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Abstract 

Reporting the reliability of the scores obtained from a scale or test is part of the standard 

repertoire of empirical studies in psychology. With reliability being a key concept in 

psychometrics, researchers have become more and more interested in evaluating reliability 

coefficients across studies and, ultimately, quantify and explain possible between-study 

variation. This approach—commonly known as ‘reliability generalization’—can be specified 

within the framework of meta-analysis. The existing procedures of reliability generalization, 

however, have several methodological issues: (a) Unrealistic and often untested assumptions 

on the measurement model underlying the reliability coefficients (e.g., essential !-equivalence 

for Cronbach’s α), (b) the use of univariate approaches to synthesizing reliabilities of total 

and subscale scores, (c) the lack of comparability across different types of reliability 

coefficients. However, these issues can be addressed directly through meta-analytic structural 

equation modeling (MASEM)—a method that combines meta-analysis with structural 

equation modeling through synthesizing either correlation matrices or model parameters 

across studies. The primary objective of this paper is to present the potential MASEM has for 

the meta-analysis of reliability coefficients. We review the extant body of literature on the use 

of reliability generalization, discuss and illustrate two MASEM approaches (i.e., correlation-

based and parameter-based MASEM), and propose some practical guidelines. Future 

directions for utilizing MASEM for reliability generalization are discussed. 

Keywords: Meta-analysis; meta-analytic structural equation modeling (MASEM); 

omega coefficient; reliability generalization; scale reliability 
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Translational Abstract 

To evaluate whether scores obtained from psychological tests or scales are reliable is key to 

psychological assessment. With growing numbers of tests and scales being administered to 

different samples, reliability indicators can vary considerably between studies. As a 

consequence, researchers developed meta-analytic techniques in order to synthesize these 

reliability coefficients to an overall coefficient, quantify its variation between studies, and 

explain this variation across studies. These techniques, however, have several methodological 

issues, one of which refers to their reliance on reliability indicators that may not appropriately 

represent the data (e.g., Cronbach’s α). However, a relatively new meta-analytic technique—

meta-analytic structural equation modeling (MASEM)—can overcome these issues. In this 

paper, we two different forms of MASEM and review their potential for the meta-analysis of 

reliabilities. Two examples illustrate their application to empirical data. We further provide 

some guidelines on how to perform MASEM to synthesize reliability coefficients. Detailed 

supplementary material (including R code) is provided so that researchers can replicate our 

findings and transfer the syntax to their research contexts. We hope to stimulate the use of 

MASEM for the meta-analysis of reliability coefficients. 
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A Tutorial on the Meta-Analytic Structural Equation Modeling of Reliability Coefficients 

Introduction 

With growing numbers of empirical studies administering psychological assessments, 

evaluating the psychometric quality of tests and scales has become a standard for 

psychological testing (AERA, APA, & NCME, 2014). Part of this evaluation is the estimation 

of reliability coefficients that describe the consistency of the test or scale scores across 

contexts (e.g., items, test parts, measurement occasions; e.g., Cronbach, 1947). As prominent 

measures of psychological constructs, such as standardized tests of cognitive skills or scales 

capturing personality traits, have generated numerous studies (e.g., J. Deng et al., 2019; 

Gnambs, 2014; Wheeler, Vassar, Worley, & Barnes, 2011), researchers have become more 

and more interested in evaluating reliability coefficients across studies (López-López, 

Botella, Sánchez-Meca, & Marin-Martínez, 2013; M. C. Rodriguez & Maeda, 2006). This 

approach is known as “reliability generalization” and represents a form of psychometric meta-

analysis (Hunter & Schmidt, 2014). More specifically, reliability generalization synthesizes 

reliability coefficients across studies, mainly Cronbach’s α, to an overall reliability estimate, 

quantifies possible between-study variation through random-effects models, and examines 

moderator effects through mixed-effects models (Botella, Suero, & Gambara, 2010).  

The existing, primarily univariate approaches to reliability generalization, however, 

have several limitations, such as the reporting of different types of reliability coefficients 

across studies, the ignorance of the dependencies among reliability coefficients of total and 

subscale scores, and the possible violations of key assumptions associated with the well-

established reliability coefficient of Cronbach’s a. Especially the latter has raised concerns in 

the psychometric community, resulting in a call for selecting model-based reliability 

coefficients that circumvent the oftentimes unrealistic assumptions behind Cronbach’s a 

(Bentler, 2016; McNeish, 2018; Yang & Green, 2011). Considering this and the limitations 
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univariate approaches to reliability generalization have, we argue that meta-analytic structural 

equation modeling (MASEM)—a relatively new approach to meta-analysis that brings 

together the strengths of meta-analyses and structural equation models to test theories and 

hypotheses based on models (Cheung, 2015; Jak & Cheung, 2018b)—can overcome these 

issues and provides a flexible tool for meta-analyzing reliability coefficients across studies. 

Specifically, MASEM allows researchers to synthesize correlation matrices and/or model 

parameters across studies, taking into account the dependencies among correlations and 

quantifying between-study heterogeneity (Cheung & Cheung, 2016). Given its multivariate 

nature, MASEM circumvents possible erroneous inferences that may be drawn from 

univariate meta-analytic approaches (Jak & Cheung, 2019). Moreover, MASEM allows 

researchers to specify and compare measurement models underlying the reliability estimation 

and, ultimately, test whether the assumptions behind reliability coefficients are met—in other 

words, through MASEM, researchers can select a suitable reliability coefficient based on the 

factor structure of the test or scale. 

The main goals of this tutorial paper are therefore to (a) review the existing 

approaches to meta-analyzing reliability coefficients across studies and (b) illustrate and 

discuss the potential of MASEM for reliability generalization. We present two illustrative 

data examples and show how different MASEM approaches (i.e., correlation- and parameter-

based MASEM) can be performed to obtain an overall estimate of the score reliability. 

Furthermore, we propose steps researchers can take to evaluate the reliability coefficients 

meta-analytically. These steps depend on the features of the meta-analytic data and the 

researchers’ goals, and include (a) specifying a measurement model that represents the factor 

structure of the data, (b) pooling correlation matrices or model parameters across studies with 

fixed or random effects, and (c) deriving an overall reliability estimate from the model 

parameters. 
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Scale Reliability 

Reliability is one of the key concepts in the evaluation of scale scores in psychology, 

education, and other fields. In the context of Classical Test Theory, scale scores # are usually 

conceptualized as the sum of item scores # = ∑ #&
'
&()  (* = 1,… , . items) and are decomposed 

into the scale true score /0 and the scale error score 1, # = /0 + 1 (Novick & Lewis, 1967). 

Under the assumption of the independence between the true and the error scores, the scale 

reliability 30 is defined as the ratio between the true scale score variance and the observed 

scale score variance, 30 = 45(/0) 45(#)⁄ . By far, the most common estimate of reliability, in 

the form of an internal consistency coefficient, is Cronbach’s α (McNeish, 2018). For a scale 

comprising . items with variances 9&
5 and the variance of the observed sum score 90

5, the 

estimated coefficient of Cronbach’s α can be defined as (Cronbach, 1951):  

: = ;
.

. − 1
=>1 −

∑ 9&
5'

&()

90
5 ?																								(1) 

As Kelley and Pornprasertmanit (2016) noted, Cronbach’s α is a consistent estimate of the 

population internal consistency if certain assumptions hold. One of the key assumptions is 

that a one-factor model with uncorrelated residuals and equal factor loadings across items is a 

suitable representation of the data—an assumption that has been criticized as being unrealistic 

in most situations (e.g., Bentler, 2017; Yang & Green, 2011). More specifically, McNeish 

(2018) summarized the assumptions behind Cronbach’s α as follows: (1) !-equivalence (i.e., 

items contribute equally to the scale score, they have the same factor loadings); (2) normally 

distributed, continuous items within the scale; (3) independent errors (i.e., item error scores 

are not correlated); (4) unidimensionality (i.e., a one-factor model represents that data). 

Violations of these assumptions can bias Cronbach’s α positively or negatively (Yang & 

Green, 2011). 
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Suppose that . indicator variables #),… , #' (i.e., items) follow a one-factor model 

(Figure 1). For the ith person (A = 1,… ,B) and the jth indicator variable (* = 1,… , .), the 

factor model is defined as follows (Bollen, 1989; McDonald, 1999)  

#C& = D& + E&FC + GC&  (2) 

where D& is the population mean of the indicator #&, E& the factor loading of the indicator #&, 

FC the factor score of the ith person, and GC& the residual for the ith person and the jth indicator 

with variance IJKLGC&M = N&&. Under the assumptions that the factor score variance is fixed to 

1 and that item residuals are uncorrelated, the reliability coefficient omega total OP is 

calculated as: 

OP =
L∑ E&

'
&() M

5

Q∑ E&
'
&() R

5
+ ∑ N&&

'
&()

									(3) 

If indeed a congeneric factor model—that is a one-factor model with freely estimated factor 

loadings, freely estimated residual variances, and uncorrelated residuals—holds, omega total 

is an appropriate coefficient of the scale reliability, that is, the reliability of the scale sum 

score # = #) +⋯+	#' (Kelley & Pornprasertmanit, 2016; McDonald, 1999). In the 

psychometric literature, this reliability coefficient is often referred to as “scale reliability”, 

“scale score reliability”, or “composite reliability” (McDonald, 1999; Raykov, 2004). Notice 

that these terms refer to the reliability of a scale score derived from a scale or test—they 

represent the degree to which these scores are free of measurement error.  

Geldhof, Preacher, and Zyphur (2014) noted that the formula for omega total is 

identical to that of Cronbach’s α under essential !-equivalence, that is, the assumption of 

equal factor loadings across items in a one-factor model, and perfect model fit (see also 

Graham, 2006; Raykov, 1997). Cronbach’s α and the composite reliability coefficients share 

conceptual similarities as they both represent the ratio between the variance of the true score 

and the total variance (Geldhof et al., 2014). From a factor-analytic perspective, the 
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equivalence assumption can be tested explicitly by comparing the one-factor model with the 

equal factor loadings to the one with freely estimated loadings (Yang & Green, 2011). If 

indeed the equivalence assumption holds and the model itself fits the data, researchers may 

calculate Cronbach’s α from the parameters of the corresponding factor model (Raykov & 

Marcoulides, 2014). Nevertheless, if the assumption is violated, Cronbach’s α underestimates 

the score reliability (Gu, Little, & Kingston, 2013; Sijtsma, 2008). Although the omega 

coefficient may be more appropriate to describe the score reliability of a scale and test (e.g., 

: ≤ OP) (L. Deng & Chan, 2016), Bentler (2017) warns against its use if the congeneric one-

factor model does not fit the data. As a consequence, several versions of the omega 

coefficient have been developed to account for possible deviations from the unidimensional 

congeneric model (Padilla & Divers, 2015; Teo & Fan, 2013; Zinbarg, Revelle, Yovel, & Li, 

2005). 

Indeed, in real-data situations, the assumption of a one-factor measurement model 

representing the factor structure of a scale may be compromised by, for instance, covariances 

among item residuals or nested factors. If residuals are correlated, the calculation of OP can 

be adjusted by accounting for the error covariances (see McNeish, 2018; Raykov, 2004): 

OPVWX =
L∑ E&

'
&() M

5

Q∑ E&
'
&() R

5
+ ∑ N&&

'
&() + 2∑ ∑ N&Y

&
Y()

'
&(5

									(4) 

where N&Y represents the covariance between the residuals of items * and [. In cases where 

nested factors 9), … , 9\ exist next to a general factor ], the omega coefficient can be modified 

to represent the reliability of the overall scale, yet accounting for the loadings on the specific 

factors. Assuming this bifactor model structure with uncorrelated factors, Gignac (2014) 

formulated the resultant reliability coefficient, omega hierarchical O^, as follows: 

O^ =
Q∑ E&

(_)'
&() R

5

Q∑ E&
(_)'

&() R
5
+ ∑ N&&

'
&() + Q∑ E&

(`a)'a
&() R

5
+ ⋯+ Q∑ E&

L`bM'b
&() R

5 									(5) 
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where E&
(_)

 represents the loading of item * on the general factor ], and E&
(`a), … , E&

L`bM
 

represent the loadings of item * on the specific factors 9), … , 9\. The specific factors comprise 

.), … , .\ items. This omega coefficient represents the ratio between the squared sum of factor 

loadings of the general factor and the model-estimated total variance (A. Rodriguez, Reise, & 

Haviland, 2016), and the factor loadings can be obtained from a bifactor model or a Schmid-

Leiman transformed, second-order factor model (Gignac, Reynolds, & Kovacs, 2017; Reise, 

2012). Green and Yang (2015) noted that O^ “allows researchers to state the degree that 

summed item scores are saturated by the general factor”—in this sense, higher values of O^ 

point to the “scale scores as due to the general factor” (p. 16). 

These coefficients have been developed further, and many alternative coefficients 

exist that take into account deviations from the essentially !-equivalent model (Bentler, 

2017). Overall, the psychometric literature points to the usefulness of structural equation 

modeling approaches (primarily confirmatory factor analysis) to obtaining model-based 

reliability coefficients of test and scale scores and the need for testing the assumptions 

underlying the famous Cronbach’s α coefficient. 

Approaches to Meta-Analyzing Scale Reliabilities 

This section presents the state-of-the-art of approaches to synthesizing reliability 

coefficients meta-analytically and reviews their potential and limitations. We begin by 

reviewing univariate approaches to synthesizing scale reliabilities and their underlying 

transformations of the reliability coefficients. Next, we present a multivariate approach 

proposed by Raykov and Marcoulides (2013). 

Univariate Meta-Analysis of Scale Reliability 

The process of synthesizing reliability coefficients through meta-analytic procedures, 

quantifying between-study heterogeneity, and possibly explaining this heterogeneity with 

study features (i.e., moderators) is referred to as ‘reliability generalization’ (Vacha-Haase, 
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1998). With much of the psychological literature reporting Cronbach’s α as a reliability 

coefficient, the extant literature has focused on developing reliability generalization 

procedures for this coefficient using univariate meta-analysis (Holland, 2015; M. C. 

