
Molecular Structure
Identification Using Machine

Learning

Kristian Tuv

Thesis submitted for the degree of
Master in Computational Physics

60 credits

Department of Physics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2020

Molecular Structure
Identification Using Machine

Learning

Kristian Tuv

2

c© 2020 Kristian Tuv

Molecular Structure Identification Using Machine Learning

http://www.duo.uio.no/

Printed: Repro sentralen

Contents

1 Introduction 9
1.1 Structure Identification . 10
1.2 Methane Hydrates . 10
1.3 Machine Learning . 11
1.4 Ethical Considerations . 12
1.5 Goals . 13
1.6 Structure of the thesis . 15

I Background 17

2 Molecular Dynamics 19
2.1 Potentials . 19

2.1.1 Stilling-Weber Potential 20
2.1.2 Oscillating Pair Potential 20
2.1.3 Harmonic Potential . 20

2.2 Cutoff . 21
2.3 Thermostats . 21

2.3.1 The Langevin Thermostat 21
2.3.2 The Nosé-Hoover Thermostat 21

2.4 Radial Distribution Function . 23
2.5 Crystal Structure . 23
2.6 Methane hydrates . 27

3 Machine Learning 29
3.1 Categories of Machine Learning 30
3.2 Bias-Variance Tradeoff . 30
3.3 Linear Regression . 32
3.4 Overfitting and Regularization 33
3.5 Neural Networks . 35

3.5.1 Multilayer Perceptron . 36
3.5.2 Network Topology . 38
3.5.3 The Cost Function . 38
3.5.4 Accuracy, Precision and Recall 40
3.5.5 Gradient Descent . 41
3.5.6 Activation functions . 43
3.5.7 Initialization . 45
3.5.8 Running the Neural Network 46

1

2 CONTENTS

3.5.9 Backpropagation . 46
3.5.10 Regularization in Neural Networks 48

3.6 Convolutional Neural Networks 48
3.7 PCA . 52
3.8 Clustering . 53

3.8.1 K-means Clustering . 53
3.8.2 Gaussian Mixture Models 54
3.8.3 Agglomerative Clustering 57
3.8.4 DBSCAN . 58
3.8.5 OPTICS . 61

3.9 Unsupervised Performance Metrics 64
3.9.1 Calinski-Harbasz . 64
3.9.2 Davies-Bouldin . 65
3.9.3 Silhouette . 65

3.10 Autoencoder . 66
3.11 Machine Learning in Practice . 68

II Implementations and Results 69

4 Conventional Structure Identification Algorithms 71
4.1 Order parameters . 71
4.2 CHILL+ . 73

5 Creating Datasets 79
5.1 Test Data . 79
5.2 Training Data . 83
5.3 Creating features . 89

6 Supervised learning 95
6.1 Neural network . 95
6.2 Fully-Connected Network . 97
6.3 Convolutional Network . 106

7 Unsupervised Learning 117
7.1 Dimensionality Reduction . 117

7.1.1 Autoencoder . 118
7.1.2 PCA . 124

7.2 Clustering . 125
7.2.1 Density Based Clustering 126
7.2.2 Non-Density-Based Clustering 130

III Conclusions 135

8 Summary and Conclusions 137
8.1 Summary . 137
8.2 Discussion . 139
8.3 Outlook . 143

Appendices 153

CONTENTS 3

A Network Architectures 153

B Oscillating Pair Potential Results 157
B.1 Convolutional Network . 157
B.2 Dense Network . 159

C Methane Hydrate Results 161
C.1 Convolutional Network . 161
C.2 Dense Network . 163

D Clustering Results 165
D.1 Gaussian Mixtures . 165
D.2 Agglomerative Clustering . 166
D.3 OPTICS . 167
D.4 DBSCAN . 168

4 CONTENTS

Acknowledgements

In my last semester of high school, my classmate Niels Bonten told me he
was going to study physics at the University of Oslo. I did not really know
what physics was, but after he gave a passionate explanation of the wonders of
cosmology and quantum physics, I was determined that physics was the path I
needed to pursue. Without that conversation, this thesis would probably never
have happened. Thank you for opening my eyes.

The last six years at Blindern have been fantastic, and I want to thank
everyone who has been a part of it. Especially, the communities at Lillefy and
Computational Physics have been a reason for coming to Blindern even when
it is raining and tempting to stay in bed.

I would like to thank friends and family for their support, and especially
Ellen for your continuous deliveries of energy drinks the last two months.

Writing this thesis has been frustrating and hard work, and I would especially
like to thank my supervisor, Henrik Sveinsson, for your knowledge, eye for
detail and support throughout this process. For you, a problem is always an
opportunity and I thank you for the continuous encouragement.

Lastly, Line, thank you for supporting me through this process and not going
crazy from my mood swings. You always manage to make me feel better when
everything is most bleak, and your role as sugar-mama the last three years has
been paramount for keeping me well fed on steak and wine on a student budget.

5

6 CONTENTS

Abstract

In studies of crystalline solids, identifying the intrinsic molecular structure of a
material is paramount for understanding its mechanical properties. Manually
evaluating the structures in a material can be an insurmountable task. Because
of this, the development of automatic methods for structure identification is of
great interest. Such automatic methods are often very specialized, developed
for identifying a set of specific predetermined structures. This specialization is
a problem if we do not know which structures exist in a material in advance,
a problem we would not encounter with a generalized identification algorithm.
Machine learning methods have shown impressive abilities in classification prob-
lems and have the potential for developing such generalized methods of structure
identification.

The bottleneck for developing supervised machine learning methods for struc-
ture identification is the labeling of datasets required to train and evaluate such
methods. In the present work, we develop an automatic method for creating
a labeled dataset using unit structures transformed into adjacency matrices,
representing the neighborhood topology of particles. These matrices are used
as machine learning features for training and validating machine learning al-
gorithms.

We demonstrate how the trained machine learning methods can be used
for identifying structures in a dataset of self-assembling colloidal crystals [14].
Furthermore, we show that these methods are capable of competing with spe-
cialized algorithms for structure identification by applying them to simulations
of methane hydrate polycrystals under stress, and comparing the results with
the CHILL+ algorithm [52].

In addition to utilizing supervised learning algorithms, we test unsupervised
clustering methods on datasets of methane hydrate polycrystals. We utilize ad-
jacency matrices as machine learning features, where the matrices have first been
reduced in dimensionality using principal component analysis and autoencoders.
We show that these methods are viable alternatives for identifying structures
without the requirement of a labeled dataset.

7

8 CONTENTS

Chapter 1

Introduction

Crystalline solids are materials where the atom arrangements exhibit a high
degree of order and periodic patterns. The physical properties of a material
are largely connected to its crystal structure. The best example of this is illus-
trated by comparing diamond and graphite. These crystals are both composed
exclusively of carbon atoms but because of the structural differences we can use
graphite to write with a pencil, while diamond was long considered the hardest
material on earth [79].

Identifying the structure of particle collections is important when analyzing
molecular dynamics simulations. This is especially true when alyzing simula-
tions of material failure because the failure process of materials changes the
atomic stucture of the system. Thus, finding indications of structural changes
in simulations of materials under stress aids the understanding of the physical
properties of said material.

Identification of molecular structures can be challenging both in terms of
mathematical description and computational efficiency. An additional layer of
complexity is added by the thermal fluctuations of particles from their ideal
crystal structure positions which sligthly alters the structure, making it harder
to identify.

In this thesis, we address the challenges of finding automatic methods of clas-
sifying individual atoms in crystalline structures and develop new methods for
doing so. Through machine learning we develop general methods for structure
identification capable of competing with specialized algorithms. We are devel-
oping these methods with a particluar class of substances in mind: Clathrates,
or more specifically, methane hydrates. Hydrates are interesting for a number
of reasons, perhaps most importantly their abundance on earth [4] and their
potential importance for the climate [2]. We will be using our newly developed
methods to identify grain boundaries in methane hydrate polycrystals without
any prior knowledge of the crystal.

In this chapter we give a brief introduction and motivation on the topics
of structure identification, methane hydrates and machine learning, as well as
ethical considerations regarding these subjects and the goals for this thesis.

9

10 CHAPTER 1. INTRODUCTION

1.1 Structure Identification

To understand the mechanical properties of cystals in general, and methane
hydrates in particular, we use modern mathematical and computational tech-
niques like molecular dynamics. In molecular dynamics we use known physical
and mathematical properties of a system of particles to run simulations of said
system to advance our understanding of its properties on a microscopic level.
During the dissociation of a material, its atomic structure is necessarily going
to change, altering the material properties in the process. Because of these
structural changes we would ideally like to use automatic structure identifica-
tion algorithms to quickly identify modifications and distortions in the material
during molecular simulations. Writing specialized algorithms for structure iden-
tification requires deep insight into the physical and mathematical properties of
the molecular system. Traditional methods for structure identification, such as
the ones developed by Steinhardt et al. [71] and Ten Wolde et al. [78], evaluate
order parameters to identify particles of a solid-like nature. An example of a
method utlizing the order parameters is the CHILL+ algorithm by Nguyen and
Molinero [52], which is capable of distinguishing the solid phases of water from
clathrate hydrate structures. Major problems with traditional structure iden-
tification algorithms is that they are very specialized, difficult to develop, and
are normally only able to recognize a few predefined structure types. Because
of this specialization we have to develop new and unique algorithms for differ-
ent structural compositions. The mentioned CHILL+ algorithm is for example
not designed to distinguish between graphite and diamond, and to do this we
would need another specialized algorithm. Ideally we would like to develop a
general alogorithm capable of distinguishing between all the known molecular
structures. Developing such an algorithm by hand is virtually impossible but
with the help of machine learning we hope to come one step closer in doing so.

1.2 Methane Hydrates

Even though we want to develop a general algorithm for structure identification,
we need to evaluate the algorithm on specific molecular structures and an inter-
esting crystalline solid to study more closely is the clathrate hydrate. In addition
to being scientifically interesting compounds, clathrate hydrates are very well
suited for the structure identification algorithm we are going to develop. We
will be utilizing the topological neighborhoods of particles in the development
of the algorithm, and the very specific cage-like structure of clathrate hydrates
make them topologically very distict from other molecular structures.

