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1 Abstract

2 The regional frequency analysis (RFA) is a widely used method in analyzing the 

3 changes of extreme precipitation (EP). The uncertainties in the identification of 

4 homogeneous subregions and the selection of optimal regional frequency distributions 

5 can largely influence the results of the RFA. In this study, the fuzzy c-means method 

6 combined with the extended Xie-Benn index (FCXB) is used to help determine the 

7 optimal division of subregions. In addition, we introduce a new comprehensive index 

8 (CI) to overcome the shortcomings of present measures and reduce the uncertainty in 

9 regional frequency distribution selection. The changes of EP at 93 meteorological 

10 stations in the Songliao River Basin (SRB) during 1960 to 2016 is analyzed. The main 

11 results show that: (1) FCXB can effectively identify the optimum number of 

12 homogeneous subregions automatically, and the corresponding subregion division is 

13 proven to be reasonable and reliable; (2) compared with the single goodness-of-fit 

14 measure, the developed CI can reduce the uncertainties in distribution selection and 

15 determine the optimal regional distribution in a reliable way; (3) the estimated EP under 

16 different return periods both decrease from the south to the north of the SRB, which 

17 indicates the risk of high-intensity EP events in the southern SRB is relatively higher. 

18 These findings can provide technical support for local policymakers to formulate 

19 effective measures to lessen the damages of the EP on ecosystem and society. 

20 Keywords: regional frequency analysis; L-moments method; a comprehensive index; 

21 Xie-Benn index; the Songliao River Basin
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22 1 Introduction

23 According to the fifth IPCC report (2013), the frequency of extreme precipitation 

24 (EP) events has significantly increased in many land regions since the 1950s, causing 

25 huge economic losses (Jun et al., 2017; Su et al., 2008). Moreover, the increasing trend 

26 of EP is projected to continue in the 21st century in many regions across the world, 

27 especially in the high latitudes and tropical regions (Alexander and Arblaster, 2009; 

28 Hao et al., 2013). The frequent occurrence of EP, which is mainly attributed to climate 

29 change and human activities (Konisky et al., 2016; Tao et al., 2011), can probably alter 

30 the balance of local ecosystem, and will likely trigger other natural hazards such as 

31 floods (Ashfaq et al., 2010; Mishra et al., 2012), drought (Mukherjee et al., 2018), and 

32 landslides (Wu et al., 2017). Therefore, understanding the changes in EP (frequency, 

33 trends, etc.) is of great significance and can help water resources managers formulate 

34 effective adaptation strategies to minimize catastrophic losses.

35   Basically, there are two ways to carry out an EP frequency analysis: the at site 

36 frequency analysis (ASF) method and the regional frequency analysis (RFA) method 

37 (Hosking and Wallis, 1997). Compared to the ASF method, which cannot be applied at 

38 ungauged stations, the main advantage of the RFA method is that it can use data from 

39 multiple gauged stations to predict the meteorological characteristics in an ungauged 

40 region (Cunnane, 1988; She et al., 2014). The most well-known RFA method is the 

41 regional L-moment method (denoted as LM), which has been widely used in the RFA 

42 of EP in many regions around the world (Chen et al., 2014; Fowler and Kilsby, 2003; 
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43 Ngongondo et al., 2011; Yang et al., 2010a). Generally, the procedure of LM consists 

44 of five steps: (a) identification of homogeneous subregions; (b) screening of the data 

45 using discordancy measures; (c) the homogeneity test using heterogeneous measures; 

46 (d) selection of the optimal regional distributions; and (e) quantiles estimation and 

47 accuracy assessment. 

48 Determining the number of subregions plays an important role in the work of LM 

49 since an inappropriate number of subregions will lead to an unreasonable division 

50 pattern that may not satisfy the homogeneity assumption of the RFA (Forestieri et al., 

51 2018; Rao and Srinivas, 2006). Many previous studies determined the number of 

52 subregions by setting an initial number based on the regional geographical 

53 characteristics and then adjusting the number back and forth until all divided subregions 

54 could pass the homogeneity test (Du et al., 2014; Yang et al., 2010b). However, such 

55 an approach is subjective, and the determined number of subregions may not be the 

56 most appropriate. Some objective cluster methods such as the K-means method and the 

57 fuzzy c-means method (denoted as FC) with some cluster validity indices have also 

58 been employed for determining the optimum number of subregions in some studies 

59 (Forestieri et al., 2018; Halkidi et al., 2001). However, selecting a reliable cluster 

60 validity index is important for the determination of the optimum subregion number as 

61 different indices usually lead to different results. In this study, the FC with a reliable 

62 index, the extended Xie-Benn index (denoted as FCXB), is employed to identify the 

63 homogeneous subregions (Basu and Srinivas, 2015; Rao and Srinivas, 2006; Xie and 
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64 Beni, 1991). As confirmed by Xie and Beni (1991) and Hamerly and Elkan (2002), 

65 FCXB performs better than the K-means method in producing hard clustering solutions. 

66 In addition, the FCXB presents a direct connection to the properties of the input data so 

67 that the results of the FCXB do not exhibit monotonic increasing or decreasing trends 

68 with the increase in the subregion number. However, the connection to the input data 

69 is lacking in some other validity indices (such as the fuzzy partition coefficient or the 

70 fuzzy partition entropy), which will lead to the monotonic trends in their results and 

71 unreasonable decisions for the subregion number (Halkidi et al., 2001; Hall and Minns, 

72 1999). 