Rodriguez & Maeda, 2006; Sánchez-Meca, López-López, & López-Pina, 2013). Among other 

features, these procedures vary with respect to the transformation of the α-coefficient to 

normalize the distribution or stabilize the corresponding variance (Botella et al., 2010; López-

López et al., 2013). For instance, several transformations were proposed, including Fisher’s 

d-transformation, which is based on the assumption that Cronbach’s α can be considered a 

correlation coefficient, the Hakstian and Whalen (1976) /-transformation, and the Bonett 

(2002) transformation. Table 1 shows the details of these transformations, their back-

transformation, and the estimate of the sampling variances. Some simulations studies 

suggested that these transformations perform similarly in mixed-effects model, especially 

when estimating the regression coefficients of moderators (López-López et al., 2013). Other 

studies showed the preference of the Hakstian-Whalen and Bonett transformations as opposed 

to Fisher’s d-transformation and the use of raw reliability coefficients (Sánchez-Meca et al., 

2013). Comparing thirteen statistical models for synthesizing Cronbach’s α across studies 

(i.e., models specified for different estimators, fixed vs. random effects, and with or without a 

transformation), Sánchez-Meca et al. (2013) concluded that “there is (…) no evidence base 

upon which to rule out or advocate the use of transformation(s)” (p. 405). 

Despite the variety of reliability generalization approaches, the current developments 

to improve them (e.g., Brannick & Zhang, 2013), and the impressive body of literature, the 

dominant approaches have at least two issues: First, they mainly rely on Cronbach’s α as an 

appropriate coefficient to describe the scale reliability, although alternative coefficients may 

be more appropriate. Second, when multiple reliability coefficients of, for instance, subscale 

scores are reported, they do not consider the dependencies among them. Nevertheless, the key 



META-ANALYSIS OF RELIABILITY   11 

strength of the univariate approaches lies in the straightforward estimation of the between-

study variance and the inclusion of possible moderators (López-López et al., 2013). 

Synthesizing Correlations in Separate Univariate Meta-Analyses 

When the correlations among test items are made available by the authors of primary 

studies, an overall correlation matrix can be obtained (Carpenter, Son, Harris, Alexander, & 

Horner, 2016). This overall correlation matrix is then used for structural equation modeling—

essentially, researchers can specify factor models and estimate the reliability of the scale or 

test across studies from the factor loadings, factor variances, and residual variances. In the 

early works of meta-analytic structural equation modeling, several independent, univariate 

meta-analyses of the correlations were conducted to populate the overall correlation matrix 

(Sheng, Kong, Cortina, & Hou, 2016; Viswesvaran & Ones, 1995). This approach has several 

limitations: First, multiple yet separate meta-analyses of single correlation coefficients are 

oftentimes based on different sample sizes, because some primary studies may only provide 

some correlation coefficients, yet the full set of correlations among all relevant variables. The 

resultant, pooled correlation matrix is then submitted to structural equation modeling with 

some arbitrary sample size (e.g., the arithmetic or harmonic mean of all sample sizes) that 

may impact the precision of model parameters (Cheung, 2015). Second, separate meta-

analyses may result in a non-positive definite pooled correlation or covariance matrix—such a 

matrix cannot be submitted to structural equation modeling (Kline, 2016). Third, separate 

meta-analyses are based on the assumption that the correlations within a correlation matrix 

are independent—violations of this independence can bias especially the standard errors of 

the structural equation model parameters (Cheung, 2015). Considering these issues, more and 

more evidence has surfaced that indicates the clear preference of multivariate rather than 

univariate approaches to populating the item-item correlation matrix (e.g., Cheung & Chan, 

2005, 2009; Sheng et al., 2016). Cheung (2015) noted that some authors identified conditions 
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under which the univariate and multivariate approaches may provide similar results (see 

Hafdahl, 2007; Ishak et al., 2008). Nevertheless, Tang and Cheung (2016) illustrated how 

separate univariate meta-analyses of correlations among constructs can lead to entirely 

different results than the more precise multivariate approaches. Overall, populating an overall 

correlation matrix through multiple, independent meta-analyses in the first step and 

submitting the resultant matrix to structural equation modeling in the second step to retrieve 

reliability coefficients has several issues and may bias the structural equation model 

parameters from which reliability coefficients are derived. 

Raykov’s and Marcoulides’ (2013) Multivariate Approach 

Raykov and Marcoulides (2013) proposed a multivariate approach to the meta-

analysis of scale reliability. The authors specified a multi-group confirmatory factor-analytic 

model to the covariance matrices of the primary studies, treating studies as groups. Under 

scalar invariance constraints (i.e., the same configuration of the measurement model, equal 

factor loadings and item intercepts across studies), an overall scale reliability estimate, its 

standard error, and confidence interval can be obtained. However, if these invariance 

constraints are not met, comparisons of reliability coefficients across groups may be 

compromised (Raykov, 2004). Besides the invariance of the measurement model that 

underlies the reliability estimation, Raykov and Marcoulides (2013) also considered reliability 

invariance a prerequisite for synthesizing scale reliabilities to an overall reliability estimate.  

From our perspective, Raykov’s and Marcoulides’ (2013) approach has several 

strengths: First, it is based on a latent variable model and therefore circumvents issues related 

to the comparability of different reliability coefficients: Different reliability coefficients are 

not meta-analyzed at the same time, but a uniform coefficient is obtained from the existing 

covariance matrices. Second, the approach is based on invariance constraints, ensuring the 

comparability of the measurement model and thus the meaningful interpretation of scale 
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reliabilities across the primary studies. At the same time, Raykov’s and Marcoulides’ (2013) 

approach has several weaknesses: First, the measurement invariance testing is based on 

covariance matrices and requires that the primary study reports include a correlation matrix 

and the descriptive statistics of the underlying variables. This however also requires that the 

same measurement instrument has to be used without any modifications of, for instance, item 

formulations or response categories in all studies (Cheung, 2015). In some instances, 

however, partially invariant item indicators (e.g., with adapted item wordings or response 

categories) may be sufficient to achieve sufficient degrees of comparability. Second, although 

scalar invariance across primary studies is a desirable characteristic of the measurement 

model, it is hardly achieved in meta-analytic datasets with many studies (see also Marsh, Guo, 

et al., 2018). To our best knowledge, however, the consequences of deviations from 

measurement invariance are still to be examined for meta-analytic data that are based on 

correlation rather than covariance matrices. As we will explain in one of the empirical 

examples, metric invariance can imply reliability invariance, depending on the model 

specification. Third, the approach is based on the assumption of fixed effects in the pooled 

covariance matrices—an assumption that may not be met in many meta-analytic situations 

(Cheung & Cheung, 2016). Due to the invariance constraints, reasons for possible misfit of 

the measurement model cannot be clearly attributed to the variation of the covariance or 

correlation matrices between studies, model misspecification, or both (Cheung, 2015). 

Current Practices of Reliability Generalization and Related Issues 

To provide an overview of the current practices of meta-analyzing reliability 

coefficients and back the claim that univariate approaches to reliability generalization have 

dominated this field, we performed a review of the extant literature, focusing on the meta-

analytic approaches taken to synthesize reliabilities (e.g., type of reliability coefficient, 

aggregation method, transformation of reliability coefficients, measurement model check, 
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testing further assumptions underlying the selected reliability coefficient). Supplementary 

Material S3 provides a detailed summary of these approaches, and Supplementary Material 

S4 contains the list of publications, the search and screening history, and the coding of these 

variables. Overall, our review of extant literature indicated (a) the dominance of univariate 

approaches to synthesizing reliability coefficients, even in generalizing multiple reliability 

coefficients (e.g., of overall scores and subscale scores), (b) the lack of testing the 

assumptions underlying these coefficients, and (c) the preference of reporting Cronbach’s α as 

a reliability coefficient. 

The dominance of univariate approaches to meta-analyzing mainly Cronbach’s α 

seems problematic because the extant psychometric literature suggests that the assumptions 

behind the most commonly used measure of internal consistency, Cronbach’s α, are 

oftentimes not met (McNeish, 2018; Sijtsma, 2008). Model-based approaches to deriving 

overall reliability estimates could circumvent this issue by exploring the factor structure of a 

scale or test and selecting an appropriate reliability coefficient based on this structure—

however, these approaches were hardly taken into consideration. Ignoring the dependencies 

among multiple covariances or correlations within studies is another issue associated with 

univariate meta-analysis. Raykov’s and Marcoulides’ (2013) multivariate approach 

circumvents the problematic univariate assumption and provides a model-based reliability 

estimate—however, this approach includes only fixed effects and requires covariance 

matrices. MASEM offers feasible solutions to these issues (Cheung, 2015). 

Meta-Analytic Structural Equation Modeling of Reliability Coefficients 

In their review of the extant literature on random-effects models for meta-analytic 

structural equation modeling (MASEM), Cheung and Cheung (2016) noted that two forms of 

MASEM have dominated the field: correlation-based and parameter-based MASEM. The 

former synthesizes the correlation or covariance matrices across all primary studies and 
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ultimately results in an overall correlation or covariance matrix which is submitted to 

structural equation modeling. The latter performs structural equation modeling to retrieve the 

model parameters researchers are interested in (e.g., indirect effects, factor loadings, scale 

reliabilities) and, subsequently, meta-analyzes these model parameters. Correlation-based 

MASEM includes several approaches, such as one- and two-stage approaches. In the 

following, we will describe the two forms of MASEM and review their potential for the meta-

analysis of reliability coefficients. We will however not discuss the recently developed full-

information MASEM approach (Yu, Downes, Carter, & O’Boyle, 2016), due to its 

performance issues with specifying structural equation models to a pooled correlation 

matrix—although this bootstrapping approach estimates credibility intervals of model 

parameters reasonably well, test statistics and goodness-of-fit indices may be inaccurate 

(Cheung, 2018a).  

In a nutshell, the following sections convey at least two key advantages of correlation- 

and parameter-based MASEM over the univariate meta-analysis of Cronbach’s α: First, both 

MASEM approaches allow and require researchers to specify an appropriate measurement 

model and to select the corresponding reliability coefficient rather than relying on Cronbach’s 

α or other, possibly inappropriate coefficients reported in the primary studies. Second, taking 

into account the multivariate nature of the data (i.e., multiple correlations or model parameters 

per study) reduces the risk of bias in reliability estimates. 

Correlation-Based MASEM 

Correlation-based MASEM has experienced many developments, and several 

approaches exist to populate an overall correlation matrix. As noted earlier, Viswesvaran and 

Ones (1995) proposed a two-step approach that consisted of several, separate univariate meta-

analyses for each correlation within a correlation matrix in the first step, and the use of the 

resultant correlation matrix to specify structural equation models. Although this procedure has 



META-ANALYSIS OF RELIABILITY   16 

several limitations (e.g., ignoring the dependence among correlation coefficients, handling 

inefficient handling of missing data), it is still applied in practice (Sheng et al., 2016). In her 

overview of correlation-based MASEM, Jak (2015) argued that the generalized least squares 

(GLS) method proposed by Becker (1992) addresses some of these limitations, in particular 

the dependencies between correlation coefficients. However, this method does not allow 

researchers to specify and estimate latent variable models (Jak & Cheung, 2019). As a 

response, Cheung and Chan (2005) developed a two-stage structural equation modeling 

approach which circumvents these issues and opens a broader range of structural equation 

models for meta-analysis. 

Two-stage meta-analytic structural equation modeling (TSMASEM). The first stage of 

this approach combines the correlation matrices from the primary studies using fixed- or 

random-effects multivariate meta-analysis (Cheung, 2015). In the following, we will focus on 

the random-effects model as an oftentimes more realistic representation of the meta-analytic 

data (Cheung & Cheung, 2016). Vectorizing the correlation matrix from the ith primary study 

eC = fGgℎ9(iC), where iC represents each study’s population correlation matrix, Cheung 

(2015) describes this first stage for random-effects model assuming that jC~BLl, mjnM and 

oC~B(l, mo	) as follows: 

Level 1: pC = eC + jC   (6) 

Level 2: eC = eq + oC   (7) 

In this model, mjn denotes the sampling covariance matrix and mo the heterogeneity 

covariance matrix obtained from the random effects oC. eq = e(N) represents the pooled 

population correlation matrix under the random-effects model which forms the basis for the 

structural model with parameters r in the second stage. Through maximum-likelihood 

estimation, this model provides the average correlation matrix esq, the asymptotic sampling 

covariance matrix mtq, and the covariance matrix of between-study heterogeneity mto. Notice 
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that the covariance matrices mtq and mto can become very large the more variables are 

included. For u variables, the average correlation matrix is a symmetric u × u-matrix with 

u(u − 1) 2⁄  off-diagonal correlations, mtq is a symmetric u × u-matrix, and mto represents a 

symmetric [u(u − 1) 2⁄ ] × [u(u − 1) 2⁄ ]-matrix. As a consequence, Cheung (2015) 

suggested adding some constraints, for instance, to the matrix mto. 

Some features of the model estimation are worth noting: This estimation is based on 

the assumption of multivariate normality of the data. TSMASEM can accommodate missing 

correlations in correlation matrices efficiently through maximum-likelihood estimation 

procedures if they are completely at random or at random (Cheung, 2015; Jak & Cheung, 

2018a). Moreover, the model equations (6) and (7) do not per se ensure that all correlation 

matrices obtained from the primary studies are positive definite—instead, an initial check for 

positive definiteness must be performed before the pooling of correlation matrices. 

