM is similar to the original MHRM, 

except that we propose to use binary samplers for  and Q. Since it is based on the RM 

algorithm, we expect the convergence of cMHRM to be similar to the original MHRM (cf. 

Cai, 2010).  

The iterative scheme is outlined below. First of all, randomly initialize (0), Q(0), (0) , and 

(0). At iteration t, update the parameters by sampling as follows: 

(a). Update (t + 1) ~ Pr(| y, (t), (t), Q(t)). 

(b). Update Q(t + 1) ~ Pr(Q| y, (t + 1), (t), (t)). 

(c).  ( 1) * ( )arg max ,t tQ 


    using the RM algorithm. 

(d).  ( 1) * ( )arg max ,t tQ 


    using the RM algorithm. 

The following two steps contain the details of the cMHRM. 

Step 1: Stochastic Imputation 

Sampling Candidates of Latent Attributes 

 The modified MH sampler uses the following proposal distribution to sample a 

candidate (new): 

      
( new )( new ) 1

(new) ( ) ( ) ( )| 1t t tp f f f


        
    ,  (11) 

where the parameter of the Bernoulli distribution is defined as  

  ( ) ( )1t tf    ,  (12) 

which means that the current state at each iteration for each attribute is always proposed to 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



10 

change, (new) = 1 if (t) = 0 or (new) = 0 if (t) = 1. The generic MH algorithm constructs an 

acceptance probability function to determine whether a proposal value of (new) is accepted or 

not. Specifically,  

 

   

   

 
 

(new) ( ) ( ) ( ) ( ) (new)

( ) ( ) ( ) ( ) (new) ( )

(new) ( ) ( ) ( )

( ) ( ) ( ) ( )

Pr | , , , |
min ,1

Pr | , , , |

Pr | , , ,
min ,1

Pr | , , ,

t t t t

t t t t t

t t t

t t t t

p f
a

p f

        
      

  
  

  

y

y

y

y

 

 

 

 

Q

Q

Q

Q

,  (13) 

where the two proposal distributions have cancelled out due to their symmetry. The (new) is 

accepted (i.e., (t + 1) = (new)) when a ≥ U ~ Uniform(0, 1), otherwise it is rejected (i.e., (t + 1) 

= (t)). For examinee i, the corresponding posterior distribution of iis given by 

    ( ) ( ) ( ) ( ) ( )

1

Pr | , , , Pr( | , , ),  1,..., .i c

J
It t t t t

i ij i j

j

y i N




   y
 

    Q Q   (14) 

In the implementation, each element of an attribute vector is updated sequentially for 

each examinee. To accelerate the calculation, the kth element of the attributes can be updated 

simultaneously for all examinees by means of the assumption of local independence between 

examinees. Programming languages such as R and MATLAB are very efficient at vectorizing 

the calculations.  

Sampling Candidates of Q 

Chen et al. (2017) proposed a constrained Gibbs sampler to ensure the identification of 

the Q matrix and ensure that the Markov chain is irreducible. Their simulation studies 

showed that the constrained Gibbs sampler had better performance in recovering Q than other 

samplers in most of their simulation conditions. Here, we propose a new constrained version 

of the modified MH sampler which is similar to the constrained Gibbs sampler in that we 

adopt the same constraint step to ensure the identification of Q (see Step a) below). The 

elements of Q are sequentially updated. For the current iteration at time t, the procedure 

consists of two steps for j = 1, …, J, k = 1, …, K through the MH sampling: 

Step a): 𝑞𝑗𝑘
(𝑡)

 is a single element of Q for item j and attribute k that will not be updated if it is 

in one of the following three positions (Chen et al., 2017): (1) a 1 from the row 
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vector ejk, where ejk only has a 1 at k and others are 0; (2) a 1 from the column which 

has a column sum equal to 3; (3) a 0 from a row vector ejk when there exist only two 

such vectors in the current Q (e.g., ejk and ej*k for j ≠ j*), so that the constraint that at 

least two IK are in Q can be retained.   

Step b): Otherwise, 𝑞𝑗𝑘
(𝑡)

 can be updated to 0 or 1 according to the following procedure: a 

new candidate (i.e., 0 or 1) is sampled from a Bernoulli distribution with probability 

parameter equal to 

  ( ) ( )1t t

jk jkf q q  ,  (15) 

and the acceptance probability function is expressed as 

 
 
 

(new) ( ) ( 1) ( ) ( ) ( 1)

( ) ( ) ( 1) ( ) ( ) ( 1)

Pr | , , , , ,
min ,1

Pr | , , , , ,

t t t t t

jk jk jk

t t t t t t

jk jk jk

q
a

q

 

 

 

 

  
  

  

y

y

Q Q

Q Q

  

  
,  (16) 

where  

 
 

 

( ) ( ) ( 1) ( ) ( ) ( 1)

( ) ( ) ( 1) ( ) ( ) ( 1)

Pr | , , , , ,

Pr | , , , , ,

t t t t t t

jk jk jk

t t t t t t

jk jk jk

q

q

 

 

 

 

y

y

  

  

Q Q

Q Q
  (17) 

is proportional to the likelihood function, and the identified elements of Q have 

uniform prior distributions and nonidentified parameters have zero mass. 𝑸−𝑗𝑘
(𝑡)

 

denotes the elements of Q that have not been updated and 𝑸−𝑗𝑘
(𝑡+1)

 the elements that 

have been updated, excluding 𝑞𝑗𝑘
(𝑡)

. Then, 𝑞𝑗𝑘
(𝑡+1)

 is set equal to the new candidate if 

a ≥ U ~ Uniform(0, 1) and retained otherwise.  

Both the constrained MH sampler and the constrained Gibbs sampler are valid samplers. 

The only difference is that the former uses the modified MH sampler in Step b) (Madigan et 

al., 1995) which has been shown to be more efficient in exploring the binary sampling space 

than the Gibbs sampler (Liu, 1996). Both samplers use the same Step a) in order to respect 

the constraints for identifying Q. Using either the Gibbs sampler or the MH sampler will 

respect the constraints of Q as shown in Step a). Therefore, identification of Q (including C1, 

C2, and C3) holds and the Markov chain is irreducible (cf. Chen et al., 2017) for the 

constrained modified MH sampler as well as the Gibbs sampler.  

Step 2: Stochastic Approximation 
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 Given the samples of (t + 1) and Q(t + 1) from Step 1, maximizing the empirical average 

Q*(, old) with respect to  and  uses standard maximum likelihood estimation. The 

gradient vector and Hessian matrix are obtained by taking the first and second-order 

derivatives of Q*(, old) with respect to  and , which are used to find stationary points in 

iteration t. However, the gradient and Hessian matrix are error-corrupted due to the Monte 

Carlo error from Step 1 and the RM algorithm is therefore applied to average out the errors 

(Cai, 2010; Gu & Kong, 1998).  

