l‘)

Check for
updates

Validation of SHACL Constraints over
KGs with OWL 2 QL Ontologies
via Rewriting

23 and Steffen Lamparter?

Ognjen Savkovi¢! ™) Evgeny Kharlamov
! Free University of Bozen-Bolzano, Bolzano, Italy
ognjen.savkovic@unibz.it
2 University of Oslo, Oslo, Norway
3 Bosch Centre for Artificial Intelligence, Robert Bosch GmbH, Renningen, Germany
4 Siemens CT, Siemens AG, Munich, Germany

Abstract. Constraints have traditionally been used to ensure data qual-
ity. Recently, several constraint languages such as SHACL, as well as
mechanisms for constraint validation, have been proposed for Knowl-
edge Graphs (KGs). KGs are often enhanced with ontologies that define
relevant background knowledge in a formal language such as OWL 2
QL. However, existing systems for constraint validation either ignore
these ontologies, or compile ontologies and constraints into rules that
should be executed by some rule engine. In the latter case, one has to
rely on different systems when validating constrains over KGs and over
ontology-enhanced KGs. In this work, we address this problem by defin-
ing rewriting techniques that allow to compile an OWL 2 QL ontology
and a set of SHACL constraints into another set of SHACL constraints.
We show that in the general case the rewriting may not exists, but it
always exists for the positive fragment of SHACL. Our rewriting tech-
niques allow to validate constraints over KGs with and without ontologies
using the same SHACL validation engines.

1 Introduction

Constraints have traditionally been used to ensure quality of data in relational [5]
and semi-structured DBs [4]. Recently constraints have attracted considerable
attention in the context of graph data [16,17], and in particular for Knowledge
Graphs (KGs) (e.g, [35,36,42]), i.e., large collections of interconnected entities
that are annotated with data values and types [7]. KGs have become powerful
assets for enhancing search and data integration and they are now widely used
in both academia and industry [1,2,6,19,22-25,28,40,41]. Prominent examples
of constraint languages for KGs include SHACL [31], ShEx'; and of constraint
validation systems Stardog? and TopBraid®.

! https://www.w3.org/2001 /sw/wiki/ShEx.

2 https://www.stardog.com /.

3 https://www.topquadrant.com /technology /shacl /.
© Springer Nature Switzerland AG 2019

P. Hitzler et al. (Eds.): ESWC 2019, LNCS 11503, pp. 314-329, 2019.
https://doi.org/10.1007/978-3-030-21348-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21348-0_21&domain=pdf
https://www.w3.org/2001/sw/wiki/ShEx
https://www.stardog.com/
https://www.topquadrant.com/technology/shacl/
https://doi.org/10.1007/978-3-030-21348-0_21

SHACL Constraint Validation over Ontology-Enhanced KGs via Rewriting 315

KGs are often enhanced with ontologies, expressed in, e.g., the OWL 2 ontol-
ogy language [3]. Ontologies capture the relevant background knowledge with
axioms over the terms from the KG’s vocabulary e.g., by assigning attributes
to classes, by defining relationships between classes, composed classes, and class
hierarchies. We refer to ontology enhanced KGs asKnowledge Bases (KBs).

Ontologies significantly impact constraint validation over KGs. Indeed, con-
straints over KGs have Closed-World semantics, or Assumption (CWA) in the
sense that their validation over a KG boils down to checking whether sub struc-
tures of the KG comply with the patterns encoded in the constraints [8,12,15].
On the other hand, KBs have open-world semantics (OWA) in the sense that
ontologies allow to derive information from a KG that is not explicitly there.

As a result, constraint validation over KGs in the presence of ontologies
requires to bridge the CWA of constraints and OWA of ontologies [20,21,35,42].
A promising semantics that offers the bridge was proposed in [35]: given a set of
constraints C, ontology O, and KG G, validating the KB (O, G) against C requires
to validate all first-order logic models of O and G that are set-inclusion minimal
against C. This can be done via a rewriting mechanism: in order to validate (O, G)
against C, one can compile @ and C into a (possibly disjunctive) logic program
and then evaluate the program over G [20,35]. A disadvantage of this approach
is that constraint validation in the presence of ontologies requires a different
evaluation engine than in their absence: it requires an engine for disjunctive
logic programs, rather than an engine for validating graph constraints. However,
from practical point of view it is desirable to have a mechanism that allows to
evaluate constraints over KBs using the same engine as over KGs.

In this work we address this issue. We first formalise the problem of con-
straints rewriting over ontologies: we require that the result of rewriting is again
a set of constraints C’ in the same formalism as the original C. We then study the
existence of such a rewriting function for the constraint language SHACL and
the ontology language OWL 2 QL which is commonly used profile of OWL 2.
Our results show that rewriting may not exist in the general case unless CO-NP
= NP, since constraint validation in presence of ontologies is CO-NP-complete,
while in absence it is NP-complete. We next consider the restriction of SHACL
to positive constraints, that we call SHACL™T, and show that in this case the
rewriting always exists and provide an algorithm for such rewriting.

2 Preliminaries and Running Example

In this section we recall required definitions. We assume a signature X' of three
infinite countable sets of constants, that correspond to entities, classes of unary
predicates, that correspond to types, and properties or binary predicates, that
correspond to object properties or a special predicate “a” that labels entities
with classes. Note that do not consider datatypes and data properties, and leave
them for the future study. We assume an infinite countable domain A of entities.

316 O. Savkovi¢ et al.

2.1 Knowledge Graph

A Knowledge Graph (KG) G is a possibly infinite directed labeled graph that
cousists of triples of the form (s, p,0) over X, where s is a constant, p — property,
and o — constant or class (in this case p is the special predicate “a”).

