
1147 © 2019 The Authors Journal of Hydroinformatics | 21.6 | 2019

Downloaded from http
by UNIVERSITY OF O
on 04 February 2020
Modeling saltwater intrusion using an integrated

Bayesian model averaging method in the Pearl River Delta

Kairong Lin, Pengyu Lu, Chong-Yu Xu , Xuan Yu, Tian Lan

and Xiaohong Chen
ABSTRACT
The reverse flow of seawater causes salinity in inland waterways and threatens water resources of

the coastal population. In the Pearl River Delta, saltwater intrusion has resulted in a water crisis.

In this study, we proposed a tailored approach to chlorinity prediction at complex delta systems like

the Pearl River Delta. We identified the delayed predictors prior to optimization based on the maximal

information coefficient (MIC) and Pearson’s correlation coefficient (r). To achieve an ensemble

simulation, a Bayesian model averaging (BMA) method was applied to integrate temporally sensitive

empirical model predictions given by random forest (RF), support vector machine (SVM), and Elman

neural network (ENN). The results showed that: (a) The ENN performed the worst among the three;

(b) The BMA approach outperformed the individual models (i.e., RF, ENN, and SVM) in terms of Nash–

Sutcliffe efficiency (NSE), and the percentage of bias (Pbias). The BMA weights reflect the model

performance and the correlation of the predictions given by its ensemble models. (c) Our variable

selection method resulted in a stronger model with greater interpretability.
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INTRODUCTION
Saltwater intrusion is becoming a global issue in coastal

zones due to sea-level rise (Nicholls & Cazenave ),

storm surges (Howes et al. ), and water withdrawal

(Wu et al. ). Deltas are highly sensitive to saltwater

intrusion risk due to local human activities and complex

dilution and mixing mechanisms (Tessler et al. ). It

is challenging to understand intrusion processes for

salinity prediction and water resource management (Passeri

et al. ).
Physics-based numerical models are widely applied

to saltwater prediction. Wang et al. () explored the

dynamic mechanism of saltwater intrusion and the influencing

factors with a high-resolution three-dimensional (3D) numeri-

cal model based on the Finite Volume Coastal Ocean Model

(FVCOM), which covered the entire river network, the Pearl

River Estuary, and the adjacent sea. Gingerich & Voss

() designed a 3D-SUTRA model of groundwater flow

and solute transport in the Pearl Harbor aquifer in southern

Oahu, Hawaii by incorporating a two-dimensional (2D)

cross-sectional model with a realistic areal distribution of the

hydrogeological structure, recharge, and pumping. Yu et al.

() explored the role of a river network in saltwater intru-

sion due to storm surges using a coupled surface-subsurface
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model HydroGeoSphere. The performance of numerical

models relies on large amounts of available observed chlori-

nity and hydrological data, high-resolution estuarine

topography data, as well as significant efforts for setting up,

code compiling, and computational resources.

Salinity prediction of saltwater intrusion has benefited

from recent advances in machine learning techniques.

Various machine learning techniques have been applied to

empirical saltwater intrusion prediction models (Liu et al.

). Dong et al. () developed a coupled neural network

model combining backpropagation and a real coding-

based accelerating genetic algorithm (BP-RAGA) to predict

saltwater intrusion in the Ping Gang water source of

Zhuhai city and used the tidal range of the water resources

and the observed flows in the upstream hydrological station

for the last day as influencing factors. Lal & Datta ()

investigated the feasibility of using support vector machine

(SVM) for predicting salinity concentrations at selected

monitoring wells in an illustrative aquifer under variable

groundwater pumping conditions. Unlike sophisticated

physics-based numerical models, empirical models provide

a fast response based on observations specific to the study

area in a quick manner (Rohmer & Brisset ), which

can identify the highly complex interactions between

influencing factors and output variables.

Empirical models require the selection of key factors

affecting chlorinity. Usually, the influencing factors are the

antecedent conditions. The chlorinity in areas of saltwater

intrusion not only has its own periodic characteristics but

also is subject to many external forcings, including river

discharge, tides, and wind (e.g., Leonard ; Mao et al.

; Ralston et al. ; Becker et al. ; Uncles &

Stephens ). Previous studies on empirical saltwater

prediction models have used the influencing factors for

the current day or the last day as predictors (e.g., Dong

et al. ; Yoon et al. ) and neglected to quantify the

inner periodic characteristics of chlorinity, as well as

the delay for the chlorinity to respond to its factors in the

preprocessing stage. It has been shown that the model inter-

pretability is improved and the generalization is enhanced

by reducing overfitting when the predictors most directly

linked to the predictions are selected in the preprocessing

stage based on a correlation analysis (Tan et al. ).

