
Solving PDEs Using Neural
Networks
Joar Ole Sætre
Master’s Thesis, Spring 2020

This master’s thesis is submitted under the master’s programme Computational
Science and Engineering, with programme option Computational Science, at the
Department of Mathematics, University of Oslo. The scope of the thesis is 30
credits.

The front page depicts a section of the root system of the exceptional Lie group E8,
projected into the plane. Lie groups were invented by the Norwegian mathematician
Sophus Lie (1842–1899) to express symmetries in differential equations and today
they play a central role in various parts of mathematics.

Abstract

Lately, there has been a lot of research on using deep learning as an alternative
method to solve PDEs. The major bene�t is being able to solve in higher di-
mensions without using a full grid of mesh points. Here we try to implement the
algorithm, without utilising any pre-existing machine learning packages, to under-
stand how the process is done. We will try to see if we can extend solutions to
higher dimensions than with an explicit �nite di�erence scheme, even with a sim-
ple feedforward neural network. A natural application will be the Black�Scholes
equation with multiple underlying assets.

Acknowledgements

First and foremost, I want to thank my supervisor, Professor Nils Henrik Risebro
of the Department of Mathematics at the University of Oslo, who came up with
the topic. It presented the perfect opportunity to combine mathematics with
both �nance and programming, as well as learn something completely new in deep
learning. I have a lot to improve on in seeking guidance and giving updates, and
therefore also wish to express gratitude for letting me see where the study lead
me, but knowing that any questions would be welcome at any time.

Secondly, I want to thank my girlfriend, Archana, for proof reading and excel-
lent feedback on improving both language and structure of the thesis.

Finally, I sincerely would like to recognise the love and support of my family,
especially my mum, Anne Lise, who kept me motivated by showing so much pride
in my not yet even achieved accomplishments.

Contents

1 Introduction 2

2 Motivation 4

2.1 Overview of the Method . 4
2.1.1 Network Architecture . 4
2.1.2 Parameter Update . 6
2.1.3 Testing . 7

2.2 Theory on PDE . 9
2.2.1 The Black�Scholes Equation 9
2.2.2 Feynman�Kac Formula . 10

3 The Algorithm 11

3.1 Initialisation . 11
3.2 Regularisation . 12
3.3 Momentum . 13
3.4 The Derivative . 13
3.5 Hyperparameters . 14

4 Results 16

4.1 Sines . 16
4.2 Black�Scholes . 20

4.2.1 One Asset . 20
4.2.2 Three Assets . 24
4.2.3 Four Assets . 28

4.3 Comparing DL with FDM . 30

5 Discussion and Conclusion 32

5.1 Discussion . 32
5.2 Conclusion . 34

References 35

i

A Python Implementation 36

ii

List of Tables

3.1 Hyperparameters. 15

4.1 Data values to start with Black�Scholes. 21
4.2 Runtimes of DL and FDM. 31

iii

List of Figures

2.1.1 Dense feedforward neural network. 5
2.1.2 Over�tting on the left and under�tting on the right. 8

4.1.1 Early stopping of u(x) = sin(x). 17
4.1.2 Loss function of u′(x) = cos(x), 8 hidden layers with 20 nodes each. 18
4.1.3 Loss function of u′(x) = cos(x), 2 hidden layers with 100 nodes each. 18
4.1.4 Loss function of u′(x) = cos(x), 8 hidden layers with 20 nodes each. 19
4.1.5 Solution of u′(x) = cos(x), 8 hidden layers with 20 nodes each. . . . 19
4.2.1 Black�Scholes with one asset. Training time: 8m:44s. 22
4.2.2 Black�Scholes with one asset, closeup. 22
4.2.3 Black�Scholes with one asset, loss function. 23
4.2.4 Black�Scholes with three assets, 2,560 examples and 500 epochs.

Training time: 2h:25m:28s. 24
4.2.5 Black�Scholes loss with three assets, 2,560 examples and 500 epochs. 25
4.2.6 Black�Scholes with three assets, 2,560 examples, 500 epochs, two

hidden layers with 100 nodes each. Training time: 2h:40m:15s. . . . 26
4.2.7 Black�Scholes with three assets, 5,120 examples and 250 epochs.

Training time: 2h:28m:58s. 26
4.2.8 Black�Scholes with three assets, 20,480 examples and 250 epochs.

Training time: 9h:30m:23s . 27
4.2.9 Black�Scholes with four assets, 61,440 examples and 250 epochs.

Training time: 42h:43m:41s . 28
4.2.10Black�Scholes loss with four assets, 61,440 examples and 250 epochs. 29
4.3.1 Solution space of the Black�Scholes equation. 31

1

Chapter 1

Introduction

Arti�cial intelligence, more speci�cally machine learning, is a concept where a
computer can "learn" a structure or pattern. It is called intelligence because it
works similarly to the human brain in the way that by being exposed to a set of
examples the computer can �nd the right pattern by trial and error. First, it uses
it's initial guess of the structure on the examples and then it is penalized more
the farther o� it is from the target. Next, it updates the parameters and tries
again. After the error is small, the pattern is said to have been learned. Hopefully
when exposed to a new example not in the training set, the AI will now be able
to accurately predict the result.

There are two main groups of machine learning algorithms: supervised learning
and unsupervised learning. Unsupervised learning is when the goal is to �nd a
structure in the data. An example is �nding a way to group seemingly random
examples into categories, called clustering.

Supervised learning, which this work will use, is when there are labeled input
that lead to labeled output. In other words switching the order of examples also
switches the order of the output. The goal here is to learn this connection between
input and output. Examples are regression and solving equations.

Traditionally, when analytical solutions to PDEs are not available, they have
been solved by numerical methods such as �nite di�erence or �nite element meth-
ods. When working in several dimensions, however, such methods become in-
feasable. The memory and computations required are simply too large. Imagine
a �nite di�erence scheme to �nd a solution of some PDE where the domain is
the unit square in two dimensions. The domain is discretised into 100 meshpoints
each direction. For every iteration the solution has to be calculated at 10,000
points. No problem. Now make the domain the unit cube in three dimensions and
with similar discretisation. The solution now has to be calculated at 1,000,000
points, using roughly 8MB of the computers RAM if using numpy arrays of �oats,
to store only the solution. Extending to four dimensions it becomes 100,000,000

2

mesh points with 800MB RAM to store the solution, not to mention the enor-
mous amount of calculations. It is easy to see the problems here, e.g. a similar
�ve dimensional array needing 80GB RAM! Since machine learning uses a random
sample of points, adding one more dimension does not equal the same increase in
meshpoints required. Thus, the main advantage of machine learning is to extend
solutions to higher dimensions. For further reading on arti�cial intelligence in
general see [2].

3

Chapter 2

Motivation

In this chapter the main ideas behind machine learning will be presented. Exam-
ples of modi�cations for other purposes than PDEs will be explained, although not
in great detail. In the next section some theory on the equations solved in chapter
4 will be presented.

2.1 Overview of the Method

2.1.1 Network Architecture

Machine learning uses networks of "neurons" to learn. A dense feedforward neural
network is the simplest example. This is a network made up of an input layer,
a varying amount of hidden layers and an output layer. Each layer has nodes
(neurons) which are connected to every node in the previous layer as well as every
node in the next layer. In a network which is not dense it is possibleto have
connections to only a select few other nodes. Figure 2.1.1 shows a neural network
with two hidden layers. The number of nodes in each layer is referred to as the
network's width, whereas the number of hidden layers is referred to as the network's
depth. A deep neural network is a network with two or more hidden layers, thereof
the term deep learning. Generally a network's performance increases with both
width and depth, but because of the computational cost of increasing width, an
increase in depth is to be preferred if possible.

