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Preface
This thesis is written for the Faculty of Mathematics and Natural Sciences at the
University of Oslo for the degree of Philosophiae Doctor (Ph.D.). The research
presented here has been conducted under the supervision of Associate Professor
Evi Zouganeli and the co-supervision of Professor Jim Tørresen. The work
has been funded by the Research Council of Norway, under the SAMANSVAR
programme (247620/O70) and is a part of the interdisciplinary “Assisted Living
Project – responsible innovations for dignified lives at home for people with mild
cognitive impairment or dementia”. The project involves researchers from the
Department of Nursing and Occupational Therapy (OsloMet), Work Research
Institute (Oslomet), Department of Mechanical, Electrical and Chemistry
Engineering (Oslomet), the Norwegian Board of Technology, Oslo Municipality,
the commercial partners Sensio AS and RoomMate AS, and external partners
from the Karlsruhe Institute of Technology, the University of Exeter and the
University of Bristol.

The thesis is a collection of six papers. They are presented here in
chronological order. The common theme of the papers is sensor event and
activity prediction using binary sensor data collected from homes of older adults.
The papers are preceded by introductory chapters that relate them to each
other and describe the motivation and background information for the work.
The papers are jointly published with Associate Professor Evi Zouganeli and
Professor Jim Tørresen.
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Abstract

Activity recognition and prediction are prerequisites for the realisation of
intelligent support functions in smart homes, including functions that help
older adults with mild cognitive impairment or dementia (MCI/D) live a safe
and independent life at home. A fair amount of research on smart home functions
has been conducted into assisting older adults with MCI/D in their everyday
life, for example by prompting with reminders or encouragement, diagnosis tools,
and prediction, anticipation, and prevention of hazardous situations. A number
of algorithms for activity recognition and prediction have been reported in the
literature. Most of the work in the literature, however, uses data collected
in controlled environments, e.g. lab or testbeds, based on scripted activities.
There is also no comprehensive comparative study that investigates state-of-
the-art algorithms with respect to different input data configurations, required
amount of data, limitations, and suitable applications. Moreover, there is no
such comparative study applied to data collected in real homes.

The aim of this thesis is to identify, apply, and evaluate state-of-the-art
prediction methods using data collected from real homes of older adults. The
work includes the following main tasks. Definition of the sensor network system
to be used, recruitment of participants for data collection from real homes, survey
and selection of well-performing prediction methods in the literature, and finally
their implementation and evaluation using real data.

A limited number of non-intrusive sensors were installed, in total around
fifteen binary sensors (magnetic, power, and motion). The type and number
of sensors were decided based on requirements and constraints imposed by the
project, e.g. user privacy, budget, industrial partner products and discussions
with the users and researchers participating in the project. The data were
collected for between one month up to a year, depending on the apartment.

Two probabilistic algorithms and recurrent neural networks were identified as
state-of-the-art methods for sequence prediction tasks. They were firstly applied
to the real data to predict the next sensor event that is activated/deactivated in
the home. A comparative analysis of the probabilistic methods and the recurrent
neural network was then performed for several factors (prediction accuracy,
required amount of data for convergence, execution time, number and type of
sensors). The recurrent neural network with long short-term memory provided
the best performance. It was therefore developed further by including the
time component. Several ways of including time information were investigated.
Finally, rule-based algorithms were implemented to identify activities from the
binary sensors’ data. Activity prediction was then carried out.

The thesis concludes that good accuracy can be achieved on the prediction
of the next sensor event and the next activity using a limited number of non-
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Abstract

intrusive binary sensors in real homes. It was also established in this work
that only a relatively small dataset is required to converge. The achieved peak
accuracy is nevertheless not yet sufficient for implementing intelligent assistive
functions. It is, however, presumably sufficient for supporting health personnel
and caregivers in their work by indicating the current activity status, alert
a hazardous situation, measure activity levels, and similar . More sensors
or alternative sensors that provide more information would enable improved
automation functions by predicting the next sensor event or activity, its time
of occurrence and its duration with greater accuracy. The thesis sheds light on
sensor event and activity prediction methods, input configurations, predictability
of these events in a home, and the amount of data required for convergence.
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Chapter 1

Introduction

This chapter introduces the motivation and foundation for the research contained
in the thesis. The research question, sub-research questions and thesis outline
are presented in the second half of this chapter.

1.1 Motivation

The United Nations predicts that 22% of the world population will be aged
60 years old or over in 2050, as opposed to 12% in 2017 (Figure 1.1) [120].
The percentage will be even higher in Europe – 35%. Conditions that arise
in older age include dementia (D), which affected 47 million people worldwide
in 2015, a number that is expected to increase to 132 million by 2050 [127].
Mild cognitive impairment and dementia (MCI/D) are a cognitive decline that
can affect attention, concentration, memory, comprehension, reasoning, and
problem solving [129]. These interfere greatly with a person’s ability to perform
daily activities and therefore leads to the disability and dependency of older
adults. It furthermore not only impacts the individuals involved, but also their
carers, families, and societies. The World Health Organization reports that the
consequences of dementia include a high increase in the cost of caring for those
with dementia. This includes the large number of health professionals required,
and loss in productivity due to the total costs related to dementia undermining
social and economic development [127].

Ambient assisted living technologies (AALT) can be extremely helpful in
minimising some of these foreseen consequences and current challenges. AALT
can enable people to remain longer and age in their homes in many ways,
e.g. by assisting individuals in daily activities, monitoring health and safety at
home, and by improving the cost-effectiveness and quality of health and social
services [11]. AALT usually is comprised of information and communication
technologies (ICT), stand-alone assistive devices, and smart homes. A smart
home can be defined as being a dwelling in which sensors and controllers are
installed to enhance one or more aspects of the resident’s life [30]. This can for
example include comfort, energy efficiency, security, and safety. Smart homes
originally required an interface which the resident could use to interact with the
home system. Constant progress in artificial intelligence has, however, enabled
a number of improvements in smart home systems, including systems that
can make decisions itself based on previously gathered information and prior
inputs from the residents [104]. Such a system could therefore potentially be
advantageous for older adults with MCI/D.

A fair amount of research on smart home functions has been aimed at
assisting older adults and older adults with MCI/D in their everyday life [11,
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1. Introduction

Figure 1.1: Percentage of population aged 60 years or over [120].

88, 102, 109]. Examples include prompting through reminders or encouragement
[55, 81], diagnosis tools [5, 64], and prediction, anticipation, and prevention of
hazardous situations [43, 76]. The operation of these functions is dependant
on the performance and robustness of the activity recognition and prediction
algorithms these functions are based on. The research literature contains a
number of well-performing algorithms for activity recognition and prediction.
Most of this work, however, uses data collected in controlled environments such
as lab environments and testbeds, based on scripted activities [22]. This thesis
aims to investigate the performance of state-of-the-art prediction algorithms
in real home environments. Can these methods be applied reliably in a real
home setup? How far are we from actually achieving smart homes that can
assist older adults to age well, safely and independently at home? Only when
such algorithms perform with sufficient accuracy can smart home functions be
implemented and be useful to older adults, including potentially older adults
with MCI/D.

1.2 Interdisciplinarity

This thesis was carried out as a part of the interdisciplinary “Assisted Living
project (ALP) – Responsible innovations for dignified lives at home for persons
with mild cognitive impairment or dementia”, funded by the Norwegian Research
Council. The project originally aimed to develop Assisted Living Technology
(ALT) solutions for users with MCI/D by adopting a Responsible Research
and Innovation (RRI) approach [44, 111]. Experts from the fields of health,
ethics, and technology were involved in the project. In addition, the project
cooperated with regional actors such as Oslo Municipality, the Norwegian Board
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of Technology (NBT), national and international academic partners (University
of Bristol, University of Exeter, and Karlsruhe Institute of Technology), and
industry partners (Sensio AS and RoomMate AS).

The interdisciplinary nature of the group, particularly the involvement of
health experts, was a crucial element in recruiting users to participate in our
field trial. Successful recruitment has enabled data collection from the smart
homes of real users that reside in Skøyen Omsorg+ (Oslo), a care unit for older
adults over 65 years old. The different competences in the group were also
helpful in data collection, privacy considerations, and participant consent. It was
not possible to recruit users with dementia, nor to receive definitive participant
diagnoses. We only received the subjective opinion of the health experts on the
level of user impairment.

Figure 1.2 presents the project workflow from the technology research point of
view. The residents were seen more as co-researchers than users and the purpose
of the trial and of the sensor system deployed in the apartments was decided in
close collaboration with the participants through interviews and dialogue cafés
[137]. This input from the residents would serve as an input for technology
research, that would then translate the needs and challenges pointed out by the
participants into self-learning functions in a smart home.

The industrial partner in the project installed sensors in the apartments and
set up the network for data collection. This thesis focuses on the collection and
use of these data for the implementation of smart functions in the future. The
installation of sensors can be very challenging in personalised apartments and
a feasibility study on the first installation of sensors in one apartment and the
lessons learned can be found in [58].

Figure 1.2: Workflow in the ALP, from the perspective of the technology work.
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1. Introduction

1.3 Research Objectives

The main aim of this thesis is to apply, compare, and identify performance,
applicability and limitations of state-of-the-art sensor and activity prediction
algorithms in smart homes. Our study aims, in particular, at having older adults
as users, as ALT can be very helpful in supporting their independent lives at
home. These algorithms enable the realisation of several assistive functions
such as prompting systems that provide reminders or encouragement to the
resident, improved operation of automation functions (e.g. turn the lights on
in the bathroom when it is predicted the resident will go into the bathroom at
night), prediction and prevention of anomalies, and indication of the onset of
diseases.

A number of sequence prediction methods have been tested in controlled
environments that simulate smart homes and have shown promising performance.
This work aims to investigate the performance of these algorithms when used on
data collected from a real world setup. The setup also entails other aspects such
as privacy concerns and apartment aesthetics, which in this work resulted in a
limited number of non-intrusive binary sensors.

The research question (RQ) of this thesis can, in order to address the above
scope, be formulated as follows:

What is the performance and what are the limitations and the
possible applications of state-of-the-art sequence prediction methods
in real homes with older adults, where only a limited number of
non-intrusive binary sensors can be used?

This research question may further be divided into the following sub-research
questions (SRQ):

SRQ 1 What performance can be obtained when predicting the next sensor event
and its time of occurrence in real homes, where a limited number of non-
intrusive sensors are installed? What are the limitations and possible
applications of each studied state-of-the-art algorithm (e.g. required
amount of data for the model to converge, suitable sensor network,
execution time)?

SRQ 2 To what extent can a prediction model be generalised across apartments
and users? Can the learned model in one apartment be used in other
apartments where there is no available training data?

SRQ 3 Is it possible to derive human activities through sensor events? Can
activities be predicted with a better accuracy than sensor events?

These questions were assessed using data collected from smart homes in
which real users, both male and female older adults, aged 70-95 years, live. This
work resulted in six research papers: three published and two accepted (to be
published) at peer-reviewed conferences, and one journal publication. Figure 1.3
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illustrates how the research papers relate to the research questions and to each
other.

Paper I, Paper II, Paper III, and Paper IV address SRQ 1. Paper I evaluates
the performance of two state-of-the-art probabilistic algorithms when applied
to the prediction of the next sensor to be activated or deactivated in a smart
home. Data from one real home over a period of two weeks were available for use
in this study. The algorithms were analysed and compared for factors such as
best accuracy, memory length (i.e. number of sensor events required to predict
the next one with best accuracy), amount of data required for convergence,
and number of sensors in the dataset. Paper II evaluates the performance of
recurrent neural networks (RNN) with long short-term memory (LSTM) in the
prediction of the next sensor to be activated in a smart home and compares this
with a baseline method. 17 weeks of data from the same home as in Paper I
were used. Factors such as best accuracy, memory length, required amount of
data for convergence, and number of sensors in the dataset were analysed in the
same way as in Paper I.

Paper III provides an in-depth comparative analysis of the probabilistic
algorithms and LSTM networks in the prediction of the next sensor to be
activated or deactivated in the home. This study used data collected over 30
weeks in this apartment. This volume of data was sufficient to analyse the
studied algorithms in a definitive manner. We compare optimal memory length,
required amount of data for convergence, top accuracy, and training and testing
execution time. The LSTM network was the best-performing algorithm. This
algorithm was therefore improved in Paper IV by including time information.
We predicted the next sensor event based on previous sensor events and their
time of occurrence, then predicted both the next sensor and time of occurrence
information based on these. Several methods for including the time as a feature
were investigated in this paper.

Paper V focuses on SRQ 2. The performance of the best performing
algorithm presented in Paper IV was analysed based on data from four
other apartments. The paper also presents the advantages and limitations
of applying transfer learning to our setup. Two methods for transfer learning
were investigated. These were training the base network using data from four
apartments and fine-tuning with data from the target apartment; and training
with data from the apartment that has best accuracy when modelled individually
and fine-tuning with data from the target apartment.

Paper VI concludes this thesis by applying the algorithms to datasets for
all eight of the apartments in the field trial. It was also investigated whether
the algorithms present the same behaviour for all users. An analysis similar to
that in Paper V was carried out. This paper in this way reinforces the results
found in the previous papers that address SRQ 1 and SRQ 2. This paper also
addresses SRQ 3. Associating sensor events to activities is explored in two
different rule-based algorithms. The prediction of activities is then evaluated
using the best methods found for the prediction of the next sensor.

5
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Figure 1.3: Relation between research questions and papers. The number of
apartments with data available for the paper, and the number of weeks of data
are given in parentheses. No weeks is specified where the collection periods for
each apartment differ.

1.4 Thesis Outline

This thesis is a collection of six research papers that constitute the research
contribution. Chapter 2 presents the background for the thesis, which consists
of (i) the ethics approach on which the ALP is based, (ii) the dialogue cafés with
users, (iii) a literature survey of ALTs, and (iv) a literature survey of sensor and
activity prediction methods in the literature, these providing the basis for the
development of ALTs. Chapter 3 introduces our field trial and the prediction
algorithms that were applied to the evaluation of the real data collected. Chapter
4 presents an overview of the contributions of the research papers, and individual
summaries for each paper. Chapter 5 then discusses the findings of this research
and presents conclusions and suggestions for future work. The thesis finally ends
with the collection of papers.

The source code for the implemented methods in this thesis are available on
my github account 1.

1Github account: https://github.com/flaviadcasag/assisted_living_phd_project
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Chapter 2

Background
This chapter presents the background for this research work. The background
includes the ethics concerns within the interdisciplinary group, the input acquired
from the older adults participating in the project, and the literature survey carried
out both on assisted living technologies and sequence prediction algorithms.

2.1 Ethics Framework within the Assisted Living Project

The ALP follows the Responsible Research and Innovation (RRI) approach as
mentioned in Section 1.2. The RRI term is, in fact, not in much use anymore.
There has also never been a conclusive definition of what it really entails. RRI has
been explained as being a “strategy of stakeholders to become mutual responsive
to each other and anticipate research and innovation outcomes underpinning
the “grand challenges” of our time for which they share responsibility” [111].
RRI conveys, in this project, that technology research should be carried out in a
responsible way, together with users, from idea to the further development of
the technology.

RRI was one of the cornerstones of the interdisciplinary project. The
RRI/ethics experts therefore had a strong influence on the technical decisions
taken throughout the project. There were many discussions around the type
and the number of sensors that should be installed. The view of the ethics
experts, and to a certain extent of the health experts, was that many sensors
may disturb the residents and be extremely privacy-invasive. It was also expected
that too many sensors would make recruitment much more challenging. Using
non-intrusive sensors and keeping the number of sensors to the minimum possible
were therefore prerequisites.

2.2 Dialogue Cafés with Users in the Assisted Living
Project

The ALP has introduced dialogue cafés as a user involvement method. This
approach was inspired by world cafés [40], dialogue conferences [1] and scenario
workshops [93]. The idea is that research becomes an interactive process with
users through involving different stakeholders in discussions on topics that matter
to them, in a safe environment. A number of dialogue cafés were conducted
during the ALP at the care-residence Skøyen Omsorg+ (Oslo, Norway), see
Figure 2.1. The users (all over 65 years old) were invited to share their opinions
and experiences on technology, on its usability and acceptability, challenges
in everyday life, and other topics of interest to the project participants and
stakeholders.
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Figure 2.1: Dialogue café at Skøyen Omsorg+.

One of the cafés focused on needs and challenges in everyday life. This
provided important input that directed the course of the technology research.
The needs and challenges are described below in the order of importance to the
café participants (about 14 residents).

1. Fear of falls. Detection and prevention of falls was extremely important to
them. They only, at the beginning of the project, used a necklace with a
button that they could push if they fell. This, however, does not always
work well (e.g. long time until someone comes to help or the device does
not trigger an alarm). They currently also have an ambient depth camera
for fall detection. This is provided by the municipality.

2. Difficulties sleeping. Many of the residents expressed problems getting to
sleep and waking frequently and/or too early.

3. Orientation at night. Some residents have indicated that lights and switches
are not well positioned in the home. This makes it difficult to get around
at night.

4. “Button-phobia”. Many expressed having difficulties operating devices
with many buttons and being afraid of pushing the wrong button.

5. Everyday self-sufficiency. A few participants indicated that they wanted
to be able to take care of themselves and carry out day-to-day activities
independently.

6. Mobility and safety outdoors. Some participants mentioned finding getting
around difficult and of not being safe when getting out of their home.

One solution to these needs and challenges would be to develop a
device/system for each need and challenge. This could potentially work. Many
of the items may, however, be correlated. For example, not having a a good
night’s sleep (item 2) may affect balance when walking around at home and can
lead to falls (item 1). Falls (item 1) can also occur at night, when it is difficult
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to walk around the apartment (item 3). Most of the items are to some degree
related to everyday self-sufficiency (item 5): the residents will need someone
to help them if they cannot operate a device with many buttons, to check on
them at a certain frequency to make sure they have not fallen, to help them
go to the bathroom or get a glass of water during the night, and assist them
outdoors. These correlations can provide more information to a unique system
that could address all the items at the same time and therefore perform better.
A more holistic approach would therefore be beneficial and could potentially be
a requirement.

A second solution could be to develop an integrated smart home system that
would address all (or most) of these needs and challenges. Such a solution could
potentially fully address difficulties with sleep, orientation at night, “button-
phobia”, and everyday self-sufficiency (items 2-5). It could also partially address
falls (item 1). They would, however, still need someone to come and help them
if they fell. Mobility and safety outdoors (item 6) could, however, not directly
be covered by a home system. Having access to information on activity levels
during the day or week may, however, be helpful in advising residents on whether
going out is a good idea at that point in time.

A smart home system such as this would have to take into account several
automation functions. The system should be able to predict and identify falls
and call for help (item 1). Lights and devices such as the TV and microwave
should be able to be switched on and off automatically whenever they are needed
(item 3 and 4). It should also be possible to provide a personalised activity
pattern analysis that could be useful, for example, with item 2, e.g. identify
which activities during the day lead to better sleep. All of these also impact
self-sufficiency, item 5.

Activity recognition and prediction algorithms must be used in the
implementation of these functions. The system must be able to recognise
current activities and predict future ones in order to assist the resident and/or
take action. For example, the system ought to be able to predict when the
resident is likely to turn the TV on and understand if the resident has problems
with the TV so that the controller can turn it on for him/her. The correct
and robust operation of these algorithms is essential to the implementation of
assistive functions in smart homes.

2.3 Survey on Assisted Living Technology

This section presents an overview of the current status of Assisted Living
Technologies (ALTs). A short summary of commercial technologies is firstly
presented, followed by the state-of-the-art for the research field for technologies
for older adults and older adults with MCI/D. A more in-depth review that was
conducted in this project is found in [37].
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2.3.1 Commercial Assisted Living Technologies

ALTs have been progressively incorporated into homes to provide automation,
to increase comfort, safety and security and to reduce energy consumption and
monitor health 1. Simple smart home devices can be very helpful in improving the
comfort of users and promoting an energy efficient home. A number of commercial
solutions are also available that control lighting and ambient temperature, some
of these including a learning system. Learning systems adapt the system to the
users’ preferences based on user input over a period of time. Home security can
be increased by cameras that can stream the home environment to, for example,
smart phones. Smart locks also increase security by allowing users to see and
speak with visitors before letting them in, through viewing streaming video on,
for example, their smart phone. Health factors can be measured and monitored
using a wide variety of the biosensors that are available on the market and by
using smart watches.

Most smart devices and sensors are used to improve comfort and increase
energy efficiency through using home automation that is designed for the general
public. There are, however, far fewer devices and systems for older adults and
older adults with MCI/D, these systems generally being focused on increasing
safety and providing assistance with daily life activities. The overall maturity
of the technology for older adults is also lower. The most common devices
and systems on the market for older adults are medication dispensers and fall
detection/alarms. There are also a number of calendar/socialising apps, some
devices/solutions that address wandering, and some solutions that give reminders
based on a calendar (e.g. reminders of appointments and events). There are
finally some commercial systems for the elderly, including for those with MCI/D,
that claim to carry out some sort of behaviour pattern monitoring. These systems
currently provide limited added value.

Smart sensors and devices have evolved significantly from very simple
automation systems to smarter systems. A great deal of improvement and
development, however, remains to be achieved. The trend today is towards
more complete smart home systems that integrate many sensors into a single
network. Small scale systems can today be set up by the user, for example by
installing a hub for smart speakers and by using compatible devices. A system
can also be set up by companies using existing technology. A number of systems
are available on the market. The degree of integration, however, varies but is
increasing steadily.

2.3.2 Research on Assisted Living Technologies

A number of ALTs for older adults have, in recent years, been under research.
These include (i) reviews of smart homes, wearable devices, and robotics, projects
grouped into Europe, United States, Asia and Australia research projects [22];
(ii) review of smart homes, robotics, virtual reality and gaming, telemedicine,

1Please refer to the report [37] to find references of the commercial technology cited in this
section.
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and social support [85]; reviews that group technologies and projects into smart
homes, mobile, and wearable sensors and robotics, and point out algorithms in
activity recognition, context modelling, anomaly detection, location and planning,
and review applications in health monitoring tools, wandering prevention, and
cognitive orthotics [102], and (iv) an extensive review of smart homes, activity
recognition activities and all aspects related to this including sensors, features
selection, and classification [88]. This subsection presents work in the literature
that relates to the application area of the work carried out in this thesis, including
research that refers to the needs and challenges pointed out by the residents in
our project, as well as smart homes.

2.3.2.1 Stand-alone Devices

A lot of ongoing research is being conducted into fall detection, this indicating that
commercial technology has not yet reached maturity. A number of fall detection
methods have been proposed e.g. using depth cameras [75, 131], floor-vibration
sensors [4], and accelerometers [8]. These use tracking methods, geometrical
analysis, and threshold values. The accuracy obtained in these experiments is
very good, close to or 100%. They are, however, very dependent on the rules
designed by the developers. Machine learning may, however, be more robust for
these applications, generalising the application to different environments and
people. Other work on fall detection has used machine learning algorithms and
data from depth sensors [116], accelerometers [92], or a combination of different
sensors [66, 132]. These systems still generate considerable numbers of false
alarms, despite the great progress in this area. These are very inconvenient for
users. Most of these systems were not tested using data from real environments.

There are also quite a few memory-aid devices in the research literature. The
Memory Aiding Prompting System (MAPS) is one example. This is primarily
designed for adults with cognitive disabilities, to help them complete activities
of daily living [18]. Autominder, another device, was developed for people with
memory impairment. It uses AI methods to provide personalised reminders
that adapt over time [98]. A further device reported in the literature is a
smart reminder system that used two accelerometers on each wrist to recognise
activities through artificial neural networks and send reminders when a predicted
activity was not being executed [21].

Some projects have conducted research into mobility devices. A smart cane
that provides physical support when walking/standing and guidance was tested
in an elderly living facility [38]. The cane’s functions include right path guidance,
obstacle detection and avoidance, monitoring of the user’s vital signs, and the
identification of the user’s intent. Another mobile orientation device with three
functions was developed for people with dementia. The three functions are
orientation assistance, which consists of alerting and requesting a caretaker
when the user leaves home, an appointment management function that reminds
the user of upcoming events by voice through the device, and an emergency
service that allows two-way voice communication [45, 46]. Both the cane and the
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orientation device were evaluated by elderly users. The users, however, thought
that they were difficult to operate.

Stand-alone devices have potential. Studies have, however, indicated the
need for more user-friendly devices [35]. Older adults also prefer ambient sensors
rather than wearables [35]. Using ambient sensors instead of wearables or robots
is also an important factor, particularly for older adults with MCI/D. Older
adults with MCI/D can forget what the devices are used for and not use them
properly. As mentioned previously, an integrated system can have advantages, as
every activity in a home can be correlated. It therefore may be an advantage to
use a system that addresses everything. This may be why smart home systems
have been so widely researched in recent years. Smart home systems under
ongoing research are described in the following.

2.3.2.2 Smart Homes and Smart Home Systems

A number of smart home projects have been reported in reviews in recent years
[3, 22, 109]. The aim of the research is usually to install a number of sensors in
a home that can gather data and be used in the implementation of functions
that can improve comfort, energy efficiency, safety and/or assist with activities
of daily living (ADL). Table 2.1 presents smart homes that are relevant to this
thesis (i.e. that provide safety and/or assistance with ADLs). The table lists the
aim of the research, the type and number of sensors and where the algorithms
were applied/tested.
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2. Background

Most of the systems have been developed and/or evaluated using data
collected in controlled environments (labs and/or testbeds). Only a few have
used real homes and real users (i.e. target group of study, for example, people
with dementia). The systems tested in real homes seem, however, to not
progress forward. There are, to the best of our knowledge, no reports of further
experiments in some of these projects, e.g. NOCTURNAL, Smarter Safer Home,
Dem@Care. This might be due to difficulties with finding volunteers, or because
the method was not robust enough for application in real homes. Smart home
technology may also still be immature because of inadequate algorithms, improper
activity recognition methods, and low rates of prediction accuracy [3].

Most of the projects in Table 2.1 used a large number of sensors (50-150)
in the smart homes. Some of the smart homes even use colour cameras, which
older adults have said are obtrusive and violate the resident’s privacy [35]. A
smaller number of sensors may be preferable to reduce user surveillance, lower
costs, and to reduce the impact on home aesthetics. It has also been shown that
too many sensors do not always improve activity recognition results [28].

2.4 Survey on Sensor Event, Activity, and Time Prediction

Many of the assistive functions in smart homes require robust sensor/activity
prediction to work properly. Well functioning algorithms can lead to, for example,
an improved operation of automation functions (e.g. adjust the temperature
early enough prior to the person waking up); enable the realisation of prompting
systems (e.g. prompt the resident if the predicted activity has not been performed)
[57]; or identify changes and anomalies in certain behaviour patterns (e.g.
movement, everyday habits, etc.), so indicating the onset or the progress of a
condition [105]. Sensor event/activity prediction is comprised of two main tasks:
event prediction (sensor or activity) and time prediction.

A number of algorithms for sequential event prediction have been studied in
recent years [130]. These algorithms train a model to predict the next symbol,
based on a sequence of symbols. The Active LeZi (ALZ) is a probabilistic method
that has been extensively employed in the prediction of sequential data [49].
The algorithm firstly finds patterns in a sequence based on a text compression
algorithm. It then builds a tree using these patterns, including frequency of
occurrence. Please refer to Figure 3.3 and Section 3.3.1 for a better understanding
of this method. An algorithm that computes probabilities based on the tree
is then applied to predict the next symbol. ALZ achieved a peak accuracy of
47% when applied to the Mavlab testbed dataset (Figure 2.2, – 50 binary and
sampling sensors) [49]. The dataset included events from six persons and their
interaction with 50 different devices.

The Sequence Prediction via Enhanced Episode Discovery (SPEED) algorithm
builds on an idea that is similar to ALZ [2]. It constructs a tree from the patterns
found in sequences. SPEED, however, introduces episodes to find patterns,
episodes being sequences that start and end with an activation or deactivation
of the same sensor, or vice-versa. Patterns are then derived from the episodes.
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Figure 2.2: Mavlab testbed [123].

Please refer to Figure 3.4 and Section 3.3.2 for a better understanding of this
method. SPEED was applied to the same dataset as ALZ (Mavlab — Figure
2.2) and achieved an accuracy of 88.3%. The same dataset was used for both
training and testing. A comparison of the prediction accuracy of SPEED and
ALZ is presented in Figure 2.3.

Figure 2.3: SPEED compared to other sequence prediction methods [2].

Neural networks have also been used for sensor event prediction, achieving
notable performance. Recurrent neural networks (RNN) are usually used for
this application [72, 96, 124]. RNN networks were designed for and often work
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better on tasks that involve sequential inputs (e.g. speech and language) [70].
RNN networks keep an internal memory in their hidden units and can therefore
contain information on the history of past inputs. Three RNN models, Echo
State Network (ESN), Back Propagation Through Time (BPTT), and Real Time
Recurrent Learning (RTRL), were applied to a ten-day dataset with six binary
sensors (four motion and two magnetic, see Figure 2.4) [72]. One person with
dementia lived in the apartment. The networks were implemented such that
the number of input and output values corresponded to the number of sensors
in the dataset. Each sensor assumed a value of “0” or “1”, “off” or “on”, in a
certain time slot. Prediction was computed for the next six hours. The ESN
model performed best, the root square mean error (RMSE) being 0.06 [72].

Figure 2.4: Real home with binary sensors for data collected in [72].

A similar study was carried out on a 16-room office environment [124]. The
dataset in this case was collected through an app installed on the personal
data assistants (PDA) of participating employees, the participants manually
registering when they entered or left a room. There were four participants in the
study and an Elman network and a multilayer perceptron network were applied
to predict the next room a person would enter. The Elman network achieved
the best results, which ranged from 70% to 91% accuracy depending on the user.
There were 16 rooms in the office. Each room was therefore codified in four bits.
The input corresponded to two previous rooms and the output to the predicted
next room. This study also applied other methods – Bayesian network, state
prediction, and Markov predictor. Comparable results were achieved (Figure
2.5) [96].

