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SUMMARY

Experimental findings show the ubiquitous presence
of graded responses and tuning curves in the
neocortex, particularly in visual areas [1–15]. Among
these, inferotemporal-cortex (IT) neurons respond to
complex visual stimuli, but differences in the neu-
rons’ responses can be used to distinguish the
stimuli eliciting the responses [8, 9, 16–18]. The IT
projects directly to the medial temporal lobe (MTL)
[19], where neurons respond selectively to different
pictures of specific persons and even to their written
and spoken names [20–22]. However, it is not clear
whether this is done through a graded coding, as in
the neocortex, or a truly invariant code, in which the
response-eliciting stimuli cannot be distinguished
from each other. To address this issue, we recorded
single neurons during the repeated presentation of
different stimuli (pictures and written and spoken
names) corresponding to the same persons. Using
statistical tests and a decoding approach, we found
that only in a minority of cases can the different pic-
tures of a given person be distinguished from the
neurons’ responses and that in a larger proportion
of cases, the responses to the pictures were different
to the ones to the written and spoken names. We
argue that MTL neurons tend to lack a representation
of sensory features (particularly within a sensory mo-
dality), which can be advantageous for the memory
function attributed to this area [23–25], and that a
full representation of memories is given by a combi-
nation of mostly invariant coding in the MTL with a
representation of sensory features in the neocortex.

RESULTS

Experimental Paradigm and Neural Recordings
We recorded single neuron activity during 16 sessions in six pa-

tients with drug-resistant epilepsy, who were candidates for
1152 Current Biology 30, 1152–1159, March 23, 2020 ª 2020 The Au
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surgical treatment and implanted with intracranial electrodes

(STAR Methods). For each identity used in an experimental ses-

sion, a total of five stimuli were presented: three different pic-

tures, the name written on the screen, and the name spoken

by a computer-synthesized voice. Each stimulus was presented

30 times in pseudorandom order (in contrast to the limited six tri-

als used inmany previous works). From the 450 units recorded in

these sessions, the response criterion (STAR Methods; Fig-

ure S1) led to a set of 159 responses in 35 units (16 from amyg-

dala and 19 from hippocampus).
Invariant Responses in the Human MTL
Figure 1A shows an example of a unit from the hippocampus re-

sponding to all the stimuli associated to the actor ‘‘Jackie Chan.’’

From an average baseline firing of 3.65 Hz (SD 3.89), upon pre-

sentation of these stimuli, the neuron increased its firing to an

average of 14.19 Hz (SD 5.66,) with peaks of up to 30 Hz, in

the response window. Figure 1B shows another example of a

unit responding to all the stimuli associated to a TV host in

Argentina. In this case, from an average baseline firing of

3.05 Hz (SD 2.76), the neuron had an average firing of 11.67 Hz

(SD 4.96) in response to these stimuli. Although most units re-

sponded selectively to a single identity, there were several neu-

rons (7 out of 35) showing responses to more than one identity.

One example is shown in Figure S2, where a hippocampal

neuron responded to the stimuli associated to three TV

celebrities.

The normalized firing rate and response latency for all 159

response-eliciting stimuli are shown in Figure 2A. First, the re-

sponses to text and sound stimuli exhibit larger latencies than

those to pictures. Moreover, the responses to the pictures

have been sorted by the latency of the 47 response-eliciting

identities, and although they cover a wide 250-ms latency range

for the whole dataset, it can be seen that the responses within a

given identity are clustered together.

To further understand the response characteristics of these

neurons, we first analyzed the degree of visual invariance

observed in the single unit responses (Figure 2B). For each

response-eliciting identity, we compared the spike count associ-

ated with the three pictures against the one of three randomly

selected pictures from the other identities (STAR Methods). We
thors. Published by Elsevier Ltd.
commons.org/licenses/by/4.0/).
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Figure 1. Exemplary Invariant Units

(A) Responses of a unit in the left hippocampus. For each stimulus, the raster plot (blue lines represent the appearance of a spike and each row is associated to a

trial; first trial is at the top and time zero is the stimulus onset) and instantaneous firing rate are shown. Stimulus numbers appear next to the stimulus pictures. The

unit responded to actor ‘‘Jackie Chan’’ but not to another actor, ‘‘Luciano Castro.’’

