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Abstract

We present an efficient implementation of the method for sampling spatial re-

alisations of a 3-D random fields with given power spectrum. The method

allows for a multi-scale resolution and approaches well for parallel implemen-

tations, overcoming the physical limitation of computer memory when dealing

with large 3-D problems. We implement the random field generator to execute

on graphical processing units (GPU) using the CUDA C programming language.

We compare the memory footprint and the wall-time of our implementation to

FFT-based solutions. We illustrate the efficiency of the proposed numerical

method using examples of an acoustic scattering problem which can be encoun-

tered both in controlled-source and earthquake seismology. In particular, we

apply our method to study the scattering of seismic waves in 3-D anisotropic

random media with a particular focus on P-wave coda observations and seismic

monitoring of hydrocarbon reservoirs.
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Preprint submitted to Computers & Geosciences May 29, 2019



• GPU-based parallel algorithm provided

• Application to study the scattering of seismic P-wave coda in 3-D and

monitoring of reservoirs
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The presented GRFS (exponential and Gaussian covariance) algorithm and

computer codes (serial Matlab & parallel GPU-based CUDA C) are provided

as supplementary material and available for download from Bitbucket at

https://bitbucket.org/lraess/grfs and from the Swiss Geocomputing Centre web-

site http://wp.unil.ch/geocomputing/software/grfs/. Both the exponential and

Gaussian covariance implementations are shared. The GPU cuFFT-based bench-

marking algorithm as well as the GPU-based 3-D acoustic wave propagation

software can be obtained upon request from the authors.
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1. Introduction

Incomplete data and complex nature of geophysical phenomena leads to the

need for statistical modelling. The results of this approach can also be used,

for example, for sensitivity analysis or uncertainty quantification. Stochastic

simulations of random fields with multi-scale resolution have found application5

in studies of turbulent flows [1, 2, 3], flow in porous media [4], seismic volcanol-

ogy [5, 6], large-scale density structure of the universe [7] and other geophysical

and astrophysical problems. Some other geoscience applications and simulation

techniques are described in the monograph by Christakos [8].

One of the important applications of the random field simulation in com-10

putational geophysics is linked to numerical mechanical modelling. Numerical

analysis of large mechanical problems with severe nonlinearities such as flow

localisation in two-phase deformable media [9] or simulation of fracture net-

works and dike swarms [10] rely on a model initialisation procedure including

computation of random field of small parameter perturbation (e.g. porosity or15

rock cohesion). The important requirement is that both large and small spatial

scales must be accurately resolved by the numerical grid to obtain a physically

meaningful solution.

Some geophysical inverse problems directly target on statistical properties

of the medium (e.g. ocean temperature fluctuation spectra, lithosphere gravity-20

topography spectral ratios, scattering strength and attenuation spectra from

seismic coda waves). For this class of problems proving the parameter sensitiv-

ity and model resolution requires a random field simulator (RFS) reproducing

observed statistical behaviour of the physical process such as correlation func-

tion or power spectrum within a broad range of scales. The accurate statistics25

is also required for inverse geophysical problems formulated as a Bayesian infer-

ence problem with physically-based prior distribution [11].

Cholesky decomposition of the covariance matrix is perhaps the most well-

known method to generate the realisations of Gaussian random fields. This

method is based on a clear idea, simple in use, and allows in addition to per-30
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form conditional simulations to adapt the measurement data. However, as the

number of grid points increases, this method becomes very computationally

time consuming. The turning-band method [12] and spectral method [13] are

among other frequently utilised approaches for modelling random fields. An

efficient method for sampling random realisations, based on fast Fourier trans-35

form (FFT) moving-average method was developed in Le Ravalec et al. [14].

The comparative analysis of Fourier-wavelet simulation method against spec-

tral method with different randomisations of wavenumber space is performed

in Kramer et al. [15]. The Karhunen-Loève expansion based on finding the

eigenvalues and eigenvectors of the covariance function can be used to simulate40

non-homogeneous random fields [16]. In Phoon et al. [17] this technique was ex-

tended for simulation of strongly non-Gaussian random fields. Another method

that allows one to model more complex non-homogeneous and non-Gaussian

fields is to use Polynomial Chaos extension [18].

A number of methods for indicator random fields simulation that can have45

discrete values have been developed [19]. For simple geological models, the sim-

ulation of the indicator random fields with given mean values and the covariance

function can be achieved using a truncated Gaussian simulation (TGS). This

method is based on the use of an auxiliary Gaussian random field constructed

by the methods described above. For more complex geological models, a more50

general truncated PluriGaussian simulation (TPGS) was developed [20]. TGS

and TPGS are based on the reproduction of two-point statistics (covariance or

variogram functions). These methods have a number of limitations when mod-

elling structures with a complex curvilinear geometry (for example, media with

channels). In recent years, the usages of statistical modelling methods relying55

on multipoint statistics increased [21, 22]. One more approach to statistical

modelling is based on the use of optimisation methods such as the simulated

annealing, which requires to consider some objective functions [23]. For exam-

ple, Tran et al. [24] use this approach to simulate the spatial distribution of

a fracture network. A new Gibbs sampler for simulation of Gaussian Markov60

random fields on large lattice was developed recently in Marcotte and Allard
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[25].