73 The determination of an appropriate regional frequency distributions is also 

74 important in the RFA. An inappropriate selection of distributions may result in a large 

75 overestimation or underestimation of the risk of EP. Several goodness-of-fit measures 

76 have been proposed to select the optimal regional distribution, and the goodness-of-fit 

77 measure proposed by Hosking and Wallis (1997) (denoted as HWGOF) and the 

78 graphical measure using the L-diagram (denoted as GMLM) (Peel et al., 2001; Vogel 

79 et al., 1993) are the two most widely used. However, the results of GMLM may not be 

80 reliable because the selection of the optimal regional distributions mainly depends on 

81 subjective judgments. In addition, Kjeldsen and Prosdocimi (2015) claimed that the 

82 distributions suggested by the HWGOF are not robust enough due to the inadequate 

83 consideration of the variability of the L-skewness, and they proposed a new bivariate 

84 extension goodness-of-fit measure (denoted as KPGOF), which considers the 
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85 variability of both the L-skewness and L-kurtosis as well as their correlation. The 

86 KPGOF can improve the ability and stability in selecting the true population 

87 distribution in most situations except when the true distribution is a generalized logistic 

88 distribution (Kjeldsen et al., 2017; Kjeldsen and Prosdocimi, 2015). In this study, we 

89 will first compare the efficiency of the HWGOF, GMLM, and KPGOF in determining 

90 the optimal regional distribution and then develop a comprehensive index (denoted as 

91 CI) based on the joint consideration of the three previously described measures. We 

92 aim to provide a more reliable way based on CI to help choose the most appropriate 

93 regional distributions, especially when the results of HWGOF, GMLM, and KPGOF 

94 are inconsistent.

95 In this study, the Songliao River Basin (SRB) is selected as the study area, and the 

96 RFA of the EP in this region is investigated through the LM with FCXB and CI. The 

97 objectives of this study are to (1) reduce the uncertainty in the identification of the 

98 homogeneous subregions through applying the FCXB to determine the optimum 

99 number of subregions and the corresponding division of homogeneous subregions and 

100 (2) construct a comprehensive index with the joint considerations of three different 

101 goodness-of-fit measures to determine the optimal regional distribution in a more 

102 reliable way. 

103 2 Study area and methodology

104 2.1 Study area and data

105 The Songliao River Basin (115°31'E–135°9'E, 38°35'N–53°35'N) is one of the most 
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106 important agricultural and industrial regions in northeastern China (Liang et al., 2011; 

107 Song et al., 2014). However, the frequency of EP in the SRB has been largely increased 

108 in recent years, causing significant economic losses and huge damage to local 

109 infrastructures (Ma et al., 2004; Wang et al., 2013). Thus, it is of great necessity to 

110 assess the EP over the whole SRB. The SRB covers a drainage area of approximately 

111 1.24×106 km2, including the northeast of the Inner Mongolia province, Liaoning 

112 province, Jilin province, and Heilongjiang province. The Amur River, Liao River, Yalu 

113 River, Tumen River, Suifen River, Daling River, and Ergun River are the seven major 

114 rivers in the SRB. Of these seven rivers, the largest is the Amur River, with a length of 

115 approximately 4440 km and a drainage area of approximately 8.88×105 km2 in the 

116 territory of China. The largest tributary of the Amur River in China is the Songhua 

117 River, with a length of 1927 km and a drainage area of 5.568×105 km2, which is formed 

118 by the confluence of the southern Second Songhua River tributary and the Northern 

119 Nenjiang River tributary (Song et al., 2015). The SRB belongs to temperate and cold 

120 temperate zones and has a continental monsoon climate. The long-term annual mean 

121 precipitation (denoted as LAMP) of the SRB shows a south-north gradient, varying 

122 from more than 1000 mm in the southern SRB to less than 350 mm on the northern 

123 edge of the SRB (Qi, 2006). The east, west, and north of the SRB are surrounded by 

124 mountains, and the highest mountain with an elevation of 2439 m is located in the west 

125 of the SRB. The long-term annual mean air temperature varies from 1°C to 5°C, and 

126 the annual range of air temperature can reach up to 40°C. Fig. 1 shows the location and 
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127 the geographic information of the study area.

128 In this study, the daily precipitation observations (from 1960 to 2016 without gaps) 

129 of 93 national meteorological stations in the SRB are used. These data were obtained 

130 from the National Meteorological Administration of China (http://data.cma.cn/), which 

131 is the official institute of China providing high-quality meteorological data. The 

132 specific locations of the 93 stations in SRB are given in Fig. 1. In this study, the EP 

133 time series at each station is obtained as the annual maximum daily precipitation 

134 (denoted as AMP, mm) derived from the daily rainfall observations. 

135 2.2 Methodology

136 In this study, the LM with FCXB and CI is applied for the RFA of the EP in the SRB. 

137 More details about the LM can be found in the study by Hosking and Wallis (1997). 

138 The major steps of the LM are briefly introduced below.

139 2.2.1 The identification and delineation of homogeneous subregions

140 FCXB is employed in this study for the identification of the homogeneous subregions, 

141 as it can determine the optimum number of subregions automatically in a reliable way. 

142 The procedure of FCXB consists of three parts: First, select and use several 

143 geographical or meteorological characteristics (such as longitude, LAMP, etc.,) of all 

144 stations to form the input data matrix. Second, apply the input data matrix to calculate 

145 the partition membership matrixes with different numbers of subregions; more details 

146 on the process of obtaining the partition membership matrix are provided in the study 

147 by Rao and Srinivas (2006). Finally, based on these partition membership matrixes, the 

148 values of the extended Xie-Benn index corresponding to different numbers of 
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149 subregions can be computed as:

150
2 2

1 1 ,
( ( ) ) ( min )rc K

j kXB jk j k j kj j k
V V W K V V 


    (1)

151 where jk denotes the member of partition membership matrix U at row j and column 

152 k. K and c denote the numbers of column and row of U, respectively. kW denotes the 

153 vector of input data matrix W at row k. jV  denotes a fuzzy centroid vector that can be 

154 calculated as    1 1
r rK K

k kj jk k jkV W     , where r denotes the fuzzifier, which 

155 controls the extent of membership shared among fuzzy clusters. For most data sets, 

156 1.25 2.5r   gives good results for FC (Srinivas et al., 2008; Zhang and Hall, 2004). 

157 The minimum XBV  indicates the optimum number of compact and well-separated 

158 subregions. After determining the optimum number of subregions and the 

159 corresponding partition membership matrix, each station can be assigned to a specific 

160 subregion according to its maximum membership in the partition membership matrix.