Relationship coefficients are usually used in a correlation
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analysis to measure the attribute similarity. Pearson’s corre-

lation coefficient is widely used because it is easy to

calculate. However, Pearson’s coefficient (r) is only appro-

priate for linear relationships (Zhao et al. ). As a result

of multiple impacts from the tide, upstream discharges,

wind, and other factors, saltwater intrusion is a highly

complex process containing both linear and nonlinear sig-

nals (Liu et al. ). The maximal information coefficient

(MIC), which was proposed by Reshef et al. (), can

measure a wide range of possible dependencies, including

linear and nonlinear associations. Consequently, we expect

that the MIC and Pearson’s correlation coefficient can be

used to capture the nonlinear and linear relationships

between saltwater intrusion and the influencing factors.

Although the random forest (RF), SVM, and Elman

neural network (ENN) have been successfully used for salt

tide prediction, they are black-box models and have their

own limitation and uncertainty. A multi-model ensemble

strategy is required to exploit and integrate the diversity of

a skillful prediction from different models and to reduce

their uncertainty. Bayesian model averaging (BMA) is a

weighted average of a number of individual models. Various

studies have shown that BMA outperformed individual

models. Neto et al. () used BMA to merge different

model configuration results into a single streamflow prob-

abilistic prediction; the BMA simulation showed higher

accuracy and precision than all simulations produced

by the ensemble members. Zhang et al. () analyzed

the uncertainty of three reservoir operating rules using the

BMA method; the results showed that BMA reduced

the uncertainty of the operating rules, which is of great

potential benefit for evaluating the confidence interval of

the decisions. The expectation-maximization (EM) method

is easy to implement for the estimation of the BMA weights

(e.g., Raftery et al. ; Liu &Merwade ). Therefore, we

expect that BMA can be used to combine machine learning

empirical models for better chlorinity prediction.

The Pearl River Delta is considered one of the world’s

most complex river networks. The river network density

is around 0.8 km/km2. The river channels of Pearl River

Delta have changed rapidly due to climate change and

human activities, which have a significant impact on the

hydrological processes and the environment (Lin et al.

). Due to the complexity of the estuary circulation and
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the density of its river network, it is difficult to develop

process-driven numerical models covering the entire estuary

for a wide range of spatial and temporal scales and account

for a variety of physical processes.

The main goal of the study is to develop a correlation-

based selection process and flexible chlorinity predicting

approach tailored for complex delta systems like the Pearl

River Delta. To achieve this objective, we: (a) use the MIC

and Pearson’s correlation coefficient (r) to quantify the

periodic characteristic of chlorinity and the time-lag for chlori-

nity in response to its influencing factors in an important

waterway of the Pearl River Delta; (b) develop four flexible

model series with different sets of predictors to predict chlori-

nity for the river delta and for each model series, SVM, RF,

and ENN are used; (c) use BMA to integrate SVM, RF, and

ENN to generate an integrated and robust empirical statistical
Figure 1 | Flowchart of the chlorinity ensemble-based forecast generation using Bayesian mo
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saltwater prediction model with high accuracy. Our study

demonstrates the advantages of our integrated temporally sen-

sitive empirical model for chlorinity prediction, which may be

applicable in other complex delta systems.
METHODOLOGY

The framework of the BMA ensemble approach

The framework of the BMA ensemble approach is summar-

ized as follows (Figure 1). The details about MIC, r, BMA,

RF, ENN, SVM are presented in the Supplementary material.

1. The MIC and r are used to determine the periodic charac-

teristic of chlorinity time series and the time-lag for
del averaging method.
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chlorinity to respond to its influencing factors. It is

assumed that the delayed predictor with the maximal

MIC or the maximal r value has the strongest correlation

with the target chlorinity.

2. Time series of historical chlorinity, tidal level, discharge,

and wind are selected as model inputs. To clarify the

effect of the influencing factors on the chlorinity predic-

tion, four series of models are developed: (1) Model one

using historical chlorinity as the only factor; (2) Model

two using historical chlorinity and tidal level as factors;

(3) Model three using historical chlorinity, tidal level,

and discharge as factors; and (4) Model four using histori-

cal chlorinity, tidal level, discharge, and wind as factors.

For each model, the RF, SVM, and ENN models are

used to predict the chlorinity at Pinggang station.

3. The BMA ensemble model is derived based on the

predictons given by RF, SVM, and ENN.

Model training and testing criteria

In this study, model parameters are optimized to maximize

Nash and Sutcliffe efficiency (NSE) between observed and

calculated values, which are shown in Equation (1). NSE is

a widely used efficiency criterion for hydrological model

assessment (e.g., Nash & Sutcliffe ; Lin et al. ).