Fast spectral methods based on the FFT are traditionally used in seismology

[26, 5, 27]. The disadvantage of this approach is the need to generate the values

of the realisation of a random field in all nodes of the computational domain.65

Moreover, a computation on an irregular grid is difficult using this method.

We present here a parallel implementation of the method based on spectral

representation described in Sabelfeld [28]. Advantages of this method are the

possibility of random field simulation on an arbitrary grid and the simplicity

of parallel implementation of the algorithm. The method is flexible and is70

also applicable for arbitrary anisotropic spectrums. Moreover, at present this

simulation technique is well studied. For example, ergodicity properties were

studied by Kramer et al. [15].

Serial algorithms are bottleneck for three-dimensional (3-D) computations.

Routines that rely on local operation only can perform very efficiently on actual75

parallel hardware, such as graphical processing units (GPUs). Calculating every

grid point of the computational domain on a distinct hardware thread permits

thus to achieve a fast time to solution using performance-oriented software. In

particular, the method presented in this paper is shown to be more flexible for

large simulations than FFT-based methods.80

We provide a recipe to efficiently compute a 3-D random fields with a

known power spectrum or correlation function making a particular focus on

geophysical applications. The presented GRFS (exponential and Gaussian co-

variance) algorithm and computer codes (Matlab & GPU-based CUDA C) are

provided as supplementary material and available for download from Bitbucket85

at https://bitbucket.org/lraess/GRFS and from the Swiss Geocomputing Cen-

tre website http://wp.unil.ch/geocomputing/software/grfs/. The GPU cuFFT-

based benchmarking algorithm as well as the GPU-based 3-D acoustic wave

propagation software can be obtained upon request from the authors.
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2. Random Field Generator Based on Spectral Representation90

In this work we assume that the scalar random field f(x) is statistically

homogeneous with a mean value mf (x). The probability density function of a

scalar Gaussian random field f(x) in the points x = {x1, . . . ,xn}

p(f(x1), . . . , f(xn)) =
1

(2π detCff )1/2
exp

{
−1

2
(f(x)−m)TC−1

ff (f(x)−m)

}
(1)

is fully defined by its mean values m = {m1, . . . ,mn} and the covariance func-

tion Cff (xi,xj) = 〈(f(xi)−mi)(f(xj)−mj)〉. We use bold font for vectors, 〈·〉95

– is a mathematical expectation.

The covariance function and the spectrum of homogeneous random fields are

related through the equation:

Sff (k) =
1

8π3

∫
R3

e−i(r,k)Cff (r)dr . (2)

The simulation formula based on the spectral randomisation method has the

form:100

f(x) = mf (x) +
σf√
Nh

Nh∑
i=1

[ξi cos(ki,x) + ηi sin(ki,x)] (3)

and can be used for random field generation [28]. Here ξi and ηi – are mu-

tually independent and independent on ki random numbers with zero mean

and variance equal to unity, (ki,x) – is the scalar product of the vectors ki

and x. Following Sabelfeld [28], the wave vector k is sampled according to the

probability density105

p(k) ∝ Sff (k)∫
R3 Sff (k)dk

. (4)

The central limit theorem provides that f(x) will converge to Gaussian dis-

tributions as the number of harmonics Nh →∞ [28].

The presented approach is general and can be applied for any homogeneous

covariance Cff and corresponding Sff . The key insight in this technique is the

sampling of the wave vector k according to the probability density (4 ). The110

general approaches for the sampling are described for example in Rubinstein

[29] and Sabelfeld [28].
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In this work, we mainly consider an anisotropic exponential covariance which

is most often used in geosciences applications

Cff (r) = σ2
f exp

{
−
(
r2
1

I2
1

+
r2
2

I2
2

+
r2
3

I2
3

)1/2
}

, (5)

where r = (r1, r2, r3) – is a separation vector, σf – is a standard deviation and115

Ij , j = 1, 2, 3 – are correlation lengths in j-th direction. Following Eyink and

Goldenfeld [30] the correlation length is defined as:

Ij =
1

Cff (0)

∫ ∞
0

Cff (rj)drj . (6)

Note, that other definitions of correlation length also appear in the scientific

literature [31, 32]; for example, the length r for which

Cff (r) = Cff (0)/e . (7)

The covariance function (5) corresponds to the spectrum:120

Sff (k) =
σ2
fI1I2I3

π2(1 + I2
1k

2
1 + I2

2k
2
2 + I2

3k
2
3)2

, (8)

where k = (k1, k2, k3) is a wave vector.

