On Interpretability between some Weak Essentially Undecidable Theories

Lars Kristiansen ${ }^{1,2}$
Juvenal Murwanashyaka ${ }^{1}$
${ }^{1}$ Department of Mathematics, University of Oslo, Norway
${ }^{2}$ Department of Informatics, University of Oslo, Norway
larsk@math.uio.no juvenalm@math.uio.no

Abstract

We introduce two essentially undecidable first-order theories WT and T. The intended model for the theories is a term model. We prove that WT is mutually interpretable with Robinson's R. Moreover, we prove that Robinson's Q is interpretable in T.

1 Introduction

A first-order theory T is undecidable if there is no algorithm for deciding if $T \vdash \phi$. If every consistent extension of an undecidable theory T also is undecidable, then T is essentially undecidable.

We introduce two first-order theories, WT and T , over the language $\mathcal{L}_{\mathrm{T}}=$ $\{\perp,\langle\cdot, \cdot\rangle, \sqsubseteq\}$ where \perp is a constant symbol, $\langle\cdot, \cdot\rangle$ is a binary function symbol and \sqsubseteq is a binary relation symbol. The intended model for these theories is a term model: The universe is the set of all variable-free $\mathcal{L}_{\boldsymbol{T}}$-terms. Each term is interpreted as itself, and \sqsubseteq is interpreted as the subterm relation (s is a subterm of t iff $s=t$ or $t=\left\langle t_{1}, t_{2}\right\rangle$ and s is a subterm of t_{1} or t_{2}).

The non-logical axioms of WT are given by the two axiom schemes:

$$
\begin{equation*}
s \neq t \tag{1}
\end{equation*}
$$

where s and t are distinct variable-free terms.

$$
\begin{equation*}
\forall x\left[x \sqsubseteq t \leftrightarrow \bigvee_{s \in \mathcal{S}(t)} x=s\right] \tag{2}
\end{equation*}
$$

where t is a variable-free term and $\mathcal{S}(t)$ is the set of all subterms of t. There are no other non-logical axioms except those given by these two simple schemes, and at a first glance WT seems to be a very weak theory. Still it turns out that Robinson's essentially undecidable theory R is intepretable in WT , and thus it follows that also WT is essentially undecidable. The theory T is given by the four axioms:

```
\(\mathrm{T}_{1} \quad \forall x y[\langle x, y\rangle \neq \perp]\)
\(\mathrm{T}_{2} \forall x_{1} x_{2} y_{1} y_{2}\left[\left\langle x_{1}, x_{2}\right\rangle=\left\langle y_{1}, y_{2}\right\rangle \rightarrow\left(x_{1}=y_{1} \wedge x_{2}=y_{2}\right)\right]\)
\(\mathrm{T}_{3} \forall x[x \sqsubseteq \perp \leftrightarrow x=\perp]\)
\(\mathrm{T}_{4} \forall x y z[x \sqsubseteq\langle y, z\rangle \leftrightarrow(x=\langle y, z\rangle \vee x \sqsubseteq y \vee x \sqsubseteq z)]\).
```


The Axioms of R

$$
\begin{array}{lc}
\mathrm{R}_{1} \bar{n}+\bar{m}=\overline{n+m} ; \quad \mathrm{R}_{2} \bar{n} \times \bar{m}=\overline{n m} ; & \mathrm{R}_{3} \bar{n} \neq \bar{m} \text { for } n \neq m ; \\
\mathrm{R}_{4} \forall x[x \leq \bar{n} \rightarrow x=0 \vee \ldots \vee x=\bar{n}] ; & \mathbf{R}_{5} \forall x[x \leq \bar{n} \vee \bar{n} \leq x]
\end{array}
$$

The Axioms of Q
$\mathrm{Q}_{1} \forall x y[S x=S y \rightarrow x=y] ; \quad \mathrm{Q}_{2} \forall x[S x \neq 0] ; \quad \mathrm{Q}_{3} \forall x[x \neq 0 \rightarrow \exists y[x=S y]] ;$ $\mathrm{Q}_{4} \forall x[x+0=x] ; \quad \mathrm{Q}_{5} \forall x y[x+S y=S(x+y)] ; \quad \mathrm{Q}_{6} \quad \forall x[x \times 0=0] ;$ $\mathrm{Q}_{7} \forall x y[x \times S y=(x \times y)+x] ; \quad \mathrm{Q}_{8} \forall x y[x \leq y \leftrightarrow \exists z[x+z=y]]$

Fig. 1. The axioms of R are given by axiom schemes where $n, m \in \mathbb{N}$ and \bar{n} denotes the $n^{\text {th }}$ numeral, that is, $\overline{0} \equiv 0$ and $\overline{n+1} \equiv S \bar{n}$.

It is not difficult to see that T is a consistent extension of WT . Thus, since WT is essentially undecidable, we can conclude right away that also T is essentially undecidable. Furthermore, since every model of the finitely axiomatizable theory T is infinite, T cannot be interpretable in WT , and the obvious conjecture would be that T is mutually interpretable with Robinson's Q .

The seminal theories R and Q are theories of arithmetic. The theory R is given by axiom schemes, and Q is a finitely axiomatizable extension of R, see Figure 1 (Q is also known as Robinson arithmetic and is more or less Peano arithmetic without the induction scheme). It was proved in Tarski et al. [9] that R and Q are essentially undecidable. Another seminal essentially undecidable first-order theory is Grzegorcyk's TC. This is a theory of concatenation. The language is $\{*, \alpha, \beta\}$ where α and β are constant symbols and $*$ is a binary function symbol. The standard TC model is the structure where the universe is $\{a, b\}^{+}$(all finite nonempty strings over the alphabet $\{a, b\}$), * is concatenation, α is the string a and β is the string b. It was proved in Grzegorzyk \& Zdanowski [3] that TC is essentially undecidable. It was later proved that TC is mutually interpretable with Q, see Visser [10] for further references. The theory WTC ${ }^{-\epsilon}$ is a weaker variant of TC that has been shown to be mutually interpretable with R, see Higuchi \& Horihata [4] for more details and further references. The axioms of TC and WTC ${ }^{-\epsilon}$ can be found in Figure 2.

The overall picture shows three finitely axiomatizable and essentially undecidable first-order theories of different character and nature: Q is a theory of arithmetic, TC is a theory of concatenation, and T is a theory of terms (it may also be viewed as a theory of binary trees). All three theories are mutually interpretable with each other, and each of them come with a weaker variant given by axiom schemes. These weaker variants are also essentially undecidable and mutually interpretable with each other.

The theory T has, in contrast to Q and TC , a purely universal axiomatization, that is, there are no occurrences of existential quantifiers in the axioms. Moreover, its weaker variant WT has a neat and very compact axiomatization compared to R and $\mathrm{WTC}{ }^{-\epsilon}$.

