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Abstract 

Background: Accumulating evidence supports cerebellar involvement in mental disorders 

such as schizophrenia, bipolar disorder, depression, anxiety disorders and attention-deficit 

hyperactivity disorder. However, little is known about the cerebellum in developmental 

stages of these disorders. In particular, whether cerebellar morphology is associated with 

early expression of specific symptom domains remains unclear.  

Methods: We used machine learning to test whether cerebellar morphometric features 

could robustly predict general cognitive function and psychiatric symptoms in a large and 

well-characterized developmental community sample centered on adolescence (the 

Philadelphia Neurodevelopmental Cohort, N=1401, age-range: 8 - 23).  

Results: Cerebellar morphology was associated with both general cognitive function and 

general psychopathology (mean correlations between predicted and observed values: r = 

.20 and r = .13; p-values < .0009). Analyses of specific symptom domains revealed 

significant associations with rates of norm-violating behavior (r = .17; p < .0009), as well as 

psychosis (r = .12; p < .0009) and anxiety (r = .09; p =.0117) symptoms. In contrast, we 

observed no associations with attention deficits, depressive, manic or obsessive-

compulsive symptoms. Crucially, across 52 brain-wide anatomical features, cerebellar 

features emerged as the most important for prediction of general psychopathology, 

psychotic symptoms and norm-violating behavior. Moreover, the association between 

cerebellar volume and psychotic symptoms, and to a lesser extent norm violating behavior, 

remained significant when adjusting for several potentially confounding factors.  

Conclusions: The robust associations with psychiatric symptoms in the age range when 

these typically emerge highlight the cerebellum as a key brain structure in the 

development of severe mental disorders.   
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Introduction 

A growing body of research reports cerebellar involvement across a wide range of mental 

disorders, including schizophrenia(1), bipolar disorder(2), depression(3), anxiety 

disorders(4), attention-deficit hyperactivity disorder(5) and autism(6). However, while the 

majority of these conditions are conceptualized as neurodevelopmental disorders(7, 8), 

most studies investigating the role of the cerebellum in mental health research have 

targeted adult populations(1, 9-11). Hence, it is largely unknown whether cerebellar 

changes can be detected already in adolescence, when initial symptoms typically first 

present(8, 12, 13), or only emerge later in the disease process. Moreover, whether 

individual differences in cerebellar structure in adolescents are indicative of non-specific 

impairments such as cognitive deficits (present across a wide range of psychiatric 

disorders(14)) or general psychopathology (analogous to the g-factor of intelligence; (15-

17)), or rather are associated with specific symptom domains(18), remains unclear. Finally, 

it is unknown how cerebellar associations with psychiatric symptoms in adolescence 

compare against such associations in other brain regions. Answering these questions will 

be crucial for determining the relative importance of the cerebellum during this critical 

period for the development of mental disorders.  

Here, we used machine learning to test whether cerebellar morphometric features 

could robustly predict cognitive function and psychiatric symptoms in a large and well-

characterized developmental community sample centered on adolescence(19, 20). 

Consistent with Research Domain Criteria framework(21) proposed by the National 

Institutes of Mental Health, we followed a diagnostically agnostic and dimensional 

approach(22, 23), extracting clusters of correlated symptoms from a comprehensive set of 

clinical assessment data using blind source separation methods(24). A similar data-driven 

and anatomically agnostic approach was used to decompose cerebellar grey matter maps 

into spatially independent components, before testing for structure-function associations 
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using multivariate machine learning. By using 10-fold internal cross-validation of machine-

learning prediction models and permutation-based statistical inference in a large 

community sample, we aimed to optimize the robustness and generalizability of the 

results(25). Further, to confirm convergence across methodological approaches, we also 

tested for structure-function associations at the resolution levels of cerebellar lobules and 

voxels, and performed traditional univariate analyses in addition to running the machine 

learning prediction models. We finally evaluated the specificity of any cerebellar effects by 

testing for structure-function associations across brain-wide regions-of-interest (ROIs), 

tested whether associations with specific symptom domains were independent of 

associations with general cognitive function(26, 27) and general psychopathology(15), and  

controlled for potentially confounding variables such as MRI data quality(28), parental 

education level(29), use of psychoactive substances(30) and psychiatric assessment 

strategy.    

Based on the existing literature on adults, we hypothesized that cerebellar 

morphology would be associated with both cognitive function(26, 31, 32) and general 

psychopathology(15), but remained agnostic as to whether such associations would show 

specificity across different psychiatric symptom domains.  

 

Methods and materials 

Participants  

The main structure-function analyses were based on data from 1401 participants (52.8% 

female, mean age: 15.12 years, age range: 8.2 to 23.2) included in the publicly available 

Philadelphia Neurodevelopmental Cohort (PNC)(19, 20)(see Supplementary Methods for 

inclusion criteria and demographic information). The institutional review boards of the 

University of Pennsylvania and the Children’s Hospital of Philadelphia approved all study 

procedures, and written informed consent was obtained from all participants.  
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Collection and processing of cognitive and clinical measures 

As reported previously(24), we included performance scores from the full PNC sample 

(n=6,487) on 12 computerized cognitive tests(20) and 129 questionnaire items from the 

PNCs GOASSESS computerized assessment battery(20), including adapted items from 

several different questionnaires, such as the World Health Organization Composite 

International Diagnostic Interview (CID; (33)), the Kiddie Schedule for Affective Disorders 

and Schizophrenia for School Age Children (Kiddie-SADS, (28), the Structured Interview 

for Prodromal Syndromes (SIPS; (34)), and the PRIME Screen Revised (PRIME; (35)). 

The GOASSESS battery thus allows for a broad mapping of symptoms of anxiety, mood, 

behavioral, eating and psychosis spectrum disorders, with a particular focus on psychosis. 

For individuals below 18 years of age, we relied on information from interviews with 

caregivers or legal guardians (20). See Supplementary Tables 1 and 2 for individual 

cognitive tests/clinical items. Using the full PNC sample (n=6,487), we derived general 

measures of cognitive performance (gF) and psychopathology (pF) by extracting the first 

factor scores from principal component analyses (PCA) of all cognitive and clinical scores, 

respectively. Next, in order to also examine specific symptom domains, all clinical item 

scores (n=6,487) were submitted to independent component analysis (ICA) using 

ICASSO(36), decomposing them into seven independent components. For the subset of 

participants with MRI data (n=1401), effects of sex and age on all cognitive/clinical 

measures were tested using generalized additive models (GAMs) as implemented in the r-

package "mgcv"(37), and a set of adjusted cognitive/clinical scores were computed by 

regressing out main effects of age and sex (see Supplementary Methods). All subsequent 

structure-function analyses were conducted using these age- and sex-adjusted scores. 
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Collection and processing of MRI data:  

As previously described(19, 38, 39), all MPRAGE T1-weighted images were collected 

using the same scanner (Siemens Tim Trio 3 Tesla, Erlangen, Germany; 32 channel head 

coil), using the following parameters; TR 1810 ms, TE 3.51 ms, FOV 180x240 mm, matrix 

256x192, 160 slices, TI 1100 ms, flip angle 9 degrees, effective voxel resolution of 0.9 x 

0.9 x 1mm. All images were first processed using FreeSurfer version v5.3 

(http://surfer.nmr.mgh.harvard.edu), yielding estimates of total intracranial volume 

(eTIV)(40), volumes of eight subcortical structures(41) and mean cortical thickness of 34 

cortical regions-of-interest (ROIs) per hemisphere(42). Next, the bias-corrected images 

from the FreeSurfer pipeline were subjected to cerebellum-optimized voxel-based 

morphometry (VBM) using the SUIT-toolbox (v3.2(43, 44)), running on MATLAB 2014a. In 

the first step, SUIT isolates the cerebellum and brainstem, segments images into grey and 

white matter maps. In order to avoid voxels from the occipital cerebral cortex in the SUIT-

generated cerebellar grey matter maps, we excluded all voxels that overlapped with the 

FreeSurfer-generated maps of cortical grey and white matter. In a second step, SUIT 

normalizes these (FreeSurfer-pruned) cerebellar grey matter maps to a cerebellar 

template using Dartel(45), ensuring superior cerebellar alignment compared with whole-

brain procedures(44). Normalized cerebellar grey matter maps were modulated by the 

Jacobian of the transformation matrix to preserve absolute grey matter volume, and the 

volumes of 28 cerebellar lobules were extracted using the SUIT probabilistic atlas. Next, 

maps were smoothed using a 4 mm FWHM Gaussian kernel before being subjected to 

ICA or voxel-wise general linear models. Finally, a mask for these analyses was 

constructed by thresholding the mean unmodulated cerebellar grey matter map at .01 and 

multiplying it with the SUIT grey matter template (also thresholded at .01).  
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Data-driven parcellation of cerebellar grey matter  

Since cerebellar parcellations based on gross anatomical features (e.g., lobules) only 

partially overlap with functional maps of the cerebellum(46), we used a data-driven 

approach in our primary analyses. Specifically, we subjected the modulated cerebellar 

grey matter maps to ICA using FSL MELODIC(47), testing model orders from 5 to 20 and, 

pragmatically, selecting the model order yielding the maximal number of clearly bilateral 

components for further analysis.  

In order to characterize the resulting cerebellar VBM-components, we used 

NeuroSynth(48) to map the full-brain functional connectivity of each components peak 

voxel, and decoded these full-brain connectivity maps in terms of their similarity to (i.e., 

spatial correlation with) meta-analytic maps generated for the 2911 terms in the 

NeuroSynth(48) database (see Supplementary Methods).  

 

Analysis of brain-behavior associations  

Before inclusion in statistical models, all volumetric features were adjusted for effects of 

age, sex and eTIV, using GAMs to sensitively model and adjust for potentially non-linear 

effects of age(49-51) and eTIV(52, 53) (see Supplementary Methods).  