Ezample 1. Consider the following fragment of the Siemens KG Ggrgas from [23],
which describes Siemens industrial assets including two turbines with the iden-
tifiers :t177 and :t852 and one power plant (PPlant) with the identifier :p063,
as well as information about equipment (turbine) categories (hasTuCat, hasCat),
their deployment sites (deplAt), and enumeration of turbines at plants (hasTurb):

{(:p063, a, :PPlant),(:p063, :hasTurb, :t852),(:t852, a, :Turbine),
(:t852, :deplAt, :p063),(:t852, :hasCat, :SGT-800),
(:£177, :deplAt, :p063),(:t177, :hasTuCat, :SGT-800)}. 0

2.2 SHACL Syntax

We next briefly recall relevant notions of SHACL using a compact syntax of [12]
which is equivalent to SHACL’s “Core Constraint Components” [12]. SHACL
stands for Shapes Constraint Language. Fach SHACL constraint in a set of con-
straints C, usually referred to as shape, is defined as a triple: (s, 74, ¢s), where

— s is the name,

— T, is the target definition, a SPARQL query with one output variable whose
purpose is to retrieve target entities of s from G, i.e., entities (nodes) occurring
in G for which the following constraint of the shape should be verified,

— and ¢, is the constraint, an expression defined according to the following
grammar:

¢ =T |S,‘C|¢1/\¢2‘¢1\/¢2|_‘¢‘ ZTLR¢| SnR-(b‘EQ(ThTQ), (1)

where T stands for the Boolean truth values, s’ is a shape name occurring
in C, ¢ is a constant, R is a property, and n € N; moreover, A denotes the
conjunction, = — negation, “>,, R.¢” — “must have at least n-successors in G
verifying ¢”, r; and ro are SPARQL property paths and “EQ(r1,72)” means
that “r; and r9 successors of a node must coincide”.

With a slight abuse of notation we identify the shape with its name. We note
that the syntax for constraints allows for shapes to reference each other. A set of
constraints is recursive if it contains a shape that reference itself, either directly
or via a reference cycle.

SHACL Constraint Validation over Ontology-Enhanced KGs via Rewriting 317

Ezample 2. Consider Csipn = {(Si, Ts;» ¢s;) | # = 1,4}, where:

Ts, = Jy(:deplat(x,y)), ¢s, = (>1 :hasCat.T),
Ts, = Jy(:hasTuCat(z,y)), ¢s, = (>1 a.:Turbine),
Tsy = :PPlant(?a?)7 Doy = (21 :hasTurb.84),
Ts, = :Turbine(?x), ¢s, = (>1 :deplAt.s3).

Here s; essentially says that any deployed artifact should have a category,
and sy says that only turbines can have a turbine category. The last two shapes
s3 and s4 are mutually recursive, and they respectively say that each power plant
should have at least one turbine and each turbine should be deployed in at least
one location. O

2.3 SHACL Semantics

Given a shape s, a KG G, and an entity e occurring G, we say that e wverifies
s in G if the constraint ¢4 applied to e is valid in G. Finally, G is valid against
C if for each s € C, each target entity retrieved by 7, from G verifies s in G.
Since a constraint ¢, may refer to a shape s’, the definition of validity for KGs is
non-trivial. Indeed, the SHACL specification leaves the difficult case of recursion
up to the concrete implementation? and a formal semantics via so-called shape
assignments has only recently been proposed [12]. Intuitively, G is valid against
C if one can label its entities with shape names, while respecting targets and
constraints. A shape assignment o is a function mapping each entity of G to a
set of shape names in C. We call an assignment target-compliant if it assigns (at
least) each shape to each of its targets, constraint-compliant if it complies with
the constraints, and valid if it complies with both targets and constraints. Then,
G is valid against C if there exists a valid assignment for G and C.

Ezample 3. Observe that Ggrgys is not valid against Csrgps. Shape s; has targets
:t852 and :t177, since both are deployed. :t852 satisfies the constraint for sq,
since it has a category, but :t177 violates it. Shape so has the target :t177
only, which violates it, since it is not declared to be a turbine. Shape s3 has no
target in Ggrgp- The case of shape s4 is more involved. It has only :t852 as the
target, and one may assign s4 to :t852 and s3 to :p063, in order to satisfy the
recursive constraint. But since :t177 violates s; and s, there is no “global” valid
shape assignment for G and S, i.e. which would satisfy all targets and constraints
simultaneously. a

2.4 OWL 2 QL

We now recall the syntax and semantics of OWL 2 QL relying on the the Descrip-
tion Logics DL-Liter [9] that is behind this profile. (Complex) classes and prop-
erties in OWL 2 QL are recursively defined as follows:

B:=A | 3R, C:=B | =B, R:=P | P ,and E: =R | —R,

4 https://www.w3.org/TR /shacl/.

https://www.w3.org/TR/shacl/

318 O. Savkovi¢ et al.

where A is a class from X, P a property from X, and P~ the inverse of P.
Expression A we call also an atomic class or concepts and B a basic class or
concepts. A DL-Liteg ontology is a finite set of axioms of the form B C C or
RC E. A Knowledge Base (KB) is a pair (O, G) of an ontology and a KG. The
formal semantics of DL-Liteg is given in terms of first-order logic interpretations
T =(A,T) over A in the standard way.