A similar study was carried out for a 16-room office environment [124]. The
dataset in this case was collected through an app installed on the personal
data assistant (PDA) of participating employees that had to register manually
whenever they entered/left a certain room. An Elman network and a multilayer
perceptron network were applied to predict the next room a person would go
to. There were four participants in the study and the Elman network attained
the best results, ranging from 70% to 91% accuracy depending on the user.
Each room was codified in four bits as there were 16 rooms in total. The input
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corresponded to two rooms and the output to the predicted next room. This
work also applied other methods – Bayesian network, state prediction, and
Markov predictor – where comparable results were achieved [96].

Figure 2.5: Comparison of methods for different users in a 16-room office
environment for the prediction of the next room [96].

Such algorithms should also be able to predict when the next sensor
event or activity in a sequence will occur. Time series methods such as
Autoregressive Moving Average (ARMA) and Autoregressive Integrated Moving
Average (ARIMA) have been extensively applied in the literature to predict
the time of the next event or activity [17]. These methods assume the time
series to be linear. This is, however, not the case for activities in a home [83].
Rule-based algorithms have been developed for time forecasting [7, 57], the
algorithms extracting temporal patterns between related activities to generate
predictions. They are quite useful and have been shown to be able to achieve
good performance. These algorithms are however not good at predicting very
complex activities and activities that do not occur very often.

Non-linear time series models would be more suitable for time prediction
in smart homes, e.g. artificial neural networks. A Non-linear Autoregressive
Network (NARX) showed promising results in the prediction of the start and
the end time of sensor activation [73]. This is a type of RNN that is usually
applied to long term time series prediction. Simulated data and real data were
both used in this study. The real data were collected over 20 days and contained
events from six binary sensors, see Figure 2.4. Each sensor had its own network,
where input and output nodes had start and end time of the sensor’s activation..
The NARX network performed better, with a RMSE ranging from 0.06 to 0.09
depending on the sensor. An example of time prediction in the bedroom using
simulated data is shown in Figure 2.6.

Decision trees have been used to predict the point in time at which a specific
activity would take place [83]. This method relies on several features being
extracted from sensor event sequences, classified by a regression tree, each leaf
node containing multivariate linear models. The method was applied to data
from 25 testbeds each with 51 binary and sampling sensors and achieved an
average normalised RMSE of 0.01.

Bayesian networks have been applied to predict the next location, time of
day, day of the week and (as a consequence) the activity label of what the
person is doing [86]. This work is the closest to ours in terms of predicting next
sensor/activity and time using a single model, see Figure 2.7. It has achieved
an accuracy of 46-60% when predicting the next location, 66-87% for time of
day (slots of 3 hours in the day), 89-97% for predicting the day of the week, and
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Figure 2.6: Prediction results for the bedroom sensor from a simulated
environment [73].

61-64% for activity recognition. This algorithm was employed in two apartments
each with around 30 binary sensors.

Figure 2.7: Bayesian network structure for predicting next location Y 1, time of
day Y 2, day of the week Y 3 and activity X [86].

Transfer Learning

Each individual has her/his unique habits. Smart homes may also have different
layouts and different limitations for the deployment of sensors. It is therefore
important that prediction algorithms are able to adapt to each home and to each
resident’s habits. Transfer learning (TL) is a technique that entails the training
and learning of parameters from a source dataset that is different yet related to
a target dataset (e.g. different labels and data distributions) [94]. Applying TL
can therefore reduce the training time of a model and the data required from
the new domain (e.g. apartment). It is also possible to investigate how general
a model is, i.e. whether the model can be applied to new apartments without
any fine-tuning of the source model.

Transfer learning has been used in a number of fields, e.g. image and language
classification, computer networks, automated planning, mathematical problems,
and activity recognition [29, 94]. It has not, however, been fully explored for
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time series data [42]. This might be due to the lack of available general purpose
pre-trained models [42]. This may, however, change soon as transfer learning
has proved to provide many advantages in other domains.

It has, for example, been shown that models trained on features extracted
using a pre-trained RNN perform better or at least as well as RNNs trained
for a specific task within electronic health record data prediction [52]. Transfer
learning can also dramatically decrease the required amount of data in the
target dataset, as proved for mortality prediction algorithm [36] and for activity
recognition [59, 99]. It also allows datasets with different feature spaces to
transfer knowledge between each other [59, 100]. Transfer learning can be
applied to a number of algorithms: RNNs [52], Hidden Markov Models [60],
statistical inference [36], support vector machine [59].

A cross-domain activity recognition algorithm combined with transfer learning
and a similarity function between activities, was proposed by a study for transfer
learning in smart homes [59]. Three different datasets were used in this study.
One dataset was collected over 28 days from a real home of a 26- year-old
man. Peak accuracy was 65% for seven activities. Other studies have examined
the transfer of knowledge of activities from multiple physical source spaces
to a different target physical space [99], an algorithm being proposed that
automatically maps activities from source to target environment and that
classifies activities based on a weighted majority vote method. The data used
in this study were collected from six testbeds in which volunteers lived for 2-3
months. The data included 5 to 11 activities, and a peak accuracy of about 80%
was achieved. HMM and transfer learning have also been used in combination
across three apartments with five recorded activities and achieved a F1-score of
0.65 in the best case [65].

Transfer learning has its limitations. It has been shown that it can either
improve or degrade the prediction accuracy of models, depending on the dataset
used for transfer learning. This degrading of the prediction accuracy is known
as negative learning [94]. It is important, in these cases, to detect which source
dataset is the best to use for a certain problem. For example, Dynamic Time
Warping may be beneficial for measuring inter-dataset similarities [42].

2.5 Summary

This chapter has described the background to this thesis. The background
consists of a number of inputs, including results from dialogue cafés with older
adults, discussions within the ALP, and literature surveys on both assisted living
technologies and activity recognition and prediction methods.

A number of needs and challenges pointed out by the older adults in dialogue
cafés in the ALP could be addressed by an integrated smart home. Studies have
shown that non-intrusive sensors are preferable, and that ambient sensors are
preferred over wearables. The RRI framework chosen for the ALP also meant
that a limited number of sensors were used, to accommodate privacy issues. Our
smart home contains events from 13-17 binary sensors, i.e. twice as many as
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used in [72, 73], and less than one third of the number of sensors used in [2, 49,
83]. Our study is comparable to the work reported in [96] (16 rooms). However,
the events in that study were inserted by each user rather than being collected
by sensors. This implies less noise in the data.

A number of activity recognition and prediction algorithms have been reported
in the literature. The ALZ algorithm has been widely used. SPEED, even though
it is similar to ALZ, does however give better results. Recurrent neural networks
have also shown promising results. These three are therefore the state-of-the-art
methods in this field. Nevertheless, most of the work in the literature, especially
studies using these methods, use data collected in controlled environments, many
being based on scripted activities. It is also quite common for there to be many
sensors in an environment (50 or more). This may not be applicable to real
homes due to privacy concerns, budget constraints, and home aesthetics. There
are, furthermore and to the best of our knowledge, no comprehensive comparative
studies that investigate state-of-the-art algorithms applied to data collected in
real homes and comparing a number of aspects on the performance. This deficit
is addressed in the work presented in this thesis.
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Chapter 3

Material, Users, and Methods

This chapter describes the field trial including the sensors, the system installed
in the homes, and the users. Data preprocessing, the algorithms used for
sensor event and activity prediction and the transfer learning technique are also
presented in this chapter.

3.1 Field Trial

3.1.1 Sensors

The industrial partner in the project, Sensio, could supply three types of ambient
binary sensors [112]: motion sensors, magnetic sensors, and power sensors
(Figure 3.1). Motion sensors (Pyroelectric/Passive Infrared – PIR) detect motion
through detecting a change in infrared radiation in the sensor’s field of view.
The sensor generates an event with message “1” each time motion is detected.
It otherwise sends no event. Magnetic sensors consist of two components, a reed
switch and a magnet. They are fitted opposite each other on doors, windows,
and drawers to indicate whether they are open or closed. An electric current is
created when the two pieces are close to each other, the circuit otherwise being
broken. Events with message “1” are generated for open and “0” for closed.
Power sensors measure the electricity usage of an appliance. They can therefore
indicate whether the appliance is turned on or off, events with message “1” being
for on and “0” for off. The power sensors themselves do not, however, generate
the “1” and “0” messages. Sensio therefore had to manually find each device’s
power thresholds for on and off, for each apartment and each piece of equipment.

The data from these sensors include timestamp (date and time, precision in
seconds), sensor ID, and sensor message (binary). Table 3.1 shows an example
of data collected from the sensor network.

(a) Motion sensor (b) Magnetic sensor (c) Power sensor

Figure 3.1: Sensors for smart homes from the project’s industrial partner Sensio
[107].
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Table 3.1: Sample of binary sensor data

Timestamp Sensor ID Sensor message
01.09.2017 07:58:05 2 1
01.09.2017 08:00:14 12 1
01.09.2017 08:01:01 4 1
01.09.2017 08:02:56 5 1
01.09.2017 08:03:05 12 0

3.1.2 Data Collection and Storage

A great deal of preparatory work must be carried out before personal data can
be collected and stored. The first step is to apply to the Norwegian Centre for
Research Data (NSD – Norsk Senter for Forskningsdata) for project approval.
The application included information on how participant consent would be
obtained, how the data would be collected, stored and processed, and how the
security and anonymization of the users’ data would be guaranteed.

The approval given by NSD contained the requirement that the data from
the binary sensors is pushed to and stored on the secure server at the University
of Oslo, Services for Sensitive Data (TSD – Tjenester for Sensitive Data) [119].
TSD was furthermore responsible for the anonymity, encryption, and security of
the collected data.

Sensio, the industrial partner in the project, was responsible for installing
the sensor system in the homes. The sensors were connected wirelessly through
Z-Wave and xComfort protocols to a Raspberry Pi 3, which then transferred
the data to TSD. The connection to TSD was handled by Sensio, who were
responsible for securing the anonymity and encryption TSD requires.

The aim of the research was presented to the residents at a combined Dialogue
Café and Recruitment meeting. Interested residents were asked to register their
names on a list at the meeting. They were then individually informed (orally
and in writing) about the project and about consent by the project’s health
researchers. All participants were capable of giving their informed consent,
this being determined by their health record or from the knowledge of the
housekeeper.

3.1.3 Field Trial

Our field trial involved eight apartments in a community care facility. All
apartment residents were more than 70 years old, and the apartments had
similar layouts. All have a bedroom, a living room, an open-plan kitchen area, a
bathroom, and an entrance hall (Figure 3.2).

A minimal number of binary sensors were installed in the apartments. This
was to minimise resident surveillance and due to the project’s technical and
financial constraints. A set of sensors was selected that can potentially identify
daily activities and that enable the realisation of useful functions for older adults,

24



Field Trial

indicated in dialogue cafés with users [137]. The sensors generate events that
can indicate occupancy patterns (movement around the apartment), and daily
activities such as kitchen activities, dressing, being in bed, and leisure activities
such as reading, watching TV and listening to the radio.

The proposed sensor system is shown in Figure 3.2. Physical limitations,
however, meant that not all apartments were installed with an identical set of
sensors. Examples of physical limitations include a fridge door with a gap that
was too wide for a magnetic sensor to be used and different equipment in the
apartments, for example the fact that residents have either a coffee machine
or a kettle. All the motion sensors were installed in all eight apartments. The
power and magnetic sensors installed in the apartments vary from apartment to
apartment, as shown in Table 3.2.

Figure 3.2: Proposed sensor system for field trial apartments.

Table 3.3 presents the age and gender of each apartment resident. Some
health and cognitive ability scores are also given, each being scored by the
resident themselves. These scores were acquired using RAND-12 [121] and the
Cognitive Function Instrument (CFI) [78, 125]. RAND-12 uses a scale from
1 to 5, this being for poor (1), fairly good (2), good (3), very good (4), and
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Table 3.2: Sets of sensors in each apartment in addition to the standard set of
motion sensors

Apt. ID Power Sensors Magnetic Sensors
1 Night stand lamp, coffee machine,

living room/reading lamp, TV
Cupboard/drawer, entrance
door

2 Night stand lamp, coffee machine,
living room/reading lamp, mi-
crowave, TV

Fridge, entrance door

3 Kettle, living room/reading lamp,
microwave, toaster

Fridge, cupboard/drawer, en-
trance door

4 Night stand lamp, coffee machine,
living room/reading lamp, TV

Fridge, entrance door

5 Kettle, TV Fridge, cupboard/drawer, en-
trance door

6 Night stand lamp, coffee machine,
kettle, living room/reading lamp,
TV, microwave

–

7 Night stand lamp, coffee machine,
kettle, living room/reading lamp,
TV

Wardrobe, cupboard/drawer,
entrance door

8 Night stand lamp, TV Wardrobe, entrance door

excellent (5) perceived health. CFI is a questionnaire that gives a total score of
between 0 and 14, 0 indicating no cognitive impairment and 14 indicating severe
cognitive impairment. Two of the project’s health experts also provided their
subjective opinion on the physical and cognitive abilities of each resident using
the RAND-12 scale. They also scored how active the person is in the home, i.e.
their movement around the home and level of activity. The scale used for this
was from 1 to 4 – passive (1), fairly active (2), active (3), and very active (4).
The health experts noted that the residents of apartments 5 and 8 experienced
memory deterioration during the study.

3.2 Data Preprocessing

The motion sensors only send activation messages (“1”). The corresponding “off”
events (“0” message) were therefore inserted so that the data are consistent for
every sensor. Motion sensor “off” events were therefore inserted when another
motion sensor is activated or another type of sensor is activated in another
room. Moreover, data acquired from binary sensors often contain faulty events
such as erroneous activation of motion sensors by sunlight and motion sensor
switch-off delays [39]. Such noise can significantly affect the performance of
the models. The following preprocessing step was therefore introduced. Motion
sensors occasionally do not send an activation event when they should. Missing
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Table 3.3: Characteristics of residents participating in the field trial

Apt.
ID

Age
(Gender)

Self-perception Opinion of health experts

Health Cognition Physical Cognition Activity
1 90 (f) 1 6 1/2 4/2 1
2 84 (m) 3 1 3 5 2
3 71 (m) 2 0 4 4 2
4 83 (f) 3 5 4 4 3
5 80s (f) 4 4.5 2/3 1 4
6 88 (f) 2 6 1/2 4 1
7 95 (f) 3 5.5 1/3 4 2
8 86 (m) 3 1 3/4 4/2 4

events were therefore inserted to correct the data. For example, it is not possible
to go into the bedroom from the kitchen without passing through the living
room. The living room activation event was therefore inserted if it was missing.
In cases where two sensor events are possible, such as where there are two paths
through the apartment, then events are inserted such that the final percentage
distribution of the two options remains as observed in the original data. The
time of the inserted event is the mean of the previous and the next event. This
does not compromise data accuracy as faulty events are usually associated with
relatively fast motions around the apartment. The elapsed time between the
events is therefore quite short.

3.3 Probabilistic Algorithms

Two probabilistic prediction methods were used in the thesis, Active LeZi
(ALZ) and Sequence Prediction via Enhanced Episode Discovery (SPEED). Both
methods convert sensor data into a sequence of letters and then identify sequence
patterns. The patterns and their frequency of occurrence are used to generate
a tree. This tree is then used to calculate the most probable next event. The
prediction of the next symbol is performed by the Prediction Partial Matching
algorithm (PPM) [25, 26]. Please refer to Section 3.3.3 for an explanation of the
PPM algorithm.

Table 3.4 presents a possible scenario of actions performed by a resident and
the corresponding sensors that are triggered. Each sensor is assigned a letter, as
dictated by ALZ and SPEED and as shown in Table 3.5.

3.3.1 Active LeZi (ALZ)

ALZ is a sequence prediction algorithm that is based on a text compression
algorithm [49]. The input to ALZ is a sequence of lower-case letters, each
letter representing a specific sensor event. For example, the sequence for the
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Table 3.4: Actions scenario

Action performed Sensor eventa

Wake up PIR bedroom (on)
Go to living room PIR bedroom (off), PIR living

room (on)
Turn on TV Power TV (on)
Go to kitchen PIR living room (off), PIR

kitchen (on)
Turn on coffee machine Power coffee machine (on)
Go to living room and watch TV
while coffee is being made

PIR kitchen (off), PIR living
room (on)

Go to kitchen PIR living room (off), PIR
kitchen (on)

Turn off coffee machine Power coffee machine (off)
Go to living room PIR kitchen (off), PIR living

room (on)
aEvents in italic have been inserted in the data preprocessing step.

Table 3.5: Assignment of letters to sensors

Sensor Letter
PIR bedroom a/A

PIR living room b/B
Power TV c/C
PIR kitchen d/D

Power coffee machine e/E

scenario described in Table 3.4 would be “abcdebdb”. Only activation events
(i.e. “on” events) are included. ALZ uses the procedure dictated by the LZ78
text compression algorithm to generate patterns that occur in a sequence [136].
One small modification was, however, made to the procedure.

A given sequence x1, x2, . . . , xi is parsed into ni sub-sequences w1, w2, . . . , wni

such that for all j > 0, the prefix of the sub-sequence wj is equal to some wi

for 1 < i < j. For example for the sequence “abcdebdb”, the patterns found by
LZ78 would be “a”, “b”, “c”, “d”, “e”, “bd”. Note that the last pattern “bd”
was identified as “b” had already been found. ALZ also generates more patterns
from the suffixes where this is possible. For example, “bd” would also generate
another “d”. This accounts for patterns that were not perceived by the LZ78
algorithm but that are possible in the smart home environment. This increases
the convergence rate of the model [49].

The frequency of occurrence of the patterns is counted when the sequence has
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been completely parsed and the patterns have been derived from this. An order-
k-1 Markov tree is then constructed based on the patterns and their frequencies.
k corresponds to the longest pattern found in a training sequence. PPM (Section
3.3.3) is then used to calculate the next most probable event. The tree generated
for the example scenario sequence of “abcdebdb” is shown in Figure 3.3.

Figure 3.3: Tree generated by the ALZ algorithm for the sequence “abcdebdb”.
The numbers within parenthesis represent the frequency of occurrence of the
patterns found in the respective sequence.

3.3.2 Sequence Prediction via Enhanced Episode Discovery
(SPEED)

SPEED is another sequence prediction algorithm. It is based on the occurrence
of frequent patterns in home environments [2]. The main difference between
SPEED and ALZ is the procedure used to find patterns in the sequence. SPEED
defines an episode as the sequence between an initial and ending point of an
activity. For example, the moment a coffee machine is turned “on” is the initial
point of a coffee making episode, the episode lasting until the coffee machine
is turned “off”. An “off” event cannot occur unless an “on” event has occurred.
“Off” events therefore always occur after an “on” event for an activity (or sensor),
and vice-versa.

The data received from the sensors in the smart home are represented using
a sequence of letters. Upper-case letters represent a sensor “on” event and
lower-case letters represent a sensor “off” event. The sequence for the example
scenario presented in Table 3.4 would therefore be “AaBCbDEdBbDedB”.

The main idea behind the SPEED algorithm is to extract episodes from a
sequence of data and derive patterns from these episodes. The patterns are
then used to generate a tree that keeps track of the learned episodes and their
frequencies. The height of the tree is the length of the longest episode, which
defines maximum episode length. The algorithm, for every event in a sequence,
searches for the opposite event in following events. If the opposite event can
be found, then an episode is found. The first episode sequence found in the
example scenario is “Aa”. The patterns generated from this episode are “A”, “a”,
and “Aa”. Table 3.6 shows the episodes and patterns derived from the example
sequence. We keep track of these and count the frequency of occurrence to
generate an order-k-1 Markov model, k being the maximum episode length. A
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Table 3.6: SPEED episodes and patterns for the sequence “AaBCbDEdBbDedB”

Episode Patterns found
Aa A, a, Aa
BCb B, C, b, BC, Cb, BCb
Ded D, e, d, De, ed, Ded
Bb B, b, Bb

dBbD d, B, b, D, dB, Bb, bD, dBb, BbD, dBbD
Ded D, e, d, De, ed, Ded

bDedB b, D, e, d, B, bD, De, ed, dB, bDe, Ded, edB, bDed, DedB, bDedB

tree for the example sequence is presented in Figure 3.4. The PPM algorithm is
then finally used for prediction.

Figure 3.4: Tree generated by the SPEED algorithm for the sequence
“AaBCbDEdBbDedB”. The numbers within parenthesis represent the frequency
of occurrence of the patterns found in the respective sequence.

3.3.3 Prediction by Partial Matching (PPM)

The PPM algorithm calculates the probability distribution of each possible event
in a given sequence by taking into consideration the different order Markov
models and the different weights [25, 26]. The weights are given by the escape
probability for the model, for going from a higher order to a lower one. The
predicted symbol is the symbol with the highest probability.

ALZ and SPEED use slightly different PPM strategies. ALZ uses the exclusion
strategy. This means prediction is performed using the suffixes of the given
sequence, but not the sequence itself. Therefore, for the sequence “bd”, the
patterns used to calculate the probability of each letter being next are “b” and
the null context. For example, if we want to calculate the probability of a “c”
after “bd” using ALZ, based on the tree in Figure 3.3, then the probability would
be given by Equation 3.1. In an order-2 model, the probability of a “c” after
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a “b” is 0/3 and the probability of escaping to order-1 is 2/3. In order-1, the
probability of a “c” after a null context is 1/9.

In SPEED, however, the patterns used for calculating probabilities after a
certain sequence would be all the suffixes, including the sequence itself. For
the sequence “dB”, the patterns used would therefore be “dB”, “d”, and the
null context. The probability of a “b” after this sequence, based on the tree
in Figure 3.4, would be as given by Equation 3.2. We start in order-2, where
the probability of a “b” after “dB” is 1/2 and the probability of escaping to the
lower order is 1/2. In order-1, the probability of a “b” after “d” is 0/4 and the
probability of escaping to the lower order is 2/4. Finally in the lowest order, the
probability of a “b” after a null context is 4/22.

p(c, bd) = 0
3 + 2

3

(
1
9

)
= 0.074 (3.1)

p(b, dB) = 1
2 + 1

2

(
0
4 + 2

4

(
4
22

))
= 0.545 (3.2)

3.4 Long Short-Term Memory Recurrent Neural Networks
(LSTM RNN)

The converted data used in ALZ and SPEED were also used as input for the
Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM). RNN
maintains an internal memory and has therefore been broadly applied to sequence
prediction. It achieves good performance for inputs that are sequential in time
and has been applied, for example, to text generation [74], speech recognition
[51], and pattern recognition in music [47]. LSTM [53] is an RNN architecture
that is designed to be better at storing and accessing information than the
standard RNN [50].

We used an LSTM network configured as a text generation network. The
number of inputs is a certain number of previous sensor events and is equal to
the memory length (i.e. number of previous events used to predict the next one).
The output is the predicted next event in the sequence (Figure 3.5). The input
and output are one-hot encoded. One-hot encoding represents each symbol using
a vector of bits that has a length that is equal to the number of symbols in
the sequence. All values are zero, except for the value that corresponds to the
symbol (Figure 3.5). The number of values in our input vector for the one-hot
LSTM encoding is equal to the number of symbols in the sequence. For example,
there are 30 values in the input for 15 sensors, each having an “on” and “off”
state.

The LSTM network models were implemented in Python 3 using Keras
open source library for neural networks [24]. A number of hyperparameters and
parameters were first tuned using grid search and then manually tweaked to
find the optimal values. Optimal values were as follows: one hidden layer with
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Figure 3.5: LSTM network configuration.

hyperbolic tangent activation and 64 neurons; batch size (i.e. number of samples
used for training each iteration of the epoch) of 512; Adam as the optimisation
function (adaptive learning rate optimisation algorithm [67]) with a learning
rate of 0.01 and categorical cross-entropy as loss function; output layer that
used a softmax activation function. The early stopping method was also applied,
allowing a maximum of 200 epochs for each model’s training, and a dropout
rate of 50%. They were both used to avoid overfitting. We used weights in the
training process to balance the number of samples for each sensor. These are
computed using the “compute_class_weight” function from the Scikit-learn
open source library [95]. The weight corresponds to the total number of samples
divided by the number of occurrences of the class.

3.5 Inclusion of Time to Sequential Data

The time is incorporated by adding a number to the letter to signify a slot of
time. The letters assigned to each sensor are kept as before. Generated sensor
events are, in all cases, treated as independent events. This means that the
number of inputs to the LSTM where there are four possible time slots for each
sensor and 15 sensors with “on” and “off” events, is 4× 15× 2 = 120.

In the following, the types of time slots that were investigated are described.

3.5.1 Sensor Event and Period of Day

Four periods of the day are distinguished: morning (from 7am to noon), afternoon
(from noon to 6pm), evening (from 6pm to 10pm), and night (from 10pm to
7am). The period of the day is indicated by adding a number between 0 and 3
to the letter for the event. For example, the symbol “A0” would be generated
for a motion sensor event in the bedroom going “on” in the morning.
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3.5.2 Sensor Event with Class Intervals

A number is added to the sensor’s letter to indicate the slot of time that elapses
to the next event. We define a set of 4 time-class intervals [< 1min, 1-15min,
15min-1h, > 1h] and a set of 8 time-class intervals [<1min, 1-5min, 5-15min,
15-30min, 30min-1h, 1-2h, 2-5h]. We therefore assign the numbers 0-3 or 0-7
to the event, depending on the intervals used. For example, the symbol “A1”
would be generated if the motion sensor in the bedroom (assigned letter a/A) is
activated in the morning and 10 minutes later the person went to the bathroom.

3.5.3 Sensor Event and Time-Cluster with Hour of the Day and
Elapsed Time to the Next Event

The K-means algorithm is an unsupervised learning method that was used for
clustering sensor samples. In the K-means algorithm, the dataset samples are
classified into K clusters such that the sum of square distances (SSD) within
the clusters is minimised [9]. In this study the algorithm was used to cluster
the samples of each sensor by the hour of the day in which they occurred and
the time elapsed to the following sensor event. Each cluster contains a centroid,
which is given by the mean value of each feature of the algorithm. K-means is
performed for between 1 and 8 clusters (K), the best K being chosen manually
using the elbow method [61]. The elbow method consists of plotting an SSD vs.
K graph and choosing the K that resembles an “elbow” (the point of inflection on
the curve). This is the best fit for that problem. Figure 3.6 shows an example of
the clustering of samples for the motion sensor in the kitchen. This sensor gives
four clusters each represented by a different colour and uses the elbow method
based on the graph in Figure 3.7. If this sensor is represented by the letter B,
has an “on” event at noon (blue cluster), and the next sensor event took place 3
minutes later, then this would generate “B2” (2 representing the blue cluster).

Figure 3.6: K-means clustering of samples of motion sensor events in the kitchen.
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Figure 3.7: SSD vs. number of clusters for motion sensor events in the kitchen.

3.5.4 Separate Dataset and Model for each Period of the Day

A separate dataset for each period of the day was used in this approach. The
periods were morning (from 7am to noon), afternoon (from noon to 6pm), evening
(from 6pm to 10pm), and night (from 10pm to 7am). Each dataset was modelled
in separate neural networks.

3.6 Activity Recognition and Prediction

Binary sensor events indicate activities of daily living and can therefore be
associated with specific activities. The limited number of sensors in our
set-up, however, meant that only high-level activities could be registered.
The following classes were included in the dataset, after grouping sensor
events: watching TV, being in bed, being out, bedroom activities, living
room activities, kitchen activities, bathroom activities and transitions between
bedroom/bathroom/entrance/living room. In total 11 classes.

Two rule-based algorithms were implemented to derive the activities from
binary sensors. These are referred to as sequential activities and concurrent
activities. The set of rules is described in Table 3.7. In sequential activities, no
more than one activity takes place at the same time, another activity starting
as soon as one activity ends. Time information is the elapsed time to the
next activity, which in this case is the duration of the activity. In concurrent
activities, each activity has a start and an end, indicated by a “1” and “0”.
Several activities can therefore occur in parallel. For example, the resident can
be in the kitchen preparing coffee and still be watching TV. This implies that the
duration of concurrent activities can often be longer than sequential activities.
Time information is inserted such that the activity start contains the duration of
the activity (time elapsed until the end of the activity) and activity end contains
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Table 3.7: Rules for deriving activities from sensor events

Activities Rules
Kitchen
activities

Whenever power and magnetic sensors located in the kitchen
are activated or motion sensor in the kitchen is active for
more than 1 minute.

Living room
activities

Whenever power and magnetic sensors located in the living
room (except TV) are activated or motion sensor in the
living room is active for more than 5 minutes.

Watching
TV

Whenever the resident is in the living room for more than 5
minutes and the power in the TV is on.

Bedroom ac-
tivities

Whenever power and magnetic sensors located in the
bedroom (except sensors around the bed) are activated
or motion sensor in the bedroom is active for more than 5
minutes.

Being in bed Whenever motion sensors around the bed are consecutively
activated for more than 5 minutes.

Bathroom ac-
tivities

Whenever the motion sensor located in the bathroom is
active for more than 1 minute.

Being out Whenever the entrance door “off” and “on” events happen
consecutively and for more than 5 minutes; or when the
entrance door is the last active motion sensor for more than
10 minutes (for an apartment in which the entrance door
was not installed).

Transitions Being in the entrance is always considered as a transition
as there are no relevant activities in that area. Other
rooms have a subjective transition time chosen based on the
distance between rooms and conditions of the residents (e.g.
walking speed, use of rollator, etc.).

the elapsed time to the start of the next activity event. Figure 3.8 shows an
example of the two sequences, for simplicity without the time.

The method used for the prediction of sensor events using the LSTM network
was also applied to the prediction of activities. Each activity is assigned a
letter, the time information being included as a number indicating the K-means
time-cluster. Only the input data for the LSTM networks uses the transition
classes. There are therefore only seven output classes. The LSTM network
has the same parameters configuration as is used for the prediction of sensor
events. We also, because our dataset is imbalanced, use the Synthetic Minority
Oversampling Technique (SMOTE). SMOTE is an over-sampling technique that
creates synthetic samples for the minority classes [91]. The Imbalanced-Learn
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Figure 3.8: Types of activity sequences, sequential and concurrent. The example
represents a scenario in which the resident watches TV, goes to the kitchen to
prepare coffee while watching TV, and then goes to bed.

library was used to implement this [71].

