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Accurate predictions for the nonlinear matter power spectrum are needed to confront theory with
observations in current and near future weak-lensing and galaxy clustering surveys. We propose a
computationally cheap method to create an emulator for modified gravity models by utilizing existing
emulators for ΛCDM. Using a suite of N-body simulations, we construct a fitting function for the
enhancement of both the linear and nonlinear matter power spectrum in the commonly studied Hu-Sawicki
fðRÞ gravity model valid for wave numbers k ≲ 5–10h Mpc−1 and redshifts z≲ 3. We show that the
cosmology dependence of this enhancement is relatively weak so that our fit, using simulations coming
from only one cosmology, can be used to get accurate predictions for other cosmological parameters. We
also show that the cosmology dependence can, if needed, be included by using linear theory, approximate
N-body simulations (such as comoving lagrangian acceleration) and semianalytical tools like the halo
model. Our final fit can easily be combined with any emulator or semianalytical models for the nonlinear
ΛCDM power spectrum to accurately, and quickly, produce a nonlinear power spectrum for this particular
modified gravity model. The method we use can be applied to fairly cheaply construct an emulator for
other modified gravity models. As an application of our fitting formula, we use it to compute Fisher
forecasts for how well galaxy clustering and weak lensing in a Euclid-like survey will be at constraining
modifications of gravity.

DOI: 10.1103/PhysRevD.100.123540

I. INTRODUCTION

One of the objectives of many next-generation surveys
such as Euclid [1] and LSST [2] is to look for and constrain
any deviations from the predictions of general relativity
(GR). Modifications of gravity have been studied quite
extensively over the last decade (see, e.g., Refs. [3,4] and
references within). Such modifications, when they are in
agreement with local and astrophysical tests of gravity,
usually reduce to having most of their interesting effects in
the nonlinear regime of structure formation.
Testing such models and extracting the maximum infor-

mation that is contained in the data gathered from current
and future galaxy and weak-lensing surveys require us to

include nonlinear scales. This requires theoretical predic-
tions for the matter power spectrum on these scales.
Currently, this is either done using semianalytical pre-

dictions and/or fits like HALOFIT [5,6] and HMCODE [7,8]
(which is implemented in commonly used Boltzmann codes
such as CAMB [9] and CLASS [10]) or using an emulator
such as CosmicEmu [11–13] and EuclidEmulator [14]. An
emulator is constructed by performing a large number of N-
body simulations in the parameter space and then performing
an interpolation to obtain the power spectrum for any
parameter combination of interest. This can be quite expen-
sive to make, but once it is created, it can provide nonlinear
spectra (usually from linear spectra) almost for free.
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For ΛCDM, both of the approaches above have been
adopted and used to provide constraints from observations.
For the case of modified gravity models, the only fit
provided so far is MGHALOFIT [15,16], which has a
modified HALOFIT that was calibrated using N-body sim-
ulation data to the Hu-Sawicki model [17]. For a coupled
dark energy model, a fitting function was developed in
Ref. [18] and was used to forecast the constraints on the
coupling parameter β. To be able to derive constraints, or to
provide forecasts for how well future experiments will
constrain deviations from GR, we need to have an accurate
model for the nonlinear matter power spectrum. This
generally has to be derived on a model-by-model basis.
However, very recently, an interesting semianalytical

method based on the halo model and nonlinear perturbation
theory was proposed in Ref. [19] and shown to be able to
get 1%–3% accuracy out to k ∼ 1h Mpc−1.
In this paper, we will consider the Hu-Sawicki model as

this is a representative model when it comes to using
cosmology and astrophysics to constrain deviations from
GR. Our aim is to provide the community with a precise
fitting function for this model that can be used for example
for making forecasts for future surveys. Instead of provid-
ing a fit for PfðRÞ directly, we present a fitting function for
the enhancement PfðRÞ=PΛCDM (both for the linear and
nonlinear power spectrum) as function of scale, redshift,
and the model parameter fR0 which controls the size of the
deviations from GR (GR is recovered as fR0 → 0). This
enhancement, as we will show, has a fairly weak cosmol-
ogy dependence, and we can therefore fit it using simu-
lations from only one cosmology, saving a lot of
computational time. Our function has been fitted using a
large suite of available N-body simulation data and can
easily be incorporated in a Boltzmann code like CAMB or
CLASS to scale from a nonlinear PðkÞ for ΛCDM (created
for example using an emulator like EuclidEmulator) to a
nonlinear PðkÞ for the Hu-Sawicki model.
The requirements for the accuracy of the matter power

spectrum are dictated by large upcoming surveys like LSST
[2] and Euclid [1]. Estimates for how accurate the power
spectrum needs to be to take full advantage of the statistical
power of such surveys vary from 1%–2% [20] down as
small as 0.5% [21] for scales k≲ 10h Mpc−1. However,
this is ignoring1 model uncertainties in the way baryonic
feedback affects the matter power spectrum. Baryonic
effects are expected (from simulations and observations)
to be as large as 10–30% for scales 1≲ k≲ 10h Mpc−1

