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Abstract 

A novel cellular automaton (CA) for simulating biological membrane rupture is proposed. Constructed via 
simple rules governing deformation, tension, and fracture, the CA incorporates ideas from standard 
percolation models and bond-based fracture methods. The model is demonstrated by comparing 
simulations with experimental results of a double bilayer lipid membrane expanding on a solid substrate. 
Results indicate that the CA can capture non-trivial rupture morphologies such as floral patterns and the 
saltatory dynamics of fractal avalanches observed in experiments. Moreover, the CA provides insight into 
the poorly understood role of inter-layer adhesion, supporting the hypothesis that the density of adhesion 
sites governs rupture morphology. 

 

Introduction 

Under mechanical stress, biological membranes have been shown to display non-trivial pore 
morphologies and dynamics1 in addition to the previously known circular transient pores. The peculiar 
morphologies comprise large flower-like shapes growing continuously referred to as ‘floral’ pores, and 
fractures appearing intermittently in ‘fractal’ patterns. Both rupture types occur in the exact same 
experimental conditions with the identical membrane compositions, solid substrates and ambient buffers. 
The factors which influence the fate of the rupture mode are not exactly understood and the detailed 
mechanisms remain to be elucidated. 
 
We hypothesize that the density of adhesion sites of the membrane to the underlying layer, defines the 
rupture type. In our experiments, where a double lipid bilayer membrane (DLBM) is formed on a solid 
substrate via self-spreading of a lipid reservoir, the adhesion is most likely a result of pinning between the 
two bilayers mediated by Ca2+1, 2. In a recently reported experimental system where fractal pores in solid-
supported membranes were observed, the adhesion was created via biotin-avidin bridging of the two 
bilayers3. The water layer between the two bilayers in a DLBM stack through which the Ca2+-mediated 
pinning is established, is maximum a few tens of nanometers thick. An intact DLBM with a diameter of 
100 μm and an inter-bilayer space of 10 nm has a volume of about 750 fL4. This makes the direct 
observations, for instance the visualization of the labeled Ca2+ ions, challenging. Therefore, we utilize 
computer modelling, which allows us to independently tune the potentially influential parameters 
affecting the rupture morphology to understand both their individual impact and, consequentially, the 
detailed mechanisms involved.   
 
Researchers have noted similarity between the floral and fractal lipid rupture morphologies and the 
interaction of immiscible fluids in porous media1, 4. In particular, lipid fracture is related to viscous 
fingering and percolation phenomena. These types of instabilities have been of interest to researchers 
investigating oil recovery5, fluid mixing 6, soil physics7, and biological tissue and organ engineering8, 9. 
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One of the most well-established computational paradigms for exploring percolation and growth 
phenomena is spatial simulation, of which cellular automata (CA) are a prominent example10, 11. CA trace 
their roots back to von Neumann’s desire to create self-replicating machines12, 13 and were popularized by 
Conway’s discovery of the Game of Life14. Subsequent academic interest in CA owes much to the work of 
Wolfram15. A cellular automaton consists of a grid of cells (commonly in one or two dimensions) that are 
assigned a specific state (or states). In the simplest of CA, this state is binary, 0 or 1, on or off, alive or 
dead, etc.; although, this is not a necessity. These states evolve through the application of a few very 
simple rules, e.g. “randomly select a 0 neighbor of a 1 cell and make it 1.” Despite their simplicity, CA are 
able to capture a range of complex behavior, even emergent behavior, in the areas of growth, aggregation, 
segregation, and percolation10, 11.  
 
While CA are relatively simple, numerical methods for modeling fracture typically are not. This is due to 
the fact that ruptures involve discontinuities that hamper discretizations based on spatial derivatives. 
Peridynamics is a continuum mechanics theory that avoids this problem by being based on an integral 
equation of motion16, 17. In its mesh-free discretization, it models particles interacting via bonds, which 
can break causing fracture18. Our recently published mesh-free peridynamic model of biomembrane 
ruptures revealed that the fluid biological membranes favoring fractal morphologies could adopt a non-
zero shear modulus19. While the model captures circular and floral patterns and their associated 
dynamics, it does not capture the saltatory dynamics of fractal rupture nor the very fine fractal patterns 
observed experimentally. This is likely due to two primary causes. First, we used a very simple linear fluid 
model for the lipid bilayer. Adapting a more appropriate constitutive equation, e.g. a Helfrich model, to 
the peridynamic theory would lead to more accurate results. In addition, our peridynamic approach 
utilized mass scaling to increase the stable time-step size and reduce simulation times. This may have 
negatively impacted the accuracy of the rupture dynamics. Even with GPU parallelization and mass scaling, 
a peridynamic simulation of the aforementioned experimental system takes on the order of tens of 
minutes.  
 