As implied by Equation (10),  and  can be estimated in turn. First, the structural 

parameter vector  can be estimated by the RM algorithm and the update is given by 

 
( 1, )

( 1) ( ) 1 ( )

1

tM t m
t t tc

t t

m

x
g M

N


 



 
   

 
   ,  (18) 

where 𝑥𝑐
(𝑡+1,𝑚)

 denotes the number of individuals of attribute pattern c in class c for the 

mth sample at iteration t + 1, 𝑥𝑐
(𝑡+1,𝑚)

𝑁⁄  is equal to the maximum likelihood estimates of 

the multinomial distribution of 𝑥𝑐
(𝑡+1,𝑚)

, and gt is the gain constant defined as 

 
2

1 1

(0,  1],    ,    and   t t t

t t

g g g
 

 

      .  (19) 

This approach has been applied to estimating latent regression models (von Davier & 

Sinharay, 2010).  

Next, the estimation of item parameters (i.e., ) follows previous studies (Cai, 2010; Gu 

& Kong, 1998) where the gradients are approximated by the average of the M sets of 

gradients of the MH samples 

  1 ( )

1

1

|
tM

t

t t

m

M s





 s y ,  (20) 

where  

  ( ) ( 1, ) ( ) ( 1, )| log Pr( | , , )t t m t t ms  



y y  


Q .  (21) 

The Hessian matrix is recursively approximated by 

  1 ( )

1

1

|
tM

t

t t t t t

m

g M H





 
   

 
Γ Γ y  ,  (22) 
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where 

  
2

( ) ( 1, ) ( ) ( 1, )| log Pr( | , , )
'

t t m t t mH  

 

y y  
 

Q ,  (23) 

and Γ0 for t = 0 is an initialized positive-definite matrix. Finally, the parameters, (t), are 

updated by the RM algorithm: 

  ( 1) ( ) 1

1 1

t t

t t tg 

   Γ s  .  (24) 

Steps 1 and 2 constitute a cycle of cMHRM. Note that the estimation order of  and  may be 

interchanged, but the order does not affect the results according to our experiments.  

Configuration of the cMHRM 

In the early stage of iterations, the gt should not decrease too fast since the starting values are 

usually far from the optimal solution. Typically, a three-stage procedure is implemented as 

suggested by Yang and Cai (2014). First, gt is set equal to 1 to move the current estimates 

quickly to the vicinity of stationary points (Cai, 2010; Diebolt & Ip, 1996). Second, the gt 

remains equal to 1 and several iterations are run to obtain an average of the estimates. Finally, 

averaged estimates are used as starting values and the gt gradually decreases. The lengths of 

stage 1 and 2 were set at 50 and 100, respectively, which was shown to be sufficient in our 

subsequent Monte Carlo studies. In this study, gt = 1/t is used, the burn-in period of the MH 

samplers is set at 5, and the sample size of the MH samplers was set at 5 (i.e., M = 5) which 

appeared to be sufficient. Iteration of the cMHRM is terminated if the difference in all 

parameter estimates across three successive iterations is less than .0001 (Cai, 2010). 

A Note on Some Computational Issues 

 First, calculating the number of examinees in each attribute pattern (i.e., xc) efficiently is 

desirable. The bijection method was used (Chen et al., 2017; von Davier, 2014) where the 

basic idea is to first transform the  matrix into an index vector that records the index of the 

attribute patterns. The calculation is , where  = [2K – 1, 2K – 2, …, 1] is a mapping vector. 

Next, the index vector is tabulated to obtain the number of examinees in each attribute 

pattern.  

Second, zero cell counts of 𝑥𝑐
(𝑡,𝑚)

 for the mth sample at iteration t may occur when the 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://zh.wikipedia.org/wiki/%CE%93


14 

number of the MH samples is small (e.g., M = 1). When this occurs, the future estimates are 

likely to be stuck in “absorbing states” where the class probability estimate is equal to zero 

and the corresponding log(c = 0) = – ∞ (DeCarlo, 2011). Increasing M does not necessarily 

remedy this problem. A possible solution is to employ a prior Dirichlet distribution for c to 

smooth the cell counts. It follows that the posterior distribution of c is also a Dirichlet, 

   1

1

Pr | , c c

C
x a

c c c c

c

x a
 



   ,  (25) 

where ac is a concentration parameter for class c. For simplicity, we used the expected a 

posteriori (EAP) estimator, π̂𝑐
(EAP)

= (𝑥𝑐 + 𝑎𝑐) ∑ (𝑥𝑐 + 𝑎𝑐)
𝐶
𝑐=1⁄ , if there are any zero cell 

counts (Agresti & Hitchcock, 2005), otherwise π̂𝑐
(MLE)

 is used. Note that the above 

procedure is used only for Stage 1 and 2 of cMHRM. For the final stage, only the maximum 

likelihood estimates are used because the RM algorithm is applied and the estimates 

gradually approach a stationary point. We set ac = 1/C (Perks, 1947), which was found 

effective in the subsequent Monte Carlo studies.  

Standard Error Estimation 

There are two approaches to obtain the observed information matrix of the marginal log-

likelihood function. Recursively approximated standard errors are obtained by approximating 

the information matrix by Louis’ (1982) formula: 

 

 
 

    
   

2

ˆ, | ,

T

ˆ, | ,

T

ˆ ˆ, | , , | ,

ˆ |
ˆ |

ˆ ˆ| |

ˆ ˆ| |

l
E H

E s s

E s E s

 
    
 

   
 

    
    

y

y

y y

y
y

y y

y y

Q

Q

Q Q

 

 

   

  (26) 

where  ∈ (, ). The gradient vector and Hessian matrix are by-products of cMHRM. The 

Monte Carlo version of Louis’ formula sometimes produces a non-positive definite 

information matrix due to an unsmooth likelihood surface. Post-convergence approximated 

standard errors (Yang and Cai, 2014) utilize Louis’ formula directly. A set of Monte Carlo 

samples are drawn after convergence and then these samples are used to approximate the 

gradients and Hessian matrix. This approach was shown to be more stable for complex 
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models than the first approach (Yang & Cai, 2014) and was therefore adopted here.  

Latent Attribute Estimation 

When cMHRM has converged, the examinees’ latent attribute estimates can be obtained by 

expected a posteriori estimation. A set of Monte Carlo samples of  are drawn and the 

proportions of each  are calculated.  is set to 1 if the corresponding proportion is larger 

than 0.5, otherwise to 0 (George, Robitzsch, Kiefer, Groß, & Ünlü, 2016).  

Q Matrix Estimation 

The mode of the samples of Q is taken as the maximum a posteriori estimator to avoid the 

problem of column permutations (Chen et al., 2017). First, a set of Monte Carlo samples of Q 

is drawn after convergence. Then, the bijection method is used to efficiently find the mode. 

