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We determine the relationship between the turnaround radius, Rt, and mass, Mt, in ΛCDM, and in dark
energy scenarios, using an extended spherical collapse model taking into account the effects of shear and
vorticity. We find a more general formula than that usually described in literature, showing a dependence of
Rt from shear, and vorticity. The Rt −Mt relation differs from that obtained not taking into account shear,
and rotation, especially at galactic scales, differing ≃30% from the result given in literature. This has effects
on the constraint of the w parameter of the equation of state. We compare the Rt −Mt relationship obtained
for the ΛCDM, and different dark energy models to that obtained in the fðRÞ modified gravity (MG)
scenario. The Rt −Mt relationship inΛCDM, and dark energy scenarios are tantamount to the prediction of
the fðRÞ theories. Then, the Rt −Mt relationship is not a good probe to test gravity theories beyond
Einstein’s general relativity.
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I. INTRODUCTION

In the past decades the ΛCDM model has successfully
passed many tests [1–3], deserving to be dubbed “the
standard model of cosmology”. One of the assumption on
which modern cosmology is based, is that general relativity
is the correct theory of gravitation. In this case, observa-
tions indicate the existence of a larger content of mass-
energy than predicted [4–6]. The mass-energy of the
universe is dominated by nonbaryonic and nonrelativistic
particles, indicated as “cold dark matter” [7], and a second
component, dubbed “dark energy” (DE), a fluid with exotic
properties, like that of having negative pressure, and giving
rise to the accelerated expansion of the universe. In its
simplest form, and in the ΛCDM model, DE is represented
by the cosmological constant Λ.
Nevertheless the success of the ΛCDM model [1,4,8],

precision data are revealing drawbacks, and tensions both at
large scales [9–15], and at small ones [16–22].
To start with, the particles that should constitute the

DM has never been observed [23], despite a large number
of indirect evidences from small to large scales [24–27],
and a large campaign of direct and indirect searches
[7,23,25]. In particular, in a recent direct-detection

experiment, XENON1T [28], no significant excess over
the background was found. For indirect searches, a large
parameter space for annihilating dark matter was ruled
out based on the radio data of the Andromeda galaxy
[29] and the gamma-ray data of the A2877 and Fornax
clusters [30].
The so called “small scale problems” of the ΛCDM [22]

are plaguing the model, and several recipes, cosmological
[31], different nature of the dark matter particles [32–37],
MG theories, e.g., fðRÞ [38,39], fðTÞ [40–43], MOND
[44] and astrophysical [22,45,46], have been proposed to
solve those problems.
Apart the issues related to the DM component of the

ΛCDM model, the cosmological constant Λ suffers from
the “cosmological constant fine tuning problem,” and the
“cosmic coincidence problem” [47–49].
The quoted issues motivated the investigations of other

explanations, and models to clarify the universe accelerated
expansion. These alternativemodels generate the DE effects
through additional matter fields (e.g., quintessence [50]), or
MG models[41,44,51–61]. In some cases, the quoted
theories tried to explain the accelerated expansion as the
manifestation of extra dimensions, or higher-order correc-
tions effects, as in the Dvali-Gabadadze-Porrati (DGP)
model [62] and in fðRÞ gravity. Disentangle between the
plethora of models is not an easy task. The solution of the
problem, or at least a better understanding of the same, may
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come from future surveys like: Euclid,1 JDEM,2 SKA,3

LSST,4 or from new studies of the CMB [63,64].
DE and MG effects can be probed with structure

formation. By means of hydrodynamical simulations,
one can obtain observables (e.g., splashback radius [65],
the halo profile, the TAR [66,67], or the mass-temperature
relation (MTR) [68]) which can be directly compared with
observations. In a recent paper [69], we showed that the
MTR relation cannot be used to put constraints on MG
theories, since the ΛCDM model gives similar predictions
to that of the MG theories.
Recently, the turnaround radius (TAR)5 has been pro-

posed as a promising way to test cosmological models [67],
DE, and disentangle between ΛCDM model, DE, and MG
models [66,67,70–73]. The attention on TAR increased
when was shown that MG can affect the maximum TAR
(see [73]). According to some authors (e.g., [70]), the TAR
is a well-defined, and unambiguous boundary of a struc-
ture, in the spherical collapse model (SCM), simulations,
analytic calculations, and is clean from baryons physics.
Concerning the last point, contrarily to [70], we already
showed in [74–78] that the nonlinear equation driving the
evolution of the overdensity contrast depends on shear and
vorticity, which conversely depends from the mass of the
forming structure, and the way it forms. In the following,
we will also show that the TAR also depends from
dynamical friction. All the papers dealing with the deter-
mination of TAR, usually find it from some metric, and
equations not taking into account the real physics of
structure formation. Then, we will show in this paper, that
TAR depends from baryons physics.
Reference [70] calculated the TAR for ΛCDM, and [71]