In this work, we propose a new innovative CA incorporating ideas from both standard percolation models 
as well as our previous peridynamics model that captures circular, floral, and fractal avalanche 
morphology and their associated dynamics in single framework. In contrast to our previous peridynamic 
model, a single CA simulation runs on the order of minutes serially on a typical desktop computer. We 
illustrate the CA model through simulations of an expanding DLBM on a solid substrate and compare with 
experimental results. The goal of this new model is to determine the rules underlying pattern formation 
and saltatory dynamics of lipid membrane rupture in order to gain insight on the role of pinning in this 
process, which is still poorly understood. This is important because a better understanding of pore 
formation in biological membranes can help in finding possible mechanisms behind cell-integrity related 
diseases20-22 and also would help establish a ground  for improvement of related medical treatment 
methods, e.g., drug delivery23, gene therapy24. 
 
Materials and Methods 

Preparation of lipid suspension: 
Lipids and lipid fluorophore: Soybean Polar Lipid Extract(SPE); E. coli Polar Lipid Extract(ECPE); 1-oleoyl-2-
(6-((4,4-difluoro-1,3-dimethyl-5-(4-methoxyphenyl)-4-bora-3a,4a-diaza-s-indacene-2-
propionyl)amino)hexanoyl)-sn-glycero-3- phosphoethanolamine (TopFluorTM TMR PE), were obtained 
from Avanti Polar Lipids (AL, USA). 
Buffers: PBS:  5 mM Trizma Base (Sigma Aldrich), 30 mM K3PO4 (Sigma Aldrich), 30 mM KH2PO4 (Sigma 



3 
 

Aldrich), 3 mM MgSO4·7H2O (Sigma Aldrich) and 0.5 mM Na2EDTA (Sigma Aldrich). The pH was adjusted 
to 7.4 with H3PO4. HEPES without CaCl2 (for rehydration): 10 mM HEPES (Sigma Aldrich), 100 mM NaCl 
(Sigma Aldrich), the pH was adjusted to 7.8 with NaOH. HEPES with CaCl2 (ambient buffer for spreading): 
10 mM HEPES (Sigma Aldrich), 100 mM NaCl (Sigma Aldrich), 2,5 mM or 4 mM CaCl2 (Sigma Aldrich). The 
pH was adjusted to 7.8 with NaOH. Above 4 mM Ca2+, the spreading and rupturing occurs too rapid, 
making microscopy observations difficult. Below 0.8 mM Ca2+ spreading does not occur25. For the 
concentrations in between we have not yet been able to determine a direct relation between the 
concentration of Ca2+ and the density of the pinning points. Direct experimental observation is not 
straight-forward. 
Lipids and lipid-conjugated fluorophore, all dissolved in chloroform, were mixed in the following ratios: 
SPE 50 wt %, ECPE 49 wt %, TopFluor TMR PE 1 wt %. The volumes corresponding to the specified mass 
fractions of lipids, were transferred into a round-bottom flask leading in total to 3000 µg of lipids in 300 
µl chloroform (10 mg/ml). The solvent was evaporated in a rotary evaporator at -80 kPa for 6 hours, to 
form a dry lipid cake at the bottom of the flask. 3 ml of PBS buffer and 30 µl of glycerol were added to the 
flask and the mixture was placed at +4°C overnight for swelling. The next day the flask was placed in an 
ultrasonic bath sonicator (VWR) at 30 °C for 15–30 s, to form a lipid suspension containing giant multi- 
and unilamellar vesicles. 
Surface fabrication:  
SiO2 coatings were produced in the clean room facility MC2 at Chalmers University of Technology, Sweden 
using MS 150 Sputter system (FHR Anlagenbau GmbH). All depositions were applied on glass cover slips 
(#1, Menzel-Gläser) which were pre-cleaned with oxygen plasma 2 min at 50 W using Plasma Therm 
BatchTop PE/RIE m/95. The final film thickness of SiO2 was, for fractal: 10 nm, for mixed patterns: 84 nm 
and for floral pore formation: 15 nm. 
Spreading: 
4 µl of the stock lipid suspension described above, was placed on a clean glass cover slip and desiccated 
for 20 minutes. The resulting dry film was rehydrated with HEPES buffer without CaCl2 for 3 minutes. 
The re-hydrated sample containing lipid vesicles were placed on top of a SiO2 coated glass slides, in HEPES 
buffer with Ca2+ which leads to spreading of the multilamellar lipid vesicles (reservoirs) in form of a double 
lipid bilayer membrane (Fig. 1).   
Microscopy: 
A laser scanning confocal microscope (Leica SPX8, Germany) was used to visualize the experiments. A 
white light laser source was used for excitation of TopFluorTM TMR PE at 544 nm and emission was 
collected at 560-600 nm by a photomultiplier tube detector. All fluorescence micrographs were digitally 
enhanced and false colored. 
 
