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Abstract: China is the largest agricultural country with the largest population and booming
socio-economy, and hence, remarkably increasing water demand. In this sense, it is practically
critical to obtain knowledge about spatiotemporal variations of the territorial water storage (TWS) and
relevant driving factors. In this study, we attempted to investigate TWS changes in both space and
time using the monthly GRACE (Gravity Recovery and Climate Experiment) data during 2003-2015.
Impacts of four climate indices on TWS were explored, and these four climate indices are, respectively,
El Nifio Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO),
and Pacific decadal oscillation (PDO). In addition, we also considered the impacts of precipitation
changes on TWS. We found significant correlations between climatic variations and TWS changes
across China. Meanwhile, the impacts of climate indices on TWS changes were shifting from one
region to another across China with different time lags ranging from 0 to 12 months. ENSO, IOD and
PDO exerted significant impacts on TWS over 80% of the regions across China, while NAO affected
TWS changes over around 40% of the regions across China. Moreover, we also detected significant
relations between TWS and precipitation changes within 9 out of the 10 largest river basins across
China. These results highlight the management of TWS across China in a changing environment and
also provide a theoretical ground for TWS management in other regions of the globe.

Keywords: GRACE,; terrestrial water storage; climate change; correlation analysis

1. Introduction

The warming climate, and its impacts on the hydrological cycle at regional and global scales, has
aroused remarkable human concerns in recent decades [1-3]. Intensifying hydrologic cycle, due to
the warming climate has the potential to trigger occurrences of hydrometeorological hazards, such as
floods and droughts [4-6]. A range of researches indicated intensified drought severity and expanded
drought-affected regions, due to warming climate [7-9] although what are the drought behaviors in
warming climate is still a scientific issue open for debate [10,11]. In addition, Hu et al. [12] found
that, at a global scale, the occurrence of floods is increasing; therefore, flood-affected population,
flood-related mortalities are increasing as well. Meanwhile, amplification of floods is featured by
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elevating frequency of floods [12]. Furthermore, the warming climate drives higher risks of floods
and droughts, and evidence from model simulation results documents that the dry regions of the
world will be drier, while the wet regions will become wetter [13,14]. This phenomenon was known
as the rich-get-richer mechanism [15,16]. As one of the major water resources for human activities,
such as agricultural irrigation, the storage of groundwater is decreasing globally under climate
warming [17-20]. In this case, we attempted to use GRACE data to analyze terrestrial water storage
(TWS) across China.

El Nifio Southern Oscillation (ENSO) is an important subsystem of the global climate system.
ENSO usually reaches its peak values in the northern hemisphere during winter and continues in
the spring of the subsequent year and until the summer recession [21]. Although ENSO occurs in
the equatorial Pacific Ocean, its impacts extend more than 75% of the Earth’s area [22,23]. A bunch
of studies have shown that ENSO has a greater impact on climate anomalies in East Asia [24-30].
Meanwhile, most of the studies focused on the effects of spring and summer ENSO on precipitation in
China, whereas Zhou et al. [31] indicated that ENSO has a significant positive impact on precipitation
in winter (November-February) in southern China. Jiang et al. [32] also showed that ENSO has a
good teleconnection with droughts and floods in the Yangtze River basin, China. Luo and Lau [33]
suggested that ENSO exerts an amplifying effect on the heatwave activity in China. Meanwhile, the
hydro-climatic conditions in East Asia are also affected by the Indian Ocean Dipole (IOD), North
Atlantic Oscillation (NAQO) and Pacific Decadal Oscillation (PDO) [34-38]. Besides, climate indices,
such as ENSO were also proved to have impacts on terrestrial total water storage. Xie et al. [39]
investigated the spatial patterns and temporal dynamics of the terrestrial total water storage across
Australia under impacts of ENSO, IOD and Southern Annular Mode (SAM), and found multi-climate
modes interactions and related impacts on Australia’s water storage dynamics. Vissa et al. [40] assessed
the impacts of climate perturbations, such as ENSO for the groundwater storage changes and found
that the decline of groundwater storage changes over northern India enhanced during the period of
ENSO. However, no report is available now addressing the variability of total water resources in all
the large basins across China and related driving factors.

Since 2002, Gravity Recovery and Climate Experiment (GRACE) satellite monitors global water
storage, including groundwater and terrestrial water storage, at monthly to decadal time scales and
has provided comprehensive data information on water cycle [3]. GRACE satellite observations have
recorded monthly changes in earth surface gravity field that reflects the mass changes with unparalleled
accuracy [41]. The major factor driving the variations of measured mass at monthly time scales is the
water redistribution, and it allows GRACE to detect the changes of freshwater on the land surface.
With the monitoring of GRACE satellite, the total amount of water, including snow, surface water,
groundwater and soil moisture that enters or leaves an area each month can be weighted at an accuracy
of 1.5 cm equivalent water height [3].