did the same for smooth DE. [79] proposed to use the zero
velocity surface of large structures to look for the violation
of the maximum upper bound of Rt.
In MG theories [80] found a general relation for the

maximum TAR in fðRÞ theories, and [72] found a method
to get the same quantities in generic gravitational theories.
In the present paper, we use an extended spherical

collapse model (ESCM) introduced, and adopted in
[3,74,76–78]. The ESCM takes into account the effect of
a non-null shear and vorticity on the collapse, to show how
the TAR is changed. As we have already shown, shear and
vorticity change the typical parameters of the SCM [3],
the mass function [3,74,76,77], the two-point correlation
function [81], and the weak lensing peaks [78]. Wewill find
a more general formula than that obtained by [70] for

smooth DE, showing that shear, and vorticity, give rise to a
smaller TAR especially at the galactic mass scales. Then,
we will find the TAR—mass relation for the ΛCDMmodel,
and several dynamical DE models, and compare our results
to the prediction of the Rt −Mt relation of [67] for fðRÞ
models. The result of the comparison shows that the Rt −
Mt relation of theΛCDMmodel has a very similar behavior
to that of the fðRÞ models. This makes impossible
to disentangle between the MG results and those of GR.
A similar situation happens for the DE models.
The paper is organized as follows. Section II describes

the model used to derive the Rt −Mt relation in ΛCDM,
and smooth DE cosmologies. Section III is devoted to the
presentation and the discussion of our results. Section IV is
devoted to conclusions.

II. THE MODEL

The SCM introduced by [82], extended and improved in
several following papers [83–89], is a very popular method
to study analytically the nonlinear evolution of perturbations
of DMandDE. Shortly, themodel describes the evolution of
a spherical symmetric overdensity, how it decouples from
theHubble flow, reach amaximum radius, dubbedTAR, and
finally collapse and virialize6. Reference [82] is a very
simple SCMmodel just considering the radial collapse of the
structure. It does not take account of tidal angular momen-
tum [90,91], random angular momentum [86,89,92],
dynamical friction ([93,94]), etc. The way to take account
of angular momentum was studied in several papers
[86,88,89,95–102]7, that of dynamical friction was studied
in [93,94], while [103–105] discussed the role of shear in the
gravitational collapse.
The SCM with negligible DE perturbations was studied

by [see, e.g., [106–112] ] while in [see [113–121] ] the
effects of the DE fluid perturbation were taken into account.
References [122–124] extended the SCMmodel to coupled
DE models, and [76,122] to extended DE (scalar-tensor)
models.
References [74,75] studied the effects of shear and

rotation in smooth DE models. The effects of shear and
rotation were investigate in [74,75] for smooth DE models,
[125] in clustering DE cosmologies, and [126] in Chaplygin
cosmologies.

A. The ESCM

Here, we show how the evolution equations of δ in the
nonlinear regime can be obtained. Those equations were
obtained by [106,108,109,111,115,127] in the spherical
and ellipsoidal collapse models scheme. We assume the

1http://www.euclid-ec.org.
2http://jdem.lbl.gov/.
3https://www.skatelescope.org.
4https://www.lsst.org.
5The TAR is defined as the distance from the center of a

structure to the surface at which radial velocity is zero. The
majority of works study the maximum TAR, defined as the radius
at which the radial acceleration is null, ̈r ¼ 0.

6In the virialization process, the collapse kinetic energy is
converted into random motions.

7Particles angular momentum is distributed in random direc-
tions in order the mean angular momentum at any point in space
is zero [97,99].
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equation of state P ¼ wρc2 for the fluid, and the neo-
Newtonian expressions for the relativistic Poisson equa-
tion, the Euler, and continuity equations [128]

∂ρ
∂t þ∇r⃗ · ðρv⃗Þ þ

P
c2

∇r⃗ · v⃗ ¼ 0; ð1Þ

∂v⃗
∂t þ ðv⃗ ·∇r⃗Þv⃗þ∇r⃗Φþ c2

c2ρþ P
∇P ¼ 0; ð2Þ

∇2Φ − 4πG

�
ρþ 3P

c2

�
¼ 0; ð3Þ

where we indicated with r⃗ the physical coordinate, with Φ
the Newtonian gravitational potential, and the velocity in
three-space is given by v⃗.
The perturbations equations, using comoving coordi-

nates x⃗ ¼ r⃗=a are given by

_δþ ð1þ wÞð1þ δÞ∇x⃗ · u⃗ ¼ 0; ð4Þ

∂u⃗
∂t þ 2Hu⃗þ ðu⃗ ·∇x⃗Þu⃗þ 1

a2
∇x⃗ϕ ¼ 0; ð5Þ

∇2
x⃗ϕ − 4πGð1þ 3wÞa2ρ̄δ ¼ 0; ð6Þ

being u⃗ðx⃗; tÞ the comoving peculiar velocity, and HðaÞ is
the Hubble function. Note that in Eq. (5) the pressure terms
are zero, because in the top-hat, with ρ ¼ ρ̄þ δρ, and P ¼
P̄þ δP the gradient is zero.
The nonlinear evolution equation is obtained combining

the previous equations, which in the case w ¼ 0 (dust) is
given by:

δ̈þ 2H _δ −
4

3

_δ2

1þ δ
− 4πGρ̄δð1þ δÞ

− ð1þ δÞðσ2 − ω2Þ ¼ 0. ð7Þ

Equation (7) is Eq. (41) of [108], and a generalization of
Eq. (7) of [115] to the case of a nonspherical configuration
of a rotating fluid.
In Eq. (7), σ2 ¼ σijσ

ij, and ω2 ¼ ωijω
ij are the shear,

and rotation term, respectively. The shear term is related to
a symmetric traceless tensor, dubbed shear tensor, while
rotation term is related to an antisymmetric tensor, given by

σij ¼
1

2

�∂uj
∂xi þ

∂ui
∂xj

�
−
1

3
θδij; ð8Þ

ωij ¼
1

2

�∂uj
∂xi −

∂ui
∂xj

�
: ð9Þ

being θ ¼ ∇x⃗ · u⃗ the expansion.

In terms of the scale factor, a, Eq. (7) takes the form

δ00 þ
�
3

a
þ E0

E

�
δ0 −

4

3

δ02

1þ δ
−
3

2

Ωm;0

a5E2ðaÞ δð1þ δÞ

−
1

a2H2ðaÞ ð1þ δÞðσ2 − ω2Þ ¼ 0; ð10Þ

where Ωm;0 is DM density parameter at t ¼ 0 (a ¼ 1), and
EðaÞ is given by

EðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm;0

a3
þΩK;0

a2
þ ΩQ;0gðaÞ

r
; ð11Þ

being

gðaÞ ¼ exp
�
−3

Z
a

1

1þ wða0Þ
a0

da0
�
: ð12Þ

Recalling that δ ¼ 2GMm
Ωm;0H2

0

ða=RÞ3 − 1, where R is the

effective perturbation radius and inserting into Eq. (7),
we get

R̈ ¼ −
GMm

R2
−
GMde

R2
ð1þ 3wdeÞ −

σ2 − ω2

3
R

¼ −
GMm

R2
−
4πG ¯ρdeR

3
ð1þ 3wdeÞ −

σ2 − ω2

3
R; ð13Þ

beingMm ¼ 4πR3

3
ðρ̄þ δρÞ andMde is the mass of the dark-

energy component enclosed in the volume, ρ̄de, and wde
being respectively its background density and equation-of-
state [78,108,127,129]. Mm, as shown, contains back-
ground and perturbation.
Equation (13), for w ¼ −1, becomes

R̈ ¼ −
GMm

R2
−
σ2 − ω2

3
Rþ Λ

3
R ð14Þ

and is similar to the usual expression for the SCM with
angular momentum [e.g., [99,102,130] ], and cosmological
constant:

d2R
dt2

¼ −
GM
R2

þ L2

M2R3
þ Λ

3
R ¼ −

GM
R2

þ 4

25
Ω2Rþ Λ

3
R;

ð15Þ

The term 4
25
Ω2R comes from the expression of angular

momentum, L ¼ IΩ, and the momentum of inertia of a
sphere, I ¼ 2=5MR2.
In the simple case of a uniform rotation with angular

velocity Ω ¼ Ωzez, we have that Ω ¼ ω=2 (see also [131],
for a more complex and complete treatment of the
interrelation of vorticity and angular momentum in
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galaxies). Then, the previous equations show a strict
connection between vorticity, ω, and angular velocity Ω.
It is then convenient to define the dimensionless α-

number as the ratio between the rotational and the gravi-
tational term in Eq. (15):

αðMÞ ¼ L2

M3RG
: ð16Þ

The above ratio, α, is mass dependent. It has maximum
values for galaxies8, and decreases going toward clusters of
galaxies.
In order to solve Eq. (10), we should know how the term

σ2 − ω2 depends on the density contrast. This can be done
using the above outlined argument for rotation, namely the
connection between angular momentum and shear, and
recalling that Eq. (15) from which α was obtained is
equivalent to Eq. (13) which is also equivalent to Eq. (7),
and Eq. (10).
One may then calculate the same ratio between the

gravitational and the extra term appearing in Eq. (7) or
Eq. (10) thereby obtaining

σ2 − ω2

H2
0

¼ −
3

2

αΩm;0

a3
δ: ð17Þ

As shown in [75] this is a reasonable assumption, and it
was also used in [74–77].
In [74,75] it was obtained calculating the threshold of

collapse δc, and matching it with δc obtained by [132].
Then the nonlinear equation to solve is obtained sub-

stituting Eq. (17) into Eq. (10)

δ00 þ
�
3

a
þ E0

E

�
δ0 −

4

3

δ02

1þ δ
−
3

2

Ωm;0ð1 − αÞ
a5E2ðaÞ δð1þ δÞ ¼ 0:

ð18Þ

The threshold of collapse, and the turnaround, can be
obtained solving Eq. (18) following the method described
in [111], or solving Eq. (13).
An important point is that Eq. (13), can be written in a

more general form taking into account dynamical friction
[69,93,94,130,133–139]

R̈ ¼ −
GM
R2

þ L2ðRÞ
M2R3

þ Λ
3
R − η

dR
dt

; ð19Þ

being η the dynamical friction coefficient. Equation (19)
can be obtained via Liouville’s theorem [81], and the
dynamical friction force per unit mass, η dR

dt , is given in [94]
[Appendix D, Eq. (D5), and [139], Eq. (5)].
In terms of shear, vorticity, and DE, the equation,

similarly to Eq. (13), can be written as

R̈ ¼ −
GMm

R2
−
GMde

R2
ð1þ 3wdeÞ −

σ2 − ω2

3
R − η

dR
dt

:

ð20Þ
A similar equation (excluding the dynamical friction

term) was obtained by several authors [e.g., [75,127,129] ])
and generalized to smooth DE models in [78].
Equation (20), and Eq. (13) differs for the presence of the

dynamical friction term. As shown in several papers (e.g.,
[69,93,94,139] dynamical friction has a similar effect to that
of rotation, and cosmological constant: it delays the collapse
of a structure (perturbation). As shown in Fig. 1 of [140], and
in Fig. 11 of [94], the magnitude of the effect of rotation,
dynamical friction, and cosmological constant are of the
same order of magnitude with differences of a few percent.
Willingly, by means of the relation δ ¼ 2GMm

Ωm;0H2
0

ða=RÞ3 − 1,

Eq. (20) can be written in terms of δ, similarly to Eq. (10).
Summarizing, the typical quantities of the SCM depends

from shear, vorticity, and dynamical friction. Contrarily to
[70], and several other authors (e.g., [66,67]), the SCM
results depend from the baryon physics, since shear,
rotation, and dynamical friction depends from the mass,
and the way structures formed.
In the following, we specialize on the effect shear, and

rotation has on the SCM, and how the TAR is modified. To
this aim, in this paper, dynamical friction will be neglected.

III. RESULTS

Several authors have studied the effect of shear [103–
105], and rotation [75,78,81,137,141–143] on the SCM and
elliptical collapse model. The effect of shear and rotation is
that of slowing down the collapse [142–145], changing
turnaround epoch and collapse time, as well as the typical
parameters of the SCM. As a consequence also the mass
function [75–78,81,140,141], the two-point correlation
function, scaling relations like the mass-temperature
[69,146], and luminosity-temperature relation [147], are
modified.

A. Threshold of collapse with shear, and rotation

In order to show the effects of shear and rotation on the
SCM predictions, we show, in Fig. 1, how the collapse
threshold, δc, is modified. In the left panel, we show the
dependence of δc from the redshift. The red line represents
the predictions of the ESCM for δcðzÞ for the ΛCDM
model. From top to bottom, the value of α varies from 0.05
(solid line) corresponding to a mass ≃1011 M⊙, to 0.03
(long dashed line), corresponding to a mass ≃1013 M⊙, to
0.01 (dotted line), corresponding to a mass ≃1015 M⊙, and
to 0 (dashed line). We also show the predictions of the
extended SCM in the case of one DE model, the Albrecht-
Skordis [148] (AS) DE model (black line). We chose to plot
this model, because the other quintessence models consid-
ered in previous papers [74,111] INV1 (w0 ¼ −0.4), INV28In the case of our galaxy it is ≃0.1.
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(w0 ¼ −0.79), 2EXP (w0 ¼ −1), CNR (w0 ¼ −1), CPL
(w0 ¼ −1), SUGRA (w0 ¼ −0.82) (see [75,111])9 have a
similar behavior to that of the AS model, and because the
values of δcðzÞ predicted by them is located in the region
between theΛCDM and the AS model (see Fig. 4 of [111]).
The inclusion of the term proportional to σ2 − ω2 changes
only the value of the linear overdensity parameter. The
ratios with the ΛCDMmodel does not change. This means,
that if the δc relative to the ΛCDM is higher than δc relative
to a given DE model, the same relationship will remain
after taking into account the σ2 − ω2 term. This can be seen
comparing the top left panel in Fig. 4 of [111] with the top
left panel in Fig. 2 of [74], and also looking at Fig. 1 of the
present paper. The DE models similarly to the ΛCDM
model are “retarded” (the collapse is slowed down) by the
presence of the shear, and rotation term, and their values for
δcðzÞ are all smaller than the δcðzÞ of the ΛCDM model
obtained with the ESCM. This is expected, since at early
times the DE amount is larger, and consequently the value
of δcðzÞ must be lower to have objects collapsing.
The plot also shows the different behavior of δcðzÞ in the