 In our primary analyses, we tested whether subject weights on cerebellar 

independent components could predict cognitive and clinical scores, by using shrinkage 

linear regression(54) (implemented in the R-package 'care') with 10-fold internal cross-

validation (i.e., based on iteratively using 90% of the sample to predict the remaining 

10%), repeated 10,000 times on randomly partitioned data. Model performance was 

evaluated by computing the Pearson correlation coefficient between predicted and 

observed cognitive/clinical scores (taking the mean across iterations as our point 

estimate). Statistical significance was determined by comparing these point estimates to 

empirical null distributions of correlation coefficients under the null hypothesis (computed 
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by running the models 10,000 times on randomly permuted clinical/cognitive scores). 

Results were considered significant at p < .05 (one-tailed), Bonferroni-adjusted for the 9 

tested associations. In order to determine the relative importance of the anatomical 

features included in each prediction model, we computed the squared correlation-adjusted 

marginal co-relation (CAR) scores(55) for each iteration, yielding distributions of 10*10,000 

CAR2 estimates.  

To complement these multivariate prediction models, we performed a set of 

univariate analyses, correlating the (age- and sex-adjusted) subject weights on each 

cognitive/clinical component with the (eTIV- age- and sex-adjusted) anatomical subject 

weights (see Supplementary Methods).  

In order to facilitate comparison with previously published research, we also report 

results from prediction models and correlation analyses using volumetric estimates of 28 

cerebellar lobules as features as well as from general linear models performed at the voxel 

level. The voxel-wise analyses tested for effects of cognitive/clinical scores while 

controlling for effects of sex, age, and eTIV using FSLs randomise(56) with 10,000 

permutations per contrast. 

 Next, to allow for a comparison of cerebellar and cerebral structure-function 

associations, all prediction models were also performed on volumetric estimates of eight 

bilateral subcortical structures, and estimates of cortical thickness from 34 bilateral ROI 

based the Desikan-Killany atlas in FreeSurfer, respectively (See Supplementary Figure 2). 

We chose thickness as our cortical feature of interest, due to its generally stronger and 

more consistent associations with psychopathology than surface area(57). All anatomical 

indices were adjusted for effects of age and sex (and eTIV for volumetric indices), as 

described above. Finally, in order to directly compare relative feature importance across all 

anatomical measures, prediction models were also fitted using z-normalized versions of all 

morphometric features.  
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 Effects of general cognitive function and general psychopathology, as well as 

potentially confounding variables such as MRI data quality, parental education, use of 

psychoactive substances and psychiatric assessment strategy (interviews with caregivers 

or self-report) were examined by running a set of univariate control analyses on subsets of 

subjects (n = 369-1401) with available information (see Supplementary Methods).  

 

Results 

Cognitive function and clinical symptoms 

Results from the PCA and ICA decompositions of clinical item scores are shown in Figure 

1a. As reported previously(24), the ICA yielded seven components, primarily reflecting 

symptoms of attention deficit hyperactivity disorder (ADHD), various anxiety disorders 

(Anxiety), norm violating behavior/conduct problems (Conduct), psychotic symptoms 

(Psychosis), depression (Depression), mania (Mania) and obsessive-compulsive disorder 

(OCD). See Supplementary Table 2 for a list of all clinical items and Supplementary Figure 

3 for item-specific numerical PCA and ICA weights. Effects of age and sex on all cognitive 

and clinical summary scores are displayed in Figure 1b and Supplementary Table 3. In 

brief, general cognitive function (gF) showed the expected strong positive association with 

age, with slightly higher mean scores in males than in females. General psychopathology 

also increased over the sampled age span, but did not differ between males and females. 

All clinical scores varied as a function of age. Specifically, ADHD scores decreased with 

increasing age, whereas various increasing trends were observed for all other clinical 

components. Largely in line with population-based estimates(8, 58, 59), males scored 

higher on components reflecting ADHD, conduct problems, psychosis and mania, while 

females had higher scores on components reflecting various anxiety disorders and OCD. 

No significant sex differences were observed for depression. As shown in the lower 

triangle of Figure 1c and Supplementary Table 4, age and sex-adjusted subject weights on 
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clinical independent components were only weakly correlated with each other (r < .1), but 

showed moderate positive correlations with general psychopathology (pF; r ranging from 

.22 to .54). General cognitive function (gF) showed weak negative correlations with 

general psychopathology (pF), ADHD, Anxiety, Conduct and Psychosis (r-values ranging 

from -.1 to -.23). 

 

MRI-based morphometry 

Data-driven decomposition of cerebellar grey matter maps using a model order of 10 

yielded a set of symmetric bilateral components (Figure 2a), which tended to fuse using 

lower model orders and split into unilateral components at higher model orders (see 

Supplementary Figures 4-6 for results using model orders of 5, 15 and 20). We 

consequently chose the 10-component decomposition for all further analyses. Of note, the 

Neurosynth analyses revealed that voxels at the peak coordinates of each cerebellar 

component (marked with an asterisk in Fig.2a) showed distinct patterns of whole-brain 

functional connectivity (Fig 2b-c), which were associated with different functional terms in 

the neuroimaging literature (Fig 2d). In brief, the connectivity maps of four components 

(IC02, IC05, IC06 and IC09) were most closely associated with motor control, while the 

remaining connectivity networks showed stronger associations with various cognitive 

functions. See Supplementary Figures 7-10 and Supplementary Tables 5-8 for estimated 

effects of age, sex and eTIV on all anatomical features.  

 

Structure-function associations 

Results from the main structure-function analyses are presented in Figure 3. As 

hypothesized, cerebellar morphological features predicted both general cognitive function 

(mean correlation between observed and predicted scores: r = .20; p < .0009) and general 

psychopathology (r = .12, p < .0009). When using cerebellar features to predict clinical 
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components, we observed significant results for Conduct (r = .16; p < .0009), Psychosis (r 

= .12; p < .0009) and Anxiety (r = .09; p = 0.0117), but not for ADHD (r = .01; ns), 

Depression (r = -.02; ns), Mania (r = .03; ns) or OCD (r = -.01; ns). The relative feature 

importance (i.e., CAR-score) for each cerebellar component used in the five significant 

prediction models is presented in Figure 3b. Briefly, IC03 contributed most strongly to the 

prediction of cognitive function (gF), general psychopathology (pF) and psychotic 

symptoms, whereas IC01 was the most important feature when predicting conduct 

problems.  

This pattern was confirmed in the univariate analyses (Figure 3c). Specifically, 

general cognitive function (gF) was positively correlated with subject weights on IC01, 

IC03, and IC05, while overall psychopathology (pF) was negatively correlated with subject 

weights on IC03. Of the seven clinical ICs, Conduct was negatively correlated with 

cerebellar IC01 and IC09, while Psychosis was negatively correlated with cerebellar IC03. 

No other associations survived correction for multiple comparisons. Prediction models and 

univariate analyses using cerebellar lobular volumes yielded very similar results (see 

Supplementary Figure 12).  

Results from the voxel-based analyses are given in Figure 3d and Supplementary 

Table 9. In line with the main findings, we observed anatomically widespread positive 

associations with general cognitive function, while general psychopathology scores were 

associated with a more restricted pattern of cerebellar grey matter volume reduction, 

encompassing bilateral lobule VI and Crus I. Psychotic symptoms were associated with a 

largely overlapping pattern, while  conduct problems were associated with a partially 

overlapping region in left Crus I, as well as additional clusters in more inferior and midline 

regions. Anxiety was negatively associated with a small cluster in left lobule VI (11 voxels, 

not shown). No other clinical component yielded significant voxel-wise results.  
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Prediction models using cerebral anatomical features 

Figures 4 a-c present the performance of prediction models using volumetric estimates of 

8 bilateral subcortical structures, cortical thickness estimates from 34 bilateral cerebral 

ROIs and scaled versions of all anatomical measures, respectively (see Supplementary 

Figures 13-14 for CAR-scores). In brief, the subcortical model performed worse than the 

cerebellar model, with a notable exception for OCD (r = .08; p = .0423), where pallidum 

volume emerged as the most important feature. The cortical thickness model performed 

better than the cerebellar model for general cognitive function (r = .26; p < .0009) and 

yielded comparable results for Anxiety (r = .09; p = .0225), but performed worse than the 

cerebellar model in predicting general psychopathology, Conduct and Psychosis (all rs < 

.0.08; all ps => .072). Models using all anatomical features significantly predicted general 

cognitive function (r = .29; p < .0009), general psychopathology (r = .13; p < .0009), 

Anxiety (r =.10; p = .0153), Conduct (r =.14; p < .0009) and Psychosis (r =.10; p = .0162). 

Univariate analyses yielded similar results (see Supplementary Figures 15-16). 

 Figure 5 gives the feature importance weights for significant models using all 

anatomical features. Of note, cerebellar features emerged as the most important in several 

of these models, especially general psychopathology, Conduct and Psychosis.  

 

Control analyses 

See Supplementary Results and Supplementary Figure 17 for detailed results. In brief, the 

negative correlation between cerebellar IC03 and psychotic symptoms remained 

significant when controlling for general cognitive function, general psychopathology, MRI 

data quality, parental education level, as well as in the subsets of participants with no 

evidence of substance abuse or assessed using only collateral information from caregivers 

(all corrected p-values < .05). The negative correlation between cerebellar IC01 and 
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conduct problems was no longer significant when controlling for parental education level or 

substance abuse.  

 

Discussion  

The current machine learning approach utilizing 10-fold internal cross-validation in a large 

developmental MRI sample yielded three main findings. First cerebellar morphological 

features could significantly predict both general cognitive function and general 

psychopathology in adolescence. Second, the analyses of independent components 

based on clinical symptom scores revealed a pattern of diagnostic specificity, in that 

significant results were observed for psychosis symptoms and rates of norm violating 

behavior (i.e., conduct problems) and to a lesser extent anxiety, whereas symptoms of 

ADHD, depression, mania and OCD were unrelated to cerebellar morphology. These 

patterns also showed anatomical specificity, with volume reductions in bilateral lobules 

VI/Crus I most strongly related to psychosis symptoms and volume reductions in more 

inferior cerebellar regions (lobules VIIb and VIII) most highly correlated with norm-violating 

behavior. Third, associations with psychotic symptoms and norm-violating behavior were 

stronger for the cerebellum than for subcortical volumes or regional cortical thickness. 