Clathrate hydrates are ice-like hydrogen bonded molecular structures form-
ing cages trapping guests inside, making them so-called clathrate compounds.
Because the guest molecules are mostly in gaseous states at ambient conditions,
clathrate hydrates are often refered to as gas hydrates, or simply as hydrates.
Clathrate hydrate research interest was propelled by the oil and gas industry
after Hammerschmidt [24] discovered that hydrates were blocking transmission
lines in the oil extraction process. In later years the discovery of large hydrate
deposits in nature has further increased their relevance both as a potential en-
ergy source but also for their possible environmental impacts if released into the
atmosphere.

1.3. MACHINE LEARNING 11

When the guest molecules trapped in the cages are methane, we refer to
the compound as a methane hydrate. Methane hydrates are typically found in
the arctic seafloor and permafrost [65]. A concern regarding the abundance
of methane hydrates in nature is the potential release of this highly potent
greenhouse gas into the atmosphere from decomposing hydrates. There has
been no scientific evidence that the slow release of methane below 200 meters of
water or land reaches the atmosphere to any appreciable degree because most
of the methane is oxidized or dissolved before reaching the surface [65]. Abrupt
blow-outs of methane from craters of methane hydrates, on the other hand, are
far more likely to reach the atmosphere. Such events have been reported both
in marine and land sediments [2]. To understand the formation and release of
such craters, a deeper understanding of the mechanical properties of methane
hydrates on a molecular level is paramount.

1.3 Machine Learning

Artificial intelligence and machine learning has experienced tremendous growth
in research and applications in recent years. As the demands for collecting
and processing information keeps increasing in society, methods for structur-
ing, extracting, and evaluating relevant data becomes essential for facilitating
growth in technologial and scienfic fields. Machine learning is an application
of artificial intelligence where computer systems perform specific tasks without
explicit instructions on how to do them. Such algorithms have a wide array
of applications and have for example been used to beat humans at chess [10],
for automatic cancer detection [38] and recently for remotely finding areas of
archaelogical interest from satellite images in Syria [48].

A particularly successful branch of machine learning is the artificial neural
network, which is a flexible framework that can be applied to a series of applic-
ations, from image analysis to speech recognition. The strength of these models
are that they do not need prior knowledge of the connections between observa-
tions in a dataset. Provided enough data, we just let the algorithm figure it out.
The problem with this method is that a machine learning network is essentially
a black box algorithm and we have very little knowledge of exactly how the
algorithm evaluates the problem internally: In a famous article on skin cancer
classification by Esteva et al. [17], the authors noticed after the publication that
the algorithm was biased towards predicting skin cancer in images containing
rulers. When dermatologists are particularly concerned about a lesion, they
often add a ruler to the image to measure the lesions size. Can we then say for
sure that the algorithm is actually predicting skin cancer, or has it learned to
look for rulers in the image as this indicates a higher risk of cancer?

When developing machine learning algorithms for structure identification
we encounter another big challenge with machine learning. The most effective
algorithms require a labeling of the datasets in advance. This labeling might
be done manually requiring days, maybe even months of work before the ma-
chine learning algorithm can even be tested. This is a challenge for applying
these types of algorithms to molecular structure identification problems. Going
through datasets of possibly millions of particles, labeling each of them by their
affiliated structure is a very labor intensive task. Because of this callenge, one
of the main aspects of the algorithms developed in this thesis is to develop a

12 CHAPTER 1. INTRODUCTION

method for automatic labling of a dataset using predefined unit structures.
Despite the challenge of labeling datasets there have still been several efforts

in applying machine learning algorithms to these kinds of problems. Spellings
and Glotzer [69] used a machine learning technique called gaussian mixture mod-
els, which does not require a labeled dataset at all. This technique was not used
to classify individual particles of a dataset however, but rather to differentiate
between several datasets, each containing different kinds of structures. This has
very useful applications, especially when studying systems of self-assembling
structures, but it is not that useful in the study of dissociation as we need to
classify individual particles of a molecular system, not the system as a whole.

Our own work is inspired by another algorithm utilizing machine learning,
developed by Reinhart et al. [62]. This algorithm uses the local neighborhood
topology of atoms in crystals to classify the particles by comparing their neigh-
borhood graphs. This algorithm was very computationally expensive and by
utilized machine learning to choose which neighborhood graphs in a crystal to
compare, they where able to increase the speed of the algorithm. However, they
did not use machine learning for the actual classification of particles. In our
own development we will be using the neighborhood graphs of particles but, as
opposed to Reinhart et al., we will be using machine learning directly to classify
molecular structures.

1.4 Ethical Considerations

In 1956 John McCarthy was one of the initiators of the Dartmouth college
artificial intelligence conference, at which he coined the expression artificial
intelligence. This conference is widely regarded as the event that initiated AI
as a research disipline [50]. In the proposal for the conference McCarthy et al.
[45] wrote:

The study is to proceed on the basis of the conjecture that every
aspect of learning or any other feature of intelligence can in principle
be so precisely described that a machine can be made to simulate it.

This proposal immediately raises philosophical questions of human-machine
interactions. Even if no machine existing today comes close to human intelli-
gence, we do not have to venture into the realm of science fiction to encounter
human-machine interactions. We still have to make moral decisions regarding
programming and usage of existing technologies. If you are out driving your car
and suddenly a trailer is drifting into your lane, you would probably instinct-
ively turn away, even if that involves entering the sidewalk potentially injuring
pedestrians in the process. If a self-driving car is in the same situation we can
actually make the moral decision in advance: should the car protect the driver
at all costs, potentially injuring several pedestrians by doing so, or should the
car protect the pedestrians by crashing the car into the trailer? This might seem
like an hypothetical, but as self-driving technology keeps advancing it becomes
a very real conundrum.

We already have artificial intelligence interacting with our every day life in
multiple ways. Machine learning algorithms for creating targeted advertisement
campaigns have become so powerful and precise that it is easy to feel surveilled.
This interaction between human lives and machine learning algorithms means

1.5. GOALS 13

we need to be wary of how we influence the algorithms through our own biases.
Any bias we as humans inject into the dataset, consiously or not, the algorithm
will eventually learn. An example of this was when Microsoft tested a chatbot
learning from Twitter. It quickly started using racist and sexist language based
on the vocabulary used on the social media platform[60]. Even though the
algorithms developed in this thesis are only used on the classification of particles
in molecular dynamics simulation, the same machine learning theory can easily
be transfered to more morally questionable objectives, like facial recognizion
used for survaillance [42].

The overarching moral dilemmas of machine learning might not be directly
pertinent to the goals of this thesis. However we are applying machine learning
algorithms to studies of methane hydrates, and as mentioned, hydrates are of
great interest in the petroleum industry. As global temperatures keeps increas-
ing one can question the morality of research which could further perpetuate
the increase in CO2-emissions by aiding the extraction of fossil fuels. Simul-
taneously the same research might assist in the understanding, and hopefully
prevention, of methane release into the atmosphere from methane hydrate blow-
outs. As researchers we have to be concious of the possible consequenses of new
discoveries but generally scientific curiosity should be encouraged, as we never
know exactly what uses new discoveries will have. Good or bad.

1.5 Goals

The goal of this master project is to develop machine learning algorithms capable
of distinguishing molecular stuctures of individual particles in simulated systems
of crystals. The development of supervised machine learning algorithms for
structure identification sufferes from the requirement of labeling every particle
in a molecular system by their corresponding structure. We will develop and
use two methods for overcoming this problem; an automatic method for creating
labeled datasets and unsupervised clustering methods, which avoids to problem
of labeled dataset altogether.

The trained models will be applied to two non-labeled molecular dynamics
datasets. The first dataset contains multiple molecular structures, where we
want to distinguish between all the structures of the dataset. The second dataset
is of a simulated methane hydrate polycrystal with applied external stress. Here
we are especially interested in finding the so-called grain boundaries of the
crystal.

To reach the overarching goal we can divide the project into several sub-
goals:

1. Implement and verify the CHILL+ algorithm [52]:
CHILL+ is an algorithm especially designed for differentiating methane
hydrate structures from ice. We will use this algorithm as a benchmark
for our supervised and unsupervised machine learning implementations.

2. Reproduce the dataset created by Engel et al. [14]:
Engel et al. created datasets of crystals which self-assembles in to a variety
of structures during cooling of the system. We will use the manual clas-
sification of these structures, done by Engel et al., as another benchmark
for our supervised machine learning algorithms.

14 CHAPTER 1. INTRODUCTION

3. Automatic supervised feature creation:
We propose an automatic method for creating labeled datasets of mo-
lecular structures, making them useable as training sets for supervised
machine learning frameworks. The automation of feature creation can be
divided into additional subgoals.

• Aquire unit structures:
We will aquire a dataset of molecular unit structures by implement-
ing a web crawler in Python, which finds and downloads relevant
structures.

• Induce irregularites:
We will induce thermal noise into the molecular unit structures by
implementing a harmonic potential in Atomic Simulation Environ-
ment (ASE).

• Create machine learning features:
Inspired by Reinhart et al. we will create an implementation in Py-
thon for evaluating the local neighborhood of particles in a dataset.
Machine learning features will be created by calculating adjacency
matrices for each particle in the temperated and non-temperated unit
structures. Each particle will then be labeled by the unit structure
it was situated in before temperation.

4. Implement supervised machine learning methods:
We will implement and test two supervised machine learning frameworks
for structure identification: Convolutional neural networks and fully-connected
networks. Both these frameworks will be trained on the automatically cre-
ated labeled dataset where we use the same molecular structures as was
found in the dataset of Engel et al. The best performing networks will
then be applied to the two benchmarking datasets, and compared with
the results of CHILL+ and Engel et al.

5. Implement methods for dimensionality reduction:
The number of elements in the adjacency matrices we will implement are
a quadratic function of the number of neighbors we include in the to-
pology calculation of the particles. Each of these element is considered
as a separate dimension in the machine learning framework which makes
the dimensionality of the classifiaction problem potentially very high. To
reduce the high dimensionality of the adjacency matrices we will imple-
ment two methods for dimensionality reduction before using unsupervised
clustering: The popular technique of principal component analysis (PCA)
where we remove dimensions of low variance, and an autoencoder where
we cluster on the latent space of the autoencoder.