Therefore, the major objectives of this current study are: (1) To characterize variability and
availability of TWS in both space and time; (2) to investigate attribution of TWS changes in both
space and time from a perspective of climate indices, such as ENSO and so on; and (3) to quantify
relationships between TWS changes and precipitation variations across China. This study will be of
great importance in water resources management in a changing environment.

2. Materials

2.1. Study Region

China has complicated topography across its vast territory with various climates shifting from dry
seasons and wet monsoons. In winter, cold and dry winds are from northern high-latitude areas; while
in summer, warm and moist winds are from southern coastal areas at lower latitudes. The diverse
climates in different regions of China are the results of highly complex topography and also the location
of China, i.e., between the largest Eurasia and the largest Pacific Ocean. As a performance of diverse
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climates, there is a varied amount of precipitation falling in different regions (basins) of mainland China.
Also, water resources are unevenly distributed in each regions (basins). Therefore, the analyze of TWS
changes based on different regions (basins) will be done in this study. There are 10 large drainage
basins in China (Figure 1). In this study, we took each river basin as the study unit to characterize
relationships between TWS changes, climate indices and precipitation variations as well (Table 1).

70°E 80°E 90° E 100°E  110°E  120°E  130°E 140° E

Figure 1. Map for the drainage basin divisions of China. (a—j) The specific basin in a total of 10 basins,
and their detailed information of the basins are summarized in Table 1.

Table 1. Information of Basin Division.

Basin Label Basin Name Abbreviation Area (x10° km?) Pixel Numbers
a Yangtze River YRB 17.7 221
b Southeast River SRB 25 35
C Hai River HRB 2.7 51
d Yellow River YB 8.4 129
e Huai River HuaiRB 3.3 52
f Liao River LRB 3.7 57
g Songhua River ShRB 9.3 146
h Xibei River XbRB 29.1 444
i Xinan River XnRB 8.6 131
j Pearl River PRB 54 78

2.2. GRACE Data

In this study, TWS data from release-5 GRACE were retrieved from NASA’s GRACE Tellus
website [42]. The data have been pre-processed to remove the noise signal from the atmosphere and
ocean [43,44]. The spatial resolutions of the monthly TWS data are 1° by 1°. There are currently three
publicly released GRACE TWS data by CSR (Center for Space Research), GFZ (Helmholtz-Zentrum
Potsdam Deutsches GeoForschungsZentrum) and JPL (Jet Propulsion Laboratory), respectively.
To diminish the uncertainties associated with data processing, the overall average TWS data were
calculated based on the three research centers.

In regional studies, the application of appropriate scaling factor methods is essential for accurate
quantification of the TWS monitored by GRACE satellites [45], which can correct and restore the
GRACE signal loss in low-pass filtering processes, such as strip removal, truncation and filtering.
Since Community Land Model 4.0 (CLM4.0) from National Center for Atmospheric Research (NCAR)
explains the interaction between surface and groundwater, as well as irrigation and river diversion, and
provides reliable flow and hydrological status information in areas where human activity is dense [45],
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we utilized the scaling factor from NCAR’s CLM4.0 to correct and restore the GRACE signal loss
during low-pass filtering [43]. Furthermore, the terrestrial water storage anomaly (TWSA) data were
obtained by subtracting the monthly TWS data by a historical mean from 2004 to 2009 according to the
anomaly baseline reported in GRACE product highlights (http://www2.csr.utexas.edu/grace/RL0O5_
mascons.html). The uncertainties of TWSA time series were evaluated at 95% confidence level.

2.3. Precipitation Data

TWS changes were believed to be associated with precipitation variations [46]. We adopted
three monthly precipitation datasets, i.e., Global Precipitation Climatology Project (GPCP), Global
Precipitation Climatology Centre (GPCC), and NOAA'’s precipitation reconstruction over Land (NOAA)
in this study (http://www.esrl.noaa.gov/psd/data/gridded/tables/precipitation.html). The spatial
resolutions are 2.5° by 2.5° for GPCP and 1° by 1° for GPCC and NOAA, and GPCP dataset was
interpolated to a spatial resolution of 1° by 1° to match the other datasets [47].