Furthermore, the stage-1 model uses the correct sample sizes, that is, the sample sizes of the 

primary studies rather than their arithmetic or harmonic means. Cheung and Cheung (2016) 

note that the stage-1 model incorporates the between-study heterogeneity, thus allowing for 

random effects in the correlation coefficients. In other words, the log-likelihood that is used 

during the maximum-likelihood estimation is a function of both eq and mo, 

ℓ(eq, mo) = log 	ℒ(eq, mo) (Cheung, 2014). Alternatively, researchers may consider using 

restricted maximum-likelihood (REML) estimation to minimize the possible negative bias in 

the variance components in the maximum-likelihood estimation. As REML removes the fixed 

effects before estimating the variance components, ad-hoc procedures are necessary to 

estimate them (Cheung, 2015). This procedure limits comparisons between models with the 

likelihood-ratio test to those that differ only in their variance components. At the time of 

writing, REML still requires a stable implementation for its application in correlation-based 

MASEM (see also Cheung, 2013). In practice, the covariance matrix of random effects can 
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become large (especially when many variables are included in the model). To circumvent 

convergence issues and to reduce the number of model parameters, researchers may impose 

constraints on this covariance matrix by, for instance, allowing only diagonal elements 

(Cheung, 2015). These constraints however may not necessarily reflect on the real nature of 

the random effects, as they may indeed covary (Jak, 2015). Researchers must be aware of this 

limitation when specifying the stage-1 model. 

The second stage of the TSMASEM approach comprises the fitting of the structural 

equation model to the average correlation matrix esq and the asymptotic sampling covariance 

matrix mtq. Cheung (2015) suggested using weighted least squares (WLS) estimation with the 

discrepancy function ~�ÄÅ(N) = (pq − esq)Pmtq
Ç)(pq − esq) to specify and estimate the 

structural equation models. This estimation procedure weighs the correlations by the inverse 

of the asymptotic covariance matrix mtq
Ç). WLS estimation treats the pooled correlation matrix 

correctly, that is, as a matrix of correlation rather than variances and covariances to 

circumvent incorrect standard errors and inferences drawn from significant tests. To ensure 

the correct estimation, several nonlinear constraints can be imposed on the model-implied 

correlation matrix, such as constraining its diagonal elements and the factor variance to 1 

(Cheung, 2015; Steiger, 2002). In contrast to the stage-1 model estimation, the stage-2 model 

does not rely on the assumption of multivariate normality. However, Oort and Jak (2016) 

found that the performance of maximum-likelihood estimation in stage 2 under this 

assumption is similar to that of the WLS estimation. Given the size of the weight matrices, 

WLS estimation may also require larger sample sizes than maximum-likelihood estimation 

(Olsson, Foss, Troye, & Howell, 2000). 

It should also be noted that the covariance matrix of random effects mto is not 

considered in the stage-2 model estimation; yet, it is a part of the stage-1 pooling of the 

correlation matrices (Cheung & Chan, 2005; Cheung, 2015). It may therefore not have a 
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major impact on the estimates of esq. To compare competing models, several likelihood-based 

goodness-of-fit indices and the likelihood-ratio test are available. In case researchers want to 

specify a fixed-effects model to pool the correlation matrices across studies, the matrix of 

random effects is a null matrix mto = l. Similar to the random-effects model, the stage-1 

pooling is based on maximum-likelihood estimation and results in a correlation matrix esÉ and 

an asymptotic sampling covariance matrix mtÑ, both of which are then submitted to the stage-2 

specification of the structural equation model. The matrix mtÉ
Ç) serves as the weighting matrix 

in the WLS estimation. 

Reviewing the TSMASEM approach, we see its potential for the meta-analysis of 

reliability coefficients (Table 3): TSMASEM results in an overall correlation matrix that is 

aggregated across the primary studies, accounting for dependencies among correlations and 

accommodating for missing data and heterogeneity. This correlation matrix can form the basis 

for selecting a suitable factor model that represents the structure of a test or a scale. On the 

basis of this factor model, researchers can then extract the relevant model parameters (i.e., 

factor loadings, factor variance, and residual variances) to estimate an overall reliability 

coefficient. However, this overall estimate does not include the between-study heterogeneity, 

because the random effects are part of the stage-1 model only—as a consequence, the 

exploration of moderator effects on the reliability coefficient is currently limited to subgroup 

analyses in stage 2 (Table 2). To summarize, TSMASEM for reliability generalization 

requires researchers to (a) synthesize correlation matrices based on a fixed- or random-effects 

model in the first stage (including the checking for positive definiteness), (b) decide for a final 

stage-1 model (fixed- vs. random-effects model), (c) specify, estimate, and evaluate the 

congeneric factor model or alternative measurement models in stage 2, (d) decide for a final 

stage-2 model, and (e) estimate the reliability coefficient based on the final stage-2 model. 

These steps are described in more detail in Table 3. 
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It is important to emphasize that the correlations are the sources of heterogeneity in 

TSMASEM. Considering this, TSMASEM does not (yet) allow researchers to quantify 

between-study heterogeneity of the model parameters (i.e., factor loadings and reliability 

coefficients) directly, because the random effects of correlations are not part of the stage-2 

model. Moreover, the relationship between random effects of correlations and model 

parameters is nonlinear (Cheung, 2015). The current specification of TSMASEM is therefore 

based on the assumption that the measurement model is an adequate representation of the 

pooled correlation matrix (i.e., fixed effects) and its asymptotic covariance matrix. Besides, 

the configuration of the measurement model and the factor loadings are assumed to be 

invariant across studies. Nevertheless, researchers can perform metric invariance testing 

across subgroups of primary studies and ultimately compare reliability coefficients (Jak, 

2015; Jak & Cheung, 2018b).   

One-stage meta-analytic structural equation modeling (OSMASEM). Recently, Jak 

and Cheung (2019) developed the one-stage analogue to TSMASEM—namely one-stage 

MASEM—which performs the pooling of correlation matrices and the estimation of the 

structural equation model in one step. Based on the same multivariate random-effects model 

as in the first stage of TSMASEM (see equations [6] and [7]), correlations are decomposed 

into (Jak & Cheung, 2019): pC = eq + jC + oC, with jC~BLl, mjnM, oC~B(l, mo	), sampling 

covariance matrix mjn and the covariance matrix of random effects mo. Through maximum-

likelihood estimation, this model provides the average correlation matrix esq, the asymptotic 

sampling covariance matrix mtq, and the covariance matrix of between-study heterogeneity 

mto. Once again, as in the TSMASEM approach, the resultant, pooled correlation matrix is 

used to specify and estimate the structural equation model of interest. Using the RAM-

formulation, Jak and Cheung (2019) represent this restriction as follows: With Ö representing 

the matrix of factor loadings and path coefficients (so-called “asymmetric paths”), Ü 
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representing the matrix of variances and covariances, Ñ representing a matrix selecting 

between latent and manifest variables, and á representing an identity matrix, the pooled 

correlation matrix eq is expressed as 

eq = vechs(Ñ(á − Ö)Ç)Ü(á − Ö)Ç)PÑP)  (8). 

Both the Ö and Ü matrices can be regressed on study-level moderator variables. Jak and 

Cheung (2019) noted that this approach follows the logic of moderated nonlinear factor 

analysis, in which parameters in a factor model are expressed as functions of categorical or 

continuous grouping variables (Bauer, 2017). Ultimately, including moderator variables is 

aimed at explaining between-study heterogeneity in the correlation coefficients. If indeed 

equation (8) is extended by regression models of Ö and Ü, the resultant covariance matrix of 

random effects becomes a covariance matrix of residuals. Examining the reduction of 

between-study variation after adding the moderators provides information about the variance 

explanation (through a pseudo-ç5 value). OSMASEM includes the random effects of the 

correlations and handles missing data through maximum-likelihood estimation (see Table 2). 

The pooling of the correlation matrices and the estimation of the structural equation model are 

based on maximum-likelihood estimation and the assumption of multivariate normality. For 

more in-depth explanations and hands-on examples of OSMASEM, we kindly refer readers to 

Jak and Cheung (2019). 

For the meta-analysis of reliability coefficients, OSMASEM offers possibilities to 

obtain an overall reliability estimate (see Table 3). More specifically, a factor model can be 

specified and estimated based on the pooled correlation matrices, and a suitable reliability 

coefficient extracted from the resultant model parameters. In contrast to TSMASEM, 

OSMASEM additionally allows researchers to regress the Ö-matrix of factor loadings and the 

S-matrix of factor and residual variances on study features. In this sense, OSMASEM can 

incorporate moderator effects on the key elements that are used to estimate the overall 
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reliability—yet not on scale reliabilities as model-derived parameters (Cheung, 2018b). To 

summarize, OSMASEM for reliability generalization requires researchers to (a) synthesize 

correlation matrices based on a fixed- or random-effects model (including the checking for 

positive definiteness), specify, estimate, and evaluate the congeneric factor model or 

alternative measurement models, (b) decide for a final measurement model, and (c) estimate 

the reliability coefficient based on the measurement model. These steps are described in more 

detail in Table 3. 

Parameter-Based MASEM 

Parameter-based MASEM specifies the structural equation model to the correlation or 

covariance matrices of the primary studies in the first stage, assuming that the model fits the 

data of all studies A (Cheung & Cheung, 2016). Ultimately, a vector eC = e(rC) of true model 

parameters (e.g., structural coefficients, factor loadings) results from this stage. Although the 

correlation matrices of the primary studies may vary, the same model is specified and 

estimated to all studies. As a consequence, a set of model parameters éC = rtC along with an 

asymptotic sampling covariance matrix mtèC is obtained. In the second stage, these parameters 

are meta-analyzed using, for instance, multivariate meta-analysis. A random-effects model for 

parameters of the Ath primary study can be specified as: 

éC = rq + oêC + jêC   (9) 

with rq as the population vector of model parameters, random effects oêC with the 

heterogeneity covariance matrix moë, and the sampling covariance matrix mèC (Cheung, 

2015).  

In contrast to correlation-based MASEM, parameter-based MASEM synthesizes 

model parameters across studies, allowing for between-study heterogeneity in these 

parameters and possible moderator effects. However, the handling of missing data is less 

efficient in parameter-based MASEM, given that the structural equation model is specified 
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already in the first step—in other words, primary studies with missing data must be excluded 

(Jak & Cheung, 2019). Moreover, the selection of estimators that can handle correlation 

matrices as input data to estimate structural equation models is limited in many software 

packages. For instance, to our best knowledge, researchers can choose among maximum-

likelihood (ML), generalized least squares (GLS), and the unweighted least squares (ULS) 

estimation the R package lavaan; only the latter does not require multivariate normality. 

Besides, the structural equation model has to fit the primary study data in the first 

place to achieve at least configural invariance of the measurement model across studies. As 

the model parameters rather than the correlations are the sources of heterogeneity in 

parameter-based MASEM, the between-study variances of factor loadings can be quantified 

and considered to be indicators of metric invariance. If indeed heterogeneity in factor loadings 

exist, metric invariance is not given, and the comparability of reliability coefficients across 

studies may be compromised (Raykov & Marcoulides, 2013). However, this approach is not 

without limitations: Assuming metric invariance across samples, given the previously 

described model constraints in MASEM (i.e., factor variance constrained to 1 and correlation 

matrices as input data) and the direct relation between factor loadings and the reliability 

coefficients (see equations [3]-[5]), implies the invariance of composite reliabilities. 

Nevertheless, this does not necessarily imply that strong or even strict measurement 

invariance are given, because the intercepts and residuals variances are not constrained. 

For the meta-analysis of reliability coefficients, we see the potential of parameter-

based MASEM (Table 3): Researchers can specify a suitable factor model to the primary 

study data and estimate the corresponding, model-based reliability coefficients. These 

coefficients are then aggregated using univariate (e.g., when only one coefficient is extracted) 

or multivariate meta-analysis (e.g., when multiple coefficients are extracted, for instance, of 

several scales or subscales). This direct aggregation of reliability coefficients enables 
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researchers to quantify between-study heterogeneity as the variance component of random 

effects (!5). Ultimately, this variation can be explained by moderators (Table 2). Moreover, 

extending the meta-analytic models by additional levels of analysis allows researchers to 

account for possible, additional hierarchies in the data (e.g., studies nested in countries), 

resulting in further variance components (Cheung, 2015). 

To summarize, parameter-based MASEM for reliability generalization requires 

researchers to (a) specify, estimate, and evaluate the congeneric factor model or alternative 

measurement models for each primary study in stage 1 (including the checking for positive 

definiteness if correlation matrices are available), (b) decide for a final stage-1 model, (c) 

estimate the reliability coefficients based on the final stage-1 model, (d) meta-analyze these 

coefficients across studies (through univariate meta-analysis if only one coefficient per study 

is extracted or multivariate meta-analysis of multiple coefficients of scales and subscales are 

extracted), and (e) quantify (and possibly explain) between-study heterogeneity of the 

reliability coefficient. These steps are described in more detail in Table 3. 

Some Notes on Missing Correlations and Non-Positive Definite Correlation Matrices 

The MASEM approaches presented in this paper are based on the reporting of 

correlation coefficients in primary studies. These coefficients are either pooled across all 

studies (TSMASEM and OSMASEM) or used directly to derive parameters of a structural 

equation model (parameter-based MASEM). In practice, however, primary studies may not 

report all correlation coefficients needed to test a certain structural equation modeling, 

possibly due to missing values in the primary study data (e.g., participant drop-outs, study 

designs with planned missing data) or due to fact that not all variables were assessed. The 

following correlation matrices extracted from two hypothetical primary studies illustrate this 

situation: 

Study 1—Complete correlation matrix with all 6 variables 
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⎝

⎜
⎜
⎜
⎛

1
K5) 1
Kï) Kï5 1
Kñ) Kñ5 Kñï 1
Kó) Kó5 Kóï Kóñ 1
Kò) Kò5 Kòï Kòñ Kòó 1 ⎠

⎟
⎟
⎟
⎞

 

Study 2—Incomplete correlation matrix with only 3 variables 

⎝

⎜
⎜
⎛

1
K5) 1
Kï) Kï5 1
Bú Bú Bú Bú
Bú Bú Bú Bú Bú
Bú Bú Bú Bú Bú Bú⎠

⎟
⎟
⎞

 

While study 1 contributes 15 correlations, study 2 contributes only 3 correlations. While the 

primary study authors may have reported a 3 × 3 correlation matrix in their publication, the 

MASEM model contains six variables and requires a 6 × 6 correlation matrix. Study 2 may 

therefore exhibit a non-positive definite correlation matrix due to its missing correlations 

(Cheung, 2015). Ultimately, this situation results in correlation matrices of different sizes. 