161 2.2.2 Screening of data using the discordancy measure

162 Assume that there are N stations in the study region, let ( )it , ( )
3

it , ( )
4
it  denote the 

163 coefficient of variation (L-CV), L-skewness, and L-kurtosis at station i, respectively, 

164 and ( ) ( ) ( )
3 4, ,

Ti i i
iu t t t    . The discordancy measure for station i, Di, can be calculated 

165 as:

166    1 3
T

i i iD N u u S u u   (2)

167 where ( ) ( ) ( )
3 4, ,

Ti i i
iu t t t    ,

1

N

i
i

u u N


  and
1

= ( )( )
N T

i i
i

S u u u u


  (Neykov et al., 2007). The 

168 stations with iD  values larger than the critical value that is related to the number of 

169 sites in the study region are considered to be discordant with the other stations.
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170 2.2.3 Testing of regional homogeneity using the heterogeneity measure

171 Three heterogeneity measures (H), namely H1, H2, and H3, are used to examine the 

172 assumption of the RFA that each divided subregion is a homogeneous region (She et 

173 al., 2014). H1, H2, and H3 can be calculated as: 

174 1 1 2 2 2 2 3 3 3 3( ) , ( ) , ( )H V H V H V                (3)

175 where V1, V2, and V3 are the weighted standard deviations of the at-site sample L-

176 moment ratios that can be calculated as:

177

1 2
( ) 2

1
1 1

1 2
( ) 2 ( ) 2

2 3 3
1 1

1 2
( ) 2 ( ) 2

3 3 3 4 4
1 1

= ( )

= ( ) ( )

= ( ) ( )

N Ni R
i i

i i

N Ni R i R
i i

i i

N Ni R i R
i i

i i

V n t t n

V n t t t t n

V n t t t t n

 

 

 

      
       

       


(4)

178 where in  denotes the recording length at station i and Rt , 3
Rt , and 4

Rt  denote the 

179 regional average L-moments ratios ( ( )

1 1
, 1,3, 4

N NR i
j i j i

i i
t n t n j

 
   ) (Yang et al., 2010a). 

180   and   are the mean and standard deviation of V derived from a large number (

181 mN ), which is set as 500 here, of simulated realizations of the study region by Monte 

182 Carlo simulation. Each simulated realization contains N stations with the same record 

183 length as their real-world counterpart and has a four parameter Kappa distribution fitted 

184 by the regional average L-moments ratios ( 3 41, , ,R R Rt t t ) as the frequency distribution. 

185 More details about Kappa distribution can be found in the study by Kjeldsen et al. 

186 (2017). The study region can be regarded as being “acceptably homogeneous” if

187 1( 1,2,3)iH i  , “possibly homogeneous” if1 2( 1,2,3)iH i   and “definitely 

188 heterogeneous” if ( , )2 1 2,3i iH  .
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189 2.2.4 Choice of optimal regional frequency distribution

190 In this study, four candidate probability distributions that are frequently used in the 

191 LM, i.e., the Pearson-Ⅲ distribution (denoted as PE3), generalized normal distribution 

192 (denoted as GNO), generalized logistic distribution (denoted as GLO), and generalized 

193 extreme value distribution (denoted as GEV), are considered (Fowler and Kilsby, 2003; 

194 Yang et al., 2010a). More detail about these frequency distributions can be seen in the 

195 study by Hosking and Wallis (1997). Three measures (HWGOF, GMLM, KPGOF) and 

196 a newly constructed comprehensive index CI will be separately introduced below.

197 2.2.4.1 HWGOF 

198 HWGOF ( DISTZ ), using the L-kurtosis for the distribution selection (Hosking and 

199 Wallis, 1997), can be calculated for each candidate distribution as: 

200 4 4 4 4= ( - )DIST DIST RZ t    (5)

201 where 4
DIST is the L-kurtosis of the fitted candidate distribution to the data. 4  and 

202 4  denote the bias and standard deviation of 4
Rt , respectively, which can be computed 

203 as: 

204 ( )
4 4 4

1
= ( )

mN
m R

m
m

t t N


  (6)

205
1 2

( ) 2 2
4 4 4 4

1

1= ( )
1

mN
m R

m
mm

t t N
N

 


        
 (7)

206 where ( )
4

mt denotes the sample regional L-kurtosis derived from the mth simulation. If 

207 1.64DISTZ  , the candidate distribution can be considered acceptable. The distribution 

208 with the minimum DISTZ  among all the acceptable distributions is the best regional 

209 distribution.
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210 2.2.4.2 GMLM

211 GMLM is a widely-used graphical measure based on L-diagrams, which is a simple 

212 but useful visual comparison method. With the verification of several studies (Kjeldsen 

213 and Prosdocimi, 2015; Vogel et al., 1993; Vogel and Wilson, 1996), the distribution 

214 whose theoretical curve is the closest to the regional mean L-moment ratios point can 

215 be suggested to be the most appropriate regional distribution.

216 2.2.4.3 KPGOF

217 The procedure of KPGOF consists of two steps (Kjeldsen and Prosdocimi, 2015): 

218 first, using the L-diagrams with the (1 )100% confidence ellipse, where   is the 

219 given significance level, to determine the acceptable distributions. The distributions 

220 whose theoretical curves are located within the area of the ellipse are considered as 

221 acceptable distributions. Second, for each acceptable distribution, DISTD can be 

222 calculated as:

223    1TDIST DIST R DIST RD t t     (8)

224 where 3 3 4 4( , )R R R
Bt t t     denotes the vector of the bias-corrected regional L-

225 skewness and L-kurtosis.   is a covariance matrix as 
2
3 34

2
43 4

 
 

 
 
 

, where 34  is the 

226 covariance between the L-skewness and L-kurtosis, which can be estimated as:

227  1 ( ) ( )
34 3 3 4 4 3 4

1
=( 1) ( )( )

mN
m R m R

m m
m

N t t t t N  


     (9)

228 where ( )
3

mt  is the regional average L-skewness derived from the mth simulation. 3  

229 and 3  denote the bias and standard deviation of 3
Rt , respectively. If 4.61DISTD  , 

230 the candidate distribution can be viewed as acceptable. The distribution with the 
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231 minimum DISTD  can be accepted as the most appropriate one among all the 

232 acceptable distributions.