case of no shear, and rotation (α ¼ 0). In this case, δc has a
weak dependence from redshift in the z range [0, 2], and
then becomes constant, with a value equal to that of the
Einstein de Sitter model. Shear, and rotation (α ≠ 0),
change the behavior of δcðzÞ, as follows: (1) it assumes
larger values with respect the case shear and rotation are not
present; (2) the larger is α, the larger is the difference
between the values of δcðzÞ; (3) δcðzÞ has a decaying
behavior. The value of δcðzÞ for α ¼ 0.05, is ≃30% larger
than in the α ¼ 0 case. In the right panel of Fig. 1, we plot
δcðMÞ versus the mass. When shear and rotation are not
present the value of δc is constant (brown line), while when
they are taken into account the threshold δc becomes mass

dependent, and is characterized by larger values at smaller
masses, converging to the standard ΛCDM model constant
value moving to the largest clusters. The dashed line shows
the result of [132,149]. The behavior of the threshold
implies that less massive perturbations (e.g., galaxies) in
order to form structures must cross a higher threshold than
more massive ones. In terms of the peak formalism, and the
peak height ν ¼ δc=σðMÞ,10 the angular momentum
acquired by a peak is proportional to turnaround time,
tta, and anticorrelated with the peak height j ∝ tta ∝ ν−3=2

[94,103,150]. Since low peaks acquire larger angular
momentum than high peaks, they need a higher density
contrast to collapse and form structures [92,94,137,142–
145]. The cosmological constant has similar effects to that
of angular momentum in collapse, slowing down it, but its
effects vanishes at high redshift.

B. TAR, in the ΛCDM, and DE models

Our main goal is to understand how shear and rotation
changes the TAR. We start finding an expression for the
TAR. Just in order to compare with [70,71] results, we
calculate the maximum TAR, MTAR, namely the radius of
the surface where R̈ ¼ 0. Using Eq. (13), we obtain

Rta ¼
�

−3M
4πρdeð1þ 3wÞ þ ðσ2 − ω2Þ

�
1=3

ð21Þ

In the case of the ΛCDM model, (w ¼ −1), no shear, and
rotation, Eq. (21) reduces to

Rta ¼
�
3GM
Λ

�
1=3

ð22Þ

FIG. 1. The threshold of collapse δc, as function of redshift, and mass. In the left panel, we plot δc vs redshift. The red line represents
the predictions of the ESCM for δcðzÞ for the ΛCDM model. From top to bottom, the value of α varies from 0.05 (solid line) (galactic
mass scale) to 0.03 (long dashed line), to 0.01 (dotted line) (cluster mass scale), and to 0 (dashed line). Left panel: δc vs mass. The solid
red line represents the result of the ESCMmodel, the red dashed line that of the elliptictal collapse model of [149], and the brown line the
ΛCDM expectation when no shear and rotation are taken into account.

9w0 is the value of w nowadays. 10σðMÞ is the mass variance.
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which is the same as that obtained by [70]. In the case of
DE models, with no shear, and rotation, Eq. (21) reduces to

Rta ¼
�

−3M
4πρdeð1þ 3wÞ

�
1=3

ð23Þ

which is the same as that obtained by [71]. In other terms,
the turn around obtained by [71] is a peculiar case of the
more general form given by Eq. (21).
In the paper, we will get and plot the TAR, not MTAR,

since we compare with [67], which calculated the TAR.
When taking into account shear, and rotation, the TAR is

smaller than expected from [71] result, as shown in Fig. 2.
In the left panel of Fig. 2, we plot the TAR predicted by the
standard SCM (solid red line), and the ESCM (dashed red
line) for the ΛCDM model. As expected, similarly to the
threshold of collapse, δc, when shear and rotation are taken
into account, the collapse is slowed down and the turn
around is smaller. The differences between the standard
SCM predictions, and the ESCM, are larger at smaller
masses, because smaller mass objects have larger rotation.
In the right panel of Fig. 2, we compare the result of the
ESCM for the ΛCDM model (red dashed line) with that of
the AS model (black dotted line). The AS model has a
slightly larger TAR with respect to the ΛCDM model. [71]
tried to constrain the equation of state by means of Eq. (23),
comparing the predicted TAR at different w with mass and
radii of small z cosmic structures. In this way is possible to
constrain the equation of state parameter w at z ≃ 0 (w0)

11.
They used data for: Milky Way (MW), M81/M82 group,

Local Group, Virgo cluster, Fornax-Eridanus group.
[151] took into account the cosmological constant and
obtained different values for M31/MW, M81, Virgo, and
also obtained the R-M values for CenA/M83, IC342,
NGC253. We used the data obtained by [151], and that
of [71] for Local Group, and Fornax-Eridanus.
In Fig. 2, the solid lines are obtained from the equation of

TAR [Eq. (23)] not taking into account shear, and rotation.
The dashed lines are the corrections obtained when shear,
and rotation are taken into account. The lines correspond to
w ¼ −2.5, −2, −1.5, −1, −0.5, from bottom to top. The
region of the parameter space above each line gives the
range of w for which no stable structures should exist.
Reference [71] discussed some constraints to w, based on
the highest mass objects. Here we just want to stress that at
masses smaller than 1014 M⊙ the TAR is modified by the
presence of shear, and rotation. As a consequence, struc-
tures at smaller masses can give different constraints to w.
For example, the local group gives the constraint

w ≥ −2.5, while if shear, and rotation are not taken into
account, w is more negative. The other constraints are
reported in Table I. Therefore, including shear and rotation

. ..