[23,24]. The accuracy of the newly released EuclidEmulator
is quoted as being approximately1% accurate for k≲
1h Mpc−1 and for redshifts z≲ 3.5. Based on these

considerations, our aim is to produce a fit that is approx-
imately 1% accurate for scales k≲ 1h Mpc−1 and less than
5% accurate for scales 1 < k < 10h Mpc−1 and covering
redshifts z≲ 3.5.
The setup of this paper is as follows. In Sec. II, we

describe the simulations we have used; in Sec. III, we
discuss the cosmology dependence of the enhancement
PfðRÞ=PΛCDM; in Sec. IV, we describe the fitting function
we have created together with some tests; in Sec. V, we
show an application of the fitting formula by computing
forecasts for how well galaxy clustering and weak lensing
in a Euclid-like survey will be at constraining fðRÞ gravity;
and we conclude in Sec. VI.

II. SIMULATIONS

We take advantage of a large set of simulations to make
the fit.2 For more about how the modified gravity simu-
lations are performed, see, e.g., Ref. [25] and references
within.
The main simulation suite we use is ELEPHANT [26]

(WMAP9 cosmology), which has N ¼ 10243 particles,
L ¼ 1024 Mpc=h, Ωm ¼ 0.281, Ωb ¼ 0.046, h ¼ 0.6974,
ns ¼ 0.971, and σ8 ¼ 0.820 (As ¼ 2.3 × 10−9) with jfR0j ¼
f10−4; 10−5; 10−6; 0g. These simulations were run with the
ECOSMOG code [27].
For the same cosmology as above, we have also run

extra simulations (also with the ECOSMOG code) using
N ¼ 2563 particles in a L ¼ 200 Mpc=h box with
jfR0j ¼ f10−5; 5 × 10−6; 2 × 10−5; 5 × 10−5; 0g. This sim-
ulation suite contains simulations of ΛCDM and fðRÞ
gravity with jfR0j ¼ 10−5 for σ8 ¼ 0.88 and 0.72 that
allows us to test the σ8 dependence of the modified gravity
power-spectrum enhancement.
We also use, mainly for testing and validation, the

DUSTGRAIN simulations suite [28] (Planck 2015 cosmol-
ogy), which has N ¼ 7683 particles, L ¼ 750 Mpc=h,
Ωm ¼ 0.31345, Ωb ¼ 0.0481, h ¼ 0.6731, ns ¼ 0.9658,
and σ8 ¼ 0.842 (As ¼ 2.199 × 10−9) with jfR0j ¼
f10−4; 5 × 10−5; 10−5; 0g. This simulation suite contains
simulations of ΛCDM and fðRÞ gravity with jfR0j ¼ 10−5

and with Ωm ¼ 0.2 and 0.4 that allows us to test the
Ωm dependence on the power spectrum. All these simu-
lations have the same value of σ8 and were run with the
MG-GADGET code [29].
All the fðRÞ simulations mentioned above have corre-

sponding ΛCDM simulations run with the same initial
conditions that allow us to extract ratios PfðRÞ=PΛCDM that
(on the largest scales) are free of cosmic variance. For each
simulation, we have about 30 redshifts between z ¼ 0 and
z ¼ 3 that we use to compute the fit.

1Also note that common N-body algorithms in state-of-the
art codes disagree at the approximately 1% level already at
k ¼ 1h Mpc−1 and at the approximately 3% level at k ¼
10h Mpc−1 [22].

2All the power-spectrum data that we used are available at
https://github.com/HAWinther/FofrFittingFunction.
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The power spectra used for the fitting functions have
been estimated using POWMES [30] and (for DUSTGRAIN)
by codes made by us. These codes have been tested and
shown to give accurate results so we do not expect any bias
due to different power-spectrum evaluation codes. What
could give rise to a bias is that some of the data we use
come from different N-body codes, but as shown in
Ref. [25], even though the actual power spectrum varies
between different code types [22], the enhancement
PfðRÞðkÞ=PΛCDMðkÞ (with both spectra computed by the
same code) does not, and this is all that goes into our fit
below.
The effect of the size of the box, mass resolution, and

cosmic variance on the matter power spectrum was inves-
tigated in Ref. [31]. We find that the spectra we extract can
be trusted down to scales of k ∼ 5–10h Mpc−1 depending
on redshift.