Grid search approach is used to derive the optimal parameter

set for each model. Five-fold cross-validation is used to

account for the bias caused by data randomness. Prior to

model training, the model inputs are normalized to [�1, 1].

Models are evaluated using NSE and percent bias

(Pbias), which are shown in Equations (1) and (2). Pbias

and NSE have been commonly used in pairs in hydrological

model evaluation (Viney et al. ; Vaze et al. ; Yang

et al. ). NSE is not very sensitive to systematic model

over-prediction or under-prediction (Krause et al. ), so

an additional criterion, Pbias, is needed to measure the over-

all adequacy between distributional statistics of predicted

and observed data (Hauduc et al. ):

NSE ¼ 1�
Pn

i¼1 (Pi �Oi)
2

Pn
i¼1 (Oi �O )

2 (1)

Pbias ¼ 100 ×
�P� �O

�O
(2)
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where Oi represents the observed chlorinity and Pi

represents the simulated chlorinity.

The modeling processes were all programed on Matlab.
STUDY AREA AND DATA

Study site

The Modaomen waterway (Figure 2(b)), one of the eight

outlets in the Pearl River Delta (Figure 2(a)), is located

downstream of the West River between latitudes 22�N and

22�400N and longitudes 113�E and 113�400E. Among eight

outlets, the Modaomen waterway runs from north-northwest

to south-southeast, and has the largest (about one-third)

river discharge of the runoff from the Pearl River system

(Zhang et al. ).

In the Pearl River Delta of China, the Modaomen water-

way is the main source of drinking water for the cities of

Jiangmen, Zhongshan, Zhuhai, and Macao. Saltwater intru-

sion occurs in the dry season, such as on November 1, 2005,

to February 28, 2006, and greatly affects the residential and

industrial water supply.

Due to the importance of water supply security for

the Pearl River Delta, the Modaomen waterway in the

Pearl River Delta was selected as the study area to demon-

strate the applicability of the BMA ensemble approach

using the RF, SVM, and ENN-based empirical models.

Data collection

Saltwater intrudes upstream during the dry season from

November to February as the river discharge decreases and

tidal mixing increases. Hence, the data sets in this study were

collected during the dry seasons from 2005 to 2008 (Table 1).

The field data consist of daily chlorinity levels at

Pinggang station, daily tidal levels at Denglongshan gauging

station, daily discharges at the Makou hydrologic station,

and daily wind measurements at Zhongshan station. The

total length of the continuous monitored target chlorinity

time series was 360 days (2005/11/1–2006/2/28, 2006/

11/1–2007/2/28, 2007/11/1–2008/2/28). Using a 7:3 split

(Klemeš ), the first 254 observations were used as the

training set and the last 30%, 106 observations, were used

as the testing set.



Figure 2 | (a) Map of the Pearl River Delta area; (b) map of the Modaomen waterway and the location of the hydrological stations. Note: (1) The area within the rectangle with two arrows in

(a) represents the area in (b). (2) The daily chlorinity levels are collected at Pinggang station, daily tidal levels are collected at Denglongshan gauging station, daily discharges are

collected at the Makou hydrologic station, and daily wind measurements are collected at Zhongshan station.

Table 1 | Data collection for salt tide analysis

Target Predictors for correlation analysis and model construction

Salt tide factors Chlorinity Chlorinity (delayed) Tidal level (delayed) Discharge (delayed) Wind (delayed)

Sample type Continuous monitored daily observations

Station Pinggang Pinggang Denglongshan Makou Zhongshan

Time series 2005/11/1–2006/2/28 2005/10/1–2006/2/28
2006/11/1–2007/2/28 2006/10/1–2007/2/28
2007/11/1–2008/2/28 2007/10/1–2008/2/28
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To quantify the wind effect on the saltwater intrusion, a

polar coordinate system with the positive direction north-

northwest was used because the saltwater intrusion is

decreased by the downstream winds and increased by the

upstream winds. The wind effect on the saltwater intrusion

was quantified by mapping the wind vector (F, x) with

regard to the polar coordinate:

F0 ¼ F × cos
π

8
× x

� �
(3)
s://iwaponline.com/jh/article-pdf/21/6/1147/623426/jh0211147.pdf
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where F denotes the magnitude of the wind vector and
π