Ideally, if researchers are interested in testing a factor model to compute the reliability 

coefficient of a scale comprising u variables, each primary study would provide u(u − 1) 2⁄  

correlations. For instance, for a scale comprising six variables, some primary studies may 

contribute with correlation matrices comprising six correlations that were based on four 

variables, although 15 correlations would be needed for a complete matrix. Both the stage-1 

TSMASEM and OSMASEM approaches treat correlation matrices as matrices with missing 

values on the remaining nine correlations. Through maximum-likelihood estimation, complete 

and incomplete correlation matrices can be pooled to an average correlation matrix (see 

Cheung, 2015). In the case of parameter-based MASEM, in which the factor model with a 

latent variable measured by six indicator variables is fit to the correlation matrices of the 

primary studies, only complete correlation matrices can be considered to obtain the relevant 
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model parameters (i.e., factor loadings and residuals variances; see Cheung & Cheung, 2016). 

In other words, the same factor model must be specified and estimated in all primary studies.  

The input correlation matrices extracted from the primary studies may be non-positive 

definite and would therefore neither be submitted to structural equation modeling nor the 

pooling of correlation matrices (Cheung, 2015). Possible reasons that can lead to such 

correlation matrices may include, but are not limited to correlation coefficients close to zero, 

small negative correlations next to positive correlation coefficients in the same matrix (for 

example, due to rounding or reporting errors), missing correlations in the correlation matrix 

needed for the pooling stage, the mismatch between reported correlation matrices and model 

parameters in the primary studies, or the discrepancy between the sample sizes the reported 

correlation matrices and model parameters are based on. Hypothesizing about the specific, 

substantive reasons for such occurrences is, however, beyond the scope of this tutorial. At this 

point, we notice that excluding the non-positive definite correlation matrices represents a 

current limitation of MASEM as it reduces the meta-analytic sample. To circumvent this 

reduction, researchers may consider approaches that either do not require correlation matrices 

to be positive definite (e.g., Bayesian estimation with certain distributional assumptions on 

priors; Chung et al., 2015) or substitute the non-positive definite matrices by the nearest 

positive definite matrices (e.g., through the nearPD() function in the R package Matrix; 

Bates et al., 2019). Although the latter seems especially appealing to sustaining the meta-

analytic sample, the effects of substituting non-positive definite matrices on the SEM 

parameters are yet to be examined. 

Step-by-Step Tutorial: Overview of the Empirical Examples 

To illustrate the usefulness and strengths of these MASEM approaches, we present 

two examples of how scale reliabilities can be meta-analyzed following the proposed analytic 

steps (Table 3). The first example is based on a meta-analysis of the correlations among 
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subscale scores of technology acceptance measures. This meta-analysis contains a large 

sample of primary studies and independent samples, resulting in 142 correlation matrices. 

Given that few primary studies included all technology acceptance measures and assessed 

only a selection of these variable, the resultant correlation matrices vary in their sizes. In other 

words, for most studies, the overall 6x6-correlation matrix with 15 correlations among the six 

variables was incomplete (i.e., correlations within this correlation matrix were missing). 

Besides, some correlation matrices were non-positive definite. As a consequence, only 

TSMASEM and OSMASEM are available to synthesize the scale reliabilities. A one-factor 

model without any additional modifications forms the basis for the reliability generalization 

of OP. We further use this example to illustrate how researchers can perform subgroup 

analyses to examine possible differences in reliability coefficients under invariance 

constraints. The R code, the corresponding output, and detailed comments are part of the 

Supplementary Material S1. 

The second example is based on a meta-analytic dataset of the Rosenberg Self-Esteem 

Scale which contains only complete and positive definite correlation matrices. In contrast to 

the first example, correlations among items rather than subscales are reported, and the overall 

sample size is small (37 independent samples). Moreover, a nested-factor model forms the 

basis for estimating the reliability coefficient O^. Besides TSMASEM and OSMASEM, 

parameter-based MASEM can be applied to synthesize the reliability coefficients due to the 

availability of complete correlation matrices. The R code, the corresponding output, and 

detailed comments are shown in the Supplementary Material S2. 

Modeling the random effects of the extracted correlations or the estimated model 

parameters, we quantify the between-study variance (!5), test the homogeneity of using the û 

statistic, and report the heterogeneity statistic ü5. The ü5 statistic is represented as ü5 =

100% ×
¢£§

¢£§•	¶ß
 with the within-study sampling variance of ®© =

(™Ç))∑ ) Xn⁄´
n¨a

L∑ ) Xn⁄≠
n¨a M

§
Ç∑ ) Xn

§⁄≠
n¨a

 and 
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sampling variances fC for each of the Æ primary studies (Cheung, 2014; Higgins & 

Thompson, 2002). For most random-effects models, we obtain the likelihood-based 

confidence intervals (LBCIs) from the likelihood-ratio statistic (Neale & Miller, 1997). These 

confidence intervals outperform the Wald CIs, especially for variance components and 

especially when the number of studies or independent samples is small (Cheung, 2009). To 

evaluate the fit of the factor models, we refer to common fit indices (Comparative Fit Index 

[CFI], Root Mean Squared Error of Approximation [RMSEA], Standardized Root Mean 

Squared Residual [SRMR]) and recommended guidelines (Hu & Bentler, 1999; Marsh, Hau, 

& Wen, 2004). 

Empirical Example 1: Technology Acceptance Measures 

Data 

Scherer, Siddiq, and Tondeur (2019) recently conducted a meta-analysis of pre- and 

in-service teachers’ technology acceptance—a construct measured by six variables: perceived 

ease of use (PEOU), perceived usefulness (PEU), attitudes toward technology (ATT), 

subjective norms (SN), technological self-efficacy (TSE), and facilitating conditions (FC). 

These variables were represented by continuous subscale scores, which were assumed to be 

approximately normally distributed. Factor analyses suggested that a one-factor model 

assuming that the latent variable technology acceptance is indicated by these six variables 

represented the data best (Scherer et al., 2020). The authors extracted 142 correlation matrices 

from 132 research papers. Overall, the teacher sample in the primary studies contained 37211 

teachers (47.7 % pre-service and 52.3 % in-service teachers), with sample sizes between 29 

and 1981 teachers (64.7 % female). The technology acceptance measures referred to 

technology in general (51.6 %) or specific technologies (48.4 %). 
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Analysis 

We first took the TSMASEM approach and synthesized the correlation matrices under 

the assumptions of fixed or random effects. In the second stage, we specified a one-factor 

model, evaluated its fit to the data, and extracted the factor loadings and residual variances for 

scale reliability estimation. Standard errors and confidence intervals were obtained from the 

likelihood estimation (LBCI). Second, we applied OSMASEM and examined the possible 

moderation effects on the factor loadings by the type of technology—a variable used as a 

reference in the technology acceptance measures. Scale reliability was then derived from the 

model parameters directly. The fact that not all primary studies provided complete 6x6-

correlation matrices did not allow us to perform parameter-based MASEM, because fitting the 

same factor model to primary study data based on correlation matrices of different sizes (i.e., 

with missing correlations) was not possible.  

Some papers reported multiple correlation matrices, and single correlations within 

these matrices exhibited variation within and between studies. Such dependencies could be 

handled by a multilevel or robust standard error MASEM approach (e.g., Wilson, Polanin, & 

Lipsey, 2016)—however, at the time of writing, the performance of these approaches has not 

yet been evaluated in simulation studies for the different MASEM approaches and for 

structural equation models beyond meta-regression. Moreover, while these approaches 

account for the existence of multiple correlations among the same variables in one study, they 

do not necessarily account for the dependencies among multiple correlations among different 

variables in one study at the same time (Jak & Cheung, 2019). Researchers are therefore 

encouraged to monitor the methodological developments concerning this issue.  

As the authors of the initial meta-analysis argued that dependencies among correlation 

matrices due to this structure may indeed exist, we applied some decision rules to select one 

correlation matrix from the studies reporting multiple correlation matrices (see Supplementary 
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Material S1). However, in some instances, the authors of the primary studies reported an 

overall correlation matrix across multiple groups after testing for measurement invariance. In 

these cases, applying selection rules was not necessary. 

The full data set contained correlation matrices, sample sizes, and study names and 

was stored in the object TAM1. We used the R package metaSEM (Cheung, 2018b) for 

TSMASEM and OSMASEM. Please find the data, the R code, and output in the 

Supplementary Material S1. 

Results 

TSMASEM.  

Step 1: Checking correlation matrices for positive definiteness. In the first step, we 

checked one of the key prerequisites of the TSMASEM approach, that is, the positive 

definiteness of the correlation matrices. The metaSEM package offers the is.pd() function 

to which all correlation matrices (stored in the object TAM1$data) are submitted, 

is.pd(TAM1$data). The output of this function is TRUE if the correlation matrix is 

positive definite and FALSE otherwise. Of the 142 correlation matrices, 128 were positive 

definite and formed the reduced dataset TAM2. The excluded correlation matrices contained 

either a mixture between positive, small negative, close-to-zero correlations or contributed 

only few correlations (i.e., had many missing values). After applying the decision rules for 

selecting one correlation matrix per study for studies reporting multiple correlation matrices, 

the final meta-analytic dataset (TAM3) comprised 117 correlation matrices with an overall 

sample size of N = 36619 participants. This dataset was submitted to the first stage of 

TSMASEM. 

Steps 2 and 3: Pooling correlation matrices under fixed- and random-effects models. 

In the first TSMASEM stage, we pooled the correlation matrices assuming fixed or random 

effects of the correlations. This step is conveyed through the tssem1() function to which 
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the positive definite correlation matrices (TAM3$data) and the sample sizes (TAM3$n) are 

submitted. Defining the object TSMASEM.rem, we estimated all parameters of the stage-1 

random-effects model (method="REM") as follows: 

TSMASEM.rem <- tssem1(TAM3$data, TAM3$n, method="REM",  

RE.type="Diag", I2="I2q") 

summary(TSMASEM.rem) 

This object contains both the pooled correlations (and, ultimately, the pooled correlation 

matrix) as fixed effects and the between-study variances (!5) as random effects. Besides, it 

provides the heterogeneity indices ü5 for each correlation based on the û statistics 

(I2="I2q"). As the data set contained six variables and 15 correlations off the diagonal, a 

total of 120 entries in the covariance matrix of the random effects (i.e., 15 variances and 105 

covariances) would have to be estimated from the 117 correlation matrices. To reduce the 

number of random-effects parameters (i.e., the number of entries in the 15 × 15-matrix mto), 

the option RE.type="Diag" specifies the covariance matrix of random effects as a 

diagonal matrix, and random effects are considered independent. For a larger sample of 

primary studies, researchers may choose the alternative option RE.type="Symm" to 

estimate the full, symmetric covariance matrix. We notice that the diagonal constraint we 

imposed on the stage-1 model may not reflect the true nature of the random-effects covariance 

structure, because covariances among random effects are likely to occur (Cheung & Cheung, 

2016). Constraining these covariances may, however, impact the standard errors of the pooled 

correlations. For this illustrative example, however, estimating the full random-effects 

covariance matrix did not converge due to the limited sample size. In general, researchers 

have to weigh and be aware of the practical limitations associated with small meta-analytic 

samples and the assumptions made in the stage-1 model (Cheung, 2015). 
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Under the random-effects model, considerable heterogeneity was indicated by high 

heterogeneity indices between ü5 = 82.5 % and 92.7 % and between-study variance estimates 

ranging from !5 = 0.015 to 0.035 with LBCIs that did not contain zero and (see 

Supplementary Material S1). At this point, reasons for this heterogeneity may be manifold 

and include aspects of the methodological diversity of the primary studies (e.g., differences in 

assessment administration, scale composition, statistical modeling). The overall homogeneity 

test supported the existence of random effects, Q(617) = 6582.6, p < .001. The resultant 

correlation matrix is shown in Table 4.  

To further substantiate the appropriateness of the random-effects model in the stage-1 

TSMASEM analyses, we specified and estimated a fixed-effects model (TSMASEM.fem): 

TSMASEM.fem <- tssem1FEM(TAM3$data, TAM3$n) 

summary(TSMASEM.fem) 

This model did not fit the data well (c2[617] = 10740.5, p < .001, RMSEA = 0.229, SRMR = 

0.167, CFI = 0.745, AIC = 9506, BIC = 4257), suggesting that between-study variation in the 

correlation matrices may exist. The resultant pooled correlation matrix is also shown in Table 

4. Despite the poor fit of the fixed-effects model, these pooled correlations correlated highly 

with those obtained from the random-effects model, r = .977 (see Figure 2). Nevertheless, the 

pooling of the correlation matrices with random effects seemed more appropriate. 

Step 4: Specifying, estimating, and evaluating the congeneric model. In the next stage, 

we specified the congeneric factor model (OneFactorModel) on the basis of the stage-1 

random-effects model. The latent variable was identified by fixing the factor variance to 1. 

Given this and the fact that a correlation matrix with variances of the manifest indicators 

constrained to 1 was the basis for the structural equation modeling step, factor loadings and 

residual variances were dependent with N&& = 1 − E&
5 for each manifest indicator * (Jak & 

Cheung, 2018b). We first specified the model using the lavaan language and secondly 
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transformed it into the RAM-formulation (McArdle, 2005)—the lavaan2RAM() function 

performs this transformation. For the congeneric model, this formulation contains the matrix 

of factor loadings Ö, the matrix of the factor variance and residual variances Ü, and the Ñ-

matrix indicating whether or not a variable is latent (coded as 0) or manifest (coded as 1). 