To generate the realisations of the vector k, the following formulas are used:
k1 = k cos(θ)/I1 ,

k2 = k cos(φ) sin(θ)/I2 ,

k3 = k sin(φ) sin(θ)/I3 .

(9)

The scalar value k is distributed with the probability distribution

p(k) =
4k2

π(1 + k2)2
. (10)

Its realisations can be generated using the rejection method, described in Ru-

binstein [29]. The value of the angle φ is sampled uniformly in the interval125

[0, 2π], the value θ is distributed with the probability density

p(θ) =
1

2
sin(θ), θ ∈ [0, π] . (11)
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The corresponding simulation formula has the form

θ = arccos(1− 2λ) , (12)

where λ – is a random value uniformly distributed in [0, 1]. The implementation

of the anisotropic exponential covariance Gaussian random field is presented in

Algorithm 1 (Section 4).130

For comparison we also consider the isotropic Gaussian correlation function

Cff (r) = σ2
f exp

{
−r

2
1

l2f

}
, (13)

with correlation length If = lf
√
π

2 . The corresponding spectrum [33] has the

form:

Sff (k) =
σ2l3f
8π3/2

exp

(
−
k2l2f

4

)
. (14)

In this case, the scalar wave number is proportional to:

p(k′) = k′2 exp

(
−k
′2

2

)
, k′ = k

lf√
2
. (15)

These numbers can be generated by using the rejection method [29]. The im-135

plementation of the isotropic Gaussian covariance alternative is presented in

Algorithm 2 (Section 4).

3. Random Field Generator Based on Fast Fourier Transform

Further, the random field modelling method presented in the previous sec-

tion is compared with the most effective to our knowledge and frequently used140

method for modelling of homogeneous random fields based on the Fast Fourier

transform [34, 14, 35].

Direct F = FFT (f) and inverse f = FFT−1(F ) Fast Fourier transforma-

tions are:

F (j) =

N−1∑
k=0

f(k)exp(2πikj/N) , (16)

145

f(k) =

N−1∑
j=0

F (j)exp(−2πikj/N) , (17)
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where N is the number of sampled points.

The simulation formula takes the following form:

f(x) = mf (x) + FFT−1

[√
FFT (Cff (x))FFT (Z(x))

]
, (18)

where Z(x) are independent Gaussian random numbers with zero mean and

unit variance.

It is important to emphasise that due to the periodicity of the FFT within the150

simulation we can only use the f(x) values generated for the inner subdomain.

In consequence, the realisations should be oversized at the beginning and at the

end of the domain; the near-border cells must be removed [14]. We recommend

using an indent distance equal to at least two correlation lengths.

4. Numerical Implementation155

The motivation driving the development of the random field generator based

on spectral representation is to propose an algorithm that runs efficiently and

scales on parallel hardware, such as GPUs. These many-core accelerators are

capable to efficiently perform a large number of identical tasks in parallel. This

is of particular interest when performing simulations on large computational160

domains, inherent to 3-D calculations. However, efficient parallel algorithms

strongly rely on local operations. For optimal performance, each parallel process

(also called thread) may perform the workflow tasks independently, implying no

communication with neighbouring threads, neither waiting on other processes

to accomplish their tasks first. The proposed method to generate Gaussian165

random fields based on the spectral representation fulfils both aforementioned

requirements; only the spatial coordinates of each grid point within the com-

putational domain are mandatory and can be determined in a straight forward

way. The inherent parallelism of the approach is thus very well suited for GPU

computing. Each thread is responsible to compute one grid point of the domain170

based on its coordinate, without need of any communication neither global re-

duction operations. Irregular grid spacing can easily be obtained by choosing

indices of spatial coordinates to be non-uniform.

9



Algorithm 1 Gaussian random field simulator – Exponential covariance

1: C = sigf/sqrt(Nh)

2: for (ih = 0; ih < Nh; ih + +) do

3: fi = 2 π rand

4: flag = 1

5: while (flag = 1) do

6: k = tan(π 0.5 rand)

7: d = k2/(1 + k2)

8: if (rand < d) then

9: flag = 0

10: end if

11: end while

12: theta = acos(1− 2 rand)

13: V1 = k sin(fi) sin(theta)/I1

14: V2 = k cos(fi) sin(theta)/I2

15: V3 = k cos(theta)/I3

16: a = randn

17: b = randn

18: compute kernel 1 <<< grid,block >>> (); cudaDeviceSynchronize()

19: end for

20: compute kernel 2 <<< grid,block >>> (); cudaDeviceSynchronize()
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Algorithm 2 Gaussian random field simulator – Gaussian covariance

1: C = sigf/sqrt(Nh)

2: lf = 2 I/sqrt(π)

3: for (ih = 0; ih < Nh; ih + +) do

4: fi = 2 π rand

5: flag = 1

6: while (flag = 1) do

7: k = kmax rand

8: d = k2 exp(−0.5 k2)

9: if (2 rand exp(−1) < d) then

10: flag = 0;