(B) Responses of a unit in the left hippocampus. The unit responded to all stimuli associated to a TV host (‘‘Topa’’) but not to pictures of a cat or the written or

spoken name ‘‘Gato’’ (cat). For space reasons, only 10 of 20 stimuli are shown on each panel, but there were no significant responses to the other stimuli not

shown.

See Figure S1 for further examples of response-eliciting stimuli and Figure S2 for another example of a neuron responding to multiple identities.
found that 36 out of 47 identities (77%) showed significant visual

invariance, indicating a tendency to respond to different pictures

from a particular identity, which is consistent with previously
reported results in the amygdala and hippocampus [20]. For

simplicity, we named this invariance, although it does not imply

that the responses to the different pictures are indistinguishable,
Current Biology 30, 1152–1159, March 23, 2020 1153
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Figure 2. Response Characteristics of the

Population of Recorded Cells

(A) Normalized firing rate for all response-eliciting

stimuli, separated by stimulus type (picture, text,

and sound). Within the pictures, the 47 response-

eliciting identities are separated by black lines and

sorted by their shortest latency. Response latency

for each stimulus is denoted by a red star. Fig-

ure S2 shows a neuron with 15 response-eliciting

stimuli from three different identities.

(B) The proportion of response-eliciting identities

was evaluated in different conditions and segre-

gated between the units in the hippocampus and

amygdala. In both regions, similar proportions

were found for visual stimuli (for visual invariance

and for the proportion of identities showing re-

sponses to more than one picture), but larger

proportions in the hippocampus were seen for

text and sound stimuli. In the case of triple

invariance, i.e., identities showing visual invari-

ance and responses to the text and sound stimuli,

the proportion of identities in the hippocampus

was significantly larger than in amygdala (Z test,

p < 0.05).

(C) Histograms for the normalized strength of

activity in all the responsive units, computed for all

the stimuli presented in each session and sepa-

rated according to whether or not they were

responsive.

(D) Strength (baseline corrected) and latency for

each picture in 25 out of the 47 response-eliciting

identities (the remaining 22 are presented in

Figures S3A and S3B). Each triplet associated to a given identity is depicted as a triangle of a given color with each picture corresponding to the vertices of the

triangle.

(E) Average joint distance (in the strength-latency space presented in Figure 3D) for the three pictures of a given identity (left), and triplets created by randomly

selecting three pictures out of the 141 pictures (right). Mean ± standard error of themean is shown in red, while boxplots are in blue (center line, median; box limits,

upper and lower quartiles; notch limits, (1.573 interquartile range)/sqrt(n)) with thewhiskers in black extending to themost extreme data points not considered as

outliers. There were significant differences between the two populations (rank-sum test, p �10�17).

See Figures S3E and S3F for the independent analysis of strength and latency.
as described below (see Discussion). We also observed that if

there was a response to at least one picture from a given identity,

the probability of responding to another picture from the same

identity was 0.78.

For visual stimuli, we did not observe differences between the

responses in the hippocampus and amygdala (Z test, p > 0.64).

When text and sound stimuli were considered, 38% and 45% of

the identities showed significant responses, respectively, with

larger proportions in hippocampus compared to the amygdala.

Moreover, 28% of the identities showed visual invariance and

significant text and sound responses (two such identities are

shown in Figure 1), and when these results were segregated be-

tween hippocampus and amygdala, we found that this propor-

tion was significantly larger in the hippocampus (Z test, p <

0.05). All of these results are also consistent with previously re-

ported results [20].

Neural Responses to Different Stimuli from the Same
Identity
Next, we quantified the normalized strength of the activity of

every responsive unit to both response- and non-response-elic-

iting stimuli. As it can be seen in Figure 2C, a neuron showed zero

strength in response to most of the non-response-eliciting
1154 Current Biology 30, 1152–1159, March 23, 2020
stimuli, while it responded similarly and with its maximum

strength to most of the response-eliciting stimuli. This result

points toward a nearly binary code, where neurons mainly

respond to the stimuli with maximum (minimum) strength.

Following the idea introduced in [26], we studied whether the

neurons showed neural unitization in their responses to a given

identity, i.e., if individual neurons exhibited no differences in

response strength or latency to the different pictures associated

to a given identity. Figure 2D shows the response strength (base-

line subtracted) and latency for each triplet of pictures on 25 out

of the 47 response-eliciting identities (for space reasons, the re-

maining 22 are shown in Figures S3A and S3B). Overall, re-

sponses show a wide range of strengths and latencies (the full

strength and latency distributions can be seen in Figures S3C

and S3D), but most identities exhibit responses that appear

close to each other (i.e., with similar strength and latency).

