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ABSTRACT

Mathematicalmodels describing the dynamics of the cardiac action potential are of great value for understanding how changes to the system can
disrupt the normal electrical activity of cells and tissue in the heart. However, to represent speci�c data, these models must be parameterized,
and adjustment of the maximum conductances of the individual contributing ionic currents is a commonly used method. Here, we present a
method for investigating the uniqueness of such resulting parameterizations. Our key question is: Can the maximum conductances of a model
be changed without giving any appreciable changes in the action potential? If so, the model parameters are not unique and this poses a major
problem in using the models to identify changes in parameters from data, for instance, to evaluate potential drug e�ects. We propose a method
for evaluating this uniqueness, founded on the singular value decomposition of a matrix consisting of the individual ionic currents. Small
singular values of this matrix signify lack of parameter uniqueness and we show that the conclusion from linear analysis of the matrix carries
over to provide insight into the uniqueness of the parameters in the nonlinear case. Using numerical experiments, we quantify the identi�ability
of the maximum conductances of well-knownmodels of the cardiac action potential. Furthermore, we show how the identi�ability depends on
the time step used in the observation of the currents, how the application of drugs may change identi�ability, and, �nally, how the stimulation
protocol can be used to improve the identi�ability of a model.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5087629

Excitable cells are present in the brain, in the heart, in every mus-
cle, and in all critical organs of the body. The dynamics of such

cells are surprisingly complex and are commonly studied using

detailed mathematical models based on experimental measure-

ments of underlying biophysical processes. However, suchmodels

continue to increase in complexity as more experimental data

become available, and it becomes correspondinglymore challeng-

ing to understand how the parameters of themodel a�ect the solu-

tions. In the present report, we investigate this problem inmodels

describing cardiac cell dynamics. In particular, we ask: Can dif-

ferent model parameters give identical output? Answers to this

question turn out to be highly importantwhenwewant to evaluate

the e�ect of drugs in the cardiac system or if we want to character-

ize the e�ect of genetic mutations on system dynamics. Here, we
use the singular value decomposition (SVD) to investigate if it is

possible to change model parameters, in our case the maximum
conductances of the major ion currents that drive the function
of the cell, without seeing any discernible e�ects on the action
potential (AP). We �nd that commonly used models of the action
potential of human cardiac cells have this property such that sig-
ni�cant changes in the parameters can be introduced without any
resulting change in commonly measured system outputs.

I. INTRODUCTION

In a conversation with Enrico Fermi, John von Neumann
famously said, “with four parameters I can �t an elephant, and with
�ve I can make him wiggle his trunk.”1 Clearly, both Fermi and von
Neumann were cautious in introducing new parameters in mathe-
matical models of physics, because they feared that with large degrees
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of freedom, the equations could basically be tweaked to �t any obser-
vation. Although mathematical models in biology historically have
roots in physics, the frugality of classical models in physics has
not translated well over to biology. This is particularly the case in
recent mathematical models describing the dynamics of electrically
active cardiac cells, where it is di�cult even to count the number of
adjustable parameters, let alone estimate all their values.

Since the seminal papers of Hodgkin and Huxley2 and Noble,3

mathematical models have been used extensively and successfully
to understand the action potential (AP) of excitable cells. Recent
years have witnessed a very strong growth in the number of mod-
els describing a wide variety of cells and behaviors; see, e.g., Ref. 4 for
a comprehensive collection of models. Introduction to mathematical
models of the AP is provided in Refs. 5–8 and review of recent devel-
opments of AP models for cardiac cells is presented in Refs. 9–13.
Early models of cardiac cells were rather compact, in the sense that
they were formulated in terms of relatively few ordinary di�erential
equations, but recent models tend to be quite large. For small mod-
els, it is possible to understand the dynamics described by the model
equations, but for large and complex models, it is increasingly hard
to understand the dynamics represented by all the terms entering the
model, and useful information concerning the output of the model
must be based on numerical computations.

It has consequently become increasingly di�cult to analyze the
mapping between the model parameters and the solution, leading
to signi�cant challenges in parameterizing the models to re�ect a
given data set. Such a parametrization is commonly approached
using a variety of techniques, from detailed analysis of individ-
ual contributing currents, to inheritance from previous work done
in completely nonrelevant experiments.14,15 A comprehensive list of
challenges associated with the parameterization of AP models is
given in Ref. 15; data from numerous sources are combined in a
model and the �nal parametrization is usually done by hand tuning.
Promising steps toward improving parametrization are presented in
Ref. 15, but quality assessment of the �nal model is still called for.

Here, we will examine this problem by assuming that the action
potential of a paced cell can be accurately measured and that the
problem of parametrization is to adjust a givenmodel to the acquired
waveform using a speci�c stimulation protocol. This is particularly
relevant for techniques where the transmembrane potential is mea-
sured optically using voltage sensitive �uorescence; see, e.g., Refs. 16
and 17. Such a voltage sensitive reporting is now routinely used to
analyze many cells including human induced pluripotent stem cells
(hiPSCs); see, e.g., Ref. 18. We have recently developed methods for
inverting data representing the transmembrane potential and intra-
cellular calcium concentration of hiPSC-derived cardiomyocytes; see
Ref. 19. In that project, it turned out to be essential to be able to auto-
matically invertmeasured data to obtain themaximumconductances
of an AP model. Furthermore, it became clear that some currents
could be identi�ed using calcium and voltage data, whereas other
membrane currents were practically invisible using this data.

The purpose of the present report is to present a method for
investigating the identi�ability of conductances based on observa-
tions of the transmembrane potential. Although AP models are
de�ned by numerous parameters entering the components of the
models, the maximum conductances are most commonly used for
parameterization of new data; see, e.g., Refs. 14 and 15. The method

is based on the singular value decomposition (SVD; see, e.g., Refs. 20
and 21) of a matrix representing the individual transmembrane ion
currents, Ii. These ion currents contribute to the total transmembrane
current,

IT =

N
∑

i=1

Ii, (1)

and this total transmembrane current governs the dynamics of the
cellular transmembrane potential, v = v(t), by

dv(t)

dt
= −IT . (2)

Here, we have chosen to formulate (2) so that the transmem-
brane currents are expressed as current per cell capacitance, given in
units of Amperes per Farad (A/F), v is given in millivolts (mV) and
time, t, is given in milliseconds (ms). Note, however, that (2) could
alternatively be expressed as, for example, Cm

dv(t)
dt

= −iT , where Cm

is the speci�c cell capacitance (in µF/cm2), iT is the total transmem-
brane current density (in µA/cm2), and v and t are given in mV and
ms, respectively.

