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SUMMARY 14 

Magnitudes of differential stress in the lithosphere, especially in the crust, are still disputed. 15 

Earthquake-based stress drop estimates indicate median values < 10 MPa whereas the lateral 16 

variation of gravitational potential energy per unit area (GPE) across significant relief indicates 17 

stress magnitudes of ca. 100 MPa in average across a 100 km thick lithosphere between the Indian 18 

lowland and the Tibetan plateau. These standard GPE-based stress estimates correspond to 19 

membrane stresses, because they are associated with a deformation that is uniform with depth. We 20 

show here with new analytical results that lateral variations in GPE can also cause bending 21 

moments and related bending stresses of several hundreds of MPa. Furthermore, we perform two-22 

dimensional thermo-mechanical numerical simulations (1) to evaluate estimates for membrane and 23 

bending stresses based on GPE variations, (2) to quantify minimum crustal stress magnitudes that 24 

are required to maintain the topographic relief between Indian lowland and Tibetan plateau for ca. 25 

10 Ma and (3) to quantify the corresponding relative contribution of crustal strength to the total 26 

lithospheric strength. The numerical model includes viscoelastoplastic deformation, gravity and 27 

heat transfer. The model configuration is based on density fields from the CRUST1.0 data set and 28 

from a geophysically and petrologically constrained density model based on in situ field campaigns. 29 

The numerical results indicate that values of differential stress in the upper crust must be > ca. 180 30 

MPa, corresponding to a friction angle of ca. 10°, to maintain the topographic relief between 31 

lowland and plateau for > 10 Ma. The relative contribution of crustal strength to total lithospheric 32 

strength varies considerably laterally. In the region between lowland and plateau and inside the 33 

plateau the depth-integrated crustal strength is approximately equal to the depth-integrated strength 34 

of the mantle lithosphere. Simple analytical formulae predicting the lateral variation of depth-35 

integrated stresses agree with numerically calculated stress fields, which show both the accuracy of 36 
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the numerical results and the applicability of simple, rheology-independent, analytical predictions to 37 

highly variable, rheology-dependent, stress fields. Our results indicate that (1) crustal strength can 38 

be locally equal to mantle lithosphere strength and that (2) crustal stresses must be at least one order 39 

of magnitude larger than median stress drops in order to support the plateau relief over a duration of 40 

ca. 10 Ma.     41 

 42 

KEYWORDS: Numerical modelling; Rheology: crust and lithosphere; Continental tectonics: 43 

compressional; Dynamics: gravity and tectonics; Mechanics, theory, and modelling. 44 

 45 

1 INTRODUCTION 46 

 The magnitude and vertical distribution of stress in the continental lithosphere and the 47 

associated vertical distribution of strength control the deformation behaviour of the lithosphere. For 48 

example, a mechanically stronger lithosphere exhibits a larger flexural wavelength than a weaker 49 

one (e.g. Burov & Diament, 1995). Also, during long-term lithospheric deformation significant 50 

deviatoric stresses can potentially generate sufficient dissipative work so that thermal softening can 51 

trigger lithospheric-scale strain localisation (e.g. Schmalholz et al., 2009; Jaquet et al., 2016) and 52 

subduction initiation (e.g. Thielmann & Kaus, 2012). Furthermore, if differential stresses exist in 53 

the lithosphere then the stress state is neither hydrostatic nor lithostatic. Rock deformation 54 

experiments show that such non-hydrostatic stresses can affect mineral transformations, such as the 55 

quartz-coesite transition (Hirth & Tullis, 1996; Richter et al., 2016), and differential stresses could, 56 

hence, affect mineral phase transformations in the lithosphere (e.g. Moulas et al., 2014; Tajčmanová 57 

et al., 2015; Moulas et al., 2018). Conversely, metamorphic phase changes accompanied by volume 58 

change affect the stress and deformation field (e.g. Hetényi et al., 2011; Hetényi, 2014). 59 
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Consequently, the commonly performed conversion of metamorphic pressure to burial depth, 60 

assuming a lithostatic stress state, could be significantly inaccurate (e.g. Petrini & Podladchikov, 61 

2000; Schmalholz & Podladchikov, 2013; Moulas et al., 2014; Moulas et al., 2018).  62 

The above examples show that stress magnitudes can potentially have significant impact on 63 

lithospheric deformation and associated metamorphic processes. However, these stress magnitudes 64 

are still controversially debated, particularly stress magnitudes in the crust. For example, estimates 65 

of differential stress in the upper crust, which are based on in situ stress measurements in deep wells 66 

and a borehole of the German Continental Deep Drilling Program (KTB), indicate differential stress 67 

between 170 and 210 MPa at a depth of approximately 8 km (e.g. Brudy et al. 1997; Townend & 68 

Zoback, 2000; Figure 1). Also, differential stress in natural shear zones estimated from grain size 69 

piezometers (e.g. Twiss, 1977) can reach a few hundred MPa in crustal depths of 5 to 25 km (see 70 

Figure 1 and references in caption). Such differential stress estimates from piezometers agree with 71 

flow laws for dislocation creep for quartzite and limestone (e.g. Behr & Platt, 2014; Jaquet & 72 

Schmalholz, 2018). 73 

In contrast to the above stress estimates, earthquake-based stress drop estimates range 74 

typically between 0.3 and 50 MPa with a median stress drop of ca. 4 MPa for depths less than 60 75 

km (e.g. Allmann & Shearer, 2006; Figure 1). The histogram of the logarithmic stress drop 76 

estimates of Allmann & Shearer (2006; their figure 6) indicates a standard deviation of stress drops 77 

from 1 to 10 MPa (Figure 1). The stress drop usually refers to a drop in shear stress, which is 78 

approximately half the differential stress. It is, however, not clear whether stress drop magnitudes 79 

are close to total stress drop or whether the stress drop only represents a small fraction of the crustal 80 

stress (e.g. McGarr & Gay, 1978; Kanamori, 1980; Hardebeck & Okada, 2018). Stress drop 81 

estimates require assumptions on fault geometry, which is usually not well known, and errors 82 
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concerning fault plane geometry can cause large errors in the corresponding stress drop estimate 83 

(e.g. Madariaga, 1977). Furthermore, the static stress drop estimated by seismologists provides a 84 

lower bound to the actual dynamic stress drop on the fault occurring during dynamic fracturing (e.g. 85 

Madariaga, 1977). The analysis of pseudotachylyte fault veins, commonly considered to represent 86 

“paleo-earthquakes”, indicates that stress drop can be greater than 220 MPa and as high as 580 MPa 87 

(Andersen et al., 2008), which also suggests that earthquake-based stress drop estimates provide 88 

lower bounds to the actual stress.   89 

 Another method to estimate lithospheric stress magnitudes is based on vertical integrals of 90 

the force balance equations for the lithosphere. Models based on vertical integrals of the force 91 

balance equations are commonly referred to as thin-sheet models (e.g. England & McKenzie, 1982; 92 

Medvedev & Podladchikov, 1999). Based on such thin-sheet models, the vertical integral of the 93 

differential stress in the lithosphere can be estimated from the lateral variation of crustal thickness 94 

and topography (e.g. Jeffreys, 1959; Arthyushkov, 1973) or, more generally, from lateral variations 95 

of the gravitational potential energy per unit area (GPE; e.g., Molnar & Lyon-Caen, 1988; Molnar 96 

et al. 1993; Schmalholz et al. 2014). These integrated stress estimates result from force balance 97 

calculations only and are robust because they are independent on constitutive equations (e.g. flow 98 

laws), that is, irrespective of the lithosphere deformation being elastic, plastic or viscous. 99 

Consequently, lateral GPE variations can be used only to calculate the vertical integral of the stress, 100 

which can be related to the horizontal driving force per unit length ( xF ; e.g., Molnar & Lyon-Caen, 101 

1988), but not maximum stress magnitudes in the lithosphere. Also, standard thin-sheet models 102 

assume that the deformation is uniform with depth so that horizontal stresses along a vertical profile 103 

are either all compressive or extensive. Stresses associated with a depth-uniform deformation are 104 

commonly referred to as membrane, or in-plane, stresses. When integrated vertically, all membrane 105 
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stresses contribute to xF . Stresses associated with bending (or flexure) of the lithosphere are 106 

neglected in standard thin-sheet models. Bending stresses typically change their sign across a 107 

bending layer, for example, due to extension in the outer hinge region and compression in the inner 108 

region. Since bending stresses change their sign along a vertical profile they usually do not 109 

contribute significantly during vertical stress integration to xF  and are, hence, not estimated from 110 

standard lateral GPE variations. We show here with new analytical relations that lateral GPE 111 

variations are associated with bending moments due to lateral mass variations and that these mass 112 

moments cause significant bending stresses.       113 

Lateral GPE variations between the Tibetan plateau and the Indian lowland, referring to the 114 

hinterland and foreland of the Himalaya, respectively, provide estimates of ca. 7 × 1012 N m-1 for Fx 115 

(e.g., Molnar & Lyon-Caen, 1988; Figure 2) and between Tibet and Central Asia estimates of 7 ‒ 10 116 

× 1012 N m-1 (e.g., Molnar et al., 1993; England & Molnar, 2015). If one assumes that a 117 

representative value for the thickness of the lithosphere is 100 km then the above estimates of Fx 118 

provide depth-average differential stresses between 70 and 100 MPa in the lithosphere. However, 119 

due to considerable rheological variations within the lithosphere, local stresses can be significantly 120 

smaller or larger than these depth-averaged estimates (see examples for the flexure of the Indian 121 

plate, e.g. Cattin et al., 2001; Hetényi et al., 2006). Furthermore, the relative contribution, or 122 

fraction, of stresses in the crust and mantle lithosphere to the total integrated stress across the 123 

lithosphere is usually unknown. England & Molnar (2015) suggest that values of Fx acting on the 124 

lithosphere of the Tien Shan are 7 ‒ 10 × 1012 N m-1 and they argue that a significant fraction, up to 125 