Ezxample 4. Consider the following OWL 2 QL ontology Ogren:
{:hasTuCat C :hasCat, J:hasTuCat.T C :Turbine},

that says that if x has y as a turbine category, then x has y as a category, and
also can be inferred to be a turbine. O

A useful property of DL-Liter exploited in Sect. 4, is the existence, for any satis-
fiable KB (O, G), of a so-called canonical model, which can be homomorphically
mapped to any model of (O, G).

2.5 Constraint Validation over KGs Enhanced with Ontologies

Consider the semantics of [35], that naturally extends constraint validation from
KGs to ontology-enhanced KGs and has been adopted in, e.g., [20]. Given a KG
G, ontology O, and a set of constraints C, the idea of this semantics is to validate
C over all set inclusion minimal models of G and O. Formally, G enhanced with
O is valid against C if for each minimal model M of G with O, the KG skol(M)
is valid against C, where skol(M) is the Skolemization of models.

Ezample 5. Observe that (O, G,) is valid against Csrgps. Indeed, shape s; is still
satisfied by :t852, since no new information can be entailed about :t852 from
<OSIEM7 gS]E'M>. Moreover, s; is now not violated by :t177: <OSIEM; gS[EM>
entails that :t177 has a category. Similarly, ss is now not violated by :t177: one
can can infer that it is a turbine. The shape s; now has an additional target
(:£177), and it is verified by both its targets, thanks to the following assignment:
{s1 — {:t852, :t177}, 59 — {:t177}, 83 — {:p063}, 54 +— {:1852, :£177}}. O

3 The Problem of Constraint Rewriting

We now formalise and discuss the problem of constraint rewriting over ontologies.

3.1 SHACL-Rewriting

In order to define SHACL rewriting we adapt the notion of rewriting (or refor-
mulation) of queries over ontologies from [9,18].

Definition 1. Let C be a set of constraints and O an ontology. A set of con-
straints C' is a constraint-rewriting of C over O if for any KG G it holds that:

(0,G) is valid against C iff G is valid against C'.

SHACL Constraint Validation over Ontology-Enhanced KGs via Rewriting 319

We now illustrate this notion on the following example.
Example 6. Consider a set of SHACL constraints and an OWL 2 QL ontology:

C = {(s,7s, ¢s)}, where 75 = :MechDevice(z) and ¢; = (> :hasCat.T),
O = {:Turbine C :MechDevice, 3:hasTuCat C J:hasCat}.

One can show that a rewiring of C over O is &’ = {(s, 7., ¢}) }, where

7! = :MechDevice(x) V :Turbine(z) and
¢’ = (>1 :hasCat.T) V (>; :hasTuCat.T). O

Observe that in the example both the target definition 75 and the constraint
definition ¢, were rewritten over O in order to guarantee that the ontology O
can be safely ignored. In particular, the rewriting of 75 guarantees that in any
graph G, each instance of :Turbine should also be verified against s, whereas
the rewriting of ¢ guarantees that any entity in G with a :hasTuCat-successor
validates s, even if it has no :hasCat-successor.

Thus, despite the similarity of query and constraint rewriting overt ontologies
there are significant differences®. The first difference as illustrated above is that
a shape contains a target definition and a constraint that in the general case
should be rewritten independently. But more importantly, as opposed to queries,
SHACL constraints can be recursive which makes the rewriting significantly more
involved (see Sect. 4 for details).

We now show that rewritings may not exist.

3.2 Non-existence of SHACL-Rewritings

We start with the hardness of SHACL validation that can be shown by reduction
from the 3-coloring co-problem.

Theorem 1. There exists a DL-Liteg ontology, a set of SHACL constraints C,
and a KG G such that deciding whether (O, G) is valid against C is cO-NP-hard
in the size of G.

Proof. [Sketch] The proof is based on an encoding of the 3-coloring co-problem
into the validity problem. For a given undirected graph F = (V, E), where V is
a set of vertices and E of edges, we construct the following KG G£:

{(vi, a, V) |v; € VIU{(vs, E, v;) | (v;, v;) € E}
UL, U, vi) [vi e VIU{(V', a, T)},
where v/, U and T are needed for technical reasons as will be explained below.

® Recall that for query rewriting the input is a query ¢ and ontology © and the output
is another query ¢’ such that for any database D so-called certain answers of q over
(O, D) coincide with the answers of ¢ over D alone [9].

320 O. Savkovi¢ et al.

Then, we define O = {V C 3R.C,C\eq C C, Chiye T C,Creqg C —Chiye}, where
the axiom V' C JR.C enforces that in each minimal model M of (O, Gr), each
vertex v; has an R-successor a;, which intuitively stands for the color of vertex
v; in F¢. The two other axioms intuitively enforce that either (a;,a, Creq) € M
or (a;,a, Che) € M, or none of the two. Intuitively, v; is either red, or blue or
none of the two (i.e. green).

Now we introduce a singleton set of constraints C = {(s, 75, ¢s)} that requires
that at least one pair of adjacent vertices has the same color:

75 =T(z), and ¢5 = (>1 U.(¢1 V ¢2 V ¢3)), where

¢1=(>1 R.>1a.Crea) N(Z1 E. >1 R. >1 a.Creq)
$2 = (>1 R. 21 3.Chwe) A (>1 E. 21 R 21 3.Chtue)
¢3 - (Zl R. 21 a~(_‘C7'ed A _‘Cblue)) A (21 E. 21 R. 21 a~(_‘C7'ed A _‘Cblue))~

Intuitively, the formula ¢, evaluates to true at the node v; if v; is colored as
red and has a red neighbour. The formulas ¢> and ¢3 evaluate similarly, but for
blue and green. Finally, the shape s has the node v’ as the unique target, and v
has every other node in Gx as a U-successor, ensuring that G is valid against
C iff there is no 3-colouring for F. O

In [13] it has been shown that validation of SHACL constraints over KGs
without ontologies is NP-complete in the size of the graph. Thus, we can imme-
diately conclude the following negative result that holds under the assumption
that co-NP ¢ NP.