III. VARIATION OF ENHANCEMENT WITH
COSMOLOGICAL PARAMETERS

The fit for PfðRÞ=PΛCDM we perform in this paper uses
N-body data from one single cosmology. The reason is that
the cosmology dependence of this ratio is expected to be
weak for almost all of the standard parameters with the
possible exception of Ωm and σ8 as these correlate with the
efficiency of screening and with the growth rate of the
matter density perturbation. There is also one additional
effect that is potentially significant, which is how degen-
erate the enhancement is with baryonic feedback (see, e.g.,
Refs. [29,32] for a discussion on the size of these effects
compared to the modified gravity enhancement).
In this section, we will go through the different cosmo-

logical parameters and check how much the modified
gravity enhancement changes. We will use linear pertur-
bation theory, the halo model, fast approximative N-body

simulations [33], and full N-body simulations (for the cases
we have this available) to investigate this.
By the halo model, we mean the prediction of Ref. [34],

which combines the modified linear power spectrum with a
modified one-halo contribution and a quasilinear correction
motivated by higher-order perturbation theory [35]. It
incorporates the chameleon mechanism through an imple-
mentation of the thin-shell approximation in the spherical
collapse model [36]. This generates a mass and environ-
ment dependent spherical collapse density, from which an
environmentally averaged modified peak threshold is
determined that is used to compute the fðRÞ modification
and chameleon screening effects on the halo mass function
and concentration determining the one-halo contribution.
A comparison to other modeling techniques of the modified
nonlinear matter power spectrum in fðRÞ gravity can be
found in Ref. [37].
The approximate N-body simulations we use are the

comoving lagrangian acceleration (COLA) implementation
of fðRÞ gravity. COLA simulations areOð100–1000Þ faster
than high-resolution N-body simulations but can reproduce
the enhancement of the power spectrum to percent-level
accuracy down to fairly nonlinear scales k≲ 1–5h Mpc−1.

A. Massive neutrinos

The effects of massive neutrinos are highly degenerate
with a modified gravity signal since massive neutrinos
decrease the growth of structure on small scales, while
modifications of gravity usually enhances the growth.
However, we do not expect a big change in the enhance-
ment (i.e., for fixed cosmological parameters), and this is
what we see in Fig. 1 for N-body simulations with jfR0j ¼
10−4 [38]. The variation is seen to be at the subpercent level
for k≲ 1h Mpc−1 and approximately 4% around k ¼
1h Mpc−1 for the large value mν ¼ 0.6 eV.
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FIG. 1. Estimation for the variation of the boost factor PðkÞ
PΛCDMðkÞ with neutrino mass for jfR0j ¼ 10−4 at z ¼ 0 based on N-body

simulations (left) and COLA simulation (right). The shaded region corresponds to �1% of the central value. Note that the difference
between the left and the right plot for k ≳ 1h Mpc−1 comes from the fact that COLA simulations are not as accurate as high-resolution
N-body simulations on very nonlinear scales.
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B. Ωm

Varying Ωm changes the growth of linear perturbations,
so it could potentially have a big effect on the enhancement.
In Fig. 2, we show how much the enhancement changes for
a fairly large variation of Ωm (from Ωm ¼ 0.3 to Ωm ¼ 0.2
and Ωm ¼ 0.4) based on N-body simulations. This figure
also shows that the correction is accurately captured by
linear theory and/or the halo model.
A simple fit to results computed using linear theory at

z ¼ 0 shows that the enhancement of the power spectrum
BΩmcorr ≡ PðkÞ=PΩm¼0.3ðkÞ is given by

BΩm corr ≃ 1 − a
ΔΩm

Ωm
tanh

�
k
k�

�
b

ð1Þ

with ΔΩm
Ωm

¼ Ωm−0.3
0.3 , a ¼ 0.105, b ¼ 1.4, and k� ¼

0.16ð10−5=jfR0jÞ1=2h Mpc−1 (in general, these parameters

will depend on redshift). This gives us, for example, that a
10% change in Ωm leads only to an approximately 1%
change in the enhancement, so this is not a large effect, but
it is straightforward to compute the correction using linear
theory or the halo model if needed.