3.7 Transfer Learning

Transfer learning, as mentioned in Section 2.4, involves a model being trained
using a source dataset, the trained model then being applied to a different and
somewhat related target dataset [94]. The trained model often needs to be
fine-tuned using data from the target dataset. Transfer learning can result in a
reduction in the time required to train the model and lower volumes of the target
training data. It also provides a solution for unlabelled data. Transfer learning
furthermore allows some characteristics in the training and testing datasets to
be different, such as labels and data distributions. It is therefore well suited to
and very useful in the field of smart homes, as each home usually has a unique
layout, a different network of sensors and residents with different habits.

Different sets of power and magnetic sensors were installed in the eight field
trial apartments (Table 3.2). Sensors that relate to the same activity were
re-labelled in the tests which compare prediction accuracy and apply transfer
learning across apartments. The new labels and the sensors assigned to these
are given in Table 3.8. Lamp power sensor and wardrobe door magnetic sensor
events were removed from the datasets in these tests, as it was not possible to
associate them with an activity that was common to most of the apartments.

Table 3.8: Re-labelling of sensors

New labels Sensors
Kitchen sensor Pa: toaster, microwave; Mb: fridge, cupboard/drawer
Beverage sensor Pa: coffee machine, kettle
aPower and bmagnetic sensors.
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Chapter 4

Research Summary

This chapter provides an overview of the thesis papers, their relation to each
other and to the research questions defined in the thesis. This is followed by a
summary of each paper, the paper’s motivations and main contributions.

4.1 Overview

This thesis is composed of six research papers that address the research questions
introduced in Section 1.3. Please refer to Figure 1.3 for the relations between
the papers and the research questions.

The research questions require the application and evaluation of state-of-the-
art sequence prediction methods to data from real smart homes in which a limited
number of binary sensors were installed. The literature survey has pointed out
two probabilistic methods, ALZ and SPEED, and recurrent neural networks.
These have been previously applied in this domain and have been shown to
achieve good performance. These were therefore the chosen methods for this
thesis.

An in-depth comparison of the two probabilistic methods for the prediction
of the next sensor event was carried out first. A 2-week dataset from one
apartment was available at this point in time. Factors such as peak accuracy,
memory length, amount of data required for convergence, and number and type
of sensors in the dataset were analysed and the performance for each algorithm
was compared. This resulted in Paper I. The LSTM network was also compared
with a baseline method for these aspects and this task. A 17-week dataset for
this apartment was used. This resulted in Paper II.

Paper III presents the comparison of the ALZ and SPEED probabilistic
methods with the LSTM networks for the prediction of the next sensor event. A
larger dataset was used, 30 weeks for the same apartment as used in the previous
papers. This provided a more solid and more thorough comparative analysis.

The best-performing algorithm for predicting the next sensor event was the
LSTM network with SPEED-text. We investigated whether this algorithm could
be improved by incorporating the time component, using four different ways
of including slots of time. We explored this in Paper IV. We also carried out
predictions of both the next sensor event and its mean time of occurrence within
a single model. These methods were applied to 40 weeks of data from the same
apartment as for the previous datasets.

The papers cited so far address SRQ 1, which addresses the evaluation of
the performance of state-of-the-art methods for the prediction of the next sensor
event and time of occurrence information in real homes, for a limited number of
sensors.
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We subsequently investigated the extent to which the best prediction model
can generalise its performance to other apartments and residents. Data from
four more apartments were available at this point in time. We first modelled a
LSTM network for each apartment individually. Then we experimented transfer
learning in two ways. This work is presented in Paper V, and addresses SRQ 2.

The study is concluded by Paper VI. Data from the eight apartments in the
field trial were available at this point in time. This paper confirms the results
of the previous papers that were acquired using data from fewer apartments.
We also confirmed the behaviour of the algorithms by applying these to data
from all apartments. This paper therefore addresses both SRQ 1 and SRQ 2
through expanding the analysis to more apartments. We also carried out activity
recognition from binary sensor events using a rule-based algorithm. This allowed
us to analyse the performance of activity prediction rather than sensor events.
This work addresses SRQ 3.

4.2 Papers

4.2.1 Paper I

Occupancy and Daily Activity Event Modelling in Smart Homes for
Older Adults with Mild Cognitive Impairment or Dementia

This paper presents an in-depth evaluation and comparison of two state-of-
the-art probabilistic methods in the prediction of the next sensor to be activated
or deactivated in a smart home. The goal of this work was to investigate the
performance of these algorithms in a real home scenario. The performance of
these methods had previously primarily been evaluated using data acquired from
labs and testbeds for about 50 sensors and for scripted activities.

The two algorithms, ALZ and SPEED (Section 3.3), were applied to data
collected over a period of two weeks from a single real home fitted with 15
sensors, including motion, magnetic, and power sensors.

We first reproduced the results of both algorithms as in the original work,
using the same dataset for both training and testing. However, this procedure
leads to overfitting. Our dataset therefore uses a separate training and testing
set. We also modified the method, to improve accuracy, by introducing a
validation step that calculates the optimal number of last events on which to
base the prediction, i.e. the window that leads to the maximum overall prediction
accuracy, which we refer to as the optimal window. We refer to this parameter,
in the following papers, as memory length.

ALZ and SPEED were compared regarding several factors. The first test
analysed the prediction accuracy according to the optimal window for each
algorithm, and for different sizes of training set. Smaller window sizes (1-4
events) provide better accuracy, for both algorithms. The accuracy deteriorates
very quickly with increasing window size. This behaviour is mainly due to two
facts: (i) the smart home has a small number of sensors, so that there are not
several patterns for the same actions in the home; and (ii) long sequences of
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events are not bound to be repeated frequently and are, therefore, more difficult
to provide correct predictions.

A second test evaluated peak accuracy and accuracy in relation to the size of
the training set. SPEED achieved an accuracy of 75% with an optimal window
of two and ALZ an accuracy of 53% with an optimal window of one. SPEED
collects a significantly higher number of contexts and frequencies. This may be
the reason why SPEED leads to better accuracy (see for example trees generated
by ALZ and SPPED for the same sequence of events in Figures 3.3 and 3.4).
Maximum accuracy was achieved using SPEED where training sets were larger
than around 800 events. ALZ, however, reached a maximum accuracy for a
training set of 300 events or more. ALZ therefore converges to its maximum
accuracy faster than SPEED, but achieves a much lower prediction accuracy.

A last test was performed to reveal the dependence of the prediction accuracy
on the number and type of sensors. Four alternatives were investigated: all
sensors (15), only motion sensors (7), only motion and magnetic sensors (11),
and only motion and power sensors (11). Accuracy did not, in most of the cases,
change significantly with the number of sensors in the dataset. A clear exception
was when SPEED is applied to a dataset of only motion sensors. The prediction
accuracy was then very poor (50%). This is due to only motion sensors being
included, the longest episode being two events long (i.e. “on” and “off” events for
the same sensor consecutively). ALZ is therefore better suited where events are
not highly intertwined. The prediction accuracy for events that involve magnetic
sensors is relatively high, as doors and drawers are often closed right after they
are opened. This makes this a relatively easy pattern to predict. On the other
hand, power sensor events can occur somewhat randomly, many other events
occurring between power events. This makes the prediction of associated events
more inaccurate.

This paper resulted in a comparative analysis of two probabilistic methods
that were applied to data from one apartment with 15 sensors, collected over a
period of two weeks. These algorithms have been broadly used in the research
literature, however with data collected from labs and testbeds, including many
binary sensors (about 50). SPEED achieves better performance when all types of
sensors are used in the dataset, and both algorithms could achieve convergence
with about 2 days of data.

4.2.2 Paper II

Sensor Event Prediction using Recurrent Neural Network in Smart
Homes for Older Adults

The main goal of this paper was to evaluate the performance of the LSTM
network to predict the next sensor activation event when applied to data collected
from a real home. This work is, to the best of our knowledge, the first in the
research literature to apply LSTM networks to the prediction of sensors in smart
home environments. Data from the apartment referred to in Paper I had, at this
point in time, been collected over a period of 17 weeks. A baseline method was
also implemented for comparison purposes.
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The literature survey indicates that neural networks perform well in smart
home environments. Recurrent neural networks are usually used, as they maintain
an internal memory that is suitable for inputs that are sequential in time. We
chose to apply an LSTM network, as it has been shown to be promising in several
applications, including text generation, which is similar to our application. In
our setup, the LSTM network used ALZ-text (only “on” events) as input, as
described in Paper I for the ALZ method. We compared its performance with a
baseline method, which is based on a table in which the probability of each sensor
being the next activated depends on the preceding sensor(s). The predicted next
sensor event is the one with the highest probability of being activated right after
the last sensor(s) in the sequence.

The data were collected over 17 weeks. We therefore analysed the prediction
accuracy for 2, 13, and 17-week datasets. We also had datasets that contained
data from only motion sensors, and from all sensors in the apartment. A first test
consisted of analysing the optimal memory length of each algorithm. A memory
length of three events led to the highest accuracy for the baseline method, whilst
the LSTM network required six or more events. This shows that LSTM networks
are more effective in the learning of patterns and finding temporal relations
between features.

The LSTM network obtained a peak prediction accuracy of 69% for the set
with all sensors and 75% for the set with motion sensors only. The baseline
method achieved a 58% prediction accuracy for all sensors, and 67% for motion
sensors. Increasing the size of the data did not have a significant effect on the
accuracy of the baseline. Accuracy for the LSTM network, however, increases
steadily for larger training dataset sizes.

For the dataset sizes we investigated, the accuracy increased by about 8-10%
for the set with only motion sensors in relation to the set with all sensors. When
a limited amount of data (2-week dataset) is used the baseline achieves better
accuracy than the LSTM. An accuracy of 67% is achieved with two weeks of
data for motion sensors only, and of 61% for 13 weeks of data from all sensors.
The LSTM network achieves better accuracy than the baseline when the amount
of data is sufficient (13 and 17-week datasets). Indeed, as the amount of data
increases, the model improves from 60% to 67% mean accuracy for all sensors
and from 70% to 74% mean accuracy for only motion sensors. This confirms
that two weeks was an insufficient amount of data. The model tends to overfit
then, so leading to lower accuracy on the test set.

The work resulted in an evaluation of LSTM networks for the prediction of
the next sensor event on data collected in a real apartment over a period of
17 weeks. The LSTM network performed better than the implemented baseline
method when a sufficient amount of data (more than 2 weeks) were available.

4.2.3 Paper III

Comparison of Probabilistic Models and Neural Networks on Predic-
tion of Home Sensor Events
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In this paper the two probabilistic methods, ALZ and SPEED, which were
compared in Paper I, and LSTM networks which was compared with a baseline
in Paper II, are compared. ALZ-text and SPEED-text input was used in
all methods. To the best of our knowledge, this was the first time such a
comprehensive comparison of state-of-the-art methods for the prediction of next
sensor event has been conducted using data collected from real apartments. The
data were collected over a period of 30 weeks from one home. We analysed the
methods using a dataset with all 15 sensors and with only the seven motion
sensors.

The work showed that probabilistic methods can achieve a high prediction
accuracy (close to their peak accuracy) with a relatively small amount of data
(typically 2 days of data). LSTM networks, however, require a larger dataset
(about 3 weeks for SPEED-text and 10 weeks for ALZ-text) to reach accuracies
close to the peak. Probabilistic methods were also found to base prediction on
a relatively small number of previous events. An optimal memory length of
four for ALZ and three for SPEED was established. LSTM networks, however,
base prediction on a sequence of eight last events or more. This indicates that
these networks are better at finding longer-term dependencies and patterns in a
sequence of events. The accuracy attained in LSTM networks is also quite stable
for memory lengths that are larger than the optimal. Probabilistic methods,
however, have an optimum memory length, accuracy decreasing both for shorter
and for longer memory lengths than the optimum. For the most accurate models
(the ones with SPEED-text as dataset), the LSTM required 1/7 of the time
SPEED required for training and testing.

Our best result (83%) for the dataset containing events from the 15 sensors
was achieved by the LSTM network with SPEED-text. SPEED achieved an
accuracy that was only 1% lower. This, however, required a considerably longer
training time. SPEED may therefore be a good choice in applications where
modelling using a small amount of data is an advantage and in which execution
time is also not too critical, as an accuracy close to the peak can be achieved
with little data. Our results have, in general, shown that it is possible to
achieve accuracy close to the peak with little data. SPEED and LSTM with
SPEED-text achieved better results than ALZ and LSTM with ALZ-text. This
is not surprising, as the conversion of data to SPEED-text sequences gives more
information (both “on” and “off” events). This can also be confirmed by the
trees formed by ALZ and SPEED (Figures 3.3 and 3.4). The best choice for a
dataset with no intertwined events, such as for our dataset with only the seven
motion sensors, is the LSTM with SPEED-text. SPEED does not work well on
this dataset. The tree has a height of two, meaning that only “off” events can
be predicted reliably, as also found in Paper I.

Another interesting finding is that more than 10 weeks of data does not
significantly improve the results of any of the methods applied. A change in the
algorithms and/or in the way the data are input, or the provision of additional
information would therefore be required to improve prediction accuracy.

Finally, a larger number of sensors could potentially lead to better prediction
accuracy, as this entails more information on which a prediction can be based. A
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smaller number may, however, be preferable to reduce surveillance, lower costs,
and reduce the impact upon home aesthetics. Our work shows that it is possible
to achieve acceptable prediction accuracy with few sensors.

This work resulted in a thorough comparative analysis of the use of probabilistic
methods and LSTM networks on the prediction of the next sensor event in a
smart home. The algorithms were applied to a dataset with sufficient data (30
weeks), collected from one real apartment. The LSTM network using SPEED-text
performed best in our setup. It provides the best peak accuracy, requires the
lowest training and testing execution time, shows good performance for different
types of datasets (i.e. both with all types of sensors and with only motion sensors
in dataset), and converges with a limited amount of data (three weeks).

4.2.4 Paper IV

Prediction of the Next Sensor Event and its Time of Occurrence in
Smart Homes

In this paper, sequential sensor events and the time of occurrence information
were predicted using data collected from one apartment over a period of 40 weeks.
We used the best-performing algorithm from our previous analysis (Paper III),
which is the LSTM network with SPEED-text. We included time information in
the model. We first predicted the next sensor event based on previous sensor
events and time information. We also predicted both next sensor event and time
information in a single model.

The time information was incorporated in several ways: period of the day
(morning, afternoon, evening, night), 4-class and 8-class time-intervals, and K-
means time-cluster (Section 3.5). We also investigated performance for separate
networks for the four periods of the day.

The accuracy improved by 1-1.4% for 4-class and 8-class time-intervals and
K-means time-cluster methods when we included time information in the input
for the prediction of the next sensor event. Our best performing model for
predicting the next sensor event included a 4-class time-interval information.
It achieved a peak average accuracy of 84% for a set of 15 sensors, motion,
magnetic, and power sensors. This is 1.4% better than without including the
time information, and only 0.2% better than when using K-means time-cluster.
The time elapsed between events therefore contains information that improves
prediction, however, only marginally. The apartments are quite small and there
are a limited number of sensors. The information is therefore still very limited.
The accuracies for the separate networks are marginally lower than where all
the data are in one network. This is as expected, as information is lost when
separating into networks, more data therefore being required to compensate for
this.

Our best prediction of both the next sensor event and the time of occurrence
information was obtained using K-means time-clusters. This implementation
attained an accuracy of 80% for a set of 15 sensors (4% higher than using 4
and 8-class intervals), for a dataset with 70000 events, which corresponds to
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approximately 20 weeks of data. This method also attained an accuracy of 83.4%
for a set of seven motion sensors.

Little work has been reported in the literature on the prediction of the time
of occurrence together with sequential sensor events in smart homes. There is,
to the best of our knowledge, only one work in the literature that predicts the
next event and its time of occurrence information in the same model. Bayesian
networks are used in this work [86]. Our method attains better overall accuracy
when predicting both the sensor event and its time of occurrence information in
the same LSTM network.

This work resulted in an analysis of different input sequences for LSTM
network with SPEED-text, the time component being included in the prediction
models. The dataset was collected over a period of 40 weeks from one real home.
We carried out a prediction of the next sensor event based on preceding sensor
events and time information, and a prediction of the next sensor event and time
of occurrence information using both these as input. Including the time as a
K-means time-cluster of each sensor samples led to the best results.

4.2.5 Paper V

Prediction of Next Sensor Event and its Time of Occurrence using
Transfer Learning across Homes

This paper presents the results of sensor event prediction and time of
occurrence prediction using transfer learning between apartments. The
motivation for transfer learning in this work was to evaluate the generalisation
of the model to other apartments, reduce the time required for data collection in
individual apartments before the system can be operated, and reuse the learning
of previously trained models. LSTM networks with SPEED-text were used. We
implemented two different ways of transfer learning and compared this with each
apartment being modelled individually, i.e. without transfer learning. We, in
addition to the usual data preprocessing steps, also re-labelled the sensors that
relate to the same activity, so that the sensors are similar for all apartments
(Section 3.7). Data from five real apartments were used in this study, collected
over different periods of time (69-291 days).

We first trained an individual model for each apartment. Then we applied
transfer learning as follows: (i) train the LSTM network with data from four
apartments and fine-tune with data from the target apartment, and (ii) train with
data from one apartment (that had best accuracy when modelled individually)
and fine-tune with data from the target apartment. The data from the target
apartment, which had not been used in training, were split and used for fine-
tuning and testing the network.

Accuracies when predicting the next sensor event for each apartment modelled
using its own LSTM network, were in the range 81-87%. Accuracies when
applying transfer learning, without fine-tuning, were in the range of 66-77%.
These lower accuracies show that fine-tuning the model is indeed required to
achieve good prediction accuracy. The mean peak accuracies achieved after
fine-tuning were 81-86% for both tests (when the source model was trained
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(a) Without transfer learning

(b) With transfer learning

Figure 4.1: Accuracy of prediction of the next sensor vs. number of events in the
training dataset using (a) individual LSTM networks and b) transfer learning
with fine-tuning.

using four apartments and using the one best performing apartment). These
accuracies are marginally lower than when each home is modelled individually.
The accuracy when using transfer learning with very little data (less than a day),
is much higher than for the apartment modelled using its own network with the
same amount of data, see Figure 4.1. The results are similar for predicting both
the next sensor event and its K-means time-cluster. Accuracies are 74-81% when
modelled individually and 73-81% when using transfer learning.

Transfer learning has been shown, for our set of apartments, to work
successfully up to a certain number of events. Where the number of events in
the training dataset is low (up to around 4000 events), then transfer learning
leads to higher prediction accuracy than each apartment modelled individually.
This means that the prediction algorithm can work well straight away where
a new apartment is added to the study, and attain a relatively good accuracy
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(70-80%) from the first day. The prediction accuracy for larger training datasets
is, however, approximately the same. In fact, it is in most cases marginally
higher when each apartment is modelled individually.

This work resulted in an evaluation of the use of transfer learning across five
of the apartments that were included in the field trial. Fine-tuning was shown
to be required for transfer learning to be successful between the homes. It was
also shown that good prediction accuracy could be achieved from the first day
(70-80%) where a new apartment acquires the system, where transfer learning is
applied.

4.2.6 Paper VI

Predicting Sensor Events, Activities, and Time of Occurrence Using
Binary Sensor Data from Homes with Older Adults

We, in this work, firstly expand the comparisons and analysis performed in
the previous papers by applying the methods to data collected from the eight
apartments in our field trial. Each apartment has 13-17 binary sensors and
different periods of data collection. Our best performing implementation, the
LSTM network with SPEED-text, achieved an accuracy of 77-87% for predicting
the next sensor event, and an accuracy of 73-83% when predicting both the
next sensor event and the mean time elapsed to the next sensor event (K-means
time-cluster). One hypothesis for the 10% variability is that there are different
sources of noise in the data for each apartment. For example, residents are often
visited by family members and healthcare assistants. Another aspect could be
that some people are more predictable in their patterns around the apartment
than others.

The conclusions in Paper V were confirmed when applying transfer learning
across the apartments. One apartment, however, presented a different curve
behaviour. The accuracy for this apartment was not good from the start,
although it required less data (about 4000 events) than the case without transfer
learning (about 5000 events), see Figure 4.2.

The very new contribution of this paper was activity recognition and prediction
in smart homes using the binary sensors. Two rule-based methods for associating
sensor events with activities were implemented. We refer to these as sequential
and concurrent activities, as explained in Section 3.6. Each activity is assigned
a letter, as for sensor events. The time information represented as K-means
time-cluster was selected based on the best performance in previous analysis.
The transition between rooms classes are only used in the input for the LSTM
network. There are therefore only seven output classes (watching TV, being
in bed, being out, bedroom activities, living room activities, kitchen activities,
bathroom activities).

The accuracy results for the concurrent activities dataset were better in all
cases. Accuracy was 5.4-14% higher than when predicting only the next activity
based on previous activities and time; and 5.1-16.1% higher when predicting
both the next activity and time-cluster. There is, however only one resident
and a relatively small number of sensors in each apartment. Sensors also do not
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Figure 4.2: Accuracy of prediction of the next sensor event vs. number of events
used for fine-tuning. Source model trained with data from seven apartments,
fine-tuning with and testing on the target apartment.

relate in a high degree to other sensors. There are therefore, in reality, only few
concurrent activities. Most of the “start” activity events in the concurrent dataset
are therefore immediately followed by the “end” of the same activity. Most of
the “end” of activities are therefore predicted with 100% accuracy. This explains
the higher accuracies for this method. This implementation may, nevertheless,
be a good option for smart home environments where several activities can occur
at the same time, e.g. multi-resident smart homes. This is not the case for our
setup. The sequential activity dataset is therefore probably a fairer algorithm.

It is possible to investigate in which activities confusions have occurred. They
are in fact similar for both types of datasets. Bedroom activities are mostly
predicted as in bed and kitchen activities. This is understandable as bedroom
activities often take place after having been in bed or in the living room, which
has access to the kitchen. Living room activities are confused with watching TV,
and to a lesser extent with kitchen activities, for the same reasons as stated in
the previous comment. Finally, being out has been often predicted as kitchen
activities, as the entrance door also has a connection to the living room. An
interesting result is that the watching tv activity has, in the example apartment,
been very well predicted at 86.5%. This could be useful for smart functions
involving the TV, e.g. if the resident has difficulties operating the remote control.
Bathroom and kitchen activities have also shown good accuracy (77.9% and
83.2%). This range of accuracy may be useful in the analysis of patterns in the
home, potentially for anomaly detection.

Our best model achieved 75-95% accuracies for predicting the next activity
for the concurrent activity dataset. The best model achieved an accuracy of
64-85% for predicting the next activity and the mean duration and time of
occurrence. The results for the sequential activity dataset are worse. Our best
model achieved 62-90% accuracies for predicting the next activity, the best model
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achieving 50-80% accuracies for predicting the next activity and its duration
and time of occurrence.

This work resulted in a comprehensive study of state-of-the-art algorithms
for the prediction of sensor events and activities of daily living in smart homes,
and time of occurrence information. The methods used in the previous papers
were applied to data from all the apartments in the field trial (eight). The
results were confirmed when the evaluation of the methods was expanded to
all the apartments in the field trial, and so were the conclusions for transfer
learning across apartments. Rule-based methods for associating sensor events with
activities were also implemented. Activity and time of occurrence information
were then predicted. Activity prediction has, in most cases, not achieved better
prediction accuracy than sensor prediction.
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Chapter 5

Discussion
This chapter discusses the findings of the thesis that address the research
questions. Limitations faced throughout the development of the project are also
discussed. Conclusions on the accomplishments of the thesis are presented at
the end of the chapter, and future work is discussed.

5.1 Research Questions

The research question was defined and divided, in Section 1.3, into three sub-
research questions (SRQ). The findings for each sub-research question are
discussed in this section.

SRQ 1 – Performance of State-of-the-art Prediction Methods on
Data from Real Homes

The performance of two probabilistic methods, ALZ and SPEED, and LSTM
networks using ALZ-text and SPEED-text, were compared for the prediction of
the next sensor event in a sequence. The methods were applied to data from
eight apartments, collected over a period of 75-385 days, the period varying with
apartment. The comparison took into account factors such as memory length,
the required amount of data for convergence, peak accuracy, model training and
testing execution time, and number and type of sensors in the dataset.

Both probabilistic methods achieved a high prediction accuracy (close to their
peak accuracy) when tested on data from one apartment, using a relatively small
number of events in the training set (about 1500-2000 events or 2-3 days, for this
apartment). ALZ achieved 69% accuracy and SPEED achieved 82% accuracy.
LSTM networks required a larger training dataset (about 4000 events/14 days for
SPEED-text and 7500 events/60 days for ALZ-text) to reach an accuracy close
to its peak. The accuracies achieved were, however, higher at 84% for LSTM
networks with SPEED-text and 72% for ALZ-text. The SPEED-text dataset
contains more information (i.e. both “on” and “off” events) and, therefore, more
patterns, this contributing to better accuracies. SPEED and LSTM network with
SPEED-text were therefore applied to data from the other seven apartments in
the field trial. SPEED achieved a 75-82% accuracy, the required number of events
for the peak accuracy being between 2000 and 7500 events. The LSTM network
with SPEED-text achieved 75-85% accuracy. The LSTM network provided better
accuracy than SPEED in all apartments, accuracy being 1.5-5% higher.

Probabilistic methods were found to base the prediction on a relatively small
number of previous events (memory length). Four for ALZ and three for SPEED.
Accuracy furthermore decreases both for shorter and for longer memory lengths
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than the optimal. LSTM networks, however, base prediction on a sequence of
eight previous events or more. Accuracy is, for this, quite stable for memory
lengths that are larger than the optimal. This indicates that such networks are
better at finding longer-term dependencies and patterns in a sequence of events.

The prediction accuracy for all the methods improves by about 3% where the
number of sensors is reduced from fifteen to seven (only motion sensors). One
exception is SPEED, which gives poor accuracy no matter how many events there
are in the training dataset. This occurs when there are no intertwined events.
Only “off” events can therefore be predicted reliably. LSTM with SPEED-text
is, for this case, by far the best method.

The execution time for training and testing each algorithm has been measured.
The probabilistic methods require a much longer processing time, which increases
as more events are added to the dataset. It was established that SPEED required
eight times as long to model as the LSTM with SPEED-text. It should, however,
be noted that SPEED reaches a high accuracy with less data.

SPEED may, taking these aspects into account, be a good choice for
applications in which time is not too critical and there is a limited amount of
data available. This does, however, assume that events are intertwined. LSTM
network with SPEED-text has, however, been shown to achieve better prediction
accuracy in a much shorter time, and also perform well with a limited dataset
(even if it requires more data than SPEED). This comparison was presented in
Paper I (probabilistic methods study), Paper II (LSTM network study), and
Paper III (probabilistic methods compared to LSTM networks). Only data from
one apartment were available to these papers. Paper VI confirmed these results
by applying the algorithms to data collected from the eight apartments.

The LSTM network with SPEED-text algorithm was the most suitable for
our application and was further developed in the following studies. The time
component was included in the dataset to improve prediction, and was included
in four different ways: (i) period of day (morning, afternoon, evening, night);
(ii) 4-class or 8-class time-intervals (elapsed time to the next sensor event); (iii)
K-means time-cluster including information on the mean hour of the day and
the mean time elapsed to the next sensor event; and (iv) separate networks for
the four periods of the day. This analysis was presented in Paper IV, data being
from one apartment, and in a shorter version in Paper VI, data being from eight
apartments.

Our best performing model in the prediction of next sensor event included
4-class time-interval information. It attained a peak average accuracy of almost
87%. This is 2% better than without the time information. The time that elapsed
between events therefore contains information that improves prediction. This
improvement is, however, only marginal, the improvement in other apartments
varying from 0.5-4.5%. We also predicted both the next sensor event and the
mean time of occurrence using a single model, the best results being obtained
by using K-means time-clustering. This implementation attained an accuracy of
83%. Other apartments achieved accuracies in the range of 73-83%.

In summary, state-of-the-art prediction algorithms in the research literature
that have been primarily tested using data collected from controlled environments,
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can achieve relatively good accuracy in the prediction of the next sensor event
when using data from real homes with few sensors. Our best accuracy for
predicting the next sensor event was 87%, and 83% for predicting both the next
sensor event and mean elapsed time to the next sensor event.

The required accuracy for real world environments depends on the application.
For example, an accuracy of 95% may be required for the prediction of events for
automation or prompting systems. Accuracies lower than this for these functions
could be an inconvenience for the resident. The accuracy achieved in this thesis
could, however, be sufficient for a monitoring system that is, for example, used
by healthcare personnel. Such a system could provide an indication of future
anomalies, e.g. an unusual sequence of events is predicted, indicating that the
resident therefore needs assistance. Our results have also shown that it is possible
to achieve the peak accuracy of algorithms using relatively little data, two days
to three weeks for our smart home layout and sensor network.

SRQ 2 – Generalisation of Model to Other Apartments and Users

SRQ 2 was primarily explored in Paper V, using data from five apartments. It
was also confirmed in Paper VI using data from all eight apartments. There was
for SQ2, as for SQ1, around a 10% variability in prediction accuracy between
the apartments for both SPEED and LSTM network with SPEED-text. The
coefficient of variation (standard deviation divided by the mean) for the 10%
variability of the predictions is around 0.04, which is lower than 1 and therefore
considered to be a low variance. We, nonetheless, present some hypotheses for
this variability below.

There are a number of factors that can have an impact on prediction accuracy
in a home. These include level of cognitive impairment of the resident, level of
activity and movement around the apartment and walking speed and use of a
rollator or wheelchair. Each apartment can also have its own sources of noise in
the collected data. This could be due to a physical aspect that affects sensor
events, such as different light intensities or damaged furniture and/or electrical
devices. Or it could be that more than one person is in the home, e.g. family
member or healthcare personnel visits. The movement/activity patterns of some
people around the apartment may also be more predictable than others, e.g.
always take the same path from the kitchen to the bathroom. Some of these
aspects could not be measured in the setup of this project, e.g. walking speed
and noise. A fair and thorough explanation of the variability in the predictions
for the apartments could therefore not be arrived at.