Together, these findings provide compelling evidence for an association between 

cerebellar structure and the early expression of core phenotypes of severe mental illness.    

 The associations with general cognitive function and general psychopathology were 

expected based on previous research in adults(26, 31, 32), and add to the growing 

database supporting a cerebellar role in cognition and affect(60). Of note, the voxelwise 

analyses (Figure 3d) revealed an anatomically widespread pattern for general cognitive 

function, while general psychopathology showed a more restricted pattern, largely 

overlapping with that seen for the psychosis domain. One possible explanation for this 

overlap is that psychosis symptoms lie at the very extreme end of a putative continuum 
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going from more benign to more severe psychopathology (16, 17). Thus, participants with 

high scores on the Psychosis component would also be expected to express high 

symptom levels more generally. In line with this notion, Caspi et al. observed a very high 

correlation (.997) between a Thought Disorder factor (reflecting symptoms associated with 

psychotic disorders) and their General Psychopathology factor (reflecting overall 

psychopathology) calculated based on extensive structured interviews in a large 

longitudinal sample(17). Consistent with their results, across the seven clinical 

components we also observe the highest correlation with General Psychopathology for 

Psychosis (IC04). Of note, measures of general psychopathology have recently been 

associated with a range of brain phenotypes(61-63), including white matter integrity and 

grey matter volume of the cerebellum(15). 

 The majority of existing structural MRI-studies on psychosis have focused on 

cerebral structures(64), but our findings on psychotic symptoms are nonetheless in 

general agreement with an emerging body of research. For instance, we have recently 

shown that cerebellar volume reductions is one of the strongest and most consistent 

morphological alterations in a large multi-site sample of schizophrenia patients (N = 983) 

and healthy controls (N = 1349)(1). Of note, both in our previous patient study(1) and in 

the current study of premorbid symptoms, the strongest effects of the psychosis domain 

converged on cerebellar regions that show functional connectivity with the frontoparietal 

cerebral network, which has been strongly implicated in cognitive control processes(65). 

Indeed, previous functional MRI studies of working memory using the PNC sample found 

that activation of cerebellar Crus I was associated task performance (66), and that reduced 

activation in this region was associated with overall level of psychopathology (67). 

Structural alterations in this cerebellar region also emerged as one of the strongest 

predictors of transition to psychosis in a recent study of high-risk populations(68). 

Considered together, these findings provide converging evidence for cerebellar Crus I as a 
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key node involved in both high-level cognition and severe psychopathology. More broadly, 

functional neuroimaging studies consistently report reduced cerebello-cerebral connectivity 

in schizophrenia patients(69, 70) and high-risk groups(71, 72), while behavioral studies 

find impaired cerebellar learning in both patients with schizophrenia(73-75) and their first-

degree relatives(76).  

 Of note, our findings differ in some respects from a previous study of structural 

brain alterations in a partially overlapping sample of psychosis spectrum youth(38), which 

reported the strongest group effects in medial temporal, posterior cingulate and frontal 

regions. We highlight two possible sources of these discrepancies. First, only the current 

study employed analysis pipelines optimized for both the cerebellum(77) and the 

cerebrum(78). Second, whereas the previous study employed an extreme group 

design(38), we tested parametric associations across the full phenotypic range.  

 The associations between cerebellar volume and rates of norm-violating behavior 

are consistent with some recent reports of altered cerebellar white matter 

microstructure(79) and functional activation(80) in conduct disorder. However, since our 

control analyses suggested that these associations might be partially confounded by 

parental education level and substance abuse, they should be interpreted with caution.  

 While the current results do not allow inferences regarding the pathophysiological 

mechanisms underlying these changes in cerebellar morphology, we observe that genes 

associated with schizophrenia have been shown to be highly expressed in the human 

cerebellum(81), suggesting a direct or indirect genetic impact. Further, cerebellar volume, 

like hippocampal volume(82), has been shown to be very sensitive to stress hormone 

exposure. While this effect is especially strong during infancy(83) it has also been 

observed in adults with very high levels of circulating corticosteroids due to Cushing´s 

disease(84). These latter observations may provide a possible link, to be tested in future 
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research, between our findings and the well-documented role of stressful life events in the 

development of psychopathology(85).  

 Strikingly, associations with psychotic symptoms and norm-violating behavior were 

stronger for the cerebellum than for subcortical volumes or regional cortical thickness. 

Since this pattern was not observed across all examined phenotypes (e.g., cortical 

thickness was the best predictor of general cognitive function, while subcortical volumes 

showed stronger associations with OCD symptoms), we believe these brain-wide 

comparisons reveal a crucial cerebellar involvement with respect to these specific 

symptom domains. 

 From a methodological point of view, it is worth mentioning that our data-driven 

cerebellar decomposition yielded components that only partially overlapped with standard 

anatomical parcellations. In particular, borders between several components were 

primarily organized along the medial-to-lateral dimension, and one component could span 

parts of several lobules. Together with results from recent fMRI-studies (86, 87), these 

results suggest that traditional cerebellar subdivisions do not optimally capture either the 

inter-subject structural variability or the functional heterogeneity of the cerebellum.   

 Notable strengths of the current study include the use of a large sample and internal 

cross-validation methods, which should reduce the risk of overfitting and thus ensure more 

generalizable effect estimates(25). Its main limitation is the cross-sectional design, which 

prevents direct tests of causal relationships. We observe, however, that results from 

previous studies using smaller longitudinal samples do suggest that cerebellar structure 

and function can predict later progression of psychotic symptoms(72) or conversion to 

frank psychosis(68). A second limitation is that only a subset of participants had 

information on parental education and substance abuse, resulting in a reduced sample 

size for some of the control analyses. Third, although a previous study has found that 

cerebello-cerebral connectivity patterns are largely developed and similar to those seen in 
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adults by middle childhood (88), the extent to which results from a young adult sample(46) 

can be generalized to the current adolescent sample remains unknown. Finally, although 

the reported structure-function associations were robust and highly significant, cerebellar 

morphology explained only a limited part of the variance in clinical scores. While not 

surprising, given the multiple factors that influence the expression of psychiatric 

symptoms(85, 89, 90), this caveat must be kept in mind when interpreting the results. 

 In conclusion, our findings highlight the cerebellum as a key brain structure for 

understanding the development of mental disorders, in particular psychosis.  
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Figure legends 

 

Figure 1: Behavioral indices. a: Loadings of 129 clinical items from 18 questionnaires on 

the general psychopathology factor (pF) and the seven clinical independent components, 

primarily reflecting symptoms of attention deficit hyperactivity disorder (ADHD), anxiety 

(ANX), norm-violating behavior/conduct disorder (COND), psychosis (PSYCH), depression 

(DEP), mania (MANIA) and obsessive-compulsive disorder (OCD). Clinical conditions 

targeted by each questionnaire are listed on the y-axis, while Supplementary Table 2 lists 

all 129 individual items and Supplementary Figure 3 gives numeric PCA and ICA weights 

for each item; b: Effects of age and sex on cognitive/clinical scores (asterisks denote 

significant sex differences; * < .05, *** <.001); c: correlations between all cognitive/clinical 

scores before (upper triangle) and after (lower triangle) correcting for effects of age and 

sex.   

	

Figure 2: Cerebellar anatomical indices. a: The ten independent components resulting 

from data-driven decomposition of cerebellar grey matter maps projected onto flat-maps of 

the cerebellar cortex(91). Asterisks denote the peak voxel for each component. b-c: 

Cerebellar and cerebro-cortical functional connectivity maps (determined using 

NeuroSynth(46, 92)) for each of the peak voxels  shown in a. d: Top 5 functional terms 

associated with each of the full-brain cerebellar connectivity maps shown in b and c.  

	

Figure 3: Cerebellar structure-function associations. a: Distributions of correlations 

between predicted and actual cognitive/clinical scores across 10,000 iterations of the 10-

fold cross-validated model. White dots denote the mean, used as point estimates for 

comparison with each model’s empirical null distribution (computed by fitting the predictive 

models to randomly permuted cognitive/clinical data, across 10,000 iterations). For 

illustrative purposes we here plot the empirical null-distribution summed across all 
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prediction models. The dotted grey line represents the one-tailed .05 threshold, 

Bonferroni-adjusted for 9 tests. b: Feature importance weights (CAR-scores) for the five 

significant models (color code as in a); c: Univariate correlations between cerebellar ICs 

and cognitive/clinical scores. Colored tiles mark significant associations (corrected for 

multiple comparisons across the matrix); d: T-statistics from the voxel-wise general linear 

models, thresholded at p < .05, two-tailed (based on 10.000 permutations).  

	

Figure 4: Predictive performance of cerebral models. a: Predictive performance of 

machine learning models using a: Subcortical volumes; b: Mean thickness for 34 bilateral 

cerebrocortical ROIs; and c: Z-normalized versions of all anatomical features.  