C. Clustering amplitude

In linear theory, there is no variation with σ8 (or more
technically speaking with As, the primordial amplitude).
However, the amount of screening on nonlinear scales
depends crucially on how clustered matter is, so this
parameter could have a significant impact on nonlinear
scales. Even in ΛCDM, an enhancement of σ8 leads to a
greater enhancement of the clustering on nonlinear scales
than as predicted by linear theory. In Fig. 3, we show how
large this variation is based on N-body simulations together
with predictions from both linear theory and the halo model.
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FIG. 2. Left: the enhancement B ¼ PðkÞ
PΛCDMðkÞ for three different values of Ωm for jfR0j ¼ 10−5 at z ¼ 0 from N-body simulations. Right:

variation of the enhancement BðΩmÞ=BðΩfiducial
m Þ with respect to the fiducial value Ωfiducial

m ¼ 0.3 again for jfR0j ¼ 10−5 at z ¼ 0. The
shaded region corresponds to �2% of the central value.
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A fit to our simulations with varying σ8 (0.72, 0.8, and
0.88) shows that the effect of varying σ8 can be described
by a multiplicative correction to the enhancement which for
jfR0j ¼ 10−5 at z ¼ 0 and for k≲ 10h Mpc−1 is approx-
imately given by

Bσ8 corr ≃ 1þ Δσ8
σ8

k
ð1þ ðk=k�ÞÞ2

; ð2Þ

where k� ¼ 1.2hMpc−1 and Δσ8
σ8

≡ σ8−0.8
0.8 . A 10% deviation

of σ8 from its fiducial value (0.8) leads to an approximately
2%–3% level deviation in the enhancement for medium
wave numbers.

D. Other parameters

Linear perturbation theory predicts zero variation with
other cosmological parameters such as the Hubble constant
H0 (when the fitting function is expressed in terms of k
in units of hMpc−1) and the spectral index ns. Changing
the spectral index does modify the amplitude of clustering
on small scales and could also influence screening; how-
ever, we have checked using the halo model and COLA
simulations that the expected variation is much less than
1% for all scales of interest within a reasonable variation in
these parameters (here defined to be 3σ of the Planck 2018
cosmological constraints).

TABLE I. The best-fit parameters for the enhancement of the
linear power spectrum for jffidR0j ¼ 10−5.

i ¼ 0 i ¼ 1 i ¼ 2

b0i 3.10 2.34466 −1.86362
c0i 34.4951 28.8637 −13.1302
d0i 0.14654 −0.0100 −0.14944
e0i 1.62807 0.71291 −1.41003
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FIG. 4. Comparison of the fitting formula for the linear
enhancement to the exact result from linear perturbation theory
(here for jfR0j ¼ 10−5).

TABLE II. The best-fit values using the data from jfR0j ¼
f10−5; 5 × 10−6; 10−6; 10−7g with jfR0jfid ¼ 5 × 10−6 (left),
from jfR0j ¼ f5 × 10−5; 10−5; 5 × 10−6g with jfR0jfid ¼ 10−5

(middle), and from jfR0j ¼ f10−4; 5 × 10−5; 10−5g with
jfR0jfid ¼ 5 × 10−5 (right).

