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Abstract The Himalayan-Tibetan Plateau (HTP), often known as the “Third Pole” and 40 

the “Asian Water Tower”, is the source of water resources for many Asian rivers and 41 

in turn for hundreds of millions of people living downstream. The HTP has direct 42 

impacts on the establishment and maintenance of Asian monsoon, and therefore on the 43 

climate of its surrounding areas. Besides, soil moisture plays a critical role in the 44 

hydrological cycle and is a critical link between land surface and atmosphere. Hence, 45 

soil moisture was greatly emphasized by Global Climate Observing System Programme 46 

as an Essential Climate Variable. However, little is known about soil moisture changes 47 
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on the HTP from a long-term perspective. By comparing remotely sensed and modelled 48 

soil moisture datasets against in-situ observations from 100 observation stations, here 49 

we find that Noah performed better than other soil moisture datasets. In past years, soil 50 

moisture first decreased and then increased obviously. In most regions on HTP, 51 

precipitation changes can be taken as the major cause behind soil moisture variations. 52 

In future, there is persistently decreasing soil moisture trend since ~2010 with a 53 

decreasing rate of -0.044 kg/m2/10a, -0.031 kg/m2/10a and -0.0p 88 kg/m2/10a under 54 

RCP2.6, RCP4.5 and RCP8.5 scenarios, respectively, in CMIP5 (Coupled Model 55 

Intercomparision Project Phase 5). Specifically, a sudden decrease of soil moisture with 56 

a rate of -0.372 kg/m2/10a can be expected after ~2080 under RCP8.5 scenario. 57 

Amplifying terrestrial aridity due to increasing precipitation but more significant 58 

increasing potential evapotranspiration potentially results in drying HTP. Potential 59 

water deficiency for Asian rivers due to drying HTP should arouse considerable 60 

concerns. 61 

Key words: Soil moisture; Historical observations; CMIP5 data; Himalayan-Tibetan 62 

Plateau 63 

 64 

1. Introduction 65 

Soil moisture is a pivotal link between the land surface and atmosphere mainly through 66 

hydrothermal exchange (Albergel et al., 2013; Wanders et al., 2014; Zeng et al., 2015), 67 

and plays a critical role in the hydrological cycle (Wanders et al., 2014), shifting of 68 

vegetation species (Rous et al., 2013), and change in microbial activity, and 69 

modification of warming-induced soil C losses (Crowther et al., 2016). Soil moisture is 70 

also a state variable controlling the land surface energy partition, surface runoff, soil 71 
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drainage, and soil-freeze-thaw status (Seneviratne et al., 2010; Yang et al., 2013; Zhang 72 

et al., 2015), as well as for numerical weather prediction and climate projections 73 

(Albergel et al., 2013). Therefore, soil moisture was taken seriously by the Global 74 

Climate Observing System (GCOS) Programme that recognized it as an Essential 75 

Climate Variable (ECV) (Albergel et al., 2013). 76 

The HTP, known as the Third Pole and “the roof of the world,” has an average 77 

elevation of over 4000 m above sea level (Yang et al., 2013; Zhang et al., 2013; Bai et 78 

al., 2016). The HTP is also known as the “Asian Water Tower”, because it is the source 79 

of many major Asian rivers, such as Brahmaputra (Yaluzangbu), Salween (Nu), 80 

Mekong (Lancang), Yellow, and Yangtze rivers (Zhang et al., 2013; Immerzeel et al., 81 

2009), and these rivers supply water for hundreds of millions of people living 82 

downstream (Zhang et al., 2013). Therefore, it is important to understand soil moisture 83 

changes from a long-term perspective on the HTP, which is most sensitive to global 84 

changes, and enhance our knowledge of the land-atmosphere interactions and potential 85 

impacts on the climate of East and Southeast Asia (Hsu and Liu, 2003; Zeng et al., 2015) 86 

exhibited by shifting soil thermal regime and soil thermal conductivity (Subin et al., 87 

2013). However, little is known about the future trend of soil moisture on the HTP and 88 

related main drivers, with the exception of some investigations on soil moisture changes 89 

derived from remotely sensed dataset and observation network (Su et al., 2011; Yang 90 

et al., 2013; Zeng et al., 2015). 91 

Due to the importance of soil moisture changes and also the role that soil moisture 92 

changes have in shifting impacts of HTP on surrounding climate, there are many 93 
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researches addressing evaluations of reanalysis and remote sensing soil moisture data 94 

on HTP. Based on soil moisture and temperature datasets collected from a monitoring 95 

network consisting of 55 stations in the central HTP, Chen et al. (2013) evaluated four 96 

soil moisture products retrieved from the Advanced Microwave Scanning Radiometer-97 

Earth Observing System (AMSR-E) and four land surface modelling products from the 98 

Global Land Data Assimilation System (GLDAS) using the station-averaged surface 99 

SM (soil moisture) data from the network and found that these four GLDAS models 100 

tended to systematically underestimate the surface SM. Comparison was done by Su et 101 

al. (2011) for three remote sensing retrievals, i.e. AMSR-E, ASCAT-L2, and SMOS, 102 

against the soil moisture datasets from the Tibet-Obs network (the Tibetan Plateau 103 

observation of plateau scale soil moisture and soil temperature) and results indicated 104 

that different soil moisture datasets had markedly different performances in different 105 

climate regions. Besides, Su et al. (2013), based on two regional SM and soil 106 

temperature networks (i.e., Naqu and Maqu) on the HTP, conducted SM analysis using 107 

the European Centre for Medium-Range Weather Forecasts (ECMWF) previous 108 

optimum interpolation scheme and the current point-wise extended Kalman filter 109 

scheme, and concluded that this method improved accuracy of the estimated SM. Zeng 110 

et al. (2015) analyzed in-situ SM measurements from three networks which represented 111 

different climatic and vegetation conditions over the HTP with aim to evaluate seven 112 

remotel sensed SM products (AMSR-E, AMSR2, SMOS, ECV) and one reanalysis SM 113 

product (ERA-Interim) during 2002-2012 and pointed out that in general ECV and 114 

ERA-Interim outperformed the other datasets. Bi et al. (2016) evaluated the SM 115 
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simulated from four land surface models (LSM) (Mosaic, Noah, Community Land 116 

Model, and Variable Infiltration Capacity) in GLDAS-1 and the more recent GLDAS-117 

2 against in-situ SM measurements collected from two SM networks located on the 118 

HTP at different soil depths and found that Noah estimated the soil moisture with less 119 

bias.  120 

It should be underlined that above-mentioned researches have done some 121 

evaluations on different remotely sensed and/or reanalysis assimilation soil moisture 122 

data against in-situ soil moisture measurements from one, two and/or even three soil 123 

moisture networks on the HTP (e.g. Dente et al., 2012). And owing to different in-situ 124 

soil moisture datasets utilized to evaluate reanalysis and/or remotely sensed soil 125 

moisture data, different evaluation results can be expected. Besides, variations of soil 126 

moisture in both space and time and related causes were not quantified. Meanwhile, 127 

another important scientific issue is that what tendencies of soil moisture are in the 128 

future under different climatic scenarios. Scientific answer of this issue is of great 129 

theoretical and scientific significance in terms of variability and availability evaluations 130 

of soil moisture mass under different climatic scenarios. Therefore, shifts of 131 

hydrothermal properties of HTP due to different soil moisture changes under different 132 

climatic scenarios and related impacts of HTP on its surrounding climate can be well 133 

understood. Therefore, the objectives of this study are: (1) to evaluate reanalysis and 134 

remotely sensed soil moisture data against in-situ soil moisture observations based on 135 

all available soil moisture data from three soil moisture observation networks; (2) to 136 

quantify different causes behind SM variations with respect to precipitation, 137 
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temperature, and so on; and (3) to quantify changing tendencies of soil moisture during 138 

decades to come. This study can help to bridge the knowledge gap between soil 139 

moisture data evaluation of last decades and changing tendencies during decades to 140 

come under different climatic scenarios. 141 

 142 

2. Data 143 

2.1 Observed SM 144 

These two sets of measured SM datasets, Tibet-Obs, and CTP-SMTMN (a 145 

multiscale SM and Temperature Monitoring Network on the central Tibet Plateau) were 146 

utilized in this study as “true” SM to verify the estimated SM (Table S1). (1) Tibet-Obs 147 

covers 43 measuring stations in three regional scale in-situ reference networks (Fig. 1; 148 

Table 1), including 18 sites in the cold arid Ngari network, 5 sites in the cold semiarid 149 