233 2.2.4.4 CI

234 The CI is constructed based on the results of the three foregoing introduced measures 

235 to help determine the optimal regional distribution, especially when the best 

236 distributions suggested by the three measures are different. The theory of CI is that the 

237 distribution accepted by the majority of goodness-of-fit measures should be considered 

238 as the most appropriate regional distribution. For each candidate distribution, the value 

239 of CI ( DISTT ) can be calculated as:

240
*D * *G

+ + 1

DIST DIST Th DIST Th DISTT A D B Z Z C

A B C

   



 (10)

241 where the values of DISTG are set as 0 for all possible optimal distributions suggested 

242 by GMLM and 1 for the other distributions. ThD and ThZ denote the critical values of 

243 KPGOF and HWGOF, which are set as 4.61 and 1.64 under the significance level of 

244 5%, respectively. A, B and C are the weights of KPGOF, HWGOF, and GMLM, 

245 respectively. The values of A, B, and C are related to the performance of corresponding 

246 measures, with a smaller value indicating a more robust performance. In this study, the 

247 initial values of weights are all set as 1/3 on the condition that comparisons of the 

248 performance of the three measures have never been conducted for the study region. For 

249 those unacceptable distributions determined by any of the three measures, the values of 

250 DISTT will be set as its upper limit of 1. The distribution with the minimum value of 

251 DISTT is considered the optimal regional distribution.
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252 3 Results and discussions

253 3.1 Trend analysis

254 The Mann Kendall (MK) test (Romanić et al., 2015) is used to examine the trends of 

255 the AMP time series at 93 stations in the SRB from 1960 to 2016. A boxplot of the MK 

256 test results of 93 sites is given in Fig. 2 (a). The 5% level is used to determine the 

257 significance of the trends. It can be seen from Fig. 2 (a) that all the MK statistics are in 

258 the range of -1.96–1.96, which means that the AMP time series at the 93 stations do not 

259 have significant changes in their trends. The spatial distribution of the MK results of 

260 the 93 stations is presented in Fig. 2 (b). It can be found that the AMP time series at 39 

261 stations show increasing trends, while the remaining 54 stations show decreasing trends. 

262 The AMP time series at the 93 stations can be used for the RFA of the EP without 

263 consistency correction, as there are no significant changes in the trends of any of them.

264 3.2 Identification of homogeneous subregions

265 In this study, four factors, including the longitude, latitude, elevation, and LAMP of 

266 each station in the SRB, are employed in FCXB to obtain the optimal division of the 

267 study area, and the result is presented in Fig. 3. We can observe that the values of the 

268 extended Xie-Benn index do not present an overall monotonic increasing or decreasing 

269 tendency when the subregion number increases. This change pattern is consistent with 

270 the results in the study by Rao and Srinivas (2006) and Srinivas et al. (2008). The 

271 optimum number of subregions of the SRB can be determined to be six because the 

272 extended Xie-Benn index obtains the minimum value under this case (Fig. 3). We depict 
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273 the boundaries of the six subregions in Fig. 4 and list the stations in each subregion in 

274 Tab. 1. Generally, subregion I, with the highest elevation and the lowest LAMP of the 

275 entire SRB, is located in the west of the SRB, and the whole Ergun River is located in 

276 this subregion. Subregion II mainly represents the central areas of the SRB, which is 

277 characterized by a large plain area with a low LAMP of approximately 450 mm. This 

278 subregion includes the Nenjiang River and the west of the Liao River. Subregion III 

279 with an elevation of less than 500 m, is located in the northeast of the SRB. There is 

280 not much precipitation in this subregion, and the LAMP of most areas in this subregion 

281 is approximately 550 mm. Most areas with low elevation in the west and the center of 

282 Liaoning province are associated with subregion IV, and the LAMP over this subregion 

283 is 616 mm, which is larger than that of the three previous subregions. The Daling River 

284 and the mainstream of Liao River are both located in this subregion, and the southern 

285 part of subregion IV is near Bohai Bay of China. Most of the eastern areas of Liaoning 

286 province are located in subregion V. The elevation of subregion V is higher than that 

287 of subregion IV, and this subregion has the highest LAMP of the whole SRB, as the 

288 LAMP in most areas exceeds 750 mm. Subregion VI contains the high-elevation areas 

289 in the southeastern SRB. The LAMP of this subregion is almost the same as that of 

290 subregion IV, and both are higher than the LAMPs of subregions I and III. 

291 To verify the rationality of the current division of the SRB, we compare it with the 

292 previous division pattern in the study by Zhang et al. (2012), which mainly considers 

293 the hydrological and geographical characteristics of the SRB. It can be found that these 
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294 two divisions show a large similarity in the northern SRB but present some discrepancy 

295 in the southern SRB with the complicated river system. Such a result shows that the 

296 division in this study is not only based on the geographical and hydrological 

297 characteristics of the SRB but also on the spatial distribution of the LAMP.

298 To further verify the reliability and robustness of the results of FCXB, we also apply 

299 other validity indices, the fuzzy partition coefficient and fuzzy partition entropy, for the 

300 determination of the optimum subregions number of the SRB. The values of the two 

301 indices present an overall monotonic increasing or decreasing trend with an increase in 

302 the subregion number, suggesting an optimum number of two, but the two subregions 

303 have been proven by us to not be capable of passing the homogeneity test. This result 

304 is similar to the conclusions in some previous studies (Güler and Thyne, 2004; Hamerly 

305 and Elkan, 2002; Srinivas et al., 2008). In addition, considering the large spatial extent 

306 of the SRB and the spatial variability of the LAMP in the SRB (Zhang et al., 2012), it 

307 is inappropriate to divide the whole SRB into only 2 subregions. Thus, our division of 

308 subregions can be considered reasonable and reliable for the RFA of the EP in the SRB. 