We also evaluated the feasibility of transfer learning between the apartments.
Two methods of transfer learning were investigated, using the data available from
five apartments: (i) train an LSTM model using data from four apartments and
fine-tune and test with data from the target apartment, and (ii) train an LSTM
model using data from the apartment with the highest accuracy when modelled
individually and fine-tune and test using data from the target apartment. The
network with data from the target apartment achieved accuracies of 66-79%
with method (i) without fine-tuning. Accuracies were 79-86% where the network
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was fine-tuned. Some apartments achieved good accuracies without fine-tuning.
Fine-tuning is, however, much preferable. Transfer learning leads to higher
prediction accuracy when the source network is fine-tuned than where each
apartment is modelled individually, for a low number of events (around 200
events and up to about 4000 events). Most of the apartments achieved around
80% accuracy or more with few events (around 200 events, less than a day). This
means that the prediction algorithm can work well straight away when a new
apartment is added to the study, and achieve a relatively good accuracy from
the first day. Prediction accuracy is, however, approximately the same for larger
training datasets, for both individual and transfer learning models. Accuracy
is in fact marginally higher in most cases when each apartment is modelled
individually and there is a considerable amount of data (more than 4000 events,
about 16 days).

SRQ 3 – Activity Recognition and Prediction from Binary Sensors

Our last sub-research question, SRQ 3, was addressed in Paper VI. We carried
out activity recognition in a rule-based manner from the binary sensors’ events
and performed activity prediction using the LSTM with SPEED-text algorithm.

Two types of activity datasets were analysed: sequential and concurrent.
Sequential is where no more than one activity takes place at the same time. As
soon as one activity ends, another starts. Concurrent is where each activity
has a start and an end, allowing several activities to occur in parallel. For
the concurrent activity dataset, the models achieved 75-95% accuracy when
predicting the next activity only, and accuracies of 64-85% when predicting the
next activity and the mean duration and time of occurrence information. For the
sequential activity dataset, the results are worse. The models achieved 62-90%
accuracy when predicting the next activity, and 50-80% when predicting the
next activity and its duration and time of occurrence information.

The sequential activity algorithm may be the fairer rule-based algorithm for
activity extraction for our setup, as there are relatively few activities that can be
derived and that occur concurrently. Predicting the next activity for most of the
apartments led to a lower accuracy than predicting the next sensor event. Even
though the accuracy of predicting activities is not high, the rule-based algorithms
are useful for evaluation of activity levels of each resident. For example, the
analysis of activity levels over a period of time can be useful to potentially
indicate the onset of diseases and/or indicate correlations between activities and
so the need for improvements in daily habits and how this can be achieved.

5.2 Limitations

The project had inherent limitations right from the start. The project used a RRI
ethics-based approach and a predefined industrial partner. These limitations
had a strong impact on the development and results of the thesis. The type
of sensors that we could install were, firstly, very limited by two factors: the
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requirement that sensors were non-intrusive and the availability of sensors from
the industrial partner. Binary sensors are one type of non-intrusive sensors
that can be installed in a smart home. They provide very limited information
and anonymous data. This does address privacy concerns. But it also greatly
restricts the amount of information. This led to the number of activities that
could be recognised, predicted, and analysed being very limited. The system is
also not able to perceive whether there is more than one person in the room, a
fact that contributes to noisy data. The industrial partner limited the type of
binary sensors that could be deployed in the homes. The only ambient sensors
available for data collection were motion, power, and magnetic sensors. We
could therefore not gather the information required that would allow us to detect
detailed activities. Only high-level activities such as bathroom activities could
be detected (i.e. no distinction between showering, toilet, and sink use). The
number of sensors was also quite small. This is of course preferable to reduce user
surveillance, lower costs, and reduce the impact on home aesthetics. However,
having more sensors could have allowed us to study how many sensors would
actually be needed and also potentially obtain better prediction rates. A better
granularity for activities could also have been achieved.

Another limitation is noisy data. As mentioned previously, data obtained
from binary sensors can contain a number of faulty events, e.g. activation of
motion sensors by sunlight, missing events (for example caused by very slow
movements), and delayed events sending. We furthermore assume that the data
is from only one person living in the apartment. It is, however, evident that
the residents are visited by family members and health personnel on a regular
basis. A lot of noise also originates from power sensors, as the electrical power
threshold for on and off events had to be measured manually by the industrial
partner for each device. The thresholds were not always reliable. We, however,
carried out a data preprocessing step in which we attempted to clean and correct
the raw data. We checked that electrical devices had consecutive on and off
events, or vice-versa, and missing events were inserted. We believe that a major
element of prediction error is still noisy data.

5.3 Conclusions

This thesis has contributed to a comprehensive analysis of state-of-the-art
methods used in the literature as applied to data from real homes. A careful
literature survey of methods that are often used for sequence prediction in smart
homes was first conducted. The methods used in the literature were then tested
for several aspects for data collected from eight one-bedroom apartments located
in a care-dwelling facility for older adults over 65 years old. The ultimate goal
is to realise smart home systems that can assist older adults to live a safe and
independent life. The objective of this thesis specifically was to evaluate the
potential and the limitations of sensor event and activity prediction methods
when applied to a read world scenario. This was inspired by most of the studies
in the literature using data from controlled environments and usually many
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sensors. It is evident that every study should start with tests within a controlled
environment, e.g. labs and testbeds. However, research at some point should
be performed in real world scenarios. There are several factors that will impact
the performance of the methods, including noisy data, the unpredictability of
activities and residents’ habits, different numbers of persons at home at different
times, privacy concerns, and home aesthetics. To the best of the authors’
knowledge, the papers produced and presented in this thesis are the first research
publications of such a complete feasibility and comparison study using data from
real homes of older adults and with a limited number of non-intrusive sensors.

The main contributions of the thesis can be summarised as follows:

• A comprehensive comparative analysis of probabilistic methods (ALZ and
SPEED), and subsequent comparison of these with LSTM neural networks,
in the prediction of the next sensor event for data collected from real homes.
This study investigated a number of factors that affect the performance of
the algorithms: memory length, required amount of data for convergence,
peak accuracy, execution time, and type and number of sensors in the
dataset. These findings can be useful in deciding which analysis and
prediction methods to use based on project constraints (e.g. the number
of available sensors, user privacy, budget limitations, etc.).

• We have introduced a validation step that calculates optimal memory
length. This step leads to a considerable improvement in performance.
The algorithms originally used the maximum context length found in the
training step (tree height) as the length of the sequence of prior events from
which the next symbol was predicted. This was, however, shown not to be
optimal for prediction that uses probabilistic methods. Prediction accuracy,
after a certain length, decays constantly for higher memory lengths.

• Several configurations for inputting the data from binary sensors were
investigated. As shown in this thesis, best performance is achieved by
using a sequence of previous sensor events in an one-hot input vector
arrangement at the input of the LSTM network.

• It was shown that prediction algorithms reach their peak accuracy using
little data collected in the homes. Both academic research and the industry
have assumed that the availability of big data is a requirement for achieving
good Machine Learning technique prediction accuracy. In this work, we
have shown that probabilistic methods require 2-5 days and LSTM neural
networks require 6-16 days of data to achieve their peak accuracy in a
smart home environment with a limited number of binary sensors.

• A number of ways of including the time information in the predictions
were explored. We established that using the K-means clustering algorithm
to define the mean elapsed time for each sensor’s samples was the best
solution. This entails clustering each sensor’s samples by the hour of the
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day it occurred and the time elapsed to the next sensor event. Sensors are
therefore clustered automatically to one of 3-4 possible time-clusters, each
representing a slot of mean elapsed time to the next event.

• Transfer learning has been used across the apartments. It was demonstrated
that good accuracy can be achieved with very little data (less than one day)
when firstly using data from several apartments to model a network that is
later fine-tuned to a new apartment (target apartment). This shows that
the sensor event prediction algorithm could work reasonably well straight
away after a system is installed in a new apartment.

• Two rule-based algorithms to associate binary sensor events with activities
were implemented. Activity prediction was then carried out. It has been
shown that the accuracy of predicting activities was, in most cases, lower
than for predicting sensor events. Using activities rather than sensor events
is, however, useful in the analysis of the activity levels of the residents,
which can potentially identify changes in patterns over time.

We believe that the results have proven the current capabilities and limitations
of the application of methods widely used in the literature to real world
environments. The results also indicate methods for achieving improved
performance. The availability of additional sensors in the system could have
given better sensor event/activity recognition and prediction. Our set of sensors
also proved to be somewhat limited for the task, only high-level activities being
identified. A small number of sensors, as in our study, is however more realistic
for real applications, as it meets ethics and privacy concerns, budget limitations,
and home aesthetics considerations. The thesis shows that it is possible to
achieve acceptable prediction accuracy with few sensors and relatively little data
(up to three weeks). The findings of our study can also be useful when deciding
which prediction methods to use in relation to project constraints (e.g. the
number of available sensors, user privacy, etc.).

5.4 Future Work

Future work should focus on improving the performance and robustness of
activity recognition and prediction methods in real homes. Much of this implies
finding a solution to the limitations presented in this chapter. For example,
additional sensors in the apartments could have been very beneficial and allowed
a more thorough study. Considering other types of sensors would also have been
an advantage. For example, pressure and acoustic sensors can provide valuable
information on activities. However, the aesthetics of the home, ethical approval,
and the residents’ consent would still need to be taken into account. It would be
an advantage, before installing the sensors, to carry out a study of the optimal
positioning of sensors, as was recently carried out [118].

Privacy is always an issue. Binary sensors are therefore very well-suited to
these applications as they are non-intrusive. It has, however, been shown that
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other types of sensors that are relatively intrusive, such as depth cameras, are
well accepted by older adults, providing they can improve important aspects
of day-to-day life such as safety. The older adults in our project have clearly
expressed that they would trade privacy for better safety. Sensors such as depth
cameras provide a lot more information than binary sensors and therefore have
a greater potential in the implementation of assistive functions. Similar sensors
that convey more information and are not too intrusive include radar and thermal
cameras. The data are a little more intrusive. They are, however, still much
less intrusive than a colour camera, for example. It should also be noted that
data collection only applies to the period required for research and development,
which can be short as it was shown in this thesis. Once a support function has
been developed, implemented and tested, data collection is not required for the
operation of such a system. Network security still, however, remains a potential
challenge.

It is very important for both prediction and activity recognition algorithms
that the data are as clean as possible. Finding and implementing additional noise
removal methods would therefore be beneficial and would most likely improve
prediction accuracy. This is evident from the difference in prediction performance
of the algorithms within the apartments in our field trial compared to datasets
from controlled environments.

Finally, intelligent assistive functions could be implemented and tried out in
a real home when the achieved accuracy is high. Examples of possible functions
that were indicated during the thesis are: a system that is able to turn on the TV
when it identifies that the user wants this, but cannot manage to turn it on; a
system that can register that the user has fallen asleep and forgotten to turn the
stove off, and turns it off automatically. These are functions that hopefully are
not far from being implemented, as soon as activity prediction and recognition
algorithms achieve better performance.
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Abstract
In this paper we present event anticipation and prediction
of sensor data in a smart home environment with a limited
number of sensors. Data is collected from a real home
with one resident. We apply two state-of-the-art Markov-
based prediction algorithms − Active LeZi and SPEED −
and analyse their performance with respect to a number of
parameters, including the size of the training and testing
set, the size of the prediction window, and the number of
sensors. The model is built based on a training dataset and
subsequently tested on a separate test dataset. An accu-
racy of 75% is achieved when using SPEED while 53% is
achieved when using Active LeZi.
Keywords: smart home, prediction models, sensor data,
occupancy modelling, event modelling

1 Introduction
We present results from the Assisted Living project, an
interdisciplinary project that aims to develop assisted liv-
ing technology (ALT) to support older adults with mild
cognitive impairment or dementia (MCI/D) live a safe and
independent life at home. The project is carried out by
experts in the field of nursing and occupational therapy,
ethics, and technology (Zouganeli et al., 2017). MCI and
dementia involve cognitive decline, which can affect at-
tention, concentration, memory, comprehension, reason-
ing, and problem solving. Smart homes can potentially
include a number of intelligent functions that can pro-
vide valuable support to older adults with MCI/D, such
as prompting support e.g. in order to assist or encourage,
diagnosis support tools, as well as prediction, anticipation
and prevention of hazardous situations. Activity recogni-
tion and prediction is a prerequisite and a necessary tool
for achieving the majority of these.

We present our first results on prediction of binary sen-
sor data in a smart home environment. Several algorithms
have been reported in the literature for this purpose. How-
ever, to the extent of our knowledge, such prediction algo-
rithms have not yet been tested in a real home, nor have
they been proven to be accurate enough to be implemented
in real homes. In addition, there is no comprehensive
study comparing the different available algorithms or pro-
viding guidelines as to which application areas they are
best suited for. In this paper we apply two algorithms on

data from a real home, compare their performance, and
shed some light regarding their application areas.

2 Related Work
Data prediction algorithms have been extensively re-
searched on in the literature (Wu et al., 2017). Event or
activity prediction can for example lead to an improved
operation of automation functions (e.g. turn on the heater
sufficient time prior to the person arriving at home); facili-
tate useful prompting systems (e.g. prompt the resident in
case the predicted next activity is not performed) (Holder
and Cook, 2013); or detect changes/ anomalies in certain
behaviour patterns (e.g. movement, everyday habits, etc.)
and hence assist to indicate the onset or the progress of a
condition (Riboni et al., 2016). The Active LeZi (ALZ)
algorithm has been extensively applied for prediction on
sequential data (Gopalratnam and Cook, 2007). The algo-
rithm was tested on the Mavlab testbed dataset and was
shown to achieve a 47% accuracy. Some of the ideas of
ALZ have been used in the implementation of a new algo-
rithm, the sequence prediction via enhanced episode dis-
covery (SPEED)(Alam et al., 2012). SPEED was tested
on the same dataset as ALZ and achieved an accuracy of
88.3% when the same dataset was used both for training
and for testing. These algorithms are based on Markov
models, where at any given point in time the next state
depends solely on the previous one (Rabiner and Juang,
1986). Hence, the most probable next event can be esti-
mated based on the current state.

Besides probabilistic algorithms, neural networks have
also been used for event prediction. A root square mean
error (RMSE) of 0.05 using Echo State Network (ESN)
and Non-linear Autoregressive Network (NARX) was re-
ported by using a number of input/output configurations
(Lotfi et al., 2012; Mahmoud et al., 2013). Other relevant
research includes prediction of the time when a certain ac-
tivity will happen using decision trees (Minor and Cook,
2016) or time series (Moutacalli et al., 2015). Prediction
of the next activity as well as the time, location, and day it
would occur has also been reported (Nazerfard and Cook,
2015).

In this paper, we use the Active LeZi and SPEED algo-
rithms for the prediction of the next sensor to be activat-
ed/ deactivated in an event sequence obtained from a real
home with one resident.
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3 Field Trial

Our field trial involves ten independent one-bedroom
apartments within a community care facility for people
over 65 years old. Each apartment comprises a bedroom,
a living room, open kitchen area, a bathroom, and an en-
trance hall (Figure 1).

The purpose of the trial and the sensor system to be
deployed have been decided upon in close collaboration
with the residents (Zouganeli et al., 2017). A minimal
number of binary sensors has been deployed in our trial
in order to both minimize surveillance of the residents in
their private homes, and comply with the technical and
economic constraints imposed by the research project this
work is a part of. The set of sensors has subsequently
been chosen so that it can enable the realization of use-
ful functions for older adults with MCI/D as these were
indicated after dialogue cafes with the users (Zouganeli
et al., 2017). We chose to include sensors that indicate
occupancy patterns (movement around the apartment) and
some daily activities like eating/ drinking, dressing, sleep-
ing, and leisure activities (reading, watching TV, listening
to radio). Hence, the system comprises motion, magnetic,
and power sensors. A motion sensor (Pyroelectric/Passive
Infrared − PIR) detects motion through the change of the
infrared radiation in its field of view. It sends a message
‘1’ when a motion is detected. Magnetic sensors indicate
whether doors/ windows/ drawers are open or closed, by
sending messages ‘1’ and ‘0’, respectively. Power sensors
measure the electricity usage of a certain appliance, and
can therefore indicate whether it is turned on or off, and
send messages ‘1’ and ‘0’ respectively. Figure 1 shows
a schematic of the apartment. There are 15 sensors in-
stalled in total: seven motion sensors (one in each area
of the apartment and two over and by the bed to indicate
whether the person is in bed); four magnetic sensors (back
and entrance doors, wardrobe, and cutlery drawer); and
four power sensors on appliances (nightstand lamp, coffee
machine, TV, and living room/ reading lamp).

The sensors are connected wirelessly through Z-Wave
and xComfort protocols to a Raspberry Pi 3, which re-
ceives the data and transfers it for storage in a secure
server (TSD). The data comprises timestamp (date and
time with precision up to seconds), sensor ID, and sensor
message (binary) − see example in Table 1.

Table 1. Binary sensors data.

Timestamp Sensor ID Sensor message

01.09.2017 17:58:05 4 1
01.09.2017 17:58:40 6 1
01.09.2017 17:59:02 10 1
01.09.2017 17:59:05 10 0

Figure 1. Sensors system in the field trial apartment.

4 Prediction Algorithms
Both ALZ and SPEED translate the data acquired from
the sensors into a sequence of letters and identify patterns
that occur frequently, so-called contexts. The contexts and
their frequency of occurrence are used to generate a tree,
which is then used to calculate the next most probable
event to occur. This last step is performed by the Predic-
tion Partial Matching algorithm (PPM) (Cleary and Wit-
ten, 1984; Cleary et al., 1997). Table 2 presents a possible
scenario in a smart home of performed actions by the res-
ident and the corresponding sensors being triggered. For
ALZ and SPEED, each sensor is assigned with a letter, as
shown in Table 3.

Table 2. Actions scenario.

Action performed Activated sensor

Wake up PIR bedroom (on)
Go to living room PIR living room (on)
Turn on TV Power TV (on)
Go to kitchen PIR kitchen (on)
Turn on coffee machine Power coffee machine

(on)
Go to living room and
watch TV while coffee
is being made

PIR living room (on)

Go to kitchen PIR kitchen (on)
Turn off coffee machine Power coffee machine

(off)
Go to living room PIR living room (on)

4.1 Active LeZi
ALZ is a sequence prediction algorithm based on a text
compression algorithm (Gopalratnam and Cook, 2007).
The input in ALZ consists of a sequence of lower case let-
ters, where each letter represents event from one sensor.
For example, the sequence corresponding to the scenario
described in Table 2 would be "abcdebdeb". ALZ uses the
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Table 3. Assignment of letters to sensors.

Sensor Letter

PIR bedroom a/A
PIR living room b/B

Power TV c/C
PIR kitchen d/D

Power coffee machine e/E

idea from the LZ78 text compression algorithm to gener-
ate patterns that occur in a sequence and create a tree with
these and their frequencies (Ziv and Lempel, 1978).

A given sequence x1,x2, . . . ,xi is parsed into ni subse-
quences w1,w2, . . . ,wni such that for all j > 0 the prefix
of the subsequence w j is equal to some wi for 1 < i < j.
For example, if we have the sequence "abcdebdeb", the
dictionary would have the following words "a", "b", "c",
"d", "e", "bd", "eb". These words correspond to contexts
derived from the sequence. ALZ generates more contexts
from their suffixes, if possible. For example, "bd" would
also generate "d", and "eb" would generate "b". This ac-
counts for contexts that were not perceived by the LZ78
algorithm and that are possibilities in a smart home envi-
ronment. This increases the convergence rate of the model
(Gopalratnam and Cook, 2007).

When the sequence is parsed completely and the con-
texts are derived from it, their frequency of occurrence is
counted. An order-k-1 Markov tree is then constructed
based on the contexts and their frequencies, where k cor-
responds to the longest word found in a training sequence.
Then PPM is used to calculate the next most probable
event. The generated tree for the example scenario with
sequence "abcdebdeb" is shown in Figure 2.

Figure 2. Tree generated by ALZ from sequence "abcdebdeb".

4.2 SPEED
SPEED is a sequence prediction algorithm that is based
on the occurrence of frequent patterns in home environ-
ments (Alam et al., 2012). It assumes that human activity
is predictable since usually certain patterns are repeated
daily. SPEED defines an episode as the sequence between
an initial and ending point of an activity. For example, the
moment a coffee machine is turned "on" is the initial point
of a coffee making episode, which lasts until the coffee
machine is turned "off". An "off" event cannot happen un-
less an "on" event has happened before. Therefore "off"
events always happen after an "on" event of the same ac-
tivity (or sensor), and vice-versa.

The data received from the sensors in the smart home
are represented as a sequence of letters, where upper case
letters represent a sensor’s "on" event and lower case let-
ters represent a sensor’s "off" event. For the example
scenario presented in Table 1, the sequence would be
"AaBCbDEdBbDedB".

The main idea of the SPEED algorithm is to extract
episodes from a sequence of data and derive contexts from
them. These contexts are used to generate a decision tree
that keeps track of the learned episodes and their frequen-
cies. The height of the tree is the length of the longest
episode found in the sequence, defined as the maximum
episode length. For every event in a sequence, the algo-
rithm searches for its opposite event in the window and if it
exists, an episode was found. In the previous sequence, the
first episode found is "Aa", the contexts generated from it
would be "A", "a" and "Aa". We keep track of these and
count their occurrences to generate an order-k-1 Markov
model, where k is the maximum episode length. A tree for
the example sequence is presented in Figure 3. Finally, the
PPM algorithm is used for prediction.

4.3 PPM Algorithm
PPM calculates the probability distribution of each possi-
ble event based on a given sequence by taking into consid-
eration the different order Markov models with different
weights (Cleary and Witten, 1984; Cleary et al., 1997).
The weights are given by the escape probability, which
allows the model to go from a higher-order to a lower
one. The advantage of PPM is that it assigns a greater
weight to the probability calculated in higher-order mod-
els if the symbol being predicted is actually found in the
tree (Gopalratnam and Cook, 2007). The predicted sym-
bol is the one with the highest probability.

ALZ and SPEED use slightly different strategies of
PPM. ALZ uses the exclusion strategy, which means the
prediction is performed with the suffixes of the given se-
quence, except the sequence itself. Therefore, in the case
of the sequence "eb", the contexts used to calculate the
probability of each letter being the next would be "e" and
the null context. Suppose we want to calculate the proba-
bility of having an "e" after "eb" using ALZ, based on the
tree in Figure 2. The probability would be given by Equa-
tion 1: in an order-2 model, the probability of having an
"e" after an "e" is 0/2 and we escape to the order-1 with
1/2 probability. In order 1, the probability of having an "e"
after a null context is 2/9.

In the case of SPEED, the contexts used for calculat-
ing probabilities after a certain sequence would be all the
suffixes, including the sequence itself. Suppose we have
the sequence "dB". We would use contexts "dB", "d" and
the null context. The probability of having a "b" after this
sequence based on the tree in Figure 3, would be given by
Equation 2: we start in order 2 model, where the proba-
bility of having a "b" after "dB" is 1/2 and escape to the
lower order with probability 1/2. In order-1, the probabil-
ity of having a "b" after "d" is 0/4 and we escape to the
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Figure 3. Tree generated by ALZ from sequence "AaBCbDEdBbDedB".

lower order with probability 2/4. Finally, in the lowest
order, the probability of "b" after a null context is 4/22.

p(e,eb) =
0
2
+

1
2

(
2
9

)
= 0.111 (1)

p(b,dB) =
1
2
+

1
2

(
0
4
+

2
4

(
4
22

))
= 0.545 (2)

5 Results and Discussions
Data has been collected from the apartment described in
section 3 over a period of two weeks. In total, there are
6182 raw sensor events. The data was translated to the for-
mat required by ALZ and SPEED, which resulted in 4629
and 9062 events respectively. In the SPEED sequence,
we performed noise removal such that "on" events only
come after "off" events of the same sensor, or vice-versa.
We ended up with 9044 events. In the SPEED algorithm,
the next event is predicted based on the last sequence of
size equal to the maximum episode length (Alam et al.,
2012). Firstly, we reproduced the results using the same
dataset and method as reported in that paper (Alam et al.,
2012). Subsequently we modified the testing procedure
somewhat by calculating the optimal number of last events
to base the prediction on, i.e. the window that leads to the
maximum overall prediction accuracy, which we refer to
as the optimal window. Window sizes up to the maximum
episode length are considered.

In order to be able to compare our results to the per-
formance of the same algorithms when they are used on
the data from the Mavlab testbed (Alam et al., 2012),
we firstly compute the prediction accuracy that is attained
when using the same dataset for both the training and the
testing, as performed in their work. Figure 4 presents the
results when training and testing using the same sequence
of n events, where n = {100, 200, ..., 2000}.

In this test, SPEED had an optimal window of five and
ALZ of six events, when the training and testing sets con-
sisted of 2000 events. An accuracy of 82% and 73% is
achieved by SPEED and ALZ respectively. Clearly train-
ing and testing with the same dataset leads to overfitting.
As a result, the apparent accuracy may keep increasing

Figure 4. SPEED and ALZ prediction accuracy vs. the size of
training set.

when we increase the dataset size. For a dataset size equal
to 700, as in the Mavlab dataset, SPEED and ALZ attain
77% and 73% prediction accuracy respectively when used
on our data.

In order to evaluate the actual prediction accuracy of the
algorithms, our data is split into a training set, a validation
set, and a testing set. The training set is used to construct
the tree, the validation set is used to find the optimal win-
dow, and the testing set is used to calculate the prediction
accuracy.

We first analyse the importance of choosing the opti-
mal window to predict events from. Figure 5 shows the
prediction accuracy for different sizes of the window, and
for four different sizes of the training dataset when using
the SPEED algorithm. Similarly, Figure 6 shows the ef-
fect of the window size in the case of the ALZ algorithm.
The validation set comprised 1000 events in all cases.

We notice that smaller window sizes (1-4 events) pro-
vide better accuracy, for both algorithms. The accuracy
deteriorates very quickly with increasing window size.
This behaviour is as expected in particular for a setup with
a small number of sensors, since long sequences of events
are not bound to be repeated frequently. In the case of
SPEED, for example, bathroom activities would be maxi-
mum two-events long ("on-off" bathroom motion sensor).
These graphs are in addition a manifestation of the fact
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Figure 5. SPEED prediction accuracy vs. the window length,
for several training set sizes.

Figure 6. ALZ prediction accuracy vs. the window length, for
several training set sizes.

that SPEED creates a tree of much longer height than ALZ
does. The tree height corresponds to the longest episode
in SPEED, whereas in ALZ it corresponds to the longest
context. This is evident from Figures 3 and 2 where the
respective trees are shown for the same example scenario.

Once the optimal window was calculated from a vali-
dation set of 1000 events, we computed the accuracy for
different number of training events. We trained the algo-
rithms with a number of events i = {100, 200, 300, ...,
2000}. The prediction accuracy was computed based on a
testing set of 1500 events. Figure 7 shows the results for
both SPEED and ALZ.

SPEED achieved an accuracy of 75% and ALZ an ac-
curacy of 53%, with optimal windows of two and one
respectively. We observe that this maximum accuracy is
achieved with SPEED for training sets larger than about
800 events, while ALZ reaches a maximum accuracy for a
training set of 300 events or more. Hence, ALZ converges
to its maximum accuracy faster than SPEED, however, it
achieves a much poorer prediction accuracy than SPEED.
Using a larger number of events for the training does not
increase the accuracy significantly for neither of the algo-

Figure 7. SPEED and ALZ prediction accuracy vs. the size of
training set.

Figure 8. SPEED prediction accuracy vs. the size of testing set.

rithms.
At this point, we can associate some of these results

to the trees generated for both algorithms for the example
scenario in sections 4.1 and 4.2. The height of the tree
is significantly larger in SPEED for the same performed
actions. It can also be noted from Figure 3 that SPEED
collects a significantly higher number of contexts and fre-
quencies, which may be the reason why SPEED leads to
better accuracy.

In the following we examine the dependence of the pre-
diction accuracy on the size of test dataset. Figure 8 shows
the prediction accuracy attained by SPEED as a function
of the size of the testing dataset for different sizes of the
training dataset. Figure 9 shows the same results for ALZ.

In the case of SPEED, the prediction accuracy is quite
variable for a test dataset of up to about 250 events due
to the small number of predicted events. The maximum
accuracy is achieved for test set sizes larger than about
500 events when the training is performed based on a set
with 500, 1000 and 2000 events. This confirms that the al-
gorithm is quite robust. ALZ shows similar behaviour and
achieves its maximum prediction accuracy for test datasets
larger than about 200 events.
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Figure 9. ALZ prediction accuracy vs. the size of testing set.

Figure 10. SPEED prediction accuracy vs. the size of training
set for different sets of sensors.

A last test was performed to reveal the dependence of
the prediction accuracy on the number and type of sensors.
Four alternatives were investigated based on our current
data: all sensors (15), only PIR sensors (7), only PIR and
magnetic sensors (11), and only PIR and power sensors
(11). The last two sets have the same number of sensors,
however, magnetic and power sensors can affect accuracy
differently. The results are shown in Figure 10 for SPEED
and Figure 11 for ALZ.

Both algorithms show relatively good robustness with
respect to the number of sensors. The accuracy is not sig-
nificantly dependent upon the number of sensors in the
dataset, in most of the cases. A clear exception is the case
when only PIRs are used for prediction using SPEED. The
prediction accuracy is very poor in this case. Note that in
this case the longest episode will be two events. For ex-
ample, if the resident would go from the bedroom to the
living room and then to the kitchen, the resulting sequence
would be "AaBbCc". There is no context connecting the
living room to the bedroom, or the kitchen to the living
room. Hence, while the "off" events are easily correctly
predicted, the prediction of the next sensor to be activated
will often be quite inaccurate in this case. Note that in

Figure 11. ALZ prediction accuracy vs. the size of training set
for different sets of sensors.

this case the tree created by SPEED will have a maximum
length of two. On the other hand, ALZ is better suited to
such cases where events are not highly interweaved. When
SPEED is used the remaining sensor sets achieved a pre-
diction accuracy that is similar to that achieved by the full
set of sensors. The alternative where the power sensors are
not included provides slightly better results indicating that
events related to appliances are more difficult to predict.