6. Implement unsupervised machine learning methods:
Spellings and Glotzer utilized spherical harmonics as inputs to the gaus-
sian mixture models clustering algorithm and applied this to the data-
sets of Engel et al. Inspired by this we will try clustering the individual
particles of a single dataset of methane hydrates using adjacency matrices
as inputs. We will test four unsupervised machine learning algorithms for
clustering; Gaussian mixture models, agglomerative clustering, OPTICS
and DBSCAN.

1.6. STRUCTURE OF THE THESIS 15

1.6 Structure of the thesis

This thesis is divided into three parts. In part I: Background, we start by
building a basic understanding of relevant molecular dynamics concepts. This
is followed by a thorough breakdown of relevant machine learning theory, where
we go through two of the main machine learning branches; supervised learning
and unsupervised learning. Part II: Implementation and Results, goes through
the methods developed for creating datasets and machine learning algorithms,
as well as the results of these algorithms when applied to data from molecular
dynamics simulations. In Part III: Conclusions, we summarize and conclude the
results and evaluate future prospects.

The code developed in this thesis will be made available at github.com/kristtuv.

16 CHAPTER 1. INTRODUCTION

Part I

Background

17

Chapter 2

Molecular Dynamics

Molecular dynamics (MD) is a computer simulation method that can be used
to study the movement and interactions between atoms and molecules. Per-
forming real experiments on particles is likely to be extremely time consuming
and expensive. Computing resources are, on the other hand, relatively cheap
and simple to implement. When a mathematical model of a physical system
is developed through physical experiments, a simulation using numerical meth-
ods can be used to perform thousands of experiments testing the mathematical
model. If the simulation is able to reproduce results from the physical model,
it might be able to produce new insight into features not tested in the physical
experiment, and in the very least help guide the direction of new experiments.

In MD simulations, we assume the particles obey Newton’s second law of
motion

∑
F = mr̈. The forces acting on a particle are defined by an interaction

potential U , and updated positions and velocities are calculated using standard
numerical integration techniques. In molecular dynamics it is common to use
the velocity verlet algorithm [80] because of its simplicity, but also because of
the low local positional error of O(∆t4)[18]. The algorithm is defined by

rt+1 = rt + ∆tṙt +
1

2
∆t2r̈t,

ṙt+1 = ṙt +
1

2
∆t (r̈t + r̈t+1) ,

(2.1)

where ∆t is the timestep, rt is the position at time t, ṙt is the time derivative
of the position, and r̈t is the double time derivative. The forces acting on a
particle are calculated by

Fi = mr̈ =
∂U

∂ri
, (2.2)

given a predefined interaction potential U .

2.1 Potentials

The equations above are in principle all we need for setting up an MD simula-
tion. There are, however, a flurry of intricate details we need to keep in mind
for setting up a realistic simulation. One of these details is which interaction
potentials to use. In this thesis, three interaction potentials have been used for
different purposes with varying degrees of physical realism.

19

20 CHAPTER 2. MOLECULAR DYNAMICS

2.1.1 Stilling-Weber Potential

The Stillinger-Weber potential [74] combines two- and three-body interactions
where the bond energy is related to the distances and angles between the atoms.

USW (r) =
∑
i

∑
j>i

φ2(rij) +
∑
i

∑
j 6=i

∑
k>j

φ3(rij , rik, θijk),

φ2(rij) = Aijεij

[
Bij

(
σij
rij

)pij
−
(
σij
rij

qij
)]

exp

(
σij

rij − aijσij

)
,

φ3(rij , rik, θij) = λijkεijk [cos θijk − cos θ0ijk]
2

exp

(
γijσij

rij − aijσij

)
exp

(
γikσik

rik − aikσik

)
,

(2.3)

where φ2 is the two-body interaction term and φ3 is the three-body interac-
tion term. Stillinger-Weber is typically used for silicon simulations but can also
be used for other systems, like methane hydrates.

We will use this potential on small simulations of methane hydrate crystals.

2.1.2 Oscillating Pair Potential

Mihalkovič and Henley [49] developed a family of oscillating pair potentials given
by

U(r) = C1r
ν1 + C2r

ν2cos(kr + φ). (2.4)

A specific, simplified potential from this family was used by Engel et al. [14]
and later Spellings and Glotzer [69] to study systems of self-assembing colloidal
crystals. The simplified potential has three wells and mimics the interactions of
many metallic systems.

UOPP (r) =
1

r15
+

1

r3
cos (k(r − 1.25)− φ) . (2.5)

This potential combines a short-range repulsion with damped oscillation of fre-
qency k and phase shift φ. The potential is terminated at the third maximum
and smoothly shifted to zero.

We will use this potential for recreating the dataset of Engel et al.

2.1.3 Harmonic Potential

The harmonic bond potential is a simple oscillating potential which simulates
particles moving in accordance with Hooke’s law in a spring-like fashion.

UH(r)c =
k

2
(r − r0)2, (2.6)

where k is a constant of proportionality, the division by two is just a simple
trick for making the derivative look cleaner, and r0 is the particle positions at
equilibrium.

The way we will use this potential there is no interaction between the
particles, each particle will only oscillate around its equilibrium position. This
is not a realistic potential and will only be used as a means for introducing irreg-
ularities in unit crystals, imitating temperature variations in realistic molecular
dynamics simulations.

2.2. CUTOFF 21

2.2 Cutoff

According to the potentials given in the previous section, we need to calculate
the forces between every atom in the MD simulation. If the number of particles
in the system is N , this means we have a time complexity of O(N2). For large
scale MD-simulations, calculating the interactions between all particles is not
feasible as the number of particles might be in the millions. To overcome this
time complexity, it is typical to introduce a cutoff radius rcut. Only interactions
happening between particles closer together than this radius are calculated.
Most potentials drop relatively quickly to zero with increased radial distance,
making the error from this cutoff distance negligible.

2.3 Thermostats

We define the temperature in a system in terms of the sum over individual kinetic
energies of particles. This is what is known as the equipartition theorem,

Ek =
f

2
kbT, (2.7)

where f is the kinetic degrees of freedom, T is the temperature, and kb is the
boltzmann constant. Rearranging the equipartition theorem we get an expres-
sion for the temperature,

T =
2Ek
fkB

=
1

fkb

N∑
i=1

miv
2
i . (2.8)

2.3.1 The Langevin Thermostat

In an MD simulation, we will most likely want to control the temperature of the
system. This is done by coupling the system to an external heat bath kept at
constant temperature and allowing the two systems to exchange energy. This
is what is called the canonical- or NVT ensemble. The Langevin thermostat
implicitly simulates this heat bath by using

r̈i =
ṗi
mi

=
Fi
mi
− γi

pi
mi

+
fi
mi

, (2.9)

where Fi is the force acting on atom i set up by the interaction potential, γi
is the viscocity, and fi is a random force simulating the damping of particles
between each other due to friction. The random force is drawn from a Gaussian
distribution with variance

σ2
i = 2miγikBT/∆t, (2.10)

where ∆t is the timestep used to integrate the equations of motion.

2.3.2 The Nosé-Hoover Thermostat

The Langevin thermostat simulated the heat bath implicitly by using random
friction and a random force to act like a solvent in the system. Nosé-Hoover [54,

22 CHAPTER 2. MOLECULAR DYNAMICS

32], on the other hand, defines the heat bath explicitly by adding an additional
degree of freedom to the system. This extension of the original ”real” system
will be referred to as the extended system. We have used the original articles
and the presentation of Hünenberger [35] for the derivations in this section.

We start by defining the timescale of the extended system as stretched by a
factor s̃

dt̃ = s̃dt, (2.11)

where the tilde signifies the extended system coordinates. By requiring the
particle coordinates of both systems to be equal and using equation 2.11. We
end up with the coordinate transformation

r̃ = r,

˙̃r =
dr̃

dt̃
= s̃−1ṙ,

s̃ = s,

˙̃s =
ds̃

dt̃
= s̃−1ṡ.

(2.12)

Because of these coordinate definitions, the velocities in the extended system
is altered by a factor s̃−1 compared to the initial system.

The Lagrangian of the real system is defined as the kinetic energy minus the
potential energy.

Lr(r, ṙ) =
1

2

N∑
i=1

miṙ
2 − U(r). (2.13)

The Lagrangian of the extended system as defined by Nosé [55] is

Le(r̃, ˙̃r, s̃, ˙̃s) =
1

2

N∑
i=1

mis̃
2 ˙̃r2i − U(r̃) +

1

2
Q ˙̃s2 − gkBT0 ln(s̃). (2.14)

We recognize the first two terms as the Lagrangian defined in equation 2.13
with the velocities multiplied by s̃2 to recover the velocities of the real system.
The third and fourth term represent the kinetic and potential energy associated
with the s̃ variable. The shape of the last term (the potential energy of the s̃
variable) is chosen as such to ensure that the canonical ensemble averages are
recovered, as shown in the original article by Nosé [55].

The equations of motion are derived from the Lagrangian equation

d

dt

(
∂L
∂q̇j

)
=

∂L
∂qj

, (2.15)

where qj is one of the variables in the Lagrangian.
This yields the equations of motion

d

dt
(mis̃

2 ˙̃ri) = −∂U
∂r̃ i

→ ¨̃ri = −m−1i s̃−2
∂U

∂r̃i
− 2 ˙̃ss̃−1 ˙̃ri

= m−1i s̃−2F̃i − 2 ˙̃ss̃−1 ˙̃ri,

(2.16)

2.4. RADIAL DISTRIBUTION FUNCTION 23

and

d

dt
(Q ˙̃s) =

N∑
i=1

mis̃ ˙̃r2 − gkTbaths̃−1

→ ¨̃s = Q−1s̃−1

(
N∑
i−1

mis̃
2 ˙̃ri − gkBTbath

)
.

(2.17)

The velocity scaling between the real and extended system leads to uneven
time intervals in the real system as these intervals depend on the factor s̃.
Hoover used the extended system equations of Nosé and reformulated them in
the real system coordinates effectively removing the dependence on s̃, which
removes the problem of uneven time intervals.