90%, of Fx is provided by the ductile mantle lithosphere. If the continental crust would indeed only 126 

provide a small fraction of the lithospheric resistance to Fx, then the question arises: how can such a 127 

weak crust maintain for ca. 10 Ma the significant lateral variations in surface topography and GPE  128 
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between the Tibetan plateau and Indian lowland (Figure 2 and Figure 3)? The main aim of our study 129 

is to quantify with two-dimensional (2D) thermo-mechanical numerical simulations the magnitudes 130 

of differential stress in the crust that are required to maintain the relief of the Tibetan plateau for a 131 

duration of ca. 10 Ma. Furthermore, bending of the lithosphere generates likely the largest stress 132 

magnitudes on Earth compared with other geophysical processes such as mantle convection (e.g. 133 

Karato, 2008; his Table 19.2). Medvedev (2016) suggested that lateral variations of GPE  may 134 

result in lithospheric bending stresses and that these stresses may dominate the orientation of 135 

stresses even in the absence of compressive deformation such as lithospheric folding. Therefore, we 136 

also investigate the influence of bending on the stress state of the India – Himalaya – Tibet system, 137 

because we are interested in estimates for local, maximum stress magnitudes. 138 

 We perform 2D numerical simulations considering viscoelastoplastic deformation, heat 139 

transfer, gravity, and temperature dependent flow laws to calculate the distribution of stresses in a 140 

continental lithosphere caused by interaction of a plateau and neighbouring lowland in the absence 141 

of any additional tectonic influence. The initial lithosphere geometry is close to the standard 142 

geometry of thin-sheet models, which were used to calculate the lateral GPE variation between 143 

India and Tibet (e.g. Molnar & Lyon-Caen, 1988; Molnar et al., 1993; Schmalholz et al., 2014), and 144 

to construct a gravimetrically and petrologically constrained density model of the Indian plate 145 

beneath the Tibetan plateau (Hetényi et al., 2007). We also compare the lateral variation of depth-146 

integrated numerical stresses with predictions of analytical thin-sheet models to show the accuracy 147 

and robustness of the numerical results.    148 

 149 

2 STRESS RELATIONS, GRAVITATIONAL POTENTIAL ENERGY AND BENDING 150 

2.1 Lithospheric stress relations 151 
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For incompressible deformation in 2D, the components of the total stress tensor are 152 

 

xx xx

zz zz

xz xz

P

P

 

 

 
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

  (1) 153 

where pressure, or negative mean stress,   / 2xx zzP     , xx zz    are the normal deviatoric 154 

stress tensor components, xz xz   represents the shear stress and x and z are the horizontal and 155 

vertical coordinates, respectively. The maximum, 1 , and minimum, 3 , principal stresses are (e.g. 156 

Turcotte & Schubert, 2014) 157 
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  (3) 159 

where II  is the square root of the second invariant of the deviatoric stress tensor. The differential 160 

stress is  161 

 1 3 2 II         (4) 162 

Following Molnar & Lyon-Caen (1988) and Schmalholz et al. (2014) we separate the total normal 163 

horizontal stress into two components:  164 

 s d

xx xx xx      (5) 165 

where the static stress, s

xx , is identical to the negative of the lithostatic pressure, LP , or hydrostatic 166 

stress, which is the vertical integral of the product of density,  , times gravitational acceleration, 167 

g : 168 



9 

 

      
 

, , , ' '
St x

s

xx L
z

x z P x z x z gdz       (6) 169 

with  St x  being the topography, which can vary laterally. The dynamic component of the total 170 

stress in eq. (5), d

xx , thus represents a measure of how far the stresses in the lithosphere deviate 171 

from the lithostatic state. 172 

The above stress relations are exact and free from assumptions. In order to simplify 173 

calculations, several approximate stress relations are assumed in traditional thin-sheet 174 

approximations (e.g., England & McKenzie, 1982, Schmalholz et al., 2014). The main assumption 175 

is that shear stress, 
xz , can be neglected when considering the large-scale lithospheric stress state. 176 

The approximate equalities in the following equations are based on this assumption of negligible 177 

xz . The total normal vertical stress can then be approximated by the lithostatic pressure:  178 

 
zz LP     (7) 179 

The relation between dynamic horizontal stress and deviatoric horizontal stress is then 180 

 2d

xx xx L xx zz xx zz xxP P                (8) 181 

Equation (8) shows that 2d

xx xx   which is relevant because it explains the factor two difference in 182 

stress magnitudes obtained from lateral GPE variations around the Tibetan plateau by Molnar & 183 

Lyon-Caen (1988), who calculated d
xx , and stress magnitudes obtained by Ghosh et al. (2006, 184 

2009), who calculated xx  (Schmalholz et al., 2014). The condition of negligible 
xz  results in the 185 

principal stress axes to be close to the vertical and horizontal orientations and thus eq. (4) can be 186 

approximated 187 

    1 3 abs abs d

xx zz xx             (9) 188 

 189 
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2.2 GPE and thin-sheet relations 190 

Integration of the horizontal balance of stresses from the top stress-free surface  St x  down 191 

to the horizontally-constant depth of compensation, Sb , at which the deviatoric stresses can be 192 

neglected, reveals the absence of the lateral variation of the depth-integrated horizontal total stress, 193 

xx  (Molnar & Lyon-Caen, 1988; Schmalholz et al., 2014): 194 

   0xx

d

dx
   (10) 195 

Here, an overbar indicates the depth integral of the corresponding symbol, for example: 196 

    
 

,
St x

xx xx
Sb

x x z dz     (11) 197 

Equation (10) is not based on the thin-sheet approximation presented in Section 2.1 and is thus 198 

fundamental. For example, it was shown that equation (10) holds for a numerically calculated 2D 199 

stress field of a shortening viscoelastoplastic lithosphere involving buckling and shear zone 200 

generation (Schmalholz & Podladchikov, 2013). Equation (10), however, is based on the condition 201 

of vanishing deviatoric stresses at the bottom boundary, Sb , which is a reasonable assumption at 202 

the lithosphere-asthenosphere transition. Consequently, Sb  is often termed the depth of the 203 

lithosphere in the framework of depth-integrated stress analysis, although Sb  differs from 204 

traditional geological and geophysical definitions of the lithosphere-asthenosphere boundary (e.g., 205 

Turcotte & Schubert, 2014). Substitution of the separation of the normal horizontal stress into static 206 

and dynamic components, eq. (5) and eq. (6), into eq. (10) yields (e.g., Molnar & Lyon-Caen, 1988; 207 

Schmalholz et al. 2014) 208 

 x

d d
F GPE

dx dx
   (12) 209 
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where 
d

x xxF  is commonly termed the driving horizontal force per unit length and the 210 

gravitational potential energy per unit area (GPE) is the vertical integral of LP : 211 

      
 

const , const
St x

L L
Sb

GPE x P x P x z dz      (13) 212 

Equation (12) can be integrated with respect to x and for a simple geometry with essentially only a 213 

plateau and lowland (Figure 4) the horizontal derivatives in equation (12) can be replaced by 214 

horizontal differences, indicated with the symbol  , between values for the plateau and the 215 

lowland, e.g., P LGPE GPE GPE    (Figure 4): 216 

 xF GPE     (14) 217 

Therefore, GPE  can be related to vertically integrated stress differences by 218 

 2d

xx xxGPE         (15) 219 

Similar to section 2.1, we use the approximate equality sign to indicate the thin-sheet assumption of 220 

negligible xz . The lateral variation in GPE assuming local isostasy at the base of the lithosphere 221 

and uniform densities within the crust, c , and mantle lithosphere, m , is (e.g. Molnar & Lyon-222 

Caen, 1988; Schmalholz et al. 2014) 223 

 
2

m e
c e c

m c

h
GPE gh h




 

 
   

 
  (16) 224 

where eh  and ch  are the height of the plateau with respect to the one of the lowland and the crustal 225 

thickness of the lowland, respectively (Figure 4). 226 

The above estimations operate with depth-integrated stresses whereas the magnitude of 227 

stresses is the target of our study. Strong rheological heterogeneity of the lithosphere results in 228 

strong variations of stresses with depth. Most of the integrated lithospheric stress quantities, such as 229 
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xF , are controlled by stresses in the strong levels of the lithosphere (e.g. Burov, 2011). The 230 

magnitudes of the stresses within these stress-bearing levels is the focus of our study. Similar to the 231 

effective elastic thickness, which characterises and elastic lithospheric model (e.g. Burov & 232 

Diament, 1995), we introduce here the effective rheological thickness ( ERT ) of the lithosphere, 233 

which is independent of a particular rheological model. A formal definition of ERT  is out of the 234 

scope of our study. We use a more qualitative approach here to illustrate the results of analytical 235 

studies and compare them with 2D thermo-mechanical numerical results in the following sections. 236 

The scope of the analytical study, which is independent on any rheology assumption, is to obtain a 237 

comparison with the numerical results, which are calculated for specific rheological models. The 238 

difference of the characteristic deviatoric stress is by definition, and using eqs. (14) to (16) 239 

 *

2 2 2

x c e m e
xx c

m c

F gh h
h

ERT ERT

 


 

 
    

 
  (17) 240 

To illustrate the usage of ERT , we assume that the crust is much stronger than other regions of the 241 

lithosphere (Figure 4) and that ERT  is equal to the crustal thickness averaged between plateau and 242 

lowland, that is   / 2c e rERT h h h   . We also assume that characteristic deviatoric stresses in 243 

the plateau and lowland are identical, but opposite in sign, so that * * / 2xx xx    (Schmalholz et al., 244 