The three datasets were averaged to quantify relations between precipitation changes and TWS
variations in both space and time. Among the three datasets, they are in similar dynamic patterns,
although there would be systemic variations. Hence, the uncertainty can be estimated in two steps [47]:
(1) Remove the mean value in each dataset, the systemic variations can also be removed in this step for
the reason that the mean value in each dataset would be zero; (2) for each grid point, it has three data
value from the three datasets, then the variation among the three values is set as the uncertainty. By
this way, the systemic variation would not be included in the uncertainties.

2.4. Climate Index Data

To investigate impacts of climatic systems on TWS changes in China, four climatic indices
representing four climatic drivers were used in this study, i.e., the Multivariate ENSO Index (MEI),
Indian Ocean Dipole Mode Index (DMI), North Atlantic Oscillation Index (NAO) and Pacific Decadal
Oscillation Index (PDO). MEI is a method for describing the intensity of ENSO events and was
considered to be the most comprehensive index for monitoring ENSO events [48], since it combines
the analysis of multiple meteorological and oceanic components. The MEI datasets used in this study
were extracted from NOAA'’s Physical Sciences Division (http://www.esrl.noaa.gov/psd/enso/mei/).

DMI can measure the zonal sea surface temperature gradient in the equatorial Indian Ocean [49,50]
and indicate the dynamic of IOD. IOD is an aspect of the overall global climate cycle, interacting
with similar phenomena, such as ENSO in the Pacific Ocean [35]. The DMI datasets were obtained
from the Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) and can be downloaded from
https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/DMI/.

NAO is a weather phenomenon in the North Atlantic that controls the strength and direction of
westerlies and the storm tracks across North Atlantic by the fluctuations in the pressure difference at
sea level between the Icelandic low and the Azores high [51]. The NAO index is derived from NOAA’s
Climate Prediction Center (http://www.cpc.ncep.noaa.gov/products/precip/CWIlink/pna/nao.shtml).

PDO s an active and recurring oceanic, atmospheric climate change pattern across the mid-latitude
Pacific basin. The PDO index is the main empirical orthogonal function of the monthly sea surface
temperature anomaly (SST-A) after the surface sea surface temperature minus the global mean sea level
temperature in the North Pacific Ocean (north of 20° N), and is the normalized principal component
time sequence [52]. The PDO index adopted in this study was taken from the Earth System Research
Laboratory (ESRL) of NASA (http://www.esrl.noaa.gov/psd/data/correlation/pdo.data). The period of
the values for MEI, DMI, NAO and PDO covers from 2002 to 2015 here in this study.
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3. Methods

3.1. Seasonal Decomposition of Time Series by LOESS

To better assess the annual variations of TWSA, a standard time series decomposition method
based on Locally weighted regression smoother (LOESS), namely, Seasonal-Trend decomposition by
Loess model (STL), was used in this paper. Loess Regression is a non-parametric method used to
smoothen a volatile time series, and least squares regression is performed in localized subsets, which
makes it a suitable choice for smoothing any numerical vector [53].

We take x; and y;, for i = 1 to n, as the samples of independent and dependent variables, respectively.
The loess regression curve, §(x), is a smoothing of y given that x can be computed for any value along
the scale of the independent variable. It means that loess can deal with missing values and detrend
the seasonal component in a straightforward way in STL. For STL, only the case of one independent
variable is needed, although loess can smooth y as a function of any number of independent variables.

¢(x) is estimated as follows: A positive integer, g, is chosen. The g values of the x; that are closest
to x are selected for the moment that g < n and each is given a neighborhood weight based on its
distance from x. We assume that A4(x) is the distance of the gth farthest x; from x, and W is the tricube
weight function:

3 3
W(n) (1—u) for0<u<1 . (1)
0 foruz>1.
The neighborhood weight for any x; is
|xi — xl)
vi(x) = W( : (2)
l Aq(x)

Thus, the x; close to x have the largest weights; the weights decrease as the x; increase in distance
from x and become zero at the gth farthest point. The next step is to fit a polynomial of degree d to the
data with weight v;(x) at (x;, y;). The value of the locally-fitted polynomial at x is ¢(x). In this paper,
we will use d = 1 or 2; that is, the fitting is locally-linear or locally-quadratic.

Now suppose that g > 1. A,,(x) is the distance from x to the farthest x;. For g > n we define A,(x)
by:

9

Ag(x) = An(x) - 3)

Then we proceed as before in the definition of the neighborhood weights using this value of A4(x).

