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Abstract—Software Defined Networking (SDN) is designed for
dynamic policy update where frequent changes are pushed to
the forwarding devices. Different offline approaches for detecting
misconfiguration anomalies in SDN by taking a snapshot of
the state of the network have been developed in the literature.
However, the detection process is time-consuming and unfeasible
in the case of frequent changes to the OpenFlow tables as well in
big size networks containing a large number of rules. This paper
presents an incremental method for detecting potential anomalies
in an online manner, i.e., after one or multiple simultaneous
updates in the SDN policy. Whenever the OpenFlow tables are
dynamically changed, a static approach that rechecks the whole
policy is unnecessarily redundant in a sense that most of the
policy remains intact. Hence the need for incremental verification
method to reduce this overhead, and only the subset of the policy
that is affected by the update is checked. Two different solutions
are proposed based on whether the policy modifications take
place in the ingress switches or in the middle switches. We provide
some comprehensive experiments to demonstrate the detection
performance for the case of single or multiple simultaneous
changes in forwarding devices. The experiment results show
that the incremental method is drastically faster than the static
parallel approach, with a factor up to about 450 times in some
cases!

Index Terms—Anomaly Definition, Anomaly Detection, Incre-
mental approach, Unmatched rules, Software Defined Network,
OpenFlow.

I. INTRODUCTION

The concept of SDN does not only enable the deployment
of dynamic network policies, but also enables dynamic logical
topology changes on the top of static network infrastructure.
OpenFlow protocol has been designed to facilitate the connec-
tion between the controller and forwarding devices. OpenFlow
rules have a timeout property that induces a time changing
behavior inside the flow tables. This dynamic behavior can
lead to several anomalies and unexpected network state. For in-
stance, if some rules in some forwarding devices in a network
get expired and removed from the flow tables automatically,
the route or even destination of one or many flows could be
changed. In addition, some high level policies such as dynamic
routing or load balancing can cause group of changes in part
of forwarding devices. On the top of that, intrusion detection
and prevention system (IDPS) might perform some changes
inside the part of forwarding devices as a response to possible
attacks or malicious activities. It is laborious to predict the
side effects of these sudden modifications. Static approaches

for anomaly verification are inefficient in these cases as they
require a total recheck of the whole policy. Various methods
have been presented to deal with misconfiguration challenges.
Some of the legacy offline approaches [1], [2], [3], [4] use
formal logic to analyze the network policy snapshot without
any inserting any probing packets. On the Other hand, different
studies such as NetPlumber[2], Monocole [5], Rulescope [6]
and VeriFlow[7] rather resort to packet probing and tracing.
The paper tries to use the formal detection solution [1] for
uncovering the possible anomalies after flow tables’ alterna-
tion. The proposed method works differently based on where
the policy updates have taken place, ingress switch or middle
switch. If the rule has been changed in the ingress switch,
the method tries to generate new queries while updating the
affected queries. Then, an anomaly detection method is applied
both on the new queries and on the affected ones. In the other
case that the policy updates take place in middle switches, the
queries remain unchanged while the detection method is called
for specific queries that match with the switches affected by
the policy update. Our approach is an incremental approach
as the previous network state is used for checking the current
network state. By using such an incremental approach, we
are able to improve the verification procedure speed that is
necessary in real-life SDN networks with a fair amount of
rule updates. Moreover, our incremental approach supports
parallelization. We catalogue the main contributions of this
paper as follows:

• The proposed method is able to check and detect the
possible inter and intra anomalies between flow tables’
rules during the flow table updates.

• The detection technique is an incremental procedure that
yields high performance and detection speed.

• The suggested process has the capability to run on
the separated processors for preventing the overhead
of process on the network operating system’s resources
(controller) and network performance;

• The detection method supports parallelization for check-
ing each path in each iteration.

• The formal process is able to use the anomaly detection
technique not only after one rule modification, but also
for multiple rule alternations in different switches.

The remainder of the paper is organized as follows. In



Section II, we provide a comprehensive overview over the
state-of-the-art. Section III discusses our formal anomalies def-
inition and detection. In Section IV, the incremental anomaly
detection is explained, and finally the evaluation results are
presented in Section V.