11: end if

12: end while

13: k = k sqrt(2)/lf

14: theta = acos(1− 2 rand)

15: V1 = k sin(fi) sin(theta)

16: V2 = k cos(fi) sin(theta)

17: V3 = k cos(theta)

18: a = randn

19: b = randn

20: compute kernel 1 <<< grid,block >>> (); cudaDeviceSynchronize()

21: end for

22: compute kernel 2 <<< grid,block >>> (); cudaDeviceSynchronize()

Algorithm 3 compute kernel 1

1: tmp = dx((ix + 1)− 0.5)V1 + dy((iy + 1)− 0.5)V2 + dz((iz + 1)− 0.5)V3

2: Yf = Yf + a sin(tmp) + b cos(tmp)

Algorithm 4 compute kernel 2

1: Yf = C Yf

11



The algorithm is composed of three main blocks; 1) the host code (executed

by the host – the central processing unit or CPU) and common to the entire spa-175

tial domain (Algorithm 1 – exponential covariance or Algorithm 2 – Gaussian

covariance) containing the outer loop over a given (large) number of harmonics

Nh, precomputing the wave vector, and calling the two GPU functions (also

called kernels) named compute kernel; 2) the first GPU compute kernel (Al-

gorithm 3) calculates the random field values in parallel (3 ) for every thread180

based on the wave vectors input; 3) the second compute kernel (Algorithm 4)

multiplies the random field values by a constant and must be located outside

the outer loop over the harmonics.

We implemented the algorithm using C and the CUDA extension in order

to execute the application in parallel on Nvidia GPUs. CUDA provides as main185

feature a vectorised framework allowing to execute the serial loop over each

spatial dimension in parallel by the mean of their thread, block and grid layout

[36].

We generate uniformly distributed in [0,1] random numbers (‘rand’) within

the algorithm using the C built-in pseudo random number generator rand()190

and normalise the output (using RAND MAX) to the range [0, 1] within the

RND() macro. To obtain standard normal random numbers (‘randn’) in the

range [−∞,∞], we rely on the Box-Muller algorithm [37] within the RNDN()

macro implementation:

randn =
√
−2 log(λ1) cos(2πλ2) (19)

where λ1 and λ2 are two independent random numbers uniformly distributed195

in [0,1] and obtained via the ‘rand’ routine.

Both single and double precision arithmetic is available to simulate the ran-

dom field within the routines. Some basic sensitivity analysis suggests that

single precision arithmetic delivers comparable results as double precision calcu-

lation for the here described purpose. This provides a non-negligible advantage200

since single precision arithmetic calculations require twice less memory to be

transferred when compared to double precision. Single precision calculations
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Figure 1: Simulated random field for different correlation lengths in all three spatial dimensions

within a cube of size [100, 100, 100] in x, y and z direction, respectively. a) Vertical tube-like

random media, with correlation length of [3, 3, 20] in x, y and z directions, respectively.

b) Isotropic random media, with correlation length of [5, 5, 5] in all three directions. c)

Horizontal planar-like random media, with correlation length of [20, 20, 3] in x, y and z

directions, respectively.

are thus twice more efficient in terms of execution time compared to double

precision ones for memory bounded algorithms.

5. Results205

5.1. Anistropic Random Field Realisations

The outcome of the random field simulator are 3-D domains that depict

various correlation lengths in all three spatial dimensions (Figure 1). The user

defined input variables are the box size, the standard deviation of the Gaussian

random field, the x, y and z correlation lengths and the number of harmonics210

(Nh).

5.2. Benchmarks

Within this study we mainly showcase the usage of the exponential covari-

ance function to generate Gaussian random fields, However, the approach we

propose here generalises to other covariance functions, such as the Gaussian215

isotropic covariance (Figure 2). We perform three different benchmarks to val-

idate both the presented approach for simulating Gaussian random fields using
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Figure 2: Simulated random field using an isotropic Gaussian covariance function with corre-

lation length of 10 in all 3 spatial dimensions within a cube of size [500, 500, 500] in x, y and

z direction, respectively.

a) an anisotropic exponential covariance function and b) an isotropic Gaussian

covariance function and thus highlight the potential of the method. Finally,

we discuss the numerical implementation on GPUs and report performance re-220

sults comparing our random field generator based on spectral representations to

well-established FFT-based routines in terms of wall-time and overall memory

footprint.