2014). Using the isostasy relation  /r c e m ch h     eq. (17) yields 245 

 *

4

c e
xx

gh
    (18) 246 

This result indicates that the average deviatoric stress in the crust is directly proportional to the 247 

topographic relief. For 5 kmeh   and 
-32800 kg mc   one obtains 

*

xx  = ca. 35 MPa which is a 248 

value that is nearly one order of magnitude larger than the median stress drop of ca. 4 MPa 249 

estimated from earthquakes. 250 
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The above estimations of the characteristic membrane, or in-plane, stresses assume the 251 

homogeneous deformation with depth of the lithosphere so that the stresses do not change their sign 252 

with depth and additively contribute to the integrated stress. This depth-uniform deformation may 253 

be associated with the traditional thin-sheet approximation (England & McKenzie, 1982). 254 

 255 

2.3 Bending stresses related to lateral variations of GPE 256 

 Lateral variations of GPE  are associated with the laterally varying distribution of mass. 257 

This lateral mass variation can also result in moments of forces, which can cause bending stresses. 258 

The numerical simulations performed in this study will show bending related stresses and we derive 259 

here fundamental relations between GPE  and bending stresses to estimate the order of magnitude 260 

of these bending stresses, independent of any rheological assumptions. 261 

Schmalholz et al. (2014) presented the integration of the vertical balance of stresses in a 262 

form that links the lateral variation of the tectonic pressure, OP , (the difference between P  and LP , 263 

O LP P P  ) at depth Sb  with the horizontal derivative of the depth-integrated shear stress:  264 

    ,O xz

d
P x Sb

dx
   (19)  265 

In the absence of horizontal tractions along the top and bottom boundaries, the integrated shear 266 

stress xz  can be related to the total horizontal stress, xx , by the equation (e.g. Schmalholz & 267 

Mancktelow, 2016; their equation A14) 268 

  xz xx xx

d dw

dx dx
       (20) 269 

The bending moment,  , associated with any stress component, ij , and with the vertical 270 

coordinate of a neutral reference line, ( )w x , is 271 
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    
 

 
St x

ij ij ijSb
z w dz z w          (21) 272 

Separating xx  into dynamic and static components, eq. (5), substituting eq. (20) into (19), and 273 

using eq. (10) yields 274 

      
2 2 2

2 2 2
, d

O xx xx L

d d w d
P x Sb P

dx dx dx
        (22) 275 

Equation (22) indicates that the existence of tectonic pressure at the base of the model,  ,OP x Sb , 276 

is related to bending moments and flexure in the model domain. To estimate the bending, or fiber, 277 

stress we decompose the dynamic stress into a membrane stress, ts
xx , and a bending stress, b

xx , 278 

that is d ts b
xx xx xx     (e.g. Schmalholz & Podladchikov, 2000, their figure 1; Schmalholz & 279 

Mancktelow, 2016, their equation A19). The membrane stress, ts
xx , corresponds to the depth-280 

uniform thin-sheet deformation and is constrained by conditions d ts
xx xx   and   0ts

xx  . The 281 

bending stress, b
xx , represents the deviation from ts

xx  due to bending and is constrained by the 282 

conjugate conditions 0b
xx   and    d b

xx xx   . In Appendix 1 we show that this separation 283 

is possible by the appropriate choice of the reference level,  w x . As illustrative example we 284 

assume that  w x  is a piecewise linear function of x  as, for example, the lateral variation of the 285 

crust-mantle boundary in the model configuration of Figure 4. Assuming furthermore local isostasy 286 

(i.e.  , 0OP x Sb  ), equation (22) reduces to 287 

    
2 2

2 2

b

xx L

d d
P

dx dx
     (23) 288 

The term with 2 2/d w dx  has disappeared due to the assumption of piecewise linearity of  w x . 289 
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Equation (23) indicates that lateral variations of mass moments,  LP , are balanced by lateral 290 

variations of moments related to bending stresses.  LP  can be calculated from the initial model 291 

geometry and associated densities (see Appendix 1).  LP  can further be expressed as third-order 292 

polynomial in    exh St x St lowland  , which is the laterally varying height of the topography. 293 

Therefore, 0exh   in the lowland of the model and ex eh h  in the plateau (Figure 4). We only 294 

have to consider powers of exh  on the order of 2 and 3 since lower powers will disappear due to the 295 

second derivative of  LP  in eq. (23):  296 

   3 2 ...L ex exP h A h B      (24) 297 

The coefficients A and B depend on the densities and geometrical parameters of the model 298 

configuration and are derived in Appendix 1. We assume that initially  b
xx  is non-zero only in 299 

the transition zone between lowland and plateau, and thus its polynomial form should include roots 300 

at 0exh   and ex eh h : 301 

     b

xx ex ex e exJ h h h h K      (25) 302 

where J and K are unknown coefficients. Substituting eq. (24) and (25) into (23) and comparing the 303 

terms on both sides of the equation yields 304 

 
/e

J A

K h B A



 
  (26) 305 

Characteristic values of b
xx  can then be estimated from  b

xx  by (e.g. Turcotte & Schubert, 306 

2014; Medvedev, 2016) 307 

 
 

2

6 b

xxb

xx
ERT





    (27) 308 
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where ERT  is the effective rheological thickness discussed in the Section 2.2. Equation (27) 309 

applies to beams with uniform rheology and estimates maximum bending stresses at the upper and 310 

lower boundaries of the beam. In the lithosphere the rheology varies with depth and the bending 311 

regions are typically not limited by two sharp boundaries so that eq. (27) provides an upper limit for 312 

the bending stress. We will quantify values of bending stresses for a reasonable range of values of 313 

ERT . The horizontal deviatoric stress due to bending, b
xx , can be approximated as half of the total 314 

bending stress (eq. (8)) 315 

 
 

2

3

2

bb
xxb xx

xx
ERT





     (28) 316 

The values of b
xx  vary laterally since  b

xx  varies laterally due to its dependence of exh  (Figure 317 

5a). The main uncertain parameters are the values of  w x  and ERT  and, therefore, we calculate 318 

maximum values of b
xx  for a range of reasonable values of  w x  and ERT  (Figure 5b). The 319 

results show that maximum values of b
xx  are between 150 and 300 MPa corresponding to 320 

differential stresses approximately between 300 and 600 MPa. We will show that such maximum 321 

values for b
xx  and for associated differential stresses are in broad agreement with the results of the 322 

performed 2D thermo-mechanical numerical simulations. 323 

 324 

3 GPE VARIATION BETWEEN TIBETAN PLATEAU AND INDIAN LOWLAND 325 

 The structure and density distribution of the Tibetan Plateau have been extensively 326 

investigated by mostly 2D and some 3D geophysical surveys based on land campaigns (e.g. 327 

Tilmann et al., 2003), satellite observations (e.g. Shin et al., 2015) and joint approaches (e.g. 328 

Basuyau et al., 2013). Such and other geophysical datasets, together with sparse thermal constraints 329 
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as well as geological and petrological information have been regularly used to construct models and 330 

geodynamic evolution scenarii of the Tibetan Plateau at various scales and levels of complexity 331 

(e.g. Dewey et al., 1988; Avouac & Tapponier, 1993; Chemenda et al., 2000; Liu & Yang, 2003; 332 

Beaumont et al., 2004; Zhao et al., 2010; Vozar et al., 2014; Baumann & Kaus, 2015; Tunini et al., 333 

2016). 334 

For the current study we use two density fields to calculate the spatial variation of GPE  335 

between the Tibetan plateau and the Indian lowland, namely the density field from the CRUST1.0 336 

data set (http://igppweb.ucsd.edu/~gabi/rem.html; Figure 2) and the best-fit, in situ observation-337 

constrained density field of Hetényi et al. (2007, their figure 6; Figure 3a). The location of the 338 

density profile of Hetényi et al. (2007) corresponds to the blue solid line in Figure 2a. For the 339 

CRUST1.0 data, values of GPE  were calculated using eqs. (6) and (13) assuming a compensation 340 

depth, Sb , at 100 km. The calculated values of GPE  first decrease in the region of the Indian 341 

foreland basin and then considerably increase with the increase of the topography along profiles 342 

from India towards the Tibetan plateau (Figure 2). Values of GPE  between the Indian foreland 343 

region and the adjacent Tibetan plateau are ca. 10 × 1012 N m-1 (Figure 2b). The considerable 344 

increase of topography between the Indian foreland and the Tibetan plateau occurs within a narrow 345 

region of ca. 100 km (Figure 2c). The density field of Hetényi et al. (2007) provides an even larger 346 

GPE  of ca. 12 × 1012 N m-1 between the Indian foreland region and the adjacent Tibetan plateau 347 

(Figure 3b). In contrast to the profile of GPE  resulting from the CRUST1.0 data, the GPE  348 

resulting from the model of Hetényi et al. (2007) shows a smaller decrease of GPE  around the 349 

Indian foreland region (-200 km < X < 0 km in Figure 3b) but higher GPE  around the adjacent 350 

Tibetan plateau (50 km < X < 400 km in Figure 3b). The lithostatic pressure, LP , at 100 km depth 351 

varies along the profile for both the CRUST1.0 and the Hetényi et al. (2007) model indicating that 352 

http://igppweb.ucsd.edu/~gabi/rem.html
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the depth of 100 km is not a level of local isostasy. The lateral variation of LP  and, hence, 
OP  353 

indicates either non-zero deviatoric stresses or the influence of the flexural rigidity of the 354 

lithosphere (eq. (22)) in the region of the topographic increase which likely could be related to 355 

bending associated with the Indian foreland basin. Both density models show an increase of LP  in 356 

the region of considerable topographic variation and hence significant lateral variation of crustal 357 

thickness. This deviation from local isostasy can be expected due to the flexural strength of the 358 