II. RELATED WORK

In recent years, a significant amount of research has ad-
dressed network policy conflict analysis. A notable work is
due to Kazemian et al. [2] who introduced Netplamber that is
a real-time network policy checking tool. It tries to check the
real-time network traffic in contrast to their previous method,
HSA [2]. The proposed method uses a fast formal language
to express policy checks for monitoring the real-time traffic.
NetPlumber is able to not only detect loops and other invariant
violations, but also check the certain node reachability from
the specific source node. However, Netplumber ignores intra-
rule dependencies. In addition, the both solutions are time-
consuming and unsuitable for the SDN networks with a high
rate of changes.

Aryan et al. [1] identify rules that never matched via a
comprehensive formal detection method. They introduce a set
of definitions for the intra-anomalies that might occur when
using the OpenFlow rule’s multi-action feature. Moreover, they
present new definitions of inter-anomalies between OpenFlow
switches reckoned as invalid and irrelevant anomalies. Their
method is an offline approach that can be also parallelized.

RuleScope [6] categorized the forwarding faults in Open-
Flow switches into missing faults and priority faults. Missing
fault refers to the failure that happens when a rule is not active
in the switch. Priority fault happens when the overlapping rules
violate the expected policies. It suggests not only a detection
method, but also a troubleshooting solution. The proposed
troubleshooting procedure generates customized probing pack-
ets one at a time. For increasing the solution’s performance,
Wen et al. use a dependency graph that is compatible with
parallel computation. Moreover, an incremental approach is
introduced for improving the algorithm’s speed.

Perešı́ni et al. [5] propose a method, which is called Mono-
col for detecting forwarding problems based on the hardware
or software failures. Monocol is designed as a transparent layer
between the controller and forwarding devices. It monitors
data plane’s rules and after inserting a new rule or rule
modification, Monocol tries to generate relevant probe packet
based on a Boolean satisfiability (SAT) algorithm and detects
possible failures. SAT process is an NP-hard problem. How-
ever, they try to suggest an optimum solution for decreasing
the computational cost to be practical for the dynamic changes
in flow tables.

Anteater [8] tackles the misconfiguration problem by formal
analysis. Anteater can check reachability, consistency of rules
and loops. The tool can detect bugs in routing configuration
file, which is called “Invisible Bugs” via a formal analysis
of data plane. The detection process works by collecting the
network devices’ Forwarding Information Bases (FIBs) and
detecting some typical failure by the Boolean functions.

FlowChecker [9] is a configuration verification tool that tries
to validate, analyze and enforce at the run-time OpenFlow end-
to-end configuration across multiple federations. FlowChecker
can detect conflicts in both intra-switch and inter-switch
scopes. By resorting to FlowChecker, FlowVisor [10] is able
to verify policy consistency, validate configuration correctness
in different switches and controllers across the specific SDN
network.

Al-Shaer et al. [11] proposed a novel method for model-
ing the end-to-end behavior of access control configuration,
including routers, IPsec, firewalls and NAT for Unicast and
multicast packets. They implement a tool that is called Config-
Checker based on the method. It tries to model the network
as a state machine that the packet header, packet location and
the policy represent the transitions in the sate machine.

FlowVisor is developed by Sherwood et al. [10] to apply
policy isolation in the target SDN network. It acts as a
transparent proxy between OpenFlow switches and controller.
FlowVisor tries to create several isolated segments of network
devices and control them by the logical controller. The tool
can generate segments based on the combination of packets’
addresses, packets’ protocols, forwarding devices and its ports
[12]. Son et al. [13] devised a formal approach to prove the
conformance of dynamically produced OpenFlow rules against
non-bypass security properties, including those with set and go
to table actions. They proposed a model checking system that
is called “FloVer.” It tries to verify that OpenFlow policies do
not lead to any security or integrity breaches in the network.

III. ANOMALY DETECTION

OpenFlow rules have an expiration time that causes changes
in the data plane behavior. In addition, existing network appli-
cations performing traditional functionality such as routing and
load balancing might exhibit adaptive behavior as a response
to changes in the network traffic pattern that leads to frequent
policy updates to the flow tables. Considering this dynamic
behavior and the large number of rules involved in a complex
network topology, the prediction of a policy update side effect
is necessary for hindering the emergence of misconfigurations.
Policy updates can be divided into two main groups. The first
group contains the flow tables of ingress switches that are
modified, while the second group contains the modified flow
tables of middle switches as depicted in Fig. 1.
Our legacy OpenFlow anomaly detection method presented

Fig. 1: Ingress Switch and Middle Switch in Network

in [1] suggests five steps: 1) generating queries, 2)detecting
unmatched rules, 3) detecting the irrelevant rules, 4) detecting



the intra-anomalies and 5) detecting the inter-anomalies. This
paper uses these steps and propounds an incremental detection
method. The suggested technique is used after each modifica-
tion, whether inside ingress or middle switches. In following
subsections, each detection step succeeding a policy updating
is explained in detail.