To further quantify the similarity between the responses within

each identity, we computed the average joint distance between

the three pictures of a given identity (normalizing strength and la-

tency between 0 and 1) and compared them with the ones of

randomly chosen triplets (i.e., randomly selecting three pictures

out of the 141 pictures arising from the 47 response-eliciting

identities). Figure 2E shows the distribution of joint distances
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Figure 3. Comparison of Responses within

and between Identities

(A) Percentage of pairs exhibiting significant differ-

ences in strength (left) and latency (right) according

to a permutation test for the response-eliciting pairs

‘‘within identity.’’ The pairs could be formed by two

responsive pictures (PIC versus PIC), one respon-

sive picture and the written name from the same

identity (PIC versus TXT), or one responsive picture

and the spoken name from the same identity (PIC

versus SND). The percentage was significantly

smaller for thePIC versusPIC casewhencompared

with the others. *p < 0.05; **p < 10�6. An alternative

analysis was performed using a decoding

approach. Figure S4 shows an example of a

decoder being unable to significantly distinguish

among the stimuli within a given identity.

(B) Proportion of pairs exhibiting significant dif-

ferences in strength (left) and latency (right)

according to a permutation test for the response-

eliciting pairs ‘‘within identity’’ (from the current

dataset) and ‘‘between identities’’ (from the data-

set reported in [26], see STAR Methods). These

proportions showed no significant differences

across the datasets for strength (Z test, p = 0.15),

but the proportion for the within identity dataset

was significantly smaller than for the between

identities dataset (Z test, p = 7.3 3 10�3).

(C) Distributions of the normalized difference in strength of response for each dataset. Vertical arrows denote the median of the corresponding distributions.

There was no significant difference between them (rank-sum test, p = 0.12).

(D) Same as in (C) but for differences in latency. We observed that the latency difference was significantly smaller for within identity pairs than for between

identities pairs (rank-sum test, p �10�8).
for the response-eliciting identities and for the random triplets,

which were significantly different (rank-sum test, p �10�17). In

Figures S3E and S3F, we repeated the same analysis but sepa-

rately for strength and latency, finding again significant differ-

ences when comparing the response-eliciting identities and

the random triplets (rank-sum test, p �10�7 and p �10�17,

respectively).

Comparison of Responses to Stimuli from the Same
Identity
Using the same methodology as in [26], we analyzed differ-

ences in the strength and latency for pairs of stimuli using a

permutation test (i.e., shuffling the label of the stimulus shown

on each trial). First, we started with the pairs generated from all

the stimuli associated to the 47 response-eliciting identities,

regardless of whether or not the individual stimuli passed the

response criterion. When we applied the permutation test to

all 141 pairs of pictures, we found 25% and 10% of them ex-

hibited significant differences in strength and latency, respec-

tively. This is consistent with the results depicted in Figures

2D and 2E that show the similarity of the neural responses

across different pictures from the same identity. When consid-

ering pairs of stimuli formed by one responsive picture and the

written name of the same identity, 57% and 50% of them ex-

hibited significant differences in strength and latency, respec-

tively; these values are significantly larger than those from the

pairs of pictures (Z test, p �10�8 and p �10�13, respectively).

Similarly, when considering pairs with one responsive picture

and the spoken name of the same identity, 50% and 49% of
them exhibited significant differences in strength and latency,

respectively; these values are again significantly larger than

those from the pairs of pictures (Z test, p �10�6 and p

�10�12, respectively).

Next, we run the same tests but only for response-eliciting

pairs, i.e., where both stimuli in the pair satisfied the response

criterion. When the surrogate test was applied to the

response-eliciting pairs of pictures from the same identity, we

found that only 20% and 8% of them exhibited significant differ-

ences in strength and latency, respectively (Figure 3A). The fact

that these numbers are similar to the ones obtained for all of the

pairs from the response-eliciting identities emphasizes again

that most of them were indeed formed by response-eliciting

stimuli.