Define the mapping vector T = [2J – 1, 2J – 2, …, 1] for a column vector of Q.  With the 

mapping vector, an index vector for all column vectors of Q can be obtained by calculating 

TQ. Next, to eliminate the problem of column permutations, the elements of each index 

vector are arranged in decreasing order. Finally, the occurrences of each unique vector in the 

Q samples are counted and the vector appearing most often (corresponding to the mode of Q) 

is taken as the estimate of the Q matrix.  

Monte Carlo Simulations 

The primary goal of the simulations is to investigate the recovery of item parameters and the 

Q matrix in plausible situations. The performance of cMHRM is compared with the 

constrained Gibbs sampler (cGibbs) of Chen et al. (2017), because cGibbs is also a data-

driven approach that can simultaneously estimate the high-dimensional attributes and Q, and 

appeared to perform best in most of their simulation conditions. Moreover, an 

implementation of cGibbs in C++ is available from the supplementary material of Chen et al. 

(2017).  

Design 

 For comparison purposes, our simulation design resembled that of Chen et al. (2017) 

who indicated that the performance of Bayesian estimators (including cGibbs) was sensitive 

to the sample size and the number of attributes. Thus, sample sizes were set to 500 and 4000, 

and the number of attributes were 3, 4, and 5. Two Q matrices with K = 3 and K = 4 from 
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Chen et al. (2017) and one Q matrix with K = 5 from de la Torre and Douglas (2004) were 

used (see Appendix A for details). Note that all three Q matrices satisfy the aforementioned 

identification constraints.  

The DINA model was used to generate data with gj = sj = 0.2 for each item j (Culpepper, 

2015). The correlation between attributes, , was set to 0 and .25, respectively. For  = 0, a 

uniform distribution with equal class probabilities was used. For  = .25, the  were 

characterized by the underlying continuous random vector  with a multivariate normal 

distribution with zero means and equal correlations. The entries in  were generated by 

 
1     if 0

,     1,...,
0      otherwise

k

k k K
 

  


.  (27) 

The posterior distribution tends to be highly multi-modal due to the large Q and attribute 

matrices. If there is no prior information regarding Q, using multiple starting values for Q is 

suggested (Chen et al., 2015; Sun et al., 2016). Then, starting values for attributes and item 

parameters can be generated via observed scores based on the starting values of Q (see Rupp 

et al., 2010, p. 252). We ran cMHRM with several sets of starting values, and selected the set 

that led to the maximum log-likelihood value. Twenty sets of starting values were randomly 

generated, which appeared to be sufficient in these simulations. For these starting values, M 

was changed to 1 and thus the estimates were very likely perturbed by Monte Carlo errors. 

We found that the perturbation tends to push cMHRM away from local maxima. In practice, 

it is efficient to run a short warm up period first (e.g., 50 iterations) for each set of starting 

values and then proceed with the set that produces a maximum log-likelihood value, 

calculated as the average of the last 20 iterations. M was then changed back to 5 for the 

selected set of starting values to stabilize the final estimation. This approach was found 

effective in that cMHRM usually approaches the neighborhood of a stationary point quickly 

within a few iterations (cf. Cai, 2010).  

Regarding cGibbs, Chen et al. (2017) did not explicitly state how many sets of starting 

values they used. Our simulation results (see Results section) suggest that they ran cGibbs 

with a single set of starting values (denoted as cGibbs1). The burn-in length of cGibbs was 
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set to 15,000, followed by 30,000 samples for cGibbs1 (Chen et al., 2017). We further 

considered multiple starting values, using twenty sets of starting values (denoted as 

cGibbs20). To make computation feasible for cGibbs20, we used a 5,000 burn-in length, 

followed by drawing 5,000 samples, for each set of starting values. Because MCMC is a 

sampling method rather than a pointwise estimation method, we selected the set that 

produced the lowest Watanabe-Akaike information criterion (WAIC; Gelman, Hwang, & 

Vehtari, 2014; Watanabe, 2010). Next, we used the obtained parameter estimates as starting 

values to run cGibbs again to draw 10,000 samples. Finally, the drawn samples were 

averaged to obtain parameter estimates.  

The number of replications was 100 and the simulated data for each replication were 

analyzed by cMHRM and cGibbs. The set-up for cMHRM was the same as described 

previously. For the Q matrix estimator, the full recovery rate (the percentage of replications 

where all elements of Q were recovered) and the entry-wise average rate were calculated. The 

criteria to assess parameter recovery were the bias (𝑅−1∑ (ζ̂𝑟 − ζ)𝑅
𝑟=1 ) and the root-mean-

squared error (RMSE; √𝑅−1∑ (ζ̂𝑟 − ζ)
2𝑅

𝑟=1 ), where ζ̂𝑟 is the estimator, ζ is the true 

parameter, and R is the number of replications. Note that the ‘true’ parameter given  > 0 

was not fixed in the 100 replications. We simulated 10,000 sets of attributes by Equation (27) 

and recorded the value of . Finally, the average of all the simulated  was regarded as our 

estimate of the ‘true’ value. Also note that Chen et al. (2017) only reported the mean squared 

errors (i.e., squared RMSE) of item parameter estimators (see their Figure 1 and 2) and did 

not consider the performance of structural parameter estimators and N = 4000.  

Results 

 Table 1 reports the full recovery rate and entry-wise average rate for cGibbs1, cGibbs20, 

and cMHRM. For N = 500, the full recovery rates were similar for cMHRM and cGibbs20 

and were better than cGibbs1 in some cases. cMHRM and cGibbs20 performed better than or 

equal to cGibbs1 regarding entry-wise average rates. Notably, cMHRM and cGibbs20 

performed equally well, suggesting that multiple starting values are beneficial for both 

methods. All algorithms tended to perform worse as K increased for N = 500, which might be 
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because the item response information became insufficient when the number of estimated 

elements of Q increased. Correlated attributes did not appear to affect the Q estimators. As 

the sample size increased to N =4000, cGibbs1 became inaccurate in most cases. For I = 18, 

cGibbs1 performed worse as K increased from 3 to 4, which is consistent with the results in 

Chen et al. (2017). In contrast, cMHRM and cGibbs20 were 100% accurate in all cases. It is 

evident that cMHRM and cGibbs20 were accurate for both large and small sample sizes for 

our simulation conditions.  