A. Query Regeneration

Generating queries is an important step for predicting all
possible routes of undertaken by the set of all possible
packets [1]. According to our approach, the queries might be
affected by the policies modification. Therefore, after each
update, the queries should be checked and regenerated if
necessary. In the following subsections, the query regeneration
procedures for the ingress and middle switches after modifi-
cation are explained.

1) Ingress Switches Modification:
Ingress switches have a main role in anomaly detection accord-
ing to our formalism found in [1]. The queries are generated
from the rules in ingress switches. Therefore, policy update
in these switches has a complicated side effect on network
policies, and the queries should be regenerated after modifi-
cations. However, generating the queries is a time-intensive
process. Our idea is to regenerate only the queries that are
affected by the new changes. We have two different query
regeneration processes for adding a new rule and removing a
rule from the flow table.

a) Inserting a New Rule: Since the queries are totally
disjointed [1], the queries, which are generated via rules with
higher priorities than the new rule are not affected. Hence, new
computation should be done for the new rule and the rules
with a lower priority. As an example, in Table I, a new rule is
added with priority 2. Thus rule 1 is not affected, and its query
will remain unchanged, while rules number 3 and 4 should be
considered for regenerating the queries. Our next optimization
idea consists of only regenerating the queries that have overlap
with the new rule. In Table I, rule 3 has no overlap with the
new rule (rule 2). Therefore, the query that is generated based
on rule 3 should be kept intact. However, rule 4 has overlap
with the new rule, and its query should be regenerated.

TABLE I: Modified Flow Table

Priority Src IP Dst Port Action
1 10.0.0.1 25,80 Port4
2 10.0.0.1 53 Port2
3 10.0.0.* 80 Port3
4 10.0.0.* 53,23 Drop

Query1 : Rule1
Query2 : Rule2 −Rule1
Query3 : Rule3 − (Rule1 ∪Rule2)

...

Queryn : Rulen −
(

n−1⋃
i=1

Rulei

) (1)

Finally, our third optimization idea is even in the case of
generating a new query, the new query can be shown to be

a subset of the old query and therefore it is not necessary
to redo all the computations. Queries are generated by the
Equation 1 [1]. For instance, Equation 2 shows the optimum
computation for the query 4. Query 2 should be generated
completely since it related to the new rule (rule 2), and queries
1 and 3 are kept as before since they are not affected by the
new rule.

Query2 : Rule2 −Rule1
Query4 : Rule4 −

(
Rule1 ∪Rule3 ∪Rule2

)
⇒ Rule4 ∩

(
Rule1 ∪Rule3 ∪Rule2

)′
⇒ Rule4 ∩

(
Rule

′
1 ∩Rule

′
3 ∩Rule

′
2

)
⇒
(
Rule4 ∩Rule

′
1

)
∩
(
Rule4 ∩Rule

′
3

)
∩
(
Rule4 ∩Rule

′
2

)
⇒ (Rule4 −Rule1) ∩ (Rule4 −Rule3)
∩
(
Rule4 −Rule2

)
(2)

As a conclusion, the query regeneration process for the Table I
can be represented as Equation 3. Please note that according
to Equation 3, Query new4 is a subset of Query4.

Query1 : not changed
Query new2 : Rule2 −Rule1
Query3 : not changed
Query new4 : Query4 ∩

(
Rule4 −Rule2

) (3)

b) Removing a Rule: Since queries are totally disjointed,
the queries, which are generated via rules with higher priorities
than the removed rule are not affected. Hence, new computa-
tion should be performed for the removed rule and the rules
with a lower priority. As an example, in Table I, if rule 2
is removed from flow table, rule 1 is not affected, and its
query will be unchanged. Rules number 3 and 4 should be
checked for regenerating the queries. According to the next
optimization idea, the query regeneration process should try
to regenerate the queries that have overlap with the new rule
and not the queries that are totally disjointed with the new
rule. In Table I, rule 3 has no overlap with the removed rule
(rule 2). Therefore, the query that is made based on the rule
3 should not be regenerated. However, rule 4 has overlap
with the removed rule, and its query should be regenerated.
The last proposed optimization is applied in the regeneration
algorithm. Queries are generated by the Equation 1. For the
queries that should be regenerated, we can save computation
by just subtracting the removed rules from the old queries.
For instance, Equation 4 shows an optimized computation for
query 4. Query 2 should be removed completely, and queries 1
and 3 are kept intact since they are not affected by the removed
rule.