Corollary 1. There exists an DL-Litegr ontology and a set of SHACL con-
straints for which no SHACL-rewriting over this ontology ezists.

In order to overcome the non-existence problem we found a restriction on
SHACL as will be presented in the following section.

4 Rewriting of SHACL™T Constraints over OWL 2 QL

As discussed above, a rewriting may not exist for an arbitrary set of SHACL
shapes and a DL-Liter ontology. Thus, in order to gain rewritability one can
restrict the expressivity of SHACL. In the following we do so by restricting
SHACL to positive SHACL shapes. For this setting we develop Algorithm 1 that
allows to compute constraint rewritings. A SHACL shape is in SHACL™ if it
does not contain negation and cardinality restriction of kind “<,, R.¢ ”.

5 The axiom of the kind V C JR.C in syntactically not in DL-Liter but it can be
expressed using a “fresh” role R; and three axioms: V C 3R;, R C R and 3R C C.

SHACL Constraint Validation over Ontology-Enhanced KGs via Rewriting 321

The rest of this section we organize in four parts. (i) First we show why it
is sufficient to consider only satisfiable KGs; (%) Then we show that over such
satisfiable KGs it sufficient to focus only on their canonical models (4i) then we
show how to rewrite shape targets given an ontology, and (iv) finally we show
how to rewrite ontologies.

4.1 Satisfiable Knowledge Graphs

We observe that in general KGs may contain disjointness and thus they may
be unsatisfiable (that is, they have no model). First we introduce an axillary
property that shows that for constraint validation it is sufficient to consider only
satisfiable KGs.

Lemma 1. Let O be a DL-Liter ontology and G a graph. If (O,G) is unsatis-
fiable then for any shape s and any node in v in G there is exists no satisfying
shape assignment over G and the set of shapes Co that validates s(v).

Proof. Assume that (O,G) is unsatisfiable. Wlog we assume that the cause of
being unsatisfiable is the following: (O,G) E C(a) A D(a) holds for some node
a in G and some basic concepts C and D, and at same time O | C C =D holds
(similarly it can be shown for role disjointness).

From (O, G) = C(a) A D(a) we conclude (using the properties on PERFREF
in [9]) that G = PERFREF(C(a) A D(a),O). Then, since we have 75, =
PERFREF(C(x) A D(z),0) it follows that a is the target of the shape scr—p.
On the other hand ¢s.._, = L, thus for every shape assignment o it must be
o(scc-p) = L, i.e., there exists no satisfying assignment for scc-p. Hence,
there exist no satisfying assignment over G and Cp that also validates s(v). O

4.2 Validity over Canonical Models

In this part we show that in order to check the validity over all minimal models
it is sufficient to check the validity over the canonical model for the given KG.
In [9], the authors defined a canonical model of a KB as a model that can be
homomorphically mapped to any other model of that KB. Now we extend this
notion to shapes: Given two graphs G; and G, with set of constants A; and A,
respectively, and the set of shapes C, a SHACL-homomorphism u from G to G’
is a mapping p : Ay — As such that, for each shape s € C and each constant

v E Ay, if (G1,C) = ¢s(v) then (Go,C) = dq(pu(v)).

Lemma 2 (canonical homomorphism for positive shapes). Let O be a
DL-Liter ontology, G a graph, and let M be a minimal model of (O,G). Let
C be a set of SHACL™Y shapes. Then, there is a SHACL-homomorphism from
can(0,G) to M given C. In particular, there exists a SHACL-homomorphism
that maps every node from G to itself.

322 O. Savkovié et al.

Proof. From [9], we have that there exists a homomorphism g from can(O,G)
to M such that for a basic concept C and node v it holds if C(v) € can(O, G)
(resp. R(v1,v2) € can(O,G)) then C(u(v)) € M (resp. R(u(v1), p(v2)) € M.
In particular, it is possible to select p such that u(v) = v for v € G. We also
notice that p has to be surjective; otherwise the p-image of can(O,G) would be
a minimal model “smaller” than M which is a contradiction.

Assume now that (can(0,G),C) E ¢s(v) for some shape s from C and
node v in can(O, G). Let o be a satisfying assignment for can(O, G),C such that
[ps]c*(©:9):70 = trye. We define an assignment ¢’ over M, C in the following
way: for a shape s; and node v; in M we set s; € (vy,0’) iff exists a node vq
in can(O,G) such that u(vy) = v; and s1 € (v2,0). Now analyzing different
cases for s: ¢ps = T, ¢ = I, ¢ps =>; R.51, ¢s = 81 A So, ¢ps = S1 V Sg and
#s = EQ(r1,79), it is not hard to show that if [ps]°@(09)7? = true then
[ps] M7 (V) = true. O

Using the lemmas above we show the following property of canonical models.

Lemma 3 (canonical model characterization). For a DL-Liter ontology
O, basic concept C, graph G, node v in G, set C of SHACL™ shapes and shape
s defined in C we have that: (O,G,C) = ¢s(v) iff (can(O,G),C) = ¢s(v).

Proof. (<) The entailment (O,G,C) |= ¢y holds if (M,C) |= ¢4" in each
minimal model M, including can(O, G).