8
× x

is the polar angle of the wind vector.
RESULTS AND DISCUSSION

Correlation analysis results

The delayed predictors were selected using the MIC and r

for the correlation analysis. The auto-correlation analysis



Figure 3 | Results of maximal coefficient information (MIC) correlation analysis of (a) chlorinity and between (b) chlorinity and tidal level time series; (c) chlorinity and upstream discharge

time series; (d) chlorinity and wind time series. Note: The MIC correlated analysis is conducted between observed chlorinity (2005/11/1–2006/2/28, 2006/11/1–2007/2/28, 2007/

11/1–2008/2/28) with 0–31 days earlier observed influencing factors (historical chlorinity, tidal level, discharge, and wind).
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results of the chlorinity time series at Pinggang station and

the cross-correlation analysis results between the chlorinity

at Pinggang station and the tidal level at Denglongshan

station, the upstream discharge at Makou station, and the

wind data at Zhongshan station are shown in Figures 3

and 4.

Predictors with the maximal correlation to the target

chlorinity were selected based on the correlation analysis

results of the periodic characteristics and the time-lag

relationships (Table 2). According to the results of MIC analy-

sis, 14, 15, 16 days earlier chlorinity, 9 days earlier tidal level,

2 days earlier discharge, and 2 days earlier wind were selected

as delayed predictors. Based on r, 10 days earlier tidal level

and 3 days earlier wind were also selected.
SVM model training results

The main parameters of the SVM models were the error

penalty for C and γ with ε fixed at 0.01. The NSE
om https://iwaponline.com/jh/article-pdf/21/6/1147/623426/jh0211147.pdf
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distributions of C and γ for the four models are shown in

Figure 3. For the x-axis and y-axis, the log2 C and log2 γ are

in the range of [�10, 10] with increments of 0.5. The vari-

ations of the NSE are presented in the supplementary

material (Figure S1). The paired parameters (C, γ) used for

the SVM models are (2.00, 0.25), (1.00, 0.13), (0.71, 0.50,

and (1.44, 0.71), respectively.
RF model training results

In the RF models, mtry is the number of variables randomly

selected at each splitting node and ntree is the number of

ensemble regression trees. To search for the optimal values

of mtry and ntree, we set ntree to range from 500 to 3,000

with an increment of 100 at each step. mtry varies from 1

to M, where M is the number of predictors for each

model, which means 1 to 3 for Model one, 1 to 4 for

Model two, 1 to 5 for Model three, and 1 to 6 for Model

four. The ntree, mtry pair had 78 (26 × 3), 104 (26 × 4), 130



Figure 4 | Pearson’s correlation coefficient (r) correlation analysis of: (a) chlorinity and between (b) chlorinity and tidal level time series; (c) chlorinity and upstream discharge time series;

(d) chlorinity and wind time series. Note: The Pearson’s correlation coefficient (r) correlated analysis is conducted between observed chlorinity (2005/11/1–2006/2/28, 2006/11/

1–2007/2/28, 2007/11/1–2008/2/28) with 0–31 days earlier observed influencing factors (historical chlorinity, tidal level, discharge and wind).

Table 2 | Time series of model input and output

Response
variable Station Time series Influencing factors Stations Time series

Chlorinity Pinggang 2005/11/1–2006/2/28; 2006/11/1–2007/2/28;
2007/11/1–2008/2/28

Historical chlorinity Pinggang 13/14/15 days earlier
Tidal level Denglongshan 9,10 days earlier
Discharge Makou 2 days earlier
Wind Zhongshan 2, 3 days earlier
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(26 × 5), and 156 (26 × 6) trails for the four models, respect-

ively. The variation of the NSE is presented in the

Supplementary material (Figure S2) and the paired par-

ameters (mtry, ntree) used for the RF models are (3, 500),

(1, 1,700), (1, 1,600) and (2, 2,400), respectively.

ENN model training results

The number of the neural nodes is the major parameter to

train ENN. A neural network with one hidden layer is suffi-

cient to describe any nonlinear function with precision (Yao
s://iwaponline.com/jh/article-pdf/21/6/1147/623426/jh0211147.pdf
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). The training algorithm Traingdx was used during

model implementations. Traingdx is a network training

function that updates the weight and bias values based on

the gradient descent momentum and adaptive learning

rate. After several empirical tests, the following training

parameters of traingdx were used: the maximum number

of epochs to train¼ 5,000, learning rate¼ 0.5, performance

goal¼ 0.06. The hyperbolic tangent transfer function

(Tansig) and Purelin Transfer function (purelin) (Dorofki

et al. ) were employed as neutral transfer functions of

the hidden layer and output layer, respectively.
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The number of the neural nodes in the input layer was

the number of predictors in each model, which means 3

for Model one, 4 for Model two, 5 for Model three, 6 for

Model four. The number of output neural nodes was fixed

at 1. The number of neurons for the hidden layer could be

changed to obtain the optimum prediction result. The vari-

ation in of the NSE is presented in the Supplementary

material (Figure S3). The NSE fluctuated with a general

decreasing trend as the neuron numbers increased from

5 to 20. Hence, we created networks with 3-19-1, 4-19-1,

5-20-1, and 6-19-1 structures for the four models, respectively.