Numerical Model: 
Like the authors’ previous peridynamic study19, we consider only the expanding and rupturing distal lipid 
bilayer in creating a two-dimensional model of the system. Accordingly, our CA are contained within a 
𝑛 × 𝑛 square region of cells. Initially, all cells within a radius 𝑅$  are considered to be part of the lipid 
bilayer. In each generation, the radius of the membrane is increased by one cell, which continues until a 
final radius 𝑅% = 𝑛

2(  is reached, whereupon the simulation ends. Both 𝑛 and 𝑅$  are user-specified 
parameters. 

In addition to a Boolean state governing whether or not a cell is within the lipid membrane, we assign 
states describing whether or not a cell is a pinning site (Boolean), its tension (floating point number), and 
whether or not it is ruptured (Boolean). Pinning location and behavior are initialized stochastically, while 
tension and rupture are governed by fixed stiffness and critical tension parameters, respectively, which 
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are assigned material properties. We describe pinning, tension, and fracture in more detail in the following 
sections. All simulations were performed using a specially-written program in Matlab 2015b (MathWorks), 
available in the electronic Supporting Information (SI), run on a desktop iMac computer. 

 

Pinning 

In the real physical system, pinning between distal and proximal layers is widespread with locations that 
are unpredictable. To account for this variability in our numerical model, we assign two pseudorandom 
numbers 𝜃*, 𝜃, ∈ [0, 1] to all cells within the lipid. Cells with 𝜃* less than a user-defined pinning 
probability 𝑃3$4 become a (dilute) pinning site. If, in addition, a pinned cell with 𝜃, less than a user-defined 
cluster probability 𝑃56789:;  become the root of a (dense) pinning cluster. 

To create the cluster, we use a site percolation model10. First, cells in Moore’s neighborhood (i.e., the eight 
adjacent cells) of the cluster root become a pin with a probability 𝑃3:;5  based on their 𝜃* value. Next, cells 
in Moore’s neighborhood of these new pins also become a pin with a probability 𝑃3:;5  based on their 𝜃* 
value. This process is continued recursively until there are no more neighbors with 𝜃* < 	𝑃3:;5, at which 
point the cluster has reached its terminal size. Fig. 1 shows the schematic representation of the 
hypothesized dilute and dense pinning as well as a typical CA snapshot with pinning sites in both dilute 
and dense cases present. 

We note that our CA is deterministic. While the system is initialized pseudorandomly, the values of 𝜃* and 
𝜃, as well as the underlying rules remain fixed throughout the simulation. 

 

Tension 

As the distal lipid layer expands, its tension increases. The presence of pinning sites acts as local tension 
raisers. Accordingly, all pinned cells in our model are assigned a tension 𝑇 comprising both the spreading 
tension 𝑇8 and a pinning tension 𝑇3. In the physical system, the spreading is driven by a gradient between 
the surface adhesion tension and the internal tension of the multilamellar reservoir (i.e., Marangoni flow). 
Approximating the membrane as incompressible, the spreading tension at points located distance 𝑟 from 
the membrane center is4 

𝑇8 = @ABCDEFGHIJAKEFEKLHGK
MNOKK

P 𝑟 + 𝑇;:8:;RS$;,    ( 1 ) 

where 𝑇TUV:8$S4 is the tension due to the lipid’s adhesion to the surface, 𝑇;:8:;RS$;	is the tension of the 
multilamellar reservoir, and 𝑅57;;  is the current radius of the lipid membrane. For an expanding 
membrane, 𝑇TUV:8$S4 > 	𝑇;:8:;RS$;.  

The pinning tension arises from the expanding membrane pulling on the fixed pinned cells. We assume a 
linear model for the pinning tension governed by a stiffness parameter 𝑐 

𝑇3 =
5(MNOKKJ;)

M[
,        ( 2 ) 

which is higher for those pinned cells closer to the center of the membrane. This is in contrast to the 
spreading tension, which is higher for those cells nearest outer edge of the membrane.  In our model, 
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we choose 𝑇TUV:8$S4, 𝑇;:8:;RS$;, and 𝑐 such that the total tension 𝑇 = 𝑇8 + 𝑇3 is highest at the center of 
the membrane (i.e., the pinning tension dominates) as that gives the best agreement with experiments. 
Figure 2a shows typical tension profiles for several 𝑅57;;  values in a CA with 𝑅% = 100. 
 