We firstly compute the covariance function of the random field realisations

based on an anisotropic exponential covariance using spatial averaging (Figure225

3a, d, g, j, m, ‘Simulated’) and compare it to the estimated covariance function

using the analytical expression (5) for various number of harmonics (Nh) (Figure

3a, d, g, j, m, ‘Analytical’). The accuracy of the simulated spatial realisation

depends on the number of harmonics in the summation (3). We sample spatial

realisations of a 3-D isotropic random field on a regular grid with constant grid230

step (correlation length = [5, 5, 5] – as in Figure 1b), to simplify the estimation

of covariance function. In this case, the covariance can be computed over reali-

sations just along one spatial direction. For correct spatial averaging the size of

the domain must be significantly larger than the correlation lengths. Moreover,
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in order to achieve an accurate comparison to the analytical estimation several235

correlation lengths have to be covered by the linear sizes of the computational

and the estimated domains. We test 5 different number of harmonics (Nh)

ranging from 102 (Figure 3a–c) to 105 (Figure 3m–o). We report for every Nh

realisation the corresponding spatial distribution for both the xy (Figure 3b, e,

h, k, n) and the xz (Figure 3c, f, i, l, o) slice. This experiment clearly shows the240

convergence of the method when a sufficiently large number of harmonics (Nh)

is performed; the periodic noise pattern (aliasing) consequently vanishes from

the spatial random distribution and the covariance estimations C(r) plotted as

function of the spatial radius r are in good agreement with the analytical results.

We secondly evaluate the sensitivity of the simulated random fields based on245

(a) an anisotropic exponential covariance function to the numerical grid reso-

lution (Figure 4). We consider 5 different realisations for numerical resolutions

ranging from 323 (Figure 4a–c) up to 10243 (Figure 4m–o) grid points in 3-D.

For each realisation we report the covariance function to be compared to the

analytical estimation (Figure 4a, d, g, j, m) as well as the spatial random field250

distribution for both the xy (Figure 4b, e, h, k, n) and the xz (Figure 4c, f, i, l,

o) slices. We observe no significant influence of the numerical spatial resolution

on the results affecting the ‘Analytical’ and ‘Simulated’ covariance functions.

However, the spatial distribution of the random field is impacted by the low

resolution realisations; variations below the grid resolution (dx) will not be de-255

tected. These tests indicate that our method allows to reproduce accurately the

statistics of the random field even with a sparse grid resolution.

We in addition stress that the reported simulated random field covariance

functions are not equal to 1 for r = 0 (C(0) 6= 1) in case a single and thus

identical random number (λ1 = λ2) is used within the Box-Muller algorithm260

(19).

We repeat this second benchmark for the random field realisations based on

(b) an isotropic Gaussian covariance (Figure 5), and only show one realisation for

a numerical resolution of 5123 grid points in 3-D. We benchmark the covariance

function to be compared to the analytical estimation (Figure 5a) as well as the265
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Figure 3: Comparison of covariance functions C(r) as function of spatial radius r for the simu-

lated random fields versus the analytical expression. We compare the influence of the number

of harmonics (Nh) on the random field realisations for the isotropic model configuration (Fig-

ure 1b). We utilise a numerical grid resolution of 5123 grid points in 3-D and constant grid

steps.

spatial random field distribution for both the xy (Figure 5b) and the xz (Figure

5c) slices.We report the accuracy of the random field generator based on spectral

representations to simulate Gaussian covariance function and confirm the ability

of the approach to handle various covariance functions.

We compare the performance of our random field generator relying on spec-270

tral representations with an effective and frequently used method based on the

Fast Fourier Transform (see Section 3). To this end, we implemented a 3-D

FFT-based random field generator using the CUDA FFT library cuFFT [36].

Prior to evaluate the performance between the two approaches (spectral real-

16



Figure 4: Comparison of covariance functions C(r) as function of spatial radius r for the

simulated random fields versus the analytical expression. We compare the influence of refining

the numerical grid resolution in 3-D on the simulated random field for the isotropic model

configuration (Figure 1b).

isations and FFT), we benchmark the FFT-simulated exponential covariance275

function versus the analytical expression (Figure 6). We show that our FFT-

based implementation is in good agreement with the analytical expression in

this example involving 5123 grid points. Note that we had to increase the do-

main size to include 50 correlation lengths in order to converge towards accurate

results.280

We assess the performance of the random field simulator based on spec-

tral representations (Section 2) comparing the memory footprint (Figure 7) as

well as the wall-time (Figure 8) to the FFT-based simulator (Section 3). We

report that both in single (SP) and double precision (DP) arithmetic the ran-
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Figure 5: Comparison of covariance functions C(r) as function of spatial radius r for the simu-

lated random fields versus the analytical expression. We compare the random field realisations

for the model implementing the isotropic Gaussian covariance function (Figure 2). We utilise

a numerical grid resolution of 5123 grid points in 3-D and constant grid steps.

dom field generator based on spectral representation (SRep) consistently utilises285

about seven times less memory compared to the FFT-based approach (Figure 7).

Also, both methods scale linearly with their respective memory footprints. The

discrepancy in the memory footprint between the two methods mainly comes

from the fact that only one 3-D field is mandatory for the spectral represen-

tation approach (20), while the FFT-based approach requires a more complex290

data layout involving complex numbers as well (21). We evaluated the memory

footprint (in GB) for the spectral representation mSRep and for the FFT-based

mFFT approaches, respectively, as following:

mSRep =
nxnynznp

10243
, (20)

mFFT =
(5nxnynz + 4nxny(nz/2 + 1))np

10243
, (21)

where nx, ny, nz is the grid resolution in the 3 spatial directions, x, y, z, respec-295

tively, and np is the arithmetic precision in bytes (single=4, double=8).