BMA model training results

The MBA models are trained with the predictions given by

the previously mentioned three models as input and the

observed chlorinity as output. The BMA weights for each

model members are trained using Box–Cox power trans-

formation method (Box & Cox ; Osborne ) and

expectation maximization (EM) algorithm. The Box–Cox

power transformation method is used to transform the

original chlorinity data into a normal distribution. The

transformed chlorinity data are used to find the BMA

weights for each model members. The EM algorithm is

used to find the maximum likelihood. The BMA is applied

to Model four and the trained weights are 0.5443, 0.3317,

and 0.1240 for RF, SVM, and ENN, respectively.

Analysis of periodic characteristics and time-lags

The time-lag was determined based on MIC and r. The MIC

and r charts (Figures 3 and 4) show that the chlorinity exhib-

ited a stable 15-day period, which was in agreement with the

findings in the study of Wang et al. (), who determined

that the salinity at Pinggang station showed a clear semi-

monthly variation with three peaks in 45 days in dry sea-

sons. The 15-day period of the chlorinity can be attributed

to the semi-monthly periodic rise and fall of the tide. The

correlation between the chlorinity and the tidal level at Den-

glongshan exhibited quarter-monthly periodicity, which was

the combined result of the semi-monthly periodicity of the

chlorinity and tidal level, and the 3-day to 5-day delay

between the tidal level and the chlorinity. The phase differ-

ence between the maximum salinity and the tidal range
om https://iwaponline.com/jh/article-pdf/21/6/1147/623426/jh0211147.pdf
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represented an abnormal characteristic of the saltwater intru-

sion in the Modaomen waterway in many previous studies

(e.g., Wang et al. ; Liu et al. ). There was a 2- to

3-day delay for the chlorinity at Pinggang to respond to the

upstream discharge fromMakou and the wind at Zhongshan.

To verify the feasibility and effectiveness of the MIC and

r as correlation analysis methods for predictor selection, the

target response chlorinity was compared with the phase-

shifted time series of chlorinity by 15 days earlier, the tidal

level by 9, 10 days earlier, the upstream discharge by 2

days earlier, and the wind by 2, 3 days earlier, respectively

(Figure 5). The results show that the fluctuations of the

response chlorinity and its phase-shifted influencing factors

are in agreement with the results of the MIC and r analysis.

After the 15-day phase shift, the waveforms of the historical

chlorinity reached in phase with those of the target chlori-

nity, confirming the 15-day periodicity of chlorinity

(Figure 5(a)). Shifted by 9 and 10 days earlier, the series of

tidal level and target chlorinity matched in both peaks and

valleys (Figure 5(b)), which was in agreement with the find-

ings shown in Figures 3 and 4, i.e., the chlorinity reached its

peak 9 or 10 days after the tidal maximum. The magnitude

of the phase-shifted discharge reached a peak and the

phase-shifted wind reached its minimum while the chlori-

nity wave reached its minimum (Figure 5(c) and 5(d)).

This is in accordance with the salt tide mechanism that

saltwater intrusion is inversely correlated to river discharge

and is exacerbated by upstream wind.

These results indicate that the MIC and r are effective

methods to measure the strength of the complex associ-

ations between chlorinity and its influencing factors.

Delayed predictor selecting method by correlation

analysis

This variable selection technique balances the goodness-of-

fit with simplicity and provides three main benefits when

developing predictive models, i.e., improved model inter-

pretability, shorter training times, and enhanced

generalization by reducing overfitting (Tan et al. ). To

verify the improvement ability of the MIC- and r-based pre-

dictor selection method, we used 0 to 31 days earlier values

of each factor as model inputs for RF, SVM, and ENN. In

each trial, we changed the delay of one of the factors and



Figure 5 | Curves of: (a) response chlorinity and 15 days earlier chlorinity; (b) response chlorinity, tidal level, and 9, 10 days earlier tidal level; (c) response chlorinity, discharge, and 2 days

earlier discharge; (d) response chlorinity, wind, and 2, 3 days earlier wind. Note: the black solid lines indicate the time series of chlorinity during the calibration period, the gray

dashed lines indicate the influencing factors of the day, the solid lines indicate the phase-shifted time series of the influencing factors. The time series of chlorinity is shifted 15

days earlier, the time series of the tidal level is shifted 9, 10 days earlier, the time series of the upstream runoff is shifted 2 days earlier, and the time series of the wind is shifted

2, 3 days earlier.
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fixed the others. The results are shown in Figure 6(a)–6(c).