Indian crust, which is deflected and thrusted under the Tibetan crust. This regional compensation is 359 

well documented by gravity anomalies (e.g. Berthet et al., 2013; Hammer et al., 2013; Hetényi et 360 

al., 2016). In the discussion section (section 6) we argue that this geodynamic regime prevails since 361 

at least 10 Ma (e.g. Lu et al., 2018).        362 

 363 

4 NUMERICAL MODEL 364 

4.1 2D thermo-mechanical finite-difference model 365 

The applied numerical algorithm is based on the finite-difference/marker-in-cell method 366 

(e.g. Gerya & Yuen, 2003; Duretz et al., 2016). The governing equations for 2D incompressible 367 

deformation of viscoelastoplastic material coupled with heat transfer and gravity are described in 368 

detail in Appendix 2. The diffusive terms in the force balance equations and in the heat transfer 369 

equations are discretized on an Eulerian staggered grid while advection and rotation terms are 370 

treated explicitly on Lagrangian markers using a 4th order in space Runge-Kutta time integration 371 

(Duretz et al., 2016). The topography in the model is a material interface defined by a Lagrangian 372 

marker chain and this interface is displaced with the numerically calculated velocity field. With 373 

ongoing deformation, this marker chain needs to be locally remeshed which is achieved by adding 374 

marker points in the deficient chain segments. The applied numerical mesh consists of 2000 nodes 375 
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in the horizontal direction (resolution of 600 m) and 750 nodes in the vertical direction (resolution 376 

of 413 m). The models were run with a Courant number of 0.45 and a maximum allowed time step 377 

of 0.1 Ma.  378 

 379 

4.2 Model configuration 380 

 The model configuration is similar to the model configuration which has been used to derive 381 

the analytical relations between GPE , xF  and bending moments (section 2, Figure 4). The 382 

corresponding thicknesses and model dimensions are given in Figure 4. The initial geometry and 383 

density field generates a GPE difference between plateau and lowland of ca. 7×1012 N m-1 in 384 

agreement with published data (e.g. Molnar et al. 1993) and the density field of CRUST1.0 (Figure 385 

2). The initial crustal geometry corresponds to isostatic equilibrium if the topographic variation is 386 

related to the variation of the crust-mantle boundary (Moho), that is, the transition width in which 387 

the topography increases is identical to the width of the region in which the Moho deepens (Figure 388 

4). However, the study of Hetényi et al. (2007; Figure 3) indicates that the topography increases 389 

over a distance of ca. 100 km while the Moho deepens over a distance of ca. 300 km (Figure 3). 390 

Therefore, we vary the transition width of the Moho (M; Figure 4) in the simulations. The 391 

topographic transition width is always 100 km, close to the observed value.    392 

 For the 2D numerical simulations we use the flow law of wet quartzite (Kirby, 1983) for the 393 

upper crust and of Maryland diabase (Carter & Tsenn, 1987) for the lower crust (Table 1). For the 394 

mantle lithosphere and asthenosphere we use a combination of dislocation and diffusion creep 395 

(Hirth & Kohlstedt, 2003) for dry olivine and Peierls creep (Goetze & Evans, 1979, with 396 

formulation of Kameyama et al., 1999; see Appendix 2 and Table 1). The left, right and bottom 397 

boundaries are free slip boundaries and the top boundary is a stress free surface. There is no far-398 
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field shortening or extension applied to the lateral boundaries as we focus on the evolution of the 399 

topographic relief. The top and bottom boundaries for heat transfer are described by fixed 400 

temperatures with 0 °C at the top and 1350 °C at the bottom. The lateral boundaries are zero heat 401 

flow boundaries. The initial temperature field is at equilibrium and is computed using the thermal 402 

parameters listed in Table 1.  403 

 404 

5 RESULTS 405 

5.1 Fundamental impact of crustal stress magnitudes 406 

We first show the fundamental impact of the crustal friction angle on the numerical results 407 

by comparing two representative simulations, the only difference being the friction angle of the 408 

crust, namely   = 10° (simulation 1) and   = 0° (simulation 2; Figure 6). We use here the friction 409 

angle as parameter to limit maximum stress magnitudes in the crust without any particular 410 

mechanical interpretation, such as high fluid pressure or presence of weak faults in the crust. We 411 

use M = 300 km, since this configuration is presumably closest to the observed geometry of Figure 412 

3. The scope of this comparison is to show the general deformation behaviour of the numerical 413 

model, the associated stress magnitudes and stress distributions and the fundamental impact of 414 

crustal stress magnitudes on the overall deformation of the lithosphere. For   = 0°, the maximum 415 

shear stress is limited by the cohesion only so that maximum differential stress in the upper crust in 416 

simulation 2 was 10 MPa, that is, twice the maximum shear stress of 5 MPa. In the following, we 417 

refer to the left model domain with initially normal crustal thickness of 35 km as lowland, to the 418 

right model domain with an initial topography of 5 km as plateau, and to the central model domain 419 

with an initially laterally varying crustal thickness as transition zone. 420 
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 The stress distribution in the lithosphere is profoundly different for simulations 1 and 2 421 

(Figure 6). In simulation 1, high horizontal deviatoric stresses, xx , are generally concentrated 422 

around the transition zone in the upper region of the mantle lithosphere and in the upper crust 423 

(Figure 6a to c). The lowland is under compression (negative deviatoric stress) and the plateau 424 

under extension (positive deviatoric stresses). Absolute maximum values of deviatoric stress in the 425 

lowland and plateau are similar and in the order of 100 MPa. Below the Moho in the mantle 426 

lithosphere, between X = 0 and 200 km, compressive stresses are directly above extensive stresses. 427 

This stress pattern indicates a region of bending where the upper region of the bending area is 428 

compressed, the lower region is extended and between the two regions is a neutral level with zero 429 

stress. This neutral level may be associated with the reference level  w x  in the analytical bending 430 

results of section 2.3. The bending region is restricted to the transition zone, supporting the 431 

analytical assumption of equation (25). In simulation 2 significant stresses occur only in the upper 432 

region of the mantle lithosphere in the transition zone and lowland (Figure 6d to f). Stress 433 

magnitudes in the mantle lithosphere in simulation 2 are locally more than twice the stresses in the 434 

mantle lithosphere in simulation 1. The higher bending stresses in simulation 2 are consistent with 435 

the analytical results of section 2.3 which predict higher stresses for smaller values of ERT . The 436 

ERT  of simulation 2 is thinner than the one of simulation 1, because crustal levels do not 437 

contribute to ERT  in simulation 2. The absolute maximum magnitudes of 100 to 250 MPa for the 438 

deviatoric stresses due to bending agree also with rheology-independent analytical predictions 439 

(Figure 5). The ERT  of the mantle lithosphere in the transition zone of simulation 2 is between 40 440 

and 50 km in agreement with values assumed in Figure 5.  441 

In the upper crust of simulation 1, the transition between compressive and extensive regions 442 

occurs at the location where the initial topography reached the plateau height (Figure 7b and c). The 443 
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upper crust with significant topographic slope is under compression. In simulation 2 the topography 444 

is essentially flat after 1 Ma but the transition between compression and extension occurs 445 

approximately at the same location as in simulation 1 (Figure 7d to f). Generally, lateral flow of 446 

material induced by GPE  variations is not uniform with depth and the crust flows laterally towards 447 

the lowland while stronger levels of the mantle lithosphere essentially do not flow (material flow is 448 

indicated by initially vertical white lines in Figure 7). 449 

For simulation 1 at 15.3 Ma, vertical profiles of 1 3   and xx zz   have been calculated 450 

in the lowland (Figure 8a), in the transition zone (Figure 8b) and in the plateau (Figure 8c; see also 451 

Figure 6c). By definition, values of 1 3   are always positive whereas values of xx zz   are 452 

negative for compression and positive for extension. The lithosphere in the lowland is under 453 

compression and absolute values of 1 3   and xx zz   are essentially identical which indicates 454 

negligible shear stresses, eq. (9), and negligible bending stresses since stresses do not change sign 455 

along the vertical profile. The same applies to stress profiles in the plateau (Figure 8c) but stresses 456 

there are extensive and values of xx zz   are positive. In the transition zone, absolute values of 457 

1 3   and xx zz   are not everywhere similar and in some depth the values of xx zz   are 458 

nearly zero while corresponding values of 1 3   are significant with ca. 50 to 70 MPa (Figure 459 

8b). The stress profiles for simulation 1 show that the stress state of the lowland and plateau is 460 

dominated by membrane stresses while in the transition zone both membrane and bending stresses 461 

are important. The largest stresses occur at the brittle-ductile transition in the upper crust in the 462 

transition zone where 1 3   185 MPa (Figure 8b). In the lowland, the nearly vertical domains of 463 

the 1 3   vs depth profile indicate a viscoelastic deformation and stresses did not reach the plastic 464 

yield strength.  465 
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For simulation 2, vertical profiles of 1 3   at ~1.05 Ma at the same horizontal positions 466 

(Figure 8d to f) are significantly different to the ones of simulation 1. In contrast to simulation 1, 467 

profiles of the absolute values of 1 3   and xx zz   vary significantly in the lowland, transition 468 

zone and plateau because values of xx zz   change their sign along vertical profiles. This sign 469 

change is associated with significant bending stresses (Figure 6f). Maximal values of 1 3   are 470 

ca. 645 MPa and occur in the transition zone at the top of the mantle lithosphere (Figure 8e). 471 

Results of simulation 2 show that for a weak crust the deformation of the mantle lithosphere is 472 

dominated by bending and values of 1 3   reach several hundreds of MPa due to the reduced 473 