The equations formulated by Hoover, which is known as the Nosé-Hoover
thermostat, uses a coordinate transformation from extended-system to real-
system variables. This transformation is defined in the original article [32] as

s = s̃, ṡ = s̃ ˙̃s, s̈ = s̃2 ¨̃s+ s̃ ˙̃s2,

r = r̃, ṙ = s̃ ˙̃r, r̈ = s̃2 ¨̃r + s̃ ˙̃s ˙̃r,

ps = s̃−1p̃s, ṗs = ˙̃ps −Q−1s̃−1p̃2s,
p = s̃−1p̃, ṗ = ˙̃p−Q−1s̃−1p̃sp̃,
F = F̃ ,

(2.18)

which in turn gives the equations of motion

r̈i = m−1i Fi − γṙi,

γ̇ = −kBNdfQ−1T
(

g

Ndf

Tbath
T − 1

)
.

(2.19)

2.4 Radial Distribution Function

As the name suggests, the radial distribution function g(r) describes how the
density of particles vary as a function of radial distance from a reference particle.
The general algorithm for finding g(r) is simply to determine how many particles
are within a radial shell with distance r and r + dr from the reference particle.
In practice, we do this by calculating the distance between all particle pairs and
calculating a histogram of the distribution, and normalizing the distribution
with respect to an ideal gas which in three dimensions is the number density
of the system multiplied by the volume of the spherical shell N

V 4πr2dr. Where
N is the number of particles and V is the volume of the system. We can now
calculate the RDF as

g(r) =
dn(r)

N
V 4πr2dr

, (2.20)

where dn(r) is the number of particles found within the spherical shell.

2.5 Crystal Structure

The evaluation and description of the ordered arrangement of atoms and mo-
lecules in a crystal is described by the crystal structure. Defining the crystal

24 CHAPTER 2. MOLECULAR DYNAMICS

structure is important because crystals may have very different properties de-
pending on how the atoms are stacked within the crystal. For instance, graphite
and diamond are both made purely of carbon atoms, however the graphite crys-
tal structure forms loosely bonded sheets, which easily releases from the crystal,
making it possible to write with a pencil. Diamond, on the other hand, is very
thightly stacked making it one of the hardest materials on earth.

We can build a theoretical crystal by combining two concepts; the lattice
and the basis. The lattice points are mathematical points in space which, if we
were standing on a point and moving from this point to another, the crystal
will look the same. At each of these lattice points a periodic arrangement
of atoms is placed, called the basis. The combination of these two concepts
describes the entirety of the crystal structure. The smallest group of atoms in
a crystal system which constitutes a repeating pattern is called the unit cell
of the structure. The unit cell in three dimensions is described by the axes
between neighboring lattice points, called the principal axes (a, b, c), and the
angles between them (α, β, γ). This unit cell and the particle placements (xi,
yi, zi) within this cell is a complete description of the system and a crystal can
be constructed by replicating the unit cell along its principal axes.

The lattice systems mentioned in Table 2.1 describe the geometry of the unit
cells in three dimensions. These systems combined with the so-called centering
types gives us what is known as the Bravais lattices shown in Figure 2.1. The
centering types are defined as follows:

• Primitive (P): Lattice points at cell corners.

• Base-centered (C): Lattice points at cell corners and one additional point
at the center of two of the faces parallel to each other.

• Body-centered (I): Lattice points at cell corners and one additional point
in the center of the cell.

• Face-centered (F): Lattice points at cell corners and one additional point
at the center of each of the faces.

The Pearson symbol is used to classify and describe crystal structures and
was originally proposed by W.B Pearson in 1958 [57]. Our description of the
Pearson symbol system is described as given by Hubbard and Calvert [34]. The
Pearson symbol system consists of three symbols in the order given below. The
letters are described in Table 2.1.

1. A lower case letter describing the crystal system (a, m, o, t, h, c)

2. A capital letter describing the lattice centering (P, C, F, I, R):

3. A number describing the number of atoms in the conventional unit cell

The Pearson symbol only considers translational and rotational symmetry
in the crystal and because of this, the Pearson symbol does not uniquely define
the symmetry group of a configuration. The 14 Bravais lattices are only 14
symmetry groups of a possible 230 if all symmetry operations are considered.

2.5. CRYSTAL STRUCTURE 25

Table 2.1: Pearson characters and their meaning. Table reproduced from Hub-
bard and Calvert [34]

Crystal System (Lattice System) Code

Anorthic a
Monoclinic m

Orthorombic o
Tetragonal t

Hexagonal/Trigonal (Hexagonal, Rhombohedral) h
Cubic c

Lattice Centering Code

Primitive P
All-faces-centered F

Body centered (Innenzentriert) I
One-face-centered C

Rhombohedral R

Note: The trigonal crystal system and hexagonal crystal system is part of the
same family and are grouped as the hexagonal crystal family. The trigonal
crystal system is split into two lattice systems, the rhombohedral system and
the hexagonal system. Where the rhombohedral system can be transformed
into the hexagonal system only with 3-fold rotational symmetry, as opposed
to the 6-fold rotational symmetry of a hexagonal lattice. The reason for the
lowered symmetry happens during the coordinate transformation as two atoms
are placed on one of the body diagonals of the hexagonal unit cell. Because
of this, we also have the R lattice centering which is specific for the hexagonal
crystal family.

26 CHAPTER 2. MOLECULAR DYNAMICS

(a) Triclinic

(b) Trigonal

(c) Monoclinic
(d) Tetragonal

(e) Cubic
(f) Orthorhombic

Figure 2.1: The 14 unique Bravais lattices. Figure reprinted from aflow.org [46,
29]

2.6. METHANE HYDRATES 27

2.6 Methane hydrates

Natural gas hydrates, or clathrate hydrates, are crystalline solids with gas mo-
lecules (guests) trapped in frozen water cavities. Multiple types of gas mo-
lecules can be trapped in these water cavities, but typical examples are meth-
ane, ethane, propane, and carbon dioxide [68]. Hydrates were unquestionably
discovered as a scientific curiosity by Humphry Davy in 1810 but might have
been discovered as early as 1778 by Joseph Priestley [59, 44]. In the 1934 Ham-
merschmidt discovered that gas hydrates were blocking gas transmission lines
[24], which propelled the interest in gas hydrates from a scientific curiosity into
a key scientific research area in the natural gas industry. In the 90s and 00s,
there has been an increasing interest in gas hydrates as climate change has in-
creased the earths temperature, and some scientists are worried the methane
hydrate stored in the permafrost regions will be released and further perpetuate
the rising temperature. Even though this might seem plausible, it is still an
open scientific question due to uncertainty in the climate models [53, 28].

In this thesis, we will keep our attention on the structure classification of
three different hydrate structures. For describing the cages of the clathrate
structures we use the notation xy where x is the number of edges of a par-
ticular face type and y is the number of face types with x amount of edges.
Clathrate hydrates usually form two types of cubic structures called sI and sII,
or a hexagonal structure called sH or just H. The smallest cubic structure, sI,
consists of 46 water molecules forming two types of cages. The sI clathrate unit
cell has two 512 cages (twelve pentagons) and six cages of the shape 51262 (two
hexagons and 12 pentagons). This clathrate has a cubic primitive lattice, which
makes the Pearson symbol cP46. The sII clathrate unit cell is much larger, con-
sisting of 136 water molecules. This type is also structured into two cage types.
Sixteen small cages of shape 512 and eight larger ones with shape 51262. This
is also a cubic primitive structure, which is represented by the Pearson symbol
cP136. A third structure, the H-structure, is less prevalent but may also be
observed. It consists of 34 water molecules forming three cages of shape 512,
two cages of shape 435663 and one huge cage of shape 51268. This is a primit-
ive hexagonal structure giving the Pearson symbol hP34. These structures are
shown in Figure 2.2.

When the guest molecules trapped in the frozen water cavities are methane,
we refer the gas hydrate as a methane hydrate. A concern about methane
hydrates found in nature is that the dissociation of hydrates may trigger slope
failure in marine sediments, which in worst-case scenarios can cause massive
tsunamis [8]. To outline the risks of events like these happening, we need to
understand the properties of methane hydrates during mechanical failure. In
molecular dynamics simulations of methane hydrate failure, the bulk of cracks
developed is situated in the grain boundaries of the material. Because the grain
boundaries are of particular interest, it is especially important to locate them in
a simulation and developing pattern recognition algorithms that automatically
find these boundaries alleviates the manual process of doing so.

28 CHAPTER 2. MOLECULAR DYNAMICS

Figure 2.2: Three clathrate hydrate structures, sI, sII and sH. Figure reprinted
from Bohrmann and Torres [7].

Chapter 3

Machine Learning

In traditional algorithms, we employ a predetermined and complete set of rules
to a problem, taking an input and producing an output. The process of creating
such an algorithm might be complicated and if the input data changes, one might
have to completely rewrite the algorithm. If the task at hand is to recognize a
cat in an image, we would have to predetermine what features constitute a cat
and figure out how the algorithm can recognize these features in an image. If
we decide the most prominent features of a cat to be e.g. the eyes and ears,
problems quickly arise if we look for a cat in an image where the cat is partially
hidden and only the tail is sticking out. To a human, there is obviously still
a cat in the image, but our algorithm will never be able to find it. If we now
instead want to find boats in an image, we would have to completely rewrite
our algorithm and again figure out in advance what features constitute a boat.
This is a tedious and near impossible task.

Machine learning also takes an input and produces an output but we now
leave it up to the machine to implement the inner workings of the algorithm.
The machine is, of course, not producing the algorithm entirely on its own. We
do impose some more general rules, or more precisely, a framework for how the
machine will produce the algorithm. These different frameworks are what we
will be discussing in depth in this chapter.

The theory in this chapter is mostly based on the introduction to machine
learning for physicists, by Mehta et al. [47].

29

30 CHAPTER 3. MACHINE LEARNING

3.1 Categories of Machine Learning

Machine learning is traditionally grouped into three categories; supervised learn-
ing, unsupervised learning, and reinforcement learning.

Supervised learning is defined as training the machine by presenting a correct
answer to the problem at hand. We need a dataset which, in some way or
another, has labeled each data point, e.g. and image, with the correct answer of
what we want the machine to be able to recognize. In the training process, the
machine learning algorithm presents what it thinks the answer to the problem
is, and if it is wrong, we tell the machine to update and change the algorithm
until we are satisfied with the results that are produced.