We are interested in estimating the e�ect of replacing an ion cur-
rent Ii by a perturbed current given by (1 + λi)Ii. If the e�ect of such
a perturbation is small, it will be very di�cult to parameterize the
current by simply observing changes in the total membrane current
IT given by (1). In order to investigate how changes in the membrane
currents, Ii, a�ect the total current, IT , we perform an AP simulation
using the model (2). At given time steps in the simulation (e.g., every
millisecond), we store the values of every ion current in a matrix A;
each row in the matrix represents the individual ion currents at a
given time step. Then, we compute the singular values and singu-
lar vectors of that matrix. If a singular value of the matrix is zero, it
means that if we change the vector of conductances along the corre-
sponding nonzero singular vector, the total current will not change
and therefore no changes can be observed in the transmembrane
potential.

However, linear analysis of the matrix containing the ion cur-
rents cannot directly be used to predict the e�ect of perturbations on
the transmembrane potential. In fact, the original model reads

dv(t)

dt
= −

N
∑

i=1

Ii(v, s), (3)

and the perturbed model reads

dvλ(t)

dt
= −

N
∑

i=1

(1 + λi)Ii(v
λ, sλ). (4)

Here, s is a vector containing other state variables of the model.
Therefore, the (1 + λi) perturbation introduces a nonlinear pertur-
bation and we describe below how the linear results translate into
nonlinear e�ects.

The common way of investigating the sensitivity of nonlinear
AP models of the form (1) is to compare the solutions of the model
with and without perturbed conductances. When every individual
conductance is analyzed, a rough indication of the parameter sensi-
tivity is obtained; see, e.g., Refs. 19, 22–25. This method is well estab-
lished and clearly provides valuable insight. However, the method
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can only detect sensitivities for single currents and not combinations
of currents. Suppose, for instance, that two currents are very sensi-
tive when they are perturbed individually, but if both are increased,
the changes cancel each other out and no discernible changes can
be observed in the total membrane current. Such subtle cancelation
e�ects turn out to be surprisingly common and almost (or perhaps
entirely) impossible to see if only individual currents are perturbed. It
is also very hard to search for such insensitivities by randomly com-
bining various currents because the search space is so large and each
simulation is time consuming. Therefore, the SVDmethod turns out
to be useful and we will demonstrate how it works for well-known
models of human ventricular APs.

II. METHODS

Our aim is to develop amethod for investigating the uniqueness
of the maximum conductances in AP models. The question we want
to get at is this: For a givenAPmodel and a speci�c stimulation proto-
col, can themaximumconductances be changed signi�cantlywithout
appreciable changes in the resulting transmembrane potential?

We will assume that the transmembrane potential is governed
by a model of the form

dv(t)

dt
= −

N
∑

i=1

Ii(v, s), (5)

ds(t)

dt
= F(v, s). (6)

Here, as above, v denotes the transmembrane potential, s
denotes the other variables of the APmodel (concentrations and gat-
ing variables), {Ii}

N
i=1 denotes the collection of ion currents, and F

represents the dynamics of the gating variables and the ion concen-
trations.We assume that each ion current can, for example, bewritten
in the form

Ii = gioi(v − v0i ), (7)

where gi denotes the maximum conductance, oi is the open probabil-
ity, and v0i denotes the resting potential of the ith ion channel.

In addition to the model (5), we will also consider the following
perturbed model:

dvλ(t)

dt
= −

N
∑

i=1

(1 + λi)Ii(v
λ, sλ), (8)

dsλ(t)

dt
= F(vλ, sλ; λ), (9)

which is similar to the original model except that every ion cur-
rent is perturbed by a term of the form (1 + λi). Clearly, v = vλ for
λ = 0, but can we �nd a vector λ 6= 0 such that v ≈ vλ? If such a vec-
tor λ exists, then clearly knowing the values of the transmembrane
potential for all points in time is not enough to infer the maximum
conductances, because di�erentmaximumconductances can give the
same transmembrane potential.

A. Recording currents during an AP simulation

During a simulation based on the model (5)–(6), we store the
total membrane current and the individual ion currents at certain

time steps. More precisely, we store the total membrane current IkT
and the individual currents Ikj for j = 1, . . . ,N at time tk = k1t
for k = 1, ..,M. Here, N denotes the number of ion currents and
M denotes the number of time steps at which the currents are
stored. We are interested in the e�ect of perturbing individual cur-
rents and for that purpose we introduce the vector µ ∈ R

N,1. With
µ = (1, 1, . . . , 1)T , we can write the total membrane current as a
matrix-vector product,

IT = Aµ, (10)

where we have gathered all individual ion currents in the matrix A
de�ned by

A =







I11 · · · I1N
...

...
IM1 · · · IMN






, (11)

and the total current is given by

IT =













I1T

I2T
...

IMT













.

Note that

IT ∈ R
M,1, A ∈ R

M,N , and µ ∈ R
N,1.

In the equation IT = Aµ, every column of the matrix A rep-
resents one of the ion currents recorded at every time step. These
currents are multiplied by 1, and, thus, the row-sums become the
total current for every time step. By perturbing µ, we can perturb
the recorded currents and study the e�ect of this on the total current.
If we can �nd perturbations toµ that do not change the total current,
such a perturbation would be impossible to detect by observing the
transmembrane potential. As we will see below, the SVD algorithm
is well suited to study the e�ect of such perturbations.

B. The singular value decomposition (SVD) of the

current matrix

The SVD exists for any matrix A and takes the form

A = USVT ; (12)

see, e.g., Refs. 20 and 21. Here, U ∈ R
M,M , V ∈ R

N,N , and S ∈ R
M,N .

Note that U and V are unitary matrices, i.e.,

UUT = I, UTU = I, VVT = I, VTV = I,

where I is the identity matrix. The matrix S is a diagonal matrix with
positive singular values σi satisfying

σ1 ≥ σ2 ≥ · · · ≥ σr > 0,

where r is the rank of the matrix A. The singular values and singular
vectors satisfy the following relations:

Avi = σiui, i = 1, . . . , r, (13)

Avi = 0, i = r + 1, . . . ,N, (14)
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ATui = σivi, i = 1, . . . , r, (15)

ATui = 0, i = r + 1, . . . ,M. (16)

Furthermore, the singular vectors de�ne orthonormal bases as
follows:

{u1, . . . , ur} is an orthonormal basis forN (AT)
⊥
, (17)

{ur+1, . . . , uM} is an orthonormal basis forN (AT), (18)

{v1, . . . , vr} is an orthonormal basis forN (A)⊥, (19)

{vr+1, . . . , vN} is an orthonormal basis forN (A). (20)

Here, N (A) andN (AT) are the null spaces ofA andAT , respec-

tively, andN (AT)
⊥
andN (A)⊥ are the column and row spaces of A,

respectively.