FIG. 2. Turnaround radius Rt vs mass,Mt. Left panel: TAR predicted by the standard SCM (solid red line), and the ESCM (dashed red
line) for the ΛCDMmodel. Right panel: the result of the ESCM for the ΛCDMmodel (red dashed line), and that of the AS model (black
dotted line).

TABLE I. The ruled out ranges of w based on the ESCMmodel.

Stable
structure M (M⊙) R (Mpc)

Range of
w ruled out

M31=MW ð2.4� 1.0Þ × 1012 0.25� 0.02 w > −2.5
M81 ð8.9� 2.2Þ × 1011 0.90þ0.06

−0.05 w ≥ −1
IC342 2.0þ1.2

−1.0 × 1011 0.51þ0.03
−0.05 w ≥ −1

NGC253 2.34þ0.99
−1.34 × 1011 0.70� 0.10 w ≥ −0.5

CenA=M83 2.00þ0.42
−0.33 × 1012 1.37þ0.08

−0.11 w ≥ −1
Local group 3.14þ0.57

−0.54 × 1012 0.96� 0.03 w ≥ −2.5
Fornax-Eridanus 1.92 × 1014 4.60þ1.0

−0.72 w ≥ −1.5
Virgo 1.67þ0.31

−0.35 × 1015 6.5þ1.0
−1.5 w ≥ −2.5

11Many of the DE models can be described by an equation of
state parameter, wðaÞ, depending on its value nowadays, w0, that
at matter-radiation equality epoch, and some other parameters at
the same epoch (see Eq. (23) of [111]). In order to constrain the
evolution of the equation of state parameter, w, it is necessary to
use structures at high redshift.
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can help to constrain the equation of state of DE by means
of the data of galaxies. Furthermore, can only marginally
satisfy the data of NGC253 and M81, the standard ΛCDM
model can also be strongly constrained by galactic data.

C. Comparison with TAR in f ðRÞ theories
Reference [67] investigated the evolution of the TAR,

and its dependence from structure mass in general relativity
(GR), and in the fðRÞ theories. Their Eq. (3.3) takes into
account the effects of MG through the parameter ϵða; kÞ,
where k is the (angular) wave number. When ϵða; kÞ is zero
GR is recovered, and their Eq. (3.3) is equal to our Eq. (10)
without shear and rotation. In other terms, [67] includes the
effects of the fðRÞ theories but not that of shear, and
rotation, which changes the behavior of the main quantities
of the SCM. As a consequence, their Figs. 1, 3 predict a
monotonic increase for δcðzÞ as in the ΛCDM, and DE
models without shear, and rotation, as shown in [111], and
in the left panel of our Fig. 1 (case α ¼ 0). Shear, and
rotation modify this behavior. Similarly, their Fig. 4 shows
that δcðMÞ, differs from theΛCDM predictions by≃1%. As
shown by [149], and by [74–77,140], in order to have a
mass function reproducing simulations, the threshold must
be: 1. mass dependent, and 2. a decaying function of mass.
For precision’s sake, in the excursion set formalism, the
halo statistics, and the mass function, depends from the
statistical properties of the average overdensity, δ̄Rf

, within
a window of a given radius, Rf. δ̄Rf

vs Rf is a random walk
[140,152], and haloes form when the random walk crosses
the threshold, δc, dubbed barrier [140,149,153]. A mass
function that reproduces simulations and observations must
have a mass dependent, and monotonically decreasing δc,
as in [149,154], and [81,137,140]. This shows that the
results of [67] cannot reproduce the mass function obtained

in simulations, and observations, because the effects of
shear, and rotation are not taken into account.
Another important point is the use of the TAR to

disentangle between GR and MG, discussed by several
authors (e.g., [67]). In the following, we will compare [67]
results with the prediction of the ESCM for the TAR in the
ΛCDM, and DE models. To this aim, we compared in
Fig. 4, their result concerning the Rt vs mass with the
ΛCDM model predictions in the ESCM. In the figure, we
plot the result obtained by [67] for Rt vs mass for the
ΛCDM model, the model with ϵ ¼ 1=3, and fðRÞ with
fR0 ¼ 10−6, 10−5, and 10−4. The red band represents our
prediction for the ΛCDM model, obtained with the ESCM,
with the 68% confidence level region. In order to calculate
the 68% confidence level, we used a Monte Carlo simu-
lation. In short, this approach involves the repeated
simulation of samples within the probability density
functions of the input data. In the first step, one looks
for the sources of uncertainty, and identifies the probability
density functions (PDFs) that gives a good fit to those the
data sources. For all data inputs identified as sources of
uncertainty, Monte Carlo simulations are run, and the
resulting simulations are applied to models (equations),
in order to get the distribution of the quantity of interest.
Finally one can get the confidence intervals needed. In our
case, in order to obtain the TAR, one has to solve Eq. (13),
or Eq. (18), using the condition _R ¼ 0 at turnaround or
equivalently a relation between δ, δ0t, and at turn around (see
Eq. (3.8) of [67]). If for example, we consider Eq. (13), we
may write it as