Query2 : removed

Query new4 :
(
(Rule4 −Rule1) ∩ (Rule4 −Rule2)

∩ (Rule4 −Rule3)
)

∪
(
Rule4 ∩Rule2

)
⇒ Query4 ∪

(
Rule4 ∩Rule2

)
(4)



The query regeneration process for the Table I can be
summarized by Equation 5.

Query1 : not changed
Query2 : removed
Query3 : not changed
Query new4 : Query4 ∪

(
Rule4 ∩Rule2

) (5)

2) Middle Switches Modification:
In the case of modification in the middle switches, the queries
that generated based on the ingress switches are not affected,
and thus should not be regenerated. Therefore, this case is less
complex than the case of policy update in ingress switches.

B. Unmatched Rule Detection

Inserting new rules or removing the existing rules may cause
new unmatched rules or lead to remove some rules from the
unmatched list. Hence, after updating the queries, the predict-
ing function should be applied again to predict all possible
routes for all queries. This is a general process, whether the
rule updates are happened in the ingress or middle switches.
Accordingly, “Tracing Function” and “Transfer Function” are
used that are explained in detail as follows.

1) Tracing Function:
Tracing function “T”, defines a recursive tracing process from
a specific node via a single packet. In each iteration, the
function detects which rule matches the input packet and
detects the next hop consequently. Equation 6 represents a
formal expression of the tracing function.

T (X, q) :



T (Aix , q) if ∃Cix , Aix , Cix , Aix ∈ X[(
(Cix ∧ q)⇔ Aix

)
∧
[
@C

′
jx .C

′
jx ∈ X

[
(C

′
jx ∧ q) ∧ (C

′
jx 6= Cix) ∧ (j > i)

] ]]
Ax ifAx = Client or Drop

(6)

X denotes a node, which is a set of rules, X :
{R1x , R2x , · · ·}. Each rule contains a matching condition C
and an action A, which refers to a next hop in the form of
Rix : (Cix , Aix). The matching condition C includes the
ingress port and packet’s header properties such as source
IP, destination IP and destination port. q denotes a query
representing a packet. The function T returns the next node
as a result. The recursive process is terminated whenever the
next node is a client or when the drop action is met. Therefore,
via the tracing function, we can predict the destination of the
input query. i and j are used to denote the rule’s order in the
flow table.

2) Transfer Function:
Transfer Function TA→B(Q), propounds the packets’ trans-
mission process from node A to node B via a precise input
query (Q). According to this model, the input query is checked
sequentially against the higher priority rules. The unmatched
part of input is checked further with the next rules. Equation 7
shows the formal definition of transfer function, and as it
expresses, transfer function is based on the tracing function.

TA→B(Q) : ∀q ∈ Q.T (A, q) = B (7)

Therefore, if transfer function called for all the queries that
are generated based on the ingress switches’ flow tables, then
the unmatched rules will be found. In the next steps, it will
be found out which type of anomaly leads to one rule never
be matched with any packets.

C. Irrelevant Anomaly Detection

If the unmatched rule does not match with any subset of the
specific queries, it is considered as an invalid rule in the flow
table. This type of anomaly usually occurs when a network
administrator updates the network policy and forgets to remove
part of the old rules from the same flow tables.This anomaly
is defined formally in Equation 8.

∀q ∈ Q

[
∃r ∈ R

[
¬ (q ∧ Cr)

]
⇔ invalid(r)

]
(8)

D. Intra-Anomaly Detection

An intra-anomaly takes place between rules of a switch’s
flow tables. According to the [4] and [3], Ramtin et al. [1]
suggest a formal specification for the OpenFlow rules’ intra-
anomalies that supports multi-action rule’s format. These intra-
anomalies are categorized in seven groups that are described
as follows.

1) Shadow Anomaly:
If rule Rj matches all the packets that match rule Ri,
Ripriority < Rjpriority and the two rules have different actions,
Ri is shadowed by previous rule Rj . Formally, rule Ri is
shadowed by rule Rj if the following condition holds:

Ripriority < Rjpriority

Ri : (Ci, Ai) , Rj : (Cj , Aj)
∃Ri, Rj ∈ FlowTable (Ci ⇒ Cj) ∧ (Ai ⊕Aj)

(9)

As per Equation 9, rule Ri is shadowed by the rule Rj for
the group of actions that are true in (Ai ⊕Aj).