A node in a feedforward neural network takes the sum of a weighted input
vector x, adds a bias b and uses an activation function σ(x). The output of this
function is then sent to the next layer as input.

z = σ

(
N∑
n=1

xnwn + b

)
(2.1)

4

Figure 2.1.1: Dense feedforward neural network with two hidden lay-
ers of width 5 and 7. Input has dimension 4 and output has dimen-
sion 3. At the bottom the dimensions of weight matrices are shown
as well as dimensions of input and output matrices, where N in this
case is the number of examples. (Source: https://dzone.com/articles/

the-artificial-neural-networks-handbook-part-1-1)

where N is the width of the previous layer. The activation function most widely
used is the recti�er, or recti�ed linear unit (ReLU)

σ(x) = max(0, x) (2.2)

with the identity function σ0(x) = x in the output layer. In other tasks such as
classi�cation one can also use the logistic function

σ(x) =
1

1 + e−x
(2.3)

with softmax in the output layer:

σ(xn) =
exn∑N
n=1 e

xn
(2.4)

How large the error is relative to the target is determined by a loss function
J(θ) where θ is the set of parameters, here consisting of all weights and biases.

5

https://dzone.com/articles/the-artificial-neural-networks-handbook-part-1-1
https://dzone.com/articles/the-artificial-neural-networks-handbook-part-1-1

The most widely used, and which will be used here, is the mean squared error

J(θ) =
1

M

M∑
m=1

(f ∗(xm)− f(xm; θ))2 (2.5)

where M is the number of examples, f ∗(xm) the target and f(xm; θ) the network
output given current parameters. When solving equations one has to deal with
initial and boundary conditions. These can be added in the loss function:

J(θ) =
1

M1

M1∑
m1=1

(f ∗(xm1)− f(xm1 ; θ))
2

+
1

M2

M2∑
m2=1

(g(xm2)− f(xm2 ; θ))
2

(2.6)

where g(x) is some boundary condition, M1 is the number of examples in the
interiour and M2 is the number of examples on the boundary.

2.1.2 Parameter Update

The error is used in updating the parameters. The weights and biases that con-
tributed the most to the error will also change the most. A gradient based opti-
misation is the standard approach.

θi+1 = θi − η∇θiJ(θi) (2.7)

where η is the step size or learning rate.

Backpropagation

Finding the gradient of the loss function is done by backpropagation. The forward
pass of the network is simply a composition of all the activations:

f(X) = σL(...σ2(σ1(XW1 + 1Mb1)W2 + 1Mb2)...WL + 1MbL) (2.8)

where X ∈ RM×d is the input, Wl denotes the weight matrix from layer l − 1 to
layer l and 1M ∈ RM with all elements being 1. Knowing this the gradient of
J(θ) w.r.t. all weights and biases is found by applying the chain rule and going
backwards in the network. Let the error in the output layer L w.r.t. the inputs to
that layer be

δL = ∇ZLJ(θ)� σ′(ZL−1WL + 1MbL) (2.9)

6

where Zl is the output from each layer, Z0 = X and � is element wise multiplica-
tion. Since the output layer uses an identity activation the last derivative is just
1. To propagate the error backwards in the network calculate

δl = δl+1W
T
l+1 � σ′(Zl−1Wl + 1Mbl). (2.10)

Because ReLU activation is used, the derivative is still simple: either 0 or 1.
Now �nding the gradient of the loss function is straightforward.

∂J(θ)

∂bl
= δl (2.11)

∂J(θ)

∂Wl

= σ(Zl−1Wl + 1Mbl)
T δl (2.12)

More details can be found in [8, chap. 2].

Stochastic Gradient Descent

With a large number of examples, however, standard gradient descent takes far
too much time to run. A popular extension is stochastic gradient descent. True
stochastic gradient descent is where only the gradient at one random example
is used, instead of using the gradient at all examples. The parameters are �rst
updated after the gradient at the random example is backpropagated. Next, the
gradient is found at a new random example until the whole set of examples has
been run through. Now it is said the algorithm is done with one epoch and it
continues for how many epochs are desired. This type of convergence turns out to
be too noisy, so a middle ground is instead the standard approach called mini-batch
gradient descent.

The term stochastic gradient descent (SGD) is mostly understood to mean
mini-batch gradient descent. Here the examples are divided into random subsets
(mini-batches) and the gradient is calculated using one batch at a time. The
parameters are updated and the algorithm is continuing to the next mini-batch.
After an epoch is completed the randomisation is redone so that the mini-batches
are not the same as those last epoch. With mini-batch size set to one example,
this method reduces to true stochastic gradient descent. if batch size is equal to
sample size we have only one batch and are back to the original full-batch gradient
descent. [10] has more details on stochastic gradient descent and how to implement
it with Python.

2.1.3 Testing

When the network is �nished learning, it is time to test the result on unseen data.
It is, after all, the network's ability to predict based on previous experience we

7

Figure 2.1.2: Over�tting on the left and under�tting on the right.

want to be as accurate as possible. In this scenario, that translates to knowing
the solution to the PDE, not only on training points, but also arbitrary points
in the given domain. Usually part of the training data should be set aside and
used for testing, however, in solving equations there are generally no problems in
generating new points in the same domain. To do the test, simply run the new set
of points through the same network and calculate the loss. Hopefully test loss is
close to the loss found when training.

In most machine learning applications, one has to deal with cases of under�tting
and over�tting, which leads to poor generalisation. Over�tting is when the training
loss is too small such that in, say, regression, the curve captures all the noise.
Where the curve goes in the continuation also has no clear solution. Under�tting,
on the other hand, is when the curve is too general as an approximation and the
solution becomes useless. Both cases at an arbitrary point in the domain has a
high chance of being inaccurate. Figure 2.1.2 is an illustration of over�tting and
under�tting. In solving PDEs this is not as big of a problem since inputs are points
in a domain we wish to �nd a solution for and not some noisy observation data.

If the training loss is very close to zero but test loss is not, over�tting can be
one of the causes. In the case of PDEs, the solution is then usually too much
of an approximation due to small sample size. In other applications with noise,
regularisation can help solve over�tting. An other cause of poor generalisation can
be related to the boundary and boundary conditions.

8

2.2 Theory on PDE

2.2.1 The Black�Scholes Equation

Consider a risky asset and a risk-free rate of return, usually a government bond
or money in the bank. The risky asset and risk-free rate of return are assumed to
have price evolutions following

dSt
St

= µdt+ σdWt (2.13)

dBt

Bt

= rdt (2.14)

where S is the risky asset price, µ it's drift, σ it's volatility, Wt a brownian motion
under P, B the risk-free bank account and r the risk free rate of return (interest
rate). Let V (St, t) be the value of an option on the risky asset. The function
V (s, t) must satisfy the Black�Sholes PDE

∂V

∂t
+

1

2
σ2s2

∂2V

∂s2
+ rs

∂V

∂s
− rV = 0,

V (s, T) = G(s),
(2.15)

where the terminal condition G(s) is a pay-o� at time of maturity T . In the special
case where the option is a European call C(St, t) giving terminal condition

C(ST , T) = max(0, ST −K), (2.16)

where K is the agreed price at maturity T (strike/exercise price), the equation has
an exact solution found by the formula:

C(St, t) = StΦ(d1)−Ke−r(T−t)Φ(d2), (2.17)

d1 =
1

σ
√
T − t

[
log

(
S

K

)
+

(
r +

σ2

2

)
(T − t)

]
, (2.18)

d2 = d1 − σ
√
T − t, (2.19)

where Φ is the cumulative standard normal distribution. The Black�Scholes equa-
tion can also be transformed into the heat equation.