<Table 1 here> 

 Regarding item parameter recovery, we present results for three conditions for 

illustration purposes. For the first condition (K = 3 and N = 500, and  = .25) the three 

methods performed equally well and were 100% accurate in recovering Q; the second 

condition (K = 5 and N = 500, and  = 0) yielded the lowest accuracy (94%) for cMHRM and 

cGibbs20 among all conditions; for the third condition (K = 4 and N = 4000, and  = 0) 

cGibbs1 had the lowest accuracy (57%). Figure 1 shows that the three methods have similar 

bias and RMSE for guessing and slipping estimators for the first condition. In addition, 

cMHRM and cGibbs20 yielded similar bias and RMSE for the class probability estimator, 

whereas cGibbs1 had slightly larger RMSE.  

<Figure 1 here> 

 Figure 2 shows that cMHRM and cGibbs20 produced similar results for the guessing 

parameter and class probability for the second condition. However, cGibbs1 tended to yield 

upward bias for the slipping parameter as the number of required attributes increased. In 

contrast, cMHRM and cGibbs20 produced bias much closer to zero for most of the items.  

<Figure 2 here> 

 Figure 3 shows that cGibbs1 was biased for most of the parameters for the third 

condition, likely a result of the inaccurate recovery of the Q matrix. cMHRM and cGibbs20, 

on the other hand, yielded biases close to zero and considerably lower RMSEs than cGibbs1. 

For the other simulation conditions the bias and RMSE are given in Appendix B for 

completeness. In general, we see that cMHRM and cGibbs20 performed better than cGibbs1. 

<Figure 3 here> 
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The absolute computational efficiency for cMHRM (coded in R) and cGibbs (coded in 

C++) was compared based on the elapsed CPU time on a computer with 8 GB RAM, 3.40 

GHz Intel Core processor, and 64-bit OS. The results are shown in Table 2 where we note that 

correlated attributes did not impact the CPU time.  

<Table 2 here> 

We see that cMHRM is somewhat faster than cGibbs1 for most conditions and considerably 

faster than cGibbs20 for all conditions examined. 

Relative computational efficiency can be assessed by the ratio of the elapsed CPU time 

when increasing N or K. For all comparisons regarding an increase in the sample size N from 

500 to 4000, cMHRM had superior efficiency. For example, the computational burden 

increased 8.06 times for cGibbs20 when N changed from 500 to 4000 for K = 5, whereas it 

only increased about 5.42 times for cMHRM. With respect to increasing the number of 

attributes, cGibbs20 was more efficient for an increase of K from 3 to 4 but cMHRM was 

more efficient for an increase of K from 4 to 5. For example, cGibbs20 and cMHRM 

increased the computational burden 2.23 times and 1.71 times, respectively, when K 

increased from 4 to 5 for N = 500.  

In conclusion, cMHRM seems to be considerably more computationally efficient than 

cGibbs20.  

Other Simulation Conditions 

Further simulation conditions were investigated to address two issues that were not 

considered above— (a) using only one set of starting values for Q and (b) using a large K.  

The first condition investigated the effect on Q matrix recovery when only one set of 

starting values for Q is used for cMHRM. We considered randomly generated starting values 

when no prior knowledge regarding Q is available and investigated this issue under the 

previous condition with K = 5, N = 500,  = 0, and I = 30. The full recovery rate and entry-

wise average recovery rate for cMHRM were 75 and 94, respectively, which were inferior to 

recovery rates of 94 and 99.96, respectively, when multiple starting values were used. Note 

that cMHRM is a pointwise algorithm that can only achieve local maxima and cMHRM with 

one set of random starting values is therefore not recommended in practice.  
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The second condition is concerned with the computational efficiency of cMHRM and 

cGibbs20 when the dimension of the binary sampling space becomes large. We considered 

the Q matrix from TIMSS 2011 Mathematics for 4th Grade Austrian Students for the purpose 

of this simulation (see data.timss11.G4.AUT$q.matrix1, George et al., 2016). The original Q 

matrix has 174 items and 9 attributes, and each item solely measures one of the 9 attributes. 

Because cGibbs20 was very slow for K = 9, we chose 27 items out of the 174 items to form a 

reduced Q where each attribute was measured by three items. We simulated data based on the 

DINA model with gj = sj = 0.2 for each item,  = 0, and N = 1,000. As the binary space is 

very large for K = 9, we considered two situations— 1) where starting values for Q were 

randomly generated, and 2) where approximately 2/3 of the entries of the starting values for 

Q were correctly specified.  

The average CPU time (in minutes) for one replication was 1524 and 67 for cGibbs20 

and cMHRM, respectively, showing that cGibbs20 required much more computation time 

than cMHRM when K was as large as 9. Regarding the full recovery rate and entry-wise 

average recovery rate when starting values for Q were randomly drawn, cGibbs20 yielded 9 

and 89, whereas cMHRM yielded 11 and 88. In contrast, when using informative starting 

values for Q, both algorithms produced 100% accuracy for the full and entry-wise average 

recovery rates. The results suggest that randomly drawn starting values for Q did not perform 

well, likely because of the high-dimensional binary space of Q.  

Examples 

Fraction-Subtraction Data 

We consider Tatsuoka’s fraction-subtraction data (Tatsuoka, 2002; Tatsuoka, 1984) and 

apply cMHRM to estimate the Q matrix and item and structural parameters of the DINA 

model. This dataset has been widely used for demonstration purposes (e.g., Chen et al., 2017; 

Chen et al., 2015; de la Torre, 2008; de la Torre & Douglas, 2004; DeCarlo, 2011) and we 

have for this reason used it to compare cMHRM with cGibbs1. The dataset comprises 536 

middle school students responding to 20 items (coded as correct = 1 and incorrect = 0). The 

full dataset and Q matrix are available in the CDM package in R (see 

fraction.subtraction.data, George et al., 2016).  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



21 

     The original expert-derived Q matrix consists of eight skills (K = 8) that students have 

to master: (1) convert a whole number to a fraction, (2) separate a whole number from a 

fraction, (3) simplify before subtraction, (4) find a common denominator, (5) borrow from the 

whole number part, (6) column borrow to subtract the second numerator from the first, (7) 

subtract numerators, and (8) reduce answers to the simplest form. Chen et al. (2017) indicated 

that eight attributes might be too many for 20 items, because several attributes are required at 

the same time (e.g., Attribute 7) that could lead to lack of identification. Therefore, K = 3 and 

K = 4 were considered here and the Q matrix was assumed unknown and estimated from the 

data (Chen et al., 2017; Chen et al., 2015). After convergence of cMHRM, 100,000 samples 

of  and Q were drawn given fixed item and structural parameters and the posterior mode of 

samples of Q was used as the estimate of Q. Concurrently, 100,000 samples were drawn to 

calculate the log-likelihood and standard error estimates of item and structural parameters.  