2) Correlation Anomaly:
Two rules in a flow table are correlated if they have different
actions, and the first rule matches some packets that match the
second rule and also the second rule matches some packets
that match the first rule. Formally, rule Ri and Rj have a
correlation anomaly if the following condition holds:

Ripriority < Rjpriority

Ri : (Ci, Ai) , Rj : (Cj , Aj)
∃Ri, Rj ∈ FlowTable[

¬ (Ci ⇒ Cj) ∧ ¬ (Cj ⇒ Ci) ∧ (Ci ∧ Cj)
]

∧ (Ai ⊕Aj)

(10)

As described by Equation 10, rule Ri and rule Rj have
correlation for the group of actions that are true in (Ai ⊕Aj).



3) Generalization Anomaly:
Rule Rj is a generalization of a preceding Rule Ri if they
have different actions, Ripriority < Rjpriority and if the rule
Ri can match all the packets that match the rule Rj . Formally,
rule Ri is generalization of rule Rj if the following condition
holds:

Ripriority < Rjpriority

Ri : (Ci, Ai) , Rj : (Cj , Aj)
∃Ri, Rj ∈ FlowTable (Cj ⇒ Ci) ∧ (Ai ⊕Aj)

(11)

According to Equation 11, rule Ri and rule Rj have gener-
alization for the group of actions that are true in (Ai ⊕Aj).

4) Redundant Anomaly:
Rule Ri is redundant to Rule Rj if they have same actions,
and if the rule Rj can match all the packets that match the rule
Ri. Formally, rule Ri is redundant to rule Rj if the following
condition holds:

Ri : (Ci, Ai) , Rj : (Cj , Aj)

∃Ri, Rj ∈ FlowTable
[
(Ci ⇒ Cj) ∨ (Cj ⇒ Ci)

]
∧ (Ai ∧Aj)

(12)

As described by Equation 12, rule Ri and rule Rj have
redundancy for the group of actions that are true in (Ai ∧Aj).

5) Total Shadow Anomaly:
Rule Ri is totally shadowed by a set of previous rules if the
previous rules match all the packets that match the rule Ri,
and the rule Ri has different action from the previous rules.
Formally, rule Ri is totally shadowed by rules {R1 · · ·Rk} if
the following condition holds:

Ripriority < R1priority , · · · , Rkpriority

Ri : (Ci, Ai)R1 : (C1, A1) , · · ·Rk : (Ck, Ak)

∃Ri, R1, · · · , Rk ∈ FlowTable

(
Ci ⇒

(
k∨

n=1

Cn

))
∧
((

k∨
n=1

Ak

)
⊕Ai

) (13)

According to the Equation 13, rule Ri and rules in the set:
{R1 · · ·Rk} have total shadow for the group of actions that

are true in ((
k∨

n=1
Ak)⊕Ai).

6) Total Redundant Anomaly:
Rule Ri is a total redundant of a set of rules if the set of rules
match all the packets that match the rule Ri, and the rule Ri

and the set of rules have the same action. Formally, rule Ri is
a total redundant of a set of rules {R1 · · ·Rk} if the following
condition holds:

Ripriority < R1priority , · · · , Rkpriority

Ri : (Ci, Ai) , R1 : (C1, A1) , · · ·Rk : (Ck, Ak)

∃Ri, R1, · · · , Rk ∈ FlowTable

(
Ci ⇒

(
k∨

n=1

Cn

))
∧
((

k∨
n=1

Ak

)
∧Ai

) (14)

As per Equation 14, rule Ri and rules in the set: {R1 · · ·Rk}
have total redundancy for the group of actions that are true in

((
k∨

n=1
Ak) ∧Ai).

7) Total Generalization Anomaly:
Rule Ri is a total generalization of a set of further rules if the
rules match all the packets that match the rule Ri , and the
rule Ri has different action from the rules. Formally, rule Ri

is a total generalization of a set of rules {R1 · · ·Rk} if the
following condition holds:

Ripriority > R1priority , · · · , Rkpriority

Ri : (Ci, Ai) , R1 : (C1, A1) , · · ·Rk : (Ck, Ak)

∃Ri, R1, · · · , Rk ∈ FlowTable

((
k∨

n=1

Cn

)
⇒ Ci

)
∧
((

k∨
n=1

Ak

)
⊕Ai

) (15)

As described by Equation 15, rule Ri and rules in the set:
{R1 · · ·Rk} have total generalization for the group of actions

that are true in ((
k∨

n=1
Ak)⊕Ai).