C. The effect of perturbing the parameter vector µ;

the maximum conductances

We will use the SVD to analyze the e�ect of perturbing the
parameter vector µ. For that purpose, recall that

IT = Aµ,

and consider also the total membrane current for a perturbed
vector, µ̄,

ĪT = Aµ̄.

1. Perturbation along a singular vector

Let us �rst consider the special case of

µ̄ = µ + εvi,

where vi is a singular vector of A [see (13)] and ε is a parameter indi-
cating the strength of the perturbation (the Euclidian norm of vi is
one).

Note that

IT − ĪT = Aµ − Aµ̄ = −εAvi = −εσiui,

and, therefore, in the Euclidian norm ‖ · ‖ and the associated inner
product (·, ·), we have

‖IT − ĪT‖
2 = (IT − ĪT , IT − ĪT) = ε2σ 2

i (ui, ui) = ε2σ 2
i ,

so

‖IT − ĪT‖ = εσi. (21)

This means that the e�ect of a perturbation along a singular
vector is proportional to the associated singular value. Therefore,
perturbations of the maximum conductances along singular vec-
tors associated with large singular values will be readily observed by
signi�cant changes in the total membrane current. Conversely, a per-
turbation of the maximum conductances along a singular vector for
which the associated singular value is zero, or very small, will not
result in appreciable changes in the total membrane current and is,
therefore, expected to be impossible to identify by only observing the
transmembrane potential.

2. A general perturbation

Since the collection of singular vectors constitutes an orthonor-
mal collection of vectors, any perturbed vector µ̄ can be written in
the form

µ̄ = µ +

N
∑

i=1

εivi

for appropriate choices of the constants {εi}. By using this represen-
tation, we �nd that

IT − ĪT = Aµ − Aµ̄ = −

N
∑

i=1

εiσiui,

so

‖IT − ĪT‖
2 =

N
∑

i=1

ε2i σ
2
i =

r
∑

i=1

ε2i σ
2
i .

In other words, if µ̄ − µ can be expressed using only the sin-
gular vectors {vi}

N
i=r+1, then ‖IT − ĪT‖

2 = 0, and, therefore, such a
perturbation will not lead to changes in the total membrane current.
On the other hand, if µ̄ − µ can be expressed using the singular vec-
tors {vi}

r
i=1, then ‖IT − ĪT‖

2 6= 0, and such a perturbation will lead to
changes in the total membrane current.

D. The identifiability index

We have seen that, according to the SVD analysis, perturba-
tions along vectors that can be spanned by vectors in the space
N (A) = span{vr+1, . . . , vN} cannot be identi�ed by observing changes
in the total membrane current and, conversely, that perturbations
along vectors in the space N (A)⊥ = span{v1, . . . , vr} can be iden-
ti�ed. We would like to translate this result to estimate the identi-
�ability of the unit vectors, that is, the conductances of the currents
de�ning the APmodel. In other words, we would like to characterize
the identi�ability of the maximum conductance of the Na-channels,
the Kr-channels, and so on. Clearly, if the perturbation of the con-
ductance vector is completely in the space N (A) or in the space
N (A)⊥, the question is simple, but we need to de�ne the identi-
�ability of unit vectors that are partly in both spaces. We will do
this by considering the projection of the perturbation to the N (A)

space.
Let e be the unit vector corresponding to a model current. Since

{v1, . . . , vN} is an orthonormal basis, we can expand any such vector
e using this basis,

e =

N
∑

i=1

(e, vi)vi. (22)

Furthermore, the projection of this vector onto the space
N (A) = span{vr+1, . . . , vN} is simply given by

PNe =

N
∑

i=r+1

(e, vi)vi. (23)

Now, e is the complete vector, PNe is the part of the vector
that cannot be identi�ed, and e − PNe is the part of the vector that
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is in the space of identi�able vectors, N (A)⊥. We now de�ne the
“identi�ability index” of a vector to be given by

k(e) = ‖e − PNe‖. (24)

Here, it is useful to note that if e ∈ N (A), then e = PNe and
k(e) = 0. Similarly, if e ∈ N (A)⊥, then PNe = 0 and k(e) = 1 (since
‖e‖ = 1 for a unit vector). Hence, a completely unidenti�able unit
vector has identi�ability index equal to zero, and a completely iden-
ti�able unit vector has identi�ability index equal to one.

E. Measuring the perturbation effects

In order to investigate the e�ect of model perturbations, we
de�ne a measureH, measuring the di�erence between the computed
AP in the default version and a perturbed version of the model. This
H is set up to detect di�erences in a selection of action potential
characteristics and de�ned as

H(ε, vi) =

5
∑

q=1

Hq(ε, vi), (25)

where

H1(ε, vi) =
|APD30(v

∗) − APD30(v̄(ε · vi))|

|APD30(v∗)|
, (26)

H2(ε, vi) =
|APD50(v

∗) − APD50(v̄(ε · vi))|

|APD50(v∗)|
, (27)

H3(ε, vi) =
|APD80(v

∗) − APD80(v̄(ε · vi))|

|APD80(v∗)|
, (28)

H4(ε, vi) =

∣

∣

∣

(

dv∗

dt

)

max
−

(

dv̄(ε·vi)

dt

)

max

∣

∣

∣

∣

∣

(

dv∗

dt

)

max

∣

∣

, (29)

H5(ε, vi) =
‖v∗ − v̄(ε · vi)‖

‖v∗‖
. (30)

Here, v∗ is the transmembrane potential of the default model
and v̄(ε · vi) is the transmembrane potential of a model for which the
currents are perturbed by ε · vi, where vi is a singular vector. Further-
more APD30, APD50, and APD80 are the action potential durations
(in ms) for 30%, 50%, and 80% repolarization, respectively, ( dv

dt
)
max

is
the maximal upstroke velocity (in mV/ms), and ‖ · ‖ is the Euclidian
norm.