OneFactorModel <- " # General factor (gTA) 

                    # Factor loadings labeled L1-l6 

gTA =~ L1*PEOU + L2*PU + L3*ATT +  

L4*SN + L5*FC + L6*TSE 

                    # Residual variances labeled R1-R6 

                    PEOU ~~ R1*PEOU 

                    PU ~~ R2*PU 

                    ATT ~~ R3*ATT 

                    SN ~~ R4*SN 

                    FC ~~ R5*FC 

                    TSE ~~ R6*TSE 

                    # Factor variance constrained to 1 

                    gTA ~~ 1*gTA " 

RAM <- lavaan2RAM(OneFactorModel, obs.variables = c("PU",  

"PEOU", "ATT", "SN", "TSE", "FC")) 

# Matrices in the RAM framework 

A <- RAM$A 

S <- RAM$S 

F <- RAM$F 

Along with the pooled correlation matrix (TSMASEM.rem), these model specification 

matrices (Ö, Ü, and Ñ) are then submitted to the tssem2() function: 

TSMASEM.cfa1 <- tssem2(TSMASEM.rem, Amatrix=A, Smatrix=S,  
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Fmatrix=F, 

                   intervals.type="LB", 

                   diag.constraints=TRUE, 

                   model.name="One factor model REM", 

                   mx.algebras=list(SREL=  

mxAlgebra(((L1+L2+L3+L4+L5+L6)^2)/ 

((L1+L2+L3+L4+L5+L6)^2+ 

R1+R2+R3+R4+R5+R6), name="SREL"))) 

TSMASEM.cfa1 <- rerun(TSMASEM.cfa1) 

summary(TSMASEM.cfa1) 

In this function, we requested LBCIs (intervals.type="LB") and ensured that the 

diagonal elements of the model-implied correlation matrix are all 1 

(diag.constraints=TRUE). Researchers may also request the Wald CIs and relax the 

diagonal constraints as there are no mediators in the measurement model (see Cheung, 2015, 

for more detailed explanations). To circumvent estimation errors, this model was rerun until a 

parameter solution had been found (rerun()). The object TSMASEM.cfa1 contains all 

relevant parameters to evaluate the fit of the congeneric model and the overall scale 

reliability. The stage-2 factor model based on the stage-1 random-effects model resulted in a 

good fit, c2(9) = 29.6, p < .001, RMSEA = 0.008, SRMR = 0.038, CFI = 0.994, AIC = 12, 

BIC = -65. Figure 3 shows the corresponding factor loadings and residual variances. Already 

in this step, we estimated the reliability coefficient OP (SREL) from the model parameters. 

Notice that, although the model estimation was based on the stage-1 random-effects model, 

stage-2 random effects of model parameters are not estimated. As a consequence, this 

approach assumes that factor loadings are invariant across the primary studies (i.e., metric 

invariance holds). 
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Step 5: Specifying, estimating, and evaluating alternative measurement models. 

Instead of synthesizing the reliability coefficient OP, researchers may be interested in 

synthesizing Cronbach’s α. To test whether the !-equivalence assumption was met and to 

obtain this reliability coefficient from the measurement model, we constrained the factor 

loadings (L1-L6) to be equal for all manifest indicators (L1). Using the same functions as 

presented in step 4, we based the model estimation on the outcomes of the stage-1 random-

effects TSMASEM. The model assuming the !-equivalence (TSMASEM.cfa1.eq) showed 

a reasonable fit to the data, c2(14) = 228.9, p < .001, RMSEA = 0.021, SRMR = 0.101, CFI = 

0.936, AIC = 201, BIC = 82. 

Step 6: Deciding on a final measurement model. Comparing the models with and 

without equality constraints on the factor loadings by means of chi-square difference testing 

(in R: anova(TSMASEM.cfa1,TSMASEM.cfa1.eq)) suggested that the model with 

freely estimated factor loadings showed a significantly better fit to the data, Dc2(5) = 199.4, p 

< .001. Along similar lines, the information criteria were smaller for this model. These 

findings indicated that the reliability coefficient OP is a more suitable coefficient for 

reliability generalization. We accepted the one-factor model without any equality constraints 

of factor loadings and residual variances as the final measurement model. 

The estimation of the measurement model was based on the pooled correlation matrix 

and its asymptotic covariance matrix; random effects of the model parameters (i.e., factor 

loadings and residual variances) are not included. Recently, some attempts were made to 

quantify the heterogeneity of these parameters by parametric bootstrapping and the delta 

method (Cheung, 2018a; Yu, Downes, Carter, & O’Boyle, 2018). In the R package metaSEM, 

researchers can ultilize the tssemParaVar() function to perform both methods on the 

TSMASEM stage-2 parameters (see Supplementary Material S1). 



META-ANALYSIS OF RELIABILITY   36 

Step 7: Estimating the overall scale reliability. The measurement model based on the 

stage-1 random-effects model resulted in an overall reliability coefficient of OP = 0.790, 95 % 

LBCI [0.779, 0.800]. 

Step 8: Subgroup analyses. The data set contained additional information about the 

teacher sample (i.e., pre- vs. in-service teacher samples) and the type of technology referred to 

in the technology acceptance measures (i.e., specific technology vs. technology in general). 

Using these two grouping variables, we performed subgroup analyses to examine whether the 

group-specific reliability coefficients may differ between these groups. We present these 

analyses focusing on the type of teacher sample here, while the analyses for the type of 

technology are described in the Supplementary Material S1. 

First, we subset the data into studies of in- and pre-service teachers. Second, we 

performed stage-1 TSMASEM with random effects for each of these subgroups: 

# In-Service teachers 

stage1_ins <- tssem1(TAM3_ins, n_ins, method="REM", 

RE.type="Diag") 

# Pre-Service teachers 

stage1_pre <- tssem1(TAM3_pre, n_pre, method="REM", 

RE.type="Diag") 

Next, we specified and estimated the congeneric model (see step 4) for each of these 

subsamples and found that this model exhibited good fit to the samples of in-service teachers 

(c2[9, N = 17987] = 24.8, p = .003, RMSEA = 0.010, SRMR = 0.051, CFI = 0.991, AIC = 7, 

BIC = -63) and pre-service teachers (c2[9, N = 18632] = 16.1, p = .067, RMSEA = 0.007, 

SRMR = 0.038, CFI = 0.996, AIC = -2, BIC = -72). The resultant reliability coefficients were 

OP = 0.799, 95 % LBCI [0.784, 0.812], and, respectively, OP = 0.778, 95 % LBCI [0.763, 

0.792]. In order to ensure that these coefficients are in fact comparable, the invariance of 
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factor loadings across the two subsamples must be given. Hence, we specified a two-group 

model with these invariance constraints and compared it to a model with freely estimated 

factor loadings. The details of this specification, the estimation, and comparison are part of 

the Supplementary Material S1. The metric invariance model showed a good fit to the data, 

c2(24) = 55.9, p < .001, RMSEA = 0.009, SRMR = 0.052, CFI = 0.991, AIC = 92, BIC = 245. 

Nevertheless, the chi-square difference test indicated that model fit differed significantly 

between the two models, Dc2(6) = 15.1, p = .020. These finding suggested that the invariance 

of factor loadings across the two subsamples may not hold. Researchers should consequently 

be cautious with comparing the two reliability coefficients. 

OSMASEM.  

Step 1: Checking correlation matrices for positive definiteness. We already performed 

the test for positive definite correlation matrices under the TSMASEM approach and excluded 

non-positive definite matrices. The resultant data were stored in the object TAM3. 

Step 2: Pooling correlation matrices and specifying, estimating, and evaluating the 

congeneric factor model. We pooled the correlation matrices under a random-effects model 

and estimated the congeneric model using the model specification matrices (Ö, Ü, and Ñ; see 

TSMASEM step 4). The corresponding R code is as follows: 

# Combine the data 

TAM3 <- Cor2DataFrame(TAM3$data, TAM3$n) 

# Create the M-matrix with the relevant model specification 

# The matrices Ax and Sx are empty as no moderators are 

included 

M0 <- create.vechsR(A0=A, S0=S, F0=F, Ax=NULL, Sx=NULL) 

# Create heterogeneity variances (random-effects model) 

T0 <- create.Tau2(RAM=RAM, RE.type="Diag") 
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# Define the reliability coefficient as a new parameter SREL 

SREL <- mxAlgebra(((L1+L2+L3+L4+L5+L6)^2)/ 

((L1+L2+L3+L4+L5+L6)^2+((1-L1^2)+(1-L2^2)+(1-

L3^2)+(1-L4^2)+(1-L5^2)+(1-L6^2))),  

name="SREL") 

# Model estimation 

OneFactorModel.os.fit <- osmasem(model.name="One factor CFA",  

                     Mmatrix=M0,  

                     Tmatrix=T0, 

                     mxModel.Args=list(SREL, mxCI(c("SREL"))),                      

 data = TAM3) 

After combining the data to a new data frame (TAM3) for the osmasem() function, the 

factor model is specified (M0) using the specification matrices Ö, Ü, and Ñ, yet no matrix with 

moderator variables (i.e., the moderator matrices ÖØ and ÜØ are empty). Next, the matrix of 

random effects (T0) is defined with diagonal constraints comparable to the TSMASEM 

approach. Finally, these elements, along with the defined reliability coefficient SREL, are 

submitted to the osmasem() function in order to perform the pooling of the correlation 

matrices and the estimation of the congeneric model in one step. Simultaneously, the 

reliability coefficient and its Wald 95 % CI are estimated. In case researchers want to perform 

OSMASEM assuming fixed effects, the ∞-matrix command can be modified by 

RE.type="Zero". Comparing the one-factor congeneric models based on fixed and 

random effects indicated the preference for the model with random effects of the correlations, 

Dc2(15) = 7145.9, p < .001. Please find the detailed R code and output in the Supplementary 

Material S1. 



META-ANALYSIS OF RELIABILITY   39 

Steps 3 and 4: Pooling correlation matrices, estimating alternative measurement 

models, and comparing models. Similar to TSMASEM, we specified and estimated the one-

factor model with equal factor loadings by adjusting the above-described syntax (see 

Supplementary Material S1). Once again, the comparison between the congeneric model and 

the model with equality constraints suggested the preference of the former, Dc2(5) = 145.7, p 

< .001. The congeneric model may serve as the final measurement model. 

Step 5: Estimating the overall scale reliability. The overall scale reliability (SREL) 

based on the random-effects model was OP = 0.790, 95 % CI [0.778, 0.801].  

Step 6: Evaluating moderator effects. To further substantiate the findings obtained 

from the TSMASEM subgroup analyses, we introduced the type of teacher sample (variable 

InService) as a possible moderator of the Ö-matrix (i.e., the matrix of factor loadings). To 

achieve this, a moderator matrix ÖØ is defined and submitted to the model specification: 

# Create an A-moderation matrix 

Ax <- matrix(c(0,0,0,0,0,0,"0*data.InService", 

               0,0,0,0,0,0,"0*data.InService ", 

               0,0,0,0,0,0,"0*data.InService ", 

               0,0,0,0,0,0,"0*data.InService ", 

               0,0,0,0,0,0,"0*data.InService ", 

               0,0,0,0,0,0,"0*data.InService ", 

               0,0,0,0,0,0,0), 

             nrow = 7, ncol = 7, byrow = TRUE) 

# Create the M-matrix with the relevant model specification 

M1 <- create.vechsR(A0=A, S0=S, F0=F, Ax=Ax, Sx=NULL) 

The resultant variance explanations by the teacher sample, indicated by the reduction of 

between-study variances of the correlations, ranged from 0.0 % to 23.2 % across the six 
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variables, and only one moderator effect on the factor loading of the variable FC was 

significant, B = 0.109, SE = 0.041, p = 0.012. Comparing the models with and without 

moderator effects indicated an improvement of model fit after introducing the moderator, 

Dc2(6) = 13.35, p = .038. Hence, in line with the results of the TSMASEM subgroup analyses, 

the measurement invariance across the two teacher samples may be compromised. 

Summary 

Performing TSMASEM and OSMASEM, we found that a one-factor model, which 

was based on random effects in the correlation matrices, showed a good fit to the data. This 

model formed the basis for synthesizing OP as a reliability coefficient across studies. 

Moderation effects on the factor loadings by the types of teacher sample were evident. 

Empirical Example 2: Rosenberg Self-Esteem Scale 

Data 

Gnambs, Scharl, and Schroeders (2018a) examined the factor structure of the 10-item 

Rosenberg Self-Esteem Scale (RSES) meta-analytically and found support for a nested-factor 

structure. The authors extracted the data from 34 studies and 113 independent samples (N = 

140671) and performed fixed-effects TSMASEM. The sample sizes ranged between 59 and 

22131 participants of the primary studies (55 % female) and were obtained from countries 

across the world, including the United States of America (18 %), The Netherlands (8 %), and 

Germany (6 %). Gnambs et al. (2018a) tested the robustness of their findings for a subsample 

of primary studies that comprised the complete correlation matrices obtained from 37 

independent samples. These samples were nested in 15 studies. We use this subsample of the 

study to illustrate the meta-analysis of reliability coefficients performing TSMASEM, 

OSMASEM, and parameter-based MASEM (see Gnambs et al., 2018b for the data set).  
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Analysis 

Similar to example 1, we obtain an overall estimate of the scale reliability, performing 

TSMASEM and OSMASEM under an appropriate factor model of the data. In contrast to the 

first example, this factor model represents a bifactor model with uncorrelated factors (e.g., A. 

Rodriguez, Reise, & Haviland, 2016), hereafter referred to as a “nested-factor model”. Given 

that all correlation matrices are complete, we also perform parameter-based MASEM to 

estimate the reliability heterogeneity (Cheung & Jak, 2016). We use the R package metaSEM 

(Cheung, 2018b) for TSMASEM and OSMASEM, lavaan (Rosseel, 2018) and metafor 

(Viechtbauer, 2010) for parameter-based MASEM. 