As opposed to supervised learning, when doing unsupervised learning the
machine is never told what the correct answer to the problem is. A typical
example of an unsupervised task is to cluster data points into groups based on
distance and density metrics applied to the dataset. We do not tell the machine
which cluster a point belongs to, and it has to decide solely based on predefined
metrics. Another unsupervised task is the autoencoder, where the objective is
to reproduce the input given to the machine. This is a powerful framework
for e.g. removing noise from the dataset. We will go in depth on supervised
learning and unsupervised learning in the following sections.

Reinforcement learning exposes the model to an environment where it through
trial and error and previous experiences, trains itself to make specific decisions.
A typical user case for reinforcement learning is training a machine to play
videogames and is only mentioned here for completeness.

3.2 Bias-Variance Tradeoff

When doing any kind of learning or fitting to a dataset, we need to differentiate
between fitting and predicting. We only have access to a limited subset of
data stemming from an unknown function, and the objective is not to fit a
model arbitrarily well to the known data points. The aim is to construct a
model that generalizes and predicts well when given new data points from the
unknown function. Because of this, we usually use two different performance
measures when fitting the model. The in-sample error (training error) Ein
which is a measure of how well the model fits the data it has access to, and
the out-of-sample error (test error) Eout which is a measure of how well the
model performs on new data unknown to the model during training time. To
imitate a set of unknown data points, it is standard practice to split the subset
of data we have access to in a training set and a validation set where we use the
models performance on the validation set as a proxy for the out-of-sample error.
Assuming the training set to be sufficiently large and a good representation
of the true function f , the subsampling into training and validation sets is
unbiased.

In Figure 3.1a we see the out-of-sample error and the in-sample error as
a function of the amount of training data. The assumption in this graph is
that the data is drawn from a complex function, and we are using a too simple
model to learn the exact true function. Because the model is too simple the
in-sample error increases because it does not have the complexity to represent
the true function it is trying to approximate. The out-of-sample error, on the

3.2. BIAS-VARIANCE TRADEOFF 31

other hand, is decreasing as the number of data points increases. This is because
increasing the amount of data reduces the sampling noise making the training
data a progressively better representation of the true function. With an infinite
amount of data, the out-of-sample error and the in-sample error converges to
the same value. The bias is the best error our simple model can produce with
an infinite amount of data.

The reason we had a bias in our model was that we did not create a suffi-
ciently complex model to represent the data we are seeing. The most intuitive
thing to do is simply increase the complexity of the model. This would be a
good idea if we indeed had an infinite amount of data, but that is never the
case. The second quantity in Figure 3.1a, which we have not discussed, is the
variance. The variance represents the difference between the out-of-sample er-
ror and the in-sample error. Or in other words, how well the in-sample error
reflects the out-of-sample error, and by extension, how much worse we would ex-
pect the model to do on new unseen data from the same complex true function.
In Figure 3.1b, we see what is known as the bias-variance tradeoff. When using
a complex model, we tend to decrease the bias of the error as we are able to
approximate the complex true function to a higher degree when the complexity
is higher. However, because our data is finite, the model starts to fit too well
to the training data, including the sampling noise, and the out-of-sample error
starts increasing again. Because of this, we need to use a model that finds a
good compromise in the bias-variance tradeoff, using just the right amount of
complexity.

(a) (b)

Figure 3.1: Two illustrations of the bias-variance tradoff. As the amount of
training data increases towards infinity, the out-of-sample error and the in-
sample error converges (a). With a finite amount of data, a complex model will
fit very well to the training data but generalize poorly (high variance), while
a too simple model will not be able to represent the true underlying function
at all (high bias). The optimal model is a compromise between the two (b).
Figures reprinted from Mehta et al. [47].

32 CHAPTER 3. MACHINE LEARNING

3.3 Linear Regression

In Section 3.2, we considered the reasoning for why, when fitting a model to a
dataset, we are primarily concerned with minimizing some out-of-sample error.
We will make this more concrete by presenting an example of a simple machine
learning algorithm, linear regression. Even though machine learning is mostly
associated with neural networks, which we will discuss later in the chapter, ma-
chine learning as a whole utilizes several techniques developed in the fields of
statistics and statistical learning, and linear regression is one such technique.
Linear regression and the method of least squares is usually, although not con-
clusively [73], attributed to Carl Friedrich Gauss and is a staple of statistical
learning. Linear models are stable but often inaccurate due to large assumptions
made on the dataset. For a linear model to correctly represent our dataset, we
need to assume that the data is indeed linearly distributed, which we have no
guarantee of being a proper assessment.

Presume we we have a dataset with n observations D = {(yi,xi)}ni where
xi ∈ Rp+1 is the i-the observation and yi is a scalar response to some unknown
linear relationship of the observation vector. We add the +1 to the dimensional-
ity of the observation vector as a placeholder for the intercept. In the context of
machine learning the individual values of the observation vector is often referred
to as features. We define our model by assuming there exists a true function f
that generated the responses yi through the relationship

yi = f(xi,βexact) + εi, (3.1)

where βexact ∈ Rp+1 are the unknown parameters or coefficients we want to
approximate and εi is some independent and identically distributed noise with
mean µ and standard deviation σ. We do not know the function f which
generated the samples, but for a linear regression model we make the hopefully
warranted assumption that f is just the identity function and so the relationship
becomes

yi = f(xi,βexact) + εi = xTi βexact + εi (3.2)

To approximate the function parameters βexact we minimize a cost function
C(yi, h(xi;β)) for evaluating our models ability to make predictions on the data-
set, where h(xi;β) = xTi β is our approximation to the underlying true function
f . For ordinary least squares linear regression the most popular cost function
of choice is the residual sum of squares (RSS):

RSS = min
β∈Rp+1

n∑
i=1

(xTi β − yi)2, (3.3)

where i runs over all the samples in the dataset. For a more compact repres-
entation of the entire dataset we write this equation with matrix notation

RSS = min
β∈Rp+1

||Xβ − y||22. (3.4)

A linear regression example is shown in Figure 3.2.

3.4. OVERFITTING AND REGULARIZATION 33

Figure 3.2: Linear regression example. Line fitted to a linear dataset with
Gaussian noise and a residual sum of squares cost function.

3.4 Overfitting and Regularization

As discussed when fitting a model to a dataset, what we want is to minimize the
out-of-sample error (test error), not the in-sample error (training error). As we
increase the complexity of our model, the training error will generally decrease
but as we saw from the bias-variance tradeoff, this does not generally decrease
the test error. When the complexity of the model reaches a point where the
testing and training errors start to diverge, we say the model is overfitting to
the data. As we see from Figure 3.3, increasing the complexity of the model
we are able to fit the training data arbitrarily well. The true function which
generated the data is a simple second-degree polynomial function with some
added Gaussian noise, and even though a polynomial of degree 25 is a good fit
to the dataset, we can not expect to make good predictions on new data outside
of the domain of the training set. The model is overfitted. To mitigate the issue
of overfitting, we introduce the concept of regularization. Regularization is a
method for punishing the model for adding more complexity. We can view this
as adding friction to the model, and for the model to increase in complexity, the
benefits for doing so must overcome the friction working against it.

The most widely used methods for adding regularization to a model is the
so-called L1 and L2 regularization, which in linear regression is named Lasso
and Ridge regression, respectively.

For ordinary least squares regression, we sought to minimize the residual
sum of squares

min
β∈Rp+1

||Xβ − y||22. (3.5)

To add a ridge penalty to this equation, we simply add the square of the
proposed weights β

min
β∈Rp+1

||Xβ − y||22 + λβ2, (3.6)

where λ is a tuning parameter regulating the strength of the regularization. As

34 CHAPTER 3. MACHINE LEARNING

Figure 3.3: Polynomial regression on a dataset generated from a second-degree
polynomial. As the complexity of the model increases the model starts overfit-
ting to the dataset which would make worse predictions on new data.

with ordinary least squares, we are trying to minimize the cost function but the
added term λβ2 is only small if the coefficients are kept small. As we increase
λ, we will essentially push the coefficients towards zero. The reason this gives
better out-of-sample results is because of the bias-variance tradeoff. Increasing
λ corresponds to decreasing the variance and increasing the bias. Finding the
perfect size of λ is typically done through testing different values on a validation
set and monitoring the RSS error.

As discussed, ridge regression decreases all coefficients towards zero. The
disadvantage of this approach is that generally, none of the coefficients are ac-
tually set to zero unless λ → ∞. This essentially means that even though the
variance of a complex model is greatly reduced, the complexity is never com-
pletely removed from the model. Lasso regression, on the other hand, seeks to
minimize the quantity

min
β∈Rp+1

||Xβ − y||22 + λ|β|. (3.7)

Lasso regression has the effect of forcing some of the coefficients to be exactly
zero. This effect is perhaps not completely clear from equation 3.7, so we use
Figure 3.4 to build an intuitive understanding. Increasing and decreasing the
tuning parameter λ corresponds to the decrease and increase of the blue areas of
Figure 3.4, and by doing so we also increase and decrease the valid regions of the
residual sum of squares. We can see that because ridge regression corresponds
to a constraining region of a circle, the point at which the RSS contours and the
constraint meets is generally not at one of the axes and hence the coefficients β1
and β2 will not be zero. For lasso regression, on the other hand, the corners of
the constraint follow the axes and so the points at which the contours and the
constraint meet is likely to be at a point where one of the coefficients is zero. In
higher dimensions, many of the coefficients can be set to zero at the same time.

3.5. NEURAL NETWORKS 35

Figure 3.4: Red circles represents regions of constant residual sum of squares.
The blue are constraint regions set up by lasso regression (left) and ridge re-
gression (right). Figure from Hastie [25]

3.5 Neural Networks

Artificial Neural Networks (ANN) are vaguely inspired by the brain. The brain
is of course far more complicated than any neural network but the brain is,
in a sense, the most powerful computer we know of and trying to replicate
some of the properties of the brain in a computer seems like a good starting
point for creating artificial intelligence. The brain consists of billions of nerve
cells called neurons. These neurons are complicated biological structures, but
their general purpose is simple. The charged chemicals outside and within the
neuron can move through channels in the cell membrane, which raises or lowers
the electrical potential between the outside and inside of the cell. This is called
the membrane potential. If the membrane potential is raised to some threshold,
the neuron discharges by firing an electrical pulse down what is called the axon.
This axon is connected to many other neurons in its vicinity and transmits some
of the electrical charge to these neurons, which in turn raises their membrane
potential. Now, what we are really interested in is not the mechanical and
biological properties of the neurons but how they actually learn anything new.
This is known as neural-plasticity and is described by Hebb’s rule. Hebb’s
rule states that the strength of connections between neurons is proportional to
the correlation of firing between them. This means that if two neurons have
repeatedly fired at the same time, both of them will most likely fire if just one
of them is stimulated.