Naqu network and 20 sites in the cold humid Maqu network in total. The measuring 150 

probes were installed at different depths for different soil layers in these three networks. 151 

And in Ngari and Maqu networks, the probes were placed at the depth of 5 cm for the 152 

upper soil moisture which means they can measure 0-10 cm SM, however, 0-5 cm for 153 

the upper layer of SM in the Naqu network. These networks provide a representative 154 

coverage of the different climate and land surface hydrometeorological conditions on 155 

the HTP (Su et al., 2011). (2) CTP-SMTMN lies around Naqu in a cold semiarid climate 156 

with an average elevation of over 4500m above mean sea level (a.m.s.l), and it 157 

comprises 57 measuring sites. At each site, one probe was installed obliquely into 0-5 158 

cm topsoil, but other three were inserted horizontally at the depths of 10 cm, 20 cm, 159 
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and 40 cm depths (Chen et al., 2013; Yang et al., 2013). As for the Naqu network, the 160 

depth of the SM measurement is consistent for other two different datasets. 161 

 162 

2.2 Reanalysis and remotely sensed soil moisture data 163 

The ECV soil moisture product is the first purely multi-decadal satellite-based soil 164 

moisture product covering a period of November 1978 to December 2013. It is a daily 165 

data with a spatial resolution of 0.25° which was developed as part of Water Cycle 166 

Multimission Observation Strategy (WACMOS) and Soil Moisture Climate Change 167 

Initiative (CCI) projects by the European Space Agency (ESA) (Liu et al., 2011; Liu et 168 

al., 2012; Gruber et al., 2017). The ECV soil moisture product was merged by the 169 

passive remotely sensed datasets covering the Scanning Multichannel Microwave 170 

Radiometer onboard Nimbus-7, the Special Sensor Microwave Imager of the Defense 171 

Meteorological Satellite Program, the Tropical Rainfall Measuring Mission Microwave 172 

Imager, the AMSR-E onboard the Aqua satellite, the WindSat satellite, and the AMSR2 173 

boarded on the GCOM-W1 satellite, and the active datasets covering the scatterometers 174 

onboard the European Remote Sensing satellites and the ASCAT onboard the MetOp-175 

A satellite. This set of SM just comprises C-band satellite SM data which, in general, 176 

represents SM content of the top shallow 0-2 cm surface soil layer. 177 

ERA-Interim is the latest global atmospheric reanalysis product produced by the 178 

European Centre for Medium Range Weather Forecasts (ECMWF) covering the period 179 

from1 January 1979 to present, continuously updated in real time (Dee et al., 2011). A 180 

fixed version of NWP (numerical weather prediction) system, which assured that no 181 
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spurious trends were introduced, was utilized to produce this data. Meanwhile, this 182 

system merged or assimilated observations with a foregoing forecast to obtain the best 183 

fit. SM is available every 6 hours (0, 6, 12, 18 UTC) with four soil layers (0-7, 7-28, 184 

28-100, 100-289 cm) (Zeng et al., 2015). The ERA-Interim daily averaged SM on the 185 

upper layer with a 0.25°×0.25° scale was employed for the evaluation. MERRA (the 186 

Modern-Era Retrospective analysis for Research and Application, Version 2) is a re-187 

analysis dataset that combines in-situ and remotely sensed observations of atmospheric 188 

conditions, radiance data from sounders, and wind retrievals from scatterometers 189 

beginning from 1980 which replaces the original MERRA dataset owing to the 190 

processes in the assimilation system with an updated version of GEOS (the Goddard 191 

Earth Observing System) model (Rienecker et al., 2011). MERRA is the first global 192 

reanalysis dataset with long-term space-based observations of aerosols and interactions 193 

with other physical processes in the land-atmosphere system. The MERRA-L dataset is 194 

a land-only analysis with meteorological forcing from MERRA model and more 195 

realistic precipitation forcing. Here, the hourly upper layer (0-2 cm) SM data was 196 

employed which was produced on a 0.625°×0.5° resolution and then resampled to 197 

0.25°×0.25° so as to keep all datasets consistent by the inverse distance weight 198 

interpolation technique. 199 

The Global Land Data Assimilation System (GLDAS) is developed to produce 200 

optimal evaluations of land surface states and fluxes by integrating satellite- and station-201 

based observational data products and data assimilation techniques into land surface 202 

models (Rodell et al., 2004). GLDAS data can be available at the website of GES DISC 203 
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(the Goddard Earth Sciences Data and Information Services Center, 204 

http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings). In this current study, two Noah 205 

datasets were used owing to different time intervals of these two datasets, that is, V2.0 206 

(1948-2010), and V2.1 (2000-2017). The time interval the observed soil moisture 207 

covering is during 2008-2013. Therefore, Noah V2.0 and Noah V2.1 were both used. 208 

To verify this feasibility of this analysis, cross verification was done and Noah V2.0 209 

dataset was used to analyze historical changes of soil moisture. 210 

2.3. Climate variables 211 

The China Meteorological Forcing Dataset is a set of near-surface meteorological 212 

and environmental reanalysis data sets developed by the Institute of Tibetan Plateau, 213 

Chinese Academy of Sciences (Table S2). This dataset covers the period of 1979-2010 214 

and were produced by merging multisource datasets, including Princeton forcing data, 215 

GLDAS data, GEWEX-SRB radiation data, TRMM satellite precipitation data and 216 

China Meteorological Administration (CMA). This dataset of version 1.0 currently was 217 

completed and publicly available with a temporal resolution of 3 hours and a horizontal 218 

spatial resolution of 0.1°×0.1°, consisting of a total of seven variables, that is, air 219 

temperature, pressure, air specific humidity, wind, surface downward shortwave 220 

radiation (SDSR), surface downward longwave radiation, precipitation (Yang et al., 221 

2010). 222 

 223 

2.4. Climatological model data in CMIP5 224 

At a worldwide meeting in September 2008, the WCRP’s Working Group on 225 
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Coupled Modeling (WGCM) invited 20 climate simulation organizations around the 226 

world and promoted a new set of coordinated climate experiments. These experiments 227 

consisted of the fifth phase of the Coupled Model Intercomparison Project (CMIP5). 228 

CMIP5 will provide a multi-model context for: 1) exploring the mechanisms of model 229 

differences in poorly understood feedbacks with the carbon cycle and clouds; 2) 230 

studying climate predictability on decadal time scales; and 3) investigating why 231 

similarly forced models lead to notably different responses. The CMIP is a standard 232 

framework for studying the output of coupled land-atmosphere-ocean general 233 

circulation models (GCM). In this study, we used 26 GCMs output of CMIP5 with 234 

surface SM and 41 models with climate variables, such as, precipitation and 235 

temperature, which are listed in detail in Tables S3 and S4, respectively. And 41 GCMs 236 

with precipitation, max temperature, min temperature, relative humidity and wind speed 237 

were employed to explore the potential causes behind SM variations (Table S4). The 238 

outputs of all GCMs used can be obtained from https://esgf-node.llnl.gov/projects/esgf-239 

llnl/. 240 

3. Analysis procedure and methods 241 

3.1 Assessment method of estimated soil moisture data 242 

We collected the available in-situ soil moisture observations (Su et al., 2011; Chen 243 

et al., 2013) and subdivided these data points into 0.25°×0.25º grids (27 grids in total: 244 

5 in Ngari; 12 in Naqu; 10 in Maqu). The mean soil moisture value of each grid was 245 

obtained by averaging all data points falling within that grid pixel (Chen et al., 2013). 246 

The same analysis was done on remotely sensed and reanalysis SM datasets and climate 247 
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variables which had been interpolated into 0.25°×0.25º in order to keep all the cells 248 

consistent (Chen et al., 2013; Zeng et al., 2015). Analysis of correlation between 249 

observed and remotely sensed and assimilated soil moisture data indicated that 250 

Noah_2.1 better described observed soil moisture changes than ECV, ERA and MERRA 251 

during 2008-2014. The correlation analysis was performed by Pearson correlation 252 

analysis technique, Spearman correlation analysis technique and Kendall correlation 253 

analysis method, and different calculation methods similarly led to the consistent result. 254 

Therefore, Fig. 2 just illustrates the nonparametric Spearman correlation coefficient and 255 

the advantage of which is that it is not necessary to assume the normal distribution of 256 

the data and the results are not affected by monotonous changes. We also evaluated the 257 

performance of Noah_2.0 and Noah_2.1 in describing observed soil moisture changes 258 

due to the different time spans, that is, Noah_2.0 in 1948-2010 and Noah_2.1 in 2000-259 

present, respectively (Chen et al., 2013). In the evaluation periods of 2008-2014, 260 