To reduce risk, it is normal to put together a portfolio of e.g. several di�erent
options. This portfolio will also satisfy equation 2.15. No exact solution formula
exists for such portfolios. In practice they are solved with a weighted average of
asset values, thus avoiding the tremendous increase in computing power required
when simply extending numerical methods to all dimensions. In fact the method is
the same as when calculating the value of a basket option; an option on a collection

9

of underlying assets where the strike condition depends on a weighted average
of the asset prices at maturity. An approximation like this can work assuming
linearity. If we want to include, say, strike conditions on individual assets we need
to calculate them separately.

2.2.2 Feynman�Kac Formula

Consider a linear parabolic PDE of the form
∂u

∂t
+ µ(x, t)

∂u

∂x
+

1

2
σ2(x, t)

∂2u

∂x2
− h(x, t)u+ f(x, t) = 0,

u(x, T) = ψ(x),
(2.20)

for all x ∈ R and t ∈ [0, T]. The Feynman�Kac theorem says that the solution of
this equation can be written as:

u(x, t) = EQ
[∫ T

t

e−
∫ T
t h(Xτ ,τ)dτf(Xr, r)dr + e−

∫ T
t h(Xτ ,τ)dτψ(XT)|Xt = x

]
,

(2.21)
where

dXt = µ(Xt, t)dt+ σ(Xt, t)dW
Q
t , (2.22)

and Q is a probability measure. In other words the solution of a deterministic
PDE as above can be found as an expectation of a stochastic process. This way
Monte Carlo methods can be used to simulate solutions. The classical formula is
limited to linear parabolic PDEs, but extensions can be made to allow for more
complex equations to be solved. An example is [9, sec. 2B, p. 3] where they use
a nonlinear formula to solve systems of forward-backward stochastic di�erential
equations with deep learning.

10

Chapter 3

The Algorithm

In this chapter the algorithm will be looked at in more detail. Along the way prob-
lems encountered while creating the AI will be mentioned and the solutions found
to these will be discussed. There exist premade libraries like TensorFlow, Keras,
PyTorch and Theano to help build the program, but in this work the algorithm
is coded from scratch to better understand all the parts of the learning process.
The resulting machine learning is, of course, less e�cient than the standard and
also is limited on the complexity of network structures that can be used. The lec-
ture notes of Stanford University's computer science course CS231n Convolutional
Neural Networks for Visual Recognition [4, Module. 1: Neural Networks] is used
as a starting point.

3.1 Initialisation

The �rst step is the initialisation of the weight matrices and bias vectors. The
elements of the weight matrices need to be random numbers to avoid them updat-
ing equally at every iteration. If the weights are initially too far away from their
target value the gradient will be too large. This can lead to blow-up. Instead,
then, a normal distribution with mean zero and small variance seems good since
one can expect zero to be the average weight value. With an increasing number
of examples, however, the variance of a neuron's output will also increase. To
normalise it is shown in [4, module 1: NN Part 2] that dividing by

√
n where n

is the number of inputs to the speci�c neuron solves the problem. This kind of
initialisation is called Xavier initialisation. One of the assumptions is that the ex-
pectation of inputs to a neuron is zero, which is not the case for ReLu-activation
used here. In [3, p. 5] they therefore derive that multiplying by

√
2/n should

instead be used. The importance of good initialisation was found to be crucial,
moreso than expected: Throughout most of the work done here the weights were

11

simply set to be normaly distributed with zero mean and 10−4 variance. It seemed
impossible to have more than two hidden layers without getting the gradient to
either blow up or be close to zero, but the cause was thought to be something
else. To compensate for only having two hidden layers we had to use 50 to 100
nodes. When the above suggested initialisations were implemented we could right
away increase hidden layers to 20 and reduce nodes to 10 per layer without any
immediate problems. This is without considering accuracy, how much further we
could increase or if an increase is even bene�cial.

Biases can be all set to zero, but from experience it seems here to work better
with a small positive number at the start to make sure every node is activated.

3.2 Regularisation

There is a chance to over�t the solution after training. In addition, when training
the network, we want to approach a global minimum. In practice we cannot know
whether it is a global or local minimum we are approaching, but most likely it is a
local one. At the start of the coding, the solution usually ended up being straight
and a poor �t. It seemed as if most of the neurons were "turned o�", having value
zero and stopped updating. The result was only a select few weights having any
impact on the outcome. A regularisation in the loss function tried to solve these
problems by penalising large weight values such that many small (di�erent from
zero) weights are prefered to one large. The modi�cation of equation (2.6) used is

J(θ) =
1

M1

M1∑
m1=1

(f ∗(xm1)− f(xm1 ; θ))
2

+
1

M2

M2∑
m2=1

(g(xm2)− f(xm2 ; θ))
2

+
λ

2

L∑
l=1

∑
j,k

(Wl)
2
jk

(3.1)

where at the end we add the sum of all squared elements in the weight matrix
of each layer. The regularisation strength λ is set to 0.001. If λ is increased it
in�uences the loss too much.

After improving the initialisation such that a deeper network could be utilised
and using momentum, this kind of regularisation seems to slow down the training
rather than being of any bene�t. When stopping the training at di�erent times
earlier than necessary it looks like the network tries to �t the curve from one end
to the other instead of at every point simultaniously. Large weights are therefore
needed to more quickly run through the training process.

12

In learning derivatives, the greatest problems are sensitivity to small changes.
No change at all, ending in a trivial zero solution, or rapidly blow up seemed to
be the only outcomes. An e�ective �x is to set a hard upper limit on the values
the weights can take, a max regularisation. Choosing e.g. the value 10 leads to
excessively stochastic behaviour in one dimension and simply a slower blow up in
more dimensions. A limit of 3 slows training way too much down. In some cases
it even leads to inability to learn. A middle ground of 5 will be used.

3.3 Momentum

When observing the evolution of the loss during training it very often seems to be
areas where the parameters struggle to update more than small steps at a time
or oscillates around a poor local minimum. The reason could be curvature in the
optimisation path large enough compared to the step size to get stuck. Finding
a learning rate perfect for all such areas is unrealistic. Using a method called
momentum is an improvement where a moving average of previous gradients is
used in the calculation of the next. This can be thought of as a ball rolling down
a hill. In case it encounters a hole in it's path, the velocity is high enough to keep
rolling through as long as the hole is not so wide that it rolls back down into it.
Using momentum also helps in reducing overly stochastic convergence. Let v be a
parameter for velocity and the previous discussed parameter update becomes

vi = βvi−1 − η∇θiJ(θi), (3.2)

θi+1 = θi + vi, (3.3)

where the constant β denotes the weight of the moving average i.e. how much
of previous velocity is kept. More details can be found in [2, chap. 8, p. 293] in
addition to an improved method called Nesterov momentum where the gradient
used in (3.2) is calculated with the current weighted velocity. Even more methods
exist, with Aadam (Adaptive momentum) [5] being the most popular.

3.4 The Derivative

By far the most di�cult part of learning a di�erential equation is the derivative.
Without it all the function �tting is easy, straightforward and can be done with the
simplest form of network. The program here is written from scratch without the
help of premade AI packages, so from the get go we are limiting the possibilities.
The goal is instead to see how far we can get with a dense feedforward network.