Suppose each observation (x;, y;) has a weight p; that expresses the reliability of the observation
relative to the others. For example, if the y; had variances 0%k; where the k; were known, then pi might
be 1/k;. We can incorporate these weights into the loess smoothing in a straightforward way by using
pivi(x) as the weights in the local least-squares fitting. As we will see, this provides a mechanism by
which we can easily build robustness into STL [53].

The STL processor enables conveniently decomposing time series into trend, seasonal and noise
components, which can be defined in the form of:

Or=Ti+Sr+e, fort=1, ..., n, (4)

where Oy is the observed data at time ¢, Ty denotes the trend component, S; refers to the seasonal
component, and ¢; means the noise component. The noise component ¢; clarifies the remaining variation
in the time series after trend and seasonal component [53]. Following the above STL procedure, the
TWSA time series data during 2003-2015 across China were de-seasonalized and smoothed in this
paper. The coding environment and calculating process were done in R [54].
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3.2. Statistical Methods

3.2.1. Linear Regression

The total amount of water is equal during the process of the water cycle, which can be expressed

as the water budget equation [55]:

ds
— =P-ET-R, (5)

where dS/dt is total water storage change, P is precipitation, ET is evapotranspiration and R is runoff.
To explore how changes in annual precipitation force the variations in TWS, we assumed their linear
relationship [46] as:

m=a(p—po) +b, (6)

where m is the annul TWS change between two successive years (in mm), p is the annual precipitation
(in mm/year), pp is the long-term annual average precipitation (in mm/year), a is the slope of the
regression in (year™!), i.e., the sensitivity factor of TWS to precipitation, and b is the average annual
depletion water storage without the influence of precipitation (in mm). The linear regression with the
ordinary least squares method (OLS) was applied to weigh the model parameters a and b.

3.2.2. Spatial and Temporal Variability

For the period from January 2003 to December 2015, mean values of monthly TWSA and
de-seasonalized TWSA for China were computed, and the annual average, together with the average
seasonal rate of change in TWS images were also processed to show the spatial and temporal variability
of the TWS through time.

3.2.3. Cross-correlation Analysis

To concern TWS variations during study periods to the large-scale climate modes, such as ENSO,
10D, NAO and PDO across China, spatial cross-correlation analysis was applied to quantify the
relationships between TWS and the major climate drivers. As the influence of climate modes on
TWS is expected to show finite time lags (0 to 12 months), we only discussed positive time lags in
which climate modes changes are leading the variations of TWS. We investigated the cross-correlations
between TWSA and the four climate indices on a per-pixel level at different time lags by shifting the
climate indices time series forward one month per time. Following this procedure, the maximum
Pearson’s correlation coefficient (r) and the corresponding time lag (in months) were then gained to
revel the strength of the relationships between TWS and four climate modes with the optimal lag at
any given pixel across China. The Pearson’s coefficient r was calculated as:

n

. i—1(xi = %) (¥i - ¥)
] - 7
—2 —\2
VI G-I (- )
wherej=0,1,...,12,and rj is the Pearson’s correlation coefficient in 0 to 12 months lag, respectively,

and 7 is the sample size, i.e., the length of the time series, x refers to the climate indices, y is the TWSA,
x and v is the sample average of the climate indices and TWSA, respectively.

@)

4. Results and Discussion

4.1. Temporal Variation Characteristics of the TWS across China

The GRACE gravity datasets derived monthly TWSA with its smoothed and de-seasonalized
values during 2003-2015 were shown in Figure 2. We found from Figure 2 strong TWS fluctuations at
both seasonal and inter-annual scales with basically seasonal peak values in summer (June, July and
August, JJA), while trough values in winter (December, January and February, DJF). We also found
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increased continental average TWS during the period from 2003 to 2004 across China. Besides, we
observed relatively high TWS during 2004-2005 when compared to the TWS for the whole period
considered in this study. Afterwards, TWS decreased gradually until 2008, and the terrestrial water
storage of China was relatively low in the late 2007 and early 2008. After 2008, TWS was in relatively
unstable changes with its values fluctuating in large amplitude. Two peak values and two trough
values in the fluctuation with peak values in 2010 and 2013, respectively, while trough values in 2011
and 2015, respectively.

TWSA(mm)
it

|
[ ]
=3

—— Monthly TWSA
_— De—seasonalized TWSA

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
ear
Figure 2. Monthly continental average terrestrial water storage anomaly (TWSA) across China from
2003 to 2015 (solid red line) with the solid blue line indicating the smoothed and de-seasonalized TWSA.
The error bars represent the standard deviations among Gravity Recovery and Climate Experiment
(GRACE) datasets provided by Jet Propulsion Laboratory (JPL), and the shaded area is 95% confidence
interval in the de-seasonalized TWSA.