The Axioms of WTC ${ }^{-\epsilon}$

$$
\begin{gathered}
\text { WTC }_{1}^{-\epsilon} \forall x y z[(x *(y * z) \sqsubseteq \underline{t} \vee(x * y) * z \sqsubseteq \underline{t}) \rightarrow x *(y * z)=(x * y) * z] ; \\
\text { WTC }_{2}^{-\epsilon} \forall x y z u[x * y=z * u \wedge x * y \sqsubseteq \underline{t} \rightarrow((x=z \wedge y=u) \vee \\
\exists w[(x * w=z \wedge w * u=y) \vee(z * w=x \wedge w * y=u])] ; \\
\text { WTC }_{3}^{-\epsilon} \forall x y[\alpha \neq x * y] ; \quad \text { WTC }_{4}^{-\epsilon} \forall x y[\beta \neq x * y] ; \quad \text { WTC }_{5}^{-\epsilon} \alpha \neq \beta
\end{gathered}
$$

where $x \sqsubseteq y$ is defined by

$$
x=y \vee \exists z_{1} z_{2}\left[z_{1} * x=y \vee x * z_{2}=y \vee\left(z_{1} * x\right) * z_{2}=y \vee z_{1} *\left(x * z_{2}\right)=y\right] .
$$

The Axioms of TC

$$
\begin{aligned}
& \mathrm{TC}_{1} \forall x y z[x *(y * z)=(x * y) * z] ; \\
& \mathrm{TC}_{2} \forall x y z u[x * y=z * u \rightarrow((x=z \wedge y=u) \vee \\
& \\
& \quad \exists w[(x * w=z \wedge w * u=y) \vee(z * w=x \wedge w * y=u])] ; \\
& \mathrm{TC}_{3} \forall x y[\alpha \neq x * y] ; \quad \text { TC }_{4} \forall x y[\beta \neq x * y] ; \quad \text { TC }_{5} \alpha \neq \beta
\end{aligned}
$$

Fig. 2. $\mathrm{WTC}_{1}^{-\epsilon}$ and $\mathrm{WTC}_{2}^{-\epsilon}$ are axiom schemes where $t \in\{a, b\}^{+}$and t is a term inductively defined by: $\underline{a} \equiv \alpha, \underline{b} \equiv \beta, \underline{a u} \equiv \alpha * \underline{u}$ and $\underline{b u} \equiv \beta * \underline{u}$.

Another interesting theory which is known to be mutually interpretable with Q, and thus also with TC and T, is the adjunctive set theory AST. More on AST and adjunctive set theory can found in Damnjanovic [2]. For recent results related to the work in the present paper, we refer the reader to Jerabek [5], Cheng [1] and Kristiansen \& Murwanashyaka [7].

The rest of this paper is fairly technical, and we will assume that the reader is familiar with first-order theories and the interpretation techniques introduced in Tarski et al. [9]. In Section 2 we prove that R and WT are mutually interpretable. In Section 3 we prove that Q is interpretable in T. We expect that T can be interpreted in Q by standard techniques available in the literature.

2 R and WT are Mutually Interpretable

The theory R^{-}over the language of Robinson arithmetic is given by the axiom schemes

$$
\begin{aligned}
& \mathrm{R}_{1}^{-} \bar{n}+\bar{m}=\overline{n+m} ; \quad \mathrm{R}_{2}^{-} \bar{n} \times \bar{m}=\overline{n m} ; \quad \mathrm{R}_{3}^{-} \bar{n} \neq \bar{m} \quad \text { for } n \neq m ; \\
& \mathrm{R}_{4}^{-} \forall x[x \leq \bar{n} \leftrightarrow x=0 \vee \ldots \vee x=\bar{n}]
\end{aligned}
$$

where $n, m \in \mathbb{N}$. Recall that \bar{n} denotes the $n^{\text {th }}$ numeral, that is, $\overline{0} \equiv 0$ and $\overline{n+1} \equiv S \bar{n}$.

We now proceed to interpret R^{-}in WT . We choose the domain $I(x) \equiv$ $x=x$ (thus we can just ignore the domain). Furthermore, we translate the successor function $S(x)$ as the function given by $\lambda x .\langle x, \perp\rangle$, and we translate the constant 0 as $\langle\perp, \perp\rangle$. Let \bar{n}^{\star} denote the translation of the numeral \bar{n}. Then we have $\overline{n+1}{ }^{\star} \equiv\left\langle\bar{n}^{\star}, \perp\right\rangle$. It follows from WT_{1} that the translation of each instance of R_{3}^{-}is a theorem of WT since \bar{m}^{\star} and \bar{n}^{\star} are different terms whenever $m \neq n$.

We translate $x \leq y$ as $x \sqsubseteq y \wedge x \neq \perp$. It is easy to see that

$$
\begin{equation*}
\mathrm{WT} \vdash \forall x\left[x \sqsubseteq \bar{n}^{\star} \wedge x \neq \perp \leftrightarrow \bigvee_{s \in \mathcal{T}(n)} x=s\right] \tag{1}
\end{equation*}
$$

where $\mathcal{T}(n)=\mathcal{S}\left(\bar{n}^{\star}\right) \backslash\{\perp\}$ and $\mathcal{S}\left(\bar{n}^{\star}\right)$ denotes the set of all subterms of \bar{n}^{\star}. We observe that $\mathcal{T}(n)=\left\{\bar{k}^{\star} \mid k \leq n\right\}$ and that (1) indeed is the translation of the axiom scheme R_{4}^{-}. Hence we conclude that the translation of each instance of R_{4}^{-}is a theorem of WT.

Next we discuss the translation of + . The idea is to obtain $n+i$ through a formation sequence of length i. Such a sequence will be represented by a term of the form

$$
\begin{equation*}
\left\langle\ldots\left\langle\left\langle\left\langle\bar{n}^{\star}, \overline{0}^{\star}\right\rangle,\left\langle\overline{n+1}^{\star}, \overline{1}^{\star}\right\rangle\right\rangle,\left\langle\overline{n+2}{ }^{\star}, \overline{2}^{\star}\right\rangle\right\rangle \ldots,\left\langle\overline{n+i^{\star}}, \bar{i}^{\star}\right\rangle\right\rangle . \tag{2}
\end{equation*}
$$

Accordingly we translate $x+y=z$ by the predicate $\operatorname{add}(x, y, z)$ given by the formula

$$
\begin{aligned}
& \left(y=\overline{0}^{\star} \wedge z=x\right) \vee\left\{y \neq \overline{0}^{\star} \wedge \exists W\left[\left\langle x, \overline{0}^{\star}\right\rangle \sqsubseteq W \wedge\right.\right. \\
& \forall X \forall Y \sqsubseteq y[\langle X, Y\rangle \sqsubseteq W \wedge Y \neq y \wedge Y \neq \perp \rightarrow \\
& \quad(\langle\langle X, \perp\rangle,\langle Y, \perp\rangle\rangle \sqsubseteq W \wedge(\langle Y, \perp\rangle=y \rightarrow\langle X, \perp\rangle=z))]]\}
\end{aligned}
$$

Lemma 1. For any $m, n \in \mathbb{N}$, we have

$$
\mathrm{WT} \vdash \forall z\left[\operatorname{add}\left(\bar{n}^{\star}, \bar{m}^{\star}, z\right) \leftrightarrow z=\overline{n+m^{\star}}\right] .
$$

Proof. First we prove that WT $\vdash \operatorname{add}\left(\bar{n}^{\star}, \bar{m}^{\star}, \overline{n+m^{\star}}\right)$. This is obvious if $m=0$. Assume $m>0$. Let

$$
S_{0}^{n} \equiv\left\langle\bar{n}^{\star}, \overline{0}^{\star}\right\rangle \quad \text { and } \quad S_{i+1}^{n} \equiv\left\langle S_{i}^{n},\left\langle\overline{n+i+1}^{\star}, \overline{i+1}^{\star}\right\rangle\right\rangle
$$

and observe that S_{i}^{n} is of the form (2). We will argue that we can choose the W in the definition of $\operatorname{add}(x, y, z)$ to be the term S_{m}^{n}.