i ¼ 0 i ¼ 1 i ¼ 2

b0i 0.76878 0.22638 0.00759
b1i −0.40537 −0.10711 −0.00102
b2i 0.00752 0.04846 0.01180
c0i 0.02886 −0.02438 −0.02963
c1i −0.06382 −0.05196 0.02597
c2i −0.40121 −0.03518 0.07688
d0i 1.00000 0.10901 0.12027
d1i 0.00000 0.08189 0.02492
d2i 0.00000 −0.05682 −0.02985
e0i 0.36951 0.14719 0.03127
e1i 0.10939 0.06176 0.02933
e2i −0.34209 −0.13138 −0.01419
f0i 1.03544 −0.13912 −0.05656
f1i −0.26277 −0.13231 −0.03389
f2i 0.23028 0.13132 0.07127
g0i 0.20246 0.06323 0.05229
g1i −0.11611 0.06943 0.07807
g2i 0.10245 0.00296 −0.09770
b0i 0.93650 −0.03999 0.24007
b1i −0.54583 0.30370 0.18820
b2i 0.63480 0.36096 0.66583
c0i −0.02906 0.00062 0.01222
c1i −0.09544 −0.00942 −0.03434
c2i −0.34249 −0.01813 −0.05204
d0i 1.00000 0.39355 0.77661
d1i 0.00000 0.29088 0.47078
d2i 0.00000 −0.41149 −0.68192
e0i 0.49107 0.37630 0.26101
e1i 0.29782 0.48636 0.52563
e2i −0.28714 0.03494 0.26626
f0i 0.92041 −0.09308 0.27038
f1i −0.28239 0.07838 0.37029
f2i 0.53954 0.19496 0.19486
g0i 0.31864 0.03340 −0.00276
g1i 0.04570 0.07630 0.04616
g2i 0.13924 −0.00010 0.18990
b0i 0.57248 0.49880 0.57426
b1i 0.25469 0.36089 −0.30799
b2i 1.21637 0.07034 0.83164
c0i 0.00046 0.02574 −0.00936
c1i −0.09012 0.01689 0.00221
c2i −0.35585 −0.03070 0.00768
d0i 1.00000 0.77903 1.26756
d1i 0.00000 0.91964 1.44477
d2i 0.00000 −0.93633 −1.44129
e0i 2.31154 −0.20699 −0.65038
e1i 2.29822 0.26608 0.01792
e2i −0.48319 0.60336 0.92704
f0i 1.21959 −0.25171 −0.14644
f1i 0.35388 0.12487 0.02003
f2i 1.02533 0.34599 0.08923
g0i 0.28475 −0.04719 0.09592
g1i −0.15829 0.13977 0.36819
g2i 0.54118 −0.13489 −0.15783
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IV. FITTING FUNCTIONS

A. Fitting function for the linear enhancement

At the level of linear perturbations, the growth of matter
perturbations is determined by

δ̈þ 2H_δ ¼ 3

2
ΩmðaÞH2δ

�
1þ 1

3

k2

k2 þm2a2

�
; ð3Þ

where

m2ðaÞ ¼ H2
0ðΩm þ 4ΩΛÞ

2jfR0j
�
Ωma−3 þ 4ΩΛ

Ωm þ 4ΩΛ

�
3

; ð4Þ

from which it follows that the enhancement of the
linear matter power spectrum for a general model is
simply the enhancement of a fiducial model evaluated at
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FIG. 5. Fitting function compared to N-body data for jfR0j ¼ 10−4 (up left), jfR0j ¼ 5 × 10−5 (up right), jfR0j ¼ 10−5 (middle left),
jfR0j ¼ 5 × 10−6 (middle right), and jfR0j ¼ 10−6 (bottom) and z ¼ f0.0; 0.259; 0.518; 0.777; 1.036; 1.294; 1.554; 1.812; 2.071; 2.330g.
The shaded region is to give the reader an idea of how good the fitting function is and denotes�1% for all plots except for jfR0j ¼ 5 × 10−6

and jfR0j ¼ 10−6 where it is �0.5% and �0.2% respectively.
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k� ¼ kðfR0=ffidR0Þ1=2. We perform a fit using the fitting
function

Plinear fidðk; zÞ
Plinear
Λ CDMðk; zÞ ¼ 1þ ðbðaÞkÞ2

1þ cðaÞk2

þ dðaÞ
���� logðkÞkk − 1

���� arctanðeðaÞkÞ; ð5Þ

which is constructed to interpolate between the expected
low and high k limits [approximately 1þ bk2 for small k
and approximately logðkÞ for large k]. Similar functional
forms for the fitting functions of the enhancement within a
coupled dark energy model were used in Ref. [18]. The
functions, X ¼ b, c, d, e, above are written as

Xðz; fR0Þ ¼ X0ðrÞ þ X1ðrÞða − 1Þ þ X2ðrÞða − 1Þ2; ð6Þ

where r ¼ logðfR0=ffidR0Þ, leaving us with 12 free param-
eters to fit. The best fit from taking jfR0jfid ¼ 10−5 using
Ωm ¼ 0.281 is shown in Table I, and in Fig. 4, we show a
comparison to the true result.