(=) Let M be a minimal model of (O, G). Lemma 2 implies the existence of a
homomorphism y from can(O,G) to M s.t. M,C = ¢s(p(v)) for p(v) =v. O

4.3 Rewriting of Shape Targets

In the absence of an ontology, the targets of shapes s are retrieved by evaluating
the target definitions 7, over the graph G, written [7,]9. In SHACL, a target
definition is a monadic query with a single atom that corresponds to a basic
concept in an ontology. In the presence of an ontology, we follow the semantics
described in Sect. 2.5, and retrieve targets over all minimal models, or equiva-
lently over the canonical model, written as [7](©*9). To achieve this, since 7, is
a unary conjunctive query, one can apply PERFREF.

Lemma 4. For any shape s from SHACL, DL-Litegr ontology O, and graph G
it holds that [7,](©9) = [PERFREF(7,, O)]9.

Proof. The authors in [9] established the correspondence between certain
answers of conjunctive queries over knowledge graphs and perfect reformula-
tion (Lemma 35): For a KG (O, G) and conjunctive query ¢ we have that the
certain answers of ¢ over the KG correspond to perfect reformulation in the
sense that cert(q, (O, G)) = [PERFREF(7,,0)]Y, where, a € cert(q, (O, G)) iff
for every minimal model M of (O, G) it holds that a € ¢™. At the same time

7 In this entailment we consider M as an infinite conjunction of atoms.

SHACL Constraint Validation over Ontology-Enhanced KGs via Rewriting 323

Algorithm 1. CONSTRAINT REWRITING

Input: ontology O possible with existential rules, set of positive shapes C
1: Co « SHAPET(O)

Cé < sHAPEVIRTUAL(O)

Cé « successorT(0)

C" — {(PERFREF(7s,0), REWRITECOMPL(¢s, 0)) | s € C}

return Co UCH UCH o UC”

the formula [7,]{©:9" defines a special set of target nodes over the graph and
ontology: [7,]¢©'9" returns a node v iff it does so for every minimal model M of

(0,6). O

In other words, the targets of s according to the KB (O, G) can be retrieved
by evaluating the query PERFREF(74, O) over G alone.

4.4 Rewriting of the Ontology

In this part, we present our rewriting algorithm. In order to make notations more
concise, we write G,C = ¢(v) to denote that the node v satisfies the constraint
¢ in the graph G given a set C of shapes. Similarly, we use (O, G),C E ¢(v) to
denote that v satisfies ¢ in the graph that corresponds to the canonical model of
(O, G) given C. Then, we assume that the shape constraints in C are normalised,
i.e. contain at most one operator. Note that this can always be obtained by
introducing nested shape names.

Our rewriting procedure is presented in Algorithm 1 and we now guide the
reader through it. Our algorithm relies on auxiliary shapes of three kinds:

— Co that contains for each concept C' in O the corresponding shape s¢ in Co;
this ensures that for every node v the fact C'(v) is in the canonical model iff
v is valid in the shape s¢.

— “virtual” shapes C and C¢, that are used to capture the part of the canonical
model generated by existential quantification.

The shapes Cp, C and C¢ will help us to establish rewriting over O of the
original shapes from C into C”. We now define Cop, C} and C§, explain how they
are used in Algorithm 1 and show correctness of the algorithm.

Rewriting SHAPET for Active Nodes: Co. For every concept of the form
A (resp. 3R) in O, we introduce a shape s (resp. s3g), with targets 75, = A
(resp. Ts5, = JR) and with constraint where R, R’ may be inverse roles:

¢5A = (21 aA) \ \/ sC, ¢)SgR = (21 RT) \ \/ sc VvV \/ S3R’.

O=CCA O=CLC3R OE=R'CR

Next, we introduce shapes that encode negative assertions. For each GCI of
the form (C'C —D) in O, we introduce one shape scc-p, where targets are all
instances of C' and D in G, where the constraint is always violated. To this end,

324 O. Savkovié et al.

we exploit results based on PERFREF [9]: T, _, = PERFREF(C(z) A D(z),0),
and ¢s.._, = L. Similarly, for negative role inclusions, we use s RiC—R,, With
TsngﬁR;: PERFREF(JyR1(z,y) A R2(7,y),0), and ¢sp o = L.

We denote the set of shapes produced above with Cp, and the corresponding
translation function as SHAPET in Algorithm 1, i.e., SHAPET(O) = Co.

With ¢l(O,G) we denote the maximal subset of can(O,G) without fresh
nodes. If there were no fresh nodes, i.e., when can(O,G) = cl(O,G), we observe
that shapes in C U SHAPET(O) would be sufficient to validate the facts in
can(O, G). Intuitively, this is because dependencies among shapes in SHAPET(O)
corresponds to the construction of the “closure” cl(O, G).

Fresh Nodes in Canonical Models. Observe that for DL-Liter ontologies
O the canonical model can(O, G) can be arbitrary large (even infinite) in which
case it will contain “fresh” nodes that are not occurring in G. Thus, one should
be able to check constraints also on this fresh nodes, as shown next.

Ezample 7. Consider the ontology O = {A C 3U,3U~ C 3P} and graph G =
{(v,a,A)}. Then can(O,G) = {(v,a, 4), (v,U,a1), (a1, P,a2)} where a; and as
are fresh nodes. Now consider shapes (s1, A(z),(>1 U.s2)) and (sq, L(z), (>1
P.T)). It is not hard to see that C is valid over (O, G). O

These properties of can(O,G) make rewriting technically involved since
SHACL constraints cannot express fresh values. We address this with auxil-
iary shapes Cj and C{, that mimic the construction of the canonical model and
validate facts in G’ = can(O, G)\ cl(O, G). The graph G’ is a forest (by construc-
tion of can(O,G)) where each tree has the root in some assertion of cl(O,G).
We call this root the witness of the tree. In example above, (v,a, A) is the only
witness.