So let $W=S_{m}^{n}$. By the axioms of WT, we have $\left\langle\bar{n}^{\star}, \overline{0}^{\star}\right\rangle \sqsubseteq W$. Assume

$$
\langle X, Y\rangle \sqsubseteq W \text { and } Y \neq y=\bar{m}^{\star} \text { and } Y \sqsubseteq y=\bar{m}^{\star} \text { and } Y \neq \perp
$$

By the axioms of WT, we have that $Y \sqsubseteq \bar{m}^{\star}, Y \neq \bar{m}^{\star}$ and $Y \neq \perp$ imply $Y=\bar{k}^{\star}$ for some $k<m$. Since $\langle X, Y\rangle \sqsubseteq W$, we know by WT_{2} that $\langle X, Y\rangle$ is one of the subterms of W. By WT_{1} and the form of S_{m}^{n}, we conclude that $X=\overline{n+k}$. Furthermore, the form of S_{m}^{n} and WT_{2} then ensures that $\langle\langle X, \perp\rangle,\langle Y, \perp\rangle\rangle \sqsubseteq W=$ S_{m}^{n}. Moreover, if $\langle Y, \perp\rangle=\bar{m}^{\star}$, then by WT_{1}, we must have $k=m-1$, and thus, $\langle X, \perp\rangle=\left\langle\overline{n+(m-1)^{\star}}, \perp\right\rangle=\overline{n+m}^{\star}$. This proves that we can deduce $\operatorname{add}\left(\bar{n}^{\star}, \bar{m}^{\star}, \overline{n+m}^{\star}\right)$ from the axioms of WT , and thus we also have

$$
\mathrm{WT} \vdash \forall z\left[z=\overline{n+m}^{\star} \rightarrow \operatorname{add}\left(\bar{n}^{\star}, \bar{m}^{\star}, z\right)\right] .
$$

Next we prove that the converse implication $\operatorname{add}\left(\bar{n}^{\star}, \bar{m}^{\star}, z\right) \rightarrow z=\overline{n+m}^{\star}$ follows from the axioms of WT (and thus the lemma follows). This is obvious when $m=0$. Assume $m \neq 0$ and $\operatorname{add}\left(\bar{n}^{\star}, \bar{m}^{\star}, z\right)$. Then we have W such that $\left\langle\bar{n}^{\star}, \overline{0}^{\star}\right\rangle \sqsubseteq W$ and

$$
\begin{align*}
& \forall X \forall Y \sqsubseteq \bar{m}^{\star}\left[\langle X, Y\rangle \sqsubseteq W \wedge Y \neq \bar{m}^{\star} \wedge Y \neq \perp \quad \rightarrow\right. \\
& \left.\left(\langle\langle X, \perp\rangle,\langle Y, \perp\rangle\rangle \sqsubseteq W \wedge\left(\langle Y, \perp\rangle=\bar{m}^{\star} \rightarrow\langle X, \perp\rangle=z\right)\right)\right] . \tag{3}
\end{align*}
$$

Since $\left\langle n, \overline{0}^{\star}\right\rangle \sqsubseteq W$ and (3) hold, we have $\left\langle\overline{n+k+1}{ }^{\star}, \overline{k+1}^{\star}\right\rangle \sqsubseteq W$ for any $k<m$. It also follows from (3) that $z=\overline{n+k+1}{ }^{\star}$ when $m=k+1$.

It follows from the preceding lemma that there for any $n, m \in \mathbb{N}$ exists a unique $k \in \mathbb{N}$ such that $\mathrm{WT} \vdash \operatorname{add}\left(\bar{n}^{\star}, \bar{m}^{\star}, \bar{k}^{\star}\right)$. We translate $x+y=z$ by the predicate ϕ_{+}where $\phi_{+}(x, y, z)$ is the formula

$$
\begin{equation*}
(\exists!u[\operatorname{add}(x, y, u)] \wedge \operatorname{add}(x, y, z)) \vee(\neg \exists!u[\operatorname{add}(x, y, u)] \wedge z=\perp) \tag{4}
\end{equation*}
$$

The second disjunct of (4) ensures the functionality of our translation, that is, it ensures that $\mathrm{WT} \vdash \forall x y \exists!x \phi_{+}(x, y, z)$ (the same technique is used in [6]). By Lemma 1, we have WT $\vdash \phi_{+}\left(\bar{n}^{\star}, \bar{m}^{\star}, \overline{n+m^{\star}}\right)$. This shows that the translation of any instance of the axiom scheme R_{1}^{-}can be deduced from the axioms of WT.

We can also achieve a translation of $x \times y=z$ such that the translation of each instance of R_{2}^{-}can be deduced from the axioms of WT. Such a translation claims the existence of a term S_{m}^{n} where

$$
S_{1}^{n} \equiv\left\langle\bar{n}^{\star}, \overline{1}^{\star}\right\rangle \quad \text { and } \quad S_{i+1}^{n} \equiv\left\langle S_{i}^{n},\left\langle\overline{(i+1) n}^{\star}, \overline{i+1}^{\star}\right\rangle\right\rangle
$$

and will more or less be based on the same ideas as our translation of $x+y=z$. We omit the details.

Theorem 2. R and WT are mutually interpretable.
Proof. We have seen how to interpret R^{-}in WT. It follows straightforwardly from results proved in Jones \& Shepherdson [6] that R^{-}and R are mutually interpretable. Thus R is interpretable in WT. A result of Visser [11] states that a theory is interpretable in R if and only if it is locally finitely satisfiable, that is, each finite subset of the non-logical axioms has a finite model. Since WT clearly is locally finitely satisfiable, WT is interpretable in R.

$3 \quad Q$ is Interpretable in T

The language of the arithmetical theory Q^{-}is $\{0, S, M, A\}$ where 0 is a constant symbol, S is a unary function symbol, and A and M are ternary predicate symbols. The non-logical axioms of the first-order theory Q^{-}are the the following:

```
A }\forallxy\mp@subsup{z}{1}{}\mp@subsup{z}{2}{}[A(x,y,\mp@subsup{z}{1}{})\wedgeA(x,y,\mp@subsup{z}{2}{})->\mp@subsup{z}{1}{}=\mp@subsup{z}{2}{}]
M }\forallxy\mp@subsup{z}{1}{}\mp@subsup{z}{2}{}[M(x,y,\mp@subsup{z}{1}{})\wedgeM(x,y,\mp@subsup{z}{2}{})->\mp@subsup{z}{1}{}=\mp@subsup{z}{2}{}]
Q Q }\forallxy[x\not=y->Sx\not=Sy];\quad\mp@subsup{Q}{2}{}\forallx[Sx\not=0];\quad\mp@subsup{Q}{3}{}\forallx[x=0\vee\existsy[x=Sy]]
G}\mp@subsup{4}{4}{}\forallx[A(x,0,x)];\quad\mp@subsup{\textrm{G}}{5}{}\forallxyu[\existsz[A(x,y,z)\wedgeu=Sz]->A(x,Sy,u)]
G}\mp@subsup{\textrm{G}}{6}{}\forallx[M(x,0,0)];\quad\mp@subsup{\textrm{G}}{7}{}\forallxyu[\existsz[M(x,y,z)\wedgeA(z,x,u)]->M(x,Sy,u)]
```

Svejdar [8] proved that Q^{-}and Q are mutually interpretable. We will prove that Q^{-}is interpretable in T .