	

Figure 5: Relative feature importance across brain regions. Feature importance 

weights (CAR-scores) for the five significant prediction models using all anatomical 

features. CAR-scores were computed for each of 10,000 iterations of the model on 

randomly 10-fold partitioned data, yielding 100,000 estimates for each model. Colors 

indicate the general anatomical classification of each feature, while error bars denote the 

2.5th and 97.5th percentiles of these CAR-score distributions.	
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Supplementary information:  Cerebellar grey matter volume is associated with 
cognitive function and psychopathology in adolescence 
 
Supplementary Methods:  
Participants, inclusion criteria and quality control procedures: Access to the PNC data was 

obtained with permission #8642 (project title: Neurodevelopmental brain networks: Integrating 

multimodal imaging, cognition and genetics). Phenotypic data were available from 6487 

participants, while MRI data were available from 1601 participants. Data from four subjects 

suffered data corruption during download, while 76 participants with severe or major physical 

medical conditions requiring standing medications and monitoring (as assessed by trained 

personnel in the PNC study team(1, 2)) and 72 participants with missing data on medical status 

were removed from the sample prior to analyses. In addition, one participant with MRI data was 

excluded due to missing phenotypic data. For the remaining 1448 participants, we implemented a 

flagging procedure based on robust PCA(3) for detecting signal to noise-, and segmentation 

outliers based on the FreeSurfer output. Flagged datasets were carefully inspected, with minor 

edits performed when necessary. Scans from 47 participants were rejected due to poor MRI quality 

based on visual inspection. For an additional quantitative assessment of MRI quality, we calculated 

the Euler numbers (one for each hemisphere) for each dataset and computed the sum of these two 

Euler numbers as an index of overall MRI quality(4).  Supplementary Figure 1 displays the 

distributions of these summed Euler numbers for included and excluded datasets, respectively. As 

expected, mean Euler number differed significantly between included and excluded datasets  and 

the distributions showed only moderate overlap. We thus believe these quantitative results 

corroborate our original quality control procedure. Euler numbers for included datasets were also 

included as covariates in control analyses (see below), testing for potentially confounding effects of 

MRI data quality(4). The final sample (N= 1401) ranged between 8.2 and 23.2 years of age (mean 

age:  15.12, SD: 3.62), and was 52.8% female. Mean age was slightly higher (t=2.7, p=.006868 for 

females (15.4; SD:  3.6)) than males (14.8; SD: 3.62).  

 

Computation of cognitive and clinical summary scores: Supplementary Table 1 provides an 

overview of all cognitive test scores used to compute the index of cognitive function (gF). The gF 

score was computed by submitting cognitive test score from 6487 participants to a principal 

component analysis and extracting subject weights on the first principal component (explaining 

30.7% of the variance in the total sample). The first factor weights on each cognitive measure are 

given in Supplementary Table 1.  

 Supplementary Table 2 lists all 129 items used to compute both the general index of 

psychopathology (pF) and the clinical independent component scores. As described previously(5), 

1,627 participants had missing values on one or several clinical items. For all but two participants 

which had missing values on all 129 clinical items, the missing values were replaced with the 



nearest-neighbor value based on Euclidean distance. The percentage of missing values for the 

129 items ranged from 0-7%. 

 In brief, analogous to the notion of a positive manifold in the cognitive domain (frequently 

termed the g-factor), a general psychopathology factor (or p-factor) has been proposed as a 

parsimonious explanation for the considerable correlations between different symptoms of 

psychopathology, as well as the common comorbidity and genetic overlaps across psychiatric 

diagnostic categories (for a recent review, see(6)). Thus, the general psychopathology factor (pF) 

reflects the shared variance across symptom domains, while independent components (by 

definition) reflects independent sources of variance in the same dataset. By reporting results 

analyzed from two such alternative nosological perspectives, we believe that our reported findings 

will have the maximal future impact, regardless of whether "lumping" (general psychopathology) or 

"splitting" (independent components) will eventually turn out to be the most fruitful approach 

towards a deeper understanding of psychopathology. 

 The pF score was computed by submitting data from the full set of PNC participants (N = 

6487) to a principal component analysis and extracting subject weights on the first principal 

component (explaining 12.9% of the variance). The first principal component weights on each 

clinical item are displayed in Figure 1, with numerical information given in Supplementary Figure 3. 

As described previously(5), the ICA model order for clinical score decomposition was chosen after 

testing several different model orders ranging from 3-15, for each of which 100 permutations were 

run, and based on the observed independence and reliability of the resulting components. The 

independent component weights on each clinical item are displayed in Figure 1, with numerical 

information given in Supplementary Figure 3. Note that all clinical items (traditionally associated 

with distinct diagnostic categories) had positive and relatively uniform weights on pF (range from 

.02 to .13). In contrast, weights on independent components were more specific to a smaller set of 

symptoms, and showed a wider range which also included negative weights on some symptoms 

(range from -.07 to .19). 

Effects of gender and age on cognitive/clinical sores were tested by fitting generalized 

additive models (GAMs) to account for potentially non-linear effects of age. We used GAM as 

implemented in the R-package “mgcv”, with age modeled using cubic splines with 5 knots the level 

of smoothness automatically selected using the restricted maximum likelihood method (“REML”). 

For the full model, we report the percent variance explained, for parametric terms we report t- and 

p-values, while for smooth age-term, we report F-values and approximate p-values.  

Age- and gender-adjusted cognitive/clinical scores were computed by reconstructing data 

from the intercept and residuals of these GAM-models (i.e., omitting the age- and gender-

coefficients).  

 

 

 



Independent component analysis (ICA) of cerebellar grey matter maps: 

ICA of the modulated cerebellar grey matter maps was performed using FSL MELODIC with 

standard settings. A binary mask was constructed by thresholding the mean unmodulated 

cerebellar grey matter map at .01 and multiplying it with the probabilistic cerebellar grey matter 

map from the SUIT template (also thresholded at .01). We initially tested model orders ranging 

from 5 to 20 (in steps of 1), and decided on a model order of 10 for the main analyses, since this 

produced a concise set of largely bilateral components which tended to fuse in to larger bilateral 

components at lower model orders and fragment into unilateral components at higher model orders 

(See Supplementary Figures 4-6 for examples of ICA-decompositions using alternative model 

orders of 5, 15 and 20). 

 The 10 independent components together accounted for 60.03% of the total variance in the 

modulated grey matter maps used as input to the analysis, with each component explaining 

between between 4.07% and 7.65% of the total variance (and between 8.31% and 12.74 % of the 

explained variance). In comparison, the 5-, 15- and 20-component models accounted for 

respectively 48.00, 65.72 and 69.73% of the total variance. Correlations between the 10 cerebellar 

ICs before and after adjusting for effects of sex, age and estimated total intracranial volume are 

given in Supplementary Figure 11.  

For functional characterization of the resulting cerebellar grey matter components, we used 

results from a large (N=1000) resting state fMRI functional connectivity study(7) (implemented in 

NeuroSynth(8)) to map the full-brain functional connectivity of the peak voxel of each component, 

and plotted both cerebellar maps (thresholded at r = .3) and cerebrocortical maps (thresholded at r 

= .05) for illustration (Figure 2B and C). We next decoded these full-brain connectivity maps in 

terms of their similarity to (i.e., spatial correlation with) meta-analytic maps generated for the 2911 

terms in the NeuroSynth(8) database. We report the top five functional terms (Fig 2D), i.e. a 

pruned version of Neurosynth output after exclusion of all terms related to brain anatomy, 

methodology, etc. Spatial correlations between whole-brain connectivity maps and the meta-

analytic maps for the reported terms in Figure 2D ranged from .108 to .457.    

 

ROI-wise adjustment for effects of age- gender and estimated total intracranial volume: 

Before inclusion in multivariate or univariate models, all volumetric anatomical features were 

adjusted for main effects of gender and eTIV as described above for clinical scores, i.e., by fitting 

GAM-models and reconstructing data from model parameters and residuals. As for clinical sores, 

effects of age on anatomical features were estimated using cubic splines with 5 knots, with the 

level of smoothness automatically selected using the restricted maximum likelihood method 

(“REML”). For all volumetric features (but not for cortical thickness), we also used GAM (with the 

same input parameters as for age) to estimate potentially non-linear effects of eTIV(9, 10). For 

each GAM- model, we report total explained variance, t, F and p-values as described for 

cognitive/clinical data above. 



Univariate analyses: 

In a set of univariate analyses, we computed the Pearson correlation coefficients between all (sex-, 

age- and eTIV-corrected) anatomical features included in each prediction model and all predicted 

(sex- and age-corrected) cognitive/clinical components. Statistical significance (corrected for 

multiple comparisons across the set of features for each model) was determined by permutation 

testing. Specifically, we randomly permuted the cognitive/clinical subject weights 10.000 times, 

computed the resulting matrices of structure-function correlations and extracted the maximal and 

minimal correlation coefficients from each iteration to form empirically derived null-distributions. 

Structure-function associations were considered significant at a corrected alpha-level of .05 (two-

tailed).   

 

Voxel-wise analyses: 

Statistical analyses testing voxel-wise associations between cerebellar volume and age- and 

gender-adjusted cognitive/clinical scores, while controlling for main effects of gender, age, and 

estimated total intracranial volume(eTIV), were performed using FSL Randomise. Sex was 

modelled as two binary variables, while age, eTIV and cognitive/clinical scores were z-transformed 

and modelled as three continuous variables.  Statistical inference was based on permutation 

testing (using 10.000 permutations per contrast), with voxels considered significant at a corrected 

alpha-level of .05 (two-tailed).   

 

Analyses controlling for potentially confounding factors:  

Information on general cognitive function (i.e., the gF score) and general psychopathology (i.e., the 

pF score), as well as the mean Euler number (a quantitative index of MRI data quality(4)) were 

available for all 1401 subjects, while information on maternal and paternal education level was 

available for 1274 subjects. In order to control for these potentially confounding variables, which 

previously have been shown to be associated with both psychiatric symptoms(11) and brain 

morphology(12-15), we performed additional univariate after adjusting both clinical and anatomical 

features for main effects of the respective variable (in addition to sex and age, as well as estimated 

total intracranial volume for volumetric features).  

 In order to test whether the use of two different assessment strategies for participants 

below and above 18 years of age (collateral informants versus self report), we performed a control 

analysis including only the 1035 participants below 18 years. Information on substance abuse was 

available for 594 participants. In the control analyses examining this potentially confounding 

variable, we excluded all subjects who reported having experienced one or more negative 

psychological or physical effects of alcohol use, or having ever tried illicit substances (n=225), 

leaving 369 participants in this pruned subsample.  

 

 



Supplementary Results: 
Effects of age and sex on cognitive/clinical scores 

The main results are displayed in Figure 1B, while the total percent variance explained by the 

models, t- and F-values for the gender and (smooth) age terms, as well as their respective p-

values are given in Supplementary Table 3.  