In 1943 a mathematical model of a neuron was first presented by McCulloch
and Pitts. This model was simple:

1. A set of inputs xi to the neuron, where xi is the electrical charge trans-
ferred from other neurons.

2. A set of weights wi, which corresponds to the connection strength between

36 CHAPTER 3. MACHINE LEARNING

the other neurons and the one we are looking at.

3. An adder
∑N
i=1 that sums the weighted inputs xiwi, which equates to the

membrane potential collecting the electrical charge.

4. An activation function f , which decides whether the neuron fires for the
current membrane potential.

We summarize this model with the equation

yi = f

 n∑
j=1

wjxj + bj

 = f(z), (3.8)

where yi is the output from a single neuron, xj are the inputs, wj are the
weights, z is the weighted sum of the inputs and f is the activation function.
Of course a lot has happened in the field of neuroscience since this model was
developed and it is unfortunately not very realistic. However, as we shall see
later in this chapter, this is precisely the mathematical model we are going to
use for developing an artificial neural network.

3.5.1 Multilayer Perceptron

We have mentioned one of the major tasks of supervised learning, regression.
Another widely used objective for a supervised algorithm is classification. In
this task, we have a set of inputs that can be categorized into two or more
classes, e.g. pictures of cats and dogs. The main difference between regression
and classification is the output variable. In regression, we output a continuous
variable where our model is trying to fit an underlying true function. Classi-
fication, on the other hand, outputs a discrete number representing a class of
which the input belongs. We are still in practice fitting some function to the
dataset, only now we are not concerned with the function’s fit to the dataset
itself, we instead want to find a function which separates the data in the best
possible way.

Classifiers computing a linear combination of the input vectors and returning
a binary response were called perceptrons in the engineering literature in the
1950s [25]. Rosenblatt’s perceptron learning algorithm [63] is the foundation
for all neural network algorithms developed in the machine learning revolution.
The Rosenblatt perceptron algorithm is a simple binary classifier that minimizes
the distance of misclassified points to the linear decision boundary. We define
the cost function

C(θ,θ0) =
∑
i∈M

(−1)1−yi(xTi θ + θ0), (3.9)

where the sum is over all instances i in the set of misclassified points M, yi
is the correct response being either 0 or 1, θ is the parameters and θ0 is the
bias1. To construct the more powerful multilayered perceptron we, as the name
suggests, simply stack these perceptrons into layers, as shown in Figure 3.5b.
The layers between the input and output layers are referred to as hidden layers.
When generalizing the perceptrons to use any kind of activation function, we

1It is standard practice to use a different notation of the parameters when referencing
standard regression techniques (β), and neural network techniques (θ).

3.5. NEURAL NETWORKS 37

usually refer to them as neurons or nodes. Every circle in this figure represents
one neuron that takes as input the output from the previous layer. The neuron
calculates the weighted sum of the inputs before using a designated activation
function to introduce non-linearities to the network, as shown in Figure 3.5a.
This figure is, of course, exactly the mathematical model defined in the intro-
duction to this chapter, Equation 3.8. This representation of a multilayered
perceptron where every neuron in a layer is connected to every neuron in the
next layer is a so-called fully-connected neural network. When the network ar-
chitecture is as presented in this section the terms multilayered perceptrons and
neural networks can be used synonymously, however the term neural networks
is a lot broader and includes more complicated network architectures.

Figure 3.5: Visual representation of tha calculations done by a single neuron (a)
and the architecture of a full-connected neural network. Figure reprinted from
Vieira et al. [81]

It is not obvious that stacking neurons into layers is automatically going to
improve the prediction results of a model. To explain why this is, in fact, a
good idea, we need to refer to the universal approximation theorem. The uni-
versal approximation theorem states that given an activation function that is
continuous, non-constant and bounded, any continuous function can be approx-

38 CHAPTER 3. MACHINE LEARNING

imated by a neural network within an arbitrarily small error using only a single
hidden layer containing a finite number of neurons.[33]. This entails that in
practice, if we are approximating a continuous function, only one hidden layer
is needed. The theorem does not, however, state how many neurons are needed
for the approximation and for complex machine learning problems, it has been
empirically proven to be more efficient to increase the depth rather than the
width of the network [66]. Why increasing the depth is beneficial becomes more
clear if we view each layer in a network as compressing and extracting the most
relevant features of the previous layer and in this way improving the networks
ability to generalize.

3.5.2 Network Topology

The first thing we need to decide when building a neural network is the archi-
tecture of the network. This means deciding how many layers and neurons we
want the network to utilize. We can use an arbitrary number of hidden layers
in our neural network depending on the nature of the problem. Even though be
may decide to use as deep of a network as our computational capacity allows, it
is likely not necessary as we know from the universal approximation theorem.
The number of layers and nodes are examples of what we call hyperparameters.
These parameters are set before any training has taken place, contrary to the
weights and biases, which are updated and adjusted during training time. There
is no obvious way of deciding which hyperparameters and architectures will work
best for a given problem, and we usually need to brute force the problem by
running the network with several combinations of hyperparameters. A standard
way of deciding on hyperparameters is to test the network with several random
values within a probable span of the parameters. If any of the parameters show
promise and predicts well on the training and validation set, we may choose to
narrow down our span of the parameter around this value and retrain the model
in this parameter range.

3.5.3 The Cost Function

The cost function is a function that maps a response to a real number quantifying
how the algorithm is performing. The RSS error mentioned in Section 3.3 is one
example of a cost function used for regression, which evaluates the distance of a
set of data points to a proposed model. We seek to minimize this cost function
to get an optimal result for the error of the model. In classification problems,
we are trying to find a function that separates the data into a given number of
classes. The perceptron defined in Section 3.5.1 is one such cost function.The
perceptron is an example of a so-called hard classifier. It uses a linear boundary
to separate the classes, and the cost function is a step function that classifies
the output as either correct or wrong with respect to this linear boundary. A
data point that is classified correctly and far away from the decision boundary
is viewed as just as correct as a correctly classified point right next to the
boundary. Because of this, there is no sense of how wrong or how correct the
classification actually is. In most cases, it is more advantageous to use a so-
called soft classifier. A soft classifier maps the linear output to a probability by

3.5. NEURAL NETWORKS 39

using an activation function. One way to do this is to use the sigmoid function

P (yi = 1|xi,θ) =
1

1 + e−x
T
i θ

= f(xTi θ),

P (yi = 0|xi,θ) = 1− P (yi = 1|xi,θ),

(3.10)

where xi is a data point and θ are the weights we wish to learn from the data.
The sigmoid function compresses the linear combination between 0 and 1, which
we can view as a probability. If the probability is above 0.5, we classify a point
as part of class 1 and as class 0 otherwise. We still set a hard boundary between
the classes, only now we have a sense of how confident the model is of the
classification result. We can combine these two expressions into a single cost
function evaluated on the dataset D

L = P (D|θ) =

N∏
i=1

[
f(xTi θ

]yi [
1− f(xTi θ)

]1−yi
, (3.11)

where yi is the correct class of a data point xi. This expression is called the
maximum likelihood estimation and is the likelihood of seeing the data under
our current model. By maximizing it, we find a combination of model para-
meter values that maximizes the probabilities. In practice, we normally take
the negative logarithm of this expression, also called to cross-entropy, as this is
more computationally convenient. The probabilities are never higher than one,
and by taking the repeated product of the probabilities, we will most likely run
into underflow errors for a large dataset. Instead, we minimize the negative sum
of logarithms to avoid this problem,

l = −
N∑
i=1

yilog[f(xTi θJ)] + (1− yi)log[1− f(xTi θ)]. (3.12)

When dealing with a binary response, we just used the scaler values 0 and
1 for the possible classes. To label the responses of a multiclass classification
problem we use so-called one-hot encoded vectors to represent the responses

yi = (0, 1, · · · , 0), (3.13)

where the placement of the 1 indicates which class a data point xi belongs to,
and the rest of the values are zeros. This particular example then belongs to
class 2. To evaluate datasets containing more than one class we usually use
the softmax function which is a generalization of the sigmoid function. The
probability of a data point xi belonging to a particular class c′ when evaluated
with the softmax function is given by

P (yic′) = 1|xi,θ) =
e−x

T
i θc′∑C−1

c=0 e
−xTi θc

, (3.14)

where yic′ refers the the c′-th component of the one-hot encoded vector yi. This
gives us the likelihood function

L = P (D|θ) =

N∏
i=1

C−1∏
c′=0

[P (yic′ = 1|xi,θc′)]yic′ [1− P (yic′ = 1|xi,θc′)]1−yic′ .

(3.15)

40 CHAPTER 3. MACHINE LEARNING

Again we do not wish to maximize this function, but rather minimize the neg-
ative log-likelihood

l = −
N∑
i=1

C−1∑
c′=0

yic′ log [P (yic′ = 1|xi,θc′)] + (1− yic′)log [1− P (yic′ = 1|xi,θc′)] .

(3.16)
We can see that for C = 1 this reproduces the cross-entropy for the sigmoid
function.

3.5.4 Accuracy, Precision and Recall

The cost function evaluates how well the model is performing, and by minimizing
this function, we can find the optimal combination of parameters. The cost
is not a very intuitive measure of how well the model is doing, though. We
need to use a cost function for training the model, but we can create other
measures to make it easier to interpret the model results. One such measure
is the accuracy of the model. For classification tasks, we can simply calculate
the percentage of correctly classified data points, which is easy for humans to
interpret. The accuracy in itself is not a perfect measure of the performance
as the cost may still be improving even if the accuracy stays the same. This
is because with a soft classifier we might not always be improving the cost by
moving the decision boundary in a way that reclassifies misclassified data points.
Instead, an improvement might be a movement of the boundary in such a way
that the algorithm is more certain of the points which are correctly classified.
If the cost has improved, the model has become a better classifier even though
the accuracy stays the same.