The first-order theory T^{+}is T extended by the two non-logical axioms

$$
\mathrm{T}_{5} \forall x[x \sqsubseteq x] \quad \text { and } \quad \mathrm{T}_{6} \forall x y z[x \sqsubseteq y \wedge y \sqsubseteq z \rightarrow x \sqsubseteq z] .
$$

Lemma 3. T^{+}is interpretable in T .
Proof. We simply relativize quantification to the domain

$$
I=\{x \mid x \sqsubseteq x \wedge \forall u v[u \sqsubseteq v \wedge v \sqsubseteq x \rightarrow u \sqsubseteq x]\} .
$$

Suppose $x_{1}, x_{2} \in I$. We show that $\left\langle x_{1}, x_{2}\right\rangle \in I$. Since $\left\langle x_{1}, x_{2}\right\rangle=\left\langle x_{1}, x_{2}\right\rangle$, we have $\left\langle x_{1}, x_{2}\right\rangle \sqsubseteq\left\langle x_{1}, x_{2}\right\rangle$ by T_{4}. Suppose now that $u \sqsubseteq v \wedge v \sqsubseteq\left\langle x_{1}, x_{2}\right\rangle$. We need to show that $u \sqsubseteq\left\langle x_{1}, x_{2}\right\rangle$. By T_{4} and $v \sqsubseteq\left\langle x_{1}, x_{2}\right\rangle$, at least one of the following three cases holds: (a) $v=\left\langle x_{1}, x_{2}\right\rangle$, (b) $v \sqsubseteq x_{1}$, (c) $v \sqsubseteq x_{2}$. Case (a): Since $u \sqsubseteq v$ and $v=\left\langle x_{1}, x_{2}\right\rangle$, we have $u \sqsubseteq\left\langle x_{1}, x_{2}\right\rangle$ by our logical axioms. Case (b): $u \sqsubseteq v \wedge v \sqsubseteq x_{1}$ implies $u \sqsubseteq x_{1}$ since $x_{1} \in I$. By T_{4}, we have $u \sqsubseteq\left\langle x_{1}, x_{2}\right\rangle$. Case (c): We have $u \sqsubseteq\left\langle x_{1}, x_{2}\right\rangle$ by an argument symmetric to the one used in Case (b). Hence, $\forall u v\left[u \sqsubseteq v \wedge v \sqsubseteq\left\langle x_{1}, x_{2}\right\rangle \rightarrow u \sqsubseteq\left\langle x_{1}, x_{2}\right\rangle\right]$.

This proves that I is closed under $\langle\cdot, \cdot\rangle$. It follows from T_{3} that $\perp \in I$, and thus I satisfies the domain condition. Clearly, the translation of each non-logical axiom of T^{+}is a theorem of T .

We now proceed to interpret Q^{-}in T^{+}. We choose the domain N given by

$$
N(x) \equiv x \neq \perp \wedge \forall y \sqsubseteq x[y=\perp \vee \exists z[y=\langle z, \perp\rangle]]
$$

Lemma 4. We have (i) $\mathrm{T}^{+} \vdash N(\langle\perp, \perp\rangle)$, (ii) $\mathrm{T}^{+} \vdash \forall x[N(x) \rightarrow N(\langle x, \perp\rangle)]$ and (iii) $\mathrm{T}^{+} \vdash \forall y z[N(y) \wedge z \sqsubseteq y \rightarrow(z=\perp \vee N(z))]$.

Proof. It follows from $\mathrm{T}_{1}, \mathrm{~T}_{3}$ and T_{4} that (i) holds. In order to see that (ii) holds, assume $N(x)$ (we will argue that $N(\langle x, \perp\rangle)$ holds). Suppose $y \sqsubseteq\langle x, \perp\rangle$. Now, $N(\langle x, \perp\rangle)$ follows from

$$
\begin{equation*}
y=\perp \vee \exists z[y=\langle z, \perp\rangle] \tag{5}
\end{equation*}
$$

Thus it is sufficient to argue that (5) holds. By T_{4}, we know that $y \sqsubseteq\langle x, \perp\rangle$ implies $y=\langle x, \perp\rangle \vee y \sqsubseteq x \vee y \sqsubseteq \perp$. The case $y=\langle x, \perp\rangle$: We obviously have $\exists z[y=\langle z, \perp\rangle]$ and thus (5) holds. The case $y \sqsubseteq x$: (5) holds since $N(x)$ holds. The case $y \sqsubseteq \perp$: We have $y=\perp$ by T_{3}, and thus (5) holds. This proves (ii).

We turn to the proof of (iii). Suppose $N(y) \wedge z \sqsubseteq y$ (we show $z=\perp \vee N(z)$). Assume $w \sqsubseteq z$. By T_{6}, we have $w \sqsubseteq y$, moreover, since $N(y)$ holds, we have $w=\perp \vee \exists u[w=\langle u, \perp\rangle]$. Thus, we conclude that

$$
\begin{equation*}
\forall w \sqsubseteq z[w=\perp \vee \exists u[w=\langle u, \perp\rangle]] . \tag{6}
\end{equation*}
$$

Now

$$
z=\perp \vee \underbrace{(z \neq \perp \wedge \forall w \sqsubseteq z[w=\perp \vee \exists u[w=\langle u, \perp\rangle]])}_{N(z)}
$$

follows tautologically from (6).

We interpret 0 as $\langle\perp, \perp\rangle$. We interpret the successor function $S x$ as $\lambda x .\langle x, \perp\rangle$. To improve the readability we will occasionally write $\dot{0}$ in place of $\langle\perp, \perp\rangle, \mathrm{S} t$ in place of $\langle t, \perp\rangle$ and $t \in N$ in place of $N(t)$. We will also write $\exists x \in N[\eta]$ and $\forall x \in N[\eta]$ in place of, respectively, $\exists x[N(x) \wedge \eta]$ and $\forall x[N(x) \rightarrow \eta]$. Furthermore, $\mathbf{Q} x_{1}, \ldots, x_{n} \in N$ is shorthand for $\mathbf{Q} x_{1} \in N \ldots \mathbf{Q} x_{n} \in N$ where \mathbf{Q} is either \forall or \exists.

Lemma 5. The translations of $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ and Q_{3} are theorems of T^{+}.
Proof. The translation of Q_{1} is $\forall x, y \in N[x \neq y \rightarrow \dot{\mathrm{~S}} x \neq \dot{\mathrm{S}} y]$. By T_{2}, we have $x \neq y \rightarrow \dot{\mathrm{~S}} x \neq \dot{\mathrm{S}} y$ for any x, y, and thus, the translation of Q_{1} is a theorem of T^{+}.

The translation of Q_{2} is $\forall x \in N[\dot{\mathrm{~S}} x \neq \dot{0}]$. Assume $x \in N$. Then we have $x \neq \perp$, and by T_{2}, we have $\dot{\mathrm{S}} n \equiv\langle x, \perp\rangle \neq\langle\perp, \perp\rangle \equiv \dot{0}$.