 

Figure 1 | Overview of the experiment and the model. (a) The experiment starts with placing a multilamellar 
reservoir on a SiO2 substrate which leads to spreading of the reservoir as a circular double lipid bilayer membrane 
(DLBM). The peripheries of the circular membrane are depicted open to ease the understanding of the reader. In 
reality the edges are closed (inset) to avoid the exposure of the hydrophobic moieties of the phospholipid molecules 
to the aqueous buffer. (b) A simulation snapshot showing pinning points (bright red regions). The model is 
investigating the hypothesis that the type of rupture morphology and associated rupture dynamics, are determined 
by the density and distribution of pinning. The pinning occurs due to the Ca2+ bridging the two bilayers. (c) The dilute 
pinning, relatively larger space in between the pinning sites, cause large pores or floral patterns. (d) The dense 
pinning, where Ca2+ ions are packed closely, lead to fractal ruptures. In the simulations, the dilute pinning is 
programmed by randomly assigning cells within the lipid area as pinned; and dense pinning, by randomly placing 
pinned clusters based on a site percolation algorithm. 

 
Fracture  

In every CA generation, each pinned cell’s tension 𝑇 is checked against a critical tension 𝑇5;$9. If the tension 
exceeds the critical tension, the cell is fractured. This straightforward type of fracture criteria is common 
among bond-based mechanics models, of which our prior peridynamic work is an example19. The growth 
and spread of the rupture are determined by the type of pin the cell is (Fig. 2b-g). For dilute pins (Fig. 2b-
d), fracture is an increasing circular pore, the radius of which grows by one cell in each CA generation. 
Cells within this radius are fractured regardless of their pinning state. If a pore of radius 𝑅3S;: reaches 
another pinned cell that hasn’t fractured, it is immediately fractured (regardless of tension). Moreover, 
all cells within a radius of 𝑅3S;: of the newly fractured cell are fractured as well. This process of pore 
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growth possibly initiating new pores is done recursively within a given CA generation and models the 
continuous linear increase in floral pore area observed experimentally1.   
 
 

 

Figure 2 | Details of pore formation in the CA model. (a) The total tension 𝑇 = 𝑇8 + 𝑇3  as a function of radius 
𝑟 is shown for various 𝑅57;; and a final radius 𝑅% = 100 when the 𝐶𝑇𝑃	 = 0.  (b-d) Typical fracture event for dilute 
pins. When a floral pore reaches an unbroken pin (b), a new circular pore forms at that pin and grows radially 
outward. The new pore contacts neighboring unbroken pins, causing new pores to form (c), which grow and cause 
other neighboring pins to rupture (d). (e-g) Typical fracture event for cluster pins. A small broken cluster begets an 
offshoot cluster of pins (e), which ruptures under higher tension in a succeeding generation, begetting another 
offshoot cluster (f), which ruptures in turn during a succeeding generation (g). 

 

For pinned clusters (Fig. 2e-g), rupture growth proceeds differently. Once the critical tension is exceeded 
by a single cell in a cluster, all cells in the cluster (and any cluster pin cells in adjoining clusters) are 
fractured simultaneously. Rather than releasing energy by creating a growing circular pore, fractured 
clusters create a chain of many small static pores. In addition, they generate a new unbroken offshoot 
cluster with an offshoot probability 𝑃S%%8VSS9. This is a realistic assumption since it is anticipated that in 
the experiments when a pore opens, Ca2+ ions in the ambient buffer rapidly penetrates into the inter-
bilayer space, dynamically inducing further pinning. This offshoot cluster is rooted at the neighboring cell 
with the lowest 𝜃* such that 𝜃* < 	𝑃S%%8VSS9 and created following the same site percolation process 
described earlier. If there is no such cell meeting this criterion, no offshoot cluster is formed. The offshoot 
cluster is initialized with a reduced tension 
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𝑇; = 𝐴𝑃 ∗ (𝑇5;$9 − 𝑇 ;:Ta),      ( 3 ) 

where 𝑇 ;:Ta was the tension that caused the initiating cluster to break and 𝐴𝑃 is a positive avalanche 
parameter. The reduced tension accounts for the energy released by the fracture of the initiating cluster 
and subsequent relaxing of the membrane. 𝐴𝑃 governs the saltatory behavior of fractal rupture 
observed in experiments 1, 3. When 𝐴𝑃 = 0,  saltatory growth is suppressed. As 𝐴𝑃 is increased, the 
delay between cluster ruptures becomes more pronounced. A more detailed analysis of this behavior is 
given in the Results and Discussion section.  
 