In the case of ALZ, the best accuracy is achieved when
fewer sensors are used. This is a result of the fact that the
average probability of occurrence for each event increases
when the number of possible events decreases. The pre-
diction accuracy of events that involve magnetic sensors
is relatively high as doors and drawers are often closed
right after they have been opened, thus making this a rel-
atively easy pattern to predict. On the other hand, power
sensors can occur somewhat randomly with many other
events happening in between, thus making the prediction
of the associated events more inaccurate.

6 Conclusions and Future Work
Activity recognition and prediction in a smart home envi-
ronment with binary sensors has received a lot of atten-
tion in recent years. Most of the reported work is carried
out in testbeds and lab environments where users are of-
ten asked to execute pre-scripted activities. Such smart-
home testbeds typically include a quite large number of
sensors, e.g. the CASAS testbed utilized around 50 sen-
sors (Gopalratnam and Cook, 2007).

In this paper we have presented preliminary results on
event prediction based on data from a real home collected
using just 15 binary sensors. We have used two prediction
algorithms, ALZ and SPEED, to predict the next sensor
event in a sequence. To the extent of our knowledge, this
is the first time these algorithms are used on a dataset ob-
tained from a real home. We compare the prediction ac-
curacy of the two models and examine the dependence of
their performance on a number of parameters − the size of
the training dataset, the size of the testing dataset, and the
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size of the window used for the prediction. We reached an
accuracy of 75% with SPEED and 53% with ALZ when
training with a dataset of 2000 events and testing on a sep-
arate dataset of 1500 events. Increasing the number of
events in either the training or the testing dataset, did not
improve the attained accuracy. In addition, we examined
the dependence of the prediction accuracy on the num-
ber of sensors for both algorithms. Our results show that
robust prediction accuracy can be attained by a relatively
low number of sensors.

However, a much higher prediction accuracy is required
before such algorithms are applicable to real homes. Fu-
ture work will include the time component in order to im-
prove the accuracy of our models as this has been indi-
cated to lead to a considerable improvement (Marufuzza-
man et al., 2015).
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Abstract—We present results and comparative analysis on the
prediction of sensor events in a smart home environment with a
limited number of binary sensors. We apply two probabilistic
methods, namely Sequence Prediction via Enhanced Episode
Discovery – SPEED, and Active LeZi – ALZ, as well as Recurrent
Neural Network (RNN) with Long Short-Term Memory (LSTM)
in order to predict the next sensor event in a sequence. Our
dataset has been collected from a real home with one resident
over a period of 30 weeks. The binary sensor events are converted
to two different text sequences as dictated by SPEED and
ALZ, which are also used as inputs for the LSTM networks.
We compare the performance of the algorithms regarding the
number of preceding sensor events required to predict the next
one, the required amount of data for the model to reach peak
accuracy and stability, and the execution time. In addition,
we analyze these for two different sets of sensors. Our best
implementation achieved a peak accuracy of 83% for a set with
fifteen sensors including motion, magnetic and power sensors,
and 87% for seven motion sensors.

Index Terms—smart home, sensor data prediction, binary
sensors, recurrent neural network, probabilistic models

I. INTRODUCTION

The Assisted Living Project (ALP) is an interdisciplinary
project involving health, ethics, and technology experts [1].
The aim is to develop assisted living technology (ALT) to
support older adults with Mild Cognitive Impairment (MCI) or
Dementia (D) live a safe and independent life at home. MCI/D
is a cognitive decline that can affect attention, concentration,
memory, comprehension, reasoning, and problem solving [2].
A fair amount of research on smart home functions has aimed
at assisting older adults with MCI/D in their everyday life.
Examples are functions such as prompting with reminders or
encouragement, diagnosis tools, as well as prediction, antici-
pation and prevention of hazardous situations. These require
quite robust and reliable activity recognition and prediction
algorithms in order to be deployed in real homes.

Activity recognition and prediction can be performed by
various algorithms that have been reported in the literature.
Most of this work has used data collected in the lab based
on scripted activities. In addition, there is no comparative
study investigating different configurations for input of data,

Financed by the Norwegian Research Council under the SAMANSVAR
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the required data size for accurate predictions, or providing
guidelines as to the applicability of these. In this work, we
apply state-of-the-art sequence prediction algorithms, both
probabilistic methods and recurrent neural networks, to binary
sensor data acquired from a real home with a relatively small
number of sensors over a period of 30 weeks. We compare
the performance of these methods for sensor event prediction
with regard to the amount of data, the time used for training
and testing the models, and the number of preceding events
required to predict the next event (memory length). We further
analyze the performance of the algorithms for two different
sets of sensors – one with events from fifteen sensors (motion,
magnetic and power) and one with events from seven motion
sensors only.

Section II gives an overview of algorithms used for sensor
sequential prediction in the literature. Section III describes
our field trial. Section IV presents the methods used in the
current work. In section V we present our results and discuss
our findings. The paper concludes in Section VI with a short
summary and ideas for improvement and future work.

II. RELATED WORK

Several sequential data prediction algorithms have been
investigated in the past years [3]. These have a broad range
of application areas, including sensor event and activity pre-
diction – the basis of several functions in smart homes. Such
algorithms can for instance lead to an improved operation of
automation functions (e.g. turn on the heater a sufficient time
prior to the person arriving at home); enable the realization of
prompting systems (e.g. prompt the resident if the predicted
activity has not been performed) [4]; or identify changes
and anomalies in certain behaviour patterns (e.g. movement,
everyday habits, etc.) and thus indicate the onset or the
progress of a condition [5].

The Active LeZi (ALZ) is a probabilistic method that has
been extensively employed for prediction on sequential data
[6]. It achieved a peak accuracy of 47% when applied on the
Mavlab testbed dataset, that includes 50 binary sensors [6].
Based on the ALZ, the Sequence Prediction via Enhanced
Episode Discovery (SPEED) algorithm was implemented [7].
SPEED was applied on the Mavlab dataset and reached an
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accuracy of 88.3% when the same dataset was used both
for training and for testing. Both algorithms convert the data
of binary sensors to a sequence of letters and build a tree
based on the observed patterns and corresponding frequency
of occurrence. The tree is Markov model-based, where at
any given point in time the next state depends solely on the
previous one [8]. Hence, the most probable next event can be
estimated based on the current state, by using the Prediction
by Partial Matching algorithm (PPM) [9].

Neural networks have also been used for sensor event
prediction with notable performance, typically recurrent neural
networks (RNN). Three RNN models – Echo State Net-
work (ESN), Back Propagation Through Time (BPTT), and
Real Time Recurrent Learning (RTRL) – were applied on a
fourteen-day dataset with only six binary sensors (four motion
and two magnetic). The ESN performed better with a root
square mean error (RMSE) of 0.06 [10]. In these networks,
the number of input and output values corresponded to the
number of sensors in the dataset, and each assumed value “0”
or “1” for being “off” or “on” at a certain time slot. The
prediction in this case was computed for the next six hours.
In a subsequent work, a Non-linear Autoregressive Network
(NARX) was compared to an Elman network. Both used as
input and output the start and end time of a sensor’s activation
[11]. In this study, each sensor had its own network trained
and tested on a twenty-day dataset with the same six binary
sensors. The NARX performed better when predicting only the
next step, with a RMSE ranging from 0.06 to 0.09, depending
on the sensor.

A similar study was carried out for a 16-room office
environment [12]. The dataset in this case was collected
through an app the employees had installed on a personal data
assistant (PDA). They would register themselves whenever
they entered/left a certain room. An Elman network and a
multilayer perceptron network were applied to predict the next
room a person would go to. There were four participants in the
study and the Elman network attained the best results, ranging
from 70% to 91% accuracy depending on the user. Each room
was codified in four bits as there were 16 rooms in total.
The input corresponded to two rooms and the output to the
predicted next room. This work also applied other methods
– Bayesian network, state prediction, and Markov predictor –
where comparable results were achieved [13].

Other related research includes prediction of the next activ-
ity as well as the time, location, and day it would occur using
Bayesian networks, which achieved 74% of activity prediction
[14]. Prediction of the time when a certain activity will take
place has also been investigated using decision trees [15] and
time series [16].

Our dataset was collected from a real home, while most
datasets from the cited works have been collected through
scripted activities primarily in lab environments. In addition, it
contains events from fifteen binary sensors, i.e. twice as many
as used in [10], [11], and less than one third of the number of
sensors used in the Mavlab testbed. The number of sensors is
comparable to the work in [12] (16 rooms), however in that

Fig. 1. Sensors system installed in the field trial apartment.

study the events were inserted by each user in their PDA rather
than being generated automatically.

III. FIELD TRIAL

Our field trial includes nine apartments in a community care
facility with residents over 65 years old. In this work we use
data from one of the apartments where we have collected 30
weeks of data. The apartments comprise a bedroom, a living
room, an open kitchen area, a bathroom, and an entrance hall
(Fig. 1).

The purpose of the trial and the sensors system deployed
in the apartments have been decided in close collaboration
with the participants [1]. We installed a minimal number
of binary sensors in order to both minimize surveillance of
the residents and comply with the technical and economic
constraints imposed by the project. The set of sensors has
subsequently been chosen so that it can enable the realization
of useful functions for older adults with MCI/D as these were
indicated at dialogue cafés with the users [1]. Hence, our
set of sensors contains motion, magnetic, and power sensors.
These enable inference of occupancy patterns (movement
around the apartment) and some daily activities – kitchen-
related activities, dressing, being in bed –, and leisure activities
– reading, watching TV, listening to radio. Motion sensors
(Pyroelectric/Passive Infrared – PIR) detect motion through
the change of the infrared radiation in its field of view.
It sends a message “1” every time a motion is detected,
otherwise it sends no other message. In our dataset we had
to insert the “off” events (“0” message) so that the data are
consistent for all sensors. Magnetic sensors indicate whether
doors, windows, and drawers are open or closed, by sending
messages “1” and “0”, respectively. Power sensors measure
the electricity usage of a certain appliance, and can therefore
indicate whether it is turned on or off, and send messages “1”
and “0” respectively.

Fig. 1 shows the schematic of the apartment we collected
30 weeks of data from, with 15 sensors in total:
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• Seven motion sensors: one in each room of the apartment,
and two over and by the bed to indicate whether the
person is in bed;

• Four magnetic sensors: entrance and back doors,
wardrobe, and cutlery drawer;

• Four power sensors on appliances: night stand lamp,
coffee machine, TV, and living room/reading lamp.

The sensors are connected wirelessly through Z-Wave and
xComfort protocols to a Raspberry Pi 3, which transfers
the data for storage in a secure server. The data comprise
timestamp (date and time with precision of seconds), sensor
ID, and sensor message (binary). Table I presents events
generated by the following example scenario: the resident
wakes up (PIR bedroom “on”), goes to the living room (PIR
living room “on”), turns on the TV (power TV “on”), goes
to the kitchen (PIR kitchen “on”), starts the coffee machine
(power coffee “on”), goes back to the living room (PIR living
room “on”) while coffee is prepared, goes back to kitchen
(PIR kitchen “on”) to get the coffee (power coffee “off”) and
drink it in the living room (PIR living room “on”).

IV. SENSOR DATA PREDICTION METHODS

A. Preprocessing

The preparation of the data includes two steps: data cor-
rection and data conversion. The data correction is necessary
because the data acquired from binary sensors often contain
faulty events e.g. erroneous activation of motion sensors by
sunlight, bouncing of contact sensors, or switch-off delays
of motion sensors [17]. Such flawed data may substantially
affect the performance of the models that will learn erroneous
patterns. In our system, we observed that sometimes the
motion sensors do not send an activation event, as they should.
Missing sensor events have been inserted to correct for this.
For example, it is not possible to go to the bedroom directly
from the kitchen without passing through the living room. If
the living room motion sensor activation event is missing, it is
inserted. In the case where there are two possible sensor events
(e.g. two possible paths in the apartment), the choice of the
inserted sensor event is done such that the distribution of the
inserted events corresponds to the percentage distribution of
the two options as observed in the data. This process had a
significant effect on the obtained accuracy.

TABLE I
BINARY SENSORS DATA

Timestamp Sensor ID Sensor message

01.09.2017 07:58:05 2 1
01.09.2017 07:58:40 4 1
01.09.2017 07:59:02 10 1
01.09.2017 07:59:50 5 1
01.09.2017 08:00:14 12 1
01.09.2017 08:01:01 4 1
01.09.2017 08:02:56 5 1
01.09.2017 08:03:05 12 0
01.09.2017 08:03:33 4 1

Subsequently, the corrected data is converted to two se-
quences of letters, as dictated by the ALZ and SPEED
algorithms. The resulting sequences are also fed into LSTM
networks that are configured as text generation networks.

The conversion assigns a dedicated letter to each of the
sensors. In the case of ALZ, only “on” events are taken into
account, and hence only lower-case letters are used. SPEED,
on the other hand, differentiates “on” and “off” events of the
same sensor by using upper- and lower-case letters, respec-
tively. Table II presents the assigned letters corresponding to
the example scenario in a smart home described in Table I.

B. Active LeZi

ALZ [6] is a largely used algorithm for sequence prediction.
From the sequence of lower-case letters, ALZ derives several
patterns and their frequency of occurrence. This is based on
the LZ78 text compression algorithm [18]. Given a certain
sequence x1, x2, . . . , xi, the LZ78 will parse it into ni subse-
quences w1, w2, . . . , wni such that for all j > 0 the prefix of
the subsequence wj is equal to some wi for 1 < i < j.

For example, ALZ would generate the sequence “abcdebdb”
for the scenario in Table I. The derived patterns according to
LZ78 would be “a”, “b”, “c”, “d”, “e”, “bd”. ALZ generates
these and even more patterns from the original ones, if
possible. For example, “bd” also generates the pattern “d”.
This addition accounts for patterns that were not perceived by
the LZ78 algorithm and that are still possible in a smart home
environment. This modification increases the convergence rate
of the model [6]. Besides the patterns, their frequency of
occurrence is also counted. An order-k-1 Markov tree is then
constructed based on the patterns and their frequencies. Note
that k corresponds to the longest pattern found in a training
sequence. Fig. 2 shows the generated tree for the example
scenario with sequence “abcdebdb”.

Subsequently, the PPM algorithm is used for predicting
the next event. The PPM algorithm calculates the probability
distribution of each possible event based on a given sequence

TABLE II
ASSIGNMENT OF LETTERS TO SENSORS

Sensor (ID) Letter

PIR bedroom (2) a/A
PIR living room (4) b/B

Power TV (10) c/C
PIR kitchen (5) d/D

Power coffee machine (12) e/E

Fig. 2. Tree generated by the ALZ algorithm for the sequence “abcdebdb”.
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by taking into consideration the different order Markov models
in the formed tree with different weights [9].

C. Sequence Prediction via Enhanced Episode Discovery
SPEED is, like ALZ, a sequence prediction algorithm based

on the occurrence of frequent patterns in home environments
[7]. SPEED defines an episode as the sequence between an
“on” and an “off” event of the same sensor, or vice-versa. For
example, the events that occur between the TV turned “on”
and “off”, these included, is an episode.

Upper- and lower-case letters represent a sensor’s “on” and
“off” events. For the example scenario presented in Table I,
SPEED would generate the sequence “AaBCbDEdBbDedB”.

SPEED extracts episodes from a given sequence and derive
patterns from them. In the previous sequence, the first episode
that is found is “Aa” and the patterns derived from it would be
“A”, “a” and “Aa”. These are used to generate a decision tree
that keeps track of the learned episodes and their frequencies,
as performed by ALZ. A tree for the example sequence is
presented in Fig. 3. Note that the height of the tree is the
length of the longest episode found in the sequence. The PPM
algorithm is also used for the prediction of the next event.

D. Long Short-Term Memory Network
RNN has been broadly applied to sequence prediction due

to its property of keeping an internal memory. Hence, it attains
a good performance for inputs that are sequential in time.
Examples of applications include text generation [19], speech
recognition [20] and pattern recognition in music [21]. The
LSTM [22] is an RNN architecture designed to be better at
storing and accessing information than the standard RNN [23].

In this work the LSTM network is configured as a text
generation network. The number of inputs is a certain number
of sensor events – equal to the memory length – and the
output is the predicted next event in the sequence (Fig. 4). The
input and output are one-hot encoded. In the one-hot encoding
representation, each letter is represented by a vector of bits of
length equal to the number of letters. All values are zero,
except for the one corresponding to that letter (see Fig. 4).

A stateless LSTM network model was implemented in
Python 3 using Keras open source library for neural networks.
A number of parameters were tuned in order to find the optimal
values. Memory length (i.e. number of events that are used
to predict the next event) was set to 9. The model has one
hidden layer with 64 neurons. The number of samples used
for training each iteration of the epoch (i.e. batch size) was 512
and learning rate of 0.01. Adam was used as the optimization
function, categorical cross-entropy as loss function, and the
activation functions in the hidden layer and output layer were
set as hyperbolic tangent and softmax, respectively. We used
the early stopping method to avoid overfitting and unnecessary
computations, allowing a maximum of 200 epochs for each
model’s training.

V. RESULTS AND DISCUSSION

Data have been collected from one apartment over a period
of 30 weeks. Table III shows the number of sensor events for

ALZ- and SPEED-text sequences, after data correction and
conversion, for the two sets of sensors we analyze (all 15
sensors and only the 7 PIR sensors).

A. Training and Testing Configuration

In the SPEED algorithm, the next event is predicted based
on the last sequence of events with length equal to the
maximum episode length [7]. In [7], the authors use the same
dataset for both training and testing, which leads to overfitting.

We have modified the testing procedure by calculating the
optimal number of last events to base the prediction on, i.e. the
number of events that leads to the maximum overall prediction
accuracy, which we refer to as the optimal memory length.
Memory lengths up to the maximum episode length have been
considered. In a previous paper [24], we applied the SPEED
method on our data that were obtained from the same home
as reported here over a period of two weeks. When using the
same procedure as in [7], we achieved an accuracy of 82% –
compared to 88% on the Mavlab dataset. When splitting the
data into training (60%), validation (20%), and testing (20%),
and optimizing the memory length as described above, we
achieved an accuracy of 75% on our data obtained from a real
home.

Similarly for ALZ we obtained 73% (compared to 47% in
[6]) when using the same dataset for training and testing, and
53% when using different datasets for training, validation and
testing, and optimizing the memory length as described above.
Hence we use this modified method for SPEED and ALZ in
the following sections.

In the case of SPEED and ALZ, the training set is used to
build the tree, the validation set is used to find the optimal
memory length, and the testing set is used to compute the
model’s accuracy.

We use the same split rates for the sets used in the LSTM
network, where the training set is used to train the network,
the validation set is used for tuning the parameters and the
testing set to calculate the accuracy. We can notice from
Table III that the majority of the events are from motion
sensors. Therefore, during the training process in the neural
networks, we use weights for each sensor to compensate the
fewer samples from the magnetic and power sensors. These are
computed using the “compute_class_weight” function
of the Scikit-learn open source library. The weight corresponds
to the total number of samples divided by the number of
occurrences of the class. In addition, for all the methods the
results show the mean accuracy achieved using a 5-fold cross-
validation process (using 60% of the data for training, 20%
for validation, and 20% for testing).

TABLE III
NUMBER OF EVENTS IN DATASET

Set of Sensors Number of Events
ALZ SPEED

All sensors (15) 60961 121922
PIR sensors (7) 55302 110604
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Fig. 3. Tree generated by the SPEED algorithm for the sequence “AaBCbDEdBbDedB”.

Fig. 4. LSTM network configuration.

In the following, we examine the accuracy attained by the
four algorithms (ALZ, SPEED, LSTM with ALZ-text and
LSTM with SPEED-text) first against the memory length and
then against the size of the dataset given in weeks. Further we
compare our results to previous related work and summarize
our discussion in this section.

B. Optimum memory length

We examine the accuracy achieved on the validation set for
several values of memory length ranging from 1 to 30 events.
This is performed first for a dataset containing events from all
fifteen sensors (magnetic, power and motion) – Fig. 5 – and
then for a dataset containing only the seven motion sensors –
Fig. 6.

When using a dataset with fifteen sensors (Fig. 5), ALZ
achieved a best accuracy of 69% while SPEED reached 82%.
The optimal memory length was 4 events for ALZ and 7 for
SPEED. The LSTM networks achieved accuracies of 70% and
83% when using ALZ- and SPEED-text, respectively. In both
cases the optimal memory length is equal or larger than 8.
The larger optimum memory length for LSTM indicates that
probabilistic methods predict the next event based on fewer
previous events, in other words the LSTM is more efficient at
detecting patterns and correlations over a longer sequence.

It is also interesting to notice how the accuracy is affected
by memory lengths larger than the optimal. The accuracy of
the probabilistic methods drops substantially as the memory
length gets larger. In contrast, the LSTM networks roughly

Fig. 5. Accuracy vs memory length for all algorithms on a dataset with all
fifteen sensors.

Fig. 6. Accuracy vs memory length for all algorithms on a dataset with seven
motion sensors.

stabilize at the peak accuracy for larger memory length values.
A reason for this is that probabilistic methods are based on
certain patterns happening quite frequently. Since our dataset
has few sensors, short patterns are more likely to happen
more often and therefore, they provide better predictions. The
LSTM, on the other hand, has the ability to find patterns
in long sequences and can therefore predict the next event
based on many past events and longer term patterns and
dependencies. Increasing the memory length further does not
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improve the accuracy, however, which can imply that the
model has reached its best performance for this configuration.

Subsequently, we compare the accuracy results of a dataset
with fifteen sensors (Fig. 5) to the accuracy results of a dataset
that contains only the seven motion sensors (Fig. 6). The
accuracy curves for the LSTM network models show a similar
dependency to memory length. The optimal memory length
is 9 or larger. The LSTM with SPEED-text achieves 87%
while with ALZ-text achieves 73%. The ALZ method also
shows similar behaviour, and same optimal memory length of
4, with a higher accuracy of 71%. SPEED presents a very
peculiar behaviour. The maximum memory length is 2. This
is a consequence of the fact that SPEED builds the tree based
on episodes, and the longest episode in this case is two events.
For example, if the resident would go from the bedroom to
the living room and then to the kitchen, the resulting sequence
would be “AaBbCc”. There are no intertwined events, since
when one motion sensor activates, another deactivates. Hence,
the “off” events are easily predicted. When it comes to “on”
events, the sensor that is most frequently activated will always
be the one predicted to activate next, leading to lower accuracy
for “on” events.

C. Required amount of data for good accuracy

In the following, we investigate the behaviour of the
accuracy with respect to the size of the dataset used for
the complete process of training, validating, and testing the
models. The accuracy results are computed within the testing
set and using the optimal memory length found in the previous
analysis. Fig. 7 and 8 show the results when the algorithms
are applied to a dataset with all fifteen sensors and with only
seven sensors, respectively.

The best accuracy is achieved for 10 weeks of data or above.
There is no significant improvement in the accuracy for larger
datasets, we therefore show the plots for dataset sizes up to
10 weeks for better clarity on the lower range of the graph.

We first examine the accuracy in the dataset with all sensors
(Fig. 7). A peak accuracy of 83% was achieved by LSTM
with SPEED-text, while the SPEED algorithm achieved a peak
accuracy of 82%. The accuracy achieved by the LSTM with

Fig. 7. Accuracy vs size of dataset for all algorithms on a dataset with all
sensors.

ALZ-text was considerably lower at 69%. In this case, stability
is achieved much later than with the other methods. Finally,
the ALZ method reached a top accuracy of 70% with 4 weeks
of data. However, this method does not seem to be as stable
as the other algorithms.

Note that the probabilistic methods attain a good accuracy
(close to the peak accuracy) with only 2 days of data. By
comparison, the LSTM networks need approximately 2-3
weeks of data to start approaching their top accuracy. This
correlates well with the previously discussed ability of the
LSTM to learn longer term patterns and dependencies, and
attain better accuracy based on these.

Next we examine the accuracy results for the dataset using
only the seven motion sensors (Fig. 8). As expected, the
accuracy is higher since there are fewer sensors in this set.
Moreover, motion sensor events happen sequentially, without
intertwined events. The LSTM with SPEED-text achieved an
accuracy of 87%, by far the best among the methods. The
peak accuracy was achieved with slighlty less than 2 weeks of
data. In addition, stability is reached with less data compared
with the case in Fig. 7. The LSTM with ALZ-text and the
ALZ achieved very similar accuracies of 73%, and 74%
respectively. The SPEED method, however, achieved a poor
accuracy in this case. This is due to the short memory length
and lack of intertwined events, as discussed when presenting
Fig. 6. Also here, it is confirmed that probabilistic methods
require a rather small amount of data to achieve a considerable
accuracy, close to the peak accuracy that can be reached by
these methods. The LSTM with SPEED-text also achieved
a good accuracy with only a few days of data. However,
the LSTM network with ALZ-text needed considerably larger
amounts of data to attain acceptable prediction accuracy.

Most of the models reached a peak accuracy with 10 weeks
of data or more. It may appear somewhat surprising that the
best accuracy was reached for the same amount of data – 10
weeks – for both sets of sensors. However, as we pointed out
earlier, the majority of the events in the dataset is in fact from
motion sensors, and therefore, the two datasets are of similar
size.

Fig. 8. Accuracy vs size of dataset for all algorithms on a dataset with motion
sensors.
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D. Execution time

Lastly, we examine the execution time to train and test
the models. Table IV shows the results for the set with all
sensors. In general, the probabilistic methods require longer
processing time, although the ALZ needs only slightly longer
time than the LSTM networks. SPEED requires eight times
longer time to model than the LSTM with SPEED-text. Note
that when using all the sensors these two models achieve
similar prediction accuracy. However, SPEED reaches a high
accuracy with much less data.

E. Discussion

We have applied two probabilistic methods on our data and
have achieved comparable results to those obtained from the
Mavlab testbed dataset. That testbed includes 50 sensors while
our dataset was obtained from a real home with fifteen sensors,
i.e. considerably fewer than the Mavlab testbed. In addition,
in that work the same dataset was used both for training and
for testing, which results in overfitting and overestimating the
accuracy of the model. We use separate datasets for training,
validation, and testing.

We have compared the performance of these two proba-
bilistic methods with LSTM networks. To our knowledge this
is the first time LSTM networks have been applied to this
specific task. ESN, that is an RNN like LSTM, has shown
good results [10], [11]. It is also the first time that probabilistic
methods are compared to LSTM neural networks for sensor
event prediction.

In our work, the best accuracy was achieved by the LSTM
network with SPEED-text, 83% with all the fifteen sensors and
87% with seven motion sensors. In [12] an Elman network was
applied to a dataset with 16 rooms and achieved peak accuracy
of 91%, which is higher than our results. However, the dataset
in that study was generated by the users themselves rather than
being collected by sensors, a fact that is expected to lead to
considerably fewer faulty events.

Our work showed that probabilistic methods can achieve a
high prediction accuracy (close to their peak accuracy) with
a relatively small amount of data (typically 2 days of data).
LSTM networks require a larger dataset (about 3 weeks with
SPEED-text and 10 weeks with ALZ-text) to reach good
accuracy. Also, probabilistic methods are found to base the
prediction on a relatively small number of previous events –
an optimal memory length of four for ALZ and seven for
SPEED was established in this work. On the other hand,
LSTM networks base the prediction on a sequence of eight last
events or more. This indicates that such networks are better at

TABLE IV
EXECUTION TIME OF ALGORITHMS

Algorithm Execution time (min)

ALZ 2.8
SPEED 16.5

LSTM with ALZ-text 2.1
LSTM with SPEED-text 1.5

finding longer-term dependencies and patterns in a sequence
of events. In addition, in LSTM the attained accuracy is quite
stable for memory lengths that are larger than the optimal.
On the other hand, probabilistic methods have an optimum
memory length, hence the accuracy decreases both for shorter
and for longer memory lengths than the optimum.

For the dataset containing events from the fifteen sensors,
our best result was achieved by the LSTM network with
SPEED-text (83%). SPEED achieved only 1% lower accuracy,
however, after considerably longer training time. Hence in
applications where it is an advantage to model with a small
amount of data where in addition execution time is not too
critical, SPEED may be a good choice, since it can achieve
an accuracy close to its peak with little data. In general,
our results have shown that it is possible to achieve good
accuracy with much less data than thought previously. SPEED
and LSTM with SPEED-text achieve better results than ALZ
and LSTM with ALZ-text. This is not surprising since the
conversion of data to SPEED-text sequences contains more
information (both “on” and “off” events). This can also be
confirmed by the trees formed by ALZ and SPEED (Fig. 2
and 3).

For a dataset with no intertwined events though – the case
of our dataset with only the seven motion sensors – the best
choice is the LSTM with SPEED-text. SPEED does not work
well in this case, since the tree has a height of 2 so that only
“off” events can be predicted reliably.

Another interesting finding is that more data than 10 weeks
does not improve significantly the results for any of the applied
methods. Hence, a change in the algorithms and/or in the way
the data are input, or additional information, is required to
improve the prediction accuracy.

Finally, regarding the number of sensors. A larger number
of sensors can lead to better prediction accuracy to the extent
that it entails more information to base the prediction on. A
smaller number may, however, be preferable both in terms of
reduced surveillance for the user, lower cost, and less nuance
for the esthetics of the home. Our work shows that it is possible
to achieve acceptable prediction accuracy with much fewer
sensors than thought previously.

VI. CONCLUSIONS AND FUTURE WORK

Activity recognition and prediction algorithms in smart
home environments using binary sensors have been indicated
to be useful for a number of functions. Most of the work
reported in the literature has been carried out using data
collected in lab environments and testbeds, with scripted
activities. Such smart home testbeds typically include a quite
large number of sensors, e.g. the Mavlab testbed deployed
around 50 sensors [6].