 Table 3 shows the estimated Q matrix, guessing and slipping parameters, and standard 

errors of guessing and slipping estimators for K = 3 and K = 4. The results for cGibbs20 and 

cMHRM were identical. For K = 3, none of the Geweke (1992) statistics for continuous 

parameters were significant at the 5% level for cGibbs20, suggesting that there were no 

convergence problems. Compared to Table 3 of Chen et al. (2017) when K = 3 (see their 

‘MH’ column with results identical to cGibbs1) the entries of the estimated Q were the same 

except for the third attribute of Item 7 (denoted by an asterisk). The interpretation of the 

estimated Q given by Chen et al. (2017) was: (1) finding a common denominator, (2) 

borrowing from the integer part, and (3) applying subtraction for integer and fraction parts 

separately. In our estimated 𝑸, Item 7, (3 − 2
1

5
), seemed to only require the first attribute for 

the examinees. The estimates of guessing and slipping parameters were very close to each 

other. The standard error estimates were generally lower than 0.04. We may compare our 

estimated Q with that of cGibbs1 in terms of model-data fit. First, we fixed the two Q 

matrices and ran cMHRM. Next, the model with the higher log-likelihood was considered the 

better model, because the two models had the same number of parameters. Our model yielded 

–4519.2 and their model –4519.4, which is a small difference. In the context of DCMs, 
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George & Robitzsch (2015) suggested to assess absolute model fit by using a standardized 

root mean square residual (SRMSR; Maydeu-Olivares, 2013) smaller than 0.05 to indicate a 

well-fitting model. The SRMSR was .086 and .091 for cGibbs1 and cMHRM, respectively, 

indicating that neither model has reasonable absolute model fit.  

<Table 3 here> 

 Our estimated Q matrix was identical to that from cGibbs20 for K = 4. Again, none of 

the Geweke statistics were significant for cGibbs20, suggesting that there were no 

convergence problems for this algorithm. Comparing our estimated Q to cGibbs1 (see the 

‘MH’ column of Table 4 in Chen et al., 2017), the first two attributes were identical for all 

items. However, there were two items that were different for the third attribute and three 

items that were different for the fourth attribute. In addition, the interpretation of the 

estimated attributes requires post hoc reasoning, which seems to be demanding in this case. 

Domain experts may interpret the results together with test constructors to confirm the 

elements of the estimated Q. Our item parameter estimates were close to those of Chen et al. 

(2017). By fixing the estimated Q of Table 2 and the estimated Q of Chen et al. (2017), we 

calculated the log-likelihood. Our model yielded –4414.7 and their model –4474.9 (cGibbs1), 

suggesting that the fit of our model was superior to theirs. cMHRM yielded a SRMSR of .077 

and cGibbs1 a SRMSR of .081, suggesting that the DINA model does not have a good 

absolute fit to these data.  

 In addition to model fit (e.g., SRMSR), we assessed item fit by using the so-called item-

fit root mean square error of approximation (item-fit RMSEA; Kunina-Habenicht, Rupp, & 

Wilhelm, 2009; von Davier, 2005) and the S-X2 statistic (Orlando & Thissen, 2000). For 

item-fit RMSEA, < .05 represents good fit, < .10 moderate fit, and > .10 poor fit, according to 

Kunina-Habenicht, Rupp, and Wilhelm (2009). For K = 3, eight items had at least moderate 

fit using the item-fit RMSEA, whereas the other items did not fit well. The S-X2 statistics 

suggested that nine of the items had reasonable fit (p-value > .05). Three of the items fit well 

according to both criteria. For K = 4, five items had at least moderate fit according to the 

item-fit RMSEA, whereas the S-X2 statistics suggest that 13 of the items fit well (p-value 

> .05). Four items fit reasonably well by both criteria. In general, the DINA model did not fit 
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the data well. 

Examination for the Certificate of Proficiency in English Data 

The Examination for the Certificate of Proficiency in English (ECPE) data comprises 

2,922 examinees and 28 items. This dataset has been analyzed with DCMs including the 

DINA model in several studies (e.g., Buck & Tatsuoka, 1998; George & Robitzsch, 2015; 

Templin & Bradshaw, 2014; Templin & Hoffman, 2013). Three attributes purported to 

underlie the ECPE were (1) morphosyntactic rules, (2) cohesive rules, and (3) lexical rules 

(Buck & Tatsuoka, 1998). George and Robitzsch (2015) provided partial evidence showing 

that the DINA model could yield at least satisfactory model fit with the three attributes. 

Although a linear hierarchy of attributes has been studied for the ECPE data (Templin & 

Bradshaw, 2014), we focus on Q matrix estimation with the DINA model here. Previous 

studies assumed a correctly specified Q and did not address estimation of Q. In our analysis, 

interest lies in whether cMHRM and cGibbs would yield different Q matrix estimates, item 

and structural estimates, and model-data fit, when 40 sets of randomly generated starting 

values are used for both methods (denoted as cMHRM and cGibbs40). In addition to K = 3, 

previous studies had also considered the K = 2 condition by merging 1 with 3 or 2 with 3 

(George & Robitzsch, 2015). We also considered higher K; that is, we estimated Q for K = 2, 

3, 4, and 5. The EM algorithm was also used for the ECPE data with an expert-specified Q (K 

= 3) for comparison purposes.  

To compare the model fit for EM, cGibbs40, and cMHRM, we first estimated the Q 

matrix with cGibbs40 and cMHRM and then derived the log-likelihood value (LL), Bayesian 

information criterion (BIC; Schwarz, 1978), and SRMSR given the estimated Q.  

 Table 4 shows the LL, BIC, and SRMSR, for the EM (with expert-specified Q), 

cGibbs40, and cMHRM, with K = 2, 3, 4, and 5. The results indicate that K = 3 yielded the 

lowest BIC for both cGibbs40 and cMHRM, compared with the expert-specified Q. The 

solutions were the same for cGibbs40 and cMHRM for all K except K = 5. None of the 

Geweke statistics were significant for cGibbs40, suggesting that there were no convergence 

problems. Regarding the log-likelihood values for K = 3, cMHRM had -42770 which is larger 

than the -42843 of EM, suggesting that estimating Q yields a better fit. Based on the criterion 
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that a SRMSR smaller than 0.05 indicates a well-fitting model, the DINA model with K = 3 

yields good model-data fit.  

<Table 4 here> 

 Regarding item fit for K = 3, all the item-fit RMSEA values were below .05 (average 

= .022) and the S-X2 statistics also suggested that most items fit reasonably well, apart from 

Item 2 (p-value = .025), Item 12 (p-value = .044), and Item 26 (p-value = .008). Overall, the 

DINA model with K = 3 fitted the data quite well. 

 A comparison between parameter estimates for EM and cMHRM is shown in Table 5. In 

general, the guessing and slipping estimates for the two methods were close, but the Q matrix 

estimates were different for many of the items. This analysis provides partial evidence that 

the expert-specified Q might need to be re-examined, in collaboration with domain experts 

and test developers. 