309 The better performance of the extended Xie-Benn index is related to its strong 

310 connection with the input data (Rao and Srinivas, 2006; Xie and Beni, 1991). 

311 After separating the SRB into 6 subregions, the discordancy measure is used to find 

312 the grossly discordant stations in each subregion. The critical values (Dcritical) depend 

313 on the number of stations in each subregion, which are 2.632, 3, 2.971, 3, 2.869 and 

314 2.971 for subregions I to VI, respectively. The discordancy measure values of all 
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315 stations are presented in Tab. 1. The results show that the discordancy measure values 

316 of all stations are smaller than the regional critical values, which means that all the 

317 stations in the SRB have passed the discordancy test. 

318 Then, the homogeneity of each subregion is tested using three heterogeneity 

319 measures (H1, H2, and H3), and the results are shown in Tab. 1. It is obvious that the 

320 values of the three heterogeneity measures H1, H2, and H3 for the six subregions are less 

321 than 1, which demonstrates that all subregions without subjective adjustments can be 

322 accepted as homogeneous regions. The results of our study are consistent with the 

323 conclusion drawn in the study by Rao and Srinivas (2006), which is that the subregions 

324 separated by FCXB are close to being homogeneous.
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325
326 Tab. 1. The results of discordancy and heterogeneity tests for 93 meteorological stations in SRB.

Heterogeneity TestHomogeneous subregion Containing stations
Station number (Di)

Discordancy
measure Dcritical H1 H2 H3

1 (0.162), 3 (0.964), 5 (0.172), 6 (0.226), 10 (2.464), 11 (1.731),I (11 sites)
14 (0.313), 42 (0.576), 48 (2.597), 56 (0.884), 57 (0.912)

2.632 0.837 -1.863 -1.139

7 (1.444), 8 (2.467), 12 (0.270), 13 (1.091), 15 (0.704), 16 (0.292), 
17 (0.046), 21 (1.098), 22 (0.796), 23 (2.692), 25 (0.214), 30 (2.582),
31 (0.079), 32 (1.511), 33 (0.270), 34 (0.918), 35 (0.842), 41 (1.092), 
43 (0.428), 44 (0.520), 45 (2.702), 46 (0.687), 49 (0.816), 50 (0.440)

II (24 sites) 3 0.875 0.035 -0.585

2 (0.933), 4 (0.966), 9 (0.370), 18 (0.471), 20 (0.626), 24 (0.845), 26 (1.532), 
27 (1.531), 28 (1.341), 29 (0.131), 36 (2.302), 38 (0.404), 39 (1.663), 40 (0.885)

III (14 sites) 2.971 -0.812 -0.471 -0.508

58 (2.177), 71 (1.367), 72 (1.201), 73 (0.375), 74 (0.685), 75 (1.211), 
76 (1.287), 77 (0.376), 85 (0.755), 86 (0.807), 87 (1.115), 88 (0.535),

89 (1.582), 90 (0.808), 93 (0.137), 94 (1.259), 96 (1.323)

IV (17 sites) 3 -1.293 -1.213 -0.777

61 (0.811), 63 (0.568), 64 (1.725), 65 (0.437), 66 (0.425), 78 (1.198), 79 (1.086),V (13 sites)
80 (1.120), 81 (1.563), 82 (0.275), 83 (1.935), 91 (0.477), 92 (1.380)

2.869 0.649 -0.170 -1.196

37 (0.330), 47 (0.375), 51 (0.565), 52 (1.072), 53 (0.813), 54 (0.605), 55 (1.299), VI (14 sites)
59 (0.131), 60 (1.720), 62 (1.255), 67 (0.557), 68 (2.819), 69 (0.957), 70 (1.500)

2.971 -0.474 -0.744 -0.920
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327 3.3 Choice of the optimal regional distribution

328 We first use three different goodness-of-fit measures (HWGOF, GMLM, and 

329 KPGOF) to determine the optimal regional distributions in each subregion, and their 

330 performance are then compared. Then, the CI is used to give the final decision of the 

331 choice of distribution, as it can balance the discrepancy and bias of different measures 

332 and provide a more reliable suggestion. The results of HWGOF for the four types of 

333 distributions (PE3, GEV, GNO, and GLO) are given in Tab. 2. It can be seen that GEV, 

334 PE3, and GNO can be considered as acceptable distributions for subregions I, III and 

335 VI since their DISTZ  values are no more than the critical value 1.64. However, GNO, 

336 with the minimum DISTZ  value, is the optimal distribution for these three subregions. 

337 Similarly, for subregions II, IV and V, GNO and GEV are both considered acceptable 

338 regional models but GEV is determined to be the best model for these subregions. 

339 Fig. 5 presents the results of GMLM for each subregion. It indicates that GNO is the 

340 best model for subregions I, III and VI and GEV is the optimal distribution for 

341 subregion IV because their theoretical curves are the closest to the regional average L-

342 moment ratios points compared with those of the other distributions. GNO and GEV 

343 are both considered acceptable distributions for subregions II and V since their 

344 corresponding theoretical curves are both close to the regional average L-moment ratios 

345 points, but the optimal distribution cannot be determined by GMLM.

346 The 95% confidence ellipses used in KPGOF for identifying the acceptable regional 

347 distributions are also shown in Fig. 5. It shows that GNO and GEV are acceptable 
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348 distributions for all subregions since their theoretical curves intersect the confidence 

349 ellipses of all subregions. PE3 can be considered an acceptable distributions of 

350 subregions I and III for the same reason. The difference between the results of HWGOF 

351 and KPGOF is that PE3 is not accepted for subregion VI by KPGOF. Then, the optimal 

352 regional distributions are determined from the identified candidate distributions of each 

353 subregion, and the results are shown in Tab. 2. It can be found from Tab. 2 that the 

354 results of KPGOF are consistent with those of HWGOF.
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355
356 Tab. 2. The results of HWGOF, KPGOF, and CI for 6 subregions in SRB
357 (‘NA’ represents the distribution is not accepted as a candidate distribution for this region, which also means the values of these distributions are larger than the 
358 critical value of KPGOF).