In solving parabolic equations that can be written in the form of the Feynman�
Kac solution formula 2.21, the derivatives in the loss function can be avoided

13

altogether. The downside is, of course, that each iteration requires numerous
simulations to get an accurate enough expectation. If, say, a hundred realisations
are used and each of those involves integrals, in addition to each epoch potensially
taking a long time to begin with due to a large training set, computing time can
take quite a while. This is especially true with a non-zero f together with non-
constant h in the Feynman�Kac formula. These types of parabolic equations pose
few other problems than training time.

In this work, a general method to solve PDEs of low complexity is sought after.
A way of directly learning the di�erential operators was therefore looked for. In [1,
p. 6] it is suggested a method to directly �nd the derivatives through the forward
pass. The �rst layer's derivatives are readily available analytically and so for every
next layer the value is updated to the current layer until the output. In trying to
implement it something kept going wrong so a new way had to be found.

A simple, easy to implement and familiar approach is to use a �nite di�erence
method. A full grid of meshpoints is still not required, since we only need the
�nite di�erences at the training examples. If, say, a �rst order ODE is to be solved
with a simple forward di�erence the inner part of the loss function will become

f ∗(xm)− f(xm + h; θ)− f(xm; θ)

h
(3.4)

where h is the step size. With a dense feedforward network it proved extremely
di�cult in more than one dimension due to the sensitivity of small changes in
output.

3.5 Hyperparameters

When reading about machine learning, one often come across the term hyperpa-
rameters that can sound advanced. These are simply the parameters that need
to be calibrated but are not found through the learning algorithm itself. The
hyperparameters here are listed in table 3.1. Some of these, like learning rate,
regularisation strength and constant of momentum, can be turned from hyperpa-
rameters to learnable parameters. By implementing a nested learning algorithm,
where these are in a level above the original, the best performing values can be
found in the same way as the problem solution. It takes, however, much more
computing power and requires a lot more time to run.

A more simple and time saving approach is by trial and error. In choosing
this way, one can also easily use non-constant values. The learning rate can e.g.
be decaying by a factor of two every thousand epochs. In the continuation a
hard coded learning rate schedule is chosen; the initial rate is reduced by speci�ed
factors at preselected values of the loss. The di�erent loss values and factors are
found through trial and error and varies between the problems.

14

Parameter Value used
η Learning rate/step size: 10−4 to start
M Sample size: Varies
M∂ Number of boundary points sampled: 0.1M to 0.2M
m Batch size: 64
λ Regularisation strength: 10−5 (mostly 0)
β Constant of momentum: 0.9
h Step size of �nite di�erences: 10−3

Table 3.1: Hyperparameters.

15

Chapter 4

Results

All simulations are done on a laptop from January 2013 with an Intel Core i7-
3630QM CPU @2.40GHz and 8GB RAM. No GPU acceleration is used and no
parallell computing. Couple this with intermediate programming skills, and the
listed training times are therefore included only to be considered relative to each
other.

4.1 Sines

To start o� we do some simple curve �tting to see how the training works. In �gure
4.1.1 a simple sine is learned, but training is stopped prematurely. It looks like the
training goes along the x-axis from left to right instead of trying to �t all points at
the same time. The takeaways here are that the boundary should be su�ciently
sampled, extend training to outside of the boundary if possible and that even
premature stopping can visually lead to a good sense of the solution behaviour in
parts of the region. Su�ciently sampled boundary on all sides will increase the
importance of these areas in determining the loss. Extending the training domain
will do the same in the way that a good �t outside will need boundaries to have
small loss.

Similary when solving equations we start small. The �rst equation is the ODE
du

dx
= cos(x), x ∈ [0, 10],

u(0) = 0,
(4.1)

with solution u(x) = sin(x). In �gures 4.1.2 and 4.1.3 are two plots of loss func-
tions: the �rst with a network consisting of eight hidden layers with twenty nodes
each and the second with a network consisting of two hidden layers with a hundred
nodes each. We can see that the deeper network reaches the same loss in 10,000

16

Figure 4.1.1: Early stopping of u(x) = sin(x).

epochs as the shallower one does in three times as many. The deeper network
architecture will be used as the standard going forward, however, however it's con-
vergence is more stochastic. When derivatives get very small and has to propagate
through many layers, a case of vanishing gradients can arise. The network of two
hidden layers with a hundred nodes each will therefore sometimes later be tested.

Even though over�tting is not a problem encoutered here, overtraining certainly
is. Figure 4.1.5 shows what can happen when training for too long. After around
25,000 epochs something happens which the AI needs to correct. It certainly could
be that a local minimum was escaped from, but �gure 4.1.4 shows the solution. It
looks as if some nodes in the network has been set to zero and stopped updating,
leading the rest of the nodes to compensate. Notice the number of epochs, 30,000,
is the same number the shallower network needed to converge. Having hundred
nodes in each layer can be a reason "turning o�" nodes is not as noticeable, which
is another reason to consider testing this network sometimes.

The reasons sines were used were to have readily available analytical solutions
and to have the same range of values for all orders of derivatives. The steps going
forward were planned to be trying two dimensions and second derivatives, then
later extend to Laplace's and Poisson's equations in more than three dimensions.
As described in section 3.4 the derivative is di�cult with a simple feedforward
network and two dimensions with �rst derivatives proved too much.

17

Figure 4.1.2: Loss function of u′(x) = cos(x), 8 hidden layers with 20 nodes each.

Figure 4.1.3: Loss function of u′(x) = cos(x), 2 hidden layers with 100 nodes each.

18

Figure 4.1.4: Loss function of u′(x) = cos(x), 8 hidden layers with 20 nodes each.

Figure 4.1.5: Solution of u′(x) = cos(x), 8 hidden layers with 20 nodes each.

19

Now there are two options. Either a more complex network is required, in
which case premade libraries will have to be used, or we can turn our attention
towards the Feynman�Kac formula. The latter is chosen, although it limits the
types of equations that can be solved.

4.2 Black�Scholes

Consider the Black�Scholes equation for a European call option C(St, t)
∂C

∂t
+

1

2
σ2s2

∂2C

∂s2
+ rs

∂C

∂s
− rC = 0, (s, t) ∈ R+ × [0, T],

C(ST , T) = max(0, ST −K).
(4.2)

The numerical solution found using the Feynman�Kac formula becomes

C(s, t) = EQ
[
e−

∫ T
t rdτψ(ST)|St = s

]
= EQ

[
e−r(T−t)ψ(ST)|St = s

]
,

(4.3)

which can be seen as just the expectation of the option price at maturity discounted
to current time under a risk neutral probability measure. The underlying asset
price following

dSt = rStdt+ σStdWt (4.4)

is simulated using the Euler�Maruyama method{
St+1 = St + rSt∆t+ σSt∆Wt,

S0 = s.
(4.5)

It is clear that a constant interest rate r and a constant volatility σ speed up
calculation time signi�cantly, especially since every single epoch requires many
realisations to get a su�ciently accurate expectation. The term f in the Feynman�
Kac formula (2.21), not involving the function to be solved for itself, would take
an even greater toll on the simulation time.

Below we start with the data values listed in table 4.1 and 100 realisations
of the assets with 100 time steps are simulated to get the expectations. Starting
learning rate is increased to 5 · 10−4 since no derivatives makes the convergence
more stable.