Noah_2.1 is superior to the others in general and the analysis during the period of 261 

overlap for Noah_2.0 and Noah_2.1, 2008-2010, found that Noah_2.0 slightly better 262 

modelled observed soil moisture than Noah_2.1 did. Hence, Noah_2.0 was used to 263 

analyze historical soil moisture changes.  264 

 265 

3.2 Method for diagnosing the causes behind SM changes 266 

To determine major causes of soil moisture changes, we used a stepwise 267 

multivariate regression method to differentiate principle drivers behind soil moisture 268 

changes, and AIC (the Akaike’s information criterion) index was chosen as the criterion 269 
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to accept or reject the variables. Then we utilized multiple GLM (the general linear 270 

model) regressions to quantify the fractional contribution of each meteorological 271 

variable in the CMA data set to Noah soil moisture changes (Tao et al., 2015). Then, we 272 

obtained 11 GCM models out of the 26 available CMIP5 GCMs (General Circulation 273 

Models, Table S4) with SM variable which have a correlation coefficient over 0 with 274 

Noah SM and further investigation was done on the future SM changes based on these 275 

11 GCM models under three scenarios, i.e. RCP2.6，RCP4.5，RCP8.5 (upper panel of 276 

Fig. 5; Table S4) with confidence intervals (Fu and Feng, 2014). In addition, the causes 277 

of future soil changes were also analyzed, based on analysis of precipitation, terrestrial 278 

evapotranspiration, and aridity index (P/PET, P refers to precipitation and PET refers to 279 

potential evapotranspiration) based on 41 CMIP5 GCMs (Fu and Feng, 2014). 280 

 281 

4. Results and discussions 282 

4.1 Performance of ECV, ERA, MERRA and Noah soil moisture datasets 283 

Three regional scale in-situ reference networks for plateau scale soil moisture were 284 

considered (Fig. 1) and these networks provided a representative coverage of different 285 

climate and land surface hydrometeorological conditions on the HTP (Su et al., 2011). 286 

Fig. 2 shows grid-scale correlation between ECV, ERA, MERRA and Noah soil 287 

moisture datasets and in-situ soil moisture observations. It can be seen from Fig. 2 that 288 

all reanalysis and remotely sensed moisture data seem to well describe in-situ soil 289 

moisture observations with large correlation coefficients. However, in general, 290 

correlation coefficients between Noah soil moisture data and in-situ soil moisture 291 
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observations are larger than those between ECV, ERA, MERRA and in-situ soil 292 

moisture observations, implying that Noah data can better describe in-situ soil moisture 293 

changes. Fig. S1 shows temporal changes of ECV, ERA, MERRA and in-situ soil 294 

moisture observations with confidence interval of the in-situ observed soil moisture 295 

data by ARIMA method. It can be observed that ECV, ERA, MERRA and Noah SMs 296 

have different performance in describing changing properties of soil moisture in 297 

different observation networks. However, Noah SM data has relative stable 298 

performance benchmarked with in-situ observations. 299 

Table S2 indicates there is a time divergence for Noah_2.0 with 1948-2010, and 300 

Noah_2.1 with 2000 onwards. Due to time limit, Noah_2.1 is not appropriate for the 301 

attribution analysis in spite of the comparison with other data sets. So reliability of 302 

Noah_2.0 need exploring further. Fig. 3 show that the comparison between monthly 303 

soil moisture for Noah_2.0 and Noah_2.1 during the overlapping period (2008-2010). 304 

The results indicate, in 27 grids of 0.25°×0.25º, R2 of these two data sets of SM more 305 

than 0.9 lies in most grids and the data points are almost evenly distributed near the 306 

fitted line. In total, the MAE value is about 1.7, comparatively, RMSE value is 307 

approximately equal to 2.3. Meanwhile, the histograms indicate R2 is mainly 308 

concentrated in high value area, however, MAE and RMSE are in low value area. The 309 

line graph in bottom panel additionally shows Noah_2.0 performs better than Noah_2.1 310 

with in situ soil moisture even with relatively small amounts of data. All results indicate 311 

Noah_2.0 can be taken as substitute to conduct attribution analysis. 312 

 313 
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4.2 Historical SM trends 314 

   Additional work with focus on the possible drivers of modeled and observed trends 315 

was remarkably underlined (Albergel et al., 2013). Fig. 4 shows identification of major 316 

factors influencing soil moisture changes based on stepwise regressive technique and 317 

multiple general linear model (GLM) regression. The numbers marked by different 318 

colors denote the fractional contribution of each potential driver to soil moisture 319 

changes (Fig. 4). It can be seen from Fig. 4 that precipitation has larger fractional 320 

contribution to soil moisture changes in majority of regions across the HTP with 321 

fractional contribution of > 60% and even > 80%. However, for temperature, wind 322 

speed and solar radiation, only smaller part of regions are dominated by fractional 323 

contribution of > 80% and most parts of the regions have fractional contributions of 324 

less than 40%. Therefore, it can be concluded that precipitation is the most important 325 

driver of soil moisture changes compared to the other three studied on the HTP, 326 

although fractional contribution of precipitation to soil moisture changes shows notable 327 

spatial variability. Fig. 5 illustrates historical observations and future trends of soil 328 

moisture changes. It can be observed from upper panel of Fig. 5 that time interval during 329 

1950-2010 is characterized by evident fluctuations of soil moisture amount. Decreasing 330 

soil moisture can be detected during ~1950-1970. Subsequent time interval, i.e. 1970-331 

2010, is dominated by persistently increasing soil moisture though moderate changes 332 

and decreasing tendency of soil moisture can be found during respectively ~1975-1995 333 

and 2005-2010.  334 

 335 
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 336 

4.3 Future trends of soil moisture 337 

Importance of detection of future trends in soil moisture was emphasized (Albergel 338 

et al., 2013). Different changing tendencies of soil moisture under different climatic 339 

scenarios were quantified based on outputs of 26 GCM models from CMIP5 with 340 

modelling results of the surface soil moisture under scenarios of RCP2.6, RCP4.5 and 341 

RCP8.5 (Table S4). Fig. 5 (upper panel) indicates persistently decreasing soil moisture 342 

after 2010 with different decreasing rates during different time intervals, such as -343 

0.044kg/m2/10a, -0.031kg/m2/10a, -0.088kg/m2/10a under RCP2.6, RCP4.5 and 344 

RCP8.5 scenarios. Meanwhile, decreasing rate of soil moisture under RCP8.5 is two 345 

times larger than that under RCP2.6. Sudden decrease of soil moisture can be identified 346 

during ~2085-~2100 and it is particularly true for soil moisture under RCP8.5 with 347 

decreasing rate of -0.372kg/m2/10a. Therefore, higher warming intensity is related to 348 

larger decreasing rate of soil moisture. There are some researches addressing future 349 

trends of soil moisture at different spatial scales. Cheng et al. (2015), based on the 350 

output from 20 models of CMIP5 following the RCP4.5 and RCP8.5, indicated a clear 351 

decreasing trend occurred over a period of 63 years with pronounced drying over 352 

northeast China, north China, part of Mongolia, and Russia near lake Baikal. As for 353 

drivers behind soil moisture changes, Cheng et al. (2015) indicated that soil drying is 354 

caused mainly by decreasing precipitation but enhanced almost twofold by warming 355 

climate. However, different spatial patterns of precipitation regimes can be expected 356 

(Li et al., 2013). Therefore, potential drivers behind soil moisture changes should be 357 
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subject to further and thorough analysis. 358 

 359 

4.4 Causes behind soil moisture changes 360 

   Precipitation was the major driver of decreased soil moisture. Whether the 361 

decreasing soil moisture should be attributed to decreasing or increasing precipitation 362 

should be carefully investigated and clarified (Cheng et al., 2015). In our study, the 363 

fractional contribution of precipitation to soil moisture was ~≤50% which is derived 364 

from the average of the contribution in Fig. 4. Meanwhile, temperature was another 365 

important factor which may impact SM through melting permafrost and snow/glacial. 366 