Two issues with analyzing the data are worth noting: First, Gnambs et al. (2018a) 

either extracted correlations among ordinal responses on the RSES items or computed the 

model-implied correlations from the parameters of factor models. The authors ensured that 

each primary study administered the RSES with at least four response categories per item, so 

that item responses may be treated continuously, although more categories would have been 

desirable to back this treatment (Rhemtulla, Brosseau-Liard, & Savalei, 2012). Correlations 

were quantified as Pearson’s r and pooled across studies under the multivariate normality 

assumption —an assumption that may not hold for ordinal item responses (Li, 2016). 

Second, correlation matrices were nested in studies—this design feature ultimately 

created a hierarchical data structure. After inspecting the primary study data, Gnambs et al. 

(2018a) concluded that the 37 samples (and the corresponding correlation matrices) can be 

considered independent, and the RSES administration was the common element (see also Jak 

& Cheung, 2019). For the purpose of this illustration, we will also assume independence 

among study samples and estimate reliabilities as a sample- rather than study-based 

coefficient. Although the independence assumption may in fact not hold, we have based the 

TSMASEM and OSMASEM approaches on it, due to the current lack of validated multilevel 
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MASEM approaches (Jak & Cheung, 2019). Nevertheless, we performed three-level 

univariate random-effects modeling in the second stage of the parameter-based MASEM 

approach. 

Given that the implementation of TSMASEM and OSMASEM were already presented 

in detail for example 1, we focus only on the modifications for this example and kindly refer 

readers to the Supplementary Material S2 for the detailed R code, output, and explanations. 

Results 

TSMASEM.  

Step 1: Checking correlation matrices for positive definiteness. Using the is.pd() 

function to the data (RSES1), we found that the 37 correlation matrices were positive definite 

and could thus be included in the subsequent pooling stage.   

Steps 2 and 3: Pooling correlation matrices under fixed- and random-effects models. 

In the TSMASEM stage-1 analyses, the fixed-effects model (TSMASEM.fem) represented 

the data to a sufficient degree, c2(1620) = 29892.0, p < .001, RMSEA = 0.076, SRMR = 

0.113, CFI = 0.937, AIC = 26652, BIC = 11074. However, the random-effects model 

(TSMASEM.rem) indicated between-study heterogeneity (Q[1620] = 31677.6, p < .001), the 

between-study variances of the 45 item-item correlations ranged between !5 = 0.004 and 

0.028 with confidence intervals that did not include zero. The heterogeneity indices were 

considerably large (ü5 = 92.9 %–99.1 %), despite the fact that all primary studies used the 

same set of items to assess self-esteem. Possible reasons for this heterogeneity may be related 

to differences in sample and study characteristics (Gnambs et al., 2018a). Hence, the stage-1 

random-effects model seemed more appropriate for the pooling of correlation matrices. The 

pooled correlations for the fixed- and random-effects models were highly correlated, r = .989 

(see Supplementary Material S3). Once again, the diagonal constraints of the covariance 
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matrix of random effects were implemented due its large parameter space (i.e., symmetric 

45 × 45-matrix mto). 

Step 4: Specifying, estimating, and evaluating the congeneric model. In the next step, 

we specified and estimated the congeneric one-factor model, transferring the R code from 

example 1 to the RSES data. If indeed this model represents the data well, the reliability 

coefficient OP could be reported. This model showed a reasonable yet not good fit to the data, 

c2(35) = 1208.3, p < .001, RMSEA = 0.017, SRMR = 0.080, CFI = 0.931, AIC = 1138, BIC = 

802. Reporting OP may therefore not be appropriate. 

Step 5: Specifying, estimating, and evaluating alternative measurement models. As 

Gnambs et al. (2018a) and Jak and Cheung (2019) noticed, the factor structure of the RSES 

may not be best represented by a one-factor model—instead, the authors showed that nested-

factor models were superior. In the current subsample, the model with a general factor of self-

esteem and two uncorrelated specific factors that explained variance in the negatively- and 

positively-worded RSES items (see Figure 4) may represent the factorial structure 

significantly better than the one-factor model. We consequently specified and estimated this 

model as an alternative measurement model (NestedFactorModel).  

NestedFactorModel <- "# General self-esteem factor (gRSES) 

                      # Factor loadings labeled Lg1-Lg10 

                      gRSES =~ Lg1*Item1 + Lg2*Item2 + Lg3*Item3 +  

Lg4*Item4 + Lg5*Item5 + Lg6*Item6 + 

Lg7*Item7 + Lg8*Item8 + Lg9*Item9 + 

Lg10*Item10 

                      # Specific factor s1 (positive wording) 

                      s1 =~ Ls1*Item1 + Ls3*Item3 + Ls4*Item4 +  

Ls7*Item7 + Ls10*Item10 

                      # Specific factor s2 (negative wording) 
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                      s2 =~ Ls2*Item2 + Ls5*Item5 + Ls6*Item6 +  

Ls8*Item8 + Ls9*Item9 

                      # Restriction on the factor covariances 

                      gRSES ~~ 0*s1 

                      gRSES ~~ 0*s2 

                      s1 ~~ 0*s2 

                      # Residual variances labeled R1-R10 

                      Item1 ~~ R1*Item1 

                      Item2 ~~ R2*Item2 

                      Item3 ~~ R3*Item3 

                      Item4 ~~ R4*Item4 

                      Item5 ~~ R5*Item5 

                      Item6 ~~ R6*Item6 

                      Item7 ~~ R7*Item7 

                      Item8 ~~ R8*Item8 

                      Item9 ~~ R9*Item9 

                      Item10 ~~ R10*Item10 

                      # Factor variances constrained to 1 

                      gRSES ~~ 1*gRSES  

                      s1 ~~ 1*s1 

                      s2 ~~ 1*s2 " 

Similar to example 1, this model specification was then translated into the RAM-formulation 

(with model specification matrices A, S, and F) and subsequently submitted to the 

TSSEM2() function. O^ was the corresponding coefficient of scale reliability (see equation 

[3]; SREL). The R code for the stage-2 TSMASEM reads: 

TSMASEM.nfm <- tssem2(TSMASEM.rem, Amatrix=A, Smatrix=S,  

Fmatrix=F, intervals.type="LB", 
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diag.constraints = TRUE, 

model.name = "Nested factor model", 

mx.algebras=list(SREL=mxAlgebra(((Lg1+Lg2+ 

Lg3+Lg4+Lg5+Lg6+Lg7+Lg8+Lg9+Lg10)^2)/((Lg1 

+Lg2+Lg3+Lg4+Lg5+Lg6+Lg7+Lg8+Lg9+Lg10)^2+ 

(Ls1+Ls3+Ls4+Ls7+Ls10)^2+ 

(Ls2+Ls5+Ls6+Ls8+Ls9)^2+ 

R1+R2+R3+R4+R5+R6+R7+R8+R9+R10), 

name="SREL"))) 

This model exhibited a very good fit to the data, c2(25) = 44.9, p = .009, RMSEA = 0.003, 

SRMR = 0.017, CFI = 0.998, AIC = -5, BIC = -245. The factor loadings of the general factor 

(Lg1-Lg10) were positive and significant, the factor loadings of the specific factors (Ls1-

Ls10) ranged between negative, close-to-zero, and positive values (Table 5)—an anomaly 

often encountered in bifactor models (Eid, Geiser, Koch, & Heene, 2017). 

Step 6: Deciding on a final measurement model. Comparing the one-factor model with 

the nested-factor model suggested the preference of the latter over the former, Dc2(10) = 

1163.3, p < .001. We consequently based the reliability estimation on the nested-factor model. 

Step 7: Estimating the overall scale reliability. The overall reliability coefficient 

across the 37 samples was O^ = 0.745, 95 % LBCI [0.735, 0.755]. 

OSMASEM.  

Step 1: Checking correlation matrices for positive definiteness. We already performed 

this step for the TSMASEM approach; all correlation matrices were positive definite. 

Step 2: Pooling correlation matrices and specifying, estimating, and evaluating the 

congeneric factor model. We pooled the correlation matrices under a random-effects model 
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and estimated the congeneric model using the model specification matrices. Supplementary 

Material S2 shows the corresponding model parameters and their confidence intervals. 

Steps 3 and 4: Pooling correlation matrices, estimating alternative measurement 

models, and comparing these models with the congeneric model. Similar to TSMASEM, we 

compared the one-factor model with the nested-factor model and found support for the latter, 

Dc2(10) = 639.9, p < .001. 

Step 5: Estimating the overall scale reliability. The overall scale reliability based on 

the nested-factor model with random effects was O^ = 0.746, 95 % CI [0.735, 0.756]. 

Step 6: Evaluating moderator effects. In a final step, we examined possible 

moderation effects on the Ö-matrix by the language of test administration (coded as 

1=English, 0=Language other than English). Following the same procedure as presented in 

example 1, we specified the moderation matrix ÖØ, estimated the model parameters, and 

compared the model to the one without the moderator. The latter comparison suggested that 

moderation effects on the factor loadings existed, Dc2(30) = 101.3, p < .001. Hence, 

researchers should be cautious with comparing the reliability coefficient across languages of 

test administration due to measurement non-invariance. Please find all model parameters in 

the Supplementary Material S2. 

Parameter-based MASEM.  

Step 1: Checking correlation matrices for positive definiteness. We already performed 

this step for the TSMASEM approach; all correlation matrices were positive definite. 

Step 2: Specifying, estimating, and evaluating the congeneric factor model for each 

primary study. We performed this step using model specification of the one-factor model (see 

TSMASEM and OSMASEM) and the sem() function in the R package lavaan. We 

estimated the congeneric model for each primary study and extracted the resultant model fit 
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indices (see Supplementary Material S2 and S3). The model showed poor fit to the data in all 

primary studies and was thus rejected. 

Step 3: Specifying, estimating, and evaluating alternative factor models for each 

primary study. The nested-factor model served as an alternative measurement model and, 

indeed, represented the data well for 34 of the 37 correlation matrices—three correlation 

matrices had to be excluded due to non-convergence of the model (see Supplementary 

Material S2 and S3). 

Step 4: Deciding on a final measurement model. The nested-factor model formed the 

basis for the subsequent reliability estimation as it fit well to the primary studies (i.e., 

configural invariance across studies held). 

Step 5: Estimating the scale reliabilities for each primary study sample. As part of the 

model estimation in lavaan, the scale reliabilities were estimated for each study sample. 

Overall, the omega coefficients ranged between O^ = 0.411 and O^ = 0.861 with a median of 

0.767 and a mean of 0.735 (SD = 0.108). The full list of reliabilities is contained in the 

Supplementary Material S3. 

Steps 6-8: Performing univariate meta-analysis under fixed- and random-effects 

models. In the next step, we submitted the reliability coefficients and the sample sizes to 

three-level univariate random-effects meta-analyses using the rma.mv() function in 

metafor. This function can treat the reliability coefficients as correlations or as internal 

consistencies comparable to Cronbach’s : and accounts for the hierarchical data structure 

(with samples [sampleID] nested in studies [studyID])—we modeled the nesting of 

reliabilities in study papers next to samples explicitly (level 1: model parameters, level 2: 

study samples, level 3: study papers; see Supplementary Material S2). Treating reliabilities as 

correlations, the three-level univariate random-effects model (REM.opt1.ml) is specified as 
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follows (with correlations and sampling variances obtained from the escalc() function and 

stored in the object opt1; see Supplementary Material S2): 

# Three-level random-effects model using REML  

REM.opt1.ml <- rma.mv(yi, vi, data=opt1,  

random = list( ~ 1 | sampleID,  

~ 1 | studyID)) 

summary(REM.opt1.ml) 

The random-effects model indicated heterogeneity across samples, yet not across studies 

(Q[33] = 4633.5, p < .001; ü5
5	= 99.5 %, üï

5	= 0.0 %) with variance estimates of !5
5 = 0.010 

(level 2) and !ï
5 = 0.000 (level 3). Although the between-study variance component may not 

be necessary, the three-level model may capture the hierarchical nature of the data better than 

the (common) two-level model—the boundary estimate of zero may be due to the 

confounding of the sample-level and study-level variance components in the model (see also 

Snijders & Bosker, 2012). The overall reliability coefficient under this model was O^ = 

0.738, 95 % CI [0.703, 0.773]. Notice that the confidence interval of this point estimate is 

wider than ones observed in TSMASEM and OSMASEM, primarily because the second stage 

of parameter-based MASEM uses the number of effect sizes (n = 34) rather than the sum of 

all primary sample sizes (n = 110843; as in TSMASEM and OSMASEM) as the sample size 

in the meta-analytic model. Moreover, notice that the estimation of the variance components 

was based on REML estimation; meta-analysts may however use alternative estimation 

procedures, such as maximum-likelihood estimation in this step (method="ML"). 

Following the same procedure, the univariate meta-analysis can also be based on 

transformations of the reliability coefficients. The rma.mv() function readily implements 

these transformations (options: measure="ARAW", "AHW", or "ABT" for the raw 

coefficients, the Hakstian-Whalen, or the Bonett transformations). The resultant scale 
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reliabilities and variance components are shown in Table 6. Overall, the reliability 

coefficients ranged between O^ = 0.738 and 0.754 across the different modeling approaches. 

Multivariate meta-analysis of factor loadings. To examine whether comparisons of 

scale reliabilities across studies are valid, we performed a multivariate random-effects meta-

analysis of the factor loadings. As noted earlier (step 4), the configural invariance of the 

nested-factor model could be assumed across the 34 study samples. The fact that this model 

fits in the primary studies does, however, not ensure that the factor loadings are invariant, that 

is, metric invariance holds. To test the invariance of factor loadings across studies, we 

performed multivariate meta-analysis of the factor loadings using the meta() function in the 

metaSEM package (see Supplementary Material S2). The corresponding random-effects 

model contained the between-study variances of the 20 factor loadings in the nested-factor 

model. An inspection of these variances, the ü5 statistic, and the overall homogeneity test 

(Q[660] = 20133.7, p < .001) suggested that factor loadings varied between studies and were 

therefore not invariant. Although researchers may be cautious with generalizing reliability 

coefficients across studies in this situation, the alternative assumption of fixed effects in factor 

loadings (i.e., metric invariance) may not be realistic, and, in this case, also implies the 

invariance of reliability coefficients given the model specification (Cheung, 2015). Another 

alternative may be represented in the assumption of partial metric invariance across studies. 