ERT  of the lithosphere. 474 

 475 

5.2 Accuracy of numerical models and applicability of analytical stress estimates 476 

To evaluate the accuracy of the numerical results and to compare the analytical predictions 477 

of section 2.2 with numerical results we calculate values of xx , xF  and GPE  by vertical 478 

integration of the numerically calculated stresses and the model density field for both simulations 1 479 

and 2 (Figure 9). Representative results are shown for both simulations at ca. 8 Ma. Horizontal 480 

profiles of xF , GPE , and xx  are plotted by subtracting the leftmost values of xF , GPE , and xx  481 

from all values of xF , GPE , and xx  (Figure 9a and c). As predicted by the analytical thin-sheet 482 

results (equation (10)), xx  is constant along the entire model (Figure 9a and c). Horizontal profiles 483 

of xF , calculated by numerically computed stresses, and profiles of GPE , calculated by model 484 

densities, match along the entire model, demonstrating the correctness of the calculated stresses for 485 

the corresponding density fields (see equations (14) and (15)). The agreement of the horizontal 486 

profiles of xF  and GPE  indicates that the simple analytical relations, which are independent on 487 
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rheology, apply to considerably heterogeneous stress fields in the lithosphere. For simulation 1, 488 

values of GPE  vary strongly around the transition zone but values of xF  nevertheless correspond 489 

to values of GPE . Maximum values of GPE  are ca. 10 × 1012 N m-1 and values in the right 490 

region of the plateau settle to ca. 7 × 1012 N m-1 (Figure 9a). These values and the lateral variation 491 

of GPE  are close to values calculated from natural density fields (Figure 3b). In contrast, for 492 

simulation 2 the profile of GPE  is significantly different, especially around the transition zone 493 

where values of GPE  are already of the same order as GPE values in the plateau (Figure 9c). 494 

The numerical results also show that the bottom of the model domain is not a level of local isostasy 495 

because values of P  are not identical to LP  so that the tectonic pressure, O LP P P  , varies along 496 

the model bottom (Figure 9b and d). As predicted by the analytical thin-sheet results (equation (19)497 

), the value of OP  at the model bottom is close to the numerically calculated value of /xzd dx  498 

(Figure 9b and d). The reason for the non-zero tectonic pressure at the model bottom is the flexural 499 

strength of the upper level of the lithosphere where the associated bending stresses are responsible 500 

for the deviation of the lithosphere from the local isostasy state (equation (22)). For simulation 1 501 

values of ( )OP Sb  are close to zero on both model sides away from the transition zone because there 502 

the model domain is close to local isostasy. The largest deviation from local isostasy is around the 503 

transition zone with values of ( )OP Sb  close to 30 MPa. To the left and right of this maximum the 504 

values of ( )OP Sb  are negative with magnitudes as low as -20 MPa (Figure 9b). The relative lateral 505 

variation of ( )OP Sb  in simulation 1 is similar to the pressure variation associated with the density 506 

fields of CRUST1.0 and Hetényi et al. (2007) (Figure 3c). The absolute magnitudes of ( )OP Sb  are 507 

slightly smaller in the numerical simulations. This is expected since the natural density field is only 508 

100 km deep whereas the density field of the numerical simulation is 300 km deep and in such 509 
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larger depth the deviation from local isostasy is presumably smaller. For simulation 2 the lateral 510 

variation of ( )OP Sb  is considerably different to the one of simulation 1 (Figure 6f).        511 

 512 

5.3 Crustal stress magnitudes required to maintain topographic relief 513 

To determine the minimum crustal stress magnitude required to maintain the topographic 514 

relief between Indian lowland and Tibetan plateau for ca. 10 Ma, we performed a series of 515 

simulations for the model configuration shown in Figure 4. We varied systematically two 516 

parameters, namely the friction angle of the crust,   = 0, 3, 6, 10 and 30°, and the Moho transition 517 

width, M = 50, 100, 200 and 300 km. The results of all the performed simulations show that both 518 

  and M  have a significant impact on the topography evolution (Figure 10). The collapse, or 519 

lateral flow, of the topographic relief reaches the maximum value for M  = 50 km, whereas it is 520 

minimal for M  = 300 km. For   = 30° and 10° the width of the topographic transition zone is 521 

essentially stable and tends to the corresponding values of M  after ca. 11 Ma (Figure 10a and b). 522 

For   = 3° the width of the topographic transition zone has essentially doubled at ca. 11 Ma when 523 

compared to the corresponding initial value of M  (Figure 10c). For   = 0° there is no more 524 

topographic transition zone after already ca. 0.5 Ma (Figure 10d). The results for   = 0° show that 525 

maximum values of   of ca. 10 MPa in the crust are unable to maintain the topographic relief 526 

between lowland and plateau for as little as 0.5 Ma. We focus on the evolution of topography with 527 

time for simulations with  = 10°, 3° and 0° and for M = 300 km (Figure 11). For  = 10° the 528 

width of the topographic transition zone is more or less stable in the horizontal direction within the 529 

displayed 15 Ma (Figure 11a). Also, no significant foreland basin with negative topography is 530 

formed in the lowland (Figure 11a). In contrast, for  = 3° the width of the topographic transition 531 

zone widens significantly within 15 Ma (Figure 11b). Furthermore, a basin with a depth of more 532 
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than 500 m subsidence develops in the lowland and this basin migrates more than 100 km towards 533 

the foreland within 15 Ma (Figure 11b). For  = 0° there is essentially no difference anymore 534 

between plateau and lowland already after 1 Ma (Figure 11c).    535 

We compare all the performed simulations with different   and M  by calculating for each 536 

simulation the maximum differential stress, max , at X = 0 km which occurred in the upper crust 537 

within the entire simulation duration (Figure 12a). Figure 12a presents values of the maximum 538 

differential stress reached within the upper crust for a range of   and M . Values of max  increase 539 

from 10 MPa to ca. 220 MPa for increasing values of  , whereas they are essentially independent 540 

of M  (Figure 12a). The maximum values of the horizontal velocity at the surface at X = 0, 0xV , 541 

for each simulation decrease with increasing   (Figure 12b). For   < 10° the decrease of 0xV  with 542 

increasing   is significant and essentially independent of M . However, for   ≥ 10° the 0xV  543 

essentially does not decrease anymore with increasing  , but the decrease depends on M , whereby 544 

larger values of M  correspond to smaller 0xV  (Figure 12b). The results show that for a given M  545 

an increase in   from 0° to 10° causes an increase in max  which decreases 0xV  and, hence, 546 

significantly help to maintain plateau relief. An increase in   from 10° to 30° still causes an 547 

increase in max  but this stress increase does not significantly decrease 0xV . The plateau is most 548 

stable, i.e. 0xV  is smallest, for M = 300 km which is closest to the observed geometry (Figure 3a). 549 

In the simulations with   = 10° and M = 300 km values of max  are ca. 180 MPa and the 550 

systematic results (Figure 12) indicate that such stress levels are minimum stress levels that are 551 

required in the upper crust to support the relief of the plateau for a duration on the order of 10 Ma.       552 

 For the simulation with   = 10° and M = 300 km the vertical integral of the differential 553 

stress across the lithosphere, L , varies significantly horizontally but insignificantly with time 554 
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(Figure 13a). The maximal values of L  occur in the transition zone and are ca. 7.5×1012 N m-1. 555 

The relative contribution of the stresses in the crust to the stresses in the entire lithosphere is 556 

quantified by the ratio of the vertically-integrated differential stress across the crust, C , to L . 557 

In the transition zone the values of /C L    are > 0.3 and in the right side of the plateau even > 558 

0.5 so that in these regions the contribution of the crust to the integrated lithospheric stress is 559 

significant (Figure 13b). In some regions of the lowland values of /C L    decrease to ca. 0.1 560 

(Figure 13b). The results show that the contribution of the crust to the vertically integrated 561 

differential stresses in the lithosphere varies significantly horizontally. For comparison, for the 562 

simulation with   = 3° and M = 300 km maximal values of L  also occur around the transition 563 

zone but are slightly larger reaching up to ca. 8.5×1012 N m-1 (Figure 13c). Values of /C L    564 

can locally also be larger than 0.3 (Figure 13d).      565 

 For   = 10° and M = 300 km the maximum differential stress, max , in the upper crust is 566 

ca. 185 MPa (Figure 14a) while for   = 3° and M = 300 km it is ca. 80 MPa (Figure 14d). For both 567 

simulations maximum values of max  occur around the transition zone (Figure 14a and d). In the 568 

lower crust, values of max  are more or less the same for   = 10° and 3° and are ca. 120 MPa 569 

(Figure 14b and e). In the mantle lithosphere, values of max  are larger for   = 3° reaching > 500 570 

MPa (Figure 14f) while for   = 10° maximum values of max  are ca. 350 MPa (Figure 14c). For 571 

  = 3° the high stress values are due to bending of the relatively thin (< 50 km) and strong upper 572 

level of the mantle lithosphere; in agreement with analytical bending results (Figure 5). 573 

 574 

6 DISCUSSION 575 
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The present day GPE  in the transition zone between Indian lowland and Tibetan plateau is 576 

about 10 to 12 × 1012 N m-1 (Figure 3b). If averaged over a 100 km thick lithosphere, these GPE  577 

variations imply average values of d
xx  between 100 and 120 MPa and average values of xx  578 

between 50 and 60 MPa (eqn. (15)). Assuming that absolute values of / 2xx xx     yields typical 579 

absolute values of xx  between 25 MPa and 30 MPa. Due to the pressure-sensitive yield stress and 580 

the temperature-dependent viscosity of rocks the stresses cannot be constant with depth. Assuming 581 

that the load-bearing levels in the lithosphere have a cumulative ERT  of one half to one third of the 582 

total lithospheric thickness of 100 km implies that values of *

xx  are between 50 MPa and 90 MPa 583 

(eqn. (17); assuming * * / 2xx xx   ). These stress magnitudes are in broad agreement with values of 584 

1 3   occurring in the high-stress regions in the numerical simulations (Figure 6 and Figure 14). 585 