 

Relationships between cognitive/clinical scores 

The main results are displayed in Figure 1C, with numerical values given in Supplementary Table 

4. Briefly, correlations between individual scores on clinical independent components were very 

weak (range -.072 to .097), suggesting that these components indeed reflected largely 

independent sources of variance in the clinical data. Moreover, all clinical independent 

components showed weak to moderate positive correlations with the General Psychopathology 

factor (pF), ranging from .222 for ADHD to .538 for Psychosis. In line with previous reports in both 

an overlapping(16) and an independent sample(17), we also observed a weak negative correlation 

between General Psychopathology and General Cognition (r = -.147). Among the clinical 

independent components, ADHD, Anxiety, Conduct and Psychosis showed weak negative 

correlations with General Cognition (range: -.102 to -.230), while Depression, Mania and OCD 

showed very weak positive correlations with General Cognition (range: .033 to .080).  

 

Effects of age, sex and estimated total cranial volume on brain features: 

The GAM-estimated smooth functions for age and estimated total cranial volume (eTIV) are 

displayed (together with raw data and gender effects) in Supplementary Figures 7-10 and 

Supplementary Tables 4-7. Briefly, we observed significant effects of eTIV on all volumetric 

features, while age- and gender-effects were more variable. Specifically, with regards to the 

cerebellar components, we observed significant effects of age on subject weights for IC02, IC04, 

IC06 and IC10. When adjusting for eTIV, IC05, IC06 and IC09 showed significantly higher subject 

weights in males relative to females, while IC02, IC07, IC08 and IC10 showed the opposite 

pattern.   

 

Prediction models and univariate analyses using cerebellar lobular volumes:  

Results from the prediction models using cerebellar lobules as predictive features are presented in 

Supplementary Figure 12A. Significant results were observed for general cognitive function (gF; r = 

.19, p < 0.009), general psychopathology (pF; r =.12, p < 0.009), conduct disorder (IC03: r = .15, p 

< 0.009) and psychosis (IC04: r = .12, p < 0.009), while the nominally significant association with 

anxiety did not survive multiple comparisons correction (IC02: r = .06, ns). Cerebellar lobular 

volumes did not significantly predict subclinical symptoms of ADHD (IC01: r = .02, ns), depression 

(IC02: r = .01, ns), mania (IC02: r = .01, ns), or OCD (IC02: r = .05, ns). Feature importance 

indices (CAR-scores for significant prediction models are depicted in Supplementary Figure 12B-F. 



 

Control analyses: Supplementary Figure 17A and B display all univariate associations between 

cerebellar and clinical IC scores, when adjusting both feature sets for general cognitive function 

and general level of psychopathology, respectively. As expected, given the existing evidence for 

associations between these factors and both clinical symptoms(5, 11) and brain structure(5, 13, 

15), the structure-function associations observed in our main analyses were slightly reduced in 

these control analyses, but remained significant. Specifically, when adjusting both clinical and 

anatomical features for effects of general cognitive function, these analyses yielded correlation 

coefficients of -.11 (p < .001) between psychosis symptoms and cerebellar IC03, and -.10 (p < .01) 

between conduct disorder and cerebellar IC01. When similarly adjusting for effects of general 

psychopathology, we observed correlation coefficients of -.08 (p < .05) for the association between 

psychosis symptoms and cerebellar IC03, and -.10 (p < .01) for the association between conduct 

disorder and cerebellar IC01. 

 Results from the correlation analyses run after adjusting all anatomical features for effects 

of mean Euler number (a quantitative index of MRI data quality) are displayed in Supplementary 

Figure 17C. Both the association between cerebellar IC03 and psychosis symptoms (correlation 

coefficient: -.15, p < .001) and the association between IC01 and norm violating behavior 

(correlation coefficient: -.11, p < .001) remained significant. 

 Results from the correlation analyses run after adjusting all clinical and anatomical features 

for effects of maternal and paternal education levels are displayed in Supplementary Figure 17D. 

The association between cerebellar IC03 and psychosis symptoms remained significant 

(correlation coefficient: -.14, p < .001), but the association between IC01 and norm violating 

behavior did not (correlation coefficient: -.08, ns). 

 Results from correlation analyses in the pruned dataset containing only participants who 

reported no use of illicit substances and no negative experiences with alcohol (n=389) are 

displayed in Supplementary Figure 17E. Of note, the associations between psychosis symptoms 

and cerebellar IC03 remained significant in this pruned subsample (correlation coefficient: -.17, p < 

.05), while the association between cerebellar volumes and norm violating behavior did not 

(correlation coefficient: -.06, ns).  

 Results from correlation analyses in the pruned dataset containing only participants who 

with information provided from collateral informants (primary caregivers or legal guardians) 

(n=1035) are displayed in Supplementary Figure 17F. Both the association between cerebellar 

IC03 and psychosis symptoms (correlation coefficient: -.15, p < .001) and the association between 

IC01 and norm violating behavior (correlation coefficient: -.12, p < .001) remained significant. 

 

 
 
 



Supplementary figures and tables:  
 

 
Supplementary Figure 1: Mean Euler numbers for included and excluded datasets. Violin plots 

represent the distributions, small circles individual data points, and the large diamonds group 

means, while boxplots show medians end interquartile ranges. Mean Euler numbers differed 

significantly between included and excluded datasets (p = 2-e4, based on 10.000 permutations). 

 
 
 

 
Supplementary Figure 2: The subcortical and cerebro-cortical regions-of-interest used in the 
current study. Figures have been produced using the R-package "ggseg"(18).  
 

Subcortical regions-of-interest (ROIs) Cerebro-cortical regions-of-interest (ROIs)



 
Supplementary Figure 3: Principal component (pF) and independent component weights for each 

clinical item. pF: General psychopathology; ADHD: Attention Deficit Disorder; ANX: Anxiety; 

COND: Conduct disorder; PSYC: Psychosis; DEP: Depression; MANIA: Mania; OCD: Obsessive-

compulsive disorder. 
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Supplementary Figure 4: ICA-decompositions of cerebellar grey matter maps using a model 
order of 5. Note IC01, which fuses regions assigned to cerebellar components IC03 and IC06 in 
the 10 component solution.   
 

 

 

 

 

 
Supplementary Figure 5: ICA-decompositions of cerebellar grey matter maps using a model 
order of 15. Note IC04 and IC08, which largely correspond to the left and right aspect of the 
bilateral IC03 in the 10 component solution.   
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Supplementary Figure 6: ICA-decompositions of cerebellar grey matter maps using a model 
order of 20. Note IC05 and IC13, which largely correspond to the left and right aspect of the 
bilateral IC03 in the 10 component solution, and IC03 and IC11, which largely correspond to the 
left and right aspect of the bilateral IC03 in the 10 component solution. 
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Supplementary Figure 7: Effects of age, gender and estimated total intracranial volume on 
subject weights for the 10 cerebellar components. Solid lines in the scatter plots depict the GAM-
estimated smooth function, while shaded regions represent +/- 2 SEM. Distributions for each 
gender are represented in combined violin and box-plots, with the white dot indicating the group 
mean. For statistics, see Supplementary Table 4.  
 

 

 



 
Supplementary Figure 8: Effects of age, gender and estimated total intracranial volume on 
volumes of the 28 cerebellar lobules. Solid lines in the scatter plots depict the GAM-estimated 
smooth function, while shaded regions represent +/- 2 SEM. Distributions for each gender are 
represented in combined violin and box-plots, with the white dot indicating the group mean. For 
statistics, see Supplementary Table 5. 
 
 
 
 



Supplementary Figure 9: Effects of age, gender and estimated total intracranial volume on 
volumes of the 8 (bilateral) subcortical structures. Solid lines in the scatter plots depict the GAM-
estimated smooth function, while shaded regions represent +/- 2 SEM. Distributions for each 
gender are represented in combined violin and box-plots, with the white dot indicating the group 
mean. For statistics, see Supplementary Table 6. 
 
 
 



 
Supplementary Figure 10: Effects of age and gender on cortical thickness estimates for the 34 
(bilateral) cerebro-cortical ROIs. Solid lines in the scatter plots depict the GAM-estimated smooth 
function, while shaded regions represent +/- 2 SEM. Distributions for each gender are represented 
in combined violin and box-plots, with the white dot indicating the group mean. For statistics, see 
Supplementary Table 7. 
 
 
 
 
 
 



 
Supplementary Figure 11: Correlations between the 10 cerebellar components using raw 
components weights (above the diagonal) and component weights adjusted for effects of sex, age 
and total estimated intracranial volume (below the diagonal).  
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Supplementary Figure 12: Results from prediction models using cerebellar lobules (A). Feature 
importance weights (CAR-scores) for the four significant prediction models using the volumes of 28 
cerebellar lobular ROIs (B-E). CAR-scores were computed for each of 10,000 iterations of the 
model on randomly 10-fold partitioned data, yielding 100,000 estimates for each model. Error bars 
denote the 2.5th and 97.5th percentiles of these CAR-score distributions. Results from univariate 
correlation analyses (F). Colored tiles mark significant associations (p < .05, based on 10,000 
permutations and corrected for multiple comparisons across the matrix). 
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Supplementary Figure 13: Feature importance weights (CAR-scores) for the two significant 
prediction models using subcortical volumes. CAR-scores were computed for each of 10,000 
iterations of the model on randomly 10-fold partitioned data, yielding 100,000 estimates for each 
model. Error bars denote the 2.5th and 97.5th percentiles of these CAR-score distributions. 
 

 

 

 

 
Supplementary Figure 14: Feature importance weights (CAR-scores) for the two significant 
prediction models using mean cortical thickness from 34 bilateral ROIs. CAR-scores were 
computed for each of 10,000 iterations of the model on randomly 10-fold partitioned data, yielding 
100,000 estimates for each model. Error bars denote the 2.5th and 97.5th percentiles of these 
CAR-score distributions. 
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Supplementary Figure 15: Results from univariate correlation analyses using subcortical 
volumes. Colored tiles mark significant associations (p < .05, based on 10,000 permutations and 
corrected for multiple comparisons across the matrix)  
 
 
 

 
Supplementary Figure 16: Results from univariate correlation analyses using mean cortical 
thickness from 34 bilateral ROIs. Colored tiles mark significant associations (p < .05, based on 
10,000 permutations and corrected for multiple comparisons across the matrix)  
 



 
Supplementary Figure 17: Results from univariate control analyses using cerebellar independent 

components. Colored tiles mark significant associations (p< .05, corrected for multiple 

comparisons across the matrix).  
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Supplementary Table 1: 17 cognitive test scores included in the principal component analysis 

(PCA) and their factor loadings on the first principal component. 