The translation of Q_{3} is $\forall x \in N[x=\dot{0} \vee \exists y \in N[x=\dot{\mathrm{S}} y]]$. Assume $x \in N$, that is, assume

$$
\begin{equation*}
x \neq \perp \wedge \forall y \sqsubseteq x[y=\perp \vee \exists z[y=\langle z, \perp\rangle]] . \tag{7}
\end{equation*}
$$

By T_{5}, we have $x \sqsubseteq x$. By (7) and $x \sqsubseteq x$, we have

$$
x \neq \perp \wedge(x=\perp \vee \exists z[x=\langle z, \perp\rangle])
$$

and then, by a tautological inference, we also have $\exists z[x=\langle z, \perp\rangle]$. Thus, we have z such that $\langle z, \perp\rangle \equiv \dot{\mathrm{S}} z=x \in N$. By Lemma 4 (iii), we have $z=\perp \vee z \in N$. If $z=\perp$, we have $x=\langle\perp, \perp\rangle \equiv \dot{0}$. If $z \in N$, we have $z \in N$ such that $x=\dot{\mathrm{S}} z$. Thus, $\mathrm{T}^{+} \vdash \forall x \in N[x=\dot{0} \vee \exists y \in N[x=\dot{\mathrm{S}} y]]$.

Before we give the translation of A, we will provide some intuition. The predicate $A(a, b, c)$ holds in the standard model for Q^{-}iff $a+b=c$. Let $\widetilde{0} \equiv \dot{0}$ and $\widetilde{n+1} \equiv \dot{\mathrm{~S}} \tilde{n}$, and observe that $a+b=c$ iff there exists an \mathcal{L}_{T}-term of the form

$$
\begin{equation*}
\langle\ldots\langle\langle\langle\perp,\langle\widetilde{a}, \widetilde{0}\rangle\rangle,\langle\widetilde{a+1}, \widetilde{1}\rangle\rangle,\langle\widetilde{a+2}, \widetilde{2}\rangle\rangle \ldots,\langle\widetilde{a+b}, \widetilde{b}\rangle\rangle \tag{8}
\end{equation*}
$$

where $c=a+b$. We will give a predicate ϕ_{A} such that $\phi_{A}(\widetilde{a}, \widetilde{b}, w)$ holds in T^{+} iff w is of the form (8). Thereafter we will use ϕ_{A} to give the translation Ψ_{A} of A.

Let $\phi_{A}(x, y, w) \equiv$

$$
\begin{aligned}
(y=\dot{0} \rightarrow w=\langle\perp,\langle x, \dot{0}\rangle\rangle) \wedge \exists w^{\prime} \exists z \in N[w & \left.=\left\langle w^{\prime},\langle z, y\rangle\right\rangle\right] \wedge \\
& \forall u \forall Y, Z \in N\left[\theta_{A}(u, w, Y, Z)\right]
\end{aligned}
$$

where $\theta_{A}(u, w, Y, Z) \equiv$

$$
\begin{aligned}
&\langle u,\langle Z, Y\rangle\rangle \sqsubseteq w \wedge Y \neq \dot{0} \rightarrow \\
& \exists v \exists Y^{\prime} Z^{\prime} \in N\left[Z=\dot{\mathrm{S}} Z^{\prime} \wedge Y=\right. \dot{\mathrm{S}} Y^{\prime} \wedge u=\left\langle v,\left\langle Z^{\prime}, Y^{\prime}\right\rangle\right\rangle \wedge \\
&\left.\left(Y^{\prime}=\dot{0} \rightarrow\left(Z^{\prime}=x \wedge v=\perp\right)\right)\right] .
\end{aligned}
$$

The translation Ψ_{A} of A is $\Psi_{A}(x, y, z) \equiv$

$$
\exists w\left[\phi_{A}(x, y, w) \wedge \exists w^{\prime}\left[w=\left\langle w^{\prime},\langle z, y\rangle\right\rangle\right] \wedge \forall u\left[\phi_{A}(x, y, u) \rightarrow u=w\right]\right] .
$$

Lemma 6.

$$
\mathrm{T}^{+} \vdash \forall x \in N \forall w\left[\phi_{A}(x, \dot{0}, w) \leftrightarrow w=\langle\perp,\langle x, \dot{0}\rangle\rangle\right] .
$$

Proof. We assume $x \in N$ and prove the equivalence

$$
\begin{equation*}
\phi_{A}(x, \dot{0}, w) \leftrightarrow w=\langle\perp,\langle x, \dot{0}\rangle\rangle \tag{9}
\end{equation*}
$$

The left-right direction of (9) follows straightforwardly from the definition of ϕ_{A}. To prove the right-left implication of (9), we need to prove $\phi_{A}(x, \dot{0},\langle\perp,\langle x, \dot{0}\rangle\rangle)$. It is easy to see that $\phi_{A}(x, \dot{0},\langle\perp,\langle x, \dot{0}\rangle\rangle)$ holds if

$$
\begin{equation*}
\forall u \forall Y, Z \in N\left[\theta_{A}(u,\langle\perp,\langle x, \dot{0}\rangle\rangle, Y, Z)\right] \tag{10}
\end{equation*}
$$

holds, and to show (10), it suffices to show that

$$
\begin{equation*}
x, Y, Z \in N \text { and }\langle u,\langle Z, Y\rangle\rangle \sqsubseteq\langle\perp,\langle x, \dot{0}\rangle\rangle \text { and } Y \neq \dot{0} \tag{11}
\end{equation*}
$$

is a contradiction. (If (11) is a contradiction, then (10) will hold as the antecedent of θ_{A} will be false for all $x, Y, Z \in N$ and all u.)

By T_{4} and $\langle u,\langle Z, Y\rangle\rangle \sqsubseteq\langle\perp,\langle x, \dot{0}\rangle\rangle$ we have to deal with the following three cases: (a) $\langle u,\langle Z, Y\rangle\rangle=\langle\perp,\langle x, \dot{0}\rangle\rangle$, (b) $\langle u,\langle Z, Y\rangle\rangle \sqsubseteq \perp$ and (c) $\langle u,\langle Z, Y\rangle\rangle \sqsubseteq\langle x, \dot{0}\rangle$. Case: (a): We have $Y=\dot{0}$ by T_{2}, but we have $Y \neq \dot{0}$ in (11). Case (b): We have $\langle u,\langle Z, Y\rangle\rangle=\perp$ by T_{3}, and this contradicts T_{1}. Case (c):. By T_{4}, this case splits into the three subcases: (a') $\langle u,\langle Z, Y\rangle\rangle=\langle x, \dot{0}\rangle,\left(\mathrm{b}^{\text {' }}\right)\langle u,\langle Z, Y\rangle\rangle \sqsubseteq x$ and (c') $\langle u,\langle Z, Y\rangle\rangle \sqsubseteq \dot{0}$. Case (a'): We have $\langle u,\langle Z, Y\rangle\rangle=\langle x,\langle\perp, \perp\rangle\rangle$ since $\dot{0}$ is shorthand for $\langle\perp, \perp\rangle$. Thus, by T_{2}, we have $Z=\perp$ and $Y=\perp$. This contradicts $Y, Z \in N$. Case (b '): We have $\langle u,\langle Z, Y\rangle\rangle \sqsubseteq x$ and $x \in N$. By Lemma 4 (iii), we have $\langle u,\langle Z, Y\rangle\rangle=\perp$ or $\langle u,\langle Z, Y\rangle\rangle \in N$. Now, $\langle u,\langle Z, Y\rangle\rangle=\perp$ contradicts T_{1}. Furthermore, by our definitions, $\langle u,\langle Z, Y\rangle\rangle \in N$ implies that

$$
\forall y_{0} \sqsubseteq\langle u,\langle Z, Y\rangle\rangle\left[y_{0}=\perp \vee \exists z_{0}\left[y_{0}=\left\langle z_{0}, \perp\right\rangle\right]\right] .
$$

By T_{5}, we have $\langle u,\langle Z, Y\rangle\rangle=\perp \vee \exists z_{0}\left[\langle u,\langle Z, Y\rangle\rangle=\left\langle z_{0}, \perp\right\rangle\right]$, and this yields a contradiction together with T_{1} and T_{2}. Case (c^{\prime}) is similar to Case (a^{\prime}), but a bit simpler. This completes the proof of the lemma.