This multivariate model results in pooled factor loadings and, as a by-product, 

researchers can compute the overall reliability coefficient from them. Applying equation (5), 

the multivariate random-effects model results in O^ = 0.755. At the time of writing, 

however, a solution to quantifying the between-study variance of this estimate, which was 

derived from model parameters that may have different between-study variances and 

covariances, was not yet available. 
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Summary 

Overall, the approaches to meta-analyzing the RSES reliabilities (i.e., TSMASEM, 

OSMASEM, parameter-based MASEM) differed only marginally in the overall reliability 

estimates. In contrast to example 1, a more complex measurement model formed the basis for 

the reliability estimation (i.e., a nested-factor model). Unlike TSMASEM and OSMASEM, 

the parameter-based MASEM approach provided insights into the between-study variation of 

model parameters, including factor loadings and reliability coefficients. 

Take-Home Messages from the Empirical Examples 

The empirical examples illustrated both the strengths and the limitations of meta-

analytic structural equation modeling for synthesizing scale reliabilities. As MASEM relies on 

the data based on either the correlations among items or subscales or model parameters 

instead of reported reliability coefficients, researchers can estimate the same type of reliability 

coefficient across studies. In order to achieve this, an appropriate measurement model is 

needed that forms the basis for the reliability estimation. The second example has shown that 

the congeneric one-factor model for estimating OP may not necessarily fit the data well; yet, 

alternative models with correlated residuals or nested factors may capture the factor structure 

of a scale better. These deviations from the congeneric model, however, require adjusting the 

selection and estimation of the reliability coefficient (e.g., O^ in the first example, OP in the 

second example). Another strength of TSMASEM and OSMASEM is that not all primary 

studies need to provide full correlation matrices with all correlations among the variables of 

interest (see Example 1). Although heterogeneity in the correlations can be quantified in 

stage-1 TSMASEM and OSMASEM, random effects in the estimated reliability coefficients 

still have to be conceptualized for these approaches. Nevertheless, parameter-based MASEM 

can address this issue and even account for hierarchical data structures (see Example 2). 

Overall, the two empirical examples emphasize the following key elements of meta-analyzing 
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scale reliabilities using MASEM: (a) Specifying an appropriate measurement model, (b) 

selecting an appropriate reliability coefficient given the measurement model, and (c) 

obtaining an overall reliability coefficient and, if possible, between-study heterogeneity. 

General Discussion 

Next to reviewing the current state-of-the-art in the area of reliability generalization, 

we were aimed at showcasing how MASEM can be utilized to meta-analyze scale reliabilities 

across studies. In this paper, we presented both correlation-based MASEM and parameter-

based MASEM as two vehicles to provide an overall reliability estimate. We illustrated this 

potential using two examples and argued for the usefulness of correlation-based MASEM for 

reliability generalization in the presence of missing data and deviations from the congeneric 

factor model. We argued for the usefulness of parameter-based MASEM for synthesizing 

scale reliabilities, quantifying and explaining heterogeneity between studies, and 

accommodating hierarchical data structures. Finally, we proposed a sequence of steps 

researchers can take in order to utilize MASEM for reliability generalization. 

Implications for the Meta-Analysis of Reliability Coefficients 

Overall, we consider MASEM to be useful for the meta-analysis of reliabilities in 

many ways: First, MASEM allows researchers to specify measurement models that represent 

the factor structure of the scale and, on the basis of these models, select an appropriate 

reliability coefficient. Hence, researchers do no longer need to fully rely on the coefficients 

the authors of the primary studies chose—most commonly, Cronbach’s α coefficients are 

reported (McNeish, 2018). This flexibility opens a broad range of alternative coefficients that 

do not rely on the assumptions of Cronbach’s α (McDonald, 1999). In contrast to the current 

practices of reliability generalization (see Holland, 2015 and our review), MASEM 

synthesizes model-based reliabilities, even for complex models such as the bifactor model 

(Rodriguez et al., 2016). Nevertheless, whether MASEM can in fact be applied to obtain 
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reliability coefficients from a factor model depends on the availability of item- or subscale-

level data (Carpenter et al., 2016)—extracting correlation or covariance matrices is critical to 

the application of correlation-based MASEM, parameter-based MASEM could rely on the 

reported model parameters (i.e., factor loadings, residual and factor variances).  

Second, MASEM takes into account the multivariate nature of the correlations and 

covariances underlying the estimation of a factor model and a reliability coefficient (Cheung 

& Chan, 2005). In their recent paper, Tang and Cheung (2016) illustrated the enormous 

discrepancies in model parameters and fit statistics between the TSMASEM approach and the 

univariate-r approach which pools correlations in separate meta-analyses. Considering this 

example and the evidence for the better performance of MASEM through, for instance, 

TSMASEM (Cheung, 2015), we argue for the multivariate MASEM approaches as opposed 

to the univariate-r approach. Similarly, we argue that multivariate approaches should be 

considered especially when multiple reliability coefficients are directly extracted from the 

primary studies (Cheung & Cheung, 2016).  

When is the use of MASEM useful for the meta-analysis of scale reliabilities? In this 

paper, we argued for the potential of MASEM in the following situations: (a) when 

researchers want to test the factor structure of a scale and, ultimately, select a model-based 

reliability coefficient, (b) when the assumptions of Cronbach’s α are not met and alternative 

coefficients are more appropriate (based on some evidence from primary studies on deviations 

from the essential !-equivalent model), (c) when the authors of primary studies report 

different types of reliabilities, (d) when multiple reliability coefficients are extracted from 

multidimensional scales or a set of scales, (e) when sufficient information about the item- or 

subscale-level correlations are provided. 

Finally, researchers may ask ‘Which of the MASEM approaches should be used?’ The 

answer to this question depends on the researchers’ goals and questions on the one hand, and 
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the features of the meta-analytic data on the other hand. We would like to highlight several 

strengths of parameter-based MASEM: First, if correlation matrices are extracted, the factor 

models are fit to the data of all primary studies, and researchers can ensure that the same 

model represents the data across studies (i.e., configural invariance; Cheung & Cheung, 

2016). Second, factor loadings may be extracted from the factor models in the first stage and 

synthesized through multivariate meta-analysis in the second stage. The resultant matrix of 

random effects could provide further insights into the measurement invariance across studies 

(i.e., metric invariance). Third, when model-based reliability coefficients are synthesized in 

stage 2, parameter-based MASEM can also provide between-study variances as indicators of 

heterogeneity. This heterogeneity may then be explained by moderating variables. Fourth, the 

stage-2 meta-analysis allows researchers to consider the multilevel structure of the data (e.g., 

study samples nested in studies or countries). Fifth, the stage-1 model estimation can be based 

on estimators that circumvent the multivariate normality assumption. In sum, parameter-based 

MASEM is especially useful when researchers intend to quantify and explain between-study 

variance in reliability coefficients. 

Alternatively, researchers may choose a correlation-based MASEM approach. In 

contrast to parameter-based MASEM, the factor models are fit to the pooled correlation 

matrix, so that multiple, competing models can be tested and compared efficiently (Cheung, 

2015). This allows researchers to synthesize multiple, model-based reliabilities for the entire 

meta-analytic sample, even if some correlations are missing. However, as random effects are 

estimated for the correlations, yet not the derived model parameters, quantifying 

heterogeneity in scale reliabilities across studies is limited to subgroup analyses (Jak & 

Cheung, 2018b). At the same, the recently developed one-stage MASEM approach may allow 

researchers to model this heterogeneity explicitly. In sum, correlation-based MASEM is 
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suitable to research questions surrounding the synthesis of model-based reliability 

coefficients, especially in the presence of missing data. 

Recommendations for the Use of MASEM for Reliability Generalization 

In the paper, we argued that MASEM can be utilized for the meta-analysis of 

reliability coefficients. The choice for using either correlation-based MASEM or parameter-

based MASEM and, of correlation-based MASEM is chosen, either the one- or two-stage 

procedure, results in slightly different sequences of steps researchers need to take to 

synthesize reliabilities and/or quantify their heterogeneity. Table 3 summarizes these steps 

and provides some information about suitable software packages for their implementation. 

Overall, all procedures require the specification of a measurement model that fits the data to 

an acceptable extent, be it for all the primary studies individually (parameter-based MASEM) 

or the aggregated correlation matrix across all primary studies (correlation-based MASEM). 

This step is critical as it ultimately results in the choice for a reliability coefficient. Another 

critical step across all procedures is the inclusion of random effects, be it for the correlations 

as part of the pooling of correlation matrices (correlation-based MASEM) or for the scale 

reliabilities derived from the primary studies as part of the pooling of the model parameters 

(parameter-based MASEM). We recommend the R package metaSEM (Cheung, 2018) for 

implementing the correlation-based MASEM procedures; for the parameter-based MASEM 

procedure, any structural equation modeling software can be used for the first step and almost 

any available meta-analytic software package for the second step (Note: If researchers extract 

multiple reliability coefficients from the primary studies, multivariate meta-analysis must be 

available in the meta-analytic software). 

Limitations and Future Research Directions 

Despite the potential MASEM has for the meta-analysis of reliability coefficients, its 

limitations points to areas of future research. 
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Data availability. The key prerequisite for conducting especially correlation-based 

MASEM to the meta-analysis of scale reliabilities is that the authors of the primary studies 

report and make available the covariance or correlation matrices needed to perform SEM 

(Carpenter et al., 2016). In an era striving for replicability and developing best-practice 

standards of reporting (AERA et al., 2014; Hedges & Schauer, 2018), we do not consider this 

prerequisite to be a major issue—nevertheless, authors must be aware of which statistics are 

to be reported. 

Assumptions on the distribution and structure of the data. As noted earlier, the pooling 

of correlation matrices in TSMASEM and OSMASEM and the estimation of the measurement 

model in OSMASEM are based on the multivariate normality assumption. This assumption 

may however not be reasonable, especially when item-item correlations are synthesized that 

were derived from ordinal item responses (Li et al., 2016). Although several analytic 

approaches exist to accommodate possible deviations from this assumption, including robust 

estimation procedures and procedures correcting test statistics and standard errors, the 

applicability and performance of these approaches to meta-analytic correlation matrices (in 

TSMASEM and OSMASEM) or single-study correlation matrices (in parameter-based 

MASEM) is still to be examined. Currently, the WLS estimation in the second stage 

TSMASEM does not rely on multivariate normality. As a consequence, both stage-1 

TSMASEM and OSMASEM are not without limitations, and possible deviations from 

multivariate normality should be considered in their future development. Parameter-based 

MASEM can also be based on estimators that do not require the multivariate normality 

assumption—even further, some procedures may even be based on polychoric or polyserial 

correlation matrices (Yuan, Wu, & Bentler, 2011). Despite these adjustments, however, meta-

analysts should be aware that fitting structural equation models to correlation matrices instead 
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of covariance matrices in the first stage of parameter-based MASEM can result in biased 

parameter estimates. 

The possible nesting of study samples in studies or other, higher-order grouping 

variables represents another data issue in MASEM. In parameter-based MASEM, hierarchical 

data structure can be modeled explicitly in the second stage through multilevel univariate 

meta-analysis (Cheung, 2015). In both TSMASEM and OSMASEM, such a structure has not 

yet been implemented; the framework of multilevel multivariate meta-analysis could offer 

ways to estimate the additional variance components (e.g., McShane & Böckenholt, 2018). In 

this way, pooled reliability coefficients could be obtained at multiple levels of analysis 

(Geldhof et al., 2014). 

Concerning the type of reliability coefficient, meta-analyzing Cronbach’s α has 

dominated the research on reliability generalization, with several transformations of this 

reliability coefficient to improve the meta-analytic results made available (see Table 1). Given 

the current move from using Cronbach’s α to using alternative, perhaps more suitable 

reliability coefficients (McNeish, 2018), the applicability of these transformations and their 

efficiency for combining several reliability coefficients should be examined further (see also 

Sánchez-Meca et al., 2013). 

Exclusion of primary studies. Although researchers may extract the correlation 

matrices from a large sample of primary studies, this sample may be reduced during several 

modeling steps. Studies may be excluded due to non-positive definite matrices or 

convergence issues associated with the estimation of the measurement models. To still retain 

these studies, researchers may consider adding some parameter constraints, for instance, by 

fixing some factor loadings to defined values. Nevertheless, these two issues should become 

part of the research program to advance MASEM (Yu et al., 2018).    
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Types of reliability coefficients. Our tutorial focused on omega-coefficients to indicate 

scale reliability based on factor analysis. The procedures we described in this paper are by no 

means limited to these types of coefficients—instead, given the flexibility of estimating 

different factor models and, ultimately, use the model parameters for computing reliabilities, 

they can accommodate alternative reliability coefficients (e.g., Bentler, 2016, 2017). 

Heterogeneity of reliability coefficients. Modeling the heterogeneity of the reliability 

coefficients, as they are computed from the parameters of factor-analytic models (i.e., factor 

variances, item residual variances, item factor loadings), is still to be developed further. At the 

time of writing, only parameter-based MASEM allowed researchers to model explicitly the 

random effects in the reliability coefficients that were computed based on the stage-1 

structural equation model. As noted earlier, this MASEM approach, however, may not be 

applicable to data sets with missing correlations (Cheung & Cheung, 2016). In correlation-

based MASEM, random effects are modeled for the correlations, yet not for the parameters of 

the structural equation model (Jak & Cheung, 2019). OSMASEM can incorporate moderating 

effects of study characteristics on factor loadings, structural paths, and (co-)variance 

components in a model; future versions of it may also include these effects on parameters 

computed from these components. 