While, the increasing rate of evapotranspiration larger than that of precipitation was 367 

reported at the global scale, i.e. the rate of increase in precipitation averaged over land 368 

was ~1.7%/°C, while the increase in PET was 5.3%/°C, leading to a decrease in P/PET, 369 

or a drier terrestrial climate, by ~3.4%/°C (Fu and Feng, 2014). Similarly, increasing 370 

precipitation can be expected on the HTP (Fig. 6). However, the increasing rate of 371 

evapotranspiration larger than that of precipitation was detected (Fig. 7). The increasing 372 

amounts were, respectively, 2.2~3.1%, 1.2~1.4%, 4.9~8.7% for precipitation and were 373 

1.4~2.3%, 3.8~7.1%, 11.9~16.3% for evapotranspiration under RCP2.6, RCP4.5 and 374 

RCP8.5, respectively, among different GCMs in CMIP5 in the whole 21st century. It 375 

can be observed that the increasing rate of evapotranspiration was 2~3 times larger than 376 

that of precipitation, causing drier soil moisture on the HTP (lower panel of Fig. 5). Fu 377 

and Feng (2014) also observed increases in precipitation and potential 378 

evapotranspiration but a decrease in P/PET due to increasing CO2 concentration in the 379 
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atmosphere in the CMIP5 transient CO2 1%/year increase experiments. Here, we can 380 

attribute decreasing soil moisture to decreased P/PET in the decades to come. 381 

 382 

4.5 Coupling of SM anomaly, precipitation, and evapotranspiration 383 

Under future scenarios, soil moisture continues decreasing even with evident 384 

fluctuations (Fig. 5). Fig. 6 and Fig. 7 also indicate that there are increasing trend for 385 

different radiative scenarios, especially RCP8.5. So it is necessary to further explore 386 

the relationship among these three variables. Fig. 8 shows the relationship of 387 

precipitation, evapotranspiration and soil moisture anomaly in the future under three 388 

scenarios. Evapotranspiration is increasing along with the more energy and more 389 

available water due to increasing temperature and precipitation respectively, so there is 390 

a positive relationship between evapotranspiration and precipitation (Fig. 8).  391 

With increasing radiation, precipitation per unit leads to more evapotranspiration, 392 

the coefficients are respectively 0.10, 0.37, and 0.52 under RCP2.6, RCP4.5 and 393 

RCP8.5, which indicates half precipitation is gone via evapotranspiration, and the other 394 

half transforms into surface flow, underwater, and other forms of water (Table 2). The 395 

relation is evident for both variables under RCP4.5, RCP 8.5, but with P-value of 0.102 396 

under RCP2.6 (Fig. 8). Precipitation is not evidently different for RCP2.6 and RCP4.5, 397 

but RCP8.5 results in more precipitation. Soil moisture anomaly is 6.5 10-3kg/m2, more 398 

than baseline period due to the high soil moisture in immediate future, which is 399 

probably relative with increasing melting ice and snow. The aridity index is 1.61, 400 

minimal value among three scenarios, which, in theory, lead to low soil moisture, 401 
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further verifying the abundant effect of melting ice and snow in subsequent years. 402 

Under RCP2.6 scenario, soil moisture anomaly is not evidently related with 403 

precipitation and evapotranspiration without visual regularity (Fig. 8). Under RCP4.5 404 

and RCP8.5, the more the precipitation, the more the evapotranspiration, and the less 405 

the soil moisture anomaly. The phenomenon is most remarkable under RCP8.5 with 406 

higher variability of soil moisture anomaly which is consistent with the results from 407 

Figs. 5-7. 408 

 409 

5. Discussions 410 

In this study, we utilized the in-situ SM as the benchmark to choose the best fitted 411 

estimated SM datasets including ECV, ERA, MERRA and Noah. Then Noah_2.0 was 412 

used to explore SM changes and the fractional contribution of each individual 413 

meteorological variable to SM was evaluated. Finally, the outputs of CMIP models were 414 

employed to analyze future SM changes and to explore potential causes behind SM 415 

changes. Obviously, much uncertainty could be expected in the historical estimation of 416 

the SM datasets which may reach unreliable conclusions. The uncertainty can be 417 

attributed mainly to the following causes: different depths of the uppermost soil layer; 418 

different spatial scales, inaccuracy of different data acquisition methods including 419 

measuring instrument, remote sensing retrieval algorithm, model parameterization and 420 

so on, which have been discussed in the research by Zhang et al. (2018). In these 421 

procedures, there exists a lot of tough problems, and the most serious one of which is 422 

the discrepancy of upper layer SM from different SM sources. It is well known that the 423 
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ECV SM data is produced from satellite remote sensing technology which generally 424 

represents SM changes of the upper shallow 1-2 cm soil layer. ERA-Interim SM dataset 425 

contains four layers of soil moisture data (0-7cm, 7-28cm, 28-100cm, 100-289cm). In 426 

this study, we evaluated the SM in the surface soil layer of 0-7cm. The SM by the 427 

MERRA is used in the top soil layer of 0-2cm. Noah model in GLDAS has four layers 428 

of soil moisture data, i.e. 0-10, 10-40, 40-100, and 100-200cm. The SM of the 429 

uppermost soil layer (0-10) was used in this study. What’s more, the upper soil layer 430 

depth of GCM models is 10 cm for the future SM analysis. Although there are 431 

mismatching in different SM datasets, the range of the soil thickness is small, and so 432 

we assume that the change of soil moisture in the quite thin upper soil layer is not 433 

obvious. Meanwhile, previous studies have indicated that the SM is one of the 434 

hydrological variables difficult to be measured accurately. The SM measurement is 435 

affected by a range of factors, such as man-made operation, instrument sensitivity, and 436 

probe depth and so on. So the measured SM values are varying from different 437 

measurement processes. And the GCM models also have a relatively poor performance 438 

for modelling of SM. Therefore, to reduce these uncertainties, we used the z-score 439 

method to normalize the SM for all SM datasets. 440 

The Tibetan Plateau is known as “the third pole” with extremely complex 441 

topographies and climates, thus leading to different vegetation covers over the entire 442 

region (Fan et al., 2018). In particular, large parts of the HTP are covered by permafrost 443 

and snow/ice due to the high elevation. So the performance of these estimated SM 444 

remains largely varying from one specific region to another. The soil hydraulic 445 
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properties can have great impacts on the simulation of the upper soil moisture. 446 

Meanwhile, the simulated evaporation can also influence the modelling of the soil 447 

moisture. Each of them is quite difficult to be expressed accurately in the model (Chen 448 

et al., 2013). In addition, due to complex topography, the in situ observation stations 449 

were installed mainly in the relatively flat area without harsh ambient environment. 450 

Although the distribution of the stations is as even as possible and different spatial 451 

scales are used to evaluate the data (Chen et al., 2013; Zhang et al., 2018) which greatly 452 

corroborated the representativeness of the measured data. The variables in the CMIP 453 

have predicted the future climate which is the hot spot in the research on climate change. 454 

In accordance with practice, here we used the median value as the prediction of the 455 

upper soil moisture in the future. In order to reduce the uncertainty, we collected as 456 

many data sets as possible containing surface soil moisture. Otherwise, it is 457 

indispensable to up-scale soil moisture resolution in consideration of better evaluation 458 

results on a larger scale and high spatial variability of soil moisture, the soil moisture 459 

output of GCMs are resampled uniformly to the spatial scale of 1°×1°. 460 

The soil moisture and its variability have a strong control on the generation of runoff 461 

and characterize the regional response to precipitation changes (Penna et al., 2011), and 462 

hence directly influence the size of water bodies. In this case, historical observations of 463 

soil moisture changes can be further evidenced by researches pertaining lake sizes, 464 

snow and glacial melting processes and water mass of the HTP as well. Analyses of 465 

lake sizes during the 1960s-1980s and 2005-2006 indicated increases in lake sizes in 466 

the Tibet Plateau and its neighboring provinces with an appearance of 60 new lakes (Ma 467 
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et al., 2010). Meanwhile, glaciers on the Tibetan Plateau have been melting at an 468 

accelerating rate over the past decade (Yao et al., 2004; Xu et al., 2009; Ma et al., 2010), 469 

leading to increasing water resources (Ma et al., 2010; Yao et al., 2004; Kehrwald et al., 470 

2008) and consequently resulting in increased soil moisture in recent decades (upper 471 

panel of Fig. 5). Specifically, a severe shrinkage of lakes during 1970-1990 and a 472 

remarkable expansion of a majority of lakes during 1990-2011 were identified on the 473 

HTP with an increased total lake area from 35638.11 km2 in the early 1970s to 41938.66 474 

km2 in 2011 (Song et al., 2013). These changes of lake areas matched soil moisture 475 

changes during similar time intervals. Increased SM during the past few decades was 476 

supposed to account for part of the increased mass balance by GRACE which, however, 477 

was not explained by the glacier mass gain and the mass increase of lakes (Zhang et al., 478 