B. Fitting function for the nonlinear enhancement

The fitting function we use for our fit is given by

PfðRÞðk; zÞ
PΛCDMðk; zÞ

¼ 1þ bðz; fR0Þ
ð1þ cðz; fR0Þ · kÞ
ð1þ dðz; fR0Þ · kÞ

× arctan ðeðz; fR0Þ · kÞÞfðz;fR0Þþgðz;fR0Þ·k;

ð7Þ

where (for X ¼ b; c; d; e; f; g)

Xðz; fR0Þ ¼ X0ðrÞ þ X1ðrÞða − 1Þ þ X2ðrÞða − 1Þ2 ð8Þ

with
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FIG. 6. Test of the fitting function to N-body data not used in
the fit (left), i.e., simulations with jfR0j ¼ 2 × 10−5. The shaded
region corresponds to �1% of the central value.
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FIG. 7. Test of the fitting function to N-body data with a
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jfR0j ¼ 10−5. The shaded region corresponds to �1% of the
central value.
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XiðrÞ ¼ Xi0 þ Xi1rþ Xi2r2; ð9Þ

where r ¼ logðfR0=ffidR0Þ. This makes 54 free parameters
for the full fR0, scale, and redshift dependence.
We choose to make three different fits, one using

jfR0j ¼ f10−4; 5 × 10−5; 10−5g (high), one using jfR0j ¼
f10−5; 5 × 10−6; 10−6g (medium), and one using jfR0j ¼
f10−5; 5 × 10−6; 10−6; 10−7g (low), and then interpolate
between these (overlapping) fits. The best-fit parameters
we find are given in Table II, and the agreement as a
function of scale and redshift can be seen in Fig. 5.
This figure shows that the fit has percent-level accuracy
for most scales and redshifts, with the exception of the
smallest scales for the largest values of jfR0j.
In Fig. 6, we perform a test of our fitting function by

predicting the enhancement for jfR0j ¼ 2 × 10−5, a value
that was not used to generate the fit. This value is in the
middle of jfR0j ¼ 10−5 and jfR0j ¼ 5 × 10−5 and should
therefore give us a good estimate for the accuracy of our fit.
The agreement is within approximately 1% − 2% for k≲
1h Mpc−1 and approximately 2%–3% for k≲ 10h Mpc−1.
In Fig. 7, we test our fitting function by comparing it to

simulations with a different background cosmology from
that which is used to make the fit. As expected from the
discussion in the previous section, the agreement is
very good.
These numbers should be contrasted to the enhancement

of the matter power spectrum itself relative to ΛCDM,
which is typically 10%–40%.
A fitting function, based on HALOFIT, for the Hu-Sawicki

model already exists in the literature, namely MGHALOFIT.

In Fig. 8, we show a comparison of our fitting formula to
MGHALOFIT, which shows that our fit performs better.
To test the fitting function, we create mock data and

try to perform a fit to Pðk; zÞ for a Euclid-like survey
with V ¼ 50ðGpc=hÞ3 with ngal ¼ 10−3 ðMpc=hÞ−3 using
the diagonal likelihood

logL ¼ −
1

2

X
k;z

ðPðk; zÞ − Pfidðk; zÞÞ

× C−1ðPðk; zÞ − Pfidðk; zÞÞ; ð10Þ

where C−1 ¼ Vk2Δk
4π2ðPfidðk;zÞþ1=nÞ2. The sum is over six evenly

spaced z bins from z ¼ 0 to z ¼ 2 and 30 logarithmically
spaced k bins between k ¼ 10−4h Mpc−1 and k ¼
5h Mpc−1. This assumes Gaussian fluctuations on all scales
which significantly underestimate the errors on nonlinear
scales and also does not take into account uncertainty of
unknown baryonic physics. Thus, any fit based on this
would be completely dominated by the smallest scales. To
get more realistic errors, we try to take this into account by
imposing aminimum1%error on nonlinear scales starting at
k ¼ 0.5h Mpc−1 and growing to 10% at k ¼ 10h Mpc−1.
The fiducial power spectrum is generated using the
Eisenstein-Hu fitting function forΛCDM[39,40], converted
to a nonlinear power spectrum using HALOFIT and finally
multiplied by the fðRÞ enhancement found in simulations
with jfR0j ¼ 2 × 10−5. The result of fits to Pðk; zÞ around
z ¼ 1 (where our fit is seen to deviate a bit from theN-body
result) can be found in Fig. 9.We also performed this test for
other redshifts with similar results.