Cognitive test Included outcome measure gF-weight 

The Penn Age Differentiation Test  Percent correct responses 0.2845 

The Penn Face Memory Test Total correct responses 0.1953 

Penn Emotion Identification Test Total Correct Responses for All Test Trials, by genus 0.1593 

Penn Word Memory Test Total Correct Responses for All Test Trials 0.1367 

Penn Verbal Reasoning Test Total Correct Responses for All Test Trials, by genus 0.2770 

Penn Emotion Differentiation Test Percent of Correct Responses for All Test Trials, by genus  0.2344 

Penn Motor Praxis task Median Response Time for Correct Mouse Click Responses -0.1565 

Penn Matrix Reasoning Test Percent of Correct Responses for All Test Trials, by genus 0.2613 

Finger Tapping Test Sum of Mean of Tap Responses for Dominant Hand Trials and Mean 
of Tap Responses of Non-Dominant Hand Trials 

0.2210 

Visual Object Learning Test Total Correct Responses for All Test Trial  0.1505 

Letter N-Back Test Number of Correct Responses to for 1-Back and2-Back Trials 0.2939 

Penn Conditional Exclusion Test Number of Categories Achieved 0.1683 

Penn Conditional Exclusion Test Calculated Accuracy Measure 0.1183 

Penn Continuous Performance Test Total of Correct Responses to Number Trials (TP) and Letter Trials 
(TP) 

0.1873 

Penn Continuous Performance Test Median Response Time for Correct Responses to Number Trials (TP) 
and Letter Trials (TP)  

-0.1901 

Penn Line Orientation Test Percent Correct Responses for All Test Trials, by genus 0.5059 

Wide Range Assessment 
Test(Reading/IQ) 

WRAT: Wide Range Assessment Test 4 Total Raw Score 0.2917 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 2: The 129 clinical items included in PCA and ICA decompositions.  

# Questionnaire/Item 

 Attention deficit Hyperactivity Disorder 

1 Did you often have trouble paying attention or keeping your mind on your school, work, chores, or other activities that you were 
doing? 

2 Did you often have problems following instructions and often fail to finish school, work, or other things you meant to get done? 

3 Did you often dislike, avoid, or put off school or homework (or any other activity requiring concentration)? 

4 Did you often lose things you needed for school or projects at home (assignments or books) or make careless mistakes in school 
work or other activities? 

5 Did you often have trouble making plans, doing things that had to be done in a certain kind of order, or that had a lot of different 
steps? 

6 Did you often have people tell you that you did not seem to be listening when they spoke to you or that you were daydreaming? 

7 Did you often have difficulty sitting still for more than a few minutes at a time, even after being asked to stay seated, or did you 
often fidget with your hands or feet or wiggle in your seat or were you "always on the go"? 

8 Did you often blurt out answers to other people's questions before they finished speaking or interrupt people abruptly? 

9 Did you often join other people's conversations or have trouble waiting your turn (e.g., waiting in line, waiting for a teacher to call 
on you in class)? 

 Agoraphobia 

10 Have you ever been very nervous or afraid of: being in crowds (for example, a classroom, cafeteria, restaurant, or movie 
theater)? 

11 Have you ever been very nervous or afraid of: going to public places (such as a store or shopping mall)? 

12 Have you ever been very nervous or afraid of: being in an open field? 

13 Have you ever been very nervous or afraid of: going over bridges or through tunnels? 

14 Have you ever been very nervous or afraid of: traveling by yourself? 

15 Have you ever been very nervous or afraid of: traveling away from home? 

16 Have you ever been very nervous or afraid of: traveling in a car? 

17 Have you ever been very nervous or afraid of: using public transportation like a bus or SEPTA? 

 Conduct disorder 

18 Was there ever a time when you often did things that got you into trouble with adults like lying or stealing (something worth more 
than $5, from family, others, or stores)? 

19 Did you ever skip school, stay out at night later than you were supposed to (more than 2 hours), or run away from home 
overnight? 

20 Did you ever set fires, break into cars, or destroy someone else's property on purpose? 

21 Do you have a probation officer or have you ever been on probation? 

22 Did you often bully others (hitting, threatening or scaring someone who was younger or smaller), threaten or frighten someone on 
purpose, or often start physical fights with others? 

23 Have you ever been physically cruel to an animal or person (on purpose)? 

24 Did you ever: try to hurt someone with a weapon (a bat, brick, broken bottle, knife, or gun)? 

25 Did you ever: threaten someone? 

26 Conduct Disorder: Did you ever: hold someone up? 

27 Conduct Disorder: Did you ever: attack someone to steal from them? 

28 Did you ever: trick or threaten someone into having sex with you, or did anyone ever accuse you of making them do something 
sexual? 

 Depression  

29 Has there ever been a time when you felt sad or depressed most of the time? 

30 Has there ever been a time when you cried a lot, or felt like crying? 

31 Has there ever been a time when you felt grouchy, irritable or in a bad mood most of the time; even little things would make you 
mad? 

32 Has there ever been a time when nothing was fun for you and you just weren't interested in anything? 

 Eating Disorder  

33 Was there ever a time when you felt really fat or heavy, but other people said that you were too thin? 

34 Has there been a time when your eating was out of control - you'd eat a large amount of food in a short period of time and could 
not stop yourself? 

 Generalized Anxiety  

35 Have you ever been  a worrier? 

36 Did you worry a lot more than most children/people your age? 

 Mania/Hypomania  



37 Have there been times when you were much more active, excited or energetic than usual, had problems sitting still, or needed to 
move around a lot? 

38 Has there ever been a time when you felt so full of energy that you couldn't stop doing things and didn't get tired? 

39 Has there ever been a time when you felt like you hardly needed sleep? 

40 Have there been times when you kept talking a lot, couldn't stop talking, talked faster than usual, had thoughts faster than usual, 

or had so many ideas in your head that you could hardly keep track of them? 

41 Have you ever had a time when you felt much more happy or excited than you usually do when there was nothing special going 

on? 

42 Have you ever had a time when you felt like you could do almost anything? 

43 Has there ever been a time when you felt unusually grouchy, cranky, or irritable; when the smallest things would make you really 

mad? 

 Obsessive Compulsive Disorder  

44 Have you ever been bothered by thoughts that don't make sense to you, that come over and over again and won't go away, such 

as concern with harming others/self? 

45 Have you ever been bothered by thoughts that don't make sense to you, that come over and over again and won't go away, such 

as pictures of violent things? 

46 Have you ever been bothered by thoughts that don't make sense to you, that come over and over again and won't go away, such 

as thoughts about contamination/germs/illness? 

47 Have you ever been bothered by thoughts that don't make sense to you, that come over and over again and won't go away, such 

as fear that you would do something/say something bad without intending to? 

48 Have you ever been bothered by thoughts that don't make sense to you, that come over and over again and won't go away, such 

as feelings that bad things that happened were your fault? 

49 Have you ever been bothered by thoughts that don't make sense to you, that come over and over again and won't go away, such 

as forbidden/bad thoughts? 

50 Have you ever been bothered by thoughts that don't make sense to you, that come over and over again and won't go away, such 

as need for symmetry/exactness? 

51 Have you ever been bothered by thoughts that don't make sense to you, that come over and over again and won't go away, such 

as religious thoughts? 

52 Have you ever had to do something over and over again - that would have made you feel really nervous if you couldn't do it, like: 

cleaning or washing (for example, your hands, house)? 

53 Have you ever had to do something over and over again - that would have made you feel really nervous if you couldn't do it, like: 

counting? 

54 Have you ever had to do something over and over again - that would have made you feel really nervous if you couldn't do it, like: 

checking (for example, doors, locks, ovens)? 

55 Have you ever had to do something over and over again - that would have made you feel really nervous if you couldn't do it, like: 

getting dressed over and over again? 

56 Have you ever had to do something over and over again - that would have made you feel really nervous if you couldn't do it, like: 

going in and out a door over and over again? 

57 Have you ever had to do something over and over again - that would have made you feel really nervous if you couldn't do it, like: 

ordering or arranging things? 

58 Have you ever had to do something over and over again - that would have made you feel really nervous if you couldn't do it, like: 

doing things over and over again at bedtime, like arranging the pillows, sheets, or other things? 

59 Have you ever saved up so many things that people complained or they got in the way 

60 Do you feel the need to do things just right (like they have to be perfect)? 

 Oppositional Defiant Disorder  
61 Was there a time when you often did things that got you into trouble with adults such as losing your temper, arguing with or 

talking back to adults, or being grouchy or irritable with them? 

62 Was there a time when you often got into trouble with adults for refusing to do what they told you to do or for breaking rules at 

home/school? 

63 Did you often annoy other people on purpose or blame other people for your mistakes (excluding siblings)? 

64 Did you ever get into trouble for getting even with other people by doing things to hurt them, telling lies about them, or messing 

up their things? 



65 Were you often irritable or grouchy, or did you often get angry because you thought that things were unfair? 

 Panic Disorder 
66 Have you ever had an attack like this? 

67 Has there ever been a time when all of a sudden you felt very, very scared or uncomfortable - and your chest hurt, you couldn't 

catch your breath, your heart beat very fast, you felt very shaky, and sweaty/tingly/numb in your hands or feet? 

68 Has there ever been a time when all of a sudden, you felt that you were losing control, something terrible was going to happen, 

that you were going crazy, or going to die? 

 Specific phobia  

69 Have you ever been very nervous or afraid of animals or bugs, like dogs, snakes, or spiders? 

70 Have you ever been very nervous or afraid of being in really high places, like a roof or tall building? 

71 Have you ever been very nervous or afraid of water or situations involving water, such as a swimming pool, lake, or ocean? 