 

 

Figure 3 | Effective parameters for location of nucleation. (a-b) Simulation snapshots showing the nucleation 
of fracturing at (a) periphery for non-zero cluster tension parameter (CTP) and (b) at the center for CTP = 0 (c) The 
CTP controls the extent to which cluster size affects the modified cluster tension 𝑇56789:;, here shown for 𝑇5;$9 = 0.8.  

 
As noted in the previous section, the tension is defined such that it is highest towards the center of the 
membrane. Thus, fracture tends to start at those cells close to the center. In our experiments, we observe 
that fractal ruptures sometimes initiate at the outer edge rather than the center of the membrane.  To 
account for this, we modify the pinning tension (2) for cluster pins based on the number of cells in the 
cluster 𝑁56789:;  

𝑇3 =
(MNOKKJ;)

M[
+ 𝑇56789:;,      ( 4 ) 

where  
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𝑇56789:; = 𝑇5;$9(1 − 𝑁56789:; ∗ 𝐶𝑇𝑃eNfOFgEK)    ( 5 ) 

and 𝐶𝑇𝑃 ∈ [0, 1] is a cluster tension parameter used to differentiate the behavior of small clusters (i.e., 
those for which 𝑁56789:; < 20) versus larger clusters.  For 𝐶𝑇𝑃 > 0.5, 𝑇56789:;  increases the tension on 
clusters of all sizes up to a maximum of 𝑇5;$9; although, its effect is larger on large clusters. In this case, 
ruptures will tend to start at the outer edge (Fig. 3a). On the other hand, for 𝐶𝑇𝑃 < 0.5, 𝑇56789:;  reduces 
the tension on small clusters while increasing the tension of larger clusters. In this case, ruptures tend to 
initiate towards the center of the lipid (Fig. 3b). Figure 3c shows 𝑇56789:;  as a function of cluster size for a 
range of 𝐶𝑇𝑃 values. 

 

Results and Discussion 

We start the experiments by placing a lipid reservoir, a multilamellar phospholipid vesicle (MLV), on a SiO2 
surface. Upon contact with the surface, the MLV spontaneously starts to wet the surface as a circular 
double lipid bilayer membrane (DLBM) (Fig. 1a)1,26. The periphery of the circular membrane in Figure 1a 
is depicted open, to facilitate the understanding of the reader. In reality the DBLM is intact, and the edges 
are closed (inset) to avoid the exposure of the hydrophobic moieties of the phospholipid molecules to the 
aqueous buffer. The continuous spreading increases the tension of the membrane and when exceeds the 
lysis tension (5–10 mN m−1), the membrane ruptures1. The morphology and dynamics of the 
biomembrane ruptures mainly follow two forms: large floral pores which continuously progress; and fine, 
fractal pores which occur intermittently, with waiting times in between19,1). Occasionally, we observe both 
ruptures on the same membrane patch. In this model, we hypothesize that the number and distribution 
of the pinning sites, most possibly caused by the Ca2+ ion bridging the two bilayers, determine the 
morphology of the rupture (Figure 1b-d). Since lipid membranes are known to intrinsically contain 
defects27, 28, allowing the penetration of ions through the membranes, and since the micrometer-sized 
pores forming in our experiments would promote further Ca2+ binding between the two bilayers, we 
conclude that Ca2+-mediated inter-bilayer binding is most likely responsible for the pinning. An alternative 
means of pinning could be originating from surface defects29, 30 which would need to extend through 
nanoscale pores in the proximal (lower) bilayer and pin directly to the distal (upper) bilayer. The rupturing 
bilayer that is in the focus of our experiments however, is residing on the surface adhered bilayer and not 
directly on the solid substrate. This is an important distinction, as the lipid bilayers directly adhered onto 
a high energy substrate possesses different dynamics, do irreversibly strongly fuse to the surface and do 
not exhibit rupturing1. Rupturing only occurs if the bilayer moderately adheres to the layer underneath, 
and is sufficiently fluid to build up tension gradients. This is the case for the distal bilayer which can slide 
on the thin water layer (10 nm) residing on the proximal bilayer, i.e., in between the two stacked bilayers. 

Figure 1b shows a snapshot from our simulations, where pinning sites both individual and in clusters, have 
been randomly positioned throughout the circular patch (bright red). The singular pinning points 
represent individual or very few Ca2+ ions (Fig. 1c); and the clusters represent dense regions of Ca2+ 
bridging between the two layers (Fig. 1d). 