When considering pairs of stimuli formed by one responsive

picture and the written name of the same identity, 35% and

44% of them exhibited significant differences in strength and la-

tency, respectively (Figure 3A); these values are significantly

larger than those from the pairs of pictures (Z test, p = 0.039

and p �10�7, respectively). In line with these results, when

considering pairs with one responsive picture and the spoken

name of the same identity, 37% and 55% of them exhibited sig-

nificant differences in strength and latency, respectively (Fig-

ure 3A); these values are again significantly larger than those

from the pairs of pictures (Z test, p = 0.017 and p �10�10,

respectively). The proportion of pairs with significant differences

in latency is higher than the one obtained previously for all the

pairs because the responses to the spoken name have much

larger latencies than those of non-responsive stimuli.
Current Biology 30, 1152–1159, March 23, 2020 1155



Predicting Stimuli Based on Single-Trial Spike Count in
the Response Period
We further evaluated the proportion of neurons showing differ-

ences in strength using a decoding approach. First, we trained

a naive Bayesian decoder choosing randomly one response-

eliciting stimulus and one stimulus from a non-response eliciting

identity, and then used all the other stimuli to test whether the

decoder could correctly distinguish between responsive and

non-responsive identities. We found that 33 out of 35 neurons

(94%) exhibited significant decoding performance (in the other

two cases, performance was close to significant with p values

of 0.06 and 0.07, respectively).

Then, we used a decoder to see if each picture from the

response-eliciting identities could be predicted based on the sin-

gle-trial response strength (STARMethods). Figure S4 shows the

confusion matrix for the three pictures of ‘‘Charlotte Caniggia’’

that elicited responses in a left hippocampus neuron. As the de-

coding performance (30%) was not significantly different from

chance (p = 0.72), the three pictures were indistinguishable

from each other. Across all of the responsive units, it was only

possible to predict (above chance) the stimuli to which the neu-

rons responded in 7 out of 35 units (20%), which is consistent

with the 20% of pairs with significant differences observed

with the surrogate tests described above.

To further emphasize the nearly binary code for each identity,

we repeated the decoding analysis after binarizing the re-

sponses using a threshold on the strength (STAR Methods),

finding a similar percentage of neurons with significant decoding

performance (8 out of 35, 23%).

Responses within and between Identities
We compared the results from this experiment, where pairs of

response-eliciting pictures from the same identity were con-

structed for each responsive unit, with the ones from another

dataset reported in [26], where we analyzed pairs of response-

eliciting pictures for each responsive unit that came from

different identities (STAR Methods).

Figure 3B shows that when permutation tests were applied to

the response-eliciting pairs from the dataset reported in [26]

(‘‘Dataset 2’’; between identity pairs), 14% of the pairs showed

significant differences in strength, a percentage not significantly

different to the 20% observed in the current dataset (‘‘Dataset

1’’; within identity pairs; Z test, p = 0.15). In addition, we

computed the distributions of the normalized difference in

strength of response for each dataset (Figure 3C) and found no

significant difference between them (rank-sum test, p = 0.12).

However, the results were different when we performed the an-

alyses on the spike response latency. Using the permutation

tests, we found that 19% of the response-eliciting pairs in Data-

set 2 showed significant differences in latency (Figure 3B), which

was a significantly larger proportion than the 9% observed in

Dataset 1 (Z test, p = 0.007). Moreover, when comparing the dis-

tributions of the difference in spike response latency (Figure 3D),

we observed that the latency difference was significantly smaller

for ‘‘within identity pairs’’ than for ‘‘between identity pairs’’ (rank-

sum test, p�10�8). This could be due to the presence of a larger

set of neurons responding to pictures of the same identity,

compared with those responding to associated pictures, thus

homogenizing the latency of the responses in the former case.
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To rule out that this result could be associated to a difference

in the distribution of response latencies across datasets (e.g.,

the latencies in Dataset 1 being significantly smaller than in Data-

set 2), we compared them and found no significant difference

between them (rank-sum test, p = 0.41).

DISCUSSION

Here, we described visually invariant responses in the human

MTL, in the sense that the responses to different pictures were

mostly indistinguishable from each other based on the response

strength and latency. This is in contrast to the typical finding of

graded responses in the neocortex [1, 2]. IT neurons respond

to complex visual features, like specific objects, and show

graded responses to object rotations but, at the same time,

some degree of invariance to simple image manipulations,

such as size and position [4–9]. However, in this context, invari-

ance is taken as a preserved selectivity across large variations of

these parameters (i.e., the neuron continues to have a stronger

response to a particular item) but without necessarily implying

the same neuronal response in all conditions. In fact, in these

cases, it is typical to observe a clear tuning of the neurons’ re-

sponses [1, 2, 4, 16, 17], and differences in the responses can

be used to distinguish the response-eliciting stimuli [8, 9,

16–18]. A large number of studies has shown responses of IT

neurons to faces [9] but also with a graded coding [7], particularly

when shown with different orientations [10, 11] or levels of

morphing [12], among other manipulations.