In this paper we presented results on sensor sequence
prediction using state-of-the-art methods: two probabilistic
methods (ALZ and SPEED) and LSTM networks with both
SPEED- and ALZ-text sequence inputs. Our dataset was
obtained from a real home with an older adult (> 65 years
old) and with a relatively small number of sensors (15).
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We compared all the methods with regard to a number of
factors: the required number of preceding events to predict
the next event (memory length), the necessary amount of
data to achieve good accuracy and stability, the time used
for training/testing, and the number of sensors in the dataset.
To the extent of our knowledge, this is the first time such
a comparison has been carried out. Our best implementation
achieved an accuracy of 83% with LSTM with SPEED-text
for a set with fifteen sensors in total – motion, magnetic
and power sensors – and 87% with LSTM with SPEED-
text as input for seven motion sensors. For the most accurate
models using the SPEED-text, the LSTM required around 1/7
of the time SPEED required to do the modelling. On the
other hand, the LSTM required about 3.5 weeks of data before
reaching considerable (close to its peak) accuracy, whereas the
probabilistic methods only needed 2 days of data for reaching
considerable accuracy. The findings of our study can be useful
for deciding which methods to use in accordance with project
constraints (e.g. the number of available sensors, user privacy,
etc.) and the area of application.

Clearly, a higher prediction accuracy is required before such
algorithms can be applicable to real homes. Future work will
include the time information as part of the input in order
to improve the accuracy of our models. In addition, we will
investigate the reproducibility of the best prediction model in
other apartments with similar sensors and hence the variability
of the predictions. Moreover, we will examine the possibility
of using transfer learning methods across the apartments.
These will be published in future work.
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Prediction of Next Sensor Event and its Time of
Occurrence using Transfer Learning across Homes

Abstract—We present results on the prediction of sequential
sensor events and time of occurrence using transfer learning
with Recurrent Neural Network with Long Short-Term Memory,
between five apartments. Our dataset has been collected from
real homes with one resident each and contains data from a
set of 13-17 sensors, depending on the apartment, including
motion, magnetic, and power sensors. We compare the prediction
accuracy and the required dataset size for the prediction when
each apartment is modelled individually, and when transfer
learning is used. Transfer learning is used in two configurations
– a) training with data from four apartments and fine-tuning
and testing on each of the target apartments, and b) training
with one apartment and fine-tuning and testing on each of the
target apartments. In our best prediction models, a top accuracy
of 87% is attained when predicting the next sensor event, and
81% when predicting both the next sensor event and the mean
time elapsed to the next sensor event. There is a variability of
10% in the attained prediction accuracy across apartments. For
a small number of events in the target dataset, having a network
pre-trained with data from four apartments and fine-tuned with
the target apartment provides the best prediction models.

Index Terms—smart home, sequence prediction, time predic-
tion, binary sensors, recurrent neural network, transfer learning

I. INTRODUCTION

Activity recognition and prediction can be performed by a
number of algorithms that have been reported in the literature.
In the past years the use of transfer learning in the development
of such algorithms has grown [1]. Transfer learning refers to
training and learning parameters from a source dataset that
is different yet related to a target dataset. It can result in
reduced time for training the model and a lower amount of
data required for the training. In addition, it is a solution
for unlabeled data. Transfer learning also allows that some
characteristics in the training and testing datasets are different,
e.g. labels and data distributions [2]. It is therefore extremely
applicable and useful for smart homes, where usually each
home has its own layout, a different network of sensors and
where, moreover, the residents may have individual habits.

Most of the reported work in this field has used data
collected in the lab or in testbeds based on scripted activities.
In addition, to the extent of our knowledge, there is no study
that uses transfer learning to predict both the next sensor
event and the time it will occur in the same algorithm, using
long short-term memory (LSTM) recurrent neural network
(RNN). This is the aim of the current paper where we use
data collected from real homes.

Our work is part of an interdisciplinary project that involves
experts in health, technology, and ethics [3]. The aim of

the project is to develop assisted living technology (ALT) to
support older adults with Mild Cognitive Impairment (MCI)
or Dementia (D) live a safe and independent life at home.
Functions that are able to assist older adults with MCI/D
in their everyday life have been extensively studied. These
can be for example functions for prompting the residents
with reminders or encouragement, diagnosis tools, as well as
prediction, anticipation and prevention of hazardous situations.
These rely on quite robust and accurate activity recognition
and prediction algorithms to perform well in real homes.

The performance of probabilistic methods and neural net-
works for the prediction of the next sensor event with data
from one apartment has been compared in previous work [4],
[5]. The best performing algorithm was shown to be the LSTM
network with binary sensor events “on” and “off” converted
to a text sequence. This algorithm was further developed to
include the time information and predict both the next sensor
event and its time of occurrence using data from the same
apartment [6]. In the present paper we apply transfer learning
with the best performing algorithms from that work to build
prediction models for five apartments in total. The motivation
for transfer learning is to reduce the time required for data
collection in individual apartments before the system can be
operated, and rather reuse the learning in already trained
models.

The paper is organized as follows. Section II gives an
overview of algorithms implemented in the literature for sensor
event and time prediction, and for transfer learning. Section
III gives an overview of our field trial and the sensor system in
the apartments. Section IV describes the data preprocessing,
used as input for the prediction method described in Section
V. Section VI presents the results and discussion. Finally, in
Section VII we conclude the paper and discuss future work.

II. RELATED WORK

A. Prediction of Sensor Events and Time of Occurrence

Activity prediction includes mainly two tasks: sequence
prediction and time prediction. A number of algorithms for
sequence prediction have been studied in the past years [7].
These algorithms usually train a model based on a sequence
of symbols to predict the next symbol. Active LeZi (ALZ)
uses Markov Models to predict the next symbol in a sequence
[1]. Inspired by ALZ, the Sequence Prediction via Enhanced
Episode Discovery (SPEED) algorithm predicts the next sensor
event based on the frequency of observed patterns [8]. Neural
networks have also been used to predict the next sensor
in a sequence with notable performance, typically recurrent

107



neural networks (RNN) [9]–[11]. Other reported methods are
Bayesian network, state prediction, and Markov predictor [12].

In addition to the next sensor event or activity in a se-
quence, such algorithms should also be able to predict when
the event will occur. The time of occurrence is important
to enable a number of smart home functions, for example
improved operation of automation features; prompting systems
[13]; or anomaly detection in certain behaviour patterns [14].
Time series methods such as Autoregressive Moving Aver-
age (ARMA) and Autoregressive Integrated Moving Average
(ARIMA) have been extensively applied in the literature [15].
However, they assume the time series to be linear, which
is not applicable to activities in a home [16]. Rule-based
algorithms have been developed for time forecasting [13],
[17]. They are quite useful, however they do not account
for more complex activities. Non-linear time series models
would be more suitable for time prediction in smart homes,
e.g. artificial neural networks. A Non-linear Autoregressive
Network (NARX) showed promising results to predict the start
and the end time of sensor activation [18]. Decision trees have
been used to predict the time a certain activity would take
place [16]. Poisson process has also been applied to predict the
time an observed activity would occur [19]. Bayesian networks
have been applied to predict the next location, time of day, day
of the week and as a consequence the activity label of what
the person is doing [20]. This work is the closest to ours and
has reached an accuracy of 46-60% when predicting the next
location, 66-87% for time of day (slots of 3 hours along the
day), 89-97% predicting the day of the week, and 61-64% for
activity recognition.

Our dataset was collected from a real home, while most
datasets from the cited works have been collected through
scripted activities primarily in lab environments. It contains
events from 13-17 binary sensors, i.e. twice as many as used in
[9], [18], and less than one third of the number of sensors used
in [1], [8], [16]. Even though it is comparable to the work in
[12] (16 rooms), in that study the events were inserted by each
user rather than being generated using sensors. In addition, we
predict both the next sensor event and the mean elapsed time
to the next event in the same model.

B. Transfer Learning

Transfer learning has been used in several fields, e.g. image
and language classification, computer networks, automated
planning, mathematical problems, and activity recognition [2],
[21]. It has not been fully explored yet for time series data [22].
This might be because of the lack of available general purpose
pre-trained models [22], as there are for image classification.
However, this may change soon as transfer learning has proved
to provide many advantages. For instance, it has been shown
that models trained on features extracted using a pre-trained
recurrent neural network (RNN) perform better or at least as
well as RNNs trained for a specific task for electronic health
records data prediction [23]. In addition, transfer learning
can dramatically decrease the required amount of data in the
target dataset, as proved for a mortality prediction algorithm

[24] and for activity recognition [25], [26]. It also allows
that datasets with different feature spaces can transfer the
knowledge between each other [26], [27]. Besides, it can be
applied to several algorithms: RNNs [23], Hidden Markov
Models [28], statistical inference [24], support vector machine
[25]. When it comes to transfer learning in smart homes, a
cross-domain activity recognition algorithm combined with
transfer learning and a similarity function between different
activities was proposed [25]. In this work, three different
datasets are used, where one is collected over 28 days from
a real home of a 26-year-old man, and a peak accuracy of
65% is achieved with seven activities. Other work transfers
the knowledge activities from multiple physical source spaces
to a different target physical space [26]. The authors propose
an algorithm that maps automatically activities from source
to target environment and classifies the activity based on a
weighted majority vote method. They use data collected from
six testbeds where volunteers lived for 2-3 months, containing
5 to 11 activities, and achieve a peak accuracy of about 80%.
HMM and transfer learning have also been combined and
used across three apartments with five recorded activities and
achieve 0.65 F1-score in the best case [29].

Transfer learning has its limitations. It has been shown that
it can either improve or degrade the prediction accuracy of
models depending on the dataset used for transfer, which is
known as negative learning [2]. In these cases, it is important
to detect which is the best source dataset to a problem,
for example using Dynamic Time Warping to measure inter-
dataset similarities [22].

To the extent of our knowledge LSTM networks have not
been previously used for the prediction of sequential sensor
events using transfer learning. In addition to predicting the
next sensor event, we predict the mean elapsed time of
occurrence in the same model.

III. FIELD TRIAL

Nine residents over 80 years old participate in our field trial.
In this work we use data from five apartments. All apartments
are part of a community care facility and have similar layouts
– comprising a bedroom, a living room, an open kitchen
area, a bathroom, and an entrance hall (Fig. 1). A minimal
number of binary sensors has been installed in the apartments
to minimize surveillance of the residents. The set of sensors
has been chosen so that it can enable the realization of useful
functions for older adults with MCI/D as these were indicated
at dialogue cafes with the users [3]. Hence, our set of sensors
contains motion (passive infrared sensor – PIR), magnetic, and
power sensors. These enable inference of occupancy patterns
(movement around the apartment) and some daily activities –
kitchen related activities, dressing, being in bed –, and leisure
activities - reading, watching TV, listening to radio.

Unfortunately, not all apartments could have the exact same
set of sensors due to physical limitations (e.g. fridge door
with a too big gap to enable the use of magnetic sensor)
and/ or different equipment (e.g. residents either have a coffee
machine or a kettle). However, all the participants had the
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same initial proposal of set of sensors, as shown in Fig. 1.
The five apartments that provided data to this work have all
the motion sensors and the power sensor in the TV, while the
rest of the sensors are different, as shown in Table I.

Fig. 1. Proposed sensors system for field trial apartments.

TABLE I
SENSORS IN EACH APARTMENT

Apt. ID Sensors
1 Pa: night stand lamp, coffee machine, living room/reading

lamp; Mb: cupboard/drawer
2 Pa: night stand lamp, coffee machine, living room/reading

lamp, microwave; Mb: fridge
3 Pa: kettle, living room/reading lamp, microwave, toaster; Mb:

fridge, cupboard/drawer
4 Pa: night stand lamp, coffee machine, living room/reading

lamp; Mb: fridge
5 Pa: kettle; Mb: fridge, cupboard/drawer

aPower and bmagnetic sensors.

The sensors are connected wirelessly through Z-Wave and
xComfort protocols to a Raspberry Pi 3, which transfers
the data for storage in a secure server. The data comprise
timestamp (date and time with precision of seconds), sensor
ID, and sensor message (binary). Table II shows a data sample.

TABLE II
BINARY SENSORS DATA

Timestamp Sensor ID Sensor message
01.09.2017 07:58:40 4 1
01.09.2017 08:00:14 12 1
01.09.2017 08:03:05 12 0

IV. DATA PREPROCESSING

A. Data Correction

Data acquired from binary sensors often contain faulty
events e.g. erroneous activation of motion sensors by sunlight

and switch-off delays of motion sensors [30]. Such noise can
significantly affect the performance of the models. Hence, we
have carried out a data correction preprocessing. Occasionally
the motion sensors do not send an activation event when they
should. We insert missing events so the data can be more
accurate. For example, it is not possible to go to the bedroom
directly from the kitchen without passing through the living
room. When the living room activation event is missing, it
is inserted. If there are two possible sensor events (e.g. two
possible paths in the apartment), the choice of the inserted
sensor event is done randomly and in a way that the final
percentage distribution of the two options remains as observed
in the original data. This is done in all data, i.e. both the
training and the testing sets. The time of the inserted event is
the mean between the previous and next samples. This does
not compromise the data accuracy because the faulty events are
usually between relatively fast motions around the apartment,
which means the elapsed time between the samples is not long.

B. Data Conversion

The corrected data are subsequently converted to a text
sequence. The sensor’s ID and message are assigned a letter.
This is inspired by the SPEED algorithm [8]. SPEED is a
sequence prediction algorithm based on the occurrence of
frequent patterns in home environments. SPEED uses upper-
and lower- case letters to represent a sensor’s “on” and “off”
events. For the sample data in Table II, SPEED would generate
the sequence “ABb”, where sensors 4 and 12 are assigned
the letters a/A and b/B, respectively. With each sensor being
assigned a letter, we now include the time information. This
was performed in two ways, depending on what we are
predicting, using the best performing algorithms according to
previous work [6].

1) Sensor Event with Time Elapsed to the Next Event:
When predicting the next sensor event only, we use together
with the sensor’s letter a number that indicates the time elapsed
to the next event. We define a set of 8 time intervals: [<
1min, 1-5min, 5-15min, 15-30min, 30min-1h, 1-2h, 2-5h, >
5h]. Hence, we assign numbers 0-7 to the event. For example,
if the motion sensor in the bedroom (assigned letter a/A) were
activated in the morning and 10 min later the person went to
the bathroom, the generated symbol would be “A2”.

2) Sensor and Cluster with Hour of the Day and Elapsed
Time to the Next Event: When predicting both the next sensor
and time elapsed to the next sensor event, we add a number
after the sensor letter to indicate a time-related cluster as
follows. We apply the K-means algorithm to cluster each
sensor event according to the hour of the day occurrence and
the time elapsed to the following sensor event. The samples of
each sensor are classified into K clusters such that the sum of
square distances (SSD) within the clusters is minimized [31].
Each cluster contains a centroid, given by the mean values
of each feature of the algorithm. We perform K-means for a
maximum number of clusters (K) equal to 8 and choose the
best K manually according to the elbow method [32]. This
method consists of plotting an SSD vs K graph and choosing
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the K that resembles an “elbow” (the point of inflection on the
curve), which is the best fit for that problem. Fig. 2 shows an
example of clustering the samples of the motion sensor in the
kitchen. This sensor results in four clusters (represented by the
different colors). Suppose this sensor is represented by letter
B, has had an “on” event at noon (blue cluster), and the next
sensor event took place 3 minutes later. This would generate
“B2” (2 representing the blue cluster).

Fig. 2. K-means clustering of motion sensor events in the kitchen.

V. PREDICTION METHOD

A. Sensors Mapping

As described in Section III, some power and magnetic
sensors differ within the five apartments (Table I). In order
to transfer the learning across the apartments, we re-label the
sensors that refer to the same activity. The new labels and the
sensors assigned to these are shown in Table III. Lamp power
sensor events were removed from the datasets since we did
not manage to assign them to an activity that was common
for all lamps and apartments.

TABLE III
RE-LABELING OF SENSORS

New labels Sensors
Kitchen sensor Pa: toaster, microwave; Mb: fridge, cupboard/drawer
Beverage sensor Pa: coffee machine, kettle
aPower and bmagnetic sensors.

B. Long Short-Term Memory

RNN [33] is a neural network that has the property of
keeping an internal memory, and has therefore been widely
applied to inputs that are sequential in time [34], [35]. The
LSTM [36] is a type of RNN designed to be better at storing
and accessing information than the standard RNN.

We employ an LSTM network configured as a text genera-
tion network as this was the best performing algorithm for our
data and sensor system’s configuration [4], [5]. The number
of inputs is a certain number of sensor events – equal to the
memory length – and the output is the predicted next event
in the sequence (Fig. 3). The input and output are one-hot

encoded. In the one-hot encoding representation, each symbol
is represented by a vector of bits of length equal to the number
of symbols in a sequence. All values are zero, except for the
one corresponding to that symbol (Fig. 3).

Fig. 3. LSTM network configuration and transfer learning process.

We first train an individual model for each apartment, which
we refer to test 1. When using transfer learning, we first train
the LSTM network with data from four apartments (test 2) or
from one apartment (test 3). In this case, the data from the
target apartment – that have not been used in the training –
are split to be used in the fine-tuning of the network, keeping
the weights of the best-fit model, and in the testing (Fig. 3).

A stateless LSTM network model was implemented in
Python 3 using Keras open source library for neural networks.
A number of parameters were tuned in order to find the optimal
values. The memory length (i.e. number of symbols that are
used to predict the next symbol) had value 10. The model
has 1 hidden layer with hyperbolic tangent activation and
64 neurons. Our batch size (i.e. number of samples used for
training each iteration of the epoch) was 512. We used Adam
as the optimization function with learning rate of 0.01 and
categorical cross-entropy as loss function. The output layer
was a softmax activation function. We used the early stopping
method and dropout rate of 50% to avoid overfitting, allowing
a maximum of 200 epochs for each model’s training.

VI. RESULTS AND DISCUSSION

Table IV shows the number of sensor events in the dataset of
each apartment and the number of days it has been collected.
In all cases, the LSTM network was trained based on a certain
number of events and tested on a test set containing 3000
events. This process is repeated three times and the accuracy
values in the graph correspond to the mean of the best test
accuracy of each training. We show graphs up to 10000
training events for better clarity at the lower range in the graph,
for comparison purposes.

We have three tests in each subsection, both when predicting
the next sensor event only, and when predicting the next sensor
event as well as the time-related cluster. In test 1, we model
an individual LSTM network for each apartment. In test 2,
transfer learning is used where the LSTM network is trained
with data from four apartments and fine-tuned with data from
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the fifth apartment. In test 3, transfer learning is used where
the model is trained with data from the apartment that obtained
the best accuracy in the first test and fine-tuned for each of
the test apartments.

TABLE IV
NUMBER OF EVENTS PER APARTMENT

Apt. ID Number of Events Number of Days
1 169082 264
2 94209 217
3 17130 69
4 115744 291
5 190796 258

A. Prediction of the Next Sensor

We investigate the accuracy of predicting the next sensor
event only using as input the sensor event and the elapsed
time to the next event (see Section IV-B1). Fig. 4 shows the
prediction accuracy of the first test performed, with individual
LSTM network models for each apartment. Note that with
a small number of events the accuracies are pretty low, and
increases sharply with dataset size. After 4000 events in the
training dataset, the accuracy increases very slowly. The top
accuracies achieved and the number of events required are
presented in Table V. The best accuracy of 86.96% is achieved
for apartment 2. Somewhat lower but comparable accuracies
are achieved in apartments 1 and 3, while the lowest accuracy
is obtained in apartments 4 and 5. It is interesting to compare
the number of events required to reach the top accuracy
for each apartment. Twice as many events were required in
apartment 1 as in apartment 2. On the other hand, in apartment
3, 1/8 of the number of events was required compared with
apartment 2 to achieve approximately the same accuracy.

Fig. 4. Accuracy of prediction of the next sensor vs. number of events in
the training dataset, using as input both sensor events and elapsed time to the
next sensor event. Individual LSTM model per apartment (test 1).

Fig. 5 shows the accuracy curves when we perform test
2 – train the network with data from four apartments and
fine-tune with the fifth apartment that is the test apartment.
A very low number of events is required for the fine-tuning
to achieve quite high accuracy straight away. The accuracy
increases slowly as more events are added for the fine-tuning.

In Table V we see the attained accuracies and the required
number of events for test 2. For all apartments, the accuracies
are marginally lower (< 1%) than when using individual mod-
els for each apartment (test 1). The number of events required
in the training dataset is the same. We have also computed
the accuracy without fine-tuning prior to testing, i.e. when
we test the network trained with data from four apartments
directly on the test dataset of the fifth apartment. This led
to top accuracies of 76.87%, 79.13%, 66.20%, 75.70%, and
71.1%, in apartments 1 to 5 respectively. This shows that
the fine-tuning of the model is indeed required to achieve
good prediction accuracy when using transfer learning across
apartments.

Fig. 5. Accuracy of prediction of the next sensor vs. number of events in the
training dataset, using as input both sensor event and elapsed time to the next
sensor event. Transfer learning, test 2 – training the model with data from
four apartments, fine-tuning with and testing on the target apartment.

Lastly, we investigate the prediction accuracy when training
the model with the apartment that achieved best accuracy in
test 1 (apartment 2) and fine-tuning with each test apartment
individually (Fig. 6). In this case the accuracies obtained for a
low number of events in the training set are lower than in the
previous transfer learning (test 2). This is as expected as we
now have much less data to train the network with. However,
the prediction accuracy for the low range of the graphs is still
quite higher than in test 1. From Table V we observe that the
top accuracies are very similar as for test 2 and the amount of
data required is similar. However, in test 3, the time to train
the network is also considerably lower since data from only
one apartment are used.

TABLE V
PREDICTION ACCURACY OF THE NEXT SENSOR EVENT

Apt. ID Top Mean Accuracy (Number of Events Required)
Test 1 Test 2 Test 3

1 84.90% (160000) 84.81% (160000) 84.64% (160000)
2 86.96% (80000) 86.20% (70000) –
3 86.23% (10000) 86.00% (10000) 86.09% (10000)
4 78.91% (100000) 78.90% (100000) 78.90% (100000)
5 80.78% (180000) 80.53% (180000) 80.61% (180000)
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Fig. 6. Accuracy of prediction of the next sensor vs. number of events in the
training dataset, using as input both sensor event and elapsed time to the next
sensor event. Transfer learning, test 3 – training the model with data from
apartment 2, and fine-tuning with and testing on the target apartment.

B. Prediction of the Next Sensor Event and Mean Elapsed
Time to the Next Event

In the following we predict both the next sensor event and
the time-related cluster containing information for the mean
elapsed time to the next event (see Section IV-B2). Fig. 7
shows the prediction accuracy when each apartment is mod-
elled individually. In all cases, the accuracy increases sharply
with increasing number of training events, and stabilizes from
about 7000 events. Thereafter, the accuracy increases very
slowly as more data are added. Table VI shows the top
accuracies attained. The accuracies range from 74-81%. Once
again the highest accuracy is attained in apartments 1, 2 and
3, and the lowest in apartments 4 and 5.

Fig. 7. Accuracy of prediction of the next sensor and time cluster vs. number
of events in the training dataset, using as input both sensor event and time
cluster. Individual LSTM model per apartment (test 1).

Fig. 8 and 9 present the accuracy results when transfer
learning is carried out as above, tests 2 and 3. The overall
results are similar to these obtained when predicting the next
sensor event only. The prediction accuracy attained for a small
number of events is much higher when using transfer learning
as compared with each apartment being modelled individually.
The top accuracies are very similar, and so is the number

of required events to attain these. When comparing transfer
learning from four apartments to transfer learning from one
apartment (Table VI), it turns out that the top prediction
accuracies are only marginally different.

Fig. 8. Accuracy of prediction of the next sensor and time cluster vs. number
of events in the training dataset, using as input both sensor event and time
cluster. Transfer learning, test 2 – training the model with data from four
apartments, fine-tuning with and testing on the target apartment.

Fig. 9. Accuracy of prediction of the next sensor and time cluster vs.
number of events in the training dataset, using as input both sensor event
and time cluster. Transfer learning, test 3 – training the model with data from
one apartment (apartment 3) and fine-tuning with and testing on the target
apartment.

TABLE VI
PREDICTION ACCURACY OF NEXT SENSOR EVENT AND TIME CLUSTER

Apt. ID Top Mean Accuracy in Stability (Number of Events)
Test 1 Test 2 Test 3

1 80.92% (160000) 81.26% (160000) 80.02% (160000)
2 80.99% (80000) 80.39% (80000) 80.67% (80000)
3 79.94% (10000) 80.37% (10000) –
4 73.97% (100000) 73.78% (100000) 73.17% (40000)
5 77.78% (180000) 77.52% (180000) 77.43% (180000)

C. Summary and Discussion

For our set of apartments, transfer learning has been shown
to work successfully up to a certain number of events. For a
low number of events in the training dataset, up to about 4000
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events, transfer learning leads to higher prediction accuracy
than when each apartment is modelled individually. This
means that when a new apartment is added to the study,
the prediction algorithm can work well straight away, and
attain a relatively good accuracy (70-80%) from the first day.
However, for larger training datasets, the prediction accuracy is
approximately the same. In fact, in most cases is it marginally
higher when each apartment is modelled individually.

An interesting observation is that different prediction accu-
racies are attained in the five apartments. This could be due to
the amount of data available in each apartment. In Table IV
we notice the average number of events per day is roughly
640, 434, 248, 397, 740 for apartments 1 to 5, respectively.
This indicates that the degree of activity varies significantly
and/or that some of the residents are more active when in the
apartment (e.g. apartments 1 and 5) than others. Alternatively,
the residents with the low number of events per day might
be absent from the apartments for longer periods, however,
this does not seem to be the case when inspecting the data.
Nonetheless, the average number of events per day does not
seem to have a direct influence on the achieved prediction
accuracy. For instance, relatively high prediction accuracy
(86% and 80%) has been achieved for apartment 3 that
only has 248 events per day, whereas much lower prediction
accuracies (81% and 78%) are achieved in apartment 5 that has
the highest number of events per day (740). Also, comparable
accuracies are attained in apartment 1 (85% and 81%) as to
apartment 3, although there are on average more than twice as
many events per day in the former than in the latter. Hence,
there is no correlation between accuracy and the amount of
data here. One hypothesis for the variability across apartments
can be that the accuracy correlates inversely with the resident’s
degree of impairment. Indeed, the resident in the apartment
that attains the lowest prediction accuracy, apartment 5, was
the one with a noticeable degree of impairment according to
non-expert observations. However, we are not in the position
to quantify the correlation for the remaining residents at the
point of writing.

VII. CONCLUSION AND FUTURE WORK

Sequential sensor events and time of occurrence prediction
algorithms can enable activity recognition and prediction in
smart home environments and be the basis for a number of
support functions in the home. Most of the research work in
the literature has been carried out using data collected in lab
environments and testbeds, typically including a quite large
number of binary sensors (e.g. 50 sensors [1]). We collected
data from five apartments in a community care facility, with
one resident each. Data were collected from about 15 sensors
per apartment over a period of time ranging from 69 to 291
days, depending on the apartment.

We have presented results on sensor event sequence predic-
tion and time of occurrence prediction using transfer learn-
ing between apartments. We use LSTM networks with text-
sequences that indicate the sensor events as inputs. We use two
different ways for transfer learning and compare to the case

when each apartment is modelled individually, i.e. without
transfer learning. In general, the top prediction accuracies
are achieved when each apartment is trained individually.
However, for a small number of events in the target dataset,
pretraining the network with data from four apartments and
fine-tuning with data from the target apartment resulted in the
best accuracy. This confirms the usefulness of transfer learning
when a limited amount of data is available for the target model.

We attain a top accuracy of 87% when predicting the next
sensor event, which is higher than what has been achieved
previously (80% [26]). In addition, we predict both the next
sensor event and the mean time elapsed to the next event with
an accuracy of 81%. There is a 10% variability in the attained
accuracy across apartments. The correlation of the variability
between apartments with possible cognitive impairment, as
well as other causes, will be further investigated in future work
when the remaining apartments will also be included. Better
accuracy is required for the algorithms to be applicable in real
homes. In future work we will aim at carrying out activity
recognition using the binary sensor events. Our hypothesis is
that clustering sensors in activities and predicting these may
improve the prediction accuracy.
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ABSTRACT
We present a comprehensive study of state-of-the-art algorithms for the prediction of sensor events and
activities of daily living in smart homes. Data have been collected from eight smart homes with real users
and 13-17 binary sensors each – including motion, magnetic, and power sensors. We apply two probabilistic
methods, namely Sequence Prediction via Enhanced Episode Discovery and Active LeZi, as well as Long
Short-Term Memory Recurrent Neural Network, in order to predict the next sensor event in a sequence.
We compare these with respect to the required number of preceding sensor events to predict the next, the
necessary amount of data to achieve good accuracy and convergence, as well as varying the number of
sensors in the dataset. The best-performing method is further improved by including information on the time
of occurrence to predict the next sensor event only, and in addition to predict both the next sensor event and
the mean time of occurrence in the same model. Subsequently, we apply transfer learning across apartments
to investigate its applicability, advantages, and limitations for this setup. Our best implementation achieved
an accuracy of 77-87% for predicting the next sensor event, and an accuracy of 73-83% when predicting
both the next sensor event and the mean time elapsed to the next sensor event. Finally, we investigate the
performance of predicting daily living activities derived from the sensor events. We can predict activities
with an accuracy of 61-90%, depending on the apartment.

INDEX TERMS Binary sensor, probabilistic method, recurrent neural network, sequence and time
prediction, transfer learning.

I. INTRODUCTION

ACTIVITY recognition and prediction are a prerequisite
for the realisation of intelligent support functions in

smart homes, including functions that support older adults
with mild cognitive impairment or dementia (MCI/D) live
a safe and independent life at home. MCI/D is a cognitive
decline that can affect attention, concentration, memory,
comprehension, reasoning, and problem solving [1]. A fair
amount of research on smart home functions has aimed at
assisting older adults with MCI/D in their everyday life [2].
Examples are prompting with reminders or encouragement
[3], [4], diagnosis tools [5], [6], as well as prediction, antici-
pation, and prevention of hazardous situations [7], [8].