HWGOF 　 KPGOF   CI
     Measures

Subregion GNO PE3 GEV GLO
Best 

model
　 GNO PE3 GEV GLO

Best 
model

GNO PE3 GEV GLO
Best 

model

I 0.608 -1.104 1.541 3.239 GNO 0.377 2.349 4.398 NA GNO 0.150 0.726 0.963 1.000 GNO
II -0.524 -2.381 0.466 3.298 GEV 0.888 NA 0.158 NA GEV 0.503 1.000 0.106 1.000 GEV
III 0.21 -1.271 0.994 3.25 GNO 0.001 3.25 1.162 NA GNO 0.042 0.825 0.618 1.000 GNO
IV -0.756 -2.554 0.197 2.108 GEV 2.424 NA 0.023 NA GEV 0.661 1.000 0.041 1.000 GEV
V -0.413 -1.827 0.36 2.275 GEV 0.593 NA 0.127 NA GEV 0.126 1.000 0.082 1.000 GEV
VI -0.081 -1.583 0.686 2.767 GNO 　 0.14 NA 0.736 NA GNO 0.026 0.986 0.525 1.000 GNO
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359 With the results of the three measures, the final choices of the most appropriate 

360 distributions for each subregion are determined by the CI. The results of CI are also 

361 presented in Tab. 2, and the minimum values in the results of CI for each subregion 

362 indicate that the most appropriate frequency distributions for subregions I, III and VI 

363 and for subregions II, IV and V are still determined to be GNO and GEV, respectively. 

364 To examine the reasonability and reliability of the results of CI, a performance 

365 comparison is conducted between CI and the three other measures. Based on previous 

366 studies (Hosking and Wallis, 1997; Peel et al., 2001; Vogel and Wilson, 1996) and the 

367 results of three measures in this study, it can be accepted that HWGOF, KPGOF, and 

368 CI are generally more reliable than GMLM, as GMLM is a subjective measure and may 

369 fail to determine the optimal regional distributions in some subregions like subregions 

370 II and V. The performance comparison between HWGOF, KPGOF, and CI is slightly 

371 adapted from the evaluations in the studies of Hosking and Wallis (1997) and Kjeldsen 

372 and Prosdocimi (2015). For each subregion, Monte Carlo simulations are used to 

373 generate 500 replicas of this region according to the corresponding optimal regional 

374 frequency distribution. Each replica contains the same number of stations and records 

375 length as their real-world counterpart. The time series at each site in this subregion is 

376 randomly generated according to the real L-moment ratios of this site and the optimal 

377 regional distribution. Then, for each replica, the HWGOF, KPGOF, and CI are applied 

378 to select the best distribution among GLO, GEV, GNO, and PE3. The percentages of 

379 each distribution selected as the optimal one by the different measures are recorded in 
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380 Tab. 3. The performance comparison between HWGOF and KPGOF shows that the 

381 HWGOF selects the true distributions of subregions II, IV and V more often than 

382 KPGOF, while KPGOF performs better in subregions I, III and VI. In addition, it can 

383 be generally accepted that both KPGOF and CI perform better than HWGOF in 

384 selecting the true regional distributions, as HWGOF selects GEV more often than the 

385 true distribution GNO for subregions I, III and VI, while KPGOF and CI always choose 

386 the true distribution more often than the other distributions. Moreover, the performance 

387 comparison between CI and KPGOF indicates that the correct regional distribution is 

388 chosen more often by CI than KPGOF for all subregions except subregion I, while the 

389 selected percentage difference of subregion I is not large. Furthermore, for subregions 

390 II, IV and V, where HWGOF performs better than KPGOF, CI selects the true 

391 distribution GEV more frequently than HWGOF. Thus, it can be concluded that CI 

392 performs better than KPGOF and HWGOF in selecting the true distributions, which 

393 also means that the results of CI are more reliable.

394 The advantage of CI is that it can effectively reduce the uncertainty of a single 

395 measure. There exist situations in which it is hard for a single measure to identify the 

396 most appropriate distribution from several alternatives with similar results (Chen et al., 

397 2014; Du et al., 2014; Hosking and Wallis, 1997). For example, in this study, it is 

398 difficult to identify the optimal distributions of GNO and GEV using GMLM for 

399 subregions II and V. In addition, there remains a large uncertainty in the process of 

400 selecting the optimal distribution for subregion II by HWGOF, as the difference 
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401 between the values of GNO and GEV is quite small and may be caused by statistical 

402 errors. A similar problem was found in the study by Chen et al. (2014), in which the 

403 values of GNO and GEV were close when HWGOF was applied to select the optimal 

404 distribution for subregion III of the Yangtze River Basin. Therefore, compared with a 

405 single measure, CI can identify the differences between all candidate distributions and 

406 find the most appropriate distribution accepted by the majority of robust measures, 

407 which can largely reduce the uncertainties in the process of choosing the optimal 

408 regional distribution. As shown in Tab. 2, GMLM or HWGOF cannot distinguish the 

409 better performance of GNO and GEV in subregion II. However, CI definitely suggests 

410 GEV as the best regional model since the DISTT  value of GEV is much smaller than 

411 that of the other distributions. 

412 Tab. 3. The percentages of simulations where a particular selected distribution is chosen by 
413 HWGOF, KPGOF, and CI (the bold values represent the percentages of the true regional 
414 distributions selected by the three measures).