In previous works [20, 21], we have shown that MTL neurons

tend to fire to pictures of specific persons (and to the persons’

written and spoken names), but because of the relatively low

number of trials used in these studies (six trials per stimuli),

we could not statistically compare the responses to the

different pictures (and names) of the same persons. To address

this issue, in this study, we have used 30 presentations per

stimulus and, in contrast to the findings in the neocortex

studies described above, we have shown that MTL responses

were nearly binary, meaning that response-eliciting stimuli trig-

gered the same activations while other stimuli elicited activa-

tions at baseline levels—i.e., without showing a graded coding.

The finding of an indistinguishable response strength cannot be

attributed to a choice of a relatively large threshold for defining

responses. In fact, responses of different neurons covered a

wide range of firing above baseline (see Figures 2D and S3C),

and furthermore, we reduced the response threshold criterion

(from 5 SD to 4 SD) to avoid artificially separating responses

that were close to this value; however, we kept a criterion of

5 SD for initially defining responsive identities to avoid too

many false positives (see Figure S1). Moreover, a single-trial

decoding approach, which does not rely on any responsive-

ness criterion, gave very similar results. However, different re-

sults were seen when considering the responses to the written

and spoken names. In this case, the responses to the names

tended to be different than the ones to the pictures, likely

because of very different cortical inputs.

MTL neurons do not act in isolation but are rather part of cell

assemblies representing specific concepts [22]. These assem-

blies are very sparse, eliciting the firing of about 0.2% of the neu-

rons to a given familiar concept (e.g., a particular person) [27].



Figure 4. Schematic Summarizing Some of

the Results

When a picture from Bill Clinton is shown, a cell

assembly of MTL neurons will fire in response to

the stimulus. When another picture from Bill Clin-

ton is presented, the set of MTL neurons firing has

a large overlap (�80%) with the previous assem-

bly. When the written name is presented, the

overlap of activated neurons is much lower

(�40%), as the very different sensory information

carried by the name leads to very distinct cortical

inputs to the MTL. In turn, the results from [28]

showed that when the picture of Hillary Clinton is

presented, a highly associated concept to Bill

Clinton, a small overlap of �4% will be activated

by both stimuli. Still, this small proportion is much

larger than the < 1% observed for non-associated

pictures (e.g., Bill Clinton and Lionel Messi),

providing a substrate for encoding a meaningful

association.
About 70%–80% of these neurons fired indistinguishably to

different pictures of this particular person. Therefore, it is not

possible from the firing of the individual neurons to distinguish

between different persons eliciting the neurons’ responses,

and such a distinction is determined by the activation of different

neural assemblies. Given the graded responses in cortex, we

can then postulate that different pictures of a particular identity

trigger different cortical representations that initially ignite

different subsets of an MTL cell assembly but rapidly activate

most of it through pattern completion.

In a previous study, we showed that MTL neurons tend to

respond to associated identities [28]. Moreover, we estimated

that given a response to a first identity, the probability that a

MTL neuron will fire to a second highly associated identity

(e.g., Bill Clinton and Hillary Clinton in Figure 4) is about 4%

[28]. Furthermore, the responses to associated identities have

similar strength and latency—meaning that at the single neuron

level, it is not possible to distinguish two identities eliciting the

neuron’s responses [26]. The probability of the neuron re-

sponding to non-associated identities is much lower (< 1%;

e.g., Bill Clinton and Lionel Messi in Figure 4) but can be rapidly

raised if the identities become associated [29]. Putting together

this evidence, we can postulate that the largely overlapping as-

sembly activation in the MTL by different pictures of the same

identity (�80%; Figure 4) leads to unitization at the behavioral

level [30]—i.e., the fact that two pictures of the same concept

convey the same meaning—whereas different but associated

identities give a much lower but still significant overlap

(�4%), which is low enough to distinguish the identities from

each other, yet, at the same time, large enough to encode

meaningful associations that may eventually lead to temporary

coactivations. Responses to the written or spoken names are in

between (�40%; Figure 4), which allows the ability to identify

that two stimuli refer to the same identity but still distinguishing

between the picture and the written name.