NSE reached its maximum and Pbias reached its minimum

when 1–3 days earlier chlorinity, 14–16 days earlier chlori-

nity, 7–9 days earlier tidal level, 1–3 earlier discharge,

and 1–3 earlier wind were used as model inputs, which is

in accordance with the MIC and r analysis results.

These results indicate that the delayed predictors

with the maximal MIC and r (i.e., 14, 15, 16 days earlier

chlorinity, 9 and 10 days earlier tidal level, 2 days earlier

discharge and 2, 3 days earlier wind) to the response chlori-

nity should be selected.

We compared the training and testing results using both

MIC and r for delayed predictors’ selection to build the

models with those using only either one of them. Based on

the MIC correlation only, 14, 15, 16 days earlier chlorinity,

9 days earlier tidal level, 2 days earlier discharge and wind

were selected. Based on the r correlation only, 14, 15, 16

days earlier chlorinity, 10 days earlier tidal level, 2 days ear-

lier discharge and 3 days earlier wind were selected. The

results are shown in Table 3.

The models constructed by the predictors selected by

both MIC and r outperformed the models constructed by
s://iwaponline.com/jh/article-pdf/21/6/1147/623426/jh0211147.pdf
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the predictors selected using only either one of them.

Based on this result, we inferred that the 9-day delayed

tidal level contains more nonlinear signals related to salt

tide and 10-day delayed tidal level contains more linear

signals; the 2-day delayed wind contains more nonlinear

signals related to salt tide and 3-day delayed wind contains

more linear signals; the delayed chlorinity and delayed

discharge contain both nonlinear and linear signals.

The complex associations are confirmed by Figure 7

where chlorinity vs each (delayed) influencing factors is

plotted. We inferred that linear and nonlinear signals are

both contained by the influencing factors. Considering this

complex association, we recommend that both MIC and

r should be used when selecting the predictors rather than

trusting only one of them.

Prediction of chlorinity using individual machine

learning techniques

The predictions given by the four model series based on the

RF, SVM, and ENN models are shown in Figure 8, Table 4,

and Figure S4.



Figure 6 | Evaluation of estimation performance given by RF (a), SVM (b), and ENN (c) against chlorinity observation for testing period in terms of Nash-Sutcliffe efficiency coefficient (NSE)

and absolute percent bias (Pbias) changing the delayed time of one of the predictors while fixing other predictors of model series 4.
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The accuracy of the predictions, especially the pre-

dicted values of peaks and valleys, increased from

Model one to Model four as more influencing factors
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were taken into consideration (Figure 8). The high peaks

were strongly underestimated and the valleys were overes-

timated by Model one (Figure 8(a)). When the tidal level,



Table 3 | Training and testing results using both MIC and r for predictor selecting and

those using only one of them

Predictor selecting methods Models

Training Testing

NSE Pbias NSE Pbias

MICþ r RF_4 0.91 0.8 0.76 19.8
SVM_4 0.72 �15.8 0.74 �8.8
ENN_4 0.74 �1.9 0.72 10.5
BMA_4 0.86 �4.7 0.79 11.4

MIC RF_4 0.91 0.7 0.71 20.1
SVM_4 0.70 �16.6 0.73 �4.4
ENN_4 0.74 2.8 0.68 14.4
BMA_4 0.85 �4.7 0.76 12.8

r RF_4 0.91 1.0 0.74 20.64
SVM_4 0.70 �14.2 0.76 �2.3
ENN_4 0.74 0.3 0.70 14.6
BMA_4 0.85 �3.8 0.78 14.0
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upstream discharge, and wind were taken into consider-

ation, the accuracies of the high peaks and valleys

improved. The wind was an indispensable predictor for

chlorinity prediction. When the wind was taken into con-

sideration, the NSE values of the RF, SVM, and ENN in

Model four increased by 9%, 12%, and 4%, respectively,

compared to the values in Model three. Generally, the

errors decreased as more influencing factors were taken
Figure 7 | Chlorinity vs each (delayed) influencing factors: (a) chlorinity vs 14, 15, and 16 days

earlier discharge; (d) chlorinity vs 2 and 3 days earlier wind.
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into consideration and Model four achieved the highest

accuracy.