However, the analytical and numerical results indicate that stresses in the lithosphere can be locally 586 

considerably larger if bending is significant (Figure 6 and Figure 14). 587 

Allmann and Shearer (2009) report that the median of earthquake-based stress drop 588 

estimates of about 4 MPa does not vary significantly with seismic moment and within the top 45 km 589 

of the lithosphere. Our results indicate that median stress drop values of 4 MPa, corresponding to 590 

differential stress of ca. 8 MPa, cannot be representative for the absolute deviatoric stress 591 

magnitudes in a crust with lateral variations of GPE as observed between the Indian lowland and 592 

the Tibetan plateau. Absolute deviatoric magnitudes between one and two orders of magnitudes 593 

larger than 4 MPa are required to maintain the relief of the Tibetan plateau over geological spatial 594 

and time scales (Figure 6b and c). Stress magnitudes of several hundreds of MPa have also been 595 

reported from 3D numerical simulations of the present-day India-Asia collision (Lechmann et al., 596 

2014). Therefore, stress drop estimates of ca. 4 MPa represent most likely only a minor fraction of 597 
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the total crustal deviatoric stress magnitude; at least in a collisional setting mimicking the India – 598 

Himalaya – Tibet system. A possible explanation for the different stress estimates has been 599 

proposed by Nadeau & Johnson (1998) who argue that stresses on fault planes are strongly 600 

heterogeneous and that stresses around fault plane asperities with surface < 1 m2 can be locally very 601 

high, up to 2000 MPa, whereas the corresponding stress drop, which is averaged over the entire 602 

fault plane, is orders of magnitudes smaller and thus provides a stress drop between 1 and 10 MPa. 603 

A key assumption for our estimates of crustal stress magnitudes is that the topography of the 604 

Tibetan plateau was relatively stable during the last 10 Ma. This assumption can be supported by a 605 

representative cross section from India to Tibet (Figure 2 and Figure 3) which is characterized by 606 

considerable underthrusting of Indian lower crust below Tibet (Hetényi et al., 2007; Nábělek et al., 607 

2009). The underthrusted Indian lower crust is approximately horizontal along 250 km below Tibet. 608 

Geophysical data indicates that this underthrusting extends for at least ca. 1000 km along the strike 609 

of the central part of the Himalayas (Wittlinger et al., 2009). The geodetic and geological 610 

shortening rate across the Himalaya is ca. 2 cm/yr, so that the ca. 250 km underthrusting occurred 611 

over the last ca. 12.5 Ma. Assuming that the underthrusting was horizontal implies that there were 612 

no major vertical displacements during the last 12.5 Ma because otherwise the Indian lower crust 613 

would today not be horizontal over a length of 250 km. The absence of significant crustal-scale 614 

vertical displacements suggest that the topographic relief between India and Tibet and the more or 615 

less flat topography of southern Tibet likely existed for times on the order of 10 Ma. There is 616 

geological evidence, independent from the previously presented geophysical arguments, in support 617 

of Southern Tibet’s high elevation since ca. 10 Ma or more. While the Tibetan plateau’s uplift 618 

history has evolved from North to South (Molnar et al., 2010), several approaches point out that its 619 

elevation was close to 4000 m over geologically significant times. For the central part of the 620 
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plateau, paleo-altimetry suggests elevations higher than 4000 m since 35±5 Ma (Rowly and Curie, 621 

2006). In a compilation, Harris (2006) argues that elevations in the southern part of the plateau have 622 

not changed since at least 15 Ma, and this time is pushed back locally as far as 28 Ma for an 623 

elevation of 5000 m (Xu et al., 2013). Thermochronologic, sedimentologic, oceanographic and 624 

paleoclimatic studies suggest that rapid uplift of Southern Tibet started 20 Ma ago and reached the 625 

present elevation by 8 Ma (Harrison et al., 1992). Fielding (1996) even argues for higher elevation 626 

than current prior to 8 Ma and its slow decrease during the late Cenozoic. Similar findings have 627 

been reported over Tibet and the Himalaya by Quade et al. (2011). Finally, cosmogenic nuclide 628 

exposure histories in southern and central Tibet, although measured on much shorter time scales, 629 

suggest very low erosion rates, less than 30 m/Ma (Lal et al., 2004). The above observations 630 

support our assumption that the Tibetan plateau and the present-day topographic relief can have 631 

existed for a duration of ca. 10 Ma. 632 

 The simulations show that crustal strength does not only affect the evolution of lowland-633 

plateau transition zone width but also the formation of a sedimentary basin in the foreland. For   = 634 

3° maximum values of 1 3   in the upper crust are ca. 80 MPa (Figure 14) and for   = 3° a basin 635 

forms in the lowland with a depth between 0.5 and 1 km. This basin is steadily migrating away 636 

from the topographic relief. This is not the case in the Himalayan foreland, as the Ganges foreland 637 

basin is getting broader with time, but the deepest part remains close to the topographic front as a 638 

result of flexure (see map in Hetényi et al., 2016). This is witnessed by the accumulated Lower, 639 

Middle and Upper Siwalik sedimentary units, studied in surface outcrops and boreholes (e.g., Sastri 640 

et al., 1971; Schelling, 1992; Métivier et al., 1999). The situation is different at the Brahmaputra 641 

foreland basin in the east, where the very shallow sedimentary basin is explained by a different 642 
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foreland lithosphere and seismotectonics (Hetényi et al., 2016; Diehl et al., 2017; Grujic et al., 643 

2018).  644 

 645 

7 CONCLUSIONS 646 

 The numerical simulations show that maximum magnitudes of differential stress in the 647 

upper crust must be at least ca. 180 MPa to maintain the relief of the Tibetan plateau for a duration 648 

of ca. 10 Ma. The required crustal stress magnitudes are at least one order of magnitude larger than 649 

median earthquake-based stress drop estimates from seismology of ca. 4 MPa, corresponding to ca. 650 

8 MPa differential stress. Analytical estimates of stress magnitudes based on lateral variation of 651 

GPE agree with stress magnitudes in the performed 2D thermo-mechanical numerical simulations. 652 

We, therefore, argue that median stress drop estimates do not represent absolute stress magnitudes 653 

in the crust around the Tibetan plateau and that stress drop estimates are relative, and only represent 654 

a small fraction of the total crustal stress. 655 

 The performed simulations show that the contribution of depth-integrated crustal stress to 656 

the lithospheric depth-integrated stress varies significantly along profile between lowland and 657 

plateau. The results indicate that depth-integrated crustal stress in the region between lowland and 658 

plateau must be approximately equal to the depth-integrated stress of the mantle lithosphere in order 659 

to maintain the topographic relief of the Tibetan plateau.  660 

The large-scale density heterogeneities between lowland and plateau can result in significant 661 

bending moments and large bending stresses in the rheologically stratified lithosphere. Analytical 662 

and numerical results show that the magnitudes of bending stresses can be few hundreds of MPa. 663 

The magnitude of bending stresses strongly depends on the effective rheological thickness of the 664 

lithosphere. Therefore, the value of the crustal friction angle controls not only the stress magnitudes 665 
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in the crust but also in the mantle lithosphere, because this friction angle controls the effective 666 

rheological thickness of the lithosphere. Smaller crustal stresses cause a smaller effective 667 

rheological thickness of the lithosphere, which in turn causes higher bending-related stresses in the 668 

mantle lithosphere. 669 

Simple analytical relations between depth-integrated horizontal stresses, horizontal 670 

variations of depth-integrated shear stresses, tectonic pressure at the compensation depth, and 671 

bending stresses based on rheology-independent estimations from lateral GPE  variations and 672 

integrated density moments are valid for highly variable stress fields calculated with 2D numerical 673 

thermo-mechanical simulations considering viscoelastoplastic deformation. Therefore, these 674 

analytical relations are useful to estimate stress magnitudes in the lithosphere and to test the 675 

correctness and accuracy of numerical algorithms for modelling lithospheric deformation. 676 

 677 
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Table 1. Model parameters. For all materials, specific heat is 1050 J kg-1 K-1, thermal expansion is 686 

1×10-5 K-1, compressibility is 1×10-11 Pa-1, shear modulus 2.5×1010 Pa and cohesion 5 MPa. The 687 

friction angle of the mantle lithosphere is always 30°. For the mantle lithosphere and asthenosphere 688 

a combination of dislocation, diffusion and Peierls creep is applied. For diffusion and Peierls creep 689 

only those parameters are displayed that are different from the ones for dislocation creep; non-690 

specified parameters are the same as for dislocation creep. 691 

 Dislocation creep     

 A (Pa-n s-1) n Q (kJ mol-1) k (W m-1 K-1) ρ0 (kg m-3) HR (W m-3) V (m3) 

Upper crust India 5.0717×10-18 2.3 154 2.5 2800 1.4 10-6 0 

Upper crust Tibet 5.0717×10-18 2.3 154 2.5 2800 0.2 10-6 0 

Lower crust 3.2×10-20 3.0 276 2.1 2800 0.2 10-6 0 

Mantle lithosphere 1.1×10-16 3.5 530 3.0 3300 0 11×10-6 

Asthenosphere 1.1×10-16 3.5 530 3.0 3250 0 11×10-6 

 Diffusion creep     

    d (m) m   

Mantle lithosphere 1.5×10-15 1 375 10-3 3  9×10-6 

Asthenosphere 1.5×10-15 1 375 10-3 3  9×10-6 

 Peierls creep     

    Ap (s-1) σp (Pa)     

Mantle lithosphere   540 5.7×1011 8.5×109 0.1  

Asthenosphere   540 5.7×1011 8.5×109 0.1  

        692 
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Figure captions 693 

 694 

Figure 1. Differential stress estimates for the crust. The solid black line shows differential stress 695 

based on Byerlee’s law for compression and hydrostatic fluid pressure (see e.g. Kohlstedt et al. 696 

1995). Blue circles indicate stress estimates from the KTB borehole after Townend & Zoback 697 