A number of algorithms for activity recognition and pre-
diction have been reported in the literature. However, most

of the work in the literature uses data collected in the lab
or in testbeds based on scripted activities. In addition, there
is no comparative study investigating state-of-the-art algo-
rithms applied to data collected from real homes, different
configurations for input of data, limitations, and suitable
applications. This is the focus of this work, where we use
data collected from real homes, analyze, and compare the
performance of state-of-the-art prediction algorithms. The
work has been carried out in an interdisciplinary project,
the Assisted Living Project (ALP), that involves experts in
health, technology, and ethics [9]. The aim of the project is
to develop assisted living technology (ALT) to support older
adults with MCI/D live a safe and independent life at home.

In this paper, we start our analysis by comparing the
performance of state-of-the-art prediction algorithms – prob-

VOLUME 4, 2016 1117



Flávia D. Casagrande et al.: Predicting Sensor Events, Activities, and Time of Occurrence Using Binary Sensor Data

abilistic methods and neural networks – for the prediction
of the next sensor event based on previous sensor events.
Their performance is assessed with regard to a number of
factors: the required number of preceding events to predict
the next event from (which we refer to as “memory length”),
the necessary amount of data to achieve good accuracy and
convergence, and the number of sensors in the dataset. The
best-performing algorithm is further improved by including
the time of occurrence information in several ways. Part of
this work has been previously published [10]–[13], however,
using data from one apartment only. We have also examined
the prediction accuracy across some of the apartments and the
performance when using transfer learning [14]. In the current
paper, we expand the analysis to include all eight apartments
in the field trial in order to analyze the variability of the
prediction accuracy across residents. In addition, we analyze
the feasibility of extracting daily living activities from the
sensor events and predicting the next activity rather than the
next sensor, as well as its time of occurrence.

The paper is organized as follows. Section II gives an
overview of algorithms used for sequential sensor event
and activity prediction in the literature, of work related to
prediction of the time of occurrence, and of transfer learning.
Section III presents our field trial, the sensor system in the
apartments, and the format of the collected data. Section IV
describes the prediction methods, followed by the description
of data preprocessing in Section V. Sections VI, VII, and
VIII present the results and discussion for the prediction
of the next sensor event and its mean time of occurrence,
transfer learning, and activity prediction, respectively. These
are illustrated in Fig. 1, for better understanding. Finally, in
Section IX, we discuss our findings and conclude the paper.

II. RELATED WORK
Activity prediction includes mainly two tasks: sequence pre-
diction and time prediction. Such algorithms can for instance
lead to an improved operation of automation functions (e.g.
adjust the temperature sufficient time prior to the person
waking up); enable the realization of prompting systems (e.g.
prompt the resident if the predicted activity has not been
performed) [15]; or identify changes and anomalies in certain
behaviour patterns (e.g. movement, everyday habits, etc.) and
thus indicate the onset or the progress of a condition [16].

A number of algorithms for sequence prediction have been
studied in the past years [17]. These algorithms usually train
a model based on a sequence of symbols to predict the next
symbol. The Active LeZi (ALZ) is a probabilistic method that
has been extensively employed for prediction of sequential
data [18]. It achieved a peak accuracy of 47% when applied
on the Mavlab testbed dataset, that includes 50 binary sen-
sors [18]. The Sequence Prediction via Enhanced Episode
Discovery (SPEED) algorithm has been implemented based
on ALZ [19]. SPEED was applied on the Mavlab dataset
and reached an accuracy of 88.3% when the same dataset
was used both for training and for testing. Both algorithms
convert the data of binary sensors to a sequence of letters and

build a tree based on the observed patterns and corresponding
frequency of occurrence. Neural networks have also been
used for sensor event prediction with notable performance,
typically recurrent neural networks (RNN) [11], [20]–[22].
Three RNN models – Echo State Network (ESN), Back Prop-
agation Through Time (BPTT), and Real Time Recurrent
Learning (RTRL) – were applied on a fourteen-day dataset
with only six binary sensors (four motion and two magnetic).
The ESN performed better with a root square mean error
(RMSE) of 0.06 [20]. In these networks, the number of input
and output values corresponded to the number of sensors in
the dataset, and each assumed value “0” or “1” for being
“off” or “on” at a certain time slot. The prediction in this
case was computed for the next six hours. A similar study
was carried out for a 16-room office environment [21]. The
dataset in this case was collected through an app installed on
the personal data assistant (PDA) of participating employees
that had to register manually whenever they entered/left a
certain room. An Elman network and a multilayer perceptron
network were applied to predict the next room a person
would go to. There were four participants in the study and
the Elman network attained the best results, ranging from
70% to 91% accuracy, depending on the user. Each room
was codified in four bits, as there were 16 rooms in total.
The input corresponded to two rooms and the output to the
predicted next room. This work also applied other methods –
Bayesian network, state prediction, and Markov predictor –
where comparable results were achieved [22].

In addition to sequence prediction, these algorithms should
also be able to predict when the next symbol (representing
either a sensor or an activity) will occur. The time series
methods Autoregressive Moving Average (ARMA) and Au-
toregressive Integrated Moving Average (ARIMA) have been
extensively applied in the literature [23]. Nevertheless, they
assume the time series to be linear, which is not applicable
to activities in a home [24]. Rule-based algorithms have
been developed for time forecasting as well [15], [25]. They
are quite useful, however they do not account for more
complex activities. Non-linear time series models would be
more suitable to time prediction in smart homes, e.g. artifi-
cial neural networks. A Non-linear Autoregressive Network
(NARX) was compared to an Elman network to predict a
sensor activation’s start and end time [26]. In this study, each
sensor had its own network trained and tested on a twenty-
day dataset with six binary sensors. The NARX performed
better, with a RMSE ranging from 0.06 to 0.09, depending
on the sensor. Decision trees have been used to predict the
time a certain activity would happen [24]. This method relies
on several features extracted from sensor events sequences.
It was applied on a dataset with 51 both binary and sam-
pling sensors and achieved an average normalized RMSE of
0.01. Bayesian networks have been used to predict the next
location, time of day, and day of the week a person would
execute an activity [27]. This algorithm was employed in two
apartments with about 30 binary sensors each, where the next
location was predicted with 47% and 61%. Poisson process
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FIGURE 1. Content of results and discussion sections in the paper.

has also been applied to predict the time an observed activity
would occur [28]. An RMSE of 3.9431 seconds was achieved
in this work.

Taking into account that each individual has their unique
habits, and smart homes may have different layouts and
limitations for deployment of sensors, it is important that
the prediction algorithm is able to adapt to each home and
resident. Transfer learning can reveal whether the algorithm
can adapt. This technique consists of training and learning
parameters from a source dataset that is different yet related
to a target dataset (e.g. different labels and data distributions
[29]). Transfer learning has been used in several fields,
e.g. image and language classification, computer networks,
automated planning, mathematical problems, and activity
recognition [29], [30]. This method has proved to provide
many advantages. For instance, it allows that datasets with
different feature spaces can transfer the knowledge between
each other [31], [32]. In addition, transfer learning can
dramatically decrease the required amount of data in the
target dataset, as proved for a mortality prediction algorithm
[33] and for activity recognition [32], [34]. Besides, it can
be applied in combination with several algorithms: RNNs
[35], Hidden Markov Models [36], statistical inference [33],
support vector machine [34]. In smart homes, a cross-domain
activity recognition algorithm combined with transfer learn-
ing and a similarity function between different activities was
proposed [34]. In that work, three different datasets were
used, where one was collected over 28 days from a real
home of a 26-year-old man. A peak accuracy of 65% was
achieved with seven activities. Another work transferred the
knowledge of activities from multiple physical source spaces
to a different target physical space [32]. The authors propose
an algorithm that maps automatically activities from source
to target environment and classifies the activity based on
a weighted majority vote method. The data contained 5 to
11 activities, and were collected from six testbeds where
volunteers lived for 2-3 months. A peak accuracy of about

80% was reported. Hidden Markov Models and transfer
learning have also been combined and used across three
apartments with five recorded activities and achieved a F1-
score of 0.65 in the best case [37]. Transfer learning has its
limitations. It has been shown that it can either improve or
degrade the prediction accuracy of models depending on the
dataset used for transfer, which is known as negative learning
[29]. In these cases, it is important to detect which is the
best source dataset to a problem, for example using Dynamic
Time Warping to measure inter-dataset similarities [38].

Most datasets in the cited works were collected through
scripted activities primarily in lab environments, whereas our
dataset has been collected in real homes. It contains events
from 13-17 binary sensors, i.e. twice as many as used in [20],
[26], and less than one third of the number of sensors used in
the Mavlab testbed [18]. The number of sensors is compara-
ble to the work in [22] (16 rooms), however in that study the
events were inserted by each user in their PDA rather than
being generated using sensors, which may lead to a dataset
with less artifacts. To our knowledge, no previous work has
carried out a comparison of the performance of state-of-the-
art sequence prediction algorithms, moreover applied to real
data, nor have LSTM networks been previously used for the
prediction of sequential sensor events, including the use of
transfer learning. In addition, we predict both the next sensor
and the mean elapsed time of occurrence within the same
model. From the works cited above, [27] is the closest to
ours in the sense that it predicts both the next event and its
time information in the same model. That work predicts the
next location, time of day (slots of 3 hours through the day),
and day of the week using a Bayesian network with reported
accuracy of 46-60%, 66-87% and 89-97%. Subsequently, the
activity is predicted with an accuracy of 61-64% based on
a combination of these features. The authors use data from
testbeds collected over 6 and 4 months, and take into account
10 locations and 11 activities. Our work predicts the next
sensor event and the time of occurrence for a set with about
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15 sensors with better overall accuracy. In addition, activities
are predicted with considerably higher accuracy.

III. FIELD TRIAL
Our field trial includes eight residents over 70 years old in a
community care facility. The apartments have similar layouts
– comprising a bedroom, a living room, an open kitchen area,
a bathroom, and an entrance hall (Fig. 2). The purpose of the
trial and the sensor system to be deployed have been decided
upon in close collaboration with the residents [9]. A minimal
number of binary sensors was installed in the apartments to
minimize surveillance of the residents and comply with the
technical and economical constraints imposed by the project.
The set of sensors has been chosen so that it can potentially
identify daily activities and possibly enable the realization of
useful functions for older adults with MCI/D as these were
indicated at dialogue cafés with the users [9]. Hence, our
set of sensors contains motion, magnetic, and power sensors.
These generate events that are able to indicate occupancy
patterns (movement around the apartment), daily activities
– kitchen related activities, dressing, being in bed –, and
leisure activities – reading, watching TV, listening to radio.
Motion sensors (Pyroelectric/Passive Infrared – PIR) detect
motion through the change of the infrared radiation in its
field of view. It generates an event with message “1” every
time a motion is detected, otherwise it sends no event. In our
dataset, we had to insert the “off” events (“0” message) so
that the data are consistent for all sensors. Magnetic sensors
indicate whether doors, windows, and drawers are open or
closed, by generating events with messages “1” and “0”,
respectively. Power sensors measure the electricity usage of
a certain appliance, and can therefore indicate whether it is
turned on or off, and generate events with messages “1” and
“0”, respectively.

Not all apartments could have the exact same set of sensors
due to physical limitations (e.g. fridge door with too big
gap to enable the use of a magnetic sensor) and/or different
equipment (e.g. some residents have a coffee machine, others
have a kettle). However, all the participants had the same
initial proposal of set of sensors, as shown in Fig. 2. The eight
apartments that provided data to this work have installed all
the motion sensors, while the rest of the sensors vary between
apartments, as summarized in Table 1.

The sensors are connected wirelessly through Z-Wave and
xComfort protocols to a Raspberry Pi 3, which transfers
the data for storage in a secure server. The data comprise
timestamp (date and time with precision of seconds), sensor
ID, and sensor message (binary). Table 2 shows a sample of
the data collected.

IV. PREDICTION METHODS
This section describes the prediction methods applied in
this work, probabilistic methods – Active LeZi (ALZ)
and Sequence Prediction via Enhanced Episode Discovery
(SPEED) – and recurrent neural network (RNN) with long
short-term memory (LSTM). The probabilistic methods con-

FIGURE 2. Proposed sensors system for field trial apartments.

TABLE 1. Set of Sensors in each Apartment (complementing the standard set
of motion sensors)

Apt. ID Sensors
1 Pa: night stand lamp, coffee machine, living room/reading lamp,

TV; Mb: cupboard/drawer, entrance door
2 Pa: night stand lamp, coffee machine, living room/reading lamp,

microwave, TV; Mb: fridge, entrance door
3 Pa: kettle, living room/reading lamp, microwave, toaster; Mb:

fridge, cupboard/drawer, entrance door
4 Pa: night stand lamp, coffee machine, living room/reading lamp,

TV; Mb: fridge, entrance door
5 Pa: kettle, TV; Mb: fridge, cupboard/drawer, entrance door
6 Pa: night stand lamp, coffee machine, kettle, living room/reading

lamp, TV, microwave
7 Pa: night stand lamp, coffee machine, kettle, living room/reading

lamp, TV; Mb: wardrobe, cupboard/drawer, entrance door
8 Pa: night stand lamp, TV; Mb: wardrobe, entrance door
aPower and bmagnetic sensors.

vert the data acquired from the sensors into a sequence of
letters and identify sequence patterns. The patterns and their
frequency of occurrence are used to generate a tree, which is
then used to calculate the next most probable event to occur.
This last step is performed by the Prediction Partial Matching
algorithm (PPM) [39], [40]. The same converted data is used

TABLE 2. Sample of Binary Sensors Data

Timestamp Sensor ID Sensor message
01.09.2017 07:58:05 2 1
01.09.2017 08:00:14 12 1
01.09.2017 08:01:01 4 1
01.09.2017 08:02:56 5 1
01.09.2017 08:03:05 12 0
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TABLE 3. Actions scenario

Action performed Activated sensor
Wake up PIR bedroom (on)
Go to living room PIR living room (on)
Turn on TV Power TV (on)
Go to kitchen PIR kitchen (on)
Turn on coffee machine Power coffee machine (on)
Go to living room and watch TV while
coffee is being made

PIR living room (on)

Go to kitchen PIR kitchen (on)
Turn off coffee machine Power coffee machine (off)
Go to living room PIR living room (on)

TABLE 4. Assignment of letters to sensors

Sensor Letter
PIR bedroom a/A
PIR living room b/B
Power TV c/C
PIR kitchen d/D
Power coffee machine e/E

as input for the LSTM networks that are configured as text
generation networks in this case.

Table 3 presents a possible scenario in our smart home
with actions performed by the resident and the corresponding
sensors triggered. As dictated by ALZ and SPEED, each
sensor is assigned with a letter, as shown in Table 4.

A. ACTIVE LEZI
ALZ is a sequence prediction algorithm based on a text
compression algorithm [18]. The input in ALZ consists of a
sequence of lower-case letters, where each letter represents
event from one sensor. For example, the sequence corre-
sponding to the scenario described in Table 3 would be
“abcdebdb”. ALZ uses the procedure dictated by the LZ78
text compression algorithm to generate patterns that occur in
a sequence and create a tree with these and their frequencies
[41].

A given sequence x1, x2, . . . , xi is parsed into ni subse-
quences w1, w2, . . . , wni such that for all j > 0 the prefix of
the subsequence wj is equal to some wi for 1 < i < j. For
example, if we have the sequence “abcdebdb”, the patterns
found by LZ78 would be “a”, “b”, “c”, “d”, “e”, “bd”. In
addition, ALZ generates more patterns from their suffixes, if
possible. For example, “bd” would also generate “d”. This
accounts for patterns that were not perceived by the LZ78
algorithm and that are possibilities in a smart home environ-
ment. This increases the convergence rate of the model [18].

When the sequence is parsed completely and the patterns
are derived from it, their frequency of occurrence is counted.
An order-k-1 Markov tree is then constructed based on the
patterns and their frequencies, where k corresponds to the
longest pattern found in a training sequence. Then PPM is
used to calculate the next most probable event. The generated
tree for the example scenario with sequence “abcdebdb” is
shown in Fig. 3.

FIGURE 3. Tree generated by the ALZ algorithm for the sequence
“abcdebdb”.

B. SEQUENCE PREDICTION VIA ENHANCED EPISODE
DISCOVERY
SPEED is also a sequence prediction algorithm that is based
on the occurrence of frequent patterns in home environments
[19]. SPEED builds on the same procedure of ALZ, however,
it introduces a different method for finding patterns in the se-
quence. SPEED defines an episode as the sequence between
an initial and ending point of an activity. For example, the
moment a coffee machine is turned “on” is the initial point of
a coffee making episode, which lasts until the coffee machine
is turned “off”. An “off” event cannot happen unless an “on”
event has preceded it. Therefore “off” events always happen
after an “on” event of the same activity (or sensor), and vice-
versa.

The data received from the sensors in the smart home
are represented as a sequence of letters, where upper-case
letters represent a sensor’s “on” event and lower-case letters
represent a sensor’s “off” event. The sequence represent-
ing the example scenario presented in Table 3 would be
“AaBCbDEdBbDedB”.

The main idea of the SPEED algorithm is to extract
episodes from a sequence of data and derive patterns from
them. These patterns are used to generate a decision tree that
keeps track of the learned episodes and their frequencies. The
height of the tree is the length of the longest episode found
in the sequence, defined as the maximum episode length.
For every event in a sequence, the algorithm searches for its
opposite event in the window and if it exists, an episode was
found. In the previous sequence, the first episode found is
“Aa”, the patterns generated from it would be “A”, “a” and
“Aa”. We keep track of these and count their occurrences
to generate an order-k-1 Markov model, where k is the
maximum episode length. A tree for the example sequence
is presented in Fig. 4. Finally, the PPM algorithm is used for
prediction.

C. PREDICTION PARTIAL MATCHING ALGORITHM
The PPM algorithm calculates the probability distribution of
each possible event based on a given sequence by taking
into consideration the different order Markov models with
different weights [39], [40]. The weights are given by the
escape probability, which allows the model to go from a
higher-order to a lower one. The advantage of PPM is that
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FIGURE 4. Tree generated by the SPEED algorithm for the sequence “AaBCbDEdBbDedB”.

it assigns a greater weight to the probability calculated in
higher-order models if the symbol being predicted is actually
found in the tree [18]. The predicted symbol is the one with
the highest probability.

ALZ and SPEED use slightly different strategies of PPM.
ALZ uses the exclusion strategy, which means the prediction
is performed with the suffixes of the given sequence, except
the sequence itself. Therefore, in the case of the sequence
“bd”, the patterns used to calculate the probability of each
letter being the next would be “b” and the null context.
Suppose we want to calculate the probability of having a
“c” after “bd” using ALZ, based on the tree in Fig. 3. The
probability would be given by (1): in an order-2 model, the
probability of having a “c” after a “b” is 0/3 and we escape
to the order-1 with 2/3 probability. In order 1, the probability
of having a “c” after a null context is 1/9.

In the case of SPEED, the patterns used for calculating
probabilities after a certain sequence would be all the suf-
fixes, including the sequence itself. Suppose we have the
sequence “dB”. We would use patterns “dB”, “d” and the null
context. The probability of having a “b” after this sequence
based on the tree in Fig. 4, would be given by (2): we start
in order 2 model, where the probability of having a “b” after
“dB” is 1/2 and escape to the lower order with probability
1/2. In order-1, the probability of having a “b” after “d” is
0/4 and we escape to the lower order with probability 2/4.
Finally, in the lowest order, the probability of “b” after a null
context is 4/22.

p(c, bd) =
0

3
+

2

3

(
1

9

)
= 0.074 (1)

p(b, dB) =
1

2
+

1

2

(
0

4
+

2

4

(
4

22

))
= 0.545 (2)

D. LONG SHORT-TERM MEMORY NETWORK
RNN [42] is a neural network that has the property of keeping
an internal memory, and has therefore been widely applied to
inputs that are sequential in time [43], [44]. The LSTM [45] is

a type of RNN designed to be better at storing and accessing
information than the standard RNN.

We employ an LSTM network configured as a text gener-
ation network. The number of inputs is a certain number of
sensor events – equal to the memory length – and the output
is the predicted next event in the sequence (Fig. 5). The input
and output are one-hot encoded. In the one-hot encoding
representation, each symbol is represented by a vector of
bits of length equal to the number of symbols in a sequence.
All values are zero, except for the one corresponding to that
symbol (Fig. 5).

A stateless LSTM network model was implemented in
Python 3 using Keras open source library for neural net-
works. A number of parameters were tuned in order to find
the optimal values. The model has one hidden layer with
hyperbolic tangent activation and 64 neurons. Our batch size
(i.e. number of samples used for training each iteration of the
epoch) was 512. We used Adam as the optimization function
with learning rate of 0.01 and categorical cross-entropy as
loss function. The output layer was a softmax activation func-
tion. We used the early stopping method and dropout rate of
50% to avoid overfitting, allowing a maximum of 200 epochs
for each model’s training. In addition, during the training
process we use weights for each sensor to balance the number
of samples for each sensor. These are computed using the
“compute_class_weight” function of the Scikit-learn
open source library. The weight corresponds to the total
number of samples divided by the number of occurrences of
the class.

V. DATA PREPROCESSING
A. SENSORS MAPPING
As described in Section III, some power and magnetic sen-
sors differ within the eight apartments (Table 1). In the tests
where we compare the prediction accuracy and transfer the
learning across the apartments, we re-label the sensors that
refer to the same activity. The new labels and the sensors
assigned to these are shown in Table 5. Lamp power sensors
and wardrobe door magnetic sensors’ events were removed
from the datasets since we did not manage to assign them to
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FIGURE 5. LSTM network configuration.

TABLE 5. Re-labeling of Sensors

New labels Sensors
Kitchen sensor Pa: toaster, microwave; Mb: fridge, cupboard/drawer

Beverage sensor Pa: coffee machine, kettle
aPower and bmagnetic sensors.

an activity that was common for most of the apartments.

B. DATA CORRECTION
Data acquired from binary sensors often contain faulty events
e.g. erroneous activation of motion sensors by sunlight and
switch-off delays of motion sensors [46]. Such noise can
significantly affect the performance of the models. Hence, we
have carried out a data correction preprocessing as follows.
Occasionally the motion sensors do not send an activation
event when they should. We therefore insert missing events
to correct the data. For example, it is not possible to go to the
bedroom directly from the kitchen without passing through
the living room. When the living room activation event is
missing, it is inserted. If there are two possible sensor events
(e.g. two possible paths in the apartment), the choice of the
inserted sensor event is done such that the final percentage
distribution of the two options remains as observed in the
original data. The time of the inserted event is the mean
between that of the previous and of the next event. This does
not compromise the data accuracy because the faulty events
usually take place between relatively fast motions around the
apartment, which means that the elapsed time between the
events is quite short.

C. DATA CONVERSION
The corrected data are subsequently converted to both ALZ-
and SPEED-text sequences, as explained in Section IV. The
time inclusion was performed as follows. In all cases the
generated sensor events are treated as independent events. In
the case of the one-hot encoding for the LSTM, our input
vector has as many values as the number of symbols in the
sequence. For 15 sensors, we have 30 inputs to represent the
“on” and “off” states of each of these.

1) Sensor Event and Period of Day.
In this case, we distinguish between four periods of the day:
morning (from 7am to noon), afternoon (from noon to 6pm),
evening (from 6pm to 10pm), and night (from 10pm to 7am).

This is indicated by a number between 0 and 3 that is added
to the letter that represents the event. For instance, an event of
the motion sensor in the bedroom going “on” in the morning
would generate the symbol “A0”. E.g. when the time of day
is taken into account, the number of inputs to the LSTM is
multiplied by 4 (120 inputs in total) and similarly in the other
cases. These are treated as independent events.

2) Sensor Event with Time Elapsed to the Next Event

When predicting the next sensor event only, we use together
with the sensor’s letter a number that indicates the time
elapsed to the next event. We define a set of 4-class time
intervals: [< 1min, 1-15min, 15min-1h, > 1h]. Hence,
we assign numbers 0-3 to the event. For example, if the
motion in the bedroom (assigned letter a/A) were activated
in the morning and 10 minutes later the person went to the
bathroom, the generated symbol would be “A1”.

3) Sensor and K-means Time-Cluster with Hour of the Day
and Elapsed Time to the Next Event

We apply an unsupervised learning method to cluster the
sensor samples, where the K-means algorithm clusters each
sensor event according to the hour of the day it has occurred
and the time elapsed to the following sensor event. In the K-
means algorithm, the samples of each sensor are classified
into K clusters such that the sum of square distances (SSD)
within the clusters is minimized [47]. Each cluster contains
a centroid, given by the mean value of each feature of the
algorithm. We perform K-means for a number of clusters (K)
between 1 and 8 and choose the best K manually according
to the elbow method [48]. This method consists of plotting an
SSD vs. K graph and choosing the K that resembles an “el-
bow” (the point of inflection on the curve), which is the best
fit for that problem. Fig. 6 shows an example of clustering
the samples of the motion sensor in the kitchen. This sensor
results in four clusters (represented by the different colors) –
chosen by the elbow method based on Fig. 7. Suppose this
sensor is represented by letter B, has had an “on” event at
noon (blue cluster), and the next sensor event took place 3
minutes later. This would generate “B2” (where 2 represents
the blue cluster).
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FIGURE 6. K-means clustering of samples of motion sensor events in the
kitchen.

FIGURE 7. SSD vs. number of clusters for motion sensor events in the
kitchen.

VI. PREDICTION OF THE NEXT SENSOR AND TIME OF
OCCURRENCE

Table 6 shows the number of sensor events in the dataset of
each apartment and the number of days it has been collected.
This section is organized as follows. We first explain the
training and testing procedure for all methods. Subsequently,
we perform tests for (i) predicting the next sensor event
based on past sensor events, (ii) predicting the next sensor
event based on past sensor events and time of occurrence
information, and (iii) predicting both sensor event and time
of occurrence information based on input including these. In
(i) the performance of the four algorithms is tested against
a number of factors: the memory length, the amount of data
required for good accuracy, and the number of sensors in the
dataset. The best-performing algorithm is then further devel-
oped for tests (ii) and (iii), where we compare the methods
and analyze the accuracy variability across apartments.

TABLE 6. Number of Events per Apartment

Apt. ID Number of Events Number of Days
1 219921 358
2 137396 311
3 37108 163
4 147618 385
5 189468 260
6 19766 96
7 28129 75
8 21949 75

A. TRAINING AND TESTING CONFIGURATION

In the SPEED algorithm, the next event is predicted based on
the last sequence of events with length equal to the maximum
episode length [19]. In the work in [19], the authors use the
same dataset for both training and testing, which may lead
to overfitting and, in addition, may not lead to a generalized
model that can be used on other datasets.

We have modified the testing procedure for both ALZ and
SPEED by calculating the optimal number of last events to
base the prediction on, i.e. the number of events that leads
to the maximum overall prediction accuracy, which we refer
to as the optimal memory length. Memory lengths up to the
maximum pattern found have been considered. In a previous
paper [12], we applied the SPEED method on our data that
were obtained from one of the apartments reported over a
period of two weeks. When using the same procedure as in
[19], we achieved an accuracy of 82% – compared to 88%
on the Mavlab dataset. When splitting the data into training
(60%), validation (20%), and testing (20%), and optimizing
the memory length as described above, we achieved an
accuracy of 75% on our data obtained from a real home over
two weeks. Similarly for ALZ we obtained 73% (compared
to 47% in [18]) when using the same dataset for training and
testing, and 53% when using separate datasets for training,
validation and testing, and optimizing the memory length as
described above. Hence, we use this modified method for
SPEED and ALZ in the following sections.

In the case of SPEED and ALZ, the training set is used to
build the tree, the validation set is used to find the optimal
memory length, and the testing set is used to compute the
model’s accuracy. In the LSTM networks, the training set is
used to train the network, the validation set is used for tuning
the parameters and the testing set to calculate the accuracy.
All models were trained based on a certain number of events,
validated on 3000 random events, and tested on 3000 random
events. This process is repeated three times and the accuracy
values in the graph correspond to the mean accuracy. The
fact that the testing set is always random produces some
instability in the accuracy when the model is trained with
little data, which is evidenced by the instability shown in the
lower range in some of the graphs.

B. PREDICTION OF THE NEXT SENSOR EVENT BASED
ON PAST EVENTS
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1) Choice of Memory Length
We examine the accuracy achieved on the validation set for
values of memory length ranging from 1 to 30 events. This
is performed first for the dataset of apartment 1 that contains
events from fifteen sensors (including magnetic, power and
motion sensors) – Fig. 8 – and then for the dataset containing
only the seven motion sensors – Fig. 9.

FIGURE 8. Accuracy vs. memory length for all algorithms on a dataset with all
fifteen sensors.

FIGURE 9. Accuracy vs. memory length for all algorithms on a dataset with
seven motion sensors.

When using the dataset with fifteen sensors (Fig. 9), ALZ
achieved a best accuracy of 69.15% while SPEED reached
79.87%. The optimal memory length was four events for
ALZ and three for SPEED. The LSTM networks achieved
accuracies of 72.02% and 84.12% when using ALZ- and
SPEED-text, respectively. In both cases the optimal memory
length is equal or larger than eight. The larger optimal mem-
ory length for LSTM indicates that these are very efficient at
detecting patterns and correlations over a longer sequence, in
opposition to probabilistic methods.

It is also interesting to notice how the accuracy is affected
by memory lengths larger than the optimal. The accuracy of
the probabilistic methods drops substantially as the memory
length gets larger. In contrast, the LSTM networks roughly
stabilize at the peak accuracy for larger memory length values

than the optimal. A reason for this is that probabilistic meth-
ods are based on certain patterns happening quite frequently.
Since our dataset has few sensors, short patterns are more
likely to happen more often, and therefore they provide better
predictions. The LSTM, on the other hand, has the ability
to find patterns in long sequences and can therefore predict
the next event based on many past events and longer term
patterns and dependencies. Increasing the memory length
further does not improve the accuracy, however, which can
imply that the model has reached its best performance for
this configuration.

