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Abstract
Two nested clinoform set types of different scales and steepness are mapped and 
analysed from high‐resolution seismic data. Restoration of post‐depositional faulting 
reveals a persistent pattern of small‐scale, high‐angle clinoforms contained within 
platform‐scale, low‐angle clinothems, showing a combined overall progradational 
depositional system. The large clinoforms lack a well‐defined platform edge, and 
show a gradual increase in dip from topset to foreset. A consistent recurring stratal 
pattern is evident from the architecture, and is considered a result of interplay be-
tween relative sea‐level change and autocyclic switching of sediment delivery focal 
points that brought sediment to the platform edge. This un‐interrupted succession re-
cords how intra‐shelf platforms prograde. Quantitative clinoform analysis may assist 
in determining the most influential depositional factors. Post‐depositional uplift and 
erosion requires restoration with re‐burial to maximum burial depth. Backstripping, 
decompaction and isostatic correction was performed assuming a range of lithologic 
compositions, as no wells test the lithology. Nearby wells penetrate strata basin-
ward of the clinoforms, proving mudstone content above 50%, which in turn guide 
restoration values. Typical restored platform heights are 250–300  m, with corre-
spondingly sized platform‐scale clinoform heights. Typical large‐scale clinoform 
foreset dip values are 1.3°–2.4°. Small‐scale clinothems are typically 100 m thick, 
with restored foreset dip angles at 4.4° −>10°. The results suggest that intrashelf 
platform growth occurs in pulses interrupted by draping of strata over its clinoform 
profile. The resultant architecture comprises small‐scale clinoforms nested within 
platform‐scale clinothems.
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1  |   INTRODUCTION

Seismic stratigraphic analysis of clinothem successions is 
a proven tool to constrain depositional history dynamics of 
basin margins, both onshore and offshore (e.g., Patruno & 
Helland‐Hansen, 2018). A single clinoform depicts a bathy-
metric profile that developed in response to sediment trans-
port and dispersal mechanisms at a given time. The rock 
volume between successive clinoforms, termed clinothems, 
is the depositional product of those processes.

Clinoforms develop at a range of scales, from >1 km high 
continental margin profiles, to less than 10 m high delta mouth 
bar units at the shoreline (e.g., Helland‐Hansen & Hampson, 
2009; Patruno, Hampson, & Jackson, 2015). Shelf prisms 
(sensu Patruno et al., 2015), or intrashelf platforms (sensu 
Mountain & Proust, 2010) are a few 100‐m high and develop 
within continental shelves, and constitute significant sediment 
volumes that are delivered into the basin beyond shoreline 
deltas, or during low relative sea‐level when the shoreline is 
displaced basinward. Intrashelf platforms are differentiated 
from subaqueous deltas in Patruno et al. (2015) as larger fea-
tures that develop in a distal position from the subaqueous 
delta component, and are not always developed or discernible 
on seismic data. Subaqueous delta clinoforms are reported to 
represent an intermediate scale between shoreline deltas and 
shelf platform, but there are overlapping values when compar-
ing schematic representations of hierarchical breakdowns of 
clinoform sizes (see Patruno et al., 2015; Figure 1).

The conventional subdivision of a clinoform's compo-
nents constitutes a low‐angle topset and bottomset, separated 
by a steeper foreset component, with the point of maximum 
curvature between the topset and foreset commonly termed 
the rollover point, platform edge, or shelf edge, depending 
on context and scale (Patruno & Helland‐Hansen, 2018). 
Successive clinoforms reflect how progradation of sediments 
into a basin occurred. Any relative changes in appearance be-
tween successive clinoforms is a representation of changes in 
depositional conditions such as sediment influx rate, water 
depth, sediment composition and character, and physical pro-
cesses acting on the sea floor.

Recent studies have quantitatively analysed clinoforms 
in an effort to use their geometric expressions as a proxy to 
determine lithologies and thereby reservoir potential (e.g., 
Anell & Midtkandal, 2017; Patruno & Helland‐Hansen, 
2018). For example, Patruno et al. (2015) noted that the fore-
set dip‐angles of shelf‐prism clinoforms are 0.6°–4.7°, with-
out reference to lithology.