Rewriting sHAPEVIRTUAL for Fresh Nodes: Cg. For each concept C

appearing in a GCI in O, we introduce a shape sgm‘“l, such that, for a node v
in G, verifies sg”“‘”(v) iff there is a node v/ in G’ with v as witness such that

G’ & C(v'). For instance, in Example8, we introduce shape s4t“al which is

verified by the witness v. Note that v’ is not necessarily an immediate successor
of vin G'.

More formally, for concept C, the virtual shape syrival =
(PERFREF(C), dgureuar) is created. Then a function similar to REWRITESIM is
applied to each ¢sgmml, in order to ensure the above property. In our running
example, this yields ¢sxmaz = 84, i.e. (bs%mmal remains unchanged, but ¢S%zgual =

s3u Vv syrtuel v gtirtual Here, sub-formula %% is added because of the GCI

A C U, and s3y- is added because if U holds at some node a1 in the tree of G’
rooted in v, then AU~ must hold at some U-successor as of a;. Let SHAPEVIRTUAL
be the function which produces (and rewrites) these “virtual” shapes.

Rewriting SUCCESSORT for Fresh Nodes: C¢,. The second kind of shapes
is needed in order to check if two roles are concatenated in the same tree in G’.
For each pair of roles R; and Ry in O, we introduce the shape s3°%, such that a

node v € G verifies (bSﬁf“Rz iff (a1, R1,a2) and (az, Ra, a3) are on the subtree with

SHACL Constraint Validation over Ontology-Enhanced KGs via Rewriting 325

the witness v, for some a1, as, a3 in G’. In our running example, v verifies Psguee
but not ¢gsue . Formally, for every two roles Ry and Ry in O, Toquee . = 1(x),
5 1,42

and if O = 3R] C 3R, then ¢s§;;;§'R2 = $3R,, otherwise ¢sg“1;ﬂljR2 = 1. The
special case Ry = Ry, is also covered by the definition ¢gsuee = s3p,. Let
Ry,R]

SUCCESSORT denote the function creating these fresh shapes.

Rewriting REWRITECOMPLT for Shapes. Finally, we need to rewrite the
shapes in C. To this end, we extend the procedure REWRITESIM in the following
way. For each shape s in C, we set s’ = REWRITECOMPL(s) V s""“ where
REWRITECOMPL is identical to REWRITESIM for operators A, V and constant
but it changes for ¢ = (> R.s1) as follows:

¢l = (> R.sh) Vv sU where ¢ purma = sYRM A sV A gop

In other words, the witness v verifies s*"*“e if it verifies both syirtuel and svirtual
(that is, both are verified by some anonymous node with v as the witness),
and the range of R can be validated against s, expressed with the new shape
$3R,s;- Then @sop . = $3R,s, /\ S3R,s5 if g5, = s3 A s3 (and similarly for V). If
¢s, = (>k P.s2), then ¢ap s, = sx'%, that is P has to be the successor of R in
G'. Let REWRITECOMPLT denote the corresponding rewriting of C.

Correctness of Rewriting. We now proceed to the correctness of our rewriting
procedure and start with the property of possibly infinite canonical models.

Lemma 5 (Infinite canonical model). Let O be a DL-Liter ontology, C a
concept in O, R and P properties in O, G a graph, v a node in G, and shapes
Co, C% and C¢, as specified in Algorithm 1. Then, the following holds:

- G,CoUCHUCH [¢guma(v) iff there is a node ay in can(O,G) with the
witness v such that can(O0,G) = C(ay).

- G,CoUCHUCEH = (ﬁstﬁyclg(v) iff there are nodes a1, as,as in can(O,G) with
the witness v such that can(O,G) = R(a1,az2) and can(O,G) = P(as,as).

Ezxample 8. We illustrate the rewriting of the running example. Shapes that are
not relevant for the reasoning are omitted. The presented shapes are ordered in
the way one would reason with them, starting bottom-up (which is possible if C
is not recursive). To illustrate the reasoning, we underline in each formula the
disjuncts for which one can construct a satisfying shape assignment.

d)stzrtual =S4, d)sglz{]tual =83y V S}Z\Wtual V Sggt,ual,

irtual
s = (AUTIVE, by =0 o, = 55,

virtual virtual / virtual
(bsgwtual = SBU A 32 A 83U752, ¢S’1 :Zl U.82 V 81 5

virtual ¢ virtual vV virtual
S =
ar

(bsgwtual = SE|P s S%’gual = S3p \VJ SHU7 T)ZTtU,al.

B d)svirt,wial == SElU
3U
The only target of s is v, and v verifies ¢ w.r.t the rewritten set of shapes. O

We are ready to present the main result of this section.

326 O. Savkovi¢ et al.

Theorem 2. Let O be a DL-Liter ontology, C a set of SHACL™ shapes, s € C,
C’ the shapes returned by Algorithm 1, and s’ the rewriting of s in C'. Then,
for any graph G and node v in G it holds that: (O,G),C = ¢s(v) iff G,C' E
¢ (v).

Note the size of the returned rewriting is polynomial in the size of O and C.

5 Related Work

As discussed in Sect. 1, constraint validation in the presence of ontologies was
studied in [20,35,42]. While these approaches allow for very expressive ontologies
(e.g., SHOZN) they require an engine for disjunctive logic programs, which we
believe makes these approaches less practically interesting.