2013). Otherwise, the increasing precipitation is also likely to be an important cause 479 

behind SM increase during this period (Wan et al., 2017). 480 

6. Summary and conclusions 481 

In this study, the performances of several remotely sensed and reanalysis SM 482 

datasets were benchmarked with SM observations from 100 sites at the HTP. In addition, 483 

future trends of soil moisture were quantified based on outputs from 26 models of CMIP. 484 

Some interesting and important conclusions and findings were achieved as follows: 485 

(1) Noah_2.1 outperformed the other datasets, such as ECV, ERA and MERRA, in the 486 

evaluation period of 2008-2014. Noah_2.0 slightly better depicted the SM than 487 

Noah_2.1 in the overlapping period. 488 

(2) Different time intervals can be identified with different changing properties of soil 489 
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moisture. Decreasing soil moisture can be detected during ~1950-1970. Subsequent 490 

time interval, i.e. 1970-2010, is dominated by persistently increasing soil moisture 491 

though moderate changes and decreasing tendency of soil moisture can be found during 492 

respectively ~1975-1995 and 2005-2010. Soil moisture changes during different time 493 

intervals are in line with shifts in lake sizes, melting processes of snow and glacial and 494 

also water mass balance on the HTP. 495 

(3) Precipitation was the major driver of decreased soil moisture. However, the 496 

fractional contribution of precipitation to soil moisture was ~≤50%. And temperature 497 

is also an important cause behind spatiotemporal changes of soil moisture by leading to 498 

melting snow and increased evapotranspiration due to warming climate on the HTP. In 499 

addition, increasing rate of evapotranspiration is larger than that of precipitation and 500 

then leads to increased aridity, i.e. P/PET. Significant increase of aridity due to warming 501 

climate may be the major driver behind decreased soil moisture and this point is in line 502 

with results at global scale. 503 
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 647 

Figure captions: 648 

 649 

Fig. 1. Locations of Himalayan-Tibetan Plateau (HTP) and spatial distribution of the 650 

in-situ stations in three soil moisture networks, i.e. Ngari, Naqu and Maqu. The red 651 

closed line refers to the border of HTP. These in-situ networks provide a 652 

representative coverage of the different climate and land surface 653 

hydrometeorological conditions on the HTP. Ngari is characterized by a cold-arid 654 

environment, Naqu by a cold-semiarid environment and Maqu by a cold-humid 655 

environment. Filled circles denote locations of the in-situ observation stations for 656 

soil moisture, wherein, orange marked sites from Tibet-Obs networks, blue marked 657 

ones from ISMN networks. 658 

Fig. 2. Nonparametric Spearman correlation coefficients between in-situ observed soil 659 

moisture and remotely sensed and reanalysis soil moisture products on the 660 

Himalayan-Tibetan Plateau (HTP). The reanalysis soil moisture data are respectively 661 

from European Space Agency's (ESA) Soil Moisture Essential Climate Variable 662 

(ECV) CCI project, the second Modern-Era Retrospective analysis for Research and 663 

Applications (MERRA-2), European Centre for Medium-Range Weather Forecasts 664 

(ECMWF) and NASA Goddard Earth Sciences Data and Information Services 665 
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Center (GES DISC). The correlation coefficients indicate that reanalysis soil 666 

moisture dataset, the monthly 0.25° GLDAS Version 2 products (GLDAS-2) by 667 

Noah model (Noah_2.1), can well quantify soil moisture changes on the HTP. 668 

Fig. 3. Correlations between monthly Noah_2.0 soil moisture data and Noah_2.1 soil 669 

moisture data during 2008-2010 from the perspective of R2, MAE (mean absolute 670 

error) and RMSE (root mean square error) for the period of 2000-2010 at 27 671 

observation grids (the first panel). The histograms show the distribution of R2, MAE 672 

and RMSE. In the bottom panel, the left axis shows changes of R2 between 673 

Noah_2.0 soil moisture data (blue curve) and Noah_2.1 soil moisture data (red curve) 674 

with in-situ observed soil moisture data in different grids (Fig. 1); the right axis 675 

shows the number of months with time overlap, which is represented as a black line. 676 

Fig. 4. Identification of major drivers for soil moisture changes (Noah_2.0) during 677 

1979-2010 using stepwise regressive technique and multiple general linear model 678 

(GLM) regression. The stepwise regressive technique was used to screen out the 679 

principle drivers behind soil moisture changes, and the multiple general linear model 680 

(GLM) regression was used to quantify fractional contributions of each principle 681 

driver to soil moisture changes. The analysis was done on each pixel. The numbers 682 

marked by different colors denote the fractional contribution of each potential driver 683 

to soil moisture changes. Based on the spatial pattern of fractional contributions, 684 

precipitation acts as the major driver behind soil moisture changes across most 685 

regions of the HTP. 686 

Fig. 5. Soil moisture anomaly during 1948-2010 and 2010-2100 based on remotely 687 
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sensed and reanalysis soil moisture data in the whole Himalayan-Tibetan Plateau by 688 

26 models under three scenarios: RCP2.6, RCP4.5 and RCP8.5. In the upper panel, 689 

the  values show changing rates of soil moisture during different time intervals (unit: 690 

kg/m2/10a) by the Sen’s slope method. The shaded areas denote the 95% confidence 691 

interval by Student-t distribution. The lower panel shows future changes of the 692 

aridity index based on remotely sensed and reanalysis dataset by 22 models under 693 

RCP2.6, RCP4.5 and RCP8.5 scenarios. 694 

Fig. 6. Future changes of precipitation based on remotely sensed and reanalysis dataset 695 

by 40 models under RCP2.5, RCP4.6 and RCP8.5 scenarios (27 models for RCP2.6, 696 

37 models for RCP4.5 and 40 models for RCP8.5). 697 

Fig. 7. Future changes of Penman-Monteith evapotranspiration based on remotely 698 

sensed and reanalysis dataset by 23 models under RCP2.6, RCP4.5 and RCP8.5 699 

scenarios (15 models for RCP2.6, 23 models for RCP4.5 and 20 models for RCP8.5). 700 

Fig. 8. Relationships between precipitation, evapotranspiration, and soil moisture 701 

anomaly in the future (2010-2100) under RCP2.6 (a), RCP4.5 (b) and RCP8.5 (c). 702 

Scatter points denote median values of precipitation, evapotranspiration, and soil 703 

moisture anomaly. The gray dashed lines indicate the mean values of precipitation 704 

(vertical) and evapotranspiration (horizontal). The blue lines shows fitted results by 705 

linear model with 95% confident interval. 706 

 707 

Table captions: 708 

Table 1. 26 GCM models from CMIP5 with modelling results of the surface soil 709 
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moisture under scenarios of RCP2.6, RCP4.5 and RCP8.5. The detailed information 710 

of model can be found in supplementary files. 711 

Table 2. The statistical mean value for precipitation (Pr), evapotranspiration (ET), soil 712 

moisture anomaly (SMA) and aridity index (AI) in the future under three scenarios, 713 

that is, RCP2.6, RCP4.5 and RCP8.5. Slope is the coefficient of evapotranspiration 714 

with precipitation. P-value indicates whether or not there exists evident relationship. 715 

 716 

  717 
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 718 
Fig. 1. Locations of Himalayan-Tibetan Plateau (HTP) and spatial distribution of the 719 

in-situ stations in three soil moisture networks, i.e. Ngari, Naqu and Maqu. The red line 720 

refers to the border of the HTP. These in situ soil moisture observatory networks provide 721 

a representative coverage of the different climate and land surface hydrometeorological 722 

conditions on the HTP. Ngari is characterized by a cold-arid environment, Naqu by a 723 

cold-semiarid environment and Maqu by a cold-humid environment. Filled circles 724 

denote locations of the in-situ observation stations for soil moisture, wherein, orange 725 

marked sites from Tibet-Obs networks, blue marked ones from ISMN networks. 726 

 727 

 728 

 729 

 730 

 731 
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 732 
Fig. 2. Nonparametric Spearman correlation coefficients between in-situ observed soil 733 

moisture and remotely sensed and reanalysis soil moisture products on the Himalayan-734 

Tibetan Plateau (HTP). The reanalysis soil moisture data are respectively from 735 

European Space Agency's (ESA) Soil Moisture Essential Climate Variable (ECV) CCI 736 

project, the second Modern-Era Retrospective analysis for Research and Applications 737 