Figure 4 shows membranes on a solid substrate and the corresponding CA simulations displaying the two 
distinct rupture morphologies, floral and fractal, as well as the combination of both (SI Movies). The 
membrane in the experiments is doped with a fluorescence dye, which makes it visible. The micrographs 
are taken from top view. In the experiments when a pore opens, the proximal membrane becomes visible 
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through the opening in the distal membrane, represented by half the light intensity1. The lipid material 
which initially resides in the area before the pore opens, now migrates toward the edges of the lipid patch. 
In the simulations, different colors represent from the most to less intense red: the pinning sites, the 
bilayer (distal membrane), fractured area (the proximal membrane). The background (surface) is depicted 
as black.  

The key parameters used in the CA simulations are given in Table 1. These were all chosen based on 
parameter studies to best match the experimental data and guided by the physical considerations 
described in the Numerical Model section. Specifically, we tuned the parameters to yield not only good 
qualitative agreement with the observed rupture patterns, but also agreement with the dynamics of the 
rupture growth. 

The opening and propagation of a floral pore in a circular membrane patch can be observed in Figure 4a 
in an experiment, and Figure 4b in a simulation where g (= 𝑅57;; − 𝑅$) represents the CA generation 
number of the snapshot. The key parameters in the simulation are 𝑃3$4 = 2% and 𝑃56789:; = 0%, 
meaning that all the pins in the model are of the dilute type and there are no pinned clusters. In 
experiments, the floral rupture is seen to advance along multiple fronts across membrane, which our CA 
is able to capture. We note the similarity of the boundary of the rupture front between the simulation 
and experiment. In general, increasing 𝑃3$4 (i.e., increasing the number of pin sites) would lead to smaller 
circular ruptures and a more varied rupture front boundary, whereas decreasing 𝑃3$4 would lead to larger 
circular ruptures and a more uniform rupture front boundary. Both cases have been observed 
experimentally. 

 

Table 1 | Parameters used in the cellular automaton simulations shown in Fig. 4. 

 Meaning Floral Fractal Mixed 
𝑷𝒑𝒊𝒏 Probability cell is pinned (dilute) 2% 0.4% 4% 
𝑷𝒄𝒍𝒖𝒔𝒕𝒆𝒓 Probability a pinned cell becomes root of a pin cluster (dense) 0% 100% 0.08% 
𝑷𝒑𝒆𝒓𝒄 Probability cells adjacent to pin cluster cell become pinned NA *see Eq (6) 36% 

𝑷𝒐𝒇𝒇𝒔𝒉𝒐𝒐𝒕 Probability a ruptured cluster generates a new pinned cluster NA 70% 70% 
𝑻𝒂𝒅𝒉𝒆𝒔𝒊𝒐𝒏 Tension due to lipid adhesion to surface 0.2 0.2 0.2 
𝑻𝒓𝒆𝒔𝒆𝒓𝒗𝒐𝒊𝒓 Tension due to MLV 0.1 0.1 0.1 
𝑻𝒄𝒓𝒊𝒕 Critical tension threshold beyond which pinned cell ruptures 0.8 0.75 0.8 
𝑻𝒄𝒍𝒖𝒔𝒕𝒆𝒓 Additional cluster tension Off Off On 
𝑐 Pinned cell bond stiffness 1 1 1 
𝑹𝒊 Initial lipid radius 100 100 100 
𝑹𝒇 Final lipid radius 150 150 150 
𝐴𝑃 Avalanche parameter NA 20 20 
𝐶𝑇𝑃 Cluster tension parameter NA NA 0.75 

 

Figure 4c and d shows examples of the purely fractal rupture morphology in an experiment and a 
simulation, respectively. The key difference in the simulation in this case versus the floral case is that we 
now set 𝑃56789:; = 100%, meaning that all pins belong to a cluster and there are no dilute pins. In order 
to match the experiments in Figure 3c, in which ruptures begin toward the center, we turn 𝑇56789:;  off. In 
addition, we use a non-constant function for 𝑃3:;5  
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𝑃3:;5 = 𝑙𝑛 ~MNOKK,M[
+ 1�.      ( 6 ) 