The accuracy is an easy way to interpret the classification results, however,
for a classification problem with few classes, it is not always to be trusted.
Imagine we have a heavily skewed binary dataset with responses of 90 percent
0s and 10 percent 1s. If our algorithm guesses everything to be zeros, we get
an accuracy of 90 percent. This looks like a good result, but in reality, the
algorithm is useless as no prediction has taken place at all. Let us say that
for this type of dataset, we really care about the classifiers ability to predict
the least prevalent class. A better measure of the performance would then be
the recall. The recall is defined as the ratio of true positive classifications of a
certain class over the possible correct classifications of this class.

Recall =

∑
TP∑

TP + FN
, (3.17)

where TP are true positives and FN are false negatives. One would typically
calculate the recall of the least represented class in the dataset. In the previous
example, where all samples were classified into class 0, the recall of class 1
would be 0, which is a terrible classifier if this is a class we want to be classified
correctly.

If we imagine the same dataset as before, only this time we are not as
concerned with the classifiers ability to predict the 1s; we mostly care that the
data points actually classified as 1s are indeed 1s. In this case, we would use
the precision performance measure. The precision is defined as the ratio of true
positive classifications of a certain class over the total classifications into this

3.5. NEURAL NETWORKS 41

class.

Precision =

∑
TP∑

TP + FP
, (3.18)

where TP are true positives and FP are false positives. If we have a very
high precision of a certain class, we can be reasonably certain that the classifier
will not misclassify any points of other classes into this one. Using the skewed
dataset as before and evaluating the 0s class, this would give a precision of 90
percent.

In Figure 3.6, we can see the relationship between the predicted labels and
correct labels of the data points.

Figure 3.6: Illustration of accuracy, precision and recall. Figure reprinted from
Ma et al. [43].

3.5.5 Gradient Descent

As mentioned in the previous sections, no matter what algorithm we are using
we always want to find a set of parameters which minimizes some cost func-
tion C(X, g(θ)). For complicated models this is not necessarily an easy task.
Especially for neural networks with several hidden layers, this becomes very
complicated as the cost function depends on the parameters of the entire net-
work. For a non-convex cost function, there might also be several local minima
which makes it even more difficult to find the optimal global minimum of the
function.

A powerful method for finding the minimum of the cost function is to use so-
called gradient descent. The final input to the cost function will be the output
from the final layer, the final layer depends on the output of the previous layer,
and so on. Hence, when minimizing the cost function, we are minimizing it as a
function of all the previous layers. This is a complicated function in potentially
high dimensional space, which makes it hard to optimize. In gradient descent,
we take advantage of the fact that all the layers are nested, and so the gradient
will be a simple chain-rule calculated from the cost-function and all the way
back to the first layer.

Gradient descent is an iterative approach to finding the minimum of the
cost function. We find the derivative of the cost function with respect to the

42 CHAPTER 3. MACHINE LEARNING

parameters and iteratively move in the direction of the negative gradient

θlt+1 = θlt − µ∇θltC(X, g(θlt)) (3.19)

where ∇θC(X, g(θ)) is the gradient of the cost function at iteration t and
µ is a hyperparameter called the learning rate. The learning rate controls how
fast we move in the direction of the negative gradient, towards the minimum.
Choosing an appropriate learning rate is paramount for converging towards the
correct minimum. Choosing the learning rate to small, Figure 3.7a, increases the
training time and for non-convex multidimensional space increases the chances
of getting stuck in local minima. With too large learning rate, Figure 3.7c and
d, we bounce around in the data space and can even start moving away from
the minimum. For just the right training rate, we move more or less directly
towards the global minimum. In practice, the learning rate is rarely a fixed
constant. Several ways of updating the learning rate exist, but we will focus on
one of the most widely used updating algorithm called ADAM [37].

Several algorithms for updating the learning rate utilizes momentum in their
calculations. The idea behind this is that by combining the gradient at a current
point with a constructed “velocity” depending on the gradient from the previous
steps, we can make a smoother descent to the minimum as the direction of the
gradient used when updating the weights are also dependent on the direction
of the velocity, and as an extension, on the direction of the previous gradients.
When using momentum we might also be able to avoid getting stuck in local
minima because the size of the learning rate also depends on the previous gradi-
ents. The ADAM optimizer adapts the learning rate by storing an exponentially
decaying running average of the gradients and squared gradients. This is often
referred to as the first and second momenta, mt and vt, respectively. These
parameters are initialized to zero, which makes them biased towards zero, espe-
cially during the first iterations. To counteract this bias, the running averages
are divided by a bias-correcting term. The update rule is defined by

m0 = 0 ← Initialize,

v0 = 0 ← Initialize,

mt = β1mt−1 + (1− β1)gt ← First momentum,

vt = β2vt−1 + (1− β2)g2t ← Second momentum,

m′t =
mt

1− βt1
← Bias correction,

v′t =
vt

1− βt2
← Bias correction,

θt+1 = θt −
µ√
v′t + ε

m′t ← Update weights,

(3.20)

where gt is the gradient with respect to the parameters at iteration t. The
decay parameters β1 and β2 should both be close to, but less than 1. Because
the bias is greatest shortly after initialization the bias correction is constructed
to decay for each iteration. The ε in the denominator of the final update of
the weights is just a small number to avoid division by zero. The authors of
ADAM proposed default values for the decay rates β1 = 0.9 and β2 = 0.999
which in most cases will give good learning outcomes, and because the learning

3.5. NEURAL NETWORKS 43

Figure 3.7: Illustration of the importance of choosing the correct learning rate
for efficient learning. Too small learning rate gives slow convergence (A), and
too high learning rate causes the descent to bounce around and can even move
away from the minimum (C and D). With a correct learning rate we move
directly towards the minimum(B). Figure reprinted from Mehta et al. [47].

rate automatically adapts throughout the training process we most likely do not
need to do a parameter search for the learning rate at all.

Calculating the gradient for a large machine learning network can be quite
computationally expensive and in practice we use what is called stochastic gradi-
ent descent with mini-batches. A minibatch is a subset of the training data used
to approximate the gradient for the entire dataset. Instead of only updating the
weights once for every complete run through the dataset, we now update the
weights for every minibatch. This approach greatly decreases convergence time
for high dimensional datasets. This stochastic approach also makes the gradient
descent a bit more erratic, which is not necessarily a negative consequence as
the stochasticity will make it less susceptible to getting stuck in isolated local
minima.

3.5.6 Activation functions

The cost functions defined in the Section 3.5.3 depended on an activation func-
tion in the output layer which transformed the input to a probability. For a

44 CHAPTER 3. MACHINE LEARNING

neural network, we are using several hidden layers in the network architecture,
which all have activation functions applied to them. The activation functions
applied to hidden layers do not have to be transformed into probabilities, and
in principle, we can use any continuous function we want. There is, however,
a few functions which have been proven to perform particularly well in neural
networks, and we will go through them in this section.

The most important purpose of an activation function is to induce non-
linearities into the network. Without these non-linearities, there is no point in
using several layers in the network, as we could simply rewrite the weights to a
single layer

y = W1(W0x+ b) + b1

= W1W0x+W1b0 + b1

= Wx+ b,

(3.21)

where W = W1W0 and b = W1b0 +b1. By using a non linear activation function
this transition is no longer possible and the network can learn different things
in different layers.

There is not a single best activation function, and in theory, any non-linear
function will suffice. There are however a few things to keep in mind when choos-
ing an activation function, which will be illustrated through the most popular
choices of activation functions.

Sigmoid

The sigmoid function was mentioned in Section 3.5.3 as an activation function
applied to the output layer. This function can be used anywhere in the network,
not just in the output layer. The sigmoid constrains the output between 0 and
1, which was a desirable trait when we wanted to transform the input into
probabilities. There is a problem with this behavior, though. We want to
minimize the cost function with respect to all the weights of the network and
the gradient of the sigmoid function becomes saturated as it is close to flat
in the asymptotic domain. The sigmoid is also not zero centered, which is
not desirable because the output will always be positive. Because of this, the
gradient of the output in a layer will all be either positive or negative. This
could introduce a zig-zag pattern in the gradient descent, which is not optimal.
This is not a significant complication, only an inconvenience as it makes training
less accurate.

Hyperbolic tangent

The hyperbolic tangent (tanh) constrains the output between -1 and 1 which
solves the problem of non-zero centering we encounter with the sigmoid function.
However, we still have the problem of saturated gradients as the gradient still
becomes approximately zero as we approach the asymptote.

3.5. NEURAL NETWORKS 45

Rectifier Linear Unit

Rectifier linear unit (ReLU) has become the go-to activation function for deep
neural networks as it has been shown to greatly accelerate the convergence of the
neural network [39], which is argued to be because of the non-saturating shape.
It is, however, not without issues. If, during training, the gradient of a neuron
reaches the negative domain, the neuron will “die” and never activate again as
the gradient from this point on will always be zero and never update. This issue
can largely be mitigated by using a proper learning-rate during backpropagation.

(a) Relu (b) Hyperbolic tangent

(c) Sigmoid

Figure 3.8: Figure of the Relu (a), Hyperbolic tangent (b) and Sigmoid (c)
activation functions.

3.5.7 Initialization

Even though Rosenblatt introduced the perceptron already in 1958, the depth
of the neural networks was, for a long time, quite shallow. A reason for this was
a common problem of unstable gradients. Gradients for randomly initialized
weights tended to vanish as the network got deeper, thus the training process
would halt. In 2010 Glorot and Bengio [20] examined the output variance from
layers using sigmoid and tanh activation functions and found that initializing
the weights using the standard normal or uniform distribution resulted in the
variance of the output within a layer to increase from layer to layer resulting in
saturated learning. They proposed using a normalization scheme for initializing
the weights, often called Xavier initialization, which lets the variance of the ran-
dom weights drawn during initialization depend on the size of the incoming and
outgoing layer sizes. This keeps the variance approximately constant throughout
the network, and as a result, the chance of saturation is greatly reduced. Their
reasoning in proposing the normalization scheme was to make sure the variance
of the input and output of a layer would be as close as possible, and the same

46 CHAPTER 3. MACHINE LEARNING

Table 3.1: Initialization schemes

Init type Uniform [-r, r] Normal

Xavier r =

√
6

ninputs + noutputs
σ =

√
2

ninputs + noutputs

He r =
√

2

√
6

ninputs + noutputs
σ =
√

2

√
2

ninputs + noutputs

should be true for the variance of the gradient during backpropagation. They
found it is not possible to guarantee both, unless the number of nodes for the
input and output are the same, and using an average between the outgoing and
incoming layer sizes was the best compromise. In 2015 He et al. [26] proposed
a similar scheme which extended the work of Glorot and Bengio to include the
relu activation function. Both schemes can be seen in Table 3.1.