FIG. 9. Test of the fitting function by fitting to mock data, using the N-body enhancement for jfR0j ¼ 2 × 10−5 around z ¼ 1. We
show the fits for the two values kmax ¼ 1h Mpc−1 (left) and kmax ¼ 5h Mpc−1 (right).
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FIG. 10. Forecasted constraints on the Hu-Sawicki model, for the fiducial value jfR0j ¼ 10−5, from GC and WL in a Euclid-like
survey for different values of kmax and lmax. In the figure, (lin) refers to kmax ¼ 0.15h Mpc−1, lmax ¼ 1000, and (nonlin) refers to
kmax ¼ 0.25h Mpc−1, lmax ¼ 3000.
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V. FORECAST

In this section, we will give an example application of the
fitting formula presented in this paper by using it to
compute forecasts for how well the Hu-Sawicki model
can be constrained in future surveys (see Ref. [41] for
forecasts for general scalar-tensor theories). We adopt the
Fisher-matrix formalism to the main cosmological observ-
ables for next-generation galaxy surveys, namely galaxy
clustering (GC) and weak lensing (WL). The matter power
spectrum is computed using CAMB with the HALOFIT

prescription to get the nonlinear power spectrum for
ΛCDM and then use our fitting formula to go from
ΛCDM to fðRÞ. We neglect cross-correlations between
GC and WL. To perform our forecasts, we use the survey
parameters for a Euclid-like mission [42].
For GC, the main observable is the observed (redshift-

space) galaxy power spectrum, which we model as

Pgðk; μ; zÞ ¼
D2

A;fðzÞ=HfðzÞ
D2

AðzÞ=HðzÞ ðbðzÞ þ fðzÞμ2Þ2

× e−k
2μ2σ2PDMðk; zÞ; ð11Þ

where DA is the angular diameter distance, H is the Hubble
function, μ is the cosine of the angle between the line of
sight and the Fourier vector k⃗, fðzÞ is the growth function,
and σ2 ≡ σ2r þ σ2v is a parameter parametrizing errors
induced by spectroscopic redshift measurements (σr)
and the fingers-of-god effect (σv) that we marginalize over.
A subscript f denotes the value in the fiducial cosmology,
which we take to be a ΛCDM cosmology with parameters
ns ¼ 0.96, 109As ¼ 2.126, h ¼ 0.67, Ωm ¼ 0.32, Ωb ¼
0.05, ΩΛ ¼ 0.68, mν ¼ 0.06 eV, and σv ¼ 300 km=s.
The fiducial fðRÞ parameter is taken to be jfR0j ¼ 10−5.

The Fisher matrix for GC is taken to be

Fij ¼
Vsurvey

8π2

Z
1

−1
dμ

Z
kmax

kmin

dk

�∂D
∂θi D

−1 ∂D
∂θj D

−1
�
; ð12Þ

where the data vectorD ¼ Pgðk; μ; zÞ þ 1=nðzÞwith Vsurvey
being the survey volume and nðzÞ being the galaxy number
density. We compute the constraints for two different values
of kmax ¼ 0.15 and 0.25 both with kmin ¼ 0.008h=Mpc. For
computing the Fisher matrix, we used 9 z bins in the range
z ¼ 0.95 and z ¼ 1.75.
The second probe we include is WL cosmic shear: the

distortions in the ellipticities of galaxies due to bending
of light around large cosmic structures. The cosmic shear
is computed using ten redshift bins in redshift range
0 < z < 2.5. The cosmic shear at a redshift bin i is correlated
with the cosmic shear at another redshift bin j since light
coming from each bin will propagate through some of the
same structures on the way to us. The cross-power spectrum
of cosmic shear in bins i and j is determined by the
underlying dark matter power spectrum via

CijðlÞ ¼
9

4

Z
∞

0

dz
WiðzÞWjðzÞH3ðzÞΩ2

mðzÞ
ð1þ zÞ4

× PDMðk ¼ l=rðzÞ; zÞ; ð13Þ

where rðzÞ is the comoving distance and W is a a window
function given by the photometric redshift distribution
function and the galaxy number density distribution.
The Fisher matrix for WL is given by

Fij ¼ fsky
Xlmax

l

ð2lþ 1ÞΔl
2

tr

�∂C
∂θi Cov

−1 ∂C
∂θj Cov

−1
�
;

ð14Þ

TABLE III. Constraints on the parameters in the Hu-Sawicki model, for the fiducial value jfR0j ¼ 10−5, coming from galaxy
clustering (above), weak lensing (middle), and combined (below) for two different values of kmax and lmax.