72 Have you ever been very nervous or afraid of storms, thunder, or lightning? 

73 Have you ever been very nervous or afraid of doctors, needles, or blood? 

74 Have you ever been very nervous or afraid of closed spaces, like elevators or closets? 

75 Have you ever been very nervous or afraid of flying or airplanes? 

76 Have you ever been very nervous or afraid of any other things or situations? 

 Psychosis  

77 Have you ever heard voices when no one was there? 

78 Has there ever been anything unusual about the way things smelled or felt or looked? 

79 Have you ever seen visions or seen things which other people could not see? 

80 Have you ever smelled strange odors other people could not smell? 

81 Have you ever had strange feelings in your body like things were crawling on you or someone touching you and nothing or no 

one was there? 

82 Have you ever believed in things and later found out they weren't true, like people being out to get you, or talking about you 

behind your back, or controlling what you do or think? 

 Post-traumatic Stress Disorder  

83 Have you ever been in a flood or a tornado or an earthquake or a hurricane or some other natural disaster where you thought 

you were going to die or be seriously hurt? 

84 Have you ever been in a situation where you thought you or someone close to you was going to be killed or be hurt very badly 

(e.g. family violence)? 

85 Have you ever been attacked by somebody or badly beaten? 

86 Have you ever been very upset by someone forcing you to do something sexual? 

87 Have you ever been threatened with a weapon? 

88 Have you ever been in a bad accident? 

89 Other than television or at the movies, have you ever seen or heard somebody get killed or get hurt very badly or die? 

90 Have you ever been very upset by seeing a dead body or by seeing pictures of the dead body of somebody you knew well? 

 General Probes 
91 Have you ever talked to a counselor, psychologist, social worker, psychiatrist or some other professional about your feelings or 

problems with your mood or behaviors? 

92 Are you currently taking medication because of your emotions and/or behaviors? 

93 Have you ever had to go to a hospital and stay overnight because of problems with your mood, feelings, or how you were acting? 

 Separation Anxiety  

94 Since you were 5 years old, has there ever been a time when you had a lot of worries about your (attachment figures) and were 

very upset or got sick (for example, felt sick to your stomach, headaches, thrown-up) when you were away from him/her? 

95 Has there ever been a time when you wanted to stay home from school or not go to other places (for example, sleep-overs) 

without your (attachment figures)? 

96 When you knew that you were going to be away from home or (attachment figure(s)), did you get very upset and worry (e.g., 

when you learned (attachment figure(s)) were going on an upcoming trip or night out)? 

97 Did you ever worry/have bad dreams about something terrible happening to you or your (attachment figures) so that you would 

not see them again? 

98 Were you scared to be alone in your room (or any place in your house) or did you need your (attachment figure(s)) to stay with 



you while you fell asleep? 

 Structural Interview for Prodromal Symptoms (Upper case items denote assessment by clinicians) 
99 TROUBLE WITH FOCUS AND ATTENTION: Severity Scale 

100 I think that I have felt that there are odd or unusual things going on that I can't explain. 

101 I think that I might be able to predict the future. 

102 I may have felt that there could possibly be something interrupting or controlling my thoughts, feelings, or actions. 

103 I have had the experience of doing something differently because of my superstitions. 

104 I think I may get confused at times whether something I experience or perceive may be real or may be just part of my imagination 

or dreams. 

105 I have thought that it might be possible that other people can read my mind, or that I can read others' minds 

106 I wonder if people may be planning to hurt me or even may be about to hurt me. 

107 I believe that I have special natural or supernatural gifts beyond my talents and natural strengths. 

108 I think I might feel like my mind is "playing tricks" on me. 

109 I have had the experience of hearing faint or clear sounds of people or a person mumbling or talking when there is no one near 

me. 

110 I think that I may hear my own thoughts being said out loud. 

111 I have been concerned that I might be "going crazy." 

112 Do people ever tell you that they can't understand you? 

113 Do people ever seem to have difficulty understanding you? 

114 CHANGES IN SPEECH, DISORGANIZED COMMUNICATION, TANGENTIAL SPEECH: Severity Scale 

115 Do you ever feel a loss of sense of self or feel disconnected from yourself or your life? 

116 Has anyone pointed out to you that you are less emotional or connected to people than you used to be? 

117 CHANGES IN PERCEPTION OF SELF, OTHERS, OR THE WORLD IN GENERAL: Severity Scale 

118 EXPRESSION OF EMOTION: Severity Scale 

119 Within the past 6 months, are you having a harder time getting your work or schoolwork done? 

120 Within the past 6 months, are you having a harder time getting normal activities done? 

121 OCCUPATIONAL FUNCTIONING: Severity Scale 

122 AVOLITION: Severity Scale 

 Social Phobia  

123 Was there ever a time in your life when you felt afraid or uncomfortable or really, really shy with people, like meeting new people, 

going to parties, or eating or drinking, writing or doing homework in front of others? 

124 Was there ever a time in your life when you felt afraid or uncomfortable talking on the telephone or with people your own age who 

you don't know very well? 

125 Was there ever a time in your life when you felt afraid or uncomfortable when you had to do something in front of a group of 

people, like speaking in class? 

126 Was there ever a time in your life when you felt afraid or uncomfortable acting, performing, giving a talk/speech, playing a sport 

or doing a musical performance, or taking an important test or exam (even though you studied enough)? 

127 Was there ever a time in your life when you felt afraid or uncomfortable because you were the center of attention and were 

concerned something embarrassing might happen and you felt very afraid or felt uncomfortable? 

 Suicidal Thoughts  

128 Have you ever thought a lot about death or dying? 

129 Have you ever thought about killing yourself? 

  

 
 
 
 
 



Supplementary Table 3: Results from GAM-models of cognitive/clinical scores.   

Model Adjusted 

r2 

Deviance 

explained 

Sex Age 

t-value p-value F-value p-value 

gF Cognition 0.409 41.1 % 4.019 6.15e-05 241 < 2e-16 

pF Psychopathology 0.0705 7.32 % 0.297 0.767 26.77 < 2e-16 

IC01 ADHD 0.0358 3.72 % 4.616 4.27e-06 6.994 < 8.56e-08 

IC02 Anxiety 0.0653 6.75 % -8.910 < 2e-16 4.96 < 2.06e-05 

IC03 Conduct 0.059 6.17 % 4.497 7.48e-06 18.49 < 2e-16 

IC04 Psychosis 0.0604 6.35 % 2.481 0.0132 20.93 < 2e-16 

IC05 Depression 0.0781 8.09 % -0.751 0.45302 29.26 < 2e-16 

IC06 Mania 0.0339 3.64 % 2.489 0.0129 11.49 1.53e-11 

IC07 OCD 0.00667 0.797 % -2.285 0.02243 1.127 0.0191 

   

 
 
Supplementary Table 4: Correlations between raw (upper triangle) and age and sex-adjusted 

(lower triangle) cognitive/clinical scores.   

 gF pF IC01 IC02 IC03 IC04 IC05 IC06 IC07 

gF Cognition  0.055 -0.163 -0.078 0.010 -0.111 0.204 0.160 0.062 

pF Psychopathology -0.147  0.175 0.329 0.257 0.540 0.437 0.459 0.456 

IC01 ADD -0.102 0.222  0.011 0.01 -0.034 -0.003 -0.038 -0.030 

IC02 Anxiety -0.142 0.329 0.049  -0.025 0.073 -0.056 -0.069 0.062 

IC03 Conduct -0.146 0.238 0.022 0.003  -0.000 0.037 -0.029 0.023 

IC04 Psychosis -0.230 0.538 -0.036 0.063 0.009  0.066 0.004 0.094 

IC05 Depression 0.080 0.418 0.039 -0.066 -0.024 0.088  0.067 0.106 

IC06 Mania 0.063 0.435 -0.023 -0.072 -0.066 -0.020 0.032  0.057 

IC07 OCD 0.033 0.459 -0.013 0.046 0.019 0.097 0.092 0.052  

 

 

 

 

 

 

 

 



Supplementary Table 5: Results from GAM-models on cerebellar independent components.   

Model Adjusted 

r2 

Deviance 

explained 

Sex Age eTIV 

t-value p-value F-value p-value F-value p-value 

IC01 0.089 9.21 % 1.026 0.305 0.613 0.0812 21.544 < 2e-16 

IC02 0.0759 7.91 % -5.08 4.18e-07 6.674 1.57e-07 21.587 < 2e-16 

IC03 0.205 20.8 % -0.538 0.590 0.186 0.186 67.826 < 2e-16 

IC04 0.153 15.7 % -1.648 0.0995 1.823 0.0124 49.569 < 2e-16 

IC05 0.2772 27.4 % 6.739 2.33e-11 0.002 0.317 57.457 < 2e-16 

IC06 0.441 44.3 % 10.835 < 2e-16 15.33 5.25e-15 105,94 < 2e-16 

IC07 0.0103 1.16 % -3.442 0.000595 0 0.808544 2.872 0.000424 

IC08 0.0985 10.4 % -4.174 3.18e-05 0.29 0.142 36.49 < 2e-16 

IC09 0.057 5.87 % 4.792 1.83e-06 0.076 0.253 4.791 7.12e-06 

IC10 0.028 3.09 % -2.569 0.0103 2.494 0.000913 7.814 1.47e-08 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 6: Results from GAM-models on cerebellar lobules.   