Studies in animals and patients have demonstrated the key

role of the MTL in declarative memory [23, 25, 31–33]. Within

this framework, it has been argued that the high-level invariant

responses by ‘‘concept cells’’ in the human MTL represent the

meaning of the stimulus for declarative, and particularly
episodic, memory functions [21, 22]. Episodic memories rely

on the encoding of associations between concepts [22, 24, 34,

35]. Contrasting with the graded responses in neocortex [4–6,

9–11, 13–15, 18], which may be useful for recognition in order

to detect changes in the environment, we can postulate that

the degree of visual invariance shown by MTL neurons leads to

a high degree of conceptualization and abstraction that is the ba-

sis of our memory functioning, because we tend to remember

concepts and forget irrelevant details [22]. Differences in the re-

sponses between different types of stimuli (i.e., pictures versus

written and spoken names) may allow the type of information

constituting a particular memory—i.e., whether we saw a partic-

ular event, heard, or read about it—to be distinguishable at the

MTL-neuron level.

The high degree of (particularly visual and, to a lesser extent,

also multimodal) invariance found in this study dramatically re-

duces the amount of information that needs to be stored inmem-

ory, at the cost of discarding perceptual features. Moreover, the

invariant coding by concept cells gives a representation that is

critical in order to understandmemory functioning and its capac-

ity, offering several advantages, such as efficiency, robustness,

flexibility, and ease of readout [36, 37]. We argue that such code

is ideal for the fast and efficient formation [29] and long-term

coding [28] of episodic memories, which are complemented by

sensory feature information stored in neocortex.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

MATLAB MathWorks https://www.mathworks.com

Wave_clus [38] [39] https://github.com/csn-le/wave_clus

Custom-built MATLAB code This paper https://www2.le.ac.uk/centres/csn/software

Psychtoolbox version 3 [40] http://psychtoolbox.org/

Text Aloud v3.0 NextUp Technologies https://nextup.com

Deposited Data

Spiking activity for the responses in the current dataset This paper 10.25392/leicester.data.11527983
LEAD CONTACT AND MATERIAL AVAILABILITY

Further information and requests for resources should be directed to the Lead Contact, Rodrigo Quian Quiroga (rqqg1@le.ac.uk).

This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We report results from 16 experimental sessions in 6 patients with drug resistant epilepsy that were candidates for surgery (all right-

handed, threemales, 19-49 years old). Patients were implanted with chronic depth electrodes at ‘‘Hospital El Cruce’’ in Buenos Aires,

Argentina. Theyweremonitored 24/7, for seven to ten days, to determine the epileptogenic region for possible surgical resection [41].

A written informed consent was signed by each patient to participate in this study. All the experimental procedures were carried out in

accordance with the Declaration of Helsinki and approved by ‘‘Hospital El Cruce’’ Medical Institutional Review Board.

METHOD DETAILS

Electrophysiological Recordings
Each electrode probe had a total of nine microwires at its end, eight active recording channels and one (low impedance) reference

(AD-TECH Medical Instrument Corporation, Wisconsin, USA). Electrode locations in hippocampus (11 probes) and amygdala (8

probes) were based exclusively on clinical criteria and were verified by CT co-registered to preoperative MRI. The signals were re-

corded using a 128-channel Cervello� Elite EEGSystem (BlackrockMicrosystems, UT, USA), filtered between 0.3 and 7,500 Hz, and

sampled at 30,000 Hz.

Experimental Paradigms
As in previous works [21, 41], a simple visual task was used to identify responsive stimuli. A standard laptop running the Psychophys-

ics Toolbox (www.psychtoolbox.org/ [40]) under MATLAB (https://www.mathworks.com) was used for stimulus presentation. The

subject was sitting facing the laptop in which a set of about 100 stimuli were presented, 6 times each in pseudorandom order using

a block design (i.e., if N stimuli are used in the session, all stimuli will be shown once, in random order, after the first block of N trials,

twice after the first 2*N trials, etc.). Each trial started with a fixation cross on the screen for 500ms, followed by a picture displayed for

1,000ms. Then, the screen went black and the patient had to press a key to respondwhether or not there was a person in the picture.