<Table 5 here> 

 Table 6 shows the structural parameter estimates (π̂) for the ECPE dataset using EM 

(with expert-specified Q) and cMHRM. The two methods yielded somewhat similar patterns. 

It is clear that most of the students possess either Pr([0,0,0]) = .30 or Pr([1,1,1]) = .46 for  

cMHRM, and EM yielded a similar result. Students having skill 1 seem to also have 3 in 

that Pr([1,1,1]) + Pr([1,0,1]) = .53, compared to students having skill 1 but not skill 3 

because Pr([1,1,0]) + Pr([1,0,0]) = .12. Similarly, students having skill 2 also seem to have 

3 in that Pr([1,1,1]) + Pr([0,1,1]) = .50, compared to students having skill 2 but not skill 3 

because Pr([1,1,0]) + Pr([0,1,0]) = .13. The results imply that 3 (lexical rules) could be a 

prerequisite for either 1 (morphosyntactic rules) or 2 (cohesive rules) (George & Robitzsch, 

2015; Templin & Bradshaw, 2014). 

<Table 6 here> 

 Table 7 displays the cross-classification count for the attribute estimates (MAP) for EM 

and cMHRM. The matching classification (i.e., percentage of person estimates for which the 

two methods gave identical estimates) was 95%. The imperfect matching may be attributed to 

different Q matrices.  

<Table 7 here> 
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Concluding Remarks 

 Instead of relying on prior knowledge regarding the Q matrix, cMHRM treats Q and the 

latent attributes as missing data imputed via a Bayesian MCMC sampler with identification 

constraints on Q. This is followed by maximum likelihood estimation and the application of 

the RM algorithm to obtain estimates of the item and structural parameters. Thus, cMHRM is 

a data-driven approach that is similar in spirit to exploratory factor analysis where the loading 

parameters are completely unknown. The cost of enjoying data-driven flexibility is that we 

have to provide a meaningful interpretation of the estimated Q, which is generally not an easy 

task in practice. Therefore, we emphasize that the estimated Q should only serve as 

suggestive regarding the relation between attributes and items which domain experts should 

verify or modify before formal testing.  

 For cMHRM we have utilized a specific identifiability condition proposed by Xu and 

Shang (2017). For restricted latent class models, such as the DINA model considered here, 

Gu and Xu (2018) classified the identifiability condition into three categories— strict, partial, 

and generic. The identifiability condition used in our study is an instance of the strict case. 

The other types of identifiability conditions could in principle also be used for cMHRM. 

However, a challenge would be how to sample Q under these conditions and a new MCMC 

sampler would have to be developed and investigated (e.g., whether the Markov chain is 

irreducible). If such MCMC samplers can be developed, it would be straightforward to use 

them in cMHRM. 

Our simulation results suggest that cMHRM usually outperformed the cGibbs1 method 

of Chen et al. (2017) in small and large sample sizes with regard to recovery of the Q matrix 

and item parameters. For a small sample size (i.e., 500), cMHRM performed very well for K 

= 3. Although the performance slightly decreased as K increased, cMHRM still produced 

94% accuracy in Q matrix recovery and a 99.96% entry-wise average rate for K = 5. For a 

large sample size (i.e., 4000), cMHRM had 100% accuracy for all cases in our simulations. In 

contrast, cGibbs1 performed acceptably for the small sample size but not for the large sample 

size, which is consistent with the results of Chen et al. (2017). For both approaches, 

correlations between attributes did not affect the results. When using multiple sets of starting 
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values for Q, cGibbs20 performed identically to cMHRM in terms of Q matrix recovery. In 

summary, cMHRM and cGibbs20 are preferred over cGibbs1 for both small and large sample 

sizes.  

We may also compare the results of the regularization approach of Chen et al. (2015) 

with our proposed approach. Regularization performed similar to cMHRM in terms of full 

recovery rate for N = 4000; however, for N = 500, regularization yielded 98% for K = 3 but 

just 30% for K = 4 (see Table 4 in Chen et al. (2015)), whereas cMHRM reached 100% and 

98%, respectively. Regarding the entry-wise average, cMHRM still outperformed 

regularization (i.e., 100% > 99.9% and 99.96% > 97.6%, respectively), a conclusion that also 

applies to conditions with correlated attributes (i.e.,  = .25). This suggests that cMHRM is 

preferred over the regularization approach for small sample sizes.  

 Estimation of Q matrices is challenging when K is very large. In our simulation for K = 

9, the sampling space of Q becomes huge which meant that cMHRM and cGibbs20 did not 

perform well with randomly-generated starting values for Q. In such situations, we showed 

that using starting values based on partial knowledge of Q could mitigate this issue and 

enhance Q matrix recovery.  

   Prior information on Q matrices can be embedded into cMHRM, although our focus has 

been on a data-driven cMHRM. Equation (17) can be modified as 

 
 

   
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( ) ( ) ( 1) ( ) ( ) ( 1) ( )

Pr | , , , , ,
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t t t t t t

jk jk jk

t t t t t t t

jk jk jk jk

q

q q

 

 

 

 

y

y

Q Q

Q Q

  

  
,  (28) 

where  ( )Pr t

jkq  represents the prior distribution. In practice, domain experts may just be 

uncertain about some q’s in Q.  Pr 1q   means the q is assumed known based on prior 

knowledge. The  ( )Pr t

jkq  could be determined by the votes (q = 1 or q = 0) of all the domain 

experts and the proportions of the votes can be used as prior information. Prior information 

tends to smooth the log-likelihood surface and improves the prospects of obtaining a global 

solution.  

 Although our attention has been mainly devoted to the DINA model, cMHRM is 

applicable to the GDCM because the item response probability function can be user-
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specified. However, the GDCM usually needs complex inequality item constraints to 

maintain monotonicity of the item response probability (Henson et al., 2009). In addition, 

sufficient and necessary conditions for the identifiability of the GDCM should be investigated 

and included in the cMHRM (Gu & Xu, 2018). To achieve such a goal, however, new 

MCMC samplers for Q that respect different types of identification conditions should be 

developed and incorporated (Gu & Xu, 2018; Zhang, Chen, & Liu, 2018). When applying 

cMHRM to the GDCM we note that an additional issue arises. Considering, for instance, the 

GDCM with main effects (i.e., only containing the first and second terms in Equation 1), the 

numerator of the acceptance probability function (Equation 16) cannot be computed when 

𝑞𝑗𝑘
(𝑡)

= 0 and 𝑞𝑗𝑘
(new)

= 1, because the value of jk is undetermined for 𝑞𝑗𝑘
(new)

= 1. One 

potential way to address this issue is by sampling a random value of jk from its prior 

distribution, which can be a distribution that it is convenient to sample from (e.g., a uniform 

or normal distribution), so that the numerator of the acceptance probability function can be 

computed. The other parts of the cMHRM algorithm remain unchanged. However, exploring 

such a large binary sample space could be slow if the prior does not resemble the posterior 

distribution.  