(2000) and transparent blue rectangles indicate the reported uncertainty range. The KTB borehole 698 

data is for a regional strike slip regime (Brudy et al. 1997). Red circles indicate piezometer 699 

estimates from ductile shear zones after Behr & Platt (2014) and transparent red rectangles indicate 700 

the reported uncertainty range. Blue dashed rectangle indicates the range of stress estimated from 701 

microstructure in a folded quartz vein after Trepmann & Stöckhert (2009). Red dashed rectangle 702 

indicates the range of stress estimated from microstructure in quartz veins after Stipp et al. (2002). 703 

Black dashed rectangle indicates the range of stress estimated from microstructure in quartz, jadeite, 704 
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omphacite and calcite after Kuester & Stöckhert (1999). Green dashed rectangle indicates the range 705 

of stress estimated from microstructure in quartz after Sullivan & Monz (2016). Thick black dashed 706 

vertical rectangle indicates the range of depth-averaged (over 100 km thickness) stress estimated 707 

from lateral GPE variations after Molnar et al. (1993). Thick dotted magenta line indicates the 708 

median of earthquake-based stress drop estimates range after Allmann & Shearer (2009).       709 

  710 
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 711 

Figure 2. a) Colourplot of GPE  [N/m] for the region around the Tibetan plateau (region mainly in 712 

red). Values of GPE  have been calculated directly from the CRUST1.0 data set 713 

(http://igppweb.ucsd.edu/~gabi/rem.html), namely from the given densities and depths of the crustal 714 

units. Values of GPE  were calculated using eqs. (6) and (13) assuming a compensation depth, Sb , 715 

at 100 km and no corrections have been applied to the CRUST1.0 data. Three profiles (solid black, 716 

magenta and blue lines) have been calculated for the corresponding GPE  (b), topography (c) and 717 

crust-mantle boundary depth (Moho, d). b) Three profiles of GPE  (see a) for location). The value 718 

of GPE  from the leftmost position (X = -600 km) has been subtracted from all other values of 719 

GPE  to generate values of GPE . The dashed black line corresponds to the initial profile of 720 

GPE  corresponding to the performed numerical simulation initially in isostasy. c) Three profiles 721 

(see a) for location) of topography taken directly from the CRUST1.0 data set without corrections. 722 

d) Three profiles (see a) for location) of Moho depth taken directly from the CRUST1.0 data set 723 

without corrections.    724 
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 725 

 726 

Figure 3. a) Colourplot of density distribution from Hetényi et al. (2007). The location of the 727 

corresponding profile is indicated by the blue line in Figure 2a. b) Lateral variation of GPE  for 728 

the density profile in a) (black line) and for the corresponding density profile along the same section 729 

of the CRUST1.0 data (blue line). The red diamonds show values of GPE  corresponding to the 730 

numerical simulation 1 (crustal friction angle of 10° and Moho transition width of 300 km; Figure 731 

6a to c) at 8 Ma. c) Lateral variation of lithostatic pressure at 100 km depth corresponding to the 732 

density profile in a) (black line) and for the corresponding density profile along the same section of 733 

the CRUST1.0 data (blue line). The red diamonds show the lateral variation of lithostatic pressure 734 

at the model depth (300 km) corresponding to the numerical simulation 1 (crustal friction angle of 735 

10° and Moho transition width of 300 km; Figure 6a to c) at 8 Ma. The lateral variation of 736 

lithostatic pressure corresponds to the tectonic pressure, that is, rock pressure minus lithostatic 737 

pressure. 738 
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 739 

 740 

Figure 4. Model configuration for both the 2D numerical simulations and the analytical thin-sheet 741 

results. The eh  is the initial topography of the plateau with respect to the lowland, ch  is the total 742 

crustal thickness of the lowland, rh  is the thickness of the crustal root (including the lower crust) 743 

below the plateau, lch  is the thickness of the lower crust, mh  is the thickness of the mantle 744 

lithosphere below the lowland and ah  is the thickness of the asthenosphere layer. M  is the width 745 

of the transition zone of the crust-mantle boundary (Moho) in which the Moho deepens from 35 to 746 

68 km depth below topography. M  can vary from 50 to 300 km in the different simulations. The 747 

transition zone of the topographic variation has always a width of 100 km. For the analytical results, 748 

the values of LGPE  and PGPE  have been calculated for a constant density in the upper and lower 749 

crust of 2800 kg/m3 and for constant density of the mantle lithosphere of 3300 kg/m3. 750 

 751 
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 752 

Figure 5. a) Lateral variation of estimated bending stresses (equation (28)) for specific values of 753 

effective rheological thickness, ERT , and for specific position of the neutral reference line, w  754 

(equations (20) and (21)), which is set parallel to the Moho. 0w  is the depth of w  in the lowland. b) 755 

Each bending stress profile has a maximum stress. These maximum bending stresses are contoured 756 

in the space ERT  versus W . W  is the distance of the neutral reference line, w , from the Moho. 757 

The four profiles displayed in a) are indicated by the corresponding numbered stars. The maximum 758 

bending stress depends to first order on the ERT . 759 

  760 
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 761 

Figure 6. Colourplot of horizontal deviatoric stress, xx  (MPa), for three different times for 762 

simulation 1 with a friction angle in the crust of 10° (a to c) and simulation 2 with 0° (d to f), both 763 

for M = 300 km. Negative values indicate compression, positive ones extension and the legends at 764 

the top right of the two columns (a, b, c and d, e, f) applies to the entire column. The entire model 765 

domain is shown. Times in million years (Ma) indicate the duration of the simulations. In each 766 

panel, the lowermost horizontal white line indicates the lithosphere/asthenosphere boundary, the 767 

middle white line indicates the base of the lower crust (Moho) and the uppermost white line 768 

indicates the upper/lower crustal boundary. The two short vertical white lines in the upper and 769 

lower crust are passive marker lines, which indicate horizontal flow in the crust.  770 

  771 
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 772 

Figure 7. Enlargements of the colourplots of Figure 6 for three different times for simulation 1 with 773 

a friction angle in the crust of 10° (a to c) and simulation 2 with 0° (d to f), both for M = 300 km. 774 

Negative values indicate compression, positive ones extension and the legends at the top right of the 775 

two columns (a, b, c and d, e, f) applies to the entire column. The region of the crust around the 776 

transition zone is shown. Times in million years (Ma) indicate the duration of the simulations. For a 777 

friction angle of 0° (d to f) the absolute magnitude of xx  is controlled by the cohesion of 5 MPa. 778 

The vertical white line, initially at X = -50 km, indicates the lateral flow of the crust.  779 
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 781 

Figure 8. a) to c). Three vertical profiles of 1 3   and xx zz   for simulation 1 (  = 10° and M = 782 

300 km) at ~15 Ma (Figure 6c) in the lowland at X = -500 km (a), the transition zone at X = -20 km 783 

(b) and in the plateau at X = 450 km (c). See Figure 6c for the horizontal X-position of the three 784 

profiles. d) to f). Three vertical profiles of 1 3   and xx zz   for simulation 2 (  = 0° and M = 785 

300 km) at ~1 Ma (Figure 6f) in the lowland at X = -500 km (d), the transition zone at X = -20 km 786 

(e) and in the plateau at X = 450 km (f). See Figure 6f for the horizontal X-position of the three 787 

profiles. 788 

  789 
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 790 

Figure 9. a) and c). Horizontal profiles of xx , xF  and GPE  calculated from the numerical 791 

simulations 1 (a) and from simulation 2 (c) at ~8 Ma. From all three quantities, the leftmost value is 792 

subtracted so that the quantities are zero at the left side of the plot. b) and d). Horizontal profiles of 793 

tectonic pressure, O LP P P  , at the model bottom, Sb , and horizontal gradient of vertically 794 

integrated shear stress, /xzd dx , calculated from the numerical simulations 1 (b) and 2 (d). 795 
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 797 

Figure 10. Lateral variation of topography for simulations with different friction angle in the crust, 798 

 , and different initial Moho transition zone widths, M  (distance in legend in panel a) applies to 799 

all panels). The topography is given for the same time (in Ma) for simulations with the same   but 800 

times differ for simulations with different  . The dashed black line in all four panels indicates the 801 

initial topography. 802 
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 804 

Figure 11. Colourplot of the evolution of topography (in km) with time for three simulations all 805 

with M = 300 km but different crustal friction angles,  , of 10° (a), 3° (b) and 0° (c). In a) and b) 806 

white contour lines indicate the topography of -0.5, 0 and 1 km. 807 
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 809 

Figure 12. Maximum differential stress (in MPa) in upper crust (a) and maximum horizontal 810 

velocity at the surface (b) at X-position = -50 km for simulations with different crustal friction 811 

angle,  , and different Moho transition width, M . Stress values in a) for specific values of   and 812 

M  represent the maximum value at some depth in the upper crust of the entire corresponding 813 

numerical simulation at the X-position = -50 km. Velocity values in b) for specific values of   and 814 

M  represent the maximum value at the surface of the entire corresponding numerical simulation at 815 

the X-position = -50 km. The logarithm to the basis 10 of the velocity (in cm/yr) is displayed. 816 

 817 
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 818 

Figure 13. Evolution of vertically-integrated differential stress with time for simulations with M = 819 

300 km. a) and b) show results for   = 10°, and c) and d) for   = 3°. a) and c) show the evolution 820 

of the vertically-integrated differential stress across the entire lithosphere, L . b) and d) show the 821 

evolution of the ratio of vertically-integrated differential stress across the crust to the vertically-822 

integrated differential stress across the entire lithosphere, /C L   . The black contour line 823 

indicates a ratio of 1/3 and the orange-red domains indicate regions where the integrated crustal 824 

strength is larger than one third of the entire integrated lithospheric strength.   825 