Rewriting of conjunctive queries over OWL 2 QL ontologies of [9] cannot be
applied to SHACL shapes since they may be recursive or contain negation.

From a more general prospective our rewriting can be seen a special case of
the backward-chaining algorithm [32] over V3-rules (where the body and the head
are conjunctions of atoms, and only the variables that occur in the head can be
existentially quantified). However, in such cases the existence of a rewriting is
undecidable in general for arbitrary rules, and even for some decidable fragments,
differently from our approach, such algorithms may not terminate.

Naturally, one may think of relating SHACL to Datalog programs [14] since
they poses recursion and negation. However, Datalog programs can at most
have one unique minimal model, and SHACL constraints should be checked for
all possible assignments [12] (including also non-minimal ones). If we consider
more expressive version of Datalog like Datalog with negation under the stable
model semantics (SMS) [14], then relating it to SHACL is more promising, while
the actual relation is not obvious as SMS is also based on minimal models.
Nevertheless, our preliminary results show that this is not straightforward.

6 Conclusion

We have studied the rewriting of constraints over ontologies for constrain vali-
dation. We focused on a prominent language for graph constraints SHACL and
on ontologies from the widely used OWL 2 QL ontology language. We defined
semantics for constraint rewriting, showed the non-existence of such rewritings in
the general case, and identified restrictions on SHACL to positive (but recursive)
fragment SHACL* for which they always exist. For SHACL* we showed how
to rewrite ontologies and SHACL™ constraints into the unique set of SHACL*
constraints. Moreover, SHACL™ validation over OWL 2 QL is tractable.

We see this work as an important step towards practical constraint rewrit-
ing algorithms and systems. Next, we plan to analyse optimisation techniques
in order to obtain more efficient rewritings. For instance, we plan to consider
datatypes. They can be used to optimize eliminate unnecessary rewritings, but
this need to be done in a controlled way to ensure tractability (e.g., [38]).

SHACL Constraint Validation over Ontology-Enhanced KGs via Rewriting 327

Then, we plan to extend this work to account for OWL 2 EL. Moreover, we
plan to implement our approach and evaluate it in various industrial settings
[11,24-27,33,34,37,39]. An important research direction is also to understand
how to repair data that fails to satisfy SHACL constraints and we see the work
on ontology evolution as a good source of inspiration [10,29,30,43].

Acknowledgments. This work was partially funded by the SIRIUS Centre, Norwe-
gian Research Council project number 237898; by the Free University of Bozen-Bolzano
projects QUEST, ROBAST and ADVANCED4KG.

References

Freebase: an open, shared database of the world’s knowledge. freebase.com/

Google KG. google.co.uk/insidesearch /features/search /knowledge.html

W3C: OWL 2 Web Ontology Language. www.w3.org/TR/owl2-overview/

Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to

Semistructured Data and XML. Morgan Kaufmann, Burlington (1999)

5. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

6. Arenas, M., Grau, B.C., Kharlamov, E., Marciuska, S., Zheleznyakov, D.: Faceted
search over RDF-based knowledge graphs. J. Web Semant. 37—-38, 55-74 (2016)

7. Arenas, M., Gutiérrez, C., Pérez, J.: Foundations of RDF databases. In: Tessaris, S.,
et al. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 158-204. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03754-2 4

8. Boneva, 1., Labra Gayo, J.E., Prud’hommeaux, E.G.: Semantics and validation of
shapes schemas for RDF. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol.
10587, pp. 104-120. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68288-4 7

9. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-Lite family.
JAR 39, 385-429 (2007)

10. Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Evolution of DL —
Lite knowledge bases. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS,
vol. 6496, pp. 112-128. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17746-0_8

11. Cheng, G., Kharlamov, E.: Towards a semantic keyword search over industrial
knowledge graphs (extended abstract). In: IEEE Big Data, pp. 1698-1700 (2017)

12. Corman, J., Reutter, J.L., Savkovié¢, O.: Semantics and validation of recursive
SHACL. In: Vrandeci¢, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 318-
336. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6 19

13. Corman, J., Reutter, J.L., Savkovic, O.: Semantics and validation of recursive
SHACL (extended version). Technical report KRDB18-1, KRDB Research Cen-
ter, Free University of Bozen-Bolzano (2018). https://www.inf.unibz.it /krdb/pub/
tech-rep.php

14. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3), 374-425 (2001)

15. Ekaputra, F.J., Lin, X.: SHACL4p: SHACL constraints validation within Protégé

ontology editor. In: ICoDSE (2016)

L e

https://developers.google.com/freebase/
https://www.google.com/intl/enuk/search/about/
www.w3.org/TR/owl2-overview/
https://doi.org/10.1007/978-3-642-03754-2_4
https://doi.org/10.1007/978-3-319-68288-4_7
https://doi.org/10.1007/978-3-319-68288-4_7
https://doi.org/10.1007/978-3-642-17746-0_8
https://doi.org/10.1007/978-3-642-17746-0_8
https://doi.org/10.1007/978-3-030-00671-6_19
https://www.inf.unibz.it/krdb/pub/tech-rep.php
https://www.inf.unibz.it/krdb/pub/tech-rep.php

328

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

O. Savkovi¢ et al.

Fan, W., Fan, Z., Tian, C., Dong, X.L.: Keys for graphs. PVLDB 8(12), 1590-1601
(2015)

Fan, W., Wu, Y., Xu, J.: Functional dependencies for graphs. In: SIGMOD,
pp. 1843-1857 (2016)