Accurate description and interpretation of clinoforms' 
geometric attributes relies on seismic resolution coupled 
with accurate acoustic velocity information about the strata 
in question. Restoration of clinoform dip‐angles also requires 
reliable palaeo‐horizontal datum surfaces. Additionally, the 

present‐day observed geometries of the buried clinoforms 
have to be backstripped and restored to time of deposition, 
taking into account the effects of post‐depositional compac-
tion and differential loading during burial.

This study is focused on a Cretaceous succession on the 
Bjarmeland Platform, southwestern Barents Sea (Figure 1a). 
The succession is imaged in conventional and high‐resolution 
seismic data. The aim is to provide a detailed description of 
the clinoform architecture based on a method for accurate re-
construction of their internal geometries involving backstrip-
ping and decompaction from maximum burial followed by an 
isostatic correction for differential loading effects according 
to lithologic composition, and to discuss their development in 
light of their restored geometric expression.

2  |   GEOLOGICAL SETTING—THE 
BOREAL BASIN AND THE BARENTS 
SEA

The studied succession belongs to the Kolje Formation 
of inferred Barremian‐Aptian age (Worsley, Johansen, & 
Kristensen, 1988), the most distal component of a fluvial to ma-
rine sediment routing system running from NW to SE (Figure 
1a, b) in  response to a regional forced regression (Døssing 
et al., 2013; Midtkandal & Nystuen, 2009). The correspond-
ing onshore strata on Svalbard are the Helvetiafjellet and 
Carolinefjellet formations, mapped as fluvial to tidally influ-
enced marginal marine, to storm‐influenced open marine shelf 
strata (Grundvåg et al., 2017). Cenozoic uplift and erosion has 
removed around 2,200–2,400 m of the stratigraphic record in 
the area (Baig, Faleide, Jahren, & Mondol, 2016; Henriksen et 
al., 2011), and the preserved strata can be imaged at very high 
resolution with P‐Cable technology due to their present shal-
low burial depth (Lebedeva‐Ivanova et al., 2018). The strata 
represent intrashelf clinothems that prograded into the epicon-
tinental Boreal Basin towards SE (Midtkandal et al., in press). 
The Kolje Formation developed partly as a prograding shelf 
platform in the Bjarmeland Platform area (Figure 1c), and also 
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includes its distally equivalent and horizontally layered undif-
ferentiated marine strata (not studied here). It is mudstone‐rich 
based on available well data from adjacent areas.

The Valanginian‐Hauterivian Knurr and Klippfisk for-
mations (Smelror, Larssen, Olaussen, Rømuld, & Williams, 
2019; Smelror, Mørk, Monteil, Rutledge, & Leereveld, 1998) 
form the substrate onto which the clinoform‐bearing strata 
prograded. They are dominantly open marine horizontally 
layered mudstones (Knurr Fm.) that transition into open ma-
rine platform carbonates towards SE (Klippfisk Fm.). The 
Kolmule Formation overlies the Kolje Formation (Figure 1b).

3  |   SEISMIC DATA AND ANALYSIS

A grid with 2–5 km line spacing of conventional 2D seismic 
survey profiles cover the entire study area (Figure 1). A 3D 
volume of conventional seismic data covers a portion of the 
western study area, and is used to calibrate true dip direc-
tion observations from 2D high‐resolution data (details in 
Corseri et al., 2018; Midtkandal et al., in press). A composite 

high‐resolution 2D line covers parts of the study area, and is 
complemented by two small 3D P‐Cable volumes (Figure 1a) 
(resolution details in Corseri et al., 2018; Lebedeva‐Ivanova 
et al., 2018). The high‐resolution 2D line forms the most im-
portant data set in this study. No wells penetrate the clinothem 
succession in the Kolje Formation, but the wells 7324/2‐1 
(Apollo) and 7325/1‐1 (Atlantis) drilled the horizontally lay-
ered strata less than 5 km SE of the youngest clinoform topset 
(Figure 1a). Age data beyond a general Barremian‐Aptian 
dating of the whole platform succession is non‐existent, pre-
venting any sediment accumulation rate analysis.