Benefits of lower memory utilisation are especially noticeable for large prob-

lem size as the memory footprint determines the maximal problem size possible

to resolve on a single GPU. The approach relying on spectral representation

permits to resolve a 3-D problem of 17923 versus only 10243 for the FFT-based300
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Figure 6: Comparison of covariance functions C(r) as function of spatial radius r for the FFT-

based simulated random fields versus the analytical expression. We compare the random field

realisations for the model implementing the anisotropic exponential covariance function. We

utilise a numerical grid resolution of 5123 grid points in 3-D and constant grid steps and a

correlation length of [10,8,5] in x, y and z direction, respectively.

approach – close to a factor 2 (Figure 7).

We then utilise the wall-time metric to report the time it takes in seconds

to compute one realisation of the Gaussian random field using both approaches

(Figure 8). The timings are in good agreement between the two approaches,

although the spectral representation in double precision is slightly off compared305

to the three other cases. A general trend shows the latency bound effects of

all 4 tested configuration up to a problem size of about 1283 in 3-D on the

GPU. Then, we report a linear increase in time to solution for all methods and

considered arithmetic precisions. We employed Nh = 10′000 for the spectral

representation approach for this benchmark. Faster time to solution could be310

obtained by decreasing Nh, but this may lead to increased aliasing issues (see

Section 5.2). Note that the scaling does not break even for the highest targeted

resolution beyond the maximal domain size the FFT-based approach can handle.

We finally report the efficiency of the random field generator implementation

on GPUs using using the effective memory throughput as metric [38]. The315

effective memory throughput MTPeff evaluates the optimality of non-redundant

data transfers from and to the GPU memory. The entire algorithm (Algorithm
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Figure 7: Total memory footprint [GB] of the spectral representation (SRep) and FFT-based

(FFT) 3-D random field GPU simulator. We report the global memory utilisation, varying

the problem size from 163 to 17923 for both single precision (SP) and double precision (DP)

arithmetic The spectral representation approach utilises only one 3-D field (20), while the

FFT-based approach utilises the equivalent of 5 3-D fields (21).

1) is composed of 3 main blocks reported in Section 4. Lines 3–17 in Algorithm

1 generate 5 scalars (V1, V2, V3, a, b) in a serial fashion on the CPU to be used

in the parallel GPU kernel (Algorithm 3). The computationally more intense320

tasks (Algorithm 3) rely in each GPU thread accessing an entry of the Yf array

in parallel for each grid point of the domain. Local coordinates are used in

computing the tmp scalar to update Yf and write it back. This operation

requires 2 memory accesses, one read, and one write per Nh harmonic. We

can thus evaluate the minimal amount of memory nm (in Bytes) needed to be325

transferred at each Nh harmonic nm = 2nxnynznp . The effective memory

throughput MTPeff (in GB/s) is then obtained as following:

MTPeff =
nmNh
nt10243

, (22)

where Nh is the number of iterations over the harmonics and nt is the algorithm

execution time in seconds. We compare MTPeff values obtained for the random

field simulator for single (SP) and double (DP) precision executions (Figure 9).330

We realise a strong scaling on a single Nvidia Tesla V100 (PCIe) GPU on which

memory copy values are about 720 GB/s (dotted line in Figure 9). We report
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Figure 8: Wall-time [s] of the spectral representation (SRep) and FFT-based (FFT) 3-D

random field simulator on a Nvidia Tesla Volta V100 GPU. We report the time to solution,

varying the problem size from 163 to 17923 for both single precision (SP) and double precision

(DP) arithmetic.

that the MTPeff values saturated for both arithmetic precisions to 630 GB/s

(88 % of memory copy) for computational domains containing more than 400

grid points in all 3 dimensions.335

6. Applications

We utilise the random field simulator to investigate the effect of acoustic

wave scattering as function of the anisotropy and statistical properties of the

random medium. We combine the random field simulator with a 3-D finite-

difference acoustic wave propagation simulator in the time domain (FDTD).340

We rely on a second order in time and fourth order in space discretisation of the

non-split pressure formulation [39]. We include absorbing boundaries to avoid

reflections of the wave at the artificial boundaries of the computational domain

[40]. We use a cubic domain of Lx = Ly = Lz = 3000 m, discretised on 5123

grid points in 3-D. The width of the absorbing boundaries is of 400 m. The time345

dependent source of a vertically ascending planar wave is located on the z-plane

of coordinate z = 0, at the bottom of the domain for the first configuration

(Figure 10a) and at the top of the domain for the second configuration (Figure
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Figure 9: Effective memory throughput MTPeff [GB/s] of the implemented 3-D random field

simulator on a Nvidia Tesla Volta V100 GPU. We report a strong scaling, varying the problem

size from 323 to 10243 for both single precision (SP) and double precision (DP) arithmetic.