F. Singular values close to zero

The sensitivity index de�ned in Sec. II D distinguishes between
singular values that are positive and those that are identically equal to
zero. There is nothing wrong in de�ning the identi�ability index in
this way, but in actual computations, the main challenge is posed by
singular values that are close to zero. From (21), we see that if the sin-
gular value is very small, a perturbation in the direction of the asso-
ciated singular vector changes the total membrane current very little.
Therefore, we would also like to include singular vectors associated
with small singular values in the space of nonidenti�able vectors.

We expect that it would be di�cult to select a speci�c thresh-
old for the size of the singular values so that singular values below
the threshold would correspond to undistinguishable perturbation

e�ects for di�erent APmodels and simulation conditions. Therefore,
we let the identi�ability of a singular vector be determined by the
observed changes in the APs resulting from perturbations along that
singular vector. In order to formalize this, we introduce an auxiliary
space S spanned by a set of singular vectors vi

S = span{vi} for i such that

{

max
−0.5≤ε≤0.5

H(ε, vi) < δ

}

. (31)

Here, δ denotes a threshold value to be speci�ed below, andH is
de�ned in (25). Furthermore, the identi�ability index is de�ned by

k(e) = ‖e − PSe‖, (32)

where e is the considered perturbation vector (typically a unit vector)
andPSe is the projection of eonto the auxiliary space Sde�ned in (31).

G. Stimulation protocols and technical specifications

In all simulations presented below, a 1ms long constant stimulus
current of 40A/F is applied every second for 20 s before record-
ing the currents and transmembrane potential. For simulations of
cells exposed to drugs (see Sec. III C), the model parameteriza-
tion is changed to re�ect drug e�ects and then paced in the same
manner as above for 1000 s to de�ne new initial conditions for the
default (unperturbed) versions of the models for cells exposed to
drugs. In the simulations exploring a random stimulation proto-
col (see Sec. III D), we apply the stimulus current at 10 randomly
chosen time points during a 5000ms long simulation (after the
20 s long stimulation protocol used in all simulations). These ran-
domly chosen time points are given by 35.7ms, 634.9ms, 1392.5ms,
2108.8ms, 2426.9ms, 2734.4ms, 3161.8ms, 3398.7ms, 4073.6ms
and 4529.0ms. For these simulations, we record each of the cur-
rents every time step of size 1t = 0.1ms between t = 0ms and t =

5000ms in the construction of the current matrix, A [see (11)]. For
the remaining simulations, we record the currents every time step
of size 1t = 0.1ms between t = 0ms, and t = 500ms, unless oth-
erwise speci�ed. All numerical simulations are conducted using the
ode15s solver in Matlab.

III. RESULTS

In this section, we illustrate a few examples of the SVD analysis
outlined above. We consider three AP models for human ventricu-
lar cardiomyocytes: the model of ten Tusscher et al.,26 the model of
Grandi et al.,27 and the model of O’Hara et al..28 Note, however, that
themethod described here can be applied to any APmodel written in
the forms (5) and (6), and, thus, the method covers most commonly
used models of the cardiac action potential.

We investigate the relationship between the size of the singular
values and the e�ect of perturbing the currents by the correspond-
ing singular vectors for these three models. In addition, we compute
the identi�ability index for the currents of the models. We consider
both the default versions of the model and versions of the models
adjusted to represent cells exposed to drugs. We also investigate how
the SVD analysis is a�ected by the size of the time step, 1t, used
to record the currents and transmembrane potential, and how the
identi�ability of the currents is a�ected when a random stimulation
protocol is applied.
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A. Singular value decomposition of the currents

in the ten Tusscher, Grandi, and O’Hara AP models

Figures 1, 2, and 3 show the SVD analysis of the currents in the
ten Tusscher model,26 the Grandi model,27 and the O’Hara model,28

respectively. We consider the epicardial version of all the APmodels.
In the Grandi model, a number of currents (INa, IbNa, INaK, IKs,

IpK, IClCa, ICaL, INaCa, IpCa, and IbCa) are divided into two components,
one directed into the junctional cleft and one directed into the sub-
sarcolemmal space. In the analysis below, the currents of each type
represent the sumof these two components. Furthermore, both in the
Grandimodel and in theO’Haramodel, the L-type calcium current is
divided into three ionic components; a calcium component, a sodium
component., and a potassium component. In the analysis below, the
current ICaL is de�ned as the sum of these three components.

1. Singular values and vectors

Figure 1 shows the 12 singular values σ1, . . . , σ12, of the SVD of
the 12 currents in the ten Tusscher model, ordered from the largest
value, σ1 = 420.26, to the smallest value, σ12 = 0.0063. The plots
located directly below each singular value illustrate the correspond-
ing singular vectors. Each letter between “a” and “l” here corresponds
to a speci�c current in the ten Tusschermodel, speci�ed in the orange
panel on the right-hand side. The intensity of the green background
color of the plots corresponds to the size of the singular value.

We observe that the largest singular value, σ1, corresponds to a
singular vector that is almost equal to the unit vector eNa for the fast
sodium current. In addition, the smallest singular value, σ12, corre-
sponds to a singular vector quite close to the unit vector ebNa for the
background sodium current, but also with a small contribution from
the background calcium current, IbCa.

The Grandi model and the O’Hara model consist of 15 and 13
membrane currents, respectively, and Figs. 2 and 3 similarly show
the singular values and corresponding singular vectors for these two
models. We observe that for all the three models, the largest singular
value corresponds to a singular vector almost exclusively associated
with the fast sodium current, INa. In addition, we observe that the
size of the singular values varies between small values in the range
0.0001–0.01 to large values of about 300–400 for each of the three
considered AP models.

2. Connection between the singular values

and the effect of perturbations

According to the SVD analysis outlined above, perturbations
of the model currents corresponding to large singular values are
expected to result in large e�ects on the total membrane current, IT ,
and thereby, expectedly, to large e�ects on the resulting action poten-
tial. Conversely, perturbations corresponding to small singular values
are expected to result in small e�ects on the total membrane cur-
rent and the resulting action potential. This theoretical result relies
on simplifying assumptions, and, consequently, it might not hold in
actual AP model computations. We, therefore, wish to investigate
whether the expected results about the connection between the size
of the singular values and the e�ect of the perturbation hold for the
three AP models considered in Figs. 1–3.

To investigate this, we run simulations in which each of the
model currents are perturbed by the computed singular vectors.
More speci�cally, for each singular vector vi, each of the currents Ij of
the model is multiplied by the factor (1 + ε · vi,j), where vi,j denotes
the jth element of the singular vector vi, and ε is varied between−0.5
and 0.5. For example, in the case of the �rst singular value, σ1, of the
ten Tusscher model (see Fig. 1), the fast sodium current, INa, is multi-
plied by a factor close to (1 + ε), while the other currents are almost
unperturbed. For the second singular value, σ2, Ito is multiplied by
a factor of approximately (1 + 0.5 · ε), ICaL is multiplied by approx-
imately (1 − 0.8 · ε), and the remaining currents are only perturbed
by very small factors.