Restoration of strata to their original depositional volumes 
is necessary in order to calculate thickness and dip‐angles 
correctly. The method for accurately restoring the clinoforms/
clinothems to their correct geometric and volumetric expres-
sion immediately following deposition is as follows:

3.1  |  Flattening and fault restoration
Post‐depositional faulting and erosion  impedes tracing 
of palaeo‐horizontal surfaces above the clinoforms with 

F I G U R E  1   (a) Map of the western 
Barents Sea, with study area and seismic 
data coverage. Conventional 2D data grid 
is not shown, as it would obscure the other 
data. Note that the P‐Cable 3D volumes 
are very narrow, and appear as lines on 
the map. (b) Lithostratigraphy with ages 
and key horizons. (c) Unflattened seismic 
profile (labeled) shown in Figure 3a, b. 
Seismic data courtesy of TGS, WGPS, and 
VBPR
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confidence. Most reflectors curve gradually from topset posi-
tion towards the downlap point (Figure 3a, b), and thus only 
function as horizontal datum surfaces in their most proximal 
(NW) portions, but remain unfit for flattening of successive 
clinothem sets, the preferred method in Klausen and Helland‐
Hansen (2018). The basin floor that the platform prograded 
onto is assumed to have been close to horizontal and smooth 
at the time of deposition (Midtkandal & Nystuen, 2009). 
Flattening along this clinoform downlap surface restores 
local topset surfaces back to a sub‐horizontal position parallel 
to the downlap surface. This validates the downlap surface as 
a palaeo‐horizontal datum for this study and roughly restores 
faults within the sediment volume. This fault‐restoration by 
flattening creates zones around the faults that may appear as 
disturbed stratigraphy (marked on Figure 3a).

3.2  |  Backstripping and decompaction
Clinoform backstripping and decompaction from maximum 
burial is necessary for calculations of original height and dip, 
after corrections for exhumation since maximum burial is 
performed. The decompaction follows the principles of Allen 
and Allen (2013), building on the classical paper by Sclater 
and Christie (1980). With this approach, correct decompac-
tion can only be attained through considering the maximum 
burial depth at which the unit has been buried, and then de-
compacting accordingly:
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In Equation 1, y′
2
 is the base decompacted layer; y′

1
 is top 

decompacted layer; y2 is the base layer at maximum burial; y1 
is the top layer at maximum burial; �

0
 represents the surface 

porosity; and c is the porosity‐depth coefficient. The top of 
the decompacted layer is assumed to be at zero (y�

1
=0), for 

simplicity. y�
2
−y�

1
 is thus the decompacted thickness (h2 in 

Figure 2) of a target feature. The surface porosity and the po-
rosity‐depth coefficient vary according to the shale and sand 
content. In this case, the values for 90% shale (�

0
  =  0.61, 

c = 0.48), 50/50% shale‐sand (�
0
 = 0.56, c = 0.39) (Allen & 

Allen, 2013; Rüpke, Schmalholz, Schmid, & Podladchikov, 
2008; Sclater & Christie, 1980) are applied.

Decompaction increases the height of the clinoforms and 
consequently the restored dip angles. At present, the studied 
clinoforms are located a few hundred metres and less below 
the seabed, but prior to Late Cenozoic uplift and erosion they 
were buried ~2,300 m deeper (Baig et al., 2016; Henriksen 
et al., 2011). The maximum burial depth for top Kolje 
Formation (y1, Equation 1) is estimated to be the sum of net 
erosion and the present day Kolmule Formation  thickness 
(2,300 m + 150 m = 2,450 m) (Figure 2). A seismic veloc-
ity of 2,900 m/s is measured for the Kolje Formation in well 
7324/2‐1 (Figure 1a), and is used for depth‐conversion of the 
target strata, excluding present‐day water depth (~400  m) 
(Figure 3). This velocity is typical also for mudstones at 
present‐day maximum burial depths of 2,200–2,500 m, with 
~20% porosity in the North Sea (Marcussen, Faleide, Jahren, 
& Bjørlykke, 2010), validating the values applied here. Using 

F I G U R E  2   (a) Sediment thickness restoration method, with decompaction from maximum burial depth where 2,300 m eroded section has 
been added based on Henriksen et al. (2011) and Baig et al. (2016). (b) Calculation steps from present burial depth (bottom), via an intermediate 
calculation step that restores thickness from maximum burial depth according to lithologic decompaction coefficients (middle), and Airy isostatic 
correction (top)
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this velocity, it is also assumed that the thickness at maxi-
mum burial is equal to the present‐day thickness.