Lemma 7.

$$
\begin{aligned}
\mathrm{T}^{+} \vdash \forall x, y \in N \forall z w w^{\prime}\left[w=\left\langle w^{\prime},\langle z, y\rangle\right\rangle \wedge \phi_{A}(x, y, w) \rightarrow\right. \\
\left.\phi_{A}(x, \dot{\mathrm{~S}} y,\langle w,\langle\dot{\mathrm{~S}} z, \dot{\mathrm{~S}} y\rangle\rangle)\right] .
\end{aligned}
$$

Proof. We assume

$$
\begin{equation*}
x, y \in N \text { and } w=\left\langle w^{\prime},\langle z, y\rangle\right\rangle \text { and } \phi_{A}(x, y, w) . \tag{12}
\end{equation*}
$$

We need to prove $\phi_{A}(x, \dot{\mathrm{~S}} y,\langle w,\langle\dot{\mathrm{~S}} z, \dot{\mathrm{~S}} y\rangle\rangle) \equiv$

$$
\begin{align*}
(\dot{\mathrm{S}} y=\dot{0} \rightarrow w= & \langle\perp,\langle x, \dot{0}\rangle\rangle) \wedge \\
& \exists w_{0} \exists z_{0} \in N\left[\langle w,\langle\dot{\mathrm{~S}} z, \dot{\mathrm{~S}} y\rangle\rangle=\left\langle w_{0},\left\langle z_{0}, \dot{\mathrm{~S}} y\right\rangle\right\rangle\right] \wedge \\
& \forall u \forall Y, Z \in N\left[\theta_{A}(u,\langle w,\langle\dot{\mathrm{~S}} z, \dot{\mathrm{~S}} y\rangle\rangle, Y, Z)\right] \tag{13}
\end{align*}
$$

First we prove

$$
\begin{equation*}
z \in N \quad \text { and } \quad \dot{\mathrm{S}} z \in N \tag{14}
\end{equation*}
$$

Since $\phi_{A}(x, y, w)$ holds by our assumptions (12), we have $z_{1} \in N$ and w_{1} such that $w=\left\langle w_{1},\left\langle z_{1}, y\right\rangle\right\rangle$. We have also assumed $w=\left\langle w^{\prime},\langle z, y\rangle\right\rangle$. By T_{2}, we have $z=z_{1}$, and thus $z \in N$. By Lemma 4 (ii), we have $\dot{\mathrm{S}} z \in N$. This proves (14).

The second conjunct of (13) follows straightforwardly from (14). (simply let z_{0} be $\dot{\mathrm{S}} z$ and let w_{0} be w). The first conjunct follows easily from T_{2} and the assumption $y \in N$. Thus, we are left to prove the third conjunct of (13), namely

$$
\begin{align*}
& \forall u \forall Y, Z \in N[\langle u,\langle Z, Y\rangle\rangle \sqsubseteq\langle w,\langle\dot{\mathrm{~S}} z, \dot{\mathrm{~S}} y\rangle\rangle \wedge Y \neq \dot{0} \rightarrow \\
& \exists v \exists Y^{\prime} Z^{\prime} \in N\left[Z=\dot{\mathrm{S}} Z^{\prime} \wedge Y=\dot{\mathrm{S}} Y^{\prime} \wedge u=\left\langle v,\left\langle Z^{\prime}, Y^{\prime}\right\rangle\right\rangle \wedge\right. \\
& \left.\left.\quad\left(Y^{\prime}=\dot{0} \rightarrow\left(Z^{\prime}=x \wedge v=\perp\right)\right)\right]\right] \tag{15}
\end{align*}
$$

In order to do so, we assume

$$
\begin{equation*}
Y, Z \in N \text { and }\langle u,\langle Z, Y\rangle\rangle \sqsubseteq\langle w,\langle\dot{\mathrm{~S}} z, \dot{\mathrm{~S}} y\rangle\rangle \text { and } Y \neq \dot{0} \tag{16}
\end{equation*}
$$

and prove

$$
\begin{align*}
& \exists v \exists Y^{\prime} Z^{\prime} \in N\left[Z=\dot{\mathrm{S}} Z^{\prime} \wedge Y=\dot{\mathrm{S}} Y^{\prime} \wedge u=\left\langle v,\left\langle Z^{\prime}, Y^{\prime}\right\rangle\right\rangle \wedge\right. \\
& \left.\quad\left(Y^{\prime}=\dot{0} \rightarrow\left(Z^{\prime}=x \wedge v=\perp\right)\right)\right] \tag{17}
\end{align*}
$$

By our assumptions (16), we have $\langle u,\langle Z, Y\rangle\rangle \sqsubseteq\langle w,\langle\dot{\mathrm{~S}} z, \dot{\mathrm{~S}} y\rangle\rangle$, and then T_{4} yields three cases: (a) $\langle u,\langle Z, Y\rangle\rangle=\langle w,\langle\dot{\mathrm{~S}} z, \mathrm{~S} y\rangle\rangle$, (b) $\langle u,\langle Z, Y\rangle\rangle \sqsubseteq w$ and (c) $\langle u,\langle Z, Y\rangle\rangle \sqsubseteq\langle\dot{\mathrm{S}} z, \dot{\mathrm{~S}} y\rangle$. We prove that that (17) holds in each of these three cases.

Case (a): By_{2}, we have $u=w, Z=\dot{\mathrm{S}} z$ and $Y=\dot{\mathrm{S}} y$. By (14), we have $z \in N$. By (12), we have $y \in N$. Moreover, by (12), we also have $u=w=\left\langle w^{\prime},\langle z, y\rangle\right\rangle$. Thus there exist v and $Y^{\prime}, Z^{\prime} \in N$ such that

$$
Z=\dot{\mathrm{S}} Z^{\prime} \wedge Y=\dot{\mathrm{S}} Y^{\prime} \wedge u=\left\langle v,\left\langle Z^{\prime}, Y^{\prime}\right\rangle\right\rangle
$$

If $y=\dot{0}$, we must have $\langle v,\langle z, y\rangle\rangle=w=\langle\perp,\langle x, \dot{0}\rangle\rangle$ since $\phi_{A}(x, y, w)$ holds by our assumptions (12). By T_{2}, this implies $z=x$ and $v=\perp$. This proves that (17) holds in Case (a).

Case (b): By our assumptions (12), we have $\phi_{A}(x, y, w)$, and thus we also have $\theta_{A}(u, w, Y, Z) \equiv$

$$
\begin{align*}
& \langle u,\langle Z, Y\rangle\rangle \sqsubseteq w \wedge Y \neq \dot{0} \rightarrow \\
& \exists v \exists Y^{\prime} Z^{\prime} \in N\left[Z=\dot{\mathrm{S}} Z^{\prime} \wedge Y=\dot{\mathrm{S}} Y^{\prime} \wedge u=\left\langle v,\left\langle Z^{\prime}, Y^{\prime}\right\rangle\right\rangle\right) \wedge \\
& \tag{18}\\
& \left.\quad\left(Y^{\prime}=\dot{0} \rightarrow\left(Z^{\prime}=x \wedge v=\perp\right)\right)\right] .
\end{align*}
$$

We are dealing with a case where the antecedent of (18) holds, and thus (17) holds.