In each of Figs. 1–3, the left plots below the singular vector
plots show the measure, H, de�ned in (25) measuring the di�erence
between the computed AP in the default version of the models and
the perturbed models for each of the singular values. The text in the
upper part of the plots indicates themaximum value ofH(ε, vi) com-
puted for the considered values of ε, ignoring cases where any of the
action potential features of H1–H5 are not possible to compute. Fur-
thermore, the right plots illustrate the computed action potentials for
a small selection of ε-values (ε = −0.5,−0.2, 0, 0.2, 0.5).

In the plots, we observe that, in general, the expected observa-
tion that perturbations corresponding to large singular values will
result in large changes in the AP and that perturbations correspond-
ing to small singular values will result in small changes in the AP
seems to hold well for each of the three considered AP models. We
observe that the e�ect of a perturbation corresponding to a given sin-
gular value is not necessarily larger than the e�ect of a perturbation
corresponding to a smaller singular value in all cases, but the largest
perturbation e�ects are observed for the largest singular values, and
the small singular values seem to result in quite small perturbation
e�ects in most cases.

For the ten Tusscher model, we observe that perturbations cor-
responding to the singular values σ4 and σ6, . . . , σ12 all result in
relatively small changes in the computed AP, with values of H below
0.25. Similarly, for the Grandi model, perturbations corresponding
to σ7, . . . , σ15, result in very small changes of the computed AP. For
the O’Hara model, perturbations corresponding to the singular val-
ues σ4, . . . , σ13 all result in nearly indistinguishable changes in the
computed AP.

3. Identifiability index for individual currents

As observed in Figs. 1–3, perturbations corresponding to large
singular values seem to result in large e�ects of the computed AP,
whereas perturbations corresponding to small singular values result
in relatively small e�ects on the computed AP. As indicated in Sec. II,
we wish to use this knowledge to construct an identi�ability index
that describes the identi�ability of a single current.

The identi�ability index de�ned in (32) computed for each of
the currents in Figs. 1–3 for δ = 0.25 are shown in the orange panel
on the right-hand side of the �gures. For the ten Tusscher model,
the INa, Ito, ICaL, and IKs currents obtain relatively high values of the
identi�ability index (above 0.83), while the currents IbNa, IpCa, IbCa,
IK1, INaCa, IKr, and INaK obtain quite small values (below 0.32). For
the Grandi model, the identi�ability index is high (above 0.88) for
INa, Ito,f , ICaL, IbCl, IK1, and INaCa, and the identi�ability index is low
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FIG. 1. SVD analysis of the currents of the ten Tusscher model.26 The values σ1, . . . , σ12 are the singular values of the current matrix A defined in (11). The plots directly
below the singular values are the singular vectors corresponding to each of the singular values. Each letter corresponds to a single current specified in the orange panel
to the right. The below plots show how a perturbation of the currents corresponding to the singular vector affects the computed AP of the model. The left plots show the
measure H(ε, vi), defined by (25). The right plots show the computed action potentials for a selection of perturbations. The numbers given after each current in the orange
right panel indicate the identifiability index (32) computed for each of the currents. The auxiliary space S is defined by (31) with δ = 0.25.

(below 0.42) for the remaining currents. Similarly, INa and IKr have
high values of the identi�ability index (above 0.91) in the O’Hara

model, whereas INaK, INaCa, IK1, IbK, INaL, IKs, IbNa, IbCa, and IpCa have

small values of the identi�ability index (below 0.2).

B. Effect of the size of the time step 1t

In the SVD analysis reported in Figs. 1–3, we record the currents
and transmembrane potential in every time step of size1t = 0.1ms.
In order to investigate the e�ect of the time step on the analysis, we
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FIG. 2. SVD analysis of the currents of the Grandi model,27 following the same structure as Fig. 1.
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FIG. 3. SVD analysis of the currents of the O’Hara model,28 following the same structure as Fig. 1.
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TABLE I. Results from SVD analysis using the ten Tusscher model and four different

time steps 1t for recording the currents and transmembrane potential. The upper

rows report the largest and smallest singular values, and the lower rows report the

computed identifiability indices defined by (32) and (31).

1t (ms) 0.01 0.1 1 2

σ1 1309.9 420.3 138.1 24.7
σ12 0.02 0.0063 0.0018 0.0012
σ12/σ1 1.5 × 10−05 1.5 × 10−05 1.3 × 10−05 4.9 × 10−05

Identi�ability index
INa 1.00 1.00 0.002 0.002
Ito 0.95 0.95 0.95 0.95
ICaL 0.88 0.88 0.88 0.88
IKs 0.83 0.83 0.83 0.83
IpK 0.62 0.62 0.62 0.61
INaK 0.32 0.32 0.32 0.31
IKr 0.30 0.30 0.30 0.30
INaCa 0.18 0.18 0.19 0.19
IK1 0.16 0.16 0.15 0.15
IbCa 0.06 0.06 0.06 0.06
IpCa 0.06 0.06 0.06 0.06
IbNa 0.02 0.02 0.02 0.02

report in Tables I–III results from similar experiments where the cur-
rents and transmembrane potential are recorded for time steps of size
1t = 0.01ms, 0.1ms, 1ms, and 2ms. The upper rows of the tables
report the maximum and minimum singular values of the current
matrix A, as well as the ratio between the smallest and largest singu-
lar values. The next rows show the identi�ability indices computed
in each case for each of the currents.

We observe that as the time step used to record the currents
is decreased, the largest and smallest singular values both seem to
increase, but the ratio between the smallest and largest singular values
remain roughly of the same size. In fact, for small values of 1t, both
the smallest and the largest singular values seem to be proportional to
1t−1/2. Furthermore, we observe that inmost cases, the identi�ability
indices are very similar for the di�erent values of1t. An exception is
observed for the time step of 1ms or 2ms for the ten Tusschermodel.
In that case, the analysis predicts that INa is largely unidenti�able even
though the current is characterized as highly identi�able for smaller
values of 1t. This suggests that a 1t of 1ms might be too large to
accurately characterize the identi�ability of the currents. Indeed, the
fast sodium current, INa, is almost only active during the upstroke
of the action potential, and in Fig. 7, we see that the upstroke of the
action potential in the ten Tusscher model lasts for less than 2ms.
Therefore, it is not surprising that a time step of less than 1ms is prob-
ably required to capture the relevant information about INa. However,
the time step of1t = 0.1ms appears to be su�cient and will be used
in the remaining computations.