Figure 10: Initial conditions for the 3-D wave propagation model configuration including

acquisition lines, source plane and absorbing boundaries. a) Plane wave coming from the

bottom and acquisition line at mid-domain depth mimics a teleseismic wave observation in

seismology. b) Acquisition line and source plane located on identical depths mimics a rele-

vant configuration for multi-channel seismic reflection. Note that for better readability, the

absorbing boundaries are only depicted in the vertical z direction but are implemented in a

similar fashion in the the x and y directions.

10b). We simulate a forward planar wave propagation for 3 types of random

media displaying various correlation lengths and respecting identical box-size to350

correlation lengths ratios as the random fields depicted in Figure 1.

We use a plane wave at the source plane to initiate the wavefield. The initial

waveform s(t) corresponds to a Gaussian wavelet with the peak frequency (f0)
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Figure 11: FDTD wave propagation in 3 distinct realisations of random media corresponding

to the identical (a, b, c) ratios compared to box-size as depicted in Figure 1. The random

fields are assigned to the seismic velocity within the forward simulations within the range of

2500 - 4000 ms−1. The planar wave source located at z = 0 m (configuration as in Figure

10a) produces a scattered wavefield contoured for one positive and one negative pressure

isosurface that evolves through time (vertical axis). The rightmost column displays the time

dependent amplitude of the source perturbation. Animations related to this figure are available

as supplementary material.

of 10 Hz:

s(t) = s0e
−8f2

0 (t−t0)2 , (23)
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where s0 is the initial amplitude and t0 is the wave onset time.355

We perform two forward simulations for each of the 3 utilised random fields;

the first simulation is performed in homogeneous background velocity model

(3200 ms−1) while the second simulation includes the random velocity hetero-

geneities. This approach allows us to resolve the scattered wavefield (coda wave)

by subtracting the background wavefield (direct wave) from the signal obtained360

in the randomly perturbed medium. We qualitatively report the contours of the

pressure envelope (positive and negative iso-surfaces) for the coda wave evolving

with time (vertical axis) through a vertically correlated (Figure 11a), isotropic

(Figure 11b) and horizontally layered (Figure 11c) random medium.

In addition, we record the coda wave energy envelopes using a root mean365

square (RMS) ensemble average for 20 realisations for both investigated config-

uration; both at half the domain height (z = 1100 m) along the x-axis (Figure

12a, c, e) and at source (z = 0 m) location (Figure 12b, d, f) for the 3 dis-

tinct correlation length configurations (Figure 11a, b, c). We report a clear

trend that energy envelopes are larger for the random medium displaying a370

minimal correlation length in the direction of the propagating wave compared

to configurations where the correlation length is maximal along direction of the

propagating wave, here the z-axis.

7. Discussion

We have considered geometrical anisotropy with an idea that the heterogene-375

ity in the Earth can be represented in terms of continuous stochastic random

heterogeneities. The analysis of seismic coda was particular fruitful to infer

quantitative measures of the seismic scattering attenuation in the heteroge-

neous Earth [41]. Scattering of seismic waves in the crust assuming random

heterogeneity has previously been extensively studied [e.g. 42]. Meschede and380

Romanowicz [27] using spectral Fourier method combined with the Karhunen-

Loève expansion to construct non-stationary models on 3-D grids for global

seismology applications. However, the size of covariance matrix and thus spa-
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Figure 12: Coda wave energy envelopes for resulting from the planar acoustic wave propagation

for random media with correlation lengths in [x, y, z] directions of (a-b) [60, 60, 400] m, (c-d)

[100, 100, 100] m and (e-f) [400, 400, 60] m. The selected recording locations are at half

the domain height (a, c, e) and at the source plane (b, d, f). The samples include RMS

values of the full set of recorded waves for 20 realisations. The red line displays the RMS

ensemble average. When applied to the studies of the Earth’s mantle heterogeneities and P

coda seismological observations, the model parameters upscale to be 300 km for the model

vertical and lateral sizes, and the correlation lengths in [x, y, z] directions become (a) [6, 6,

40] km, (c) [10, 10, 10] km and (e) [40, 40, 6] km.

tial resolution was limited by the computer RAM in their simulations [27]. Our

method is free of this limitation and allows for an unstructured mesh and a385

variable resolution across the model domain.

The interaction of seismic wave encountering a heterogeneity of comparable
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or several times smaller size than the seismic wave length produces secondary

scattered waves. The scattered wave train recorded after the first arrival of

direct wave forms coda. Numerical simulations of coda are useful to examine390

the effects of small-scale structures on seismic waveforms. The scattering energy

distribution and coda level in random media with different correlation lengths in

radial and tangential direction depends on the incidence angle of the direct wave

[43]. Thus, the coda energy variation in time can be explained by the energy

partitioning between forward and backward scattered waves. The aspect ratio395

between the radial and tangential scales controls the strength of the backscat-

tering. Scattered waves propagating backward or forward can be observed in

receivers placed behind or in front of the scatterer. The forward scattered

waves with small scattering angle arrive just after the direct wave. The numer-

ical simulation of acoustic scattering is also important for better understanding400

the relative strengths of extrinsic (scattering) and intrinsic (absorption) seismic

attenuation.