4.2.1 One Asset

Black�Scholes with one asset (two dimensions with time) pose no di�culties. Fig-
ure 4.2.1 shows the asset price, option price using DL and the analytic solution.

20

M Training examples: 640
M∂ Boundary examples: 0.1M

Sampling domain: [0, 10]2

r Interest rate: 0.05
σ Volatility: 0.15
K Exercise/Strike Price: 3.0
S0 Initial Asset Price: 2.5
T Maturity time: 10

Table 4.1: Data values to start with Black�Scholes.

To better distinguish the two solutions visually �gure 4.2.2 does not include the
asset price. The training time was 8m:44s for 250 epochs and �gure 4.2.3 shows
the loss function.

21

Figure 4.2.1: Black�Scholes with one asset. Training time: 8m:44s.

Figure 4.2.2: Black�Scholes with one asset, closeup.

22

Figure 4.2.3: Black�Scholes with one asset, loss function.

23

Figure 4.2.4: Black�Scholes with three assets, 2,560 examples and 500 epochs.
Training time: 2h:25m:28s.

4.2.2 Three Assets

As increasing dimensions is the main bene�t of deep learning we now solve in four
dimensions instead of two. In the context of �nance this means we have a portfolio
with three assets instead of one. The analytic solution of a basket option on three
assets should be the same and is used for validation since all assets are assumed
similar with zero correlation.

First of all, using 640 examples worked with one asset but not with three. If
one were to use a �nite di�erence scheme with the same density in mesh points
one would need around 16,190 examples with two assets and 409,586 with three
assets. Here we �rst try 2,560 examples and 500 epochs to see how best to increase
accuracy while keeping training time as low as possible. Secondly looking at �gure
4.2.1 it seems very unlikely an asset value will get greater than 7.0, so the sampling
domain will be changed to [0, 7]3× [0, 10]. Lastly the boundary where asset prices
tend to zero will be more heavily sampled: we increase total boundary examples
to about 0.2M .

Figure 4.2.4 shows the result after a training time of 2h:25m:28s. The result is
poor so we look at the loss in �gure 4.2.5 to perhaps get an idea of how to improve
accuracy.

The loss function rapidly gets below 0.05, but even with all the time after to

24

Figure 4.2.5: Black�Scholes loss with three assets, 2,560 examples and 500 epochs.

�ne-tune parameters the �t does not look too good. It could be because eight
hidden layers make the gradient vanish when updates are small. For this reason
we try the shallower network of two hidden layers with a hundred nodes per layer.
Figure 4.2.6 shows the result that took 2h:40m:15s. The training time is longer
and the performance is not better, perhaps even slightly worse, so we go back
to the network of eight hidden layers. The loss function looks the same as the
previous one, so the �gure is omitted, as will the following loss functions.

Next we double the amount of examples to 5,120 and halve the number of
epochs to 250, see �gure 4.2.7. The training time was 2h:28m:58s. Both the
�t and training time is about the same as with 2,560 examples and 500 epochs
except for the boundary which is close to t = 10. Looking back at the sines in
section 4.1 we see that training time has an upper limit where increasing it is no
longer bene�cial. Coupled with the training loss of Black�Scholes solutions quickly
getting small, it seems unnecessary to increase epochs to more than 250-500 when
going forward to solve with better accuracy and in higher dimensions. We choose
to stick with 250 epochs while instead increasing the amount of training examples.
This is because of long training times and small updates after a while, due to both
Monte Carlo simulation in the loss function and the network architecture,

Now we increase to 20,480 examples and �gure 4.2.8 shows the result after
9h:30m:23s.

25

Figure 4.2.6: Black�Scholes with three assets, 2,560 examples, 500 epochs, two
hidden layers with 100 nodes each. Training time: 2h:40m:15s.

Figure 4.2.7: Black�Scholes with three assets, 5,120 examples and 250 epochs.
Training time: 2h:28m:58s.

26

Figure 4.2.8: Black�Scholes with three assets, 20,480 examples and 250 epochs.
Training time: 9h:30m:23s

27

Figure 4.2.9: Black�Scholes with four assets, 61,440 examples and 250 epochs.
Training time: 42h:43m:41s

4.2.3 Four Assets

This is where the simple network architecture and loss function show their practical
limits. With 61,440 examples and 250 epochs �gure 4.2.9 shows the result after a
training time of 42h:43m:41s. We can see that the solution is good in some areas
but lacking in others, speci�cally closer to the boundary and further away from
maturity. Figure 4.2.10 shows the loss evolution. For the �rst time we have a clear
di�erence in training loss and validation loss, and it seems validation loss would
approach training loss given some more epochs. We could consider running 500
epochs, but with such a long training time it does not seem practical.

28

Figure 4.2.10: Black�Scholes loss with four assets, 61,440 examples and 250 epochs.

29

4.3 Comparing DL with FDM

How does the neural network approach compare to �nite di�erence methods? We
use an explicit Euler method backwards in time from the terminal condition with
central di�erences in space. In [7, p. 14] the stability condition for this scheme on
the Black-Scholes equation is stated to be

∆t ≤ ∆x2

σx2i
(4.6)

for all mesh points xi. To solve with a uniform grid on the same domain as the
deep learning algorithm we use

∆t ≤ ∆x2

σS2
max

(4.7)

with Smax = 7. The boundary is calculated as in [6, p. 54] with

C(Smax, t) = max(0, Smax −Ke−r(T−t)) (4.8)

Some comparisons of the two methods are listed in table 4.2. Figure 4.3.1 shows
the solution space calculated with Euler's method with one asset or similarly the
mean price of several equal assets. Since the FDM has to use so many time steps
it becomes impossible to store a solution at all times simultaneously with more
assets. The table will therefore also include runtimes of the FDM solutions at
t = 0, e�ectively removing the largest dimension from the calculations. For a
more complete comparison, the neural network should also have been trained at
only t = 0, but the variance in expectations with long time to maturity makes the
DL approach overly inaccurate.

In our study, we focus on whether results are feasible and how long it takes
to �nd them. The DL times in table 4.2 are taken from plots looking as accurate
as the satisfactory ones above, and with the shortest times achieved from several
hyperparameter con�gurations. The deep learning training time of four assets is
included even though the result has much to be desired. Given experience with
all results so far, a satisfactory �t should be able to be acquired by increasing
examples and epochs. A solution is impractical, but certainly possible, in contrast
to the �nite di�erence scheme with not enough memory available.

30

Figure 4.3.1: Solution space of the Black�Scholes equation.

Method 1 Asset 2 Assets 3 Assets 4 Assets
FDM 10nx ∼ 0.00s 0.01s 0.02s *

(∼ 0.00s) (0.01s) (0.02s) (0.07s)
FDM 50nx 0.08s 0.60s 18.75s *

(0.07s) (0.52s) (15.50s) (39m : 32s)
FDM 100nx 0.32s 5.14s * *

0.30s 4.53s 23m : 01s Estimated 48h
DL 250 epochs 640M 8m : 44s
DL 250 epochs 5, 120M 2h : 12m : 50s
DL 250 epochs 20, 480M 9h : 30m : 23s
DL 250 epochs 61, 440M > 42h : 43m : 41s

Table 4.2: Runtimes of DL and FDM with varying amounts of assets, grid points
each direction nx, training examples M and epochs. The times in parenthesis are
solutions only at t = 0 and * means computer memory error.