3.3  |  Effect of differential loading and 
Airy isostasy
Restoration of a clinoform to its original dimensions and 
geometry also requires isostatic compensation for the dif-
ferential load above the clinoform (Allen & Allen, 2013). 
Neglecting this will lead to exaggerated relief and overesti-
mated dip angles. Accounting for isostatic subsidence related 
to differential loading reduces the decompaction effect. Airy 
isostasy is calculated according to:

Y in Equation 2 is the depth to base of the target fea-
ture after correction for decompaction and Airy isostasy. 
Decompaction was calculated by applying the thickness ratio 
between restored (h3 in Figure 2) and present‐day thicknesses 
(h1 in Figure 2), and applied to target depth‐converted heights 
in the profile (Figure 3). Assuming a 90% mudstone lithol-
ogy, the restored clinoform height, based on backstripping, 
decompaction and Airy isostatic correction for differential 
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)
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loading (Allen & Allen, 2013) increases by ~16% compared 
to the measured thickness of the present buried clinothem, 
while ~5% increase is restored from 50/50% sandstone/mud-
stone (Figure 2). Error ranges are calculated from maximum 
and minimum values for Vp (2,800–3,000 m/s), sediment den-
sity (1,750–1,950  kg/m3), mantle density (3,200–3,400  kg/
m3), and erosion estimates (2,200–2,400  m). These ratios 
were used for the restoration of stratigraphic thicknesses, 
and thereby calculation of the original dips of selected clino-
forms. Ideally, the clinoform geometries should be restored 
by a 2D basin modelling tool, which in addition to the back-
stripping and decompaction take into account eustatic sea 
level and paleobathymetry, as well as testing effects of differ-
ential loading for both Airy and flexural isostasy. However, 
such an approach is beyond the scope of this short paper.

4  |   DEPOSITIONAL 
CHARACTERISTICS

The open marine shelf platform clinoforms pictured in Figure 
3a, b developed an unknown distance from the contempo-
rary shoreline. Two clinoform scales are discernible within 
the high‐resolution seismic data. The selected seismic profile 
(Figure 3a, b) is oriented sub‐parallel to the sediment trans-
port direction, and thus exhibits close to maximum clinoform 

F I G U R E  3   (a) Seismic profile from Figure 1c, flattened along common large‐scale clinoform downlap surface for restoration of post‐
depositional faulting. Yellow numbered lines are features detailed in table at bottom. Note marked areas with artefacts near faults. (b) Seismic 
profile with interpretations, showing small‐scale, high‐angle clinoforms, and platform‐scale, low‐angle clinoforms. (c) Measured and restored 
stratal thicknesses and dip angles from selected features in profile above. Seismic data courtesy of TGS, WGPS, and VBPR
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dip angles. The observations are organized according to the 
two scales of clinoform architecture; one large‐scale clino-
form set matches the total height of the sedimentary succes-
sion, and smaller sets contained within some of the large‐scale 
clinothems.