(MERRA-2), European Centre for Medium-Range Weather Forecasts (ECMWF) and 738 

NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). 739 

The correlation coefficients indicate that reanalysis soil moisture dataset, the monthly 740 

0.25° GLDAS Version 2 products (GLDAS-2) by Noah model (Noah_2.1), can well 741 

quantify soil moisture changes on the HTP. 742 

 743 
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 744 

 745 
Fig. 3. Correlations between monthly Noah_2.0 soil moisture data and Noah_2.1 soil 746 

moisture data during 2008-2010 from the perspective of R2, MAE (mean absolute error) 747 

and RMSE (root mean square error) for the period of 2000-2010 at 27 observation grids 748 

(the first panel). The histograms show the distribution of R2, MAE and RMSE. In the 749 

bottom panel, the left axis shows changes of R2 between Noah_2.0 soil moisture data 750 

(blue curve) and Noah_2.1 soil moisture data (red curve) with in-situ observed soil 751 

moisture data in different grids (Fig. 1); the right axis shows the number of months with 752 

time overlap, which is represented as a black line. 753 

754 
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 755 

Fig. 4. Identification of major drivers for soil moisture changes (Noah_2.0) during 756 

1979-2010 using stepwise regressive technique and multiple general linear model 757 

(GLM) regression. The stepwise regressive technique was used to screen out the 758 

principle drivers behind soil moisture changes, and the multiple general linear model 759 

(GLM) regression was used to quantify fractional contributions of each principle driver 760 

to soil moisture changes. The analysis was done on each pixel. The numbers marked by 761 

different colors denote the fractional contribution of each potential driver to soil 762 

moisture changes. Based on the spatial pattern of fractional contributions, precipitation 763 

acts as the major driver behind soil moisture changes across most regions of the HTP. 764 

 765 

 766 
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 768 

 769 
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 771 
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 773 

 774 

 775 
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 777 

 778 
Fig. 5. Soil moisture anomaly during 1948-2010 and 2010-2100 based on remotely 779 

sensed and reanalysis soil moisture data in the whole Himalayan-Tibetan Plateau by 26 780 

models under three scenarios: RCP2.6, RCP4.5 and RCP8.5. In the upper panel, the  781 

values show changing rates of soil moisture during different time intervals (unit: 782 

kg/m2/10a) by the Sen’s slope method. The shaded areas denote the 95% confidence 783 

interval by Student-t distribution. The lower panel shows future changes of the aridity 784 

index based on remotely sensed and reanalysis dataset by 22 models under RCP2.6, 785 

RCP4.5 and RCP8.5 scenarios. 786 

 787 

 788 

 789 

 790 

 791 
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 793 

Fig. 6. Future changes of precipitation based on remotely sensed and reanalysis dataset 794 

by 40 models under RCP2.5, RCP4.6 and RCP8.5 scenarios (27 models for RCP2.6, 37 795 

models for RCP4.5 and 40 models for RCP8.5). 796 
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 814 

Fig. 7. Future changes of Penman-Monteith evapotranspiration based on remotely 815 

sensed and reanalysis dataset by 23 models under RCP2.6, RCP4.5 and RCP8.5 816 

scenarios (15 models for RCP2.6, 23 models for RCP4.5 and 20 models for RCP8.5). 817 
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 834 

Fig. 8. Relationships between precipitation, evapotranspiration, and soil moisture 835 

anomaly in the future (2010-2100) under RCP2.6 (a), RCP4.5 (b) and RCP8.5 (c). 836 

Scatter points denote median values of precipitation, evapotranspiration, and soil 837 

moisture anomaly. The gray dashed lines indicate the mean values of precipitation 838 

(vertical) and evapotranspiration (horizontal). The blue lines shows fitted results by 839 

linear model with 95% confident interval. 840 

 841 
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Table 1. 26 GCM models from CMIP5 with modelling results of the surface soil 843 

moisture under scenarios of RCP2.6, RCP4.5 and RCP8.5. The detailed information of 844 

model can be found in supplementary files. 845 

Model Names 

ACCESS1.0 ACCESS1.3 CanESM2 CNRM-CM5 CSIRO-Mk3.6.0 

FGOALS-g2 FGOALS-s2 GFDL-CM3 GFDL-ESM2G GFDL-ESM2M 

GISS-E2-H GISS-E2-H-CC GISS-E2-R GISS-E2-R-CC HadGEM2-CC 

HadGEM2-ES INM-CM4 IPSL-CM5A-LR IPSL-CM5A-MR IPSL-CM5B-LR 

MIROC5 MIROC-ESM MIROC-ESM-CHEM MRI-CGCM3 NorESM1-M 

NorESM1-ME     

 846 

 847 

 848 

 849 

 850 

 851 

Table 2. The statistical mean value for precipitation (Pr), evapotranspiration (ET), soil 852 

moisture anomaly (SMA) and aridity index (AI) in the future under three scenarios, 853 

that is, RCP2.6, RCP4.5 and RCP8.5. Slope is the coefficient of evapotranspiration 854 

with precipitation. P-value indicates whether or not there exists evident relationship. 855 

 856 

 857 

  858 

Scenarios Pr (mm) ET 

(mm) 

AI SMA 

(10-3kg/m2) 

Slope P-value 

RCP2.6 1070 629 1.66 0.5 0.10 0.102 

RCP4.5 1075 644 1.65 -2.9 0.37 0 

RCP8.5 1113 659 1.61 6.5 0.52 0 
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 891 

Fig. S1. Comparison between soil moisture from five different data sources: In-situ, ECV, ERA, 892 

MERRA and Noah by averaging the values in the grids where there exist measuring stations 893 

in three different soil moisture networks: Ngari, Naqu and Maqu. The time span for the 894 

comparison of soil moisture datasets is from May, 2008 to September, 2014. The gray-shaded 895 

areas indicate the confidence interval of the in-situ observed soil moisture data by ARIMA 896 

method. 897 

Table S1. Information on 100 in-situ stations for observed soil moisture on the Himalayan-898 

Tibetan Plateau (HTP). The StationID is the unique identification or name of the stations. Lat 899 

is the latitude and Lon the longitude which jointly determine the locations of stations. Elev 900 

means the elevation of the in-situ stations. Source indicates where the data are derived from, 901 

i.e. Tibet-Obsa and/or CTP_SMTMN (ISMN)b. Location shows where the in-situ stations are 902 

located on the HTP. GridNum is the number of grids the in-situ stations are included in (Figure 903 

1). Latgrid and Longrid are the latitude and longitude of center-point of the grid that the in-904 

situ stations are located in. 905 

Table S2. Information of soil moisture data by remotely sensed and reanalysis soil moisture 906 

datasets. Note that SDSR is the abbreviation of the surface downward shortwave radiation. 907 

Table S3. 26 GCM models from CMIP5 with modelling results of the surface soil moisture 908 

under scenarios of RCP2.6, RCP4.5 and RCP8.5. The models with asterisk (*) are those 909 

models with soil moisture data that are in positive correlation with historical soil moisture. 910 

Table S4. Information on models with variables for modelling of aridity index, terrestrial 911 

potential evapotranspiration, and precipitation under scenarios of RCP2.6, RCP4.5 and 912 

RCP8.5. 913 

Introduction  914 

In this study, we use a mass of data from totally different sources, including, in-situ soil 915 

moisture, based remotely sensing and reanalysis soil moisture, climate variables from the 916 

China Meteorological Forcing Dataset, soil moisture from outputs of 26 CMIP5 GCMs and 917 

climate variables of 41 CMIP5 GCMs under three scenarios, i.e., RCP2.6, RCP4.5, RCP8.5. In 918 

order to more clearly show readers the detail of the data, here we list all the data used, 919 

although these datasets have been described in details in the main text. 920 

 921 
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Supplementary Figure 922 

 923 

 924 

Fig. S1. Comparison between soil moisture from five different data sources: In-situ, 925 

ECV, ERA, MERRA and Noah by averaging the values in the grids where there exist 926 

measuring stations in three different soil moisture networks: Ngari, Naqu and Maqu. 927 

The time span for the comparison of soil moisture datasets is from May, 2008 to 928 

September, 2014. The gray-shaded areas indicate the confidence interval of the in-situ 929 

observed soil moisture data by ARIMA method. 930 

 931 

 932 

 933 

 934 

 935 

 936 

 937 

 938 

 939 

 940 
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 943 

Supplementary Tables  944 

 945 

Table S1. Information on 100 in-situ stations for observed soil moisture on the 946 