For the parameters used in this study, this leads to 0.288 ≤ 𝑃3:;5 ≤ 0.406. The motivation for (6) is based 
in part on the observation of some experiments that clusters appear to become larger as the radius 
increases and also on one of the fundamental concepts of percolation theory—spanning clusters. 
Spanning clusters are those that fully extend across at least one dimension of a CA. Percolation models 
are marked by a phase transition at a critical threshold 𝑃3:;55;$9 , near and beyond which the chances of a 
spanning cluster appearing increases dramatically10. For a two-dimensional system utilizing Moore’s 
neighborhood, such as the one we use in this study, 𝑃3:;55;$9  is approximately 0.407 10, 31, which is just above 
the upper bound of (6). At 𝑃3:;5 = 𝑃3:;55;$9 , clusters are scale-invariant (i.e., are truly fractal in nature)10, 
and, in 2D, spanning clusters have a fractal dimension of 91/4832. In both simulation and experiment, we 
note that the ruptures begin towards the center of the membrane and grow into fractal structures that 
nearly reach the outer edge while trapping “islands” of lipid in the interior. We note that we use a slightly 
lower 𝑇5;$9 in this case versus the other considered cases (see Table 1) in order to better match the 
experimental images. In general, we find that 𝑇5;$9 between 0.7 and 0.8 matches experimental data well 
across the range of observed rupture morphologies. 

Occasionally, some membrane patches display fractal and floral ruptures simultaneously. Figure 4e shows 
a typical experiment where the both types of ruptures are visible on the same patch. Figure 4f shows the 
snapshots from the corresponding CA simulation. We note that the ruptures in Figure 4e are primarily 
floral with only 2-3 identifiable clusters near the outer edge that are relatively small. Given the apparent 
dominance of dilute pinning, we use a very small cluster probability of 𝑃56789:; = 0.08%. In addition, since 
the clusters are relatively small, we use a constant percolation probability sufficiently far from the critical 
threshold (𝑃3:;5 = 36%). To account for the clusters initialing closer to the membrane edge, we use a 
non-zero 𝑇56789:;  with a 𝐶𝑇𝑃 = 0.75. Comparing experiments with simulation, we see that both initially 
rupture in a fractal cluster before eventually breaking into a floral pattern, which spreads throughout.  
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Figure 4 | Experiments and corresponding simulations. The opening and propagation of a floral pore in a 
circular membrane patch from top view in (a) an experiment and (b) simulation. The membrane in the experiments 
is doped with a fluorescence dye which makes it visible. In the simulations different colors represent from the most 
to less intense: the pinning sites, the bilayer (distal membrane), fractured area (the proximal membrane) and the 
background (surface). Fracturing of a circular membrane patch in (c) an experiment and (d) in simulations, from top 
view. The fractures appear in fractal morphology therefore are called the fractal ruptures. The membranes displaying 
the fractal and floral ruptures simultaneously (e) in an experiment and (f) in simulations. g represents the CA 
generation number. 
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In order to characterize the fractal rupture morphology, we calculate their fractal dimension using the box 
counting method33, 34.  In this approach, binary images of the rupture pattern are covered with sets of 
square boxes of successively decreasing size. The number of boxes including a piece of the rupture are 
recorded as a function box size in pixels. This relation, in logarithmic scale, yields an approximately linear 
plot, whose slope is the fractal dimension D. In Figure 5, we compare the results of the box counting 
method for experimental and simulated fractal ruptures shown in the second panels of Figure 4c and d. 
We take close-up images of the ruptures (Fig. 5a and c) and convert them to binary images (Fig. 5b and d, 
respectively) where ruptured regions are assigned the value 1 and non-ruptured regions are assigned the 
value 0. The box counting dimension can be approximated from the graphs shown in Figure 5e by fitting 
a line to the data and computing the slope. This approach yields an approximate fractal dimension of 
𝐷:�3 ≈ 1.57 for the experimental rupture and 𝐷�� ≈ 1.65 for the simulation (𝑃3:;5 = 0.376). These 
values are close to each other, and in fact, we see generally good agreement between experiment and 
simulation in the box counting results across a range of box sizes (Fig. 5e). These results are also in line 
with those of the experiments and simulations in our previous work19. We note that, despite the non-
integer dimension, these ruptures are not truly fractal in nature. The scaling behavior of lipid membrane 
is limited when approaching the molecular level, and the scaling behavior of the CA is limited by the finite 
number of cells used. 

 

Figure 5| Fractal dimension comparison. Close-up snapshots of fractal rupturing in experiment (a) and 
simulation (c) corresponding to the second panels in Figure 4c and d, respectively. These snapshots are converted 
into binary images (b, d) for application of a box-counting algorithm to determine fractal dimension. (e) The results 
of the box counting algorithm showing the number of boxes including part of the rupture versus the size of the boxes 
covering the binary images. The slope of the curves yields the fractal dimension D. The fractal dimensions shown are 
computed via the slope of a linear fit of the data. 