31

Chapter 5

Discussion and Conclusion

5.1 Discussion

From the training times and loss functions, it is clear that a deeper neural net-
work is better than a shallower one for solving PDEs. It is also clear that higher
precision, beyond that of visuals on a plot, requires a more complex network ar-
chitecture. After the loss rapidly decreases to a certain level, simply letting the
training go on for a very long time does not make the result any better. A natural
next step could be to try networks with long short-term memory that lets the
gradient �ow through the layers. The vanishing gradient problem would then be
much less of an issue.

How the deep learning method performs in solving PDEs heavily rely on how
the loss function is set up. The �nite di�erence loss has no variance compared to
the simulated one, although it is averaged away over multiple epochs. Since the
�nite di�erence based loss function in the sine calculations needed more epochs
than the Monte-Carlo based loss function used in the Black�Scholes problems, it
is possible a second order equation with the former approach would take an even
greater number of epochs. On the other hand the Monte-Carlo based loss function
contributes to more time per epoch due to the number of simulations. A cause of
limited accuracy could be the number of simulations. In the same Monte-Carlo
simulation as shown here, but used on it's own without deep learning, one would
use a many times higher amount, say 5,000, whereas here 100 had to be the limit to
keep training time reasonable. Although many epochs averages out the variance,
it is unclear how many is needed.

When we started this work, it was believed that the most practical result would
be attained if a network architecture is found that can handle a �nite di�erence
loss function or other direct methods that �nd derivatives at only the randomly
sampled points. In higher dimensions, if the covariances are di�erent from zero

32

an not all equal, however, the cost of calculating every mixed derivative would
be very high. As noted the simulations here are done stepwise all the way until
the terminal condition, leading to high enough variance that many realisations are
needed, but also uses a lot of time to run. As shown in [11, p. 5] there are Monte-
Carlo methods that go only one step in each dimension and take the expectation
from these, speeding up training time tremendously. In other words, one step in
each of 100 dimensions can be done more quickly than the above 100 steps in
each of just a few dimensions. This means that the deep learning approach would
heavily outmatch the FDM already from a few dimensions. In essence the above
compares a basic FDM with a very suboptimal use of DL. The mentioned method
is likely just as sensitive to parameter change as the �nite di�erences in the loss
function, so a better network like one with long short-term memory is needed

Which strategy we use for sampling is also crucial in how the deep learning
performs. In the calculations with Black�Scholes we notice that more and more
examples had to be used in higher dimensions, mostly due to errors close to the
boundary. A reason could be the way option value is calculated from all asset
values at maturity. The more assets we have the lower the variance of their mean,
e�ectively making the uniform sample draws lead to a non-uniform distribution of
points in the solution space. An alternative strategy that might reduce training
examples needed in higher dimensions could be for each sample to draw from a
uniform distribution, letting this number be an asset mean, then splitting it into
random portions between the spatial coordinates.

From an implementation point of view, the deep learning method seems very
�exible in how easy it is to change dimensions, domain or boundary conditions. As
an example increasing the dimensions by one just means adding a column vector
to the input with matching changes in boundary conditions, possible with only
a single increase in a dimension variable. Compare this to an FDM scheme that
either requires adding more lines of code in the main loop in addition to adding
indices for all arrays in case of an explicit scheme, or changing how the system of
equations is solved all together in the case of an implicit scheme.

The majority of work done will instead be put into setting up the network and
experimenting with di�erent hyperparameter values. There does not seem to be
any speci�c values that should be chosen, nor how they should change depending
on problem or relative to each other. From above it seems like boundary samples
should change with the overall sample size, but number of dimensions also seems
to have an e�ect. Other hyperparameters such as regularisation strenght might
have more widely used standard values, but perhaps should not even be used for
PDEs in the �rst place. In section 3.2 we explain that this kind of regularisation
seems to slow down learning instead of increasing performance.

Being mesh free is de�nitely an advantage that lets us increase dimensions as

33

well as having the solution everywhere on the domain. In two or three dimensions
an FDM can be used depending on problem, but a solution at the desired points
need to be interpolated. Flexibility and ease of modi�cation are other advantages.
A disadvantage can be training time, however keep in mind the above is excessively
slow due to the MC simulations going all the way to the boundary. On the other
hand, even if training is very slow, the weights and biases can be stored as to have
the solution readily available when needed. In spirit of this work, think of the
Black�Scholes equation with many hundred assets that take a very long time to
train even with a good method. It only needs to be trained once, then the whole
solution space is stored and we e�ectively have an option price "calculator" by
running a single forward pass with given input. In contrast of an FDM solution,
weights and bias matrices take negligible space to store.

5.2 Conclusion

To conclude, we were able to solve the Black�Scholes equation in higher dimensions
with a basic deep learning approach than with an explicit �nite di�erence method.
If we want to solve a quick, one time problem the FDM can still be preferred in up
to three dimensions due to easy implementation. The DL approach is just as easy,
if not even easier, to modify when already set up and can be preferred on tasks
that will be repeated with variations. In higher dimensions a pure MC approach
can be preferred if the solution is desired at a select few points, whereas the DL
approach will be better to �nd the whole solution space and if the same equation
will be solved many times.

As the goal was to solve PDEs using deep learning, this has been a success. It
was chosen to do so without the use of pre-existing libraries to better understand
the process from loss evaluation of input to backpropagation and parameter up-
dates. This deep learning implementation also turned out to be successful. The
bene�t is to have more knowledge about where di�culties can be, for example the
vanishing gradient that occurs during backpropagation. If we go on to use deep
learning packages next, it will be easier to decide which network architectures to
experiment with.

34

References

[1] V.I. Avrutskiy, Backpropagation Generalized for Output Derivatives ,
arXiv:1712.04185, 2017.

[2] Ian Goodfellow, Deep Learning , MIT Press, 2016.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Delving Deep into
Recti�ers: Surpassing Human- Level Performance on ImageNet Classi�ca-
tion, arXiv:1502.01852, 2015.

[4] Andrej Karpathy, Convolutional Neural Networks for Visual Recognition,
Stanford University, lecture notes CS231n, 2019.

[5] Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic Optimiza-
tion, arXiv:1412.6980, 2017.

[6] Sima Mashayekhi, Numerical Methods for Nonlinear PDEs in Finance, Uni-
versity of Copenhagen, PhD Thesis, 2015.

[7] Gunter H. Meyer, Numerical Methods in Finance, Georgia Institute of Tech-
nology, lecture notes math6635, 2001.

[8] Michael A. Nielsen, Neural Networks and Deep Learning , Determination
Press, 2015.

[9] Marcus Pereira, Ziyi Wang, Ioannis Exarchos, Evangelos A. Theodorou,
Neural Network Architectures for Stochastic Control using the Nonlinear
Feynman�Kac Lemma, arXiv:1902.03986, 2019.

[10] Adrian Rosebrock, Stochastic Gradient Descent (SGD) with Python, Blog
post, 2016.

[11] Justin Sirignano, Konstantinos Spiliopoulos, DGM: A deep learning algorithm
for solving partial di�erential equations , arXiv:1708.07469, 2018.