The large‐scale clinoforms are aggradational‐prograda-
tional, platform‐sized features that exhibit a generally well 
preserved topset—foreset—toeset sigmoid shape with rel-
atively low foreset angles compared to the small‐scale fea-
tures (described below) (Figure 3). Several clinoforms lack a 
well‐defined platform edge where the sub‐horizontal topset 
component meets a steeper foreset in a well‐defined rollover. 
Instead, the transition is gradual, shown as increasing topset 
divergence, and makes identification of the platform edge 
problematic. The corresponding large‐scale clinothems drape 
the entire platform, and some contain small‐scale clinoforms 
and clinothems within them (Figure 3a, b). Even without 
readily identifiable platform edge points, the shelf edge tra-
jectory is flat to rising, as the topsets are largely preserved. 
The total platform height and its corresponding clinothems 
decrease slightly towards SE, suggesting an overall falling 
trajectory. Typical foreset dip values range between 1.3° and 
2.2° (±0.3°) for 50% mudstone/sandstone, and 1.5°–2.4° 
(±0.3°) for 90% mudstone; 10% sandstone (Figure 3). Tilted 
topset dip‐angles range around 0.8° (±0.01°) for both 50% 
and 90% mudstone restoration values (Figure 3c). Clinothem 
thicknesses vary depending on picked surfaces and interpre-
tation. The clinothem marked as no. 2 in Figure 3a restores 
to 89 m for 50% mudstone composition, and 98 m for 90% 
mudstone.

Small‐scale clinoforms are contained within large‐scale 
clinothems, and are only visible in the high‐resolution seis-
mic data. They downlap onto large‐scale clinoforms, or 
onto the basin floor. Their corresponding toplap surfaces 
are generally defined by the overlying large‐scale clinoform 
surface, which ultimately laps down onto the basin floor 
further into the basin. Topsets are preserved in the youngest 
small‐scale clinoforms (Figure 3). Their parent clinothem 
is typically sigmoid (incremental thickness increase fol-
lowed by decrease). Small‐scale clinoforms show varying 
degrees of obliquity between successive sets, while single 
sets retain a consistent obliquity (Figure 3b). The small 
clinoforms are generally steeper than their bounding large‐
scale clinoforms, and exhibit straight and parallel foresets. 
Small‐scale foreset angles range from 4.4° to 10.0° (±1.0°) 
depending on restoration (Figure 3c) (note that 10.7° is 
considered steeper than what is considered possible for in-
trashelf clinoforms by Patruno et al., (2015)). Their down-
lap terminations, relatively poorly resolved in the seismic 
data, appear abrupt and high‐angled compared to the large‐
scale clinoforms. There is no discernible evidence of sig-
nificant topset erosion directly above, or in their proximal 
contemporaneous strata.

5  |   DISCUSSION: CLINOFORM 
DEVELOPMENT AND SHELF 
PLATFORM GROWTH

The periods represented by aggradational to progradational 
development of large‐scale clinothems either reflect marine 
flooding, or periods when the sediment delivery focal point 
was offset from the basin site represented by the trajectory 
recorded in the seismic profile (Figure 3). A flat to rising 
rollover trajectory coupled with overall platform height de-
crease reflects early, syn‐sedimentary compaction. The drap-
ing strata contributed significantly to the platform growth, 
both vertically and basinward, despite the absence of small‐
scale clinoforms, and is another example of muddy platform 
growth by sediment delivery to the platform margin by storm 
agitation of shelf platform mud (Poyatos‐Moré et al., 2016). 
If the draping strata developed while small‐scale clinoforms 
prograded in a lateral position along the platform front, it 
may imply a greater lithologic contrast between the small‐
scale clinothems and the platform‐scale clinothems. As noted 
above, restoration of the steepest foresets according to 90% 
mudstone composition yields gradients that are very close to 
what is considered unrealistic (Patruno et al., 2015), suggest-
ing these clinothems may contain more than 10% sandstone. 
In this scenario, coarser material was probably delivered to 
and across the platform edge in one area, causing it to pro-
grade rapidly, while sediment partitioning caused mud to 
accumulate elsewhere. This may reflect a variable shelf plat-
form width along the shelf platform strike, such as suggested 
in Jones, Hodgson, and Flint (2015), which is conceivable 
when considering the lobate downlap front as mapped by 
Midtkandal et al. (in press) (Figure 1a).