C. Identifiability in the presence of drugs

Figures 1–3 show the SVD analysis and identi�ability indices
computed for the default versions of the ten Tussscher, Grandi, and
O’Hara AP models. In order to investigate how the identi�ability of

TABLE II. Results from SVD analysis using the Grandi model and four different val-

ues of the time step 1t for recording the currents and transmembrane potential. The

upper rows report the largest and smallest singular values, and the lower rows report

the computed identifiability indices defined by (32) and (31).

1t (ms) 0.01 0.1 1 2

σ1 1333.8 413.0 330.3 15.0
σ15 0.023 0.0072 0.0018 0.00021
σ15/σ1 1.7 × 10−05 1.7 × 10−05 5.3 × 10−06 1.4 × 10−05

Identi�ability index
INa 1.00 1.00 1.00 0.97
Ito,f 0.99 0.99 0.99 0.99
ICaL 0.99 0.99 0.99 0.99
IbCl 0.93 0.93 0.93 0.93
IK1 0.93 0.93 0.93 0.93
INaCa 0.88 0.88 0.88 0.87
INaK 0.42 0.42 0.42 0.42
IClCa 0.33 0.33 0.34 0.34
Ito,s 0.32 0.32 0.32 0.32
IKr 0.28 0.28 0.29 0.29
IbCa 0.17 0.17 0.17 0.18
IbNa 0.15 0.15 0.14 0.15
IpCa 0.07 0.07 0.07 0.07
IKs 0.01 0.01 0.01 0.02
IpK 0.01 0.01 0.01 0.22

the individual model currents changes under di�erent conditions,
Tables IV–VI compare the identi�ability indices computed for the
default models to those computed for models adjusted to represent
exposure to two drugs, Verapamil and Cisapride. The presence of the
drugs are modeled as in Ref. 19, i.e., by reducing the maximum con-
ductance of ICaL by 50% and themaximum conductance of IKr by 25%
for Verapamil and reducing themaximum conductance of IKr by 50%
for Cisapride.

InTables IV–VI,we observe that the identi�ability indices vary a
bit between the three versions of the models for some of the currents,
but for each of themodels, the currentswith identi�ability index close
to one and the currents with identi�ability index close to zero seem to
be quite consistent for both the control case and under the simulated
e�ects of the two drugs. Some of the considerable changes in iden-
ti�ability is observed for the INaCa and INaK currents in the Grandi
model. For INaCa, the identi�ability drops from 0.88 in the no drug
case to 0.43 in the presence of Verapamil. For INaK, the identi�ability
increases from 0.42 to 0.81 in the presence of Cisapride. In addition,
the identi�ability index of IK1 increases from 0.14 in the no drug case
to 0.98 in the presence of Verapamil in the O’Hara model.

D. Identifiability for a random stimulation protocol

In Ref. 15, approaches for improving the identi�ability of the
maximum conductances of AP models were investigated. One of the
suggested approaches for increasing the identi�ability of currents
that were largely unidenti�able from a single paced action potential
was to apply a random stimulation protocol in which the stimulation
current was applied at a number of randomly chosen points in time.
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TABLE III. Results from SVD analysis using the O’Hara model and four different val-

ues of the time step 1t for recording the currents and transmembrane potential. The

upper rows report the largest and smallest singular values, and the lower rows report

the computed identifiability indices defined by (32) and (31).

1t (ms) 0.01 0.1 1 2

σ1 894.5 282.9 88.9 88.7
σ13 0.00098 0.00031 8.7 × 10−05 1.9 × 10−05

σ13/σ1 1.1 × 10−06 1.1 × 10−06 9.8 × 10−07 2.1 × 10−07

Identi�ability index
INa 1.00 1.00 1.00 1.00
IKr 0.91 0.91 0.91 0.91
ICaL 0.78 0.78 0.78 0.77
Ito 0.67 0.67 0.68 0.68
INaK 0.20 0.20 0.20 0.20
INaCa 0.19 0.19 0.19 0.19
IK1 0.14 0.14 0.14 0.14
IbK 0.08 0.08 0.08 0.08
INaL 0.07 0.07 0.07 0.07
IKs 0.07 0.07 0.07 0.07
IbNa 0.01 0.01 0.01 0.01
IbCa 0.01 0.01 0.01 0.01
IpCa 0.0003 0.0003 0.0003 0.0003

In Ref. 15, it was found that this method improved the parameter
identi�ability for some of the model conductances.

In Figs. 4–6, we apply the above described SVDanalysis to inves-
tigate a similar approach for the ten Tusscher, Grandi, and O’Hara
models. We apply a stimulus current at ten randomly chosen points
in time during a 5000ms simulation (see Sec. II G for the speci�c

TABLE IV. The identifiability index defined by (32) and (31) with δ = 0.25 computed

for the default version of the ten Tusscher model (as in Fig. 1) and for the ten Tusscher

model adjusted to represent cells exposed to two drugs, Verapamil and Cisapride.

Verapamil is modeled by reducing the maximum conductance of ICaL and IKr by 50%

and 25%, respectively. Cisapride is modeled by reducing the maximum conductance

of IKr by 50%.

No drug Verapamil Cisapride
0.5 · gCaL, 0.75 · gKr 0.5 · gKr

Identi�ability index

INa 1.00 1.00 1.00
Ito 0.95 0.98 0.95
ICaL 0.88 0.92 0.88
IKs 0.83 0.85 0.87
IpK 0.62 0.21 0.64
INaK 0.32 0.35 0.32
IKr 0.30 0.43 0.14
INaCa 0.18 0.16 0.14
IK1 0.16 0.28 0.15
IbCa 0.06 0.10 0.05
IpCa 0.06 0.04 0.06
IbNa 0.02 0.03 0.02

TABLE V. The identifiability index defined by (32) and (31) with δ = 0.25 computed

for the default version of the Grandi model (as in Fig. 2) and for the Grandi model

adjusted to represent cells exposed to the two drugs, Verapamil and Cisapride.