35

https://arxiv.org/pdf/1712.04185.pdf
http://www.deeplearningbook.org/
https://arxiv.org/pdf/1502.01852.pdf
https://arxiv.org/pdf/1502.01852.pdf
https://arxiv.org/pdf/1502.01852.pdf
http://cs231n.github.io/
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
http://web.math.ku.dk/noter/filer/phd15sm.pdf
http://people.math.gatech.edu/~meyer/MA6635/chap4.pdf
http://neuralnetworksanddeeplearning.com/index.html
https://arxiv.org/pdf/1902.03986v2.pdf
https://arxiv.org/pdf/1902.03986v2.pdf
https://www.pyimagesearch.com/2016/10/17/stochastic-gradient-descent-sgd-with-python/
https://arxiv.org/pdf/1708.07469.pdf
https://arxiv.org/pdf/1708.07469.pdf

Appendix A

Python Implementation

Below is the coded neural network used for the Black-Scholes equation, here with 2
assets, 320 examples and 100 epochs. Runtime is approximately 3m:50s, resulting
in a very unaccurate solution.

from numpy import *

from matp lo t l i b . pyplot import*

from s c ipy . s t a t s import norm
import time
se t_pr in topt i ons (suppres s=True)

#Clock
s t a r t ed = time . time ()

#Constants
M = 320 #Num samples
D = 3 #num dimensions i n c l . t ime
L = 9 #lay e r s (depth)
N = 20 #nodes per l a y e r (width)
l ea rn ing_rate = 5e−4
epochs = 100
m = 64 #mini−batch s i z e
reg = 0*1e−5 #L^2 r e g u l a r i s a t i o n
beta = 0 .9 #cons tant o f momentum
ep s i l o n = 0 .1 #step s i z e o f f i n i t e d i f f e r e n c e
r = 0 .05 #i n t e r e s t ra t e
K = 3 . #St r i k e p r i c e
sigma = 0.15 #Vo l a t i l i t y

36

#I n i t i a l i z a t i o n s
X = 7.* random . random_sample ((M,D)) #data (input)

#boundary
X[: , 0] = 10*random . random_sample (M)
X[0 : 1 0 , 0] = 0 .
X[1 0 : 2 0 , 0] = 10 .
X[2 0 : 3 0 , 1] = 0 .
X[3 0 : 4 0 , 1] = 7 .
X[4 0 : 5 0 , 2] = 0 .
X[5 0 : 6 0 , 2] = 7 .

W_in = random . randn (D,N)* s q r t (2 . 0/D) #weigh t s l a y e r 1
b_in = ones ((1 ,N))*0 . 0 1 #b ia s l a y e r 1
W = random . randn (L−1,N,N)* s q r t (2 . 0/N) #weigh t s
b = ones ((L−1 ,1 ,N))*0 . 0 1 #b i a s e s
W_out = random . randn (N, 1)* s q r t (2 . 0/N) #weigh t s output
b_out = 0.01 #b i a s e s output
hidden_layers = ze ro s ((L ,M,N))
VdW_in = ze ro s ((D,N)) #momentum
VdW = zero s ((L−1,N,N))
VdW_out = ze ro s ((N, 1))
Vdb_in = ze ro s ((1 ,N))
Vdb = ze ro s ((L−1 ,1 ,N))
Vdb_out = 0 .

#Functions
def t a r g e t (out , dout , ddout ,X=X,M=M) :

""" l o s s f unc t i on """
t = copy (X [: , 0]) . reshape (M, 1)
Expectat ion = ze ro s_ l i k e (out)
for _ in xrange (1 0 0) :

dt = (10− t)/100
x = copy (X[: , 1 :D]) . reshape (M,D−1)
for n in xrange (1 0 0) :

x = x + x* r *dt + sigma* s q r t (dt)*x*random . randn (M,D−1)
I = −r *(10− t)
p s i = mean(maximum(0 , x−K) , ax i s =1). reshape (M, 1)
Expectat ion += exp (I)* p s i

Expectat ion /= 100 .

37

t a r g e t = (out − Expectat ion)**2
dtarge t = 2*(out − Expectat ion)

return target , d ta rge t

def ReLU(x) :
""" Re c t i f i e d Linear Unit """
return maximum(0 , x)

def forwardPass (hidden_layers ,X,
W_in=W_in,W=W,W_out=W_out,
b_in=b_in , b=b , b_out=b_out) :

""" forward pass o f neura l network """
L ,M,N = shape (hidden_layers)
h l = copy (hidden_layers)

h l [0 , : , :] = dot (X,W_in)+b_in
z = dot (h l [0 , : , :] ,W[0 , : , :]) + b [0 , : , :]
h l [1 , : , :] = ReLU(z)
for j in xrange (2 ,L) :

z = dot (h l [j − 1 , : , :] ,W[j − 1 , : , :]) +\
b [j − 1 , : , :]

h l [j , : , :] = ReLU(z)

#output
output = dot (h l [L−1] ,W_out)+b_out

return output , h l

def SGD(step_size , hidden_layers ,
W_in=W_in,W=W,W_out=W_out,
b_in=b_in , b=b , b_out=b_out ,
VdW_in=VdW_in,VdW=VdW,VdW_out=VdW_out,
Vdb_in=Vdb_in ,Vdb=Vdb ,Vdb_out=Vdb_out) :

""" S t o c ha s t i c Gradient Descent """

#Batches
minibatches = []
p = arange (M)
random . s h u f f l e (p)

38

X_shuff led = X[p]
h l_shu f f l ed = hidden_layers [: , p]

for k in xrange (0 ,M,m) :
X_batch = X_shuff led [k : k+m]
hl_batch = h l_shu f f l ed [: , k : k+m]
minibatches . append ((X_batch , hl_batch))

for X_batch , hl_batch in minibatches :

out_batch , hl_batch = forwardPass (
hl_batch , X_batch) [0 : 2]
dout_batch , ddout_batch = 0 . , 0 .
#dout_batch , ddout_batch = d e r i v a t i v e (hl_batch , X_batch)

#grad i en t a t end l a y e r
dLoss_batch = ta rg e t (out_batch , dout_batch , ddout_batch ,

X=X_batch ,M=m) [1]
dLoss_batch /= m

#Backpropagat ion to f i nd g rad i en t w. r . t W and b
dW_out = dot (hl_batch [L−1] .T, dLoss_batch)
db_out = sum(dLoss_batch , ax i s =0,keepdims=False)
dhidden = dot (dLoss_batch ,W_out .T)
dhidden [hl_batch [L−1] <= 0] = 0

dW = ze ro s ((L−1,N,N))
db = ze ro s ((L−1 ,1 ,N))
for j in reversed (xrange (0 ,L−1)) :

dW[j] = dot (hl_batch [j] . T, dhidden)
db [j] = sum(dhidden , ax i s =0,keepdims=False)
dhidden = dot (dhidden ,W[j] .T)
dhidden [hl_batch [j] <= 0] = 0

dW_in = dot (X_batch .T, dhidden)
db_in = sum(dhidden , ax i s =0,keepdims=True)

#adding r e g u l a r i z a t i o n
dW_in += reg *W_in
dW += reg *W
dW_out += reg *W_out

39

#momentum
VdW_in = beta *VdW_in − s t ep_s i ze *dW_in
VdW = beta *VdW − s t ep_s i ze *dW
VdW_out = beta *VdW_out − s t ep_s i ze *dW_out
Vdb_in = beta *Vdb_in − s t ep_s i ze *db_in
Vdb = beta *Vdb − s t ep_s i ze *db
Vdb_out = beta *Vdb_out − s t ep_s i ze *db_out