Subsequently, we compare the accuracy results of the
dataset with fifteen sensors (Fig. 8) to the accuracy results
for the dataset that contains only the seven motion sensors
(Fig. 9). The accuracy curves for the LSTM network models
show a similar dependency to memory length. The optimal
memory length is eight or larger. The LSTM with SPEED-
text achieves 86.64% while with ALZ-text achieves 74.00%.
The ALZ method also shows similar behaviour, and the
same optimal memory length of four, with a peak accuracy
of 71.45%. SPEED presents a very peculiar behaviour. The
maximum memory length is two. This is a consequence of
the fact that SPEED builds the tree based on episodes, and
the longest episode in this case is two events. For example,
if the resident would go from the bedroom to the living room
and then to the kitchen, the resulting sequence would be
“AaBbCc”. There are no intertwined events, since when one
motion sensor activates, another deactivates. Hence, the “off”
events are easily predicted. When it comes to “on” events, the
sensor that is most frequently activated will always be the one
predicted to activate next, leading to lower accuracy for the
“on” events.

2) Accuracy per Training Set Size
In the following, we investigate the behavior of the accuracy
with respect to the size of the training dataset. The accuracy
results are computed using the optimal memory length found
in the previous analysis. Fig. 10 and 11 show the results
when the algorithms are applied to the dataset with all fifteen
sensors and with seven sensors, respectively. Since there is no
significant improvement in the accuracy for larger datasets,
we show the plots for training dataset sizes up to 30000
events for better clarity on the low range of the graph.

We first examine the accuracy in the dataset with all
sensors (Fig. 10). A peak accuracy of 83.26% was achieved
by LSTM with SPEED-text, while the SPEED algorithm
achieved a peak accuracy of 80.65%. The accuracy achieved
by the LSTM with ALZ-text was considerably lower at
70.43%. In this case, stability is achieved much later than
with the other methods. Finally, the ALZ method reached a
peak accuracy of 68.00%. Note that the probabilistic methods
attain a good accuracy (close to their peak accuracy) with
only 1000 events in the training set. By comparison, the
LSTM with ALZ- and SPEED-text require 7500 and 4000,
respectively.

Next we examine the accuracy results for the dataset using
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FIGURE 10. Accuracy vs. size of training set for all algorithms on the dataset of apartment 1 with all sensors (15).

FIGURE 11. Accuracy vs. size of training set for all algorithms on the dataset of apartment 1 with seven motion sensors.

only the seven motion sensors (Fig. 11). As seen in the
previous analysis, the top accuracy is higher since there are
fewer sensors in this set. Moreover, motion sensor events
happen sequentially, without intertwined events. Hence “off”
events can be predicted more easily. The LSTM with SPEED-
text achieved an accuracy of 87.21%, by far the best among
the methods. The stability was achieved with about 4000
events. Stability is reached with a similar amount of data
compared with the case in Fig. 10. The LSTM with ALZ-text
and the ALZ achieved very similar accuracies of 73.24%, and
72.32% respectively. The SPEED method, however, achieved
a poor accuracy in this case. This is due to the short memory
length and lack of intertwined events, as discussed when
presenting Fig. 9. Also here, it is confirmed that probabilistic
methods require a rather small amount of data to achieve a
considerable accuracy, close to the peak accuracy that can be
reached by these methods.

3) Prediction Variability across Apartments
In the following, we apply the two prediction methods with
higher accuracy – LSTM with SPEED-text and SPEED – on
the dataset of each apartment of our field trial. In this case, we
perform the mapping (Section V-A) so that the comparison is
fair. Table 7 presents the obtained results. SPEED achieved
accuracies in the range 74-82% and LSTM with SPEED-text
in the range 75-85%. In all cases, the LSTM had an accuracy
1.5-5% higher than SPEED, with one exception (apartment
4), where the accuracies are about the same. On the other

TABLE 7. Prediction Accuracy of the Next Sensor Event

Apt. ID Top Mean Accuracy (Number of Events for Convergence)
SPEED LSTM with SPEED-text

1 82.24% (2000) 83.66% (5000)
2 77.67% (2000) 79.13% (5000)
3 82.21% (3000) 84.54% (3000)
4 75.01% (2000) 75.42% (4000)
5 76.64% (3000) 79.17% (4000)
6 74.60% (5000) 76.13% (4000)
7 81.78% (7500) 82.20% (3500)
8 79.95% (7500) 84.50% (3000)

hand, in most of the apartments SPEED required less events
for a good accuracy and convergence of the model. We
noticed that apartments 6, 7, and 8 have have not achieved
stability completely yet as the curves keep rising, indicating
that higher accuracy can be achieved. They are indeed the
apartments with less collected data (Table 6).

It is interesting to notice that SPEED presents less vari-
ability across the apartments. This may be due to the fact
that SPEED builds a tree where the predictions will be based
on the patterns that happen more often, and these are in fact
similar to all the apartments since they have similar layouts.
The LSTM network, however, is better able to adapt to the
resident in this case, taking into account also patterns that do
not happen often.
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4) Summary and Discussion
We have compared the performance of two probabilistic
methods – ALZ and SPEED – with LSTM networks using
ALZ-text and SPEED-text in apartment 1. The best accuracy
was achieved by the LSTM network with SPEED-text, 83%
with all the fifteen sensors and 87% with seven motion
sensors.

The probabilistic methods achieved a high prediction ac-
curacy (close to their peak accuracy) with a relatively small
amount of training dataset (about 1000 events). LSTM net-
works required a larger training dataset (about 4000 event
with SPEED-text and 7500 events with ALZ-text) to reach
an accuracy close to the peak. Also, probabilistic methods are
found to base the prediction on a relatively small number of
previous events – an optimal memory length of four for ALZ
and three for SPEED was established. On the other hand,
LSTM networks base the prediction on a sequence of eight
previous events or more. This indicates that such networks
are better at finding longer-term dependencies and patterns in
a sequence of events. In addition, in the LSTM the attained
accuracy is quite stable for memory lengths that are larger
than the optimal. On the other hand, probabilistic methods
have an optimum memory length, hence the accuracy de-
creases both for shorter and for longer memory lengths than
the optimal.

For the dataset containing events from the fifteen sensors,
our best result was achieved by the LSTM network with
SPEED-text (83%). SPEED achieved only 2% lower accu-
racy, however, after considerably longer training time [10].
Hence, in applications where it is an advantage to model
with a small amount of data where in addition execution time
is not too critical, SPEED may be a good choice, since it
can achieve an accuracy close to its peak with little data. In
general, our results have shown that it is possible to achieve
good accuracy with much less data than thought previously.
SPEED and LSTM with SPEED-text achieve better results
than ALZ and LSTM with ALZ-text. This is not surprising
since the conversion of data to SPEED-text sequences con-
tains more information (both “on” and “off” events). This can
also be confirmed by the trees formed by ALZ and SPEED
(Fig. 3 and 4).

For a dataset with no intertwined events though – the case
of our dataset with only the seven motion sensors – the best
choice is the LSTM with SPEED-text. SPEED does not work
well in this case, since the tree has a height of two so that
only “off” events can be predicted reliably.

Another interesting finding is that when applying these
algorithms in different apartments, LSTM with SPEED-text
has shown a larger range of accuracies. This indicates that the
LSTM can adapt better to the different patterns in the home of
each resident than SPEED does. This fact, in addition to the
higher accuracy and the shorter execution time, have shown
that the LSTM network with SPEED-text is the best model
for our smart homes setup. We therefore further develop only
this method in the following analysis.

C. PREDICTION OF THE NEXT SENSOR EVENT BASED
ON PAST EVENTS AND TIME INFORMATION
It is important to observe in the results of the previous section
that having more than 10000 events in the training set did
not improve significantly the results for any of the applied
methods. Hence, a change in the algorithms and/or in the way
the data are input, or additional information, is required to
improve the prediction accuracy. In this section, we include
the time of occurrence information in the input of the LSTM
network with SPEED-text to investigate whether this leads to
an improvement of the prediction accuracy.

1) Comparison of Methods

We predict the next sensor event based on the three proposed
input sequences with time information (Section V-C). Fig. 12
shows the performance of the prediction according to the
amount of data in the training set in apartment 1. We in-
clude the accuracy when using only the previous sensors for
comparison purposes. We achieved an accuracy of 83.26%
when predicting the next sensor event using previous sensor
events as input (i.e. no time information). When we include
the period of the day, the class time intervals, and the K-
means time-cluster in the input, the models achieve 84.07%,
85.05%, and 84.01%, respectively. The small improvement
of 0.8-2% was initially somewhat surprising, as we had
expected that the time information would increase accuracy
significantly. However, on second thoughts, the apartments
are quite small – limiting the number of possible patterns –
and there is a limited number of sensors, and hence a lot of
information (including for example time information about
movements and actions in the home) is not “visible” for the
model. The standard deviation of the LSTM models is about
0.02-0.06%, hence the model is quite stable. A significant
improvement, however, is in the convergence of the model
that occurs with training set sizes of 2500 events, almost
half of the events needed for when no time information is
included.

FIGURE 12. Accuracy of prediction of next sensor event vs. the number of
events in the dataset.
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TABLE 8. Prediction Accuracy of the Next Sensor Event based on Past
Sensor Events and 4-class Time Intervals with LSTM with SPEED-text

Apt. ID Top Mean Accuracy (Number of Events for Stability)
1 86.58% (4000)
2 83.76% (5000)
3 86.38% (5000)
4 79.29% (10000)
5 80.91% (10000)
6 76.63% (5000)
7 82.91% (5000)
8 86.39% (5000)

2) Prediction Variability across Apartments
The input using the 4-class time intervals has shown
marginally better results than the other two methods, and
we therefore apply this method on the other apartments. The
results are shown in Table 8. Including the time has led to
improved accuracy in all the apartments, in a range of 0.5-
4%.

The 10% variability between apartments for the prediction
of the next sensor could be due to the amount of data avail-
able in each apartment. In Table 9, we present the average
number of events per day and the average time spent out
of the apartment per day. This indicates that the degree of
activity varies significantly and/or that some of the residents
are more active when in the apartment (e.g. apartments 1 and
5) than others. Nonetheless, the average number of events
per day does not seem to have a direct influence on the
achieved prediction accuracy. For instance, relatively high
prediction accuracy (86%) has been achieved for apartment
3 that only has 227 events per day, whereas much lower
prediction accuracy (81%) is achieved in apartment 5 that has
the highest number of events per day (729). Also, comparable
accuracy is attained in apartment 1 (87%) as to apartment
3, although there are on average more than twice as many
events per day in the former than in the latter. Hence, there
is no correlation between attained accuracy and the average
number of events per day here. Another hypothesis for the
prediction accuracy variability is the noise originated by dif-
ferent sources in the data for the apartments. For example, the
resident in apartment 6 has often family members visiting.
This noise cannot be measured in our setup at this moment.

Furthermore, the coefficient of variation (standard devia-
tion divided by the mean) in this case is about 0.04, which
is lower than 1 and therefore, a low variance. The different
predictions in this case may simply indicate some people are
more predictable in their patterns around the apartment than
others.

D. PREDICTION OF THE NEXT SENSOR EVENT AND ITS
MEAN TIME OF OCCURRENCE
1) Comparison of Methods
In the following we examine the accuracy of predicting both
the next sensor event and the time of occurrence information.
In this case, only the input sequences of class time intervals
and K-means time-cluster are considered. Lower accuracy is
attained (Fig. 13) than when predicting only the next sensor

TABLE 9. Number of Events per Day and Time Spent Outside the Apartment
for each Resident

Apt. ID Avg Number of Events per Day Avg Time Out of Apt (h)
1 614 1.5
2 442 1.0
3 227 0.6
4 383 3.6
5 729 1.1
6 206 1.75
7 375 1.85
8 293 7.3

TABLE 10. Prediction Accuracy of the Next Sensor Event and Time-cluster
based on Past Sensor Events and Time-cluster with LSTM with SPEED-text

Apt. ID Top Mean Accuracy (Number of Events for Convergence)
1 82.97% (5000)
2 79.36% (10000)
3 80.59% (10000)
4 74.87% (10000)
5 77.67% (10000)
6 72.73% (10000)
7 78.09% (5000)
8 79.21% (5000)

event, as expected, since now more information is being pre-
dicted within the same model. The best accuracy is achieved
by the K-means time-cluster (82.00%), 6% better than the
class time-intervals (76.63%). For both methods, conver-
gence is achieved with about 2000 events in the training
set (Fig. 13). Our hypothesis is that the K-means algorithm
clusters the samples in a more balanced way than the 4-class
intervals, and this leads to a better prediction accuracy.

FIGURE 13. Accuracy of prediction of next sensor event and time information
vs. the number of events in the training dataset.

2) Prediction Variability across Apartments
The K-means time-cluster method attained the highest ac-
curacy when predicting both the next sensor event and time
information, and therefore we apply this on the dataset from
all apartments. The obtained results are shown in Table 10.
The attained accuracy is 3-6% lower than when predicting
the next sensor only (Table 8), as expected.
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VII. TRANSFER LEARNING ACROSS APARTMENTS
In this section, we investigate whether the transfer learning
technique is feasible and beneficial across the apartments in
our field trial. We use transfer learning as follows. We first
train an LSTM network with data from seven source apart-
ments and fine-tune and test with one target apartment. In this
case, the data from the target apartment – that have not been
used in the training – are split to be used in the fine-tuning
of the network (keeping the weights of the best-fit model),
and in the testing (3000 events). We compute the accuracy
of predicting the next sensor event only based on input about
previous sensor events, as well as time information using 4-
class time of occurrence intervals (Fig. 14). In Fig. 15, we
present the obtained accuracy when predicting both the next
sensor event and the time-cluster based on inputs about both
these.

FIGURE 14. Accuracy of prediction of the next sensor vs. number of events
used for fine-tuning, using as input both sensor event and 4-class time interval.
Transfer learning – training the model with data from seven apartments,
fine-tuning with and testing on the target apartment.

FIGURE 15. Accuracy of prediction of the next sensor and time-cluster vs.
number of events used for fine-tuning, using as input both sensor event and
time-cluster. Transfer learning – training the model with data from seven
apartments, fine-tuning with and testing on the target apartment.

Accuracies from about 80% can be achieved straight away
with very little data from the target apartment. There is one
exception, apartment 6, which takes much longer time to

TABLE 11. Prediction Accuracy with Transfer Learning without and with
Fine-tuning (FT)

Apt. ID Top Mean Prediction Accuracy
Next Sensor Next Sensor and Time

No FT FT No FT FT
1 75.17% 82.52% 60.40% 78.96%
2 77.46% 84.38% 58.17% 79.37%
3 68.67% 85.79% 52.27% 79.14%
4 79.03% 80.44% 60.20% 75.29%
5 71.87% 79.16% 49.87% 75.39%
6 2.93% 75.44% 0.00% 69.16%
7 80.57% 84.11% 59.00% 78.11%
8 78.90% 87.72% 53.43% 81.68%

achieve good accuracy. However, also this apartment required
less data (about 4000 events) compared to the case without
transfer learning (about 5000 events). For larger training
datasets, the prediction accuracy is approximately the same
as when each apartment is modelled with its own data. In fact,
in most cases is it marginally higher when each apartment is
modelled individually, except for apartments 4 and 8.

Note also that when predicting the time-cluster in addition
to the next sensor, a larger amount of data is required to
transfer the learning as effectively as when not predicting the
time. This is due to the fact that when predicting only the next
sensor, the layout of the apartment is what is mostly taken
into account given that the apartments are very small and all
have the same layout (section III). When predicting the time-
cluster, we account in addition for the individual habits of
each resident, and hence, additional data are required to fine-
tune the network.

Table 11 presents the top accuracy obtained for each
apartment. We have also computed the accuracy without fine-
tuning prior to testing when applying transfer learning, i.e.
when the network has been trained with data from seven
apartments and subsequently tested directly on the target
dataset. For the prediction of the next sensor only, the ac-
curacy is 4-8% lower than when using fine-tuning. When
predicting both the next sensor and the time information,
the accuracy is 15-30% lower without as compared to with
fine-tuning. This is in accordance with what has been men-
tioned earlier in this section, i.e. that predicting the time
takes into account individual patterns, and therefore needs
additional data to fine-tune the network to each resident. In
either prediction case, the fine-tuning of the model is indeed
required to achieve good prediction accuracy when using
transfer learning across apartments.

Subsequently, we investigate how much data are required
to transfer learning from the base model (with data from
several apartments) such that the target apartment will obtain
a good accuracy with very little data. We chose apartment 8 to
be the target apartment in this case, since it has shown to have
higher accuracy with transfer learning rather than when being
modeled with its own data. We use 100 events from the target
apartment to fine-tune the network and test on 3000 random
events. When predicting only the next sensor, about 40000
events from seven different apartments are required so that in
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apartment 8 80% prediction accuracy can be achieved with
only 100 events, as shown in Fig. 14. For predicting the next
sensor and the time-cluster much more data are needed, about
500000 from the seven different apartments. In this case, the
accuracy with only 100 events in the target apartment is about
60%. As discussed earlier and presented in Fig. 15, when
predicting the time, more data are required from the target
apartment to achieve the peak accuracy.

VIII. ACTIVITY PREDICTION
A. METHOD
Ultimately, the binary sensor events indicate activities of
daily living. In this section, we associate the binary sensor
events with activities and predict these. We are only able to
register high-level activities as the number of sensors in our
set-up is quite limited. Our dataset comprises the following
classes: watching TV, being in bed, being out, bedroom
activities, living room activities, kitchen activities, bathroom
activities, transitions in bedroom/bathroom/entrance/living
room – 11 in total.

We implemented two rule-based algorithms for deriving
activities from binary sensors that we refer to as sequential
activities and concurrent activities. We decided for a set of
rules as described in Table 12. In the case of sequential
activities, we assume that no more than one activity takes
place at the same time, so that as soon as one activity ends,
another starts. The time information is the elapsed time to the
next activity, which in this case is the duration of the activity.
In the case of concurrent activities, each activity has a start
and an end – indicated by a “1” and a “0”, respectively –
, allowing several activities to be happening in parallel. For
example, the resident can be in the kitchen preparing coffee
and still be watching TV. This implies that, in many cases,
the duration of the activities will be longer compared to the
sequential activities. The time information is inserted such
that activity start contains the duration of the activity (time
elapsed until the end of the activity) and activity end contains
the elapsed time to the start of the next activity event. Fig.
16 shows an example of the two sequences without including
the time, for simplicity.

FIGURE 16. Types of activities sequences implemented – sequential and
concurrent. The example corresponds to a scenario where the resident
watches TV, goes to the kitchen to prepare a coffee while watching TV, and
then goes to bed.

As we do for the sensor events, each activity is assigned
a letter, and the time information with K-means time-cluster
is selected due to its best performance. The transition classes
are only used in the input of the LSTM network, thus the
output classes are in fact only 7. The LSTM network has

TABLE 12. Rules for Deriving Activities from Sensor Events

Activities Rules
Kitchen activities Whenever power and magnetic sensors located in

the kitchen are activated or motion sensor in the
kitchen is active for more than 1 minute.

Living room ac-
tivities

Whenever power and magnetic sensors located
in the living room (except TV) are activated or
motion sensor in the living room is active for
more than 5 minutes.

Watching TV Whenever the resident is in the living room for
more than 5 minutes and the power in the TV is
on.

Bedroom activi-
ties

Whenever power and magnetic sensors located
in the bedroom (except sensors around the bed)
are activated or motion sensor in the bedroom is
active for more than 5 minutes.

Being in bed Whenever motion sensors around the bed are
consecutively activated for more than 5 minutes.

Bathroom activi-
ties

Whenever the motion sensor located in the bath-
room is active for more than 1 minute.

Being out Whenever the entrance door “off” and “on”
events happen consecutively and for more than
5 minutes; or when the entrance door is the last
active motion sensor for more than 10 minutes
(in one of the apartments where the entrance door
was not installed).

Transitions Being in the entrance is always considered as a
transition as there are no relevant activities in that
area. Other rooms have a subjective transition
time chosen based on the distance between rooms
and conditions of the residents (e.g. walking
speed, use of rollator, etc.).

TABLE 13. Number of Activities per Apartment

Apt. ID Number of Activities
Sequential Concurrent

1 70931 66136
2 26460 52920
3 19344 38700
4 53984 61222
5 49665 99330
6 10577 11382
7 10031 20090
8 5446 8162

the same configuration parameters as the one used for the
prediction of sensor events. In addition, we use the Synthetic
Minority Oversampling Technique (SMOTE) since our data
is imbalanced. SMOTE is an over-sampling technique that
creates synthetic samples for the minority classes [49]. The
library Imbalanced-Learn was used for this implementation
[50].

B. RESULTS AND DISCUSSION
Table 13 shows the number of activity events in each dataset
for each apartment. The LSTM network was trained based
on a certain number of events and tested on either 3000
random events or 10% of the total number of events (for
the apartments with very few activity events, e.g. 6-8). This
process is repeated three times, and the accuracy values in
the graphs correspond to the mean of the best test accuracy
of each training.

Firstly, we predict the next activity based on previous
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activities (Fig. 17), and subsequently when including the K-
means time-cluster (Fig. 18), for both types of activity se-
quences. Table 14 presents the prediction accuracy for these.
For the sequential activities dataset, the prediction accuracy
varies between 58-90% without using the time information
in the input, and between 61-90% when including the time
information. Including the time in the input resulted in 0
(apartment 7) to 3% improvement. In the case of the concur-
rent activities dataset, the prediction accuracy varies between
75-92% without using the time information in the input,
and between 75-95% when including the time information.
Thus the accuracy has improved from 0.3-3.1% across the
apartments when the time information is included in the
input. Fig. 19 and Table 15 present the accuracy results when
predicting both the next activity and its duration/time elapsed
to the next activity. The obtained accuracy varies between 64-
85% for the concurrent activities, i.e. it is 4.5-11.8% lower
compared to above. Similarly, for the sequential activities, an
accuracy of 50-80% is achieved, i.e. 9.4-16.2% lower than
above. This is expected since now the model has many more
classes to predict from and it is in addition predicting more
information.

FIGURE 17. Prediction accuracy of next activity based on previous activities
per apartment and type of activity dataset.

FIGURE 18. Prediction accuracy of the next activity based on previous
activities and K-means time-cluster per apartment and type of activity dataset.

TABLE 14. Prediction of the Next Activity

Apt. ID Without time With time
Sequential Concurrent Sequential Concurrent

1 70.80% 81.82% 73.78% 83.04%
2 66.94% 83.18% 69.72% 84.51%
3 89.79% 92.28% 90.02% 95.38%
4 72.13% 81.89% 75.02% 83.40%
5 74.77% 84.81% 76.51% 86.94%
6 58.07% 75.34% 61.67% 75.67%
7 77.23% 87.18% 77.23% 87.72%
8 63.00% 74.56% 66.20% 75.34%

FIGURE 19. Prediction accuracy of both next activity and K-means
time-cluster per apartment and type of activity dataset.

We can notice that apartment 3 has achieved the best
accuracy in all tests. One observation is that this resident did
not have the power sensor in the TV, so that this model has
one less class to predict (watching tv). In addition, it is a class
that usually presents much confusion with others, especially
with living room activity. Apartments 6 and 8 have shown
similar and poor accuracies in the tests, however, they do
not have enough data for conclusive results (see number of
activity events in Table 13). The other apartments – 1, 2, 4, 5,
and 7 – present comparable results.

The accuracy results for the concurrent activities dataset
were better in all cases – 5.4-14% improvement when pre-
dicting only the next activity based on previous activities
and time; and 5.1-16.1% when predicting the next activity
and K-means time-cluster. However, since there is only one
resident and a relatively small number of sensors in each
apartment, that moreover do not relate to other sensors, there

TABLE 15. Prediction of the Next Activity and K-means Time-Cluster

Apt. ID Sequential Concurrent
1 64.34% 78.54%
2 56.98% 75.93%
3 80.33% 85.44%
4 65.91% 74.28%
5 66.75% 78.98%
6 52.50% 68.59%
7 62.43% 76.12%
8 50.00% 63.58%
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are in reality only few concurrent activities. Hence, most
of the “start” activity events in the concurrent dataset are
immediately followed by the “end” of the same activity.
Therefore, most of the “end” of activities is predicted with
100% accuracy, which explains the higher accuracies of this
method. This can be confirmed by the confusion matrix
obtained with the prediction accuracy results in apartment 1
– Fig. 20. Nevertheless, this may be a good implementation
in smart home environments where several activities can
happen at the same time, e.g. multi-resident smart homes.
This is not the case of our setup, hence the sequential activity
dataset is probably a fairer algorithm. An example confusion
matrix for this dataset (apartment 1), is shown in Fig. 21.
The confusions within classes are similar for both types of
datasets. Bedroom activities are mostly predicted as in bed
and kitchen activities. This is understandable since bedroom
activities happen often after having been in bed or in the
living room, which has access to the kitchen. As mentioned
before, living room activities are confused with watching TV,
and a little with kitchen activities, as the previous comment.
And finally, being out has been predicted most of the times as
kitchen activities, as the entrance door also has a connection
to the living room. An interesting result is that in this apart-
ment the watching tv activity has been very well predicted –
86.5%. This could be useful for smart functions involving the
TV, e.g. if the resident has difficulties operating the remote
control. Bathroom and kitchen activities have also shown a
considerably good accuracy (77.9% and 83.2%). The range
of accuracy may be useful for analyzing patterns in the home
and potentially for anomaly detection.

IX. CONCLUSION
Sequential sensor events, time prediction, and activity recog-
nition and prediction algorithms can enable the development
of a number of support functions in smart home environ-
ments. Most of the research work in the literature has been
carried out using data collected in lab environments and
testbeds, typically including a quite large number of binary
sensors (e.g. 50 sensors [18]). We collected data from eight
apartments in a community care facility, with one resident
each (over 70 years old). Data were collected from 13-17
sensors per apartment, over a period of time ranging from
75 to 385 days, depending on the apartment.

To our knowledge, there is no comparative study inves-
tigating state-of-the-art sequence prediction algorithms ap-
plied to sensor data acquired in homes of real users, as we do
in this paper. We compare the performance of these methods
regarding factors such as memory length and the required
amount of data for good accuracy. When applying two prob-
abilistic methods (ALZ and SPEED) and LSTM networks
with both SPEED- and ALZ-text sequence inputs for predic-
tion of the next sensor in a sequence, LSTM with SPEED-text
has achieved the highest accuracy of 85%. SPEED achieved
3% lower accuracy and required much longer time to execute.
On the other hand, the LSTM required about 4000 events in
the training set to reach an accuracy close to its peak, whilst

the probabilistic methods only needed about 2000 events.
Hence, for datasets with little data SPEED may be beneficial.
If there is a considerable amount of data (5000 events in
this work), LSTM with SPEED-text is more suitable – it
provides a higher accuracy and in much faster execution time
than probabilistic methods. When tested in all the apartments,
LSTM with SPEED-text achieves results in the range 76-
85%.

There is quite limited work in the literature on the pre-
diction of the time of occurrence in addition to the sensor
events in smart homes. We study the possibility of improving
the best performing algorithm (LSTM with SPEED-text)
by including the time component in three different ways:
period of the day (morning, afternoon, evening, night), 4-
class time interval (elapsed time) to the next sensor event,
and K-means time-cluster including information about the
mean hour of the day and the mean time elapsed to the next
sensor event. Our best performing model for predicting the
next sensor event included the 4-class time interval input and
attained a peak average accuracy of almost 87%. This is 2%
better than without including the time information. Hence,
the time elapsed between events contains some information
that improves prediction, however, only marginally. In other
apartments the improvement varied from 0.5-4.5%. We also
predict both the next sensor event and the time of occurrence
information, obtaining best results by using K-means time-
cluster input. This implementation attained an accuracy of
83%. Other apartments had accuracies in the range 73-83%.
Furthermore, we evaluate the variability of the prediction
accuracy across the apartments and investigate the feasibility
of transfer learning between these. Transfer learning has been
shown to work successfully up to a certain number of events.
For a low number of events in the training dataset, up to about
4000 events, transfer learning leads to higher prediction
accuracy than when each apartment is modelled individually.
This means that when a new apartment is added to the study,
the prediction algorithm can work well straight away, and
attain a relatively good accuracy (70-80%) from the first
day in most cases. However, for larger training datasets, the
prediction accuracy is approximately the same. In fact, in
most cases it is marginally higher when each apartment is
modelled individually.

A last analysis carried out activity recognition in a rule-
based manner from the binary sensors events and performed
activity prediction with the LSTM with SPEED-text algo-
rithm. Two types of activity datasets were analyzed: sequen-
tial and concurrent. For the concurrent activity dataset, when
predicting the next activity only, our best model achieved
95% accuracy, whilst when predicting the next activity and
the mean duration and time of occurrence information, the
best model achieved an accuracy of 85%. For the sequential
activity dataset, the results are worse. When predicting the
next activity, our best model achieved 90% accuracy, whilst
when predicting the next activity and its duration and time
of occurrence information, the best model achieved 80%.
However, we indicate that this latter method may be fairer
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FIGURE 20. Confusion matrix of prediction of the next activity based on previous activities and K-means time-cluster for apartment 1, using the concurrent activity dataset.

FIGURE 21. Confusion matrix of prediction of the next activity based on
previous activities and K-means time-cluster for apartment 1, using the
sequential activity dataset.

for our dataset where there are relatively few activities hap-
pening concurrently. Additional sensors could have been an
advantage for better activity recognition and prediction. Our
set of sensors proved to be somewhat limited for the task
since it can only imply high-level activities. A small number
of sensors like ours may, however, be preferable both in
terms of reduced surveillance for the user, lower cost, and
less nuance for the aesthetics of the home. Our work shows
that it is possible to achieve acceptable prediction accuracy
with few sensors. In addition, the findings of our study
can be useful for deciding which analysis and prediction
methods to use in accordance with project constraints (e.g.
the number of available sensors, user privacy, etc.) and the
area of application.
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