    There are several notable advantages of our cMHRM algorithm compared to previous 

approaches. First, cMHRM alleviates the difficulty of high-dimensional summations in the 

expectation step of the EM algorithm, having a computational burden that is linearly 

proportional to K and J instead of exponentially proportional. Second, cMHRM automatically 

respects constraints on the Q matrix by using the constrained MH sampler. Such 

identification constraints will ensure an identified solution that corresponds to a peak of the 

likelihood surface (for more discussion, see Chen et al., 2017). Thus, cMHRM can be used as 

a data-driven technique for DCMs when experts want to validate their derived Q matrix or 

when Q is completely unknown. Third, cMHRM does not depend on the hierarchical 

structure of DCMs in contrast to Gibbs sampling which is only applicable when the posterior 

distribution of each parameter can be derived (Chen et al., 2017; Culpepper, 2015, 2019). 

Fourth, standard errors can be readily estimated by the post-convergence approximated 

standard errors. In contrast, the computation of standard errors is somewhat convoluted in the 
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EM algorithm (Philipp, Strobl, de la Torre, & Zeileis, 2017). Lastly, we note that the cMHRM 

algorithm is computationally superior to the cGibbs algorithm, having a substantially faster 

convergence when estimating the DCM model parameters. 
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Table 1. Full recovery rate and entry-wise average recovery rate for cMHRM (with 20 sets of 

random starting values of Q) versus cGibbs1 (with one set of random starting values of Q) 

versus cGibbs20 (with 20 sets of random starting values of Q) by number of attributes (K), 

sample size (N), correlations (), and test length (I).   

K N  I Full recovery rate  Entry-wise average rate 

    cGibbs1 cGibbs20 cMHRM  cGibbs1 cGibbs20 cMHRM 

3 500 0 18 99 100 100  99.60 100 100 

3 500 .25 18 100 100 100  100 100 100 

4 500 0 18 96 98 98  99.40 99.96 99.96 

4 500 .25 18 98 99 99  99.70 99.99 99.99 

5 500 0 30 94 94 94  99.70 99.96 99.96 

5 500 .25 30 92 94 94  99.60 99.96 99.96 

3 4000 0 18 87 100 100  95.80 100 100 

3 4000 .25 18 90 100 100  96.50 100 100 

4 4000 0 18 57 100 100  86.00 100 100 

4 4000 .25 18 75 100 100  92.80 100 100 

5 4000 0 30 82 100 100  95.10 100 100 

5 4000 .25 30 88 100 100  96.90 100 100 
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Table 2. Program run time comparisons of absolute computational efficiency for cMHRM 

(with 20 sets of random starting value of Q), cGibbs1 (with one set of random starting value 

of Q, 15,000 burn-in, and 30,000 samples) and cGibbs20 (with 20 sets of random starting 

value of Q, 5,000 burn-in, 5,000 samples, and finally 10,000 samples), based on average 

elapsed CPU time (in minutes) for  = 0 (correlation) and I = 18 (test length).  

 

K N cGibbs1 cGibbs20 cMHRM 

3 500 3.03 9.67 2.80 

4 500 5.05 15.90 6.57 

5 500 10.04 35.49 11.24 

3 4000 18.07 72.76 13.11 

4 4000 28.91 117.86 26.76 

5 4000 102.3 286.27 60.95 
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Table 3. Estimated Q, slipping (s), and guessing (g) parameters for Tatsuoka’s 

fraction-subtraction data using cMHRM.  

  cMHRM 

  K = 3  K = 4 

Item Content 𝑸  𝑠  SE 𝑔  SE  𝑸  𝑠  SE 𝑔  SE 

1  1  0  0  0.14 0.02 0.03 0.01  1 0 0 0 0.11 0.02 0.03 0.02 

2  1  0  0  0.07 0.01 0.05 0.02  1 0 0 0 0.04 0.02 0.04 0.01 

3  1  0  0  0.14 0.02 0.00 0.01  1 0 0 0 0.12 0.02 0.00 0.04 

4  0  1  0  0.12 0.02 0.20 0.02  0 1 0 0 0.13 0.02 0.21 0.02 

5  1  0  1  0.21 0.02 0.31 0.03  1 0 1 0 0.20 0.02 0.31 0.03 

6  0  0  1  0.04 0.01 0.30 0.04  0 0 1 0 0.05 0.01 0.27 0.04 

7  1  0  0*  0.35 0.03 0.03 0.02  0 0 0 1 0.21 0.03 0.00 0.02 

8  1  1  0  0.05 0.01 0.58 0.03  0 0 0* 1* 0.07 0.02 0.57 0.03 

9  0  0  1  0.25 0.02 0.34 0.04  0 0 1 0 0.25 0.02 0.32 0.04 

10  0  1  0  0.23 0.03 0.02 0.01  0 1 0 0 0.23 0.03 0.02 0.01 

11  0  1  1  0.07 0.02 0.07 0.02  0 1 1 0 0.08 0.02 0.07 0.02 

12  0  0  1  0.09 0.02 0.19 0.04  0 0 1 0 0.10 0.02 0.17 0.04 

13  1  1  1  0.35 0.03 0.02 0.01  1 1 1 0* 0.33 0.03 0.02 0.01 

14  0  0  1  0.06 0.01 0.09 0.03  0 0 1 0 0.07 0.01 0.05 0.03 

15  1  0  1  0.25 0.03 0.05 0.02  0 0 1* 1 0.12 0.02 0.03 0.01 

16  0  0  1  0.11 0.02 0.11 0.03  0 0 1 0 0.12 0.02 0.10 0.03 

17  0  1  1  0.13 0.02 0.05 0.01  0 1 1 0 0.14 0.02 0.04 0.01 

18  0  1  1  0.15 0.02 0.13 0.02  0 1 1 0* 0.15 0.02 0.13 0.02 

19  1  1  1  0.33 0.03 0.02 0.01  0 1 1 1 0.27 0.03 0.02 0.01 

20  0  1  1  0.18 0.02 0.01 0.01  0 1 1 0 0.19 0.03 0.01 0.01 

                  

Note. * indicates that outcome is opposite to Table 4 of Chen, Culpepper, Chen, and Douglas 

(2017) (see column ‘MH’, whose results were identical to ‘cGibbs’); ‘SE’ refers to standard 

error. 
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Table 4. Model-data fit with different number of attributes (K = 2, 3, 4, and 5) for 

Examination for Certificate of Proficiency in English (ECPE) dataset using EM (with expert-

specified Q), cGibbs40, and cMHRM.  