Case (c): This case is not possible. By T_{4}, this case splits into the subcases: ($\left.\mathrm{a}^{\prime}\right)\langle u,\langle Z, Y\rangle\rangle=\langle\dot{\mathrm{S}} z, \dot{\mathrm{~S}} y\rangle,\left(\mathrm{b}^{\prime}\right)\langle u,\langle Z, Y\rangle\rangle \sqsubseteq \dot{\mathrm{S}} z$ and ($\left.\mathrm{c}^{\prime}\right)\langle u,\langle Z, Y\rangle\rangle \sqsubseteq \dot{\mathrm{S}} y$. We prove that each of these subcases contradicts our axioms. Case (a'): Recall that $\dot{\mathrm{S}} y$ is shorthand for $\langle y, \perp\rangle$. Thus, by T_{2}, we have $Y=\perp$. This contradicts the assumption (12) that $Y \in N$. Case (b'): By Lemma 4 (iii), we have $\langle u,\langle Z, Y\rangle\rangle=\perp \vee N(\langle u,\langle Z, Y\rangle\rangle)$. Now, $\langle u,\langle Z, Y\rangle\rangle=\perp$ contradicts T_{1}. Furthermore, $N(\langle u,\langle Z, Y\rangle\rangle)$ implies that there is z_{0} such that $\langle u,\langle Z, Y\rangle\rangle=\left\langle z_{0}, \perp\right\rangle$. By T_{2}, we have $\langle Z, Y\rangle=\perp$. This contradicts T_{1}. Case (c^{\prime}) is similar to Case (b'). This proves that (17) holds, and thus we conclude that the lemma holds.

Lemma 8.

$$
\begin{aligned}
& \mathrm{T}^{+} \vdash \forall x y \in N \forall w\left[\phi_{A}(x, \dot{\mathrm{~S}} y, w) \rightarrow\right. \\
& \left.\quad \exists u \in N \exists w^{\prime}\left[w=\left\langle w^{\prime},\langle u, \dot{\mathrm{~S}} y\rangle\right\rangle \wedge \phi_{A}\left(x, y, w^{\prime}\right)\right]\right] .
\end{aligned}
$$

Proof. Let $x, y \in N$ and assume $\phi_{A}(x, \dot{\mathrm{~S}} y, w)$. Thus, we have w^{\prime} and $z \in N$ such that

$$
\begin{equation*}
w=\left\langle w^{\prime},\langle z, \dot{\mathrm{~S}} y\rangle\right\rangle \quad \text { and } \quad \forall u \forall Y, Z \in N\left[\theta_{A}(u, w, Y, Z)\right] \tag{19}
\end{equation*}
$$

Use the assumptions (19) to prove that $\phi_{A}\left(x, y, w^{\prime}\right) \equiv$

$$
\begin{align*}
\left(y=\dot{0} \rightarrow w^{\prime}=\langle\perp,\langle x, \dot{0}\rangle\rangle\right) \wedge \exists w^{\prime \prime} \exists z \in & N\left[w^{\prime}=\left\langle w^{\prime \prime},\langle z, y\rangle\right\rangle\right] \wedge \\
& \forall u \forall Y, Z \in N\left[\theta_{A}\left(u, w^{\prime}, Y, Z\right)\right] \tag{20}
\end{align*}
$$

holds. We omit the details.
Lemma 9. The translations of $\mathrm{A}, \mathrm{G}_{4}$ and G_{5} are theorems of T^{+}.
Proof. The translation of the axiom A is

$$
\forall x, y, z_{1}, z_{2} \in N\left[\Psi_{A}\left(x, y, z_{1}\right) \wedge \Psi_{A}\left(x, y, z_{2}\right) \rightarrow z_{1}=z_{2}\right]
$$

Assume $\Psi_{A}\left(x, y, z_{1}\right)$ and $\Psi_{A}\left(x, y, z_{2}\right)$. Then it follows straightforwardly from the definition of Ψ_{A} and T_{2} that $z_{1}=z_{2}$. Hence the translation is a theorem of T^{+}.

The translation of G_{4} is $\forall x \in N\left[\Psi_{A}(x, \dot{0}, x)\right]$, that is

$$
\begin{aligned}
& \forall x \in N \exists w\left[\phi_{A}(x, \dot{0}, w) \wedge \exists w^{\prime}\left[w=\left\langle w^{\prime},\langle x, \dot{0}\rangle\right\rangle\right]\right. \wedge \\
&\left.\forall u\left[\phi_{A}(x, \dot{0}, u) \rightarrow u=w\right]\right]
\end{aligned}
$$

We have

$$
\mathrm{T}^{+} \vdash \phi_{A}(x, \dot{0},\langle\perp,\langle x, \dot{0}\rangle\rangle) \text { and } \mathrm{T}^{+} \vdash \forall u\left[\phi_{A}(x, \dot{0}, u) \rightarrow u=\langle\perp,\langle x, \dot{0}\rangle\rangle\right.
$$

by Lemma 6, and it easy to see that the translation of G_{4} is a theorem of T^{+}.

The translation of G_{5} is

$$
\begin{equation*}
\forall x, y, u \in N\left[\exists z \in N\left[\Psi_{A}(x, y, z) \wedge u=\dot{\mathrm{S}} z\right] \rightarrow \Psi_{A}(x, \dot{\mathrm{~S}} y, u)\right] \tag{21}
\end{equation*}
$$

In order to prove that (21) can be deduced from the axioms of T^{+}, we assume $\Psi_{A}(x, y, z) \wedge u=\dot{\mathrm{S}} z$. Then we need to prove $\Psi_{A}(x, \dot{\mathrm{~S}} y, \dot{\mathrm{~S}} z) \equiv$

$$
\begin{align*}
& \exists w\left[\phi_{A}(x, \dot{\mathrm{~S}} y, w) \wedge \exists w^{\prime}\left[w=\left\langle w^{\prime},\langle\dot{\mathrm{S}} z, \dot{\mathrm{~S}} y\rangle\right\rangle\right]\right. \wedge \\
&\left.\forall u\left[\phi_{A}(x, \dot{\mathrm{~S}} y, u) \rightarrow u=w\right]\right] \tag{22}
\end{align*}
$$

By our assumption $\Psi_{A}(x, y, z)$ there is a unique w_{1} such that $\phi_{A}\left(x, y, w_{1}\right)$ and $w_{1}=\left\langle w_{0},\langle z, y\rangle\right\rangle$ for some w_{0}. By Lemma 7 , we have $\phi_{A}\left(x, \dot{\mathrm{~S}} y,\left\langle w_{1},\langle\dot{\mathrm{~S}} z, \dot{\mathrm{~S}} y\rangle\right\rangle\right)$. Thus, we have w_{2} such that $\phi_{A}\left(x, \dot{\mathrm{~S}} y, w_{2}\right)$ and $w_{2}=\left\langle w_{1},\langle\dot{\mathrm{~S}} z, \dot{\mathrm{~S}} y\rangle\right\rangle$. It is easy to see that (22) holds if w_{2} is unique. Thus we are left to prove the uniqueness of w_{2}, more precisely, we need to prove that

$$
\begin{equation*}
\forall W_{2}\left[\phi_{A}\left(x, \dot{\mathrm{~S}} y, W_{2}\right) \rightarrow W_{2}=w_{2}\right] \tag{23}
\end{equation*}
$$