The inter-trial interval varied randomly between 600 and 800ms. These ‘screening sessions’ typically lasted about half an h. The set of

pictures used included items familiar to the patient, such as images of celebrities, landmarks, animals, and the patient’s relatives and

friends, as these tend to trigger MTL neuron responses [42].

Once it had been identified which picture/s triggered the firing of which neuron, between 3 and 5 of themwere selected for a follow-

up session. This two-step approach has been successfully used in the past [26], wherewe explicitly showed that this picture selection

did not introduce a bias toward high firing rate responses (i.e., we did not miss intermediate responses). In the experiment presented

here, a total of 5 stimuli were presented for each identity: 3 different pictures (one of them being the responsive picture from the initial

screening session), the name written on the screen, and the name spoken by a computer-synthesized voice (TextAloud v3.0; https://

nextup.com). Each of these stimuli were shown 30 times in pseudorandom order. The data reported here come from these follow-up

sessions. It should be emphasized that since we want to compare the responses to different stimuli from a given identity, a selection

of a subset of responsive stimuli from the screening session does not introduce a bias in our results, as we did not know in advance
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how the neuron will respond to the new 4 stimuli per identity presented in the follow-up session. Moreover, by excluding the pictures

already presented during the screening sessions, we found that if there was a response to at least one of the novel pictures from a

given identity, the probability of responding to the other picture from the same identity was 0.75. This result with only the novel pic-

tures is similar to the 0.78 observed for all the pictures.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single neuron response criterion
The collected data were processed offline, and the high-frequency activity (above 300 Hz) was extracted to identify the spikes of the

recorded neurons. Spike detection and sorting was done with Wave_clus [38, 39]. In order to assess whether a particular unit was

responsive to a certain stimulus, the following response criterion was implemented [26]: (i) the instantaneous firing rate had to cross

over a threshold for at least 75 ms (with the upward crossing defined as tTHR), with short periods of less than 20 ms going below

threshold being disregarded. The instantaneous firing rate was calculated by convolving the spike train with a Gaussian kernel

with s = 10ms (truncated at 1% amplitude). The threshold was set to themean plus 4 standard deviations, computed across all stim-

uli between 900 and 100 ms before stimulus onset (with a minimum at 5 Hz, for neurons with low baseline firing); (ii) the median num-

ber of spikes (across trials) in a 500-ms window from tTHR was at least 2, and larger than the mean plus 5 standard deviations (across

all stimuli) of the baseline activity, defined as the median number of spikes (across trials) between 200 and 700 ms before stimulus

onset (i.e., Z-score > 5); (iii) the p-value of a one-sided paired sign test between the spike count on each trial for the post stimulus (500-

ms window from tTHR) and baseline (200 and 700 ms before stimulus onset, for the particular picture) was less than 0.01. In addition,

tTHR was defined as the spike response latency onset.

From the 450 units recorded in the follow-up sessions, the response criterion led to a set of 35 responsive units (16 from the amyg-

dala, 19 from the hippocampus). All the observed responses came from areas not associated with the epileptogenic zone defined a

posteriori by the neurologists. Based on a previously used criterion [43], we classified units as single- or multi-units based on: (i) the

spike shape and the variance of the cluster; (ii) the ratio between the peak value of the mean waveform and the standard deviation at

their first sample (larger than 5, for single-units); (iii) the ISI distribution of each cluster; and (iv) the presence of a refractory period for

the single units, i.e., < 1% spikes with an ISI smaller than 3 ms. This way, we identified 4 out of the 35 units as multiunits, with the

remaining 31 classified as single units.

The response criterion led to 134 responses, corresponding to 47 identities, in 35 units. However, we observed that some of the

101 stimuli that did not pass the response criterion, from the total of 235 associated to the 47 response-eliciting identities, could actu-

ally be described as relatively good responses based on visual inspection. In fact, by decreasing the threshold on the Z-score from 5

to 4 (in the second condition of the response criterion), 25 out of the 101 stimuli passed the criterion, leading to a total of 159 re-

sponses. Figure S1 shows three examples of these responses. Relaxing the criterion over the whole set of recordings led to 12 addi-

tional identities with a single ‘‘responsive stimulus’’ that were actually very poor responses based on visual inspection, which is why

we used the dual threshold criterion to first determine responsive identities and later responsive stimuli.