No drug Verapamil Cisapride
0.5 · gCaL, 0.75 · gKr 0.5 · gKr

Identi�ability index

INa 1.00 1.00 1.00
Ito,f 0.99 0.99 0.99
ICaL 0.99 0.99 0.99
IbCl 0.93 0.90 0.98
IK1 0.93 0.89 1.00
INaCa 0.88 0.43 0.89
INaK 0.42 0.39 0.81
IClCa 0.33 0.05 0.39
Ito,s 0.32 0.17 0.37
IKr 0.28 0.11 0.14
IbCa 0.17 0.17 0.44
IbNa 0.15 0.14 0.35
IpCa 0.07 0.06 0.07
IKs 0.01 0.006 0.02
IpK 0.01 0.005 0.01

stimulation times). The �gures follow the same structure as Figs. 1–3
except that an extra row of plots is added for each singular value. This
row shows the computed transmembrane potential resulting from a
selection of perturbations along the singular vectors for the entire
5000ms simulation. The center right plots show the corresponding
solutions for a small time sample. In the computation of H (cen-
ter left plots), we compute the value of each of the terms H1–H5

de�ned in (26)–(30) for each of the ten computed action potentials

TABLE VI. The identifiability index defined by (32) and (31) with δ = 0.25 computed

for the default version of the O’Hara model (as in Fig. 3) and for the O’Hara model

adjusted to represent cells exposed to the two drugs, Verapamil and Cisapride.

No drug Verapamil Cisapride
0.5 · gCaL, 0.75 · gKr 0.5 · gKr

Identi�ability index

INa 1.00 1.00 1.00
IKr 0.91 0.97 0.90
ICaL 0.78 0.97 0.92
Ito 0.67 1.00 0.90
INaK 0.20 0.26 0.32
INaCa 0.19 0.22 0.27
IK1 0.14 0.98 0.54
IbK 0.08 0.17 0.15
INaL 0.07 0.12 0.10
IKs 0.07 0.10 0.20
IbNa 0.01 0.02 0.01
IbCa 0.01 0.02 0.01
IpCa 0.0003 0.0003 0.0004
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FIG. 4. SVD analysis of the currents of the ten Tusscher model26 using a random stimulation protocol with a stimulation current applied at ten randomly chosen points in time
during a 5000ms period. The values σ1, σ3, σ5, σ8, σ10, and σ12 are a selection of the singular values of the current matrix, A, defined in (11). The plots directly below the
singular values show the corresponding singular vectors. The center left plots show the measure H(ε, vi), defined by (25). The center right plots show the computed action
potentials for a selection of perturbations for a small time interval. The lower plots show the corresponding solutions for the entire 5000ms period. The numbers given after
each current in the orange right panel indicate the identifiability index defined by (32) and (31) with δ = 0.25.
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FIG. 5. SVD analysis of the currents of the Grandi model27 using a random stimulation protocol. The figure follows the same structure as Fig. 4.
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FIG. 6. SVD analysis of the currents of the O’Hara model28 using a random stimulation protocol. The figure follows the same structure as Fig. 4.
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(i.e., from the solution between each stimulation). In the computa-
tion of the �nal H de�ned in (25), we include the maximum value
of eachHj, j = 1, . . . , 5 over the ten computed action potentials. Fur-
thermore, for reasons of space, we only show the singular vectors and
perturbation e�ects for a selection of six singular values in Figs. 4–6.

In the table reporting the identi�ability index in Fig. 4, we
observe that the random pacing protocol greatly increases the iden-
ti�ability of a number of currents in the ten Tusscher model. For
example, the identi�ability of IpCa, IK1, INaCa, IKr, and INaK is increased
from 0.057, 0.16, 0.18, 0.3, and 0.32, respectively, for the default stim-
ulation protocol in Fig. 1 to a value of 1 in the random stimulation
protocol in Fig. 4. For the random stimulation protocol only a single
current, IbNa, obtains an identi�ability of less than 0.9. In Figs. 5 and 6,
we similarly observe that the random stimulation protocol increases
the identi�ability of a number of currents in the Grandi and O’Hara
models.

IV. DISCUSSION

It is important to understand the uncertainty of the parameters
in APmodels. An overview of related problems involved in APmod-
els of cardiac cells is given by Johnstone et al.29 One of the problems
highlighted in the paper is that there are unidenti�able parameters
in the AP model—“multiple parameter sets �t the data equally well
and the individual conductances cannot be identi�ed. . ..” Here, we
have developed a method for investigating the identi�ability of the
maximum conductances of ion channels in a model, when the model
is parameterized to �t a single action potential waveform. Simula-
tions of the APmodel give the total transmembrane currents and the
individual ion currents. Then, by storing the currents in amatrix, the
SVD method can be used to analyze what combinations of currents
will be largely invisible in the overall waveform. We have developed
an identi�ability index that uses this information to quantify how
identi�able the individual currents are. Although themethod is based

on linear analysis of a highly nonlinear problem, the method gives
valuable insight that is di�cult to obtain by other methods.

A. Perturbation effects

In Figs. 1–3, we observed that large singular values were associ-
ated with large perturbation e�ects along their corresponding sin-
gular vectors, while small singular values were to a large degree
associated with small perturbation e�ects, as predicted by the linear
theoretical considerations outlined in Sec. II. In all three �gures, the
nonlinear perturbation e�ects were considered by the use of a mea-
sure H de�ned in (25) (lower left plots) to detect di�erences in the
perturbed AP waveform, and inmany cases, the trends ofH could be
readily seen by simply visually inspecting the APs resulting from the
perturbations (lower right plots).

In some cases, however, the perturbations produced large values
of H even though the perturbed APs seemed to be visually identical.
The reason why in these cases H measures large di�erences is that
H includes a term that measures the e�ect on the maximal upstroke
velocity. This e�ect is hard to observe in the plots of the AP due to
the time scale, but the e�ect is illustrated for two examples from the
ten Tusscher model in the lower panel of Fig. 7. Here, we show the
upstroke of the AP for perturbations along the singular vectors corre-
sponding to the largest singular value (left) and the smallest singular
value (right) of the SVD analysis. For the large singular value, σ1, we
observe large changes in the upstroke dynamics, which correspond
to the large values of H observed in Fig. 1. For the smallest singu-
lar value, σ12, on the other hand, the e�ects of the perturbations on
the upstroke are completely indistinguishable, corresponding to the
small values of H observed in Fig. 1.