4.2. Cross-Correlations of Climate Modes and TWS

Figure 3 illustrates the fluctuation ranges in MEI, DMI, NAO and PDO climate indices from
2002 to 2015. Among the four indices, MEI is an index used to characterize the intensity of ENSO
event based on six climatic variables, i.e., sea-level pressure, zonal and meridional surface winds, sea
surface temperature, surface air temperature and total cloudiness fraction of the sky. Positive MEI
index indicates starting of El Nifio phenomenon and negative MEI index the La Nifia phenomenon.
DMI index characterizes the dynamic changes of IOD events. Positive DMI index indicates the
positive phase of the IOD event, and the sea surface temperature in the western Indian Ocean is higher
than the average level, the precipitation is greater than the average level, the sea temperature in the
eastern Indian Ocean is correspondingly decreased, and vice versa. The NAO exhibits considerable
inter-seasonal and interannual variability, and prolonged periods (several months) of both positive
and negative phases of the pattern are common. Positive NAO index indicates that the pressure ratio
between the Iceland low and the Azores high is greater than the average, west wind dominates and
blows warm air; while NAO index is negative, the pressure difference between the two places is below
average, the winds with cold air from east and northeast are more frequent. For PDO index, when
PDO is in a positive phase, the Pacific would become cooler, and part of the eastern ocean become
warmer; while, when PDO is in a negative phase, the eastern Pacific becomes cooler and part of the
western ocean become warm.
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2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
Year

Figure 3. (a) Multivariate ENSO Index (MEI), (b) Indian Ocean Dipole Mode Index (DMI), (c) North
Atlantic Oscillation Index (NAO) and (d) Pacific Decadal Oscillation Index (PDO) climate indices
during 2002-2015.

In this paper, cross-correlation analysis based on the Pearson correlation method was used to
calculate the correlation between the climatic driver variables and TWS variations. Figure 4 displays
the maximum Pearson correlation coefficients between climatic drivers and TWS of China in 2003-2015,
and the corresponding time lag in months between the study variables was also depicted in Figure 5.
Based on the results in Figures 4 and 5, we found that with varying strength of correlations and time
lags at different regions in China, the four climatic drivers have close coupling relationship with TWS
in the period of 2003-2015. In particular, MEI, PDO and DMI have even more widespread impacts on
TWS than NAO (Figure 4).

MET-TWS Comrelahion : TIWT-TW S Correlation y

-1

- 0.05
-0
PDO-TWS Correlation L -0.0s

F -]

-0.2

v
Er I

I N

-

:
WE 90'E 100°E 10°E 120k 130k s e 10k 110 1200 130k
Figure 4. Maximum Pearson correlation coefficient € between climatic indices and TWS; (a)
MEI-TWS correlation; (b) DMI-TWS correlation; (¢) NAO-TWS correlation; (d) PDO-TWS correlation.

The correlations significant at the 95% level are marked in blue or red, while the non-significant and
coefficient less than 0.05 pixels are marked in white.
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Figure 5. Time lag in months of the maximum Pearson correlation coefficient between climatic indices
and TWS; (a) MEI-TWS time lag; (b) DMI-TWS time lag; (c) NAO-TWS time lag; (d) PDO-TWS time lag.

Figure 4a shows that MEI was remarkably correlated to TWS over China with great regional
variations across China. Around 86.5% areas of China were dominated by significant correlations
between TWS and MEI, of which 33.3% areas are characterized by negative correlations 53.2% of the
total territory of China by positive correlations (Table 2). Moreover, the regions with positive correlation
are mainly in northern China with 86.3% areas of ShRB, 54.4% areas of LRB, 62.7% areas of HRB,
49.6% areas of YB and 54.1% areas of XbRB comprised of 71% areas of the total regions with positive
correlation. These abbreviated names of the river basins can be found in Table 1. The other regions
with positive correlations are mainly located in southwestern China and the lower YRB. However,
the regions with active correlations are mainly concentrated within three areas, i.e., southern XbRB,
southeastern China and northern HuaiRB. As for the time lag, as shown in Figure 5a, the regions with
the highest correlation coefficients and the regions with the longest time lags in months are inconsistent
in the spatial sense. More specifically, for the regions in southern XbRB, the correlation coefficients
between MEI and TWS range from —0.6 to —0.1, while the time lag in months ranges between 0-12.

Table 2. Area percentage of negative and positive Pearson correlation coefficient © in basins of China.