 Log-likelihood  BIC  SRMSR 

K EM cGibbs40 cMHRM  EM cGibbs40 cMHRM  EM cGibbs40 cMHRM 

2  -42833 -42833   86138 86138   .034 .034 

3 -42843 -42770 -42770  86190 86042 86042  .033 .032 .032 

4  -42748 -42748   86062 86062   .031 .031 

5  -42738 -42733   86170 86160   .032 .031 

Note. BIC: Bayesian information criterion; SRMSR: standardized root mean square residual; 

40 sets of random starting values for Q were used for cGibbs40 and cMHRM.  
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Table 5. Estimated Q, slipping (s), and guessing (g) parameters for Certificate of Proficiency 

in English (ECPE) dataset using EM (with expert-specified Q) and cMHRM. 

 K = 3 

 EM  cMHRM 

Item  Q 𝑠  SE 𝑔  SE  𝑸  𝑠  SE 𝑔  SE 

1  1  1  0  0.09  0.01  0.71  0.01   1 1 1 0.09  0.01  0.71  0.01  

2  0  1  0  0.10  0.01  0.72  0.02   0 0 1 0.11  0.01  0.72  0.02  

3  1  0  1  0.27  0.01  0.44  0.01   1 1 1 0.26  0.01  0.44  0.01  

4  0  0  1  0.16  0.01  0.48  0.02   0 1 1 0.15  0.01  0.51  0.02  

5  0  0  1  0.04  0.01  0.76  0.01   0 0 1 0.04  0.01  0.75  0.02  

6  0  0  1  0.07  0.01  0.72  0.01   0 0 1 0.07  0.01  0.71  0.02  

7  1  0  1  0.09  0.01  0.54  0.01   1 0 0 0.09  0.01  0.48  0.02  

8  0  1  0  0.04  0.01  0.80  0.01   0 1 1 0.05  0.01  0.82  0.02  

9  0  0  1  0.20  0.01  0.53  0.02   1 1 0 0.17  0.01  0.57  0.02  

10 1  0  0  0.16  0.01  0.48  0.01   1 1 1 0.16  0.01  0.50  0.02  

11 1  0  1  0.10  0.01  0.56  0.01   1 1 1 0.09  0.01  0.56  0.01  

12 1  0  1  0.31  0.01  0.20  0.01   1 1 1 0.29  0.01  0.20  0.01  

13 1  0  0  0.12  0.01  0.63  0.01   1 0 0 0.13  0.01  0.60  0.02  

14 1  0  0  0.21  0.01  0.52  0.01   1 1 1 0.20  0.01  0.53  0.01  

15 0  0  1  0.04  0.01  0.75  0.01   0 0 1 0.04  0.01  0.74  0.02  

16 1  0  1  0.13  0.01  0.55  0.01   1 0 0 0.13  0.01  0.49  0.02  

17 0  1  1  0.06  0.01  0.82  0.01   1 0 0 0.06  0.01  0.81  0.01  

18 0  0  1  0.09  0.01  0.73  0.01   0 0 1 0.08  0.01  0.72  0.02  

19 0  0  1  0.15  0.01  0.47  0.02   0 1 0 0.14  0.01  0.46  0.03  

20 1  0  1  0.30  0.01  0.24  0.01   1 1 1 0.28  0.01  0.24  0.01  

21 1  0  1  0.10  0.01  0.62  0.01   0 1 0 0.12  0.01  0.54  0.02  

22 0  0  1  0.19  0.01  0.32  0.02   0 0 1 0.19  0.01  0.30  0.02  

23 0  1  0  0.08  0.01  0.64  0.02   0 1 1 0.08  0.01  0.67  0.01  

24 0  1  0  0.32  0.01  0.31  0.02   0 1 1 0.33  0.01  0.35  0.02  

25 1  0  0  0.27  0.01  0.51  0.01   1 1 1 0.27  0.01  0.52  0.01  

26 0  0  1  0.21  0.01  0.56  0.02   0 0 1 0.21  0.01  0.54  0.02  

27 1  0  0  0.37  0.01  0.27  0.01   1 1 0 0.36  0.02  0.25  0.01  

28 0  0  1  0.09  0.01  0.66  0.02   0 1 0 0.08  0.01  0.65  0.02  
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Table 6. Structural parameter estimates (π̂) for Certificate of Proficiency in English (ECPE) 

dataset using EM (with expert-specified Q) and cMHRM. 

Attribute Pattern  K = 3 

1 2 3  EM cMHRM 

0 0 0 π̂1 0.31 0.30  

0 0 1 π̂2 0.05 0.00  

0 1 0 π̂3 0.04 0.01  

0 1 1 π̂4 0.10 0.04  

1 0 0 π̂5 0.01 0.00  

1 0 1 π̂6 0.03 0.07  

1 1 0 π̂7 0.01 0.12  

1 1 1 π̂8 0.45 0.46  
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Table 7. Cross-classification count for attribute estimates for Certificate of Proficiency in 

English (ECPE) dataset using EM (with expert-specified Q) and cMHRM. 

 cMHRM 

EM 000 001 010 011 100 101 110 111 

000 878 6 22 7 19 1 5 0 

001 0 0 0 0 0 0 0 0 

010 0 0 0 0 0 0 0 0 

011 0 3 3 75 0 1 0 5 

100 0 0 0 0 0 0 0 0 

101 0 0 0 0 5 143 0 3 

110 0 0 10 0 9 0 290 21 

111 0 0 0 2 2 8 9 1395 
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Figure 1. Bias and root-mean-square error (RMSE) for item parameter estimators (g: 

guessing parameter, s: slip parameter), and bias and root-mean-square square (RMSE) for 

class probability parameter (), comparing cMHRM (using 20 sets of random starting values 

for Q), cGibbs1 (using one set of random starting values for Q), and cGibbs20 (using 20 sets 

of random starting values for Q). Q-matrix with K = 3 and 18 items with 500 examinees 

generated for  = .25 under DINA model.  
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Figure 2. Bias and root-mean-square error (RMSE) for item parameter estimators (g: 

guessing parameter, s: slip parameter) and class probability parameter (), comparing 

cMHRM (using 20 sets of random starting values for Q) with cGibbs1 (using one set of 

random starting values for Q) and cGibbs20 (using 20 sets of random starting values for Q). 

Q-matrix with K = 5 and 30 items with 500 examinees generated for  = 0 (uniform 

distribution) under DINA model.   
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Figure 3. Bias and root-mean-square error (RMSE) for item parameter estimators (g: 

guessing parameter, s: slip parameter) and class probability parameter (), comparing 

cMHRM (using 20 sets of random starting values for Q) with cGibbs1 (using one set of 

random starting values for Q) and cGibbs20 (using 20 sets of random starting values for Q). 

Q-matrix with K = 4 and 18 items with 4000 examinees generated for  = 0 (uniform 

distribution) under DINA model. 
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