 

Besides the peculiar characteristic morphology of the fractal pores, the rupture dynamics also differ from 
the floral ruptures as well as from the most commonly observed circular pores in biomembranes: the 
fractal ruptures appear intermittently where, in between each occurrence, there is an eventless period. 
This waiting time corresponds to the time required for the membrane tension to build up again due to 
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ongoing adhesion. When a pore opens, the membrane relaxes and, for the next rupture to appear, the 
membrane tension needs to increase again to reach to critical point of lysis. The CA model we have 
established can successfully anticipate this behavior through the reduced tension 𝑇;  defined in (3) (Fig. 
6a-d). The reduced tension is the expression of membrane relaxation on new offshoot clusters and is 
governed by the avalanche parameter 𝐴𝑃. As 𝐴𝑃 is increased, the waiting time between fractal ruptures 
increases. This behavior in a typical simulation is shown for several 𝐴𝑃 values in Figure 6d, where the 
percentage of fractured lipid cells is plotted against the CA generation. Jumps in these plots correspond 
to the breaking of a cluster. We see that the number of jumps tends to decrease and the number of 
generations between jumps tends to increase as 𝐴𝑃 increases.  

The saltatory behavior in fractal rupture growth is in stark contrast to the smooth growth observed in 
floral ruptures. Figure 6h shows typical floral growth behavior in the CA for several values of 𝑃3$4. Rather 
than proceeding in starts and stops, floral growth is steady and approximately logarithmic in nature. As 
𝑃3$4 increases, the number of pinning sites increases leading to more ruptures and an attendant increase 
in rupture area in a given generation. The plots of Figure 6 show good agreement with similar plots of 
both fractal avalanche and floral rupture behavior observed experimentally in previous studies1, 3. 

 

Figure 6| Simulated fractal and floral rupture dynamics. (a-c) Sequential CA snapshots depicting saltatory 
fractal rupturing corresponding to an avalanche parameter (AP) of 10. Fractured clusters form new offshoot pinned 
clusters, which eventually break and form additional cluster. (d) Plot showing the percentage of lipid cells fractured 
in the CA as a function of generation number for fractal ruptures, demonstrating the effect of the avalanche 
parameter on the intermittency of fractal rupture. Jumps correspond to a newly fractured cluster. (e-g) Sequential 
CA snapshots depicting floral rupturing corresponding to a 𝑃3$4 of 1%. (h) Plot showing the percentage of lipid cells 
fractured in the CA as a function of generation number for floral ruptures for different (governed by 𝑃3$4). Growth 
in floral ruptures occurs smoothly, unlike in fractal avalanche fracture. 

 

 



14 
 

Conclusion 

In this study, we have proposed a novel cellular automaton that can successfully capture the varied 
fracture morphology and dynamics of lipid membrane rupture using a small number of parameters and 
simple rules. Dilute pins with circular ruptures lead to floral rupture morphologies, which spread 
continuously across the membrane. Cluster pins formed through a percolation process lead to fractal 
ruptures. Fractal ruptures are punctuated by periods of relaxation, which cause the ruptures to spread 
intermittently.  

Cellular automata offer a couple advantages over spatio-temporal continuum models such as classical 
elasticity theory or peridynamics. First, they are based on a simple framework of rules and decisions, 
which make them more accessible to investigators from a broader range of backgrounds.  In addition, 
they are significantly less computationally expensive.  However, a CA is somewhat of an abstraction of the 
real lipid system, substituting “cells” for spatial area and “generations” for time. Its primary utility is in 
gaining insight into the pattern formation and avalanche dynamics and how it relates to pinning. We 
anticipate that the results of CA simulations can help inform the physics (e.g. constitutive relationships, 
tension, and pinning distribution) in a more-sophisticated continuum model. We anticipate a researcher 
modeling lipid growth and rupture could easily perform a parameter study to tune the parameters to their 
specific system and investigate a wide variety of combinations and their resulting rupture patterns. The 
model could also be expanded to allow for a user-defined pinning distribution, which would help in 
designing experiments aimed at controlling the pinning. 

It is important to note that the non-trivial ruptures do not occur in extreme conditions but at moderate 
tensile stress, with similar values to those observed in living cells35, 36. Such fractures are therefore 
anticipated to occur in vivo, although the findings are relatively new and currently very little is known 
regarding the formation of fractures in living organisms. An exception is the earlier observation of fractal 
pores reported in cultured Chinese Hamster Ovary cells’ plasma membranes1. It is high likely that such 
ruptures continuously occur in tissue as a result of cell-to-cell adhesion or due to pinning of the plasma 
membrane of the cells to the underlying support: cytoskeleton37. Understanding the rules and, ultimately, 
the physics that underpin these morphologies can help researchers establish the governing factors for the 
formation of the membrane ruptures thus membrane damage and repair.  
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