The intra-anomaly detection procedure is applied after the
invalid rules detaching. Then, each remained unmatched rule
will be checked with the other rules in the same flow tables
to find the possible intra-anomalies, whether single or total
anomalies.

E. Inter-Anomaly Detection

An inter-anomaly occurs between policies of two different
switches. It is assumed that the flow tables in this step, do not
have any intra-anomalies. Al-Shaer and Hamed [14] categorize
the inter-anomalies in four groups. In contrast to [14], Ramtin
et al. [1] define four types of inter-anomalies for OpenFlow
based rules that are the root cause of unmatched rules. They
are defined as follows.

1) Subset Rule Anomaly:
A subset rule anomaly occurs if all packets that can be matched
with the unmatched rule in a downstream hop, matches with
an upstream hop’s rule. Formally, rule Ri has a subset rule
anomaly with rule Rj if the following conditions hold true:

Ri : (Ci, Ai) , Rj : (Cj , Aj)
∃Ri ∈ SWi, Rj ∈ SWj Upstream (SWj)
∧ (Ci ⇒ Cj) ∧ ¬ϕ (SWj , SWi, Ci)

(16)

In Equations 16-18, Upstream() represents a predicate that
returns true if the input hop is an upstream hop. ϕ is regarded
as a predicate that checkes the reachability of switchj from
switchi by a specific query [1].

a) Superset Rule Anomaly: A superset rule anomaly
occurs if all packets that matched with an upstream hop’s rule,
can be matched by an unmatched rule in a downstream hop.
Formally, rule Ri has a superset rule anomaly with rule Rj if
the following condition holds:

Ri : (Ci, Ai) , Rj : (Cj , Aj)
∃Ri ∈ SWi, Rj ∈ SWj Upstream (SWj)
∧ (Cj ⇒ Ci) ∧ ¬ϕ (SWj , SWi, Cj)

(17)



2) Partial Rule Anomaly:
A partial rule anomaly occurs if just parts of packets, that can
be matched with an unmatched rule in a downstream hop, are
matched by an upstream hop’s rule. Formally, rule Ri has a
superset rule anomaly with rule Rj if the following condition
holds:

Ri : (Ci, Ai) , Rj : (Cj , Aj)
∃Ri ∈ SWi, Rj ∈ SWj Upstream (SWj)
∧¬ (Ci ⇒ Cj) ∧ ¬ (Cj ⇒ Ci) ∧ (Ci ∧ Cj)

∧¬ϕ (SWj , SWi, (Ci ∧ Cj))

(18)

3) Irrelevant Rule Anomaly:
The irrelevant rule anomaly occurs if all packets that can be
matched with the unmatched rule are matched by different
rules, and the paths for each packet are expected by the net-
work administrator. Formally, rule Ri known as an irrelevant
rule if the following condition holds:

Ri : (Ci, Ai) , Rj : (Cj , Aj)

∀sw ∈ ingress,

[
∃rule ∈ R

[
@packets, (packets ∧ Crule)

∧
(
T (sw, packet) /∈ Ex Path

)]
⇔ irrelevant (rule)

]
(19)

Ingress represents a set of all ingress switches in the
network. R is regarded as a set of all unmatched rules.
Crule means rule’s condition. Ex Path refers to a set of
expected paths that are defined by the network administrator.
T () represents the transform function that is described in
Equation 6. Finally, irrelevant() denotes a predicate that
returns true if the input is an irrelevant rule.
According to the detection algorithm [1], for each unmatched
rule, all paths from all ingress switches are calculated by
the transfer function. Then, each path is compared with the
expected path, which is specified by the network administrator.
If both paths are the same, then no inter-anomaly is reported.
Whenever the paths are different, the inter-anomaly detection
method will be called to check the type of anomaly.