The small‐scale clinothems' characteristic and consistent 
steep and straight foresets coupled withabrupt, high‐angle 
downlap terminations suggest that accumulation of sedi-
ment along the platform front (i.e., progradation) occurred by 
gravitational sediment transport. The small‐scale clinothems 
are consequently assumed to consist of mass‐flow products. 
Consistent obliquity within successions is indicative of a 
common progradation direction during their development. 
Consistent lithologic variation in mudstone:sandstone ratio 
within the sets is a likely cause of their well‐defined seis-
mic resolution, which may stem from high‐frequency pulses 
of accumulation coupled with abandonment. The origins of 
the two orders of sediment influx rate recorded in the data 
cannot be determined to represent specific forcing mecha-
nisms without information on duration and their lithological 
composition.

The observed lowering towards the basin floor of the 
topset surface belonging to the small‐scale clinoforms is enig-
matic. Considering their toplap surface is a clinoform foreset 
itself in several places, a horizontal restoration of this sur-
face can be ruled out. If these clinothems are platform‐edge 
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deltas (shelf‐edge deltas sensu Patruno & Helland‐Hansen, 
2018), it implies the improbable scenario that they recorded 
a relative sea‐level fall that matched the full platform height 
(>250 m) several times during the platform growth. This is 
supported by the absence of any discernible erosional scours 
at the rollover zone or in the topset strata. A more likely ex-
planation is that the small‐scale clinothems are fan‐shaped in 
3D, as is supported by obliquity variations, and that these cli-
nothems are dip‐parallel profiles located in lateral positions 
to fan apices.

Direct dip measurements and inference of lithologies and 
trajectories in this setting have limitations. During burial and 
compaction, differences in lithology within a sedimentary 
unit will cause differences in their appearance when resolved 
in seismic data. This process begins already at shallow burial, 
when successive clinothems cover their older equivalent 
during shelf platform progradation. The marked differences 
in dip‐angles reported here suggest lithology contrasts that 
warrant differing decompaction coefficients for different 
clinothems. A clinothem‐by‐clinothem successive backstrip-
ping may improve restoration of thickness and dip, but is 
ultimately founded on seismic resolution andinterpretations 
of rock volumes with poorly constrained lithologic composi-
tion. As an example, the vertical profile marked 1 in Figure 
3a includes ~65% large‐scale clinothem, and ~35% small‐
scale clinothem with high‐angle foresets, without accounting 
for differences in velocity (Figure 3b). Their presumed differ-
ences in lithologic composition would return a reduced bulk 
net:gross value, a reduced thickness value after restoration, 
with correspondingly lower foreset angles.

As a whole, this alternating architecture of two nested 
clinoform scales is indicative of how the overall progradation 
of intrashelf platforms sediments prograde; autocyclic com-
pensational stacking occurs incrementally at different sedi-
ment delivery points along the platform margin, with slightly 
different directions. These recurring shifts in obliquity are 
evident in other intrashelf clinoforms also (Hodgson et al., 
2018). The progradation rate was highest when the small‐
scale clinoforms developed, and the variation in clinoform 
obliquity between sets reflects differences in local prograda-
tion direction and autocyclic compensation along the platform 
front. Alternating periods of lower sediment accumulation 
caused draping across the entire platform profile, and a pre-
sumed reduced intrashelf platform progradation rate, at least 
locally (Figure 3b). Where sediment delivery points overlap 
but differ in progradation direction, successive sets of differ-
ent obliquity is discernible in seismic profiles. Jones et al. 
(2015) identified different platform‐edge trajectories along 
contemporaneous, directly correlatable strata in the Karoo 
Basin, and warned against inferring basin development his-
tory from single 2D datasets. While beyond the scope of this 
study, an effort to laterally map related clinothem sets such as 
those outlined in Figure 1a may test this model further.

6  |   CONCLUSIONS

•	 Intrashelf platform growth occurs in progradational pulses 
interrupted by draping of strata over its bathymetric pro-
file, leading to nested clinoform architecture.

•	 The platform‐scale clinothems may develop during flood-
ing periods, or when depositional focus is directed else-
where along the intrashelf platform front.

•	 Subtle differences in obliquity between sets of small‐scale 
clinoforms demonstrate that compensational stacking oc-
curs along the platform front.

•	 Any inferences on lithology or comparisons to other stud-
ies need to consider maximum burial depth and lithologic 
composition prior to restoration.
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