_R2 ¼ 0 ¼ 2
GM
R

−
4πρde
3

þ 2H2
0Ωm;0

2a3G

Z
Rt

Ri

L2

M3
δdR ð24Þ

where Ri is the initial radius of the perturbation, related to zi
given in the Appendix. One can get numerically the relation
betweenRt, andMt. In order to obtain the confidence interval
by means of the Monte Carlo method, we observe that
Rt depends from mass, overdensity, and angular mome-
ntum. Angular momentum has a lognormal distribution
([155,156]), and the overdensity has a Gaussian distribution.
By means of Monte Carlo simulations we can get the
68% confidence region. Another way, is to get Rt in terms
of the overdensity, since the angular momentum is propor-
tional to M5=3 ([86,92,156,157], and M ¼ 4π

3
R3ρ̄ð1þ δÞ.

Recalling that δ has a Gaussian distribution, we may get the
confidence region bymeans of theMonte Carlomethod. The
plot shows that theΛCDMmodel prediction is similar to that
of the MG theories. Similarly to [69], in which we showed
that the mass-temperature relation is not a good probe to test
gravity theories beyondGR, and to disentangle between GR,
and fðRÞ theories, here we have a similar result: the TAR is
not a good probe to disentangle between GR, and fðRÞ
theories. In Fig. 5, we compare the predictions of some of the
quintessence DE models previously cited to the same fðRÞ

-

CenA/M83

M81 Local Group

Fornax-Eridanus

Virgo

NGC253

IC342

M31/MW

FIG. 3. Mass-radius relation of stable structures for different w.
The solid lines from top to bottom represent w ¼ −0.5 (solid
green line), −1 (black solid line), −1.5 (blue solid line) ,−2 (pink
solid line), −2.5 (red solid line). The dashed lines are the same of
the previous lines, but they are obtained using the ESCM model.
The dots with error bars, are data as in [71].
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models of [67] plotted in Fig. 4. In the left panel of Fig. 5, we
plot the predictions of the DE models for the TAR, obtained
with the ESCM. From top to bottom, the cyan, blue, brown,
magenta, black, red, and green lines represent the INV1,
INV2, SUGRA, w09,

12 AS, ΛCDM without shear, and
rotation, and ΛCDM with shear, and rotation, respectively.
In the right panel, we compare the [67] prediction with

that of the DE models, plotted in the left panel. In order to
have a more readable figure, we plotted just the INV2 (blue
dashed line), and theΛCDMwith shear, and rotation (green
dashed line) plotted in the left panel. These two lines
contain all the other DE models (except INV1). The solid
lines are the ΛCDM, and fðRÞ models of [67]. Similarly to
what happens in Fig. 4, the DE models have similar
predictions for the TAR to that of [67], showing that the
quoted radius cannot be used to disentangle DE, and fðRÞ
theories predictions.

IV. CONCLUSIONS

In the present work, we discussed how shear and rotation
change the TAR, and some of the parameters of the SCM.
We used an extended SCM taking into account the effects of
shear and vorticity to determine theRt −Mt, inΛCDM, and
in DE scenarios. From the condition that the radial accel-
eration is zero,we got a formula for themaximumTARmore
general than those found in literature. Shear and rotation
reduce the value of the TAR, particularly at the galactic
scales where rotation is larger. As a consequence, using the
Rt −Mt relationship, and data from stable structures to
constrain the w parameter, one gets smaller values (absolute
value) of the quoted parameter for structures having masses
smaller than 1013 M⊙. We also compared the Rt −Mt
relationship obtained for ΛCDM, and DE scenarios with
the prediction of the fðRÞ theories, calculated by [67]. The
result of the comparison shows that theRt −Mt relationship
in the fðRÞ models are practically identical to that of
the ΛCDM model, and DE scenarios. This implies that

FIG. 4. Turnaround radius, Rt vs mass,Mt. Left panel: the result obtained by [67] for Rta vs mass for theΛCDMmodel, the model with
ϵ ¼ 1=3, and fðRÞ with fR0 ¼ 10−6, 10−5, and 10−4. Right panel: the same as in left panel compared with the prediction of the ESCM.
The red band represents our prediction for the ΛCDM model, obtained with the ESCM, with the 68% confidence level region.