#parameter update
cap = 5 .
W_in += VdW_in
W_in[W_in > cap] = cap
W_in[W_in < −cap] = −cap
b_in += Vdb_in
W += VdW
W[W > cap] = cap
W[W < −cap] = −cap
b += Vdb
W_out += VdW_out
W_out [W_out > cap] = cap
W_out [W_out < −cap] = −cap
b_out += Vdb_out

def d e r i v a t i v e (hidden_layers ,X=X, order=' f i r s t ') :
""" F in i t e d i f f e r e n c e s o f NN"""
h = ep s i l o n
u = forwardPass (hidden_layers ,X) [0]
h1 = ze ro s_ l i k e (X)
h1 [: , 0] += h
h2 = ze ro s_ l i k e (X)
h2 [: , 1] += h

u1p = forwardPass (hidden_layers ,X+h1) [0]
u1m = forwardPass (hidden_layers ,X−h1) [0]
du1 = (u1p − u1m)/(2*h)

u2p = forwardPass (hidden_layers ,X+h2) [0]
u2m = forwardPass (hidden_layers ,X−h2) [0]
du2 = (u2p − u2m)/(2*h)

40

i f order ==' second ' :
ddu1 = (u1p − 2*u + u1m)/h**2
ddu2 = (u2p − 2*u + u2m)/h**2

else : ddu1 , ddu2 = ze ro s_ l i k e (u) , z e r o s_ l i k e (u)

#du1 , du2 , ddu1 , ddu2 = 0 ,0 ,0 ,0
return [du1 , du2] , [ddu1 , ddu2]

def t e s t (hidden_layers=hidden_layers) :
"""Find l o s s o f NN on random va l i d a t i o n s e t """
t e s t_po int s = 7 .* random . random_sample ((M,D))
te s t_po int s [: , 0] = 10*random . random_sample (M)
u ,_ = forwardPass (

hidden_layers , t e s t_po int s) [0 : 2]
#du , ddu = d e r i v a t i v e (hidden_layers , t e s t_po in t s , ' second ')
du = ddu = 0 .
return sum(t a r g e t (u , du , ddu ,X=tes t_po int s) [0]) /M

def l earn ing_rate_schedule (Loss , l ea rn ing_rate) :
"""Learning ra t e s chedu l e to reduce
l e a rn ing ra t e dur ing t r a i n i n g """
i f Loss <= . 0 2 :

s t ep_s i ze = learn ing_rate /2
else : s t ep_s i ze = learn ing_rate
return s t ep_s i ze

#main par t
test_array = ze ro s (epochs) #To p l o t l o s s
l o s s_array = ze ro s (epochs) #To p l o t l o s s
Loss = 1 .
i = 0
step_s i ze = learn ing_rate_schedule (Loss , l ea rn ing_rate)
while Loss >= 0.001 and i < epochs :

out , h idden_layers = forwardPass (
hidden_layers ,X) [0 : 2]

#dout , ddout = d e r i v a t i v e (hidden_layers ,X)
#ddout = d e r i v a t i v e (hidden_layers ,X, ' second ')
dout , ddout = 0 ,0

41

#Loss
dataLoss = sum(t a r g e t (out , dout , ddout) [0]) /M
regLoss = 0 .5* reg *sum(W_in*W_in) +\

0 .5* reg *sum(W_out*W_out) +\
0 .5* reg *sum(W*W)

Loss = dataLoss + regLoss

#parameter update
SGD(step_size , h idden_layers)

#s to r e l o s s e v o l u t i on
test_array [i] = t e s t ()
lo s s_array [i] = Loss

#con t inou s l y p r i n t l o s s
i f (i%10 == 0) :

print ' Loss at epoch %d = %f , data l o s s : %f '%(i , Loss , dataLoss)

i += 1
step_s i ze = learn ing_rate_schedule (Loss , l ea rn ing_rate)

print ' Loss at end = %f '%(Loss)
print ' Data Loss : ' , dataLoss , ' Reg Loss : ' , regLoss
print ' Test l o s s : ' , t e s t ()
e l apsed = time . time () − s t a r t ed
print 'Time taken : %.2 f seconds '%(e lapsed)

#Plo t s
t imes = l i n s p a c e (0 , 9 . 9 9 ,M)
dt = times [1]− t imes [0]
tau = (10− t imes) . reshape (M, 1)

X1 = 2.5* ones ((M,D))
X1 [: , 0] = times
for i in xrange (M−1):

X1 [i +1 ,1:D] = X1 [i , 1 :D] +\
X1 [i , 1 :D]* r *dt +\
sigma* s q r t (dt)*X1 [i , 1 :D]* random . randn (D−1)

Y1 = forwardPass (

42

hidden_layers ,X1) [0]
meanX = mean(X1 [: , 1 :D] , ax i s =1). reshape (M, 1)
dp = (log (meanX/K)+(r+0.5* sigma **2)* tau)/ (sigma* s q r t (tau))
dm = dp − sigma* s q r t (tau)
C1 = norm . cd f (dp)*meanX−norm . cd f (dm)*K*exp(−r * tau)

p l o t (times ,meanX , '− ' , l a b e l=' Asset Pr i ce ')
p l o t (times ,C1 , ' r−− ' , l a b e l=' Analyt ic ' , lw=2.)
p l o t (times ,Y1 , '− ' , l a b e l='Deep Learning ' , lw=1.)
tick_params (l a b e l s i z e =16)
x l ab e l ('Time ' , f o n t s i z e =16)
y l ab e l (' Value ' , f o n t s i z e =16)
legend ()
show ()

p l o t (arange (epochs) , test_array , ' r− ' , l a b e l=' Va l ida t i on s e t ' , lw=1.)
p l o t (arange (epochs) , loss_array , '− ' , l a b e l=' Train ing s e t ' , lw=1.)
tick_params (l a b e l s i z e =16)
x l ab e l (' Epochs ' , f o n t s i z e =16)
y l ab e l (' Loss ' , f o n t s i z e =16)
ax i s ([0 , epochs , 0 , 1])
l egend ()
show ()

#second p l o t
X2 = 2.5* ones ((M,D))
X2 [: , 0] = times
for i in xrange (M−1):

X2 [i +1 ,1:D] = X2 [i , 1 :D] +\
X2 [i , 1 :D]* r *dt +\
sigma* s q r t (dt)*X2 [i , 1 :D]* random . randn (D−1)

Y2 = forwardPass (
hidden_layers ,X2) [0]

meanX = mean(X2 [: , 1 :D] , ax i s =1). reshape (M, 1)
dp = (log (meanX/K)+(r+0.5* sigma **2)* tau)/ (sigma* s q r t (tau))
dm = dp − sigma* s q r t (tau)
C2 = norm . cd f (dp)*meanX−norm . cd f (dm)*K*exp(−r * tau)

p l o t (times ,meanX , '− ' , l a b e l=' Asset Pr i ce ')

43

p lo t (times ,C2 , ' r−− ' , l a b e l=' Analyt ic ' , lw=2.)
p l o t (times ,Y2 , '− ' , l a b e l='Deep Learning ' , lw=1.)
tick_params (l a b e l s i z e =16)
x l ab e l ('Time ' , f o n t s i z e =16)
y l ab e l (' Value ' , f o n t s i z e =16)
legend ()
show ()

44

	Introduction
	Motivation
	Overview of the Method
	Network Architecture
	Parameter Update
	Testing

	Theory on PDE
	The Black–Scholes Equation
	Feynman–Kac Formula

	The Algorithm
	Initialisation
	Regularisation
	Momentum
	The Derivative
	Hyperparameters

	Results
	Sines
	Black–Scholes
	One Asset
	Three Assets
	Four Assets

	Comparing DL with FDM

	Discussion and Conclusion
	Discussion
	Conclusion

	References
	Python Implementation