Basin YRB SRB HRB YB HuaiRB LRB ShRB XbRB XnRB PRB CHN
MELTWS, <0 389% 65.7%  37.3% 33.3% 712%  45.6% 4.8% 30.5% 39.7% 654% 33.3%
>0 47.5% 34.3%  62.7% 49.6%  28.8%  544% 86.3% 54.1% 435% 5.1%  53.2%

DMI-TWS, <0 27.1% 2.9% 98.0% 76.0%  17.3%  842% 87.7% 452% 68.7% 0.0%  49.7%
>0 59.3% 97.1%  0.0% 101% 34.6% 12.3% 1.4% 242% 20.6% 97.4% 31.6%
NAO-TWS, <0 17.6% 40.0%  0.0% 6.2% 3.8% 544% 21.9% 385% 53% 34.6% 25.7%
>0 31.2% 429%  0.0% 0.0% 0.0% 0.0% 0.0% 18% 26.7% 64.1% 14.0%
PDO-TWS, <0 471% 829%  56.9% 39.5%  36.5%  64.9% 10.3% 351% 16.8% 55.1% 36.0%
>0 30.8% 0.0% 41.2% 50.4%  55.8%  14.0% 712% 475% 75.6% 14.1% 47.1%

DMI was also found to be highly related to TWS, while the time lags are relatively shorter in
comparison with the time lags between MEI and TWS. In addition, in most regions, the correlation
coefficients between DMI and TWS are exactly opposite to the ones between MEI TWS (Figure 4a,b).
The results demonstrated that the influence of ENSO events on TWS variations is different from the
influence of IOD on TWS. However, unlike the powerful impact of ENSO and IOD on TWS changes in
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China, NAO was related to TWS in part of the regions of China (Figure 4c). Only 39.7% of the areas in
China have significant relationships between NAO and TWS (Table 2). The primary portions of the
regions with positive correlation were mainly located in southern China, while the major negative
correlation areas were found mainly in western China (southern part of XbRB). Compared with MEI
and DMI, PDO was highly correlated with TWS over China as well, but much more similarity with the
correlation between MEI and TWS (Figure 4a,b,d).

4.3. Relations between Precipitation and TWS

To investigate the relations of TWS vs. precipitation, we quantified relations between monthly
precipitation and TWS within each river basin across China (Figures 6 and 7). The results indicated
that YRB (Figure 6a), SRB (Figure 6b), XnRB (Figure 7d) and PRB (Figure 7e) are at the top of the river
basin list considered in this study in terms of annual precipitation amount across China with annual
precipitation amount of, respectively, 81 mm, 127.9 mm, 86.1 mm and 118.7 mm. However, among
the top 4 river basins in precipitation, XnRB (Figure 7d) is the only river basin which is not the top 4
river basins in the annual amount of TWS in that XnRB (Figure 7d) is one of the arid regions in China.
In addition, it is also the only river basin where TWS shows a decreasing trend from 2003 to 2015 by
the declining rate of —6.2 + 3.1 mm/a, while TWS within YRB (Figure 6a), SRB (Figure 6b), and PRB
(Figure 7e) are persistently increasing. Apart from YRB (2.64 + 1.92 mm/a), SRB (4.92 + 1.56 mm/a) and
PRB (4.56 + 3 mm/a), ShRB (2.28 + 1.44 mm/a) is the only river basin being characterized by increasing
TWS trend (Figure 7b).
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Figure 6. Regionally averaged monthly precipitation (black bars) and TWS (red lines) of basins in
China from 2003 to 2015. (a) YRB; (b) SRB; (c) HRB; (d) YB; (e) HuaiRB. The blue line is the linear trend
of TWS with the shaded area denotes its 95% confidence interval.
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Figure 7. Regionally averaged monthly precipitation (black bars) and TWS (red lines) of basins in
China from 2003 to 2015. (a) LRB; (b) ShRB; (c) XbRB; (d) XnRB; (e) PRB. The blue line is the linear
trend of TWS with the shaded area denotes its 95% confidence interval.

Specifically, in comparison with other river basins considered in this study, we found larger
decreasing magnitude of TWS in the HRB (Figure 6c) with a decreasing rate of —9.36 + 1.44 mm/a.
It should be clarified that the HRB is located in the North China Plain, one of the largest irrigation
areas in China. Therefore, massive exploitation of groundwater for irrigation leads to remarkable
TWS changes in the HRB [56]. Furthermore, the annual average TWS of HRB (Figure 6¢) is also the
lowest within all the river basins considered in this study, which is —27.68 mm. For the YB (Figure 6d)
and the HuaiRB (Figure 6e), the annual average precipitation of the HuaiRB (71.39 mm) is larger
than YRB (37.92 mm), whereas the annual average TWS of the HuaiRB (-23.77 mm) is less than the
YRB (—17.25 mm). The decreasing magnitude of TWS in the HuaiRB is —7.08 + 1.92 mm/a, while the
decreasing rate of TWS in the YB is —5.04 + 1.2 mm/a. Besides, we also found decreasing TWS in the
LRB (Figure 7a) and the XbRB (Figure 7c) and the decreasing rates of TWS in the LRB and XbRB are,
respectively, —3.0 + 1.08 mm/a and —1.32 + 0.48 mm/a.