GC kmax ¼ 0.15h Mpc−1

σΩb
¼ 4.55% σh ¼ 0.45% σΩm

¼ 2.78% σns ¼ 1.04% σ109As
¼ 23.81% σlog jfR0j ¼ 8.00%

GC kmax ¼ 0.25h Mpc−1

σΩb
¼ 0.23% σh ¼ 0.15% σΩm

¼ 1.39% σns ¼ 0.83% σ109As
¼ 9.52% σlog jfR0j ¼ 4.00%

WL lmax ¼ 1000
σΩb

¼ 9.09% σh ¼ 2.99% σΩm
¼ 5.56% σns ¼ 4.17% σ109As

¼ 9.52% σlog jfR0j ¼ 18.00%

WL lmax ¼ 3000
σΩb

¼ 4.55% σh ¼ 1.49% σΩm
¼ 3.47% σns ¼ 3.12% σ109As

¼ 3.76% σlog jfR0j ¼ 16.00%

GCþWL kmax ¼ 0.15h Mpc−1, lmax ¼ 1000
σΩb

¼ 3.12% σh ¼ 0.3% σΩm
¼ 1.39% σns ¼ 0.62% σ109As

¼ 1.88% σlog jfR0j ¼ 2.00%

GCþWL kmax ¼ 0.25h Mpc−1, lmax ¼ 3000
σΩb

¼ 1.79% σh ¼ 0.15% σΩm
¼ 0.69% σns ¼ 0.31% σ109As

¼ 0.94% σlog jfR0j ¼ 0.80%
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where C is a matrix with elements Cij, fsky ¼ 0.36
(15 000 deg2) is the sky fraction covered by the survey,
Δl is the size of the l bins, lmax is the maximum multipole
number, and Cov is the WL covariance matrix. In this
paper, we consider the two values lmax ¼ 1000 and 3000.
We used 100 logarithmically spaced l bins between lmin ¼
100 and lmax, and we used ten evenly spaced z bins
between z ¼ 0.15 and z ¼ 2.5. Apart from the particular
numbers quoted above, we use the same setup as in
Ref. [43], so see that paper for more details.
In Fig. 10, we show the Fisher forecast constraints we

obtained using the fiducial value jfR0j ¼ 10−5, which is
slightly below the best constraints from current cosmo-
logical data (see, e.g., Ref. [44]). We show how the results
change when going from only using fairly linear scales to
including more and more nonlinear scales (kmax¼
0.15hMpc−1;lmax¼1000 vs kmax ¼ 0.25hMpc−1;lmax ¼
3000) in the forecast. In Table III, we show the margin-
alized constraints on the cosmological parameters for the
different cases we have considered.
GC and WL are individually able to constrain log10 jfR0j

to approximately 5% and 15% respectively depending
on how many nonlinear modes we include in the forecast.
The modified gravity parameter fR0 is seen to be mostly
degenerate with the clustering amplitude As. Combining
GC andWL, we are able to break this degeneracy and bring
the potential constraints down to approximately 1–2%
(ΔfR0 ≲ 2 × 10−6). However, we caution that this is a
simplified forecast not taking baryonic effects on the matter
power spectrum or including massive neutrinos, which both
are known to be degenerate with a potential modified
gravity signal [38,45].

VI. CONCLUSIONS

In this paper, we have presented a fitting function for
the linear and nonlinear matter power spectrum of the
Hu-Sawicki fðRÞ model using power spectra computed
from N-body simulations for several different values of
the model parameters. This is one of the most studied
modified gravity models and often the fiducial choice when
trying to constrain modified gravity effects in observatio-
nal data.
We have shown that the enhancement has a weak

cosmology dependence, which allows us to make the fit
for a fixed cosmology. Any cosmology dependence can be
accurately included by using inexpensive tools like linear
theory, the halo model, or COLA simulations.
We have demonstrated that the fitting function is accurate

over a large range of scales and redshifts. We also tested it

against the existing MGHALOFIT code and found that our
fitting function generally performs better.
One can easily integrate our fitting function in any

approach that produces a nonlinear matter power spectrum
for ΛCDM. With this paper, we provide the fitting function
already implemented3 in many common programming lan-
guages likeC, Fortran, and Python plus an implementation in
both CAMB and CLASS.
Finally, for an application, we have used the fitting

functions to compute Fisher forecasts for how well a
Euclid-like survey will be at constraining the Hu-
Sawicki model. We find that the potential constraints from
combining GC and WL from a Euclid-like survey, when
including a reasonable amount of nonlinear scales in the
forecast, are at the ΔfR0 ∼ 2 × 10−6 level. This is without
taking into account baryonic effects in the power spectrum
and including massive neutrinos but nevertheless shows
the potential constraining power in future surveys when
including nonlinear scales.
The same approach as used in this paper can likely be

applied to cheaply create emulators for other nonstandard
gravity models, possibly in conjunction with the semi-
analytical method of Ref. [19].
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