B. The identifiability index

In order to deduce information about the identi�ability of
the maximum conductance of the individual model currents from

FIG. 7. Effect on the transmembrane
potential of perturbing the currents corre-
sponding to the largest singular value, σ1,
and the smallest singular value, σ12, of the
SVD analysis of the ten Tusscher model
(see Fig. 1). The upper panel shows the
full action potential, and the lower panel
focuses only on the upstroke.
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the information gained from the SVD analysis, we de�ned an
identi�ability index given by (32), measuring the di�erence between
the unit vector of the current and the projection of the unit vector
to the unidenti�able space de�ned in Sec. II F. If the identi�ability
index is close to zero, the current lies almost entirely in the uniden-
ti�able space, and is expected to be hard to identify. Similarly, if the
identi�ability index is close to one, the current lies almost entirely
in the identi�able space, and we expect that the maximum conduc-
tance of the current is easier to identify. In Figs. 1–3, we observed that
this index characterized a few model currents in the ten Tusscher,
Grandi, and O’Hara models as highly identi�able, while other cur-
rents were identi�ed as largely unidenti�able. A weakness with this
index is that we need to introduce a parameter δ in order to de�ne the
subspace of unidenti�able vectors; see (31). In our computations, this
parameter has been set to 0.25, but in general the parameter needs to
be determined using numerical experiments with the model under
consideration.

1. Effect of the time step

In Tables I–III, we investigated the e�ect of the time step, 1t,
used to record the current matrix, A. We observed that the size of
the singular values of A changed when di�erent time steps were
used. Moreover, for small values of 1t, the size of the singular val-
ues seemed to be proportional to1t−1/2. However, the identi�ability
of the individual model currents remained relatively constant for the
di�erent time steps. Yet for the ten Tusscher model, the identi�a-
bility index of the INa current dropped from 1 for 1t = 0.01ms or
1t = 0.1ms to 0.002 for 1t = 1ms or 1t = 2ms, which suggests
that a time step of less than 1ms is probably needed to accurately cap-
ture the relevant information about the currents and, in particular,
the fast sodium current, INa. The di�culties related to identifying the
sodium current using relatively long time steps is commensuratewith
the problems encountered in Ref. 19, where coarse time resolution
rendered the sodium current unidenti�able using voltage sensitive
dyes.

2. Effect of the simulation conditions

In Tables IV–VI, we investigated the identi�ability of the cur-
rents in models adjusted to represent cells exposed to two drugs.
We observed that the identi�ability of certain currents was clearly
a�ected by the change in conditions, but that the currents charac-
terized as highly identi�able and the ones characterized as largely
unidenti�able remained relatively unchanged under the di�erent
conditions.

In Figs. 4–6, we similarly investigated how the identi�ability was
a�ected when a random stimulation protocol was applied. In Ref. 15,
this approach was shown to increase the identi�ability of the max-
imum conductance of currents in AP models. Consistent with the
results in Ref. 15, the SVD analysis suggested that the identi�abil-
ity of a number of model currents in the ten Tusscher, Grandi, and
O’Hara AP models would increase using such a random stimulation
protocol.

C. Uniqueness of model parameters

A key question in deriving and applying AP models is the
uniqueness of the parameters. For Markov models used to represent

the open probability of ion channels, this problemwas carefully stud-
ied by Fink and Noble30 who found parameter unidenti�ability in 9
out of 13models. Lack of uniqueness has also been observed formod-
els of the AP of neurons (see, e.g., Refs. 31–33) and for AP models
of cardiomyocytes (see, e.g., Refs. 34–37). The most common way of
investigating the sensitivity ofAPmodels is to perturb individual cur-
rents and look for the e�ect. This method is useful in the sense that it
indicates how well blocking of individual currents can be identi�ed
using the model. Suppose, for instance, that the AP model is very
sensitive to changes in the sodium current. Then, if a sodium blocker
is applied, such changes will be observed, and, thus, the e�ect of a
sodium blocker can be identi�ed. But this approach will not uncover
the identi�ability of more subtle e�ects where a blocker a�ects many
currents simultaneously.

The numerical examples presented above show that very few ion
currents can be completely identi�ed by observing the total mem-
brane currents. According to the identi�ability index, less than 50%
of the perturbations can be observed for 7 out of 12 ion currents in the
ten Tusscher model, 9 out of 15 ion currents in the model of Grandi
et al., and 9 out of 13 ion currents in the O’Hara model using the
default stimulation protocol in Figs. 1–3. This indicates a consider-
able degree of redundancy in the models in their ability to produce
a single paced action potential. However, for the random stimula-
tion protocol in Figs. 4–6, the identi�ability index was smaller than
0.5 only for 1 of the currents in the ten Tusscher model, 0 of the
currents in the Grandi model, and 6 of the currents in the O’Hara
model.

D. Model reduction

Several authors have used redundancy of AP models to derive
reduced models. For instance, in both Refs. 38 and 39, the authors
used redundancy of the AP models to systematically reduce com-
plex models to obtain simpler models. Other authors have developed
parsimonious models by only including major currents; see, e.g.,
Refs. 40–44. A comprehensive overview of models of the cardiac AP
is given in Ref. 9, where models ranging from 2 to 67 variables are
presented. Model reduction can be achieved by identifying insen-
sitive parameters using the SVD method, and, more generally, this
problem is often addressed by the method of proper orthogonal
decomposition (POD); see, e.g., Refs. 45 and 46.

E. Linear sensitivity analysis

Over the past decade, a series of papers by Sobie and co-
authors (see Refs. 47–50) have developed a theory describing a
strong correlation between model parameters like the maximum
conductances of the ion channels and output variables like the
APD. These relations are surprising given the strong nonlinear-
ities involved in the AP models, but the relations are also very
useful, in particular, in order to understand the behavior of popu-
lations of models. We have used the fact that linear models seem
to pick up important features of nonlinear AP models to devise a
method for analyzing how the total transmembrane current changes
under perturbations of the individual ion currents using the SVD
algorithm.
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V. CONCLUSION

We have presented a method for investigating the uniqueness of
parameters of commonly usedmathematical models of action poten-
tials. The method is simple to implement and the results are inter-
preted in a straightforward manner. For three well-known models of
human cardiac cells, the method revealed that signi�cant changes in
the maximum conductances can be introduced without any appre-
ciable change in the resulting action potential. The method uses the
singular value decomposition to �nd perturbations that giveminimal
changes in the solution. Such perturbations are impossible to �nd by
simply changing the individual conductances, and the search space
is very large if one were to search for combinations of changed con-
ductances that give little e�ect on the action potential. The method
is applicable for any model written on the standard form for action
potential models; see Eqs. (5)–(6). The method is developed for
investigating the sensitivity of the maximum conductances and it
provides useful information about these parameters. The method is,
however, not easy to generalize to all other adjustable parameters of
AP models.
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