Himalayan-Tibetan Plateau (HTP). The StationID is the unique identification or name 947 

of the stations. Lat is the latitude and Lon the longitude which jointly determine the 948 

locations of stations. Elev means the elevation of the in-situ stations. Source indicates 949 

where the data are derived from, i.e. Tibet-Obsa and/or CTP_SMTMN (ISMN)b. 950 

Location shows where the in-situ stations are located on the HTP. GridNum is the 951 

number of grids the in-situ stations are included in (Figure 1). Latgrid and Longrid are 952 

the latitude and longitude of center-point of the grid that the in-situ stations are located 953 

in. 954 

StationID Lat Lon Elev Source Location GridNum Latgrid Longrid 

CST_01 33.88  102.13  3431 Tibet-Obs Maqu 1 33.875 102.125 

CST_02 33.67  102.13  3449 Tibet-Obs Maqu 2 33.625 102.125 

CST_03 33.90  101.97  3507 Tibet-Obs Maqu 3 33.875 101.875 

CST_04 33.77  101.72  3504 Tibet-Obs Maqu 4 33.875 101.625 

CST_05 33.67  101.88  3542 Tibet-Obs Maqu 5 33.625 101.875 

NST_01 33.88  102.13  3431 Tibet-Obs Maqu 1 33.875 102.125 

NST_02 33.88  102.13  3434 Tibet-Obs Maqu 1 33.875 102.125 

NST_03 33.77  102.13  3513 Tibet-Obs Maqu 1 33.875 102.125 

NST_04 33.62  102.05  3448 Tibet-Obs Maqu 2 33.625 102.125 

NST_05 33.63  102.05  3476 Tibet-Obs Maqu 2 33.625 102.125 

NST_06 34.00  102.27  3428 Tibet-Obs Maqu 6 34.125 102.375 

NST_07 33.98  102.35  3430 Tibet-Obs Maqu 7 33.875 102.375 

NST_08 33.97  102.60  3473 Tibet-Obs Maqu 8 33.875 102.625 

NST_09 33.90  102.55  3434 Tibet-Obs Maqu 8 33.875 102.625 

NST_10 33.85  102.57  3512 Tibet-Obs Maqu 8 33.875 102.625 

NST_11 33.68  102.47  3442 Tibet-Obs Maqu 9 33.625 102.375 

NST_12 33.62  102.47  3441 Tibet-Obs Maqu 9 33.625 102.375 

NST_13 34.02  101.93  3519 Tibet-Obs Maqu 10 34.125 101.875 

NST_14 33.92  102.12  3432 Tibet-Obs Maqu 1 33.875 102.125 

NST_15 33.85  101.88  3752 Tibet-Obs Maqu 3 33.875 101.875 

Ali01 33.43  79.73  4262 Tibet-Obs Ngari 11 33.375 79.625 

Ali02 33.45  79.62  4266 Tibet-Obs Ngari 11 33.375 79.625 

Ali03 33.45  79.62  4261 Tibet-Obs Ngari 11 33.375 79.625 

Naqu_BJ 31.37  91.88  4509 Tibet-Obs Naqu 12 31.375 91.875 

Naqu_East 31.37  91.92  4527 Tibet-Obs Naqu 12 31.375 91.875 

Naqu_North 31.37  91.87  4507 Tibet-Obs Naqu 12 31.375 91.875 

Naqu_South 31.32  91.87  4510 Tibet-Obs Naqu 12 31.375 91.875 

Naqu_West 31.33  91.82  4506 Tibet-Obs Naqu 12 31.375 91.875 
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Sq01 32.48  80.07  4306 Tibet-Obs Ngari 13 32.375 80.125 

Sq02 32.50  80.02  4304 Tibet-Obs Ngari 14 32.625 80.125 

Sq03 32.50  79.97  4278 Tibet-Obs Ngari 15 32.625 79.875 

Sq04 32.50  79.97  4269 Tibet-Obs Ngari 15 32.625 79.875 

Sq05 32.50  79.92  4261 Tibet-Obs Ngari 15 32.625 79.875 

Sq06 32.50  79.87  4257 Tibet-Obs Ngari 15 32.625 79.875 

Sq07 32.52  79.83  4280 Tibet-Obs Ngari 15 32.625 79.875 

Sq08 32.55  79.83  4306 Tibet-Obs Ngari 15 32.625 79.875 

Sq09 32.45  80.05  4275 Tibet-Obs Ngari 13 32.375 80.125 

Sq10 32.42  80.00  4275 Tibet-Obs Ngari 13 32.375 80.125 

Sq11 32.45  79.97  4274 Tibet-Obs Ngari 16 32.375 79.875 

Sq12 32.45  79.93  4264 Tibet-Obs Ngari 16 32.375 79.875 

Sq13 32.43  79.90  4292 Tibet-Obs Ngari 16 32.375 79.875 

Sq14 32.45  80.17  4368 Tibet-Obs Ngari 13 32.375 80.125 

Sq16 32.43  80.07  4288 Tibet-Obs Ngari 13 32.375 80.125 

BC02 31.07  92.37  4835 ISMN Naqu 17 31.125 92.375 

BC03 31.11  92.31  4690 ISMN Naqu 17 31.125 92.375 

BC04 31.13  92.25  4609 ISMN Naqu 17 31.125 92.375 

BC05 31.17  92.20  4548 ISMN Naqu 18 31.125 92.125 

BC06 31.23  92.16  4491 ISMN Naqu 18 31.125 92.125 

BC07 31.27  92.11  4478 ISMN Naqu 19 31.375 92.125 

BC08 31.33  92.04  4470 ISMN Naqu 19 31.375 92.125 

CD01 31.71  92.46  4762 ISMN Naqu 20 31.625 92.375 

CD02 31.68  92.41  4612 ISMN Naqu 20 31.625 92.375 

CD03 31.66  92.34  4518 ISMN Naqu 20 31.625 92.375 

CD04 31.64  92.33  4491 ISMN Naqu 20 31.625 92.375 

CD05 31.59  92.24  4637 ISMN Naqu 21 31.625 92.125 

CD06 31.54  92.21  4769 ISMN Naqu 21 31.625 92.125 

CD07 31.50  92.13  4628 ISMN Naqu 19 31.375 92.125 

MS3475 31.95  91.72  4637 ISMN Naqu 22 31.875 91.625 

MS3482 31.89  91.70  4713 ISMN Naqu 22 31.875 91.625 

MS3488 31.84  91.71  4799 ISMN Naqu 22 31.875 91.625 

MS3494 31.81  91.75  4818 ISMN Naqu 22 31.875 91.625 

MS3501 31.75  91.78  4723 ISMN Naqu 23 31.875 91.875 

MS3506 31.72  91.81  4684 ISMN Naqu 24 31.625 91.875 

MS3513 31.68  91.84  4628 ISMN Naqu 24 31.625 91.875 

MS3518 31.66  91.79  4574 ISMN Naqu 24 31.625 91.875 

MS3523 31.64  91.75  4570 ISMN Naqu 24 31.625 91.875 

MS3527 31.61  91.74  4552 ISMN Naqu 25 31.625 91.625 

MS3533 31.59  91.79  4539 ISMN Naqu 24 31.625 91.875 
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MS3538 31.58  91.84  4575 ISMN Naqu 24 31.625 91.875 