The data set chosen in this study is a time series of

chlorinity during dry seasons and it includes some abnor-

mally high peaks and a small number of valleys. Figure 9

shows the scatter plots for the testing data set in Model

four. For the high peaks, SVM and ENN yielded the best

performance and provided similar predictions in the testing

period. The errors at valleys of SVM were significantly lower

than those of the RF and ENN. The RF resulted in the worst

performance for predicting the valleys. Generally, the RF

predictions fall above the optimal chlorinity curve on the

lower limb of the curve and below the optimal chlorinity

curve on the upper limb of the curve. This means that the

RF predictions were often larger than the observed values

when the observed values were relatively low; the predic-

tions were often lower than the observed values when the

observed values were relatively high.

We assumed that the large errors at the peaks and val-

leys can be explained by the imbalanced chlorinity data

set, in which there were no sufficient peak and valley

samples to train the models and the highly data-dependent

characteristic (a large number of samples is required) of

machine-learning algorithms; a similar result was also

reported in Yoon et al. (). We inferred that SVM was
earlier chlorinity; (b) chlorinity vs 9 and 10 days earlier tidal level; (c) chlorinity vs 2 days



Figure 8 | Curves of observed chlorinity and simulations, predictions given by random forest (RF), support vector machine (SVM), and Elman neural network (ENN) during the training

period and testing period for series one, series two, series three and series four. Note: the gray dashed line divides the time series into training period and testing period.
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able to compensate for the highly imbalanced chlorinity

data set to a certain extent for its property of being able to

select a small and suitable subset of support vectors to

build the models (Behzad et al. ). All the training data

were used for the ENN and RF to simulate the complex

associations between the input and output. Since there

was a lack of sufficient peak and valley samples, the algor-

ithm was better trained for the chlorinity between the

valleys and peaks. As a result, the peaks were underestimated

and the valleys were overestimated. The RF exhibited the

worst performance for dealing with imbalanced data in this

study, which was also the case in the study of Dudoit &

Fridly (), who found that the RF performed poorly for

an imbalanced data set. The findings indicate that RF

model systematically over-predicts low chlorinity values and
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under-predicts high chlorinity values. We believe that this

explains why the RF achieved higher NSE values than the

ENN although the ENN has the highest Pbias among the

three models. The NSE value was not sensitive to the quanti-

fication of systematic errors (Krause et al. ).

The performance of the ENN was not as stable as those of

the RF and SVM for the unexpected peaks and the oscillation

during the low chlorinity period; this may be attributed to the

lack of a global search ability and falling into a local minimum

(Zhou et al. ). This finding was consistent with the results

of Behzad et al. (), who reported that the SVM offered a

better alternative to the artificial neural network (ANN) with

its global optimization algorithm.

In terms of the performance criteria scores for the test-

ing set, ENN performed the worst among the three. ENN



Table 4 | Performance criteria scores of the RF, SVM, ENN, and BMA for calibration and

evaluation in the chlorinity prediction models

Training Testing

NSE Pbias NSE Pbias

RF_1 0.83 1.2 0.48 28.9

SVM_1 0.27 �49.5 0.55 �12.4

ENN_1 0.37 0.2 0.52 �5.8

RF_2 0.85 1.1 0.65 22.9

SVM_2 0.47 �22.5 0.65 4.3

ENN_2 0.55 0.01 0.48 �15.6

RF_3 0.90 0.70 0.70 16.6

SVM_3 0.75 �13.1 0.66 �2.9

ENN_3 0.70 0.70 0.69 8.3

RF_4 0.91 0.81 0.76 19.8

SVM_4 0.72 �15.8 0.74 �8.8

ENN_4 0.74 �1.9 0.72 10.5

BMA_4 0.86 �4.7 0.79 11.4
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achieved much better NSE and Pbias than SVM in the train-

ing period but performed the worst among the three models

in the testing period. This may be attributed to the difference

in model complexity between the three models. RF and

SVM only have two parameters while ENN is much more

complex, which may have led to overfitting and poorer per-

formance in the testing period compared to RF and SVM.

SVM exhibited the highest tendency to be resistant to

over-fitting for its regulated risk function. The regulated

risk function refers to the structural risk minimization prin-

ciple that the SVMs is based on, which minimizes a bound
Figure 9 | Scatter plot of chlorinity predicted in series 4 by random forest (RF), support vecto

(integrated forecast based on RF, SVM, and ENN) vs chlorinity observed.
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on a generalized risk (error), as opposed to the empirical

risk minimization principle exploited by conventional

regression techniques (e.g., ANNs) (Behzad et al. ).

RF over-fitted in this study may be attributed to noise in

the chlorinity data set, which is also the case in the study

of Segal ().