The first configuration (Figure 10a) including a plane wave coming from

the bottom of the model mimics a teleseismic wave observation in earthquake

seismology. The decay of seismic scattered coda waves represented by the energy405

envelops provides information on statistical properties of the Earth’s mantle

heterogeneity [43]. In particular, backward scattering is stronger for planar

heterogeneities (layered structures) whereas the vertically oriented structures

(plumes, slabs) produce mainly forward scattering [43, 27]. Seismological studies

suggest that the upper mantle contains strong heterogeneity of elastic properties410

at length scales from a few kilometres to tens of thousands kilometres [44].

The origin of small-scale heterogeneities in the mantle was attributed to both

solid-state thermal convection facilitated by thermally activated creep processes

and chemical anomalies forming as a result of partial melting of the mantle

rocks [45]. Numerical simulations Schmalzl and Hansen [46] emphasised a scale-415

dependent efficiency of chemical mixing by thermal convection in the Earth’s

mantle. The sensitivity of teleseismic P-wave coda to the statistical properties

(e.g. correlation function) of the mantle heterogeneity [47, 48, 44] can offer
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useful constraints on the efficiency of mantle mixing across a broad range of

scales and, thus, elucidate geochemical evolution of the Earth.420

The second configuration (Figure 10b) is relevant for active seismic moni-

toring of hydrocarbon reservoirs. Primary migration of hydrocarbons formed in

the source rock occurs into a reservoir where oil and gas are accumulated if an

overlying low-permeability seal (cap rock) exists. However, hydrocarbons may

sometimes escape from the reservoirs through the cap rocks up to the surface425

by various mechanisms such as fracture, diffusion and porosity waves [9]. An

active leakage process is potentially hazardous and must be considered in any

prospect risk assessment. A hydrocarbon leakage can sometimes be directly

observed as pockmarks and seepage plumes in the water column. Otherwise,

3-D time-lapse seismic reflection data can be used for remote monitoring of the430

leakage processes that occur in the subsurface [49]. The standard processing

of the seismic data includes the summation of coherent signal corresponding to

the waves reflected and back-scattered in the sedimentary layer including both

the stratified and 3-D fine-scale heterogeneities.

Zones of dimmed seismic amplitudes where the reflections from stratigraphic435

layers are significantly weaker than in adjacent areas are often encountered

in seismic sections above leaking hydrocarbon reservoirs [49]. The amplitude

dimming was attributed to a localised fluid or gas flow in the sediments based

on a wealth of empirical data but the physical mechanisms behind are not well

understood [49]. The relation between physical properties inside the zones of440

fluid flow and their expression in stacked multichannel reflection data is complex

and non-unique. A realistic numerical experiment requires a 3-D geometry

since the seismic energy scattered on small-scale pipe and vertical sheet seismic

anomalies is different.

In Figure 12 the amplitudes of recorded back-scattered are significantly at-445

tenuated in the case of vertically oriented structures compare to the isotropic

and planar horizontal heterogeneities despite that the mean bulk acoustic veloc-

ity remains the same. This has an important implication for understanding the

effective elastic properties of the sedimentary systems affected by localised pore
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pressure changes and active fluid flow based on 3-D time-lapse seismic data.450

8. Conclusion

Realistic numerical modelling of the Earth’s spatial heterogeneity requires a

length scale resolution across more than 4 orders of magnitude. In 3-D geome-

tries, the computation is only feasible using parallel implementation of numerical

algorithms. We suggest an efficient numerical method based on a randomisa-455

tion technique [28] which allows to simulate the Earth’s heterogeneity down

to an arbitrary small scale assuming that the medium can be described as a

random Gaussian field with a known correlation function or power spectrum.

The GPU-accelerated numerical algorithm is described to simulate spatial real-

isations of a 3-D anisotropic homogeneous Gaussian random field in Cartesian460

coordinates. We showcase the ability of the approach to handle both exponential

and Gaussian covariance functions. We confirm good performance results of the

proposed method compared to a FFT-based approach, showing about one order

of magnitude lower memory usage and comparable wall-times. Moreover, the

proposed method to generate gaussian random fields based on spectral represen-465

tation will scale linearly on distributed memory machines, as no communication

is involved to reach the solution, which may not be the case for FFT-based

approaches. The presented geophysical examples support the efficiency of the

method and report the sensitivity of the recorded scattered seismic wavefields

on the orientation and aspect ratio of the anisometric stochastic heterogeneity.470

These results can be applied to interpret seismic data across a wide range of

scales: from a hydrocarbon reservoir to the upper mantle.
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