MS3545 31.57  91.91  4671 ISMN Naqu 24 31.625 91.875 

MS3552 31.55  91.98  4574 ISMN Naqu 24 31.625 91.875 

MS3559 31.53  92.05  4516 ISMN Naqu 21 31.625 92.125 

MS3576 31.41  91.97  4517 ISMN Naqu 12 31.375 91.875 

MS3593 31.30  91.85  4574 ISMN Naqu 12 31.375 91.875 

MS3603 31.26  91.80  4630 ISMN Naqu 12 31.375 91.875 

MS3614 31.17  91.76  4633 ISMN Naqu 26 31.125 91.875 

MS3620 31.13  91.73  4765 ISMN Naqu 27 31.125 91.625 

MS3627 31.09  91.69  4736 ISMN Naqu 27 31.125 91.625 

MS3633 31.03  91.68  4675 ISMN Naqu 27 31.125 91.625 

MSNQRW 31.46  92.02  4537 ISMN Naqu 19 31.375 92.125 

MSBJ 31.37  91.90  4505 ISMN Naqu 12 31.375 91.875 

P1 31.78  91.73  4730 ISMN Naqu 22 31.875 91.625 

P2 31.74  91.73  4677 ISMN Naqu 25 31.625 91.625 

P3 31.69  91.72  4600 ISMN Naqu 25 31.625 91.625 

P5 31.61  91.91  4780 ISMN Naqu 24 31.625 91.875 

P7 31.67  91.90  4737 ISMN Naqu 24 31.625 91.875 

P8 31.74  91.87  4665 ISMN Naqu 24 31.625 91.875 

P9 31.73  91.77  4758 ISMN Naqu 24 31.625 91.875 

P10 31.81  91.85  4804 ISMN Naqu 23 31.875 91.875 

P11 31.82  91.80  4953 ISMN Naqu 23 31.875 91.875 

C1 31.68  91.77  4647 ISMN Naqu 24 31.625 91.875 

C2 31.69  91.81  4672 ISMN Naqu 24 31.625 91.875 

C3 31.61  91.77  4585 ISMN Naqu 24 31.625 91.875 

C4 31.62  91.84  4608 ISMN Naqu 24 31.625 91.875 

F1 31.69  91.80  4699 ISMN Naqu 24 31.625 91.875 

F2 31.70  91.79  4697 ISMN Naqu 24 31.625 91.875 

F3 31.72  91.80  4699 ISMN Naqu 24 31.625 91.875 

F4 31.70  91.77  4737 ISMN Naqu 24 31.625 91.875 

F5 31.69  91.79  4719 ISMN Naqu 24 31.625 91.875 

BC 31.37  91.98  4559 ISMN Naqu 12 31.375 91.875 

Note: a: Third Pole Environment Database: http://www.tpedatabase.cn/portal/ index.jsp; 955 

b: Central Tibetan Plateau Soil Moisture and Temperature Monitoring Network 956 

(version 2) in the International Soil Moisture Network (ISMN): 957 

http://ismn.geo.tuwien.ac.at/. 958 

 959 

 960 

 961 

 962 

 963 
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 964 

Table S2. Information of soil moisture data by remotely sensed and reanalysis soil 965 

moisture datasets. Note that SDSR is the abbreviation of the surface downward 966 

shortwave radiation. 967 

Datasets Duration Spatial scale 

Spatial resolution 

(lon×lat) 

ECV 1979-2014 global 0.25×0.25 

ERA-Interm 1979-2016 global 0.25×0.25 

MERRA 1980-present global 0.625×0.5 

Noah_2.0(GLDAS) 1948-2010 quasi-global 0.25×0.25 

Noah_2.1(GLDAS) 2000-present quasi-global 0.25×0.25 

Precipitation 1979-2010 China 0.1×0.1 

Temperature 1979-2010 China 0.1×0.1 

Wind velocity 1979-2010 China 0.1×0.1 

SDSR 1979-2010 China 0.1×0.1 
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 996 

Table S3. 26 GCM models from CMIP5 with modelling results of the surface soil 997 

moisture under scenarios of RCP2.6, RCP4.5 and RCP8.5. The models with asterisk (*) 998 

are those models with soil moisture data that are in positive correlation with historical 999 

soil moisture. 1000 

No. Model name Institute ID 

Resolution 

(Lon×lat) Historical RCP2.6 RCP4.5 RCP8.5 

1 ACCESS1.0 CSIRO-BOM 192×145 185001-200512  200601-210012 200601-210012 

2* ACCESS1.3 CSIRO-BOM 192×145 185001-200512  200601-210012 200601-210012 

3 CanESM2 CCCMA 128×64 185001-200512 200601-230012 200601-230012 200601-210012 

4* CNRM-CM5 

CNRM-

CERFACS 256×128 185001-200512 200601-210012 200601-230012 200601-230012 

5* CSIRO-Mk3.6.0 

CSIRO-

QCCCE 192×96 185001-200512 200601-210012 200601-230012 200601-230012 

6* FGOALS-g2 LASG-GESS 128×60 185001-200612 200601-210112  200601-210112 

7 FGOALS-s2 LASG-IAP 128×108 185001-200512 200601-210012  200601-210012 

8 GFDL-CM3 NOAA-GFDL 144×90 186001-200512 200601-210012 200601-210012 200601-210012 

9 GFDL-ESM2G NOAA-GFDL 144×90 186101-200512 200601-210012 200601-210012 200601-210012 

10 GFDL-ESM2M NOAA-GFDL 144×90 186101-200512 200601-210012 200601-210012 200601-210012 

11* GISS-E2-H NASA-GISS 144×90 185001-200512 200601-230012 200601-230012 200601-230012 

12 GISS-E2-H-CC NASA-GISS 144×90 185001-201012  200601-210012 200601-210012 

13 GISS-E2-R NASA-GISS 144×90 185001-200512 200601-230012 200601-230012 200601-230012 

14 GISS-E2-R-CC NASA-GISS 144×90 185001-201012  200601-210012 200601-210012 

15 HadGEM2-CC MOHC 192×145 185912-200511  200512-210012 200512-210012 

16 HadGEM2-ES MOHC 192×145 185912-200511 200512-229912 200512-229912 200512-229912 

17 INM-CM4 INM 180×120 185001-200512  200601-210012 200601-210012 

18 IPSL-CM5A-LR IPSL 96×96 185001-200512 200601-230012 200601-230012 200601-230012 

19* 

IPSL-CM5A-

MR IPSL 144×143 185001-200512 200601-210012 200601-230012 200601-210012 

20* IPSL-CM5B-LR IPSL 96×96 185001-200512  200601-210012 200601-210012 

21* MIROC5 MIROC 256×128 185001-201212 200601-230012 200601-210012 200601-210012 

22* MIROC-ESM MIROC 128×64 185001-200512 200601-210012 200601-230012 200601-210012 

23* 

MIROC-ESM-

CHEM MIROC 128×64 185001-200512 200601-210012 200601-210012 200601-210012 

24 MRI-CGCM3 MRI 320×260 185001-200512 200601-210012 200601-210012 200601-210012 

25 NorESM1-M NCC 144×96 185001-200512 200601-210012 200601-230012 200601-210012 
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26* NorESM1-ME NCC 144×96 185001-200512 200601-210112 200601-210212 200601-210012 

Note: All CMIP5 data are derived from https://esgf-node.llnl.gov/projects/esgf-llnl/. 1001 
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Table S4. Information on models with variables for modelling of aridity index, 1044 

terrestrial potential evapotranspiration, and precipitation under scenarios of RCP2.6, 1045 

RCP4.5 and RCP8.5. 1046 

 Model name 

Precipitation 

(pr) 

Max Temperature 

(tasmax) 

Min Temperature 

(tasmin) 

Relative humidity 

(hurs) 

Wind speed 

(sfcWind) 

RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 

1 ACCESS1-0 √ √   √ √  √ √  √ √  √ √ 

2 ACCESS1-3 √ √   √ √  √ √  √ √  √ √ 

3 bcc-csm1-1-m √ √ √             

4 bcc-csm1-1 √ √ √             

5 BNU-ESM √ √ √             

6 CanESM2 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

7 CCSM4 √ √ √             

8 CESM1-BGC √ √              

9 CESM1-CAM5 √ √ √             

10 CMCC-CESM √               

11 CMCC-CM √ √              

12 CMCC-CMS √ √              

13 CNRM-CM5 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

14 CSIRO-Mk3-6-0 √ √ √             

15 EC-EARTH √               

16 FGOALS-g2 √ √ √             

17 FIO-ESM √ √ √             

18 GEOSCCM     √   √   √   √  

19 GFDL-CM3 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

20 GFDL-ESM2G √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

21 GFDL-ESM2M √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

22 GISS-E2-H √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

23 GISS-E2-R √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

24 GISS-E2-H-CC √ √   √   √   √   √  

25 GISS-E2-R-CC √ √   √   √   √   √  

26 HadGEM2-AO √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

27 HadGEM2-CC √ √   √ √  √ √  √ √  √ √ 

28 HadGEM2-ES √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

29 inmcm4 √ √   √ √  √ √  √ √  √ √ 

30 IPSL-CM5A-LR √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

31 IPSL-CM5A-MR √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

32 IPSL-CM5B-LR √ √   √ √  √ √  √ √  √ √ 
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 1047 

 1048 

33 

MIROC-ESM-

CHEM √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

34 MIROC-ESM √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

35 MIROC5 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

36 MPI-ESM-LR √ √ √             

37 MPI-ESM-MR √ √ √             

38 MRI-ESM1 √               

39 MRI-CGCM3 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

40 NorESM1-M √ √ √             

41 NorESM1-ME √ √ √             
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