A multi-model ensemble strategy was needed to exploit

the diversity of the three models. The lack of physical laws

in empirical model approaches and the fact that these

models have many non-defined parameters that require

optimization make them vulnerable to errors (De Vos &

Rientjes ). Since these three algorithms were grounded

in different frameworks of the statistical learning theory,

their performance exhibited different characteristics and

their errors showed different distributions. Hence, the BMA

ensemble approach was necessary for the three models.
Application of BMA method for a model ensemble

approach

The BMA resulted in better prediction performance than

its ensemble members. The BMA approach was applied to

the final model, i.e., the regression models with historical

chlorinity, tidal level, discharge, and wind as predictors;

the results are shown in Table 4. The BMA performed

better than any of the other three models in terms of the

highest NSE and achieved similar Pbias with SVM and

ENN. The BMA resulted in the maximum NSE (0.79). The

BMA had the best goodness-of-fit among the ensemble mem-

bers. Figure 9 also shows that the predicted chlorinity values
r machine (SVM), Elman neural network (ENN) and Bayesian model averaging method
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are less dispersed for the BMA than the SVM and ENN, and

contain less systematic errors than those of the RF. Thus,

the BMA provided the most accurate and stable prediction

of chlorinity among the three models. The outputs of RF,

SVM, and ENN exhibited the different extent of dispersion

and systematic errors.

The model inferences were made without a priori

knowledge of which model would better predict salinity;

and thus, we recommend using BMA to give integrated

forecasts instead of relying upon only one specific model.

Instead of weighting the ensemble members based on

only one specific criterion in the training period, the BMA

method weights its ensemble members based on how

much information each member can provide and how

accurate the information is. The weight rank order of the

member models is not completely the same as that of NSE

or the inverse order of the Pbias in the training period. The

BMA weights of the RF and SVM are both higher than 0.3,

indicating that both the RF and SVM are necessary for pro-

viding forecast information. The ENN had a similar NSE

and Pbias with the SVM in the training period but a much

lower BMA weight, at 0.1240. This suggested that once the

RF and SVM are known, there is little additional information

provided by the ENN. One can understand why this occurred

by looking again at the prediction given by the three models

in Figures 8 and 9; the ENN and SVM gave a similar predic-

tion for predicting the high peak values and the scatter plot of

their prediction versus observations showed a similar extent

of dispersion. On the other hand, although the SVM had

worse NSE and Pbias value than the ENN in the training

period, the SVM contributed more additional information

because it was less correlated with the others.
CONCLUSION

In this study, we developed an integrated temporally sensitive

empirical model of chlorinity and tested it on the Pearl River

Delta. The approach that we proposed was tailored to the salt

tide mechanisms and complex delta systems. Our approach

used MIC and r correlations to explore the inner correlation

and to adjust the lag time between measurement of influen-

cing factors of dilution and mixing (upstream discharge,

tide, wind) and their effect on chlorinity.
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The following conclusions can be drawn:

1. The MIC and r are effective tools for analyzing the corre-

lation and time lag between chlorinity and its influencing

factors. The chlorinity at Pinggang station and the tidal

level at Denglongshan station both have a stable 15-day

(semi-monthly) periodicity. There exists a 9, 10-day time

delay for chlorinity at Pinggang station to respond to

the fluctuation of the tidal level at Denglongshan station

and a 2, 3-day time delay to respond to both the variation

in the upstream discharge at Makou station and the wind

disturbance at Zhongshan station.

2. The BMA model had better prediction accuracy than its

ensemble members (i.e., RF, ENN, and SVM) and the

BMA weights reflected the model performance and

the correlation of the predictions given by the ensemble

models.

Furthermore, our approach provides new insights into

the prediction of chlorinity of complex delta systems. First,

by selecting predictors with delayed influences based on cor-

relation analysis prior to model building improved model

interpretability, shortened training times, and enhanced

generalization. Second, empirical models based on machine

learning algorithms are suitable for modeling complex delta

systems where chlorinity and hydrological data and high-

resolution estuarine topography data are limited. Our

approach is also practical for identifying factors affecting

freshwater as a source for drinking water and predicting in

advance when and where sources for drinking water will

become too saline. In particular, this application benefitted

from the temporal scale of this model. Although the current

study predicts a very broad range of chlorinity, it is possible

that models focused on the chlorinity range for sources of

potable water could be even more useful. We will consider

using two or three models tailored to different pre-specified

chlorinity ranges and multiple BMA weight sets to be exam-

ined for different chlorinity ranges in our future research.

In summary, the BMA ensemble approach enabled us

to develop a strong reliable model to predict salt water

intrusion because it was able to leverage information con-

tained in the three diverse models. It is likely that other

data-driven modeling efforts would also benefit by using

the BMA approach for model development.
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