HWGOF KPGOF CI

Region

(best distribution)
GLO GEV GNO PE3 GLO GEV GNO PE3 GLO GEV GNO PE3

Subregion I

(GNO)
15% 36% 30% 19% 4% 24% 44% 28% 5% 28% 40% 27%

Subregion II

(GEV)
13% 66% 19% 2% 4% 62% 32% 3% 5% 67% 26% 2%

Subregion III

(GNO)
9% 36% 32% 23% 1% 27% 41% 31% 2% 31% 41% 26%

Subregion IV

(GEV)
30% 54% 14% 2% 13% 53% 31% 3% 12% 56% 30% 3%

Subregion V

(GEV)
29% 49% 14% 8% 14% 47% 28% 11% 17% 51% 23% 10%

Subregion VI

(GNO)
9% 39% 33% 19% 2% 29% 41% 28% 3% 28% 42% 27%
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415 3.4 Accuracy analysis of extreme precipitation estimations

416 To assess the accuracy of EP estimations with different return periods in the SRB, 

417 the relative RMSE (Hosking and Wallis, 1997; Yang et al., 2010a) of the estimated 

418 quantiles for each station and each subregion is calculated. Tab. 4 lists the values of the 

419 regional average relative RMSEs of the estimated quantiles for the six subregions. The 

420 relative RMSE values of the EP estimates for the 6 subregions range from 0.054 to 

421 0.160 when the return period is no more than 100 years, which indicates that these 

422 quantile estimates of the EP are reliable and can be used with confidence. Similar 

423 conclusions were drawn from the accuracy analysis of the EP estimations in other 

424 regions of China (Chen et al., 2014; Du et al., 2014; Yang et al., 2010a). Such a 

425 phenomenon implies that the estimations of the EP by RFA in most regions of China 

426 can be considered accurate when the return level is less than 100 years. Meanwhile, the 

427 estimated regional growth curves together with the 95% error bounds for each 

428 subregion are presented in Fig. 6. Fig. 6 also shows that the quantile estimates can be 

429 valid to use when the return period is less than 100 years. In addition, the estimated 

430 regional growth curves of all subregions are concave, but the estimated regional growth 

431 curves in most humid regions of China are convex (Chen et al., 2014; Du et al., 2014). 

432 Such a result shows that the estimated EP in the SRB has a rapidly increasing tendency 

433 with the increase in the return levels. In addition, the regional growth curve of subregion 

434 IV is steeper than that of the other 5 regional growth curves, which indicates that the 

435 EP increments in subregion IV are larger than those in the other subregions and implies 
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436 a high risk of EP occurrence in this subregion.

437 Tab. 4. The values of regional average RMSE of quantile estimates for 6 subregions in SRB.

RMSE
Return period

Sub-
region I

Sub-
region II

Sub-
region III

Sub-
region IV

Sub-
region V

Sub-
region VI

1 year 0.097 0.104 0.076 0.102 0.100 0.085
2 years 0.061 0.056 0.054 0.063 0.056 0.056
10 years 0.093 0.086 0.079 0.093 0.087 0.083
50 years 0.155 0.147 0.130 0.160 0.152 0.135
100 years 0.187 0.182 0.156 0.209 0.185 0.165

438

439 3.5 Return period analysis

440 The spatial patterns of the EP under different return periods, which can serve as an 

441 important indicator for the risk analysis, are investigated with the estimated EP of each 

442 station and the spatial interpolation method. In this study, the Inverse Distance 

443 Weighting method is adopted to obtain spatial maps of the EP in the SRB under 

444 different return periods (T=1, 5, 10, 50 and 100 years), and these spatial maps are 

445 presented in Fig. 7. It can be found that the estimated precipitation extremes of the 

446 different return periods in the SRB present similar spatial variabilities. The values of 

447 the estimated EP decrease from the southern SRB to northern SRB, which means that 

448 the values of the estimated EP in subregions IV and V are larger than those in the other 

449 subregions. Moreover, the maximum values of the EP can be found in the south of 

450 subregions IV and V near the China Yellow Sea and China Bohai Sea, while the 

451 minimum extreme values are usually located in the north of subregion I and the 

452 northeast of subregion III. 

453 Therefore, the spatial patterns reveal that the estimated EP in the southern subregions 

454 (subregions IV and V) of the SRB is much larger than that in the other subregions under 
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455 the same return period, which means that the risk of high-intensity floods is higher in 

456 the southern SRB. The main reasons behind the high values of the EP in the southern 

457 SRB can be illustrated from two aspects. First, the increase in precipitation in the 

458 southern SRB is related to the influence of the strong variations of the East Asian 

459 monsoon, while the impact of the monsoon is not obvious in the northern SRB. In 

460 addition, the water vapor pressure is higher in the southern SRB in the summer because 

461 most of the water vapor in the SRB comes from the south or, more specifically, from 

462 the Bay of Bengal and the western equatorial Pacific Ocean (Wu et al., 2017).

463 4 Conclusions

464 In this study, a modified L-moments method is used for a regional extreme 

465 precipitation frequency analysis for the Songliao River Basin (SRB). The uncertainties 

466 in the identification of homogeneous subregions and in the selection of optimal regional 

467 frequency distributions can largely influence the results of the RFA and should be 

468 carefully addressed. Based on the original regional L-moments method, the fuzzy c-

469 means method with the extended Xie-Benn index (FCXB) is applied to help determine 

470 the optimum number of subregions in the process of identifying homogeneous 

471 subregions. Moreover, we develop a new comprehensive index (CI), which gives an 

472 integrated consideration to three different goodness-of-fit measures, to reduce the 

473 uncertainties in regional frequency distribution. Moreover, the accuracy of the 

474 estimated quantiles and the spatial distributions of the estimated precipitation extremes 

475 in the SRB are also calculated and analyzed. The main conclusions of this study can be 

476 given as follows:
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477 1) No significant change trends can be detected in the AMP series at any stations in 

478 the study area. The FCXB suggests that the whole SRB can be divided into six 

479 homogenous subregions, and this division is more reliable compared with the 

480 results of other cluster methods. 

481 2) The results of CI suggest that GNO is the optimal distribution for subregions I, III 

482 and VI and GEV is the best distribution for subregions II, IV and V. The 

483 performance comparisons between HWGOF, GMLM, KPGOF, and CI showed that 

484 the CI is the most reliable measure of all, as the objective measure CI can select the 

485 true distribution more often than the other measures. The results also show that 

486 KPGOF performs better than HWGOF since HWGOF selects GEV more often than 

487 the true distribution GNO for subregions I, III and VI. In addition, the CI can 

488 effectively reduce the uncertainty in the selection of optimal distributions when the 

489 distributions suggested by different single measures show differences.