IV. INCREMENTAL ANOMALY DETECTION

As explained in Section III, the anomaly detection process
is time-intensive. It is quite clear that running the detection
method from scratch after each policy modification is not an
effective solution. Thus, an incremental approach has been
adopted to avoid the redundant process when it comes to
the unchanged queries. The detection process for a group of
policies’ updates in a specific time window is called “one
iteration.” The length of time window can be defined based
on the network’s behavior and the rate of policies update. A
short time window for networks with a high rate of policy’s
replacement can improve the performance. However, a short
window for low rate of changes might have a negative effect
due to the process overhead. In the incremental approach,
results of previous step are used for the unchanged part of
the network’s policies in the next iteration. The incremental
design is divided into two routines for two types of policy’s

alternation. The first detection routine is used for anomaly
detection after the policy update in ingress switches. The
second routine is an incremental solution for rule updating in
the middle switches that checks for the eventual anomalies that
might occur after the updates. These approaches are described
in detail as follows.

A. incremental Anomaly Detection in Ingress Switches

Subsequent to regenerating the affected queries, the
anomaly detection method should be used for uncovering
the unwanted side effects after the policy’s modification in
ingress switches. However, running the detection methods is
computationally heavy. On that account, the detection phase
after policy modification in the ingress switches should be
optimized. Therefore, the routing prediction algorithm is used
just for the new queries. The result will be merged with the
result of unchanged queries in the previous iteration, and
a new unmatched rule list will be generated. Finally, the
anomaly detection method, which is explained in Section III is
used for detecting possible anomalies. Algorithm 1 shows the
incremental query regenerating and Algorithm 2 describes the
incremental probing technique after a policy update in ingress
switch.

Algorithm 1: Incremental Query Regeneration
Output: NewQueryList

1 foreach newRule do
2 newQuery ← generateQuery(newRule);
3 QueryList.insert(newQuery, newRule.Index);
4 foreach Index > newRule.Index do
5 QueryList[Index]←

QueryList[Index] ∩ (RuleList[Index]− newRule);
6 end
7 end
8 foreach removedRule do
9 foreach Index > removedRule.Index do

10 QueryList[Index]←
QueryList[Index]∪(RuleList[Index]∩removedRule);

11 end
12 QueryList.remove(removedRule.Index);
13 end

B. incremental Anomaly Detection in Middle Switches

After policy’s updates in the middle switches, the anomaly
detection method should be applied, and as mentioned pre-
viously this process in time-intensive. For the sake of per-
formance, only the queries that are related to the affected
switches, are checked again. These queries can be processed
from the ingress switches; however, this process might be
time-consuming. In order to achieve a further performance
gain, the Tracing function [1] is applied from the modified
switch instead of the ingress switch. At the end, the new
result of the Transfer function will be merged with the
results of unchanged queries from the preceding iteration.
By means of merging process, the new unmatched rule list
will be generated. The new unmatched rules are checked
by the anomaly detection method. Algorithm 3 presents an
incremental algorithm for flow tables in middle switches after
the rule update.



Algorithm 2: Incremental Anomaly Detection in Ingress
Switch

Input: expath : administrator expected path
Output: report the rules and anomalies

1 unmatched rulelist← Ø;
2 foreach ingress switch in ingress switches do
3 foreach update in ingress switch do
4 new queries← query regeneration();
5 foreach query in new queries do
6 hops, routes←

Tracing Function(ingress switch, query);
7 unmatched rulelist←

Update UnmatchedRules(unmatched rulelist,
hops, routes);

8 Find InvalidRules(query, unmatched rulelist);
9 Find IntraAnomaly(unmatched rulelist);

10 Find InterAnomaly(routes, expath,
unmatched rulelist);

11 end
12 end
13 end

Algorithm 3: Incremental Anomaly Detection in Middle
Switch

Input: expath : administrator expected path
paths : routes before updates

Output: report the rules and anomalies
1 unmatched rulelist← Ø;
2 foreach update in middle switch do
3 foreach hop in updated hops do
4 queries← get queries passfrom(hop, paths);
5 foreach query in queries do
6 hops, routes← Tracing Function(hop, query);
7 unmatched rulelist←

Update UnmatchedRules(unmatched rulelist,
hops, routes);