Typically, it takes time for the process of precipitation turn into runoff and then transforms into
TWS. So, we shifted the time series of TWS in 0 to 12 months later than precipitation time series
to search the maximum correlation and found different degrees of sensitive responses of TWS to
precipitation changes. It can be seen from Figure 8 and Table 3 that most basins’ shifted months are less
than half years expect HuaiRB (9 months). The most sensitive basin with 0 month shifted is YRB. We
also found that precipitation variations are highly related to the annual TWS changes with a correlation
coefficient of 0.8 (Figure 8a). In particular, the relationship between precipitation and TWS inYRB
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during 2009-2013 is the highest when compared to that during the entire study period (Figure 9a). The
precipitation variation results in annual TWS change of 2.82 + 1.54 mm/mm (Figure 10a), while other
factors result in annual TWS change of 11.28 + 113.96 mm/a. Among all the basins in China, XnRB
has the highest correlation coefficient of 0.86 (Table 3, Figure 9i). It can be seen from Figure 9i that
precipitation and TWS changes are consistent with a time lag of three months. In addition, the linear
relationship between precipitation and TWS is highly significant with the slope of the linear fitting
model of 4.29 + 1.76 mm/mm (Figure 10i).
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Figure 8. The correlation between changes in TWS and precipitation, with 0-12 months shifts in
precipitation. The red circle denotes the highest coefficient in the sequences, while the number above
the red circle is the detailed coefficient. (a) YRB; (b) SRB; (c) HRB; (d) YB; (e) HuaiRB; (f) LRB; (g) ShRB;
(h) XbRB; (i) XnRB; (j) PRB.

Table 3. The highest correlation coefficient between changes in TWS and precipitation and the
corresponding shifted a month.

Basin YRB SRB HRB YB HuaiRB LRB ShRB XbRB XnRB PRB
Coefficient 0.8 083 084 0.66 0.56 0.7 0.7 0.43 086 0.76
Shifted month 0 3 4 5 9 2 3 6 3 4

4.4. Spatial Distribution of the TWS Trends at Seasonal and Annual Scale

We observed distinctly different TWS changes across China (Figure 11). The spatial pattern of
the seasonal TWS trends indicated that TWS trends are similar with different changing magnitude
(Figure 11a—d). In addition, we also observed increasing TWS trends in southeastern China and
ShRB (Figures 6, 7 and 11). Table 4 lists the statistical information about the percentage of areas with
decreasing TWS trends in each river basin at the seasonal scale and annual scale. Figure 11 and Table 4
show that the proportion of regions with decreasing and/or increasing TWS trends is similar in all
the river basins in China. Specifically, the percentage of regions in YRB, SRB, ShRB, and PRB with
decreasing TWS trends is less than 50% seasonally, and it is exactly the opposite for the rest of the river
basins. Similar findings were also achieved by [57].
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Figure 9. Normalized variations in annual TWS change (blue lines) and annual precipitation (red lines)
after shifted month. (a) YRB; (b) SRB; (c) HRB; (d) YB; (e) HuaiRB; (f) LRB; (g) ShRB; (h) XbRB; (i)
XnRB; (j) PRB.

As aresult, 56.7% of the regions across China are dominated by decreasing TWS trends in spring
with a declining rate of from —30 mm/a to 0 mm/a (Figure 11a), while less than half of the regions in
China are dominated by increasing TWS trends. However, we found spatial heterogeneity of TWS
changes at finer spatial resolutions. The east part of the YRB is experiencing increasing TWS trend
which accounts for 57.5% of the total area of the YRB, while the major areas of the SRB, the PRB and the
ShRB are characterized by increasing TWS trends as well, and the percentages of the areas are 97.1%,
74.4% and 85.6%, respectively (Figure 11a). In other words, more than half of the areas are dominated
by decreasing TWS trends with varying declining rates in the HRB (100%), the YB (85.3%), the HuaiRB
(77.8%), the LRB (94.7%), the XbRB (62.8%) and the XnRB (88.6%).