Conclusion 

In conclusion, we hope to stimulate the use of MASEM for reliability generalization in 

future meta-analyses, especially when researchers intend to synthesize evidence on the 

psychometric quality of tests and scales across studies. We argue that the potential that lies 

within MASEM—be it correlation-based or parameter-based MASEM—can be utilized for 

synthesizing reliability coefficients and for quantifying between-study heterogeneity. 

MASEM has several advantages over the commonly used univariate approaches: First, it 

allows researchers to synthesize correlation matrices and to flexibly establish and compare 
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measurement models which form the basis for selecting suitable reliability coefficients. In this 

sense, researchers are given the possibility to consider model-based reliability coefficients. 

Second, MASEM can accommodate multiple item- or subscale-level correlations and/or 

multiple model parameters, such as scale or subscale reliabilities, taking into account the 

multivariate nature of the primary study data—ultimately, MASEM circumvents the possible 

bias associated with univariate approaches. At the same time, the existing MASEM 

approaches have several limitations, and researchers should select the MASEM approach 

considering the features of their meta-analytic data (e.g., the presence of missing data) and 

their research purposes (e.g., testing a set of measurement models to derive several reliability 

coefficients vs. synthesizing only one type of reliability coefficients). Overall, we believe that 

reliability generalization through MASEM opens a new field of research that contributes to 

understanding the psychometric quality of psychological scales and to examining the 

replicability of reliability coefficients across studies. 
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Tables 

Table 1 

Methods of Transforming Cronbach’s : (see also López-López et al., 2013) 

Transformation 

method 

Coefficient Back-

transformation 

Sampling variance 

Raw 

coefficient 

:£C – I(:£C)

=
2ÆC(1 − :£C)5

(ÆC − 1){BC − 2 − [(ÆC − 2)(. − 1)]) ñ⁄ }
 

Fisher’s d dC

=
1
2
ln ;

1 + :£C
1 − :£C

= 

:£C =
G5∂n − 1
G5∂n + 1

 I(dC) =
1

BC − 3
 

HW76 /C = ∑1 − :£C
∏

 :£C = 1 − /C
ï 

I(/C) =
18ÆC(BC − 1)(1 − :£C)5 ï⁄

(ÆC − 1)(9BC − 11)5
 

BO02 ªC = ln(1 − |:£C|) :£C = 1 − GÄn 
I(ªC) =

2ÆC
(ÆC − 1)(BC − 2)

 

Note. BO02 = Bonett’s (2002) approach, HW76 = Hakstian-Whalen (1976) approach. ÆC = 

Number of items in the ith study, . = Number of studies, BC = Sample size of the ith study. 
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Table 2 

Comparison of Meta-Analytic Structural Equation Modeling Approaches to Synthesizing Scale Reliabilities 

 Correlation-based MASEM through 
TSMASEM 

Correlation-based MASEM 
through OSMASEM 

Parameter-Based MASEM 

Procedure    

Stage 1 Pooling the correlation matrices across 

primary studies under a fixed- or 

random-effects model 

Pooling the correlation matrices 

and specifying the measurement 

model based on fixed or random 

effects of correlations 

Specifying the measurement model 

based on the correlation matrices of 

each primary study and estimating scale 

reliabilities based on the resultant model 

parameters 

Stage 2 Specifying a measurement model 

based on the pooled correlation matrix 

to obtain factor loadings, residual 

variances, and the factor variance 

Pooling the scale reliabilities across 

primary studies by univariate meta-

analysis (including possible effect-size 

transformations) or by multivariate 

meta-analysis of factor loadings 

Synthesis of scale 
reliabilities 

Estimated based on the stage-2 model 

parameters 

Estimated based on the model 

parameters 

Estimated for each primary study based 

on the stage-1 model parameters and 

then pooled 

Heterogeneity across 
studies 

Random effects of correlations Random effects of correlations Random effects of model parameters 

Moderator analysis Subgroup analyses at stage 2 to 

identify the effects of categorical 

moderators with few categories 

(invariance constraints can be imposed 

across subgroups) 

Moderation effects on the model 

matrices (e.g., the A-matrix 

containing the factor loadings and 

structural coefficients, the S-

matrix containing the variances 

and covariances in the model) 

Stage-2 meta-analysis can be extended 

to mixed-effects models with 

moderators 
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Handling missing 
correlations 

Possible through ML-based procedures 

at stage 1 

Possible through ML-based 

procedures 

Stage 1 requires complete correlation 

matrices 

Note. FIML = Full-Information-Maximum-Likelihood procedure, MASEM = Meta-analytic structural equation modeling, ML = Maximum 

Likelihood, TSMASEM = Two-stage structural equation modeling, OSMASEM = One-stage MASEM. 
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Table 3 

Suggested Steps of Synthesizing Reliability Coefficients through Correlated- and Parameter-Based MASEM 

 Correlation-based MASEM through 
TSMASEM 

Correlation-based MASEM through 
OSMASEM 

Parameter-based MASEM 

Data 
preparation 

Extracting correlation matrices and 

sample sizes from the primary studies 

Extracting correlation matrices and 

sample sizes from the primary studies 

Extracting correlation matrices and 

sample sizes or factor loadings, residual 

variances, factor variances, and sample 

sizes from the primary studies 

Analytic 
steps 

1. Checking correlation matrices for 

positive definiteness and excluding 

non-positive definite matrices 

2. Pooling the correlation matrices with 

fixed or random effects (stage-1 

model) 

3. Comparing the fixed- and random-

effects models at stage 1 (e.g., 

heterogeneity indices, homogeneity 

tests) 

4. Specifying, estimating, and 

evaluating the congeneric factor 

model to the pooled correlation 

matrix  

5. Specifying, estimating, and 

evaluating alternative measurement 

models (e.g., residual covariances, 

bifactor structure, equal factor 

loadings) 

1. Checking correlation matrices for 

positive definiteness and excluding 

non-positive definite matrices 

2. Pooling the correlation matrices and 

specifying, estimating, and 

evaluating the congeneric factor 

model to the pooled correlation 

matrix 

3. Pooling the correlation matrices and 

specifying, estimating, and 

evaluating alternative measurement 

models (e.g., residual covariances, 

bifactor structure, equal factor 

loadings) 

4. Comparing measurement models and 

deciding for a final model 

5. Estimating the overall scale 

reliability from the parameters of the 

final model 

6. (Optional) Evaluating possible 

moderator effects on the model 

If correlation matrices are extracted: 
1. Checking correlation matrices for 

positive definiteness and excluding 

non-positive definite matrices 

2. Specifying, estimating, and 

evaluating the congeneric factor 

model to the correlation matrices of 

each primary study 

3. Specifying, estimating, and 

evaluating alternative measurement 

models (e.g., residual covariances, 

bifactor structure, equal factor 

loadings) 

4. Comparing measurement models and 

deciding for a final model 

5. Estimating the scale reliabilities 

from the parameters of the final 

model 

6. Performing univariate meta-analysis 

to the scale reliabilities using fixed- 

or random-effects models 
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6. Comparing measurement models and 

deciding for a final model (stage-2 

model) 

7. Estimating the overall scale 

reliability from the parameters of the 

final model 

8. (Optional) Performing subgroup 

analyses to identify possible 

reliability differences across 

subgroups of studies or study 

samples (including possible 

invariance testing across subgroups) 

parameter matrices, including the 

variance explained in the random 

effects of the correlations 

7. Comparing the fixed- and random-

effects models from step 6 (e.g., 

heterogeneity indices, homogeneity 

tests) 

8. Estimating the overall scale 

reliability and the between-study 

variance  
9. (Optional) Mixed-effects modeling 

to examine possible moderator 

effects 

 

If model parameters are extracted: 
1. Estimating the scale reliabilities 

from the model parameters 

2. Performing univariate or multivariate 

meta-analysis (depending on whether 

a single or multiple reliability 

coefficients are extracted) to the 

scale reliabilities using fixed- or 

random-effects models  

3. Comparing the fixed- and random-

effects models from step 2 (e.g., 

heterogeneity indices, homogeneity 

tests) 

4. Estimating the overall scale 

reliability and the between-study 

variance 

5. (Optional) Mixed-effects modeling 

to examine possible moderator 

effects 
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Software 
packages 

R package metaSEM R package metaSEM Structural equation modeling software 

(e.g., Mplus, LISREL, AMOS, R 

package lavaan) and meta-analytic 

software (e.g., Comprehensive Meta-

Analysis; R packages metafor, 

metaSEM, meta, robumeta) 
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Table 4 

Pooled Correlation Matrices Based on Fixed- and Random-Effects TSMASEM (Example 1) 

Subscales 1. 2. 3. 4. 5. 6. 
1. PU 1.000 0.502 0.598 0.356 0.457 0.375 
2. PEOU 0.472 1.000 0.552 0.221 0.493 0.419 
3. ATT 0.577 0.517 1.000 0.281 0.450 0.400 
4. SN 0.382 0.254 0.298 1.000 0.243 0.246 
5. TSE 0.424 0.462 0.405 0.255 1.000 0.295 
6. FC 0.314 0.388 0.359 0.258 0.284 1.000 

Note. Correlations in the upper diagonal are based on fixed effects. Correlations in the lower 

diagonal are based on random effects. PEOU = Perceived ease of use, PU = Perceived 

usefulness, ATT = Attitudes toward technology, SN = Subjective norms, FC = Facilitating 

conditions, TSE = Technology self-efficacy. 
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Table 5 

Factor Loadings and Residual Variances of the RSES Items Obtained from the Random-

Effects TSMASEM Based on the Nested-Factor Model (Example 2) 

 Factor loadings Residual variances 
Items General factor Specific factors  

Item 1 0.756  
[0.729, 0.782] 

-0.052  
[-0.135, 0.028] 

0.425  
[0.376, 0.468] 

Item 2 0.525  
[0.501, 0.551] 

-0.593  
[-0.637, -0.548] 

0.372  
[0.326, 0.415] 

Item 3 0.595  
[0.561, 0.626] 

0.524  
[0.412, 0.636] 

0.371  
[0.277, 0.466] 

Item 4 0.522  
[0.498, 0.546] 

0.309  
[0.243, 0.375] 

0.632  
[0.582, 0.671] 

Item 5 0.518  
[0.493, 0.545] 

-0.335  
[-0.374, -0.293] 

0.620  
[0.598, 0.641] 

Item 6 0.504  
[0.484, 0.527] 

-0.604  
[-0.646, -0.561] 

0.381  
[0.333, 0.425] 

Item 7 0.616  
[0.588, 0.642] 

0.331  
[0.255, 0.410] 

0.511  
[0.456, 0.557] 

Item 8 0.371  
[0.338, 0.405] 

-0.405  
[-0.460, -0.350] 

0.698  
[0.661, 0.730] 

Item 9 0.585  
[0.560, 0.613] 

-0.394  
[-0.434, -0.351] 

0.502  
[0.476, 0.527] 

Item 10 0.800  
[0.772, 0.827] 

-0.035  
[-0.121, 0.046] 

0.358  
[0.306, 0.403] 

Scale reliability 
!" 

0.745 
[0.735, 0.755] 

Note. LBCI = Likelihood-based confidence intervals. Positively worded items: 1, 3, 4, 7, 10 

(specific factor 1); negatively worded items: 2, 5, 6, 8, 9 (specific factor 2). 
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Table 6 

Three-level univariate random-effects models synthesizing the reliability coefficients from the 

nested-factor model (Example 2) 

Approach Reliability 	
!" 

95 % Wald CI $%% $&% '%% '&% ((33) 

Univariate-r 0.740 [0.714, 0.765] 0.005 - 99.1 % - 4633.5* 
Three-level 
univariate-r 

0.738 [0.703, 0.773] 0.010 0.000 99.5 % 0.0 % 4633.5* 

Raw 
reliability 

0.738 [0.704, 0.773] 0.010 0.000 99.7 % 0.0 % 5889.4* 

HW76 0.748 [0.715, 0.779] 0.006 0.000 99.5 % 0.0 % 7076.6* 
BO02 0.754 [0.721, 0.782] 0.136 0.000 99.5 % 0.0 % 7425.0* 

Note. HW76 = Hakstian-Whalen (1976) approach, BO02 = Bonett’s (2002) approach. 

* p < .001, ns = statistically not significant (p > .05). Variance estimates and I2-statistics are 

reported for the study (level 2) and the study report (level 3) levels. 
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Figures 

 

 

 

Figure 1. One-factor model for the estimation of the reliability coefficient !,.  
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Figure 2. Factor model underlying the estimation of the scale reliability of the technology 

acceptance (TA) construct based on stage-1 random-effects TSMASEM (Example 1). 

Note. PEOU = Perceived ease of use, PU = Perceived usefulness, ATT = Attitudes toward 

technology, SN = Subjective norms, FC = Facilitating conditions, TSE = Technology self-

efficacy. The 95 % Likelihood-based confidence intervals are shown in brackets. 

  

TA

1
ATT !"

PU

PEOU

SN

FC

1 !#

1 !$ 0.54 
[0.49, 0.59]

1 !%

1 !&

1

TSE
1 !'

0.48 
[0.42, 0.53]

0.41 
[0.35, 0.48]

0.80 
[0.77, 0.84]

0.75 
[0.71, 0.79]

0.64 
[0.58, 0.70]

0.60 
[0.55, 0.65]

0.76 
[0.72, 0.80]

0.44 
[0.40, 0.48]

0.50 
[0.46, 0.54]

0.72 
[0.69, 0.76]

0.68 
[0.64, 0.71]
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Figure 3. Relations between the TSMASEM stage-1 correlations of the model with fixed 

(FEM) and random effects (REM) for Example 1.



META-ANALYSIS OF RELIABILITY   94 

 

 

 

 

Figure 4. Nested-factor model underlying the Rosenberg Self-Esteem Scale for the estimation 

of the reliability coefficient !" (Example 2). 

Note. - = General factor of self-esteem, ./ = Specific factor representing the positively-

worded RSES items, .% = Specific factor representing the negatively-worded RSES items. 

Residuals and their variances are not fully shown. 
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