8 Find InvalidRules(query, unmatched rulelist);
9 Find IntraAnomaly(unmatched rulelist);

10 Find InterAnomaly(routes, expath,
unmatched rulelist);

11 end
12 end
13 end

V. EVALUATION

In this section, we evaluate the performance and efficiency
of the proposed method. The main purpose of devised method
is to speed-up the anomaly detection process. Therefore,
we will compare the execution time between of the static
parallel and incremental approach. The algorithm is imple-
mented in C++. The experiments run on the server with
48 Intel(R) Xeon(R) CPU 2.30GHz. In order to generate
realistic OpenFlow rules, we use the Class Bench [15] tool.
Each rule contains five main fields that include, Ingress Port,
Source IP, Destination IP, Destination Port and Action. The
method is evaluated with five datasets with seven middle-
boxes. The middle-boxes in our datasets contain 500, 1000,
2000, 5000 and 10000 rules respectively. The experiment
has three main phases, Query Generation, Probing Process,
Anomaly Detection. The algorithm is run 30 times for each
distinctive dataset. We report the average execution time with
the confidence interval 95%. The results are represented in
following subsections.

A. Query Generation Evaluation

According to the [1], the most time-intensive part of the
algorithm is Query Generating. Algorithm 1 presents an in-
cremental approach for increasing the execution speed. The
execution time for different number of rules is shown in
Table II. The Fig. 3(a) shows the comparison between the

TABLE II: Query Regenerating Executing Time

Number of Rule Execution Time (ms) Average CI 95%
500 54.73 14.12

1,000 111.36 28.26
2,000 400.36 109.73
5,000 597.34 161.71
10,000 1,182.31 322.61

execution time of static parallel query generation and incre-
mental approach for regenerating queries after inserting a new
rule.

B. Probing Evaluation

In compliance with the Algorithm 2 and 3, the probing
process should be run for each regenerated query and the
modified one. On the other hand, if the new rule is added to
the middle switch, the queries that pass through the updated
switch should be checked again by the probing process. We
choose some specific queries that yields the worse case where
we guarantee that all switches of the topology in Fig. 2 will
be checked by the algorithm. The execution time for different
number of rules is shown in Table III.

TABLE III: incremental Probing Executing Time

Number of Rule Execution Time (ms) Average CI 95%
3500 0.043 0.0068
7,000 0.045 0.0045
14,000 0.058 0.0056
35,000 0.062 0.0039
70,000 0.061 0.0038

Fig. 2: Test Topology

The Fig. 3(b) shows the comparison between the execution
time of static parallel probing process for 23 distinct queries
and incremental probing approach after inserting a new rule.

C. Anomaly Detection Evaluation

The correctness of the Anomaly Detection algorithm is
confirmed based on our generalized formalism reported in [1].
In order to assess the accuracy of our algorithm in terms of
false positive and false negative, we test the algorithm with
the twelve group of marked rules where each one of them
represents a specific type of anomaly. As expected, there is no
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For Simultaneous Changes

(e) Incremental Probing Ex-
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neous Changes

Fig. 3: Experiment Results

false negative or false positive in the implementation’s output.
Please note that the fact that our algorithm does not results
into false positives or false negatives can be easily proven
formally. The proof is omitted for the sake of brevity. The
performance of the anomaly detection algorithm is evaluated
by checking the eventual anomalies when inserting a new rule
in flow tables with varying rule size. The superset, subset
and partial anomaly detection process are the same as for
the cases of simple generalization, simple shadow and simple
correlation anomaly detection respectively. The experiment’s
results are presented in Fig. 3(c). Moreover, invalid and irrel-
evant anomaly detection procedures use the query generation
and probing processes, which are presented in the previous
subsections.

D. Simultaneous Changes

As mentioned in Section IV, the incremental algorithm is
called for each specific time window. So, all rules’ modifica-
tions that take place during the time window are considered as
simultaneous changes. The window length might have a direct
effect on the algorithm performance. The main parameter for
defining the length of the time window is the number of
modifications. Therefore, for evaluating the algorithm perfor-
mance in different time windows, we design experiments with
a different number of simultaneous changes. The results are
presented in Fig. 3(d) and Fig. 3(e).

VI. CONCLUSION

SDN rules are usually updated continuously causing possi-
ble misconfiguration errors. Although several anomaly detec-
tion approaches exist in the literature, most of them are static
and does not handle the case of frequent policy updates. In
this paper, we propose a comprehensive incremental method
to detect all potential anomalies subsequent to an update in the
data plane. The incremental approach helps us to significantly
improve the detection speed, which is very important for
having an appropriate response to the frequent policy updates
in SDN networks. The experiment results are very promising
and show that this method can be used as an advisor to assist
network administrators in order to maintain an anomaly free
state. As a future work, we would like to develop a policy
revise that can be used as a part of a real-time network
troubleshooting toolbox.
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