Visual Invariance
Visual invariance was quantified for each response-eliciting identity, using a rank-sum test to compare the spike count over a 700-ms

window from the spike response onset for the 3 pictures of a given identity, against a set of 3 randomly selected pictures, one from

each of the other identities presented in the same follow-up session. When a stimulus did not elicit a response, the window onset was

taken as the average spike response onset across the response-eliciting stimuli (excluding the sound), with an extra 100ms added in

the case of sound stimuli as they have typically longer latencies. This analysis was repeated 1000 times, leading to a thousand

p-values, fromwhichwe took their median as the definitive p-value for the concept under analysis. An identity was considered visually

invariant when the p-value was less than 0.01.

Quantification of single neuron response strength
The strength of spike activity was defined as themedian number of spikes (across trials) fired by a unit in a given timewindow, normal-

ized by the window length (Figures 2 and 3). During the baseline period, it was computed between 1,000 and 300 ms before stimulus

onset; whereas the strength of individual responses was calculated in a 700-ms window starting at the spike response onset.

To quantify the normalized strength shown in Figure 2C, first we measured, for each responsive unit, the median number of spikes

across trials between 100 and 800ms after stimulus onset for every stimulus. Thenwe corrected (subtracted) the activity by themean

baseline (across all stimuli) and normalized it by the maximum across all stimuli. When a unit showed activity below baseline for a

certain stimulus, it was assigned a zero strength.

Quantification of differences in response strength
Differences in response strength were assessed with a permutation test. Given a pair of responses from the same unit, we compared

their absolute difference in strength of response DSr to a distribution of 1000 surrogate values, created by randomly permuting the

trial labels for the two stimuli. Specifically, for each re-arrangement of the labels, we obtained two surrogate responses and calcu-

lated their absolute difference in strength of response (DSi). The ranking of the real value (DSr) among the population of surrogate
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values, gave the p-value for the null hypothesis that the two responses had the same strength. We have previously shown that the 30

trials presented for each stimulus are enough to get a reliable estimate of the strength difference [26].

Study of single neuron response latencies
We used a surrogate test implementation similar to the one used for response strength to compare the latencies associated to a pair

of stimuli. For this, we calculated the difference in latency of response (DLr) for each response pair and, as above, for each compar-

ison the p-value was obtained by comparing the real test statistic value with 1000 surrogate values. We have previously shown that

the 30 trials presented for each stimulus are enough to get a reliable estimate of the latency difference [26].When this test was applied

to stimuli that are not necessarily responsive, if a latency could not be defined as explained above in the response criterion, the first

threshold crossing in the firing rate was taken as the latency.

Decoding analysis
A naive Bayesian decoder with leave-one-out cross-validation was run on each responsive unit to test whether the identity of the

individual stimuli associated to the responsive identities could be predicted based on the single trial spike count in the response

period (Figure S4). The decoding performance was estimated as percentage of trials correctly predicted, and its statistical signifi-

cance was assessed in comparison to the performances obtained on a population of 1000 surrogates created by randomly shuffling

the trial labels. In addition, we repeated the analysis after binarizing the responses. To do this we defined a threshold for each unit.

First, we computed the mean strength (mstr) across trials for each stimulus. Then, we defined the threshold as the average between

the maximum and minimum values of mstr across all stimuli.

Comparison with responses to different identities
In Figure 4, we compared the results from the current experiment (Dataset 1) with those reported in [26] (Dataset 2), where we

analyzed the responses of individual units to different pictures of associated identities. Dataset 2 was obtained by performing

follow-up sessions in which a subset of about 15 stimuli (mean ± SD, 13.9 ± 4.5) from the screening session (including all those

that elicited a response) were used, but each of these images was shown 25–35 times in pseudorandom order. We found 37

multi-responsive units (i.e., units exhibiting responses to more than one picture), which responded to an average of 3.3 pictures

(SD: 1.94). By identifying the response-eliciting pairs of stimuli in each of these units, we defined a total of 208 pairs. The response

criterion employed in Dataset 2 used Z-score > 5. For comparison purposes, we repeated the analyses in Figure 4 using Z-score > 5 in

Dataset 1, leading to the same qualitative results.

DATA AND CODE AVAILABILITY

The response dataset associated to this manuscript can be downloaded from 10.25392/leicester.data.11527983. The main (spike

sorting) codes used to process the data can be downloaded from https://www2.le.ac.uk/centres/csn/software.
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