FIG. 5. The turnaround radius, Rt vs mass, Mt obtained with the ESCM for the DE models. In the left panel, from top to bottom, the
cyan, blue, brown, magenta, black, red, and green lines represent the INV1, INV2, SUGRA, w09, AS, ΛCDM without shear, and
rotation, and ΛCDM with shear, and rotation, respectively. In the right panel, the solid lines are the ΛCDM, and fðRÞ models of [67]
(similarly to the left panel of our previous figure), while the blue dashed line, and the green dashed lines, are the INV2 model, and the
ΛCDM with shear, and rotation plotted in the left panel. Namely the model having w ¼ −0.9.

12Namely the model having w ¼ −0.9.
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the Rt −Mt relationship is not a good probe to disentangle
between GR, and DE models predictions.

APPENDIX: F(R) THEORIES
AND THE HU-SAWICKI MODEL

In this section, we summarize the MG theory in which
framework [67] determined the TAR, which we compared
to our model.
Reference [67] used the Hu-Sawicki model, which is one

peculiar model in the fðRÞ theories, whose action may be
written as follows:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ fðRÞ
16πG

þ Lm

�
; ðA1Þ

being Lm is the matter Lagrangian density. The ΛCDM
model is recovered, in the case fðRÞ ¼ −2Λ.
Einstein modified equations are

Gαβ þ fRRαβ −
�
f
2
−□fR

�
gαβ −∇α∇βfR ¼ 8πGTαβ;

ðA2Þ

where Gαβ is the Einstein tensor, fR ≡ dfðRÞ
dR , and Tαβ is the

energy-momentum tensor.
The fðRÞ theories are characterized by the presence of

the so-called Chameleon screening mechanism, having a
scalar field mass depending on the local density. In low
density fields, where deviations from GR are maximized,
the scalar degree of freedom is long ranged, and in high
density ones happens the opposite.
Reference [67] used the Hu-Sawicki [158] model,

characterized by the following functional form

fðRÞ ¼ −m2
c1ðR=m2Þn

1þ c2ðR=m2Þn ; ðA3Þ

where m, c1, c2, and n, (n > 0) are free parameters, with
m2 ¼ H2

0Ωm;0
13. c1 and c2 can be determined by requiring

that

c1
c2

≈ 6
ΩΛ;0

Ωm;0
: ðA4Þ

in the large curvature regime (R=m2 ≫ 1), fðRÞ ≈ −2Λ.
fR today indicates the strength of gravity modifications:

fR0 ¼ −n
c1
c22

�
ΩΛ;0

3ðΩm;0 þ 4ΩΛ;0Þ
�
nþ1

: ðA5Þ

The range of the scalar degree of freedom is given by the
comoving Compton wavelength λc ≡ 1

mfR
, where

mfR ≈
1ffiffiffiffiffiffiffiffiffiffi
3fRR

p : ðA6Þ

The fðRÞ theories are characterized by a scalar field
coupling to all forms of matter having an energy-
momentum tensors with nonzero traces. Consequently,
apart the GR gravitational force, the conformal coupling
between matter and field produces a fifth force proportional
to the field gradient (see [69]).
The modified Poisson equation in comoving coordinates

is given by:

∇2Φ ¼ 16πG
3

a2δρm −
a2

6
δRðfRÞ; ðA7Þ

where δρm ¼ ρm − ρ̄m, and δR ¼ R − R̄14.
In Fourier space, Eq. (A7) can be written as:

−k2Φ ¼ ½1þ ϵða; kÞ�4πGa2δρm; ðA8Þ
with:

ϵða; kÞ≡ 1

3

�
k2

a2m2
fR

þ k2

�
: ðA9Þ

The modifications to GR are contained in the term ϵða; kÞ.
When this term vanishes we are left with GR.
In order to have a closed system Poisson equation must

be coupled with the relativistic fluid equations for the
matter density fields.
The equation to be solved to get δðrÞ is Eq. (3.3) of [67]

δ00 þ
�
3

a
þE0

E

�
δ0 −

4δ02

3ð1þ δÞ

¼ 3ð1þ δÞ
2E22π2

Ωm0a−5
Z

∞

0

dkk2½1þ ϵðk;aÞ�δðk;aÞ sinðkrÞ
kr

:

ðA10Þ

In the case ϵðk; aÞ ¼ 0, this reduces to our Eq. (10) with
σ ¼ ω ¼ 0. In order to obtain δðrÞ, it is necessary to have
an initial density profile, δiðrÞ to evolve from an early time,
that we choose as, [67], zi ¼ 500, because at that time GR
and MG are undistinguishable. In this paper, we used a top-
hatlike profile, the Tanh profile of [67]

δiðrÞ ¼
δi; 0
2

�
1 − tanh

r=rb − 1

s

�
ðA11Þ

where s is the steepness of the transition, and rb is the size
of the top-hatlike function. In the present paper, in order to
obtain δðrÞ, we will solve our Eq. (10) with the previous
top-hatlike profile.

13It has dimensions of mass squared. 14A bar indicates a spatial average.
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