It can be seen from Figure 11b that the TWS trend is ranging from —30 mm/a to 30 mm/a in
summer during 2003-2015, which is the same as the range of TWS trend in spring. However, the
declining rate of the TWS in the HRB in summer is a little greater than that in spring (Figure 11b).
The exploitation of the groundwater is the major cause behind the larger decreasing magnitude of
the TWS since the agricultural irrigation excessively withdrawal groundwater from deep wells every
year [58,59]. Asshown in Figure 11c,d, the areas with increasing TWS trends in northern China
shrink in autumn and winter, while the ones in southeast China expand in autumn and winter. More
specifically, the areas with increasing TWS trends in the ShRB are 85.6% and 80.8% in spring and
summer, respectively, and then it drops to 69.9% in autumn and 69.2% in winter. In addition, the areas
with increasing TWS trend in the PRB are 74.4% and 55.1% in spring and summer, respectively, and
then it rises to 97.4% in autumn and 100% in winter.
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Figure 10. The linear relation between annual TWS changes and annual precipitation variations of
basins in China. (a) YRB; (b) SRB; (c¢) HRB; (d) YB; (e) HuaiRB; (f) LRB; (g) ShRB; (h) XbRB; (i) XnRB; (j)
PRB. The black lines are obtained by ordinary least squares fitting, and the parameters are marked in
the associated chart title. The error bars are at 95% confidence intervals. Signif. codes denote the range
of p value, i.e., ***: 0-0.001; **": 0.001-0.01; *": 0.01-0.05; “.": 0.05-0.1; ‘[]": 0.1-1.

Table 4. The percentage areas in decreasing trend of each basin in seasons and year with L denotes less
than 50% and G denotes greater than 50%.

Basin YRB SRB HRB YB HuaiRB LRB ShRB XbRB XnRB PRB CHN
Spring L L G G G G L G G L G
Summer L L G G G G L G G L G
Autumn L L G G G G L G G L G
Winter L L G G G G L G G L G
L L G G G G L G G L G

Year
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Figure 11. Spatial patterns of seasonal TWS trend and annual TWS trend derived from linear least
squares regression in 2003-2015; (a) spring (March, April, and May, MAM) trend; (b) summer (June,
July and August, JJA) trend; (c) autumn (September, October, and November, SON) trend; (d) winter
(December, January and February, DJF) tren€(e) annual trend.

4.5. Influences of Climate Modes and Precipitation to Variations of TWS

The results from Figures 4 and 5 suggest that all the climate modes investigated in this study,
namely, ENSO, I0OD, NAO and PDO have influenced to variations of TWS. Meanwhile, linkages
between precipitation and TWS can be seen from Figures 8 and 9. Previous studies have also testified
about the relation between precipitation and TWS [60,61]. Voss et al. [19], Forootan et al. [62] and
Forootan et al. [63], for example, demonstrated that a recurring decrease of seasonal precipitation
brings about a decline of TWS. Hirschi et al. [64] found similar influence for 37 river basins in Europe,
Asia, North America, and Australia. Other studies have indicated that large-scale climate modes, such
as ENSO, IOD, NAO, Atlantic Multidecadal Oscillation (AMO) and PDO, had considerable effects
on the fluctuation of precipitation over monsoon areas of China in a warming climate, which in turn
would indirectly change the water storage [65-68].
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5. Conclusions

In this study, we investigated the relationship between TWS and precipitation for 10 basins in
China during 2003-2015 based on GRACE data in combination with precipitation data from GPCP,
GPCC, and NOAA. The impacts of the climate drivers, such as ENSO, IOD, NAO and PDO on TWS
variation in China were also identified and discussed.

The results showed that the variations in TWS are correlated with the large-scale climate variability
since there are varying significant correlations between the climate indices and TWS across China.
However, the influence of each climate model on water storage dynamics varies in regions of China
with different time lags. Basically, the sphere of influence on TWS is relatively larger under the climate
events of ENSO, IOD and PDO; and the discussion on the linear relationship between TWS change
and precipitation variation provides the evidence that there is normally a good consistency between
the two variables in most basins except XbRB. Then we further analyzed the TWS trend at the seasonal
scale, and found that the characteristics of TWS trend are similar in spring and summer, while the
results in autumn and winter have common magnitude and spatial pattern as well.

The current results present evidential information of the influence of climatic variability on China’s
water storage variations, and also exhibit the value of GRACE observations in the hydroclimatic study
as a vital indicator of water storage dynamics, and therefore, can be helpful to the management of
water resources.
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