 826 
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 827 

Figure 14. Evolution of maximum differential stresses, max  (MPa), in upper crust (a and d), 828 

lower crust (b and e) and mantle lithosphere (c and f) for simulations with   = 10° (a to c) and 3° (d 829 

to f), both with M = 300 km. max  indicates the maximum differential stress that occurred at a 830 

specific X-position and time within the respective model unit. 831 
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APPENDIX 1055 

Appendix 1 1056 

The kinematic model of the traditional thin-sheet approximation (England & McKenzie, 1057 

1982) assumes that the horizontal velocity is constant with depth, so that the depth-integral of 
ts
xx  1058 

corresponds to the driving horizontal force per unit length, 
ts
xx xF  . To derive equation (23) we 1059 

assume that   0ts
xx  , which is true only for certain properties of the reference level for bending, 1060 

 w x , namely 1061 

   0 0 /ts ts ts

xx xx x xx xz w z F w w z F           (29) 1062 

For a viscoplastic lithosphere the values of 
ts
xx  are controlled by a depth-dependent effective 1063 

viscosity, eff , and for a depth-uniform strain rate the expression for  w x  in equation (29) 1064 

becomes /eff effw z  . For the lithospheric model considered here, the appropriate value of 1065 

 w x  can be calculated only numerically and it varies also in space and with time. Generally, 1066 

 w x  should be located close to the level of the maximum strength in the lithosphere. If the system 1067 

would be characterized by more than one distinct “strength maxima”, the system is unlikely to be 1068 

treatable with the thin-sheet approximation of bending stresses with any accuracy. 1069 

The moment of the lithospheric pressure,  LP , can be evaluated using formulae for 1070 

moment evaluations in a two-layer system with a laterally variable crustal thickness, ( )ch x , and 1071 

lithospheric mantle thickness, ( )mh x , (Medvedev & Podladchikov, 1999b): 1072 
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  (30) 1073 

Assuming local isostasy, the geometry of the lithosphere can be expressed as a single function of 1074 

the laterally variable elevation,    exh St x St lowland  : 1075 
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  (31) 1076 

where ch  and mh are initial thicknesses of the crust and lithospheric mantle in the lowland, both 1077 

independent from x, and 1 0exW w h w   is the positive distance from the topography of the lowland 1078 

to the reference line  w x . We express all the parts of  LP  from eq. (30) as a polynomial of exh  1079 

using the following relations: 1080 

 

       

 

       

3 2 3

3 2

1 1 1 1

3 2

2 2 2

3 2

1 2 1 2 0 2 2

3 2

1 2 1 2 0 2

3 2 3

1 1 ...

c m c m

c m ex ex ex

ex ex ex ex

ex ex

ex ex

h x h x h x h x
g g h A g h B g h C D

h GPE h A g h B g h C

W GPE h w A g h g w B w A W C

St x w x GPE h w A g h w B w A g

 
 

      
 
 

  

     

            

  (32) 1081 

In the polynomial expression we only need coefficients for the 2nd and 3rd power of exh  since we 1082 

use the polynomial only in equation (23) with the second derivative of  LP . The required 1083 

coefficients are 1084 
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  (33) 1085 

The coefficients A and B used in equation (24) are then 1086 
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1 1 2 0 2
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B B w B w A g
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     

  (34) 1087 

Several properties of the resulting bending moment and characteristic bending stress are important 1088 

to mention: 1) Neither part of the density moment  LP  that contributes to bending stress 1089 

estimates (eqs. (29)to (31)) nor GPE  evaluation (eq. (16)) depend on mh . As discussed in section 1090 

2, the principal contribution of integrated stresses and moments results from the stress bearing 1091 

areas, characterized by ERT , which is not related to the chosen depth of compensation. That makes 1092 

the total depth of the model lithosphere an inadequate measure of the characteristic length scale in 1093 

the thin sheet model. That is in contrast with the usage of the depth of compensation as the 1094 

characteristic length-scale measure in the thin-sheet approximation introduced by England & 1095 

McKenzie (1982). 2) ERT  and  w x  are two approximate parameters which control the 1096 

characteristic bending stress. Whereas the dependence on ERT  is clear from eq. (27), the 1097 

dependence on the reference surface  w x  is not obvious. To illustrate the dependence on  w x  1098 

we calculate the moment for another reference surface  'w x and consider the difference:  1099 

          ' ' 'd d d d
xx xx xx xx xz w z w F w w             (35) 1100 
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Using eqs. (17) and (28) and assuming that ERT  is the same for in-plane and for bending stresses, 1101 

equation (35) can be rearranged to yield:  1102 

 
  *

'

6 'b b
xx xx xx

w w

w w

ERT


       (36) 1103 

The resulting stress depends, hence, linearly on the choice of  w x . The low angle of the isolines 1104 

for stress in Figure 5b demonstrates the minor dependence of bending stress on the choice of  w x  1105 

because magnitudes of bending stresses are substantially larger than magnitudes of characteristic 1106 

membrane stresses, i.e. *b
xx xx   . This inequality is justified if we compare maximum values of b

xx  1107 

in Figure 5 with estimates for *
xx  from eq. (18). This inequality in combination with eq. (36) also 1108 

validates the use of an arbitrary chosen  w x  instead of the use of the exact value of  w x  given 1109 

in eq. (29).  1110 

 1111 

Appendix 2 1112 

The applied numerical algorithm solves the partial differential equations of continuum 1113 

mechanics for 2D slow deformations (no inertia) coupled with heat transfer under gravity. The force 1114 

balance equations are: 1115 

 
ij

i

j

b
x





 


  (37) 1116 

where i and j are indexes of either 1 or 2 and represent the horizontal x-direction ( , 1i j  ) and 1117 

vertical y-direction ( , 2i j  ), 1b  = 0 and 2b  = g. ij  are the total Maxwell-viscoelastic stress 1118 

tensor components which are expressed using a backward-Euler rule (e.g. Schmalholz et al., 2001) 1119 

by 1120 
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  (38) 1121 

where P corresponds to the pressure, ij  are the components of the deviatoric strain rate tensor, G is 1122 

the shear modulus,   is the effective viscosity, t  is the numerical time step, 
o

ij  are the stress 1123 

tensor components from the previous time step and ijJ  includes all the corresponding terms 1124 

resulting from the Jaumann rate of the stress tensor (e.g. Beuchert & Podladchikov, 2010). 1125 

The rheological model is based on the additive decomposition of the deviatoric strain rate 1126 

tensor ij : 1127 

 
el pl dis dif pe

ij ij ij ij ij ij            (39) 1128 

where 
el

ij , 
pl

ij , 
dis

ij , 
dif

ij  and 
pe

ij , respectively, correspond to the strain rate contributions arising 1129 

from elasticity, plasticity, and viscous creep (dislocation, diffusion and Peierls). This strain rate 1130 

equation is non-linear and solved locally on cell centroids and vertices in order to define the current 1131 

effective viscosity and stress (e.g. Popov & Sobolev, 2008). The viscosity for dislocation creep is a 1132 

function of the dislocation creep strain rate invariant, / 2dis dis

II II   , 1133 

  
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1
1

1

2

2
exp

3

n

n
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IIn

n

Q PV
A

nRT
 







 
  

 
  (40) 1134 

where the ratio involving the stress exponents to the left of A  results from the conversion of the 1135 

experimentally derived 1D flow law to a general flow law for tensor components based on 1136 

invariants (e.g. Gerya, 2010; Schmalholz & Fletcher, 2011). Applied parameters are displayed in 1137 

Table 1. Diffusion creep is taken into account in the lithospheric and asthenospheric mantle and its 1138 

viscosity is expressed as: 1139 
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 expdif m Q PV
A d

RT


 
  

 
  (41) 1140 

where d  is grain size and m  is grain size exponent (Table 1). Peierls creep (i.e. low temperature 1141 

plasticity) is applied only in the mantle lithosphere with parameters from Goetze & Evans (1979) 1142 

using the formulation of Kameyama et al. (1999). The viscosity corresponding to Peierls creep 1143 

takes the form of: 1144 

  
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1
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2

2

3

s

s
pe pe s

IIs

s
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
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
   (42) 1145 

where s is an effective stress exponent that depends on the temperature: 1146 

  2 1
Q

s
RT

     (43) 1147 

The A for this formulation is: 1148 
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  (44) 1149 

where   is a fitting parameter from the Peierls flow law (Table 1).  1150 

The stress of all material phases is limited by a yield stress, y , defined by the Drucker-Prager 1151 

criterion 1152 

 cos( ) sin( )y b P      (45) 1153 

where b  is the cohesion and   is the angle of internal friction. In case of yielding, the effective 1154 

viscosity is iteratively reduced until the corresponding stress invariant equals the yield stress (e.g. 1155 

Lemiale et al., 2008; Schmalholz & Maeder, 2012). Therefore, the effective viscosity for plasticity 1156 

is computed only for 0II y    and takes the form of 1157 
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     (46) 1158 

where 
pl

II  is the second invariant of the plastic strain rate tensor having components 
pl

ij  (eq. (39)). 1159 

At the end of the local iteration cycle, the effective viscosity is equal to the harmonic mean of the 1160 

viscosities of each dissipative deformation mechanism: 1161 
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  (47) 1162 

Equation (47) indicates that each viscosity is calculated with the respective second strain rate 1163 

invariant, which is calculated from the strain rate tensor components of the corresponding 1164 

deformation mechanism (eq. (39)).  1165 

The applied 2D equation for heat transfer is 1166 

 D R

i i

DT T
c k H H

Dt x x


  
   
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  (48) 1167 

with /D Dt  representing the total time derivative,  RH  being radiogenic heat production and 1168 

 2 2 2

11 22 122 / 2DH        being the heating due to viscous and plastic dissipative work. We 1169 

assume here that all dissipative work is converted into heat (i.e. so-called Taylor-Quinney 1170 

coefficient is 1) since we do not model grain size reduction which consumes typically only a minor 1171 

fraction of the dissipative work. 1172 

 1173 