In order to prove (23), we assume $\phi_{A}\left(x, \dot{\mathrm{~S}} y, W_{2}\right)$ (we will prove $W_{2}=w_{2}=$ $\left.\left\langle w_{1},\langle\dot{\mathrm{~S}} z, \dot{\mathrm{~S}} y\rangle\right\rangle\right)$. By our assumption $\phi_{A}\left(x, \dot{\mathrm{~S}} y, W_{2}\right)$ and Lemma 8, we have $u_{0} \in$ N and W_{1} such that $W_{2}=\left\langle W_{1},\left\langle u_{0}, \mathrm{~S} y\right\rangle\right\rangle$ and $\phi_{A}\left(x, y, W_{1}\right)$. We have argued that there is a unique $w_{1}=\left\langle w_{0},\langle z, y\rangle\right\rangle$ such that $\phi_{A}\left(x, y, w_{1}\right)$ holds. By this uniqueness, we have $W_{1}=w_{1}=\left\langle w_{0},\langle z, y\rangle\right\rangle$. So far we have proved

$$
w_{2}=\langle\overbrace{\left\langle w_{0},\langle z, y\rangle\right\rangle}^{w_{1}},\langle\dot{\mathrm{~S}} z, \dot{\mathrm{~S}} y\rangle\rangle \text { and } W_{2}=\langle\overbrace{\left\langle w_{0},\langle z, y\rangle\right\rangle}^{W_{1}},\left\langle u_{0}, \dot{\mathrm{~S}} y\right\rangle\rangle
$$

and then we are left to prove that $u_{0}=\dot{\mathrm{S}} z$. By our assumption $\phi_{A}\left(x, \dot{\mathrm{~S}} y, W_{2}\right)$, we have v and $Z^{\prime}, Y^{\prime} \in N$ such that $u_{0}=\dot{\mathrm{S}} Z^{\prime}, \dot{\mathrm{S}} y=\dot{\mathrm{S}} Y^{\prime}$ and $W_{1}=\left\langle v,\left\langle Z^{\prime}, Y^{\prime}\right\rangle\right\rangle$. Thus, $\left\langle v,\left\langle Z^{\prime}, Y^{\prime}\right\rangle\right\rangle=\left\langle w_{0},\langle z, y\rangle\right\rangle$. By T_{2}, we have $z=Z^{\prime}$, and thus, $u_{0}=\mathrm{S} Z^{\prime}=$ $\dot{\mathrm{S}} z$. This proves that (23) holds.

We will now give the translation Ψ_{M} of M. Let $\phi_{M}(x, y, w) \equiv$

$$
\begin{aligned}
(y=\dot{0} \rightarrow w=\langle\perp,\langle\dot{0}, \dot{0}\rangle\rangle) \wedge \exists w^{\prime} \exists z \in N[w & \left.=\left\langle w^{\prime},\langle z, y\rangle\right\rangle\right] \wedge \\
& \forall u \forall Y, Z \in N \theta_{M}(u, w, Y, Z)
\end{aligned}
$$

where $\theta_{M}(u, w, Y, Z) \equiv$

$$
\begin{aligned}
\langle u,\langle Z, Y\rangle\rangle & \sqsubseteq w \wedge Y \neq \dot{0} \rightarrow \exists v \exists Y^{\prime}, Z^{\prime} \in N\left[\Psi_{A}\left(Z^{\prime}, x, Z\right) \wedge\right. \\
& \left.Y=\dot{\mathrm{S}} Y^{\prime} \wedge u=\left\langle v,\left\langle Z^{\prime}, Y^{\prime}\right\rangle\right\rangle \wedge\left(Y^{\prime}=\dot{0} \rightarrow Z^{\prime}=\dot{0} \wedge v=\perp\right)\right]
\end{aligned}
$$

We let $\Psi_{M}(x, y, z) \equiv$

$$
\exists w\left[\phi_{M}(x, y, w) \wedge \exists w^{\prime}\left[w=\left\langle w^{\prime},\langle z, y\rangle\right\rangle \wedge \forall u\left[\phi_{M}(x, y, u) \rightarrow u=w\right]\right] .\right.
$$

The translations of M, G_{6} and G_{7} are

$$
\begin{aligned}
& \mathrm{M} \quad \forall x, y, z_{1}, z_{2} \in N\left[\Psi_{M}\left(x, y, z_{1}\right) \wedge \Psi_{M}\left(x, y, z_{2}\right) \rightarrow z_{1}=z_{2}\right] \\
& \mathrm{G}_{6} \forall x \in N[M(x, \dot{0}, \dot{0})] \\
& \mathrm{G}_{7} \quad \forall x, y, u \in N\left[\exists z \in N\left[\Psi_{M}(x, y, z) \wedge \Psi_{A}(z, x, u)\right] \rightarrow \Psi_{M}(x, \dot{\mathrm{~S}} y, u)\right]
\end{aligned}
$$

The proof of the next lemma follows the lines of the proof of Lemma 9. We omit the details.

Lemma 10. The translations of $\mathrm{M}, \mathrm{G}_{6}$ and G_{7} are theorems of T^{+}.
Theorem 11. Q is interpretable in T .
Proof. It is proved in Svejdar [8] that Q is interpretable in Q^{-}. It follows from the lemmas above that Q^{-}is interpretable in T^{+}which again is interpretable in T. Hence the theorem holds.

References

1. Cheng, Y.: Finding the limit of incompleteness I. arXiv:1902.06658v2
2. Damnjanovic, Z.: Mutual interpretability of Robinson arithmetic and adjunctive set theory. Bulletin of Symbolic Logic 23 (2017), 381-404.
3. Grzegorczyk, A. and Zdanowski, K.: Undecidability and concatenation. In: Ehrenfeucht et al., "Andrzej Mostowski and Foundational Studies", pp. 7291, IOS, Amsterdam, 2008.
4. Higuchi, K. and Horihata, Y.: Weak theories of concatenation and minimal essentially undecidable theories. Archive for Mathematical Logic, 53 (2014), 835-853.
5. Jerabek, E.: Recursive functions and existentially closed structures. Journal of Mathematical Logic (published online: 8 August 2019), https://doi.org/10.1142/S0219061320500026
6. Jones, J. and Shepherdson, J.: Variants of Robinson's essentially undecidable theory R. Archiv für mathematische Logik und Grundlagenforschung 23 (1983), 61-64.
7. Kristiansen, L. and Murwanashyaka, J.: First-order concatenation theory with bounded quantifiers. Archive for Mathematical Logic (accepted).
8. Svejdar, V.: An interpretation of Robinson arithmetic in its Grzegorczyk's weaker variant. Fundamenta Informaticae 81 (2007), 347-354.
9. Tarski, A., Mostowski, A. and Robinson, R. M.: Undecidable theories. NorthHolland, Amsterdam (1953).
10. Visser, A.: Growing commas. A study of sequentiality and concatenation. Notre Dame Journal of Formal Logic, 50 (2009), 61-85.
11. Visser, A.: Why the theory R is special. In: Neil Tennant, "Foundational Adventures. Essays in honour of Harvey Friedman", pp. 7-23. College Publications, UK, 2014.