Model Adjusted 

r2 

Deviance 

explained 

Sex Age eTIV 

t-value p-value F-value p-value F-value p-value 

Left I to IV 0.436 43.8% 6.495 1.15e-10 5.114 3.89e-06 142.936 < 2e-16 

Right I to IV 0.445 44.7% 7.209 9.19e-13 6.425 2.7e-07 142.316 < 2e-16 

Left V 0.507 50.9% 7.847 8.42e-15 4.768 7.96e-06 187.116 < 2e-16 

Right V 0.507 50.8% 8.563 <2e-16 6.116 5.03e-07 179.262 < 2e-16 

Left VI 0.478 48% 4.937 8.87e-07 2.948 0.000363 188.797 < 2e-16 

Vermis VI 0.3 30.3% 3.853 0.000122 0.758 0.0449 86.209 < 2e-16 

Right VI 0.476 47.8% 4.86 1.31e-06 3.674 7.74e-05 188.113 < 2e-16 

Left Crus I 0.365 36.7% 0.037 0.97 0.000 0.919 144.9 < 2e-16 

Vermis Crus I 0.16 16.3% 0.49 0.625 0.000 0.899 46.61 < 2e-16 

Right Crus I 0.389 39.1% 1.439 0.15 0.004 0.457 150.879 < 2e-16 

Left Crus II 0.306 30.9% 0.59 0.555 0.001 0.588 108.442 < 2e-16 

Vermis Crus II 0.199 20.1% 5.774  9.55e-09 0.158    0.203 36.614 < 2e-16 

Right Crus II 0.323 32.5% 0.825 0.41 0.0 0.659 115.8 < 2e-16 

Left VIIb 0.272 27.4% 0.454 0.65 0.137 0.219 91.916 < 2e-16 

Vermis VIIb 0.192 19.5% 1.739 0.0823 0.855 0.0355 51.753 < 2e-16 

Right VIIb 0.298 30% 0.724 0.469 0.003 0.464 103.367 < 2e-16 

Left VIIIa 0.261 26.3% 0.917 0.359 0.002 0.545 84.861 < 2e-16 

Vermis VIIIa 0.266 26.8% 3.714 0.000212 0.438 0.0976 71.707 < 2e-16 

Right VIIIa 0.284 28.6% 1.059      0.29 0.001    0.591 94.416 < 2e-16 

Left VIIIb 0.252 25.5% 3.812  0.000144 0.081 0.256 65.826 < 2e-16 

Vermis VIIIb 0.251 25.4% 2.303    0.0214 1.061   0.0221 73.072 < 2e-16 

Right VIIIb 0.285 28.7% 4.992  6.73e-07 1.272   0.0299 71.249 < 2e-16 

Left IX 0.152 15.4% -0.553     0.581 0.00 1 47.44 < 2e-16 

Vermis IX 0.233 23.6% -0.498     0.618 0.086    0.255 79.439 < 2e-16 

Right IX 0.191 19.3% 0.615     0.539 0.103    0.276 57.121 < 2e-16 

Left X 0.116 12% 0.961     0.337 3.147  0.00049 28.428 < 2e-16 

Vermis X 0.214 21.7% -0.812     0.417 2.535  0.00102 70.884 < 2e-16 

Right X 0.12 12.4% -0.019     0.984 3.186  0.000427 32.475 < 2e-16 

 

 

 

 

 



Supplementary Table 7: Results from GAM-models on subcortical volumes.   

Model Adjusted 

r2 

Deviance 

explained 

Sex Age eTIV 

t-value p-value F-value p-value F-value p-value 

Hippocampus 0.366 36.8 % 0.957 0.339 1.353 0.0154 139.471 < 2e-16 

Amygdala 0.26 26.3 % 6.464 1.41e-10 5.684 2.1e-05  48.137 < 2e-16 

Thalamus 0.592 59.4 % 4.596 4.7e-06 17.8 < 2e-16 309.2 < 2e-16 

Pallidum 0.351 35.4 % 8.112 1.08e-15 40.12 < 2e-16 54.17 < 2e-16 

Putamen 0.352 35.5 % 4.193 2.93e-05 13.43 1.31e-13 97.56 < 2e-16 

Caudate 0.323 32.7 % 0.44 0.66 6.678 3.62e-07 113.156 < 2e-16 

Accumbens 0.204 20.8 % 1.858 0.0633 58.84 < 2e-16 15.80 5.3e-15 

Lat. ventricles 0.155 15.7 % -2.172 0.03 17.24 < 2e-16 40.27 < 2e-16 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Table 8: Results from GAM-models of ROI mean cortical thickness.  

Model Adjusted 

r2 

Deviance 

explained 

Sex Age 

t-value p-value F-value p-value 

Superior Frontal  0.29 29.1% -3.97  7.56e-05 141.9 < 2e-16 

Rostral Middle Frontal 0.27 27.1% -2.443    0.0147 129.7 < 2e-16 

Caudal Middle Frontal 0.22 21.9 % -1.88 0.0604 97.88 < 2e-16 

IFG Pars Opercularis 0.20 19.6 2.089 0.0369 82.12 < 2e-16 

IFG Pars Triangularis 0.22 22.6 % 0.328 0.743 100.8 < 2e-16 

IFG Pars Orbitalis 0.18 18.4 % -1.875 0.061 78.29 < 2e-16 

Lateral Orbitofrontal 0.23 23.3 % -0.115 0.908 104.1 < 2e-16 

Medial Orbitofrontal 0.20 20 % -1.191 0.234 87.37 < 2e-16 

Precentral 0.10 10.4 % -0.748 0.455 40.08 < 2e-16 

Paracentral 0.28 28 % 0.731 0.465 133.9 < 2e-16 

Frontal Pole 0.06 6.57 % -5.567 3.1e-08 17.88 < 2e-16 

Superior Parietal 0.26 26.1 % -0.278 0.781 122.2 < 2e-16 

Inferior Parietal 0.18 18.5 % -5.906 4.41e-09 73.31 < 2e-16 

Supramarginal 0.17 17.3 % -4.278 2.02e-05 70.23 < 2e-16 

Postcentral 0.22 22.1 % -0.099 0.921 97.91 < 2e-16 

Precuneus 0.36 36.6 % 3.698 0.000226 192.4 < 2e-16 

Superior Temporal 0.07 6.9 % 0.194 0.846 25.13 < 2e-16 

Middle Temporal 0.08 8.71 % -0.369 0.712 32.36 < 2e-16 

Inferior Temporal 0.15 14.8 % 0.122 0.903 59.66 < 2e-16 

Banks STS 0.29 29.3 % 3.607 0.000321 137.1 < 2e-16 

Fusiform 0.26 25.6 % 1.712 0.0872 117.2 < 2e-16 

Transverse Temporal 0.06 6.33 % -0.513 0.608 23.07 < 2e-16 

Entorhinal 0.001 0.23 % -0.947 0.344 0.469 0.0902 

Temporal Pole 0.004 0.52 % 0.525 0.6 1.589 0.00677 

Parahippocampal 0.05 5.17 % -1.642 0.101 18.56 < 2e-16 

Lateral Occipital 0.09 9.13 % -0.383 0.702 34.18 < 2e-16 

Lingual 0.21 20.9 % 3.066 0.00221 86.61 < 2e-16 

Cuneus 0.14 14.3 % 2.229 0.026 54.98 < 2e-16 

Pericalcarine 0.07 7.54 % -0.282 0.778 27.7 < 2e-16 

Rostral Anterior Cingulate 0.06 6.22 % -2.021 0.0435 22.48 < 2e-16 

Caudal Anterior Cingulate 0.12 12.2 % -3.235 0.00125 46.89 < 2e-16 

Posterior Cingulate 0.324 32.5 2.424 0.0155 163.6 < 2e-16 

Isthmus Cingulate 0.23 23.1 % 0.229 0.819 104 < 2e-16 

Insula 0.08 8.11 % 3.29 0.00103 26.52 < 2e-16 

 

 

 



Supplementary Table 9: Significant results from the voxel-wise general linear models 

Contrast Cluster 
extent 

Peak 
coordinates 

t p Anatomical labels  

 (voxels) x y z    

gF positive 92614 36 -41 -28 8.29 <.0001 Widespread  

 41 -20 -32 -38 5.62 <.0001 Left lobule X 

pF negative 5727 39 -37 -32 5.72 <.0001 Right Crus I, Right VI, Right Crus II  

 5220 -42 -71 -24 6.83 <.0001 Left Crus I, Left Crus II, Left lobule VI 

 80 -37 -50 -23 4.80 .002 Left lobule VI 

 64 -23 -74 -20 4.59 .006 Left lobule VI 

 8 -34 -59 -21 4.28 .017 Left lobule VI 

 7 -27 -72 -44 4.30 .016 Left Crus II 

 3 -32 -64 -58 4.24 .021 Left Lobule VIIb 

IC02 Anxiety negative 11 -31 -34 -35 4.26 .018 Left lobule VI 

IC03 Conduct negative 6583 2 -60 -48 5.81 <.0001 Right Lobule VIII, Right Lobule IX, Right 
Lobule VIIb, Left Lobule IX, Vermis IX, 
Vermis VIIIa, Vermis VIIIb, Right Crus II 

 2732 -26 -49 -57 5.40 <.0001 Left Lobule VIIIa, Left Lobule VIIb, Left 
Lobule IX 

 975 -29 -69 -46 5.10 .001 Left Lobule VIIb,  Left Crus II, Left VIIIa, 
Left Lobule VIIIb 

 950 -43 -61 -37 4.93 .001 Left Crus I, Left Crus II 

 491 -25 -83 -37 4.91 .002 Left Crus II 

 360 -27 -63 -34 4.73 .003 Left Crus I, Left Lobule VI 

 193 36 -40 -28 4.57 .006 Right Lobule VI, Right Lobule V 

 38 32 -82 -25 4.29 .016 Right Crus I  

 31 20 -87 -35 4.30 .016 Right Crus II  

 23 33 -76 -31 4.27 .018 Right Crus I  

 19 28 -63 -35 4.25 .019 Right Crus I 

 14 38 -76 -26 4.22 .021 Right Crus I 

 11 4 -40 -18 4.47 .009 Right Lobule I to IV 

 9 32 -68 -20 4.31 .016 Right Lobule VI 

 3 21 -57 -29 4.21 .021 Right Lobule VI 

IC04 Psychosis 
negative 

4182 -39 -71 -26 5.63 <.0001 Left Crus I, Left Crus II, Left Lobule VI 

 3795 47 -62 -26 5.67 <.0001 Right Crus I, Right Lobule VI 

 39 -42 -41 -35 4.99 .002 Left Crus I 

 1 -22 -74 -21 4.22 0.021 Left Lobule VI 
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