490 3) The values of the relative RMSE of the estimated precipitation extremes for the 6 

491 subregions range from 0.054 to 0.160 when the return period is no more than 100 

492 years, which indicates a high confidence for the quantile estimates of extreme 

493 precipitation.

494 4) The spatial distributions of the precipitation extremes in the SRB with different 

495 return periods (T=1, 5, 10, 50 and 100 years) all show similar decreasing trends 

496 from the southern SRB to the northern SRB. Thus, the southern subregions in the 

497 SRB (subregions IV and V) have a higher risk of high-intensity floods than the 
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498 northern subregions. 

499 The results of this study prove that FCXB and CI are two reliable and effective 

500 methods that can help obtain a more robust and reliable result of RFA. This study can 

501 also be beneficial for finding the regions in the SRB prone to suffering from EP events 

502 and can provide scientific support for local policymakers to determine corresponding 

503 measures to reduce losses to the minimum level.
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631 List of Fig. Captions
632

633 Fig. 1. The location of the Songliao River Basin (SRB) in the northeastern China. The 

634 meteorological stations are represented by the red triangle points. The underlined words in 

635 black color represent the names of provinces, and IN, LN, JL, and HLJ represent Inner 

636 Mongolia province, Liaoning province, Jilin province, and Heilongjiang province, respectively. 

637 The gray italic words are the abbreviated names of main rivers. From the top to the bottom of 

638 this Fig., EGR, AR, NR, SHR, SST, LR, SFR, DLR, TMR, YLR represent Ergun River, Amur 

639 River, Nenjiang River, Songhua River, Second Songhua Tributary, Liao River, Suifen River, 

640 Daling River, Tumen River, Yalu River, respectively.

641 Fig. 2. The boxplot of the Mann Kendall test results of 93 stations (a). The red horizontal dash lines 

642 represent the critical value ( 1.96 ) for the MK test at 5% significance level. The spatial pattern 

643 of the Mann-Kendall test result for the SRB over the period 1960–2016 (b). The red triangle 
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644 points and blue circle points indicate the stations with increasing and decreasing trends, 

645 respectively. 

646 Fig. 3. The values of the extended Xie-Benn index with different numbers of subregions.

647 Fig. 4. The division of 6 homogeneous subregions in SRB (a) and the long-term annual mean 

648 precipitation of each subregion (b).

649 Fig. 5. The L-diagrams for AMP at 6 subregions. The black circle points represent L-skewness and 

650 L-kurtosis of each station, the plus signal points represent the regional average L-skewness and 

651 L-kurtosis. The black ellipses represent the confidence regions with the 5% significance level.

652 Fig. 6. The estimated regional growth curves of AMP with 95% error bounds for six subregions. 

653 The red lines represent the regional growth curves and the black lines represent the 95% error 

654 bounds, and the grey shadow regions denote the confidence intervals.

655 Fig. 7. The spatial distributions of estimated precipitation extremes in SRB when the return period 

656 equals to 1, 5, 10, 50 and 100 years.
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Fig.1. The location of the Songliao River Basin (SRB) in the northeastern China. The 

meteorological stations are represented by the red triangle points. The underlined words in black 

color represent the names of provinces, and IN, LN, JL, and HLJ represent Inner Mongolia 

province, Liaoning province, Jilin province, and Heilongjiang province, respectively. The gray 

italic words are the abbreviated names of main rivers. From the top to the bottom of this Fig., 

EGR, AR, NR, SHR, SST, LR, SFR, DLR, TMR, YLR represent Ergun River, Amur River, 

Nenjiang River, Songhua River, Second Songhua Tributary, Liao River, Suifen River, Daling 

River, Tumen River, Yalu River, respectively.



Fig.2. The boxplot of the Mann Kendall test results of 93 stations (a). The red horizontal dash 

lines represent the critical value ( ) for the MK test at 5% significance level. The spatial 1.96

pattern of the Mann-Kendall test result for the SRB over the period 1960–2016 (b). The red 

triangle points and blue circle points indicate the stations with increasing and decreasing trends, 

respectively.
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Fig.3. The values of the extended Xie-Benn index with different numbers of subregions.



(a) (b)

Fig.4. The division of 6 homogeneous subregions in SRB (a) and the long-term annual mean 

precipitation of each subregion (b).
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(B) Sub-region II

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
1

0.
2

0.
3

0.
4

L-skewness

L-
ku

rto
si

s

+
o

o

o
o

o

o

o

o

o

o

o
o

o

o

GLO

GEV

GNO

PE3

Mean

Stations

(C) Sub-region III
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(E) Sub-region V
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(F) Sub-region VI

Fig.5. The L-diagrams for AMP at 6 subregions. The black circle points represent L-skewness and 

L-kurtosis of each station, the plus signal points represent the regional average L-skewness and L-

kurtosis. The black ellipses represent the confidence regions with the 5% significance level.



-1 0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Gumbel Reduced Variate, -log(-log(-F))

G
ro

w
th

 C
ur

ve

2 5 10 20 50 100

Return period

(A) Sub-region I

-1 0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Gumbel Reduced Variate, -log(-log(-F))

G
ro

w
th

 C
ur

ve

2 5 10 20 50 100

Return period
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(C) Sub-region III
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(D) Sub-region IV
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(E) Sub-region V

-1 0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Gumbel Reduced Variate, -log(-log(-F))

G
ro

w
th

 C
ur

ve

2 5 10 20 50 100

Return period

(F) Sub-region VI

Fig.6. The estimated regional growth curves of AMP with 95% error bounds for six subregions. 

The red lines represent the regional growth curves and the black lines represent the 95% error 

bounds, and the grey shadow regions denote the confidence intervals.
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Fig.7. The spatial distributions of estimated precipitation extremes in SRB when the return period 

equals to 1, 5, 10, 50 and 100 years.