Hansen, P., Lutz, C., Seylan, 1., Wolter, F.: Efficient query rewriting in the descrip-
tion logic EL and beyond. In: IJCAI, pp. 3034-3040 (2015)

Horrocks, 1., Giese, M., Kharlamov, E., Waaler, A.: Using semantic technology to
tame the data variety challenge. IEEE Internet Comput. 20(6), 62-66 (2016)
Kharlamov, E., et al.: Capturing industrial information models with ontologies and
constraints. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 325-343.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46547-0 30
Kharlamov, E., et al.. SOMM: industry oriented ontology management tool. In:
ISWC Posters & Demos (2016)

Kharlamov, E., et al.: Ontology based data access in Statoil. J. Web Semant. 44,
3-36 (2017)

Kharlamov, E., et al.: Semantic access to streaming and static data at Siemens. J.
Web Semant. 44, 54-74 (2017)

Kharlamov, E., Martin-Recuerda, F., Perry, B., Cameron, D., Fjellheim, R.,
Waaler, A.: Towards semantically enhanced digital twins. In: IEEE Big Data, pp.
4189-4193 (2018)

Kharlamov, E., et al.: Towards simplification of analytical workflows with semantics
at Siemens (extended abstract). In: IEEE Big Data, pp. 1951-1954 (2018)
Kharlamov, E., et al.: Diagnostics of trains with semantic diagnostics rules. In:
Riguzzi, F., Bellodi, E., Zese, R. (eds.) ILP 2018. LNCS (LNAI), vol. 11105, pp.
54-71. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99960-9 4
Kharlamov, E., et al.: Semantic rules for machine diagnostics: execution and man-
agement. In: CIKM, pp. 2131-2134 (2017)

Kharlamov, E.; et al.: Finding data should be easier than finding oil. In: IEEE Big
Data, pp. 1747-1756 (2018)

Kharlamov, E., Zheleznyakov, D.: Capturing instance level ontology evolution for
DL-Lite. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 321-337.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6 21
Kharlamov, E., Zheleznyakov, D., Calvanese, D.: Capturing model-based ontology
evolution at the instance level: the case of DL-Lite. J. Comput. Syst. Sci. 79(6),
835-872 (2013)

Knublauch, H., Ryman, A.: Shapes constraint language (SHACL). W3C Recom-
mendation, vol. 11, no. 8 (2017)

Konig, M., Leclére, M., Mugnier, M., Thomazo, M.: Sound, complete and minimal
UCQ-rewriting for existential rules. Semant. Web 6(5), 451-475 (2015)

Mehdi, G., et al.: Semantic rule-based equipment diagnostics. In: d’Amato, C.,
et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 314-333. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68204-4 29

Mehdi, G., et al.: SemDia: semantic rule-based equipment diagnostics tool. In:
CIKM, pp. 2507-2510 (2017)

Motik, B., Horrocks, 1., Sattler, U.: Bridging the gap between OWL and relational
databases. Web Semant. Sci. Serv. Agents World Wide Web 7(2), 74-89 (2009)
Patel-Schneider, P.F.: Using description logics for RDF constraint checking and
closed-world recognition. In: AAAT (2015)

Ringsquandl, M., et al.: On event-driven knowledge graph completion in digital
factories. In: IEEE Big Data, pp. 1676-1681 (2017)

https://doi.org/10.1007/978-3-319-46547-0_30
https://doi.org/10.1007/978-3-319-99960-9_4
https://doi.org/10.1007/978-3-642-25073-6_21
https://doi.org/10.1007/978-3-319-68204-4_29

38.

39.

40.

41.

42.

43.

SHACL Constraint Validation over Ontology-Enhanced KGs via Rewriting 329

Savkovic, O., Calvanese, D.: Introducing datatypes in DL-Lite. In: ECAI,
pp. 720-725 (2012)

Savkovié, O., et al.: Semantic diagnostics of smart factories. In: Ichise, R., Lecue, F.,
Kawamura, T., Zhao, D., Muggleton, S., Kozaki, K. (eds.) JIST 2018. LNCS,
vol. 11341, pp. 277—-294. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
04284-4 19

Soylu, A., et al.: OptiqueVQS: a visual query system over ontologies for industry.
Semant. Web 9(5), 627-660 (2018)

Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge.
In: Proceedings of WWW, pp. 697-706 (2007)

Tao, J., Sirin, E., Bao, J., McGuinness, D.L.: Integrity constraints in OWL. In:
AAAT (2010)

Zheleznyakov, D., Kharlamov, E., Horrocks, I.: Trust-sensitive evolution of DL-Lite
knowledge bases. In: AAAI, pp. 1266-1273 (2017)

https://doi.org/10.1007/978-3-030-04284-4_19
https://doi.org/10.1007/978-3-030-04284-4_19

	Validation of SHACL Constraints over KGs with OWL 2 QL Ontologies via Rewriting
	1 Introduction
	2 Preliminaries and Running Example
	2.1 Knowledge Graph
	2.2 SHACL Syntax
	2.3 SHACL Semantics
	2.4 OWL 2 QL
	2.5 Constraint Validation over KGs Enhanced with Ontologies

	3 The Problem of Constraint Rewriting
	3.1 SHACL-Rewriting
	3.2 Non-existence of SHACL-Rewritings

	4 Rewriting of SHACL+ Constraints over OWL 2 QL
	4.1 Satisfiable Knowledge Graphs
	4.2 Validity over Canonical Models
	4.3 Rewriting of Shape Targets
	4.4 Rewriting of the Ontology

	5 Related Work
	6 Conclusion
	References