3.5.8 Running the Neural Network

The input to a neural network consist of a set of data point with each data point
consiting of N features xT = [x0, x1, · · · , xN]. The output from the first layer
will be

a1j = f1(z1j) = f1

N0∑
i=1

θ1ijxi + b1j

 , (3.22)

where the j refers to individual neurons in current layer, i to the neurons in
the previous layer, the superscript refers to the layer as a whole and f is some
activation function The input to the second layer will now be

a2j = f2(z2j) = f2

N1∑
i=1

θ2ija
1
i + b2j


= f2

N1∑
i=1

θ2ijf
1

N0∑
k=1

θ1ikxk + b1i

+ b2j

 .

(3.23)

This can be generalized for any layer l

alj = f l(zlj) = f l

N l−1∑
i=1

θlija
l−1
i + blj

 , (3.24)

where zlj is the linear weighted sum

zlj =
∑
i

θlija
l−1
i + blj . (3.25)

3.5.9 Backpropagation

The actual implementation of gradient descent is done through what is known
as backpropagation. Computing the derivative of the cost function with respect

3.5. NEURAL NETWORKS 47

to all the parameters is an immense computational task. Fortunately, we can
take advantage of the structure of the network defined by Equation 3.24. The
cost function C depends directly on the output from the last layer aL, which
in turn is dependent on the previous layers, making the cost function indirectly
dependent on all the layers of the network. Utilizing this fact by using the chain
rule, we can implement a set of equations for the backpropagation algorithm.
We assume the network consists of L layers where we use l = 1, · · · , L for
indexing the individual layers. We also denote θlij as the weights connecting the
i-th neuron in layer l − 1 to the j-th neuron in layer l. The output of a layer l
is defined as in Equation 3.24. We start by defining what is referred to as the
error of the j-th neuron in the l-th layer, denoted as δlj . This error is simply

the change in the cost function with respect to the input zlj .

δlj =
∂C
∂zlj

=
∂C
∂alj

∂alj
∂zlj

=
∂C
∂alj

f ′(zlj) (3.26)

where f ′(zlj) is the derivative of the activation function f with respect to the
weighted input sum.

The error function can also be interpreted as the derivative of the cost func-
tion with respect to the bias

δlj =
∂C
∂zlj

=
∂C
∂blj

∂blj
∂zlj

=
∂C
∂blj

(3.27)

where the last term is 1, as is evident from the definition of zlj in equation 3.25.
With these definitions in place we can define the backpropagation equations
using the chain rule.

δlj =
∂C
∂zlj

=
∑
i

∂C
∂zl+1
i

∂zl+1
i

∂zlj

=

(∑
i

δl+1
i θl+1

ij

)
f ′(zlj)

(3.28)

and finally we define the gradient of the cost function with respect to the weights
θl

∂C
∂θljk

=
∂C
∂zlj

∂zlj
∂θljk

= δlja
l−1
k (3.29)

By applying these equations we say that the gradient is flowing down the net-
work as we are starting from the last layer and utilizing the gradient of the
previous layer to calculate the gradient in the next. By combining the gradient
with a learning rate µ we now know how much to change each and every weight
in the network according to the gradient descent algorithm.

One complete forward and backward pass through the entire dataset is called
an epoch.

48 CHAPTER 3. MACHINE LEARNING

3.5.10 Regularization in Neural Networks

Deep neural networks are prone to overfitting, and because of this we want to
add regularization to the network like we did with linear regression. We can
regularize neural networks in the same way by adding an L1 or L2 term to
the cost function. Another option is to use so-called dropout in the network.
Dropout was introduced by Srivastava et al. [70] in 2014, and the technique is to
randomly ignore some neurons during training time. That is, for each training
sample, randomly choose some neurons which are not included in the forward
and backward pass, shown in Figure 3.9. The idea is that fully-connected layers
develop a high co-dependency between each other which leads to overfitting,
and by randomly dropping some of the neurons each iteration we are forcing
the layers to not depend as highly on the previous layers of the network. This
can be interpreted as a sampling of the neural network within the complete
neural network where only the parameters of the sampled network is updated.
The probability of a neuron being dropped is known as the dropout rate. When
we drop some neuron during training time, the output from this layer will be
smaller than if the complete layer was run. During testing of the network, the
full network is run without the dropout. Because of this, it is essential to scale
the output from the layers where dropout was applied with the dropout rate.
This scaling can either be done during testing time by multiplying the output
with the dropout rate which scales down the output or, more popularly, during
training time by dividing the output by the dropout rate which scales up the
output. Dropout has become a very popular technique due to its effectiveness
but also because it reduces the computation time of the network as opposed to
L1 and L2 regularization which adds an additional term to the cost function,
effectively increasing the computation time.

Figure 3.9: Fully-connected network without dropout (a) and with dropout (b).
The crossed out neurons of (b) are the dropped units. Figure reprinted from
Srivastava et al. [70].

3.6 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are closely related to fully-connected
neural networks. Nevertheless, there are some clear differences in the two ar-

3.6. CONVOLUTIONAL NEURAL NETWORKS 49

chitectures. CNNs use small weight matrices, often called kernels, to act as
filters on the input data. This approach takes advantage of highly structural
input data, like images, effectively finding local areas of interest in the input. If
we imagine the input being an image, we can manually construct a filter that
looks for edges (Figure 3.10) in the input, and by convolving the image with
the filter, reveal hidden information in the data. This is essentially what a con-

(a) (b) (c)

Figure 3.10: a: Gray scale picture of methane hydrate sI.
b: Sharpened version of figure (a) convolved with the matrix below.
c: Edge filter applied to figure (a), using the matrix below. Only the edges of
the atoms remain in the picture.

volutional network is doing, only we do not predefine what the filter is going
to look for, this is done through the training of the network weights. The most
important layers in a CNN are these convolutional layers, with small weight
matrices acting like filters. These matrices are usually small, with standard
sizes being 3×3, 5×5, and 7×7. Unlike fully-connected neural networks which
only use one weight matrix per layer, a convolutional layer can stack several of
the filter’s outputs, often called feature maps, in a third dimension, as shown
in Figure 3.11. Because of this, the filters must also have a third dimension
corresponding to the depth dimension of the input.

Figure 3.11: Example of a convolutional network. Reprinted from LeCun et al.
[41].

The rationale for stacking the feature maps is that different filters within a

50 CHAPTER 3. MACHINE LEARNING

layer may find different types of information in an image, like blobs, corners,
edges, etc., and by stacking the output from these filters, we can collect more
information in each layer.

The mathematical definition of discrete convolution is

O(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (3.30)

where O is the output from the convolution, often called the feature map, I is
the image and K is the kernel. This function is commutable and can equivalently
be written as

O(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (3.31)

When viewing I and K as two-dimensional matrices, we see that we may
encounter negative indices. We will discuss how this is handled in practice but
because of this, the latter equation is easier to implement in a machine learning
algorithm as there is less variation in the range of valid values of the kernel
indices. When doing convolution, we are essentially sliding a filter over the
image, taking the dot product between the overlapping image pixels and filter
values. In the correct mathematical definition of convolution above, we are
essentially flipping the kernel along both axes before sliding it over the image.
In reality, many CNNs utilize a function called the cross-correlation which is
defined as

O(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (3.32)

We can view this equation as the same as convolution, only without flipping
the kernel, and in machine learning we rarely differentiate between the two
methods. We are not predefining the filter weights as they are something the
network should learn through training. Because of this, it does not really matter
if we flip the kernel in the convolution. If the kernel is flipped, the network will
just learn the mirror opposite.

When performing a convolution, shown in Figure 3.12a, the dimensions of
the output is smaller than the original image. This might not be desirable,
and we solve this by adding zero-padding to the edges of the input image. To
calculate the size of the output after a convolution, we use the formula

W −K + 2P

S
, (3.33)

where W is the width or height of the image. If they are different, the width and
height of the output will also be different and must be independently calculated.
K is the size of the kernel, P is the padding applied to the image, and S is
the stride. The stride is defined as how many pixels we are moving for each
convolution. One important thing to note is that the output size must be an
integer. If we are using a combination of kernel, padding and stride that does not
“fit” across the input image, the output will be skewed, which is not desirable.
In Figure 3.12a, the stride S = 1 is used with no padding P = 0. We see
this combination fits across the image, but with no padding, the output size is
reduced by one in each dimension. If we had used a stride of S = 2, we would

3.6. CONVOLUTIONAL NEURAL NETWORKS 51

skip the second output in the x-dimension, reducing the output size by two.
The kernel would not fit in the y-dimension, however, which we do not want
to do. Hence, this is a combination we would not use. We are generally not
concerned with the depth-axis of the input as the filters will always traverse the
entire volume of the depth-axis resulting in a two-dimensional feature map. To
calculate the padding needed to keep the input dimension, we require equation
3.33 to be the same size as the input. Solving for the padding yields

P = (W − 1)S −W +K. (3.34)

We need to keep in mind that the padding adds a loss in resolution of the output
at the edges. If the image is of a sufficiently large resolution, this is rarely a
problem, though.

(a) (b)

Figure 3.12: The process of cross-correlating an image with a filter (a). Reprin-
ted from Ian Goodfellow, Yoshua Bengio [36]. Example of a 2× 2 max-pooling
layer. Reprinted from Mehta et al. [47].

In fully-connected networks, we are generally trying to reduce the size of
the output as we are moving through the network, and the same is true for a
convolutional network. A way to do this might be to not add any zero-padding
to the input or increase the stride, and in this way reduce the output size layer
by layer. A more common way to do this is to use pooling layers. There are
several types of pooling layers, but the most common ones are max-pooling and
average pooling. Pooling layers are most often a 2×2 filter which slides over the
image without any overlapping between the filter computations, this means the
stride equals the size of the pooling filter. A 2×2 filter is most common because
this reduces the input size by half in each dimension, and unless the input image
is extremely large, the size will quickly decrease for every pooling layer added.
A max-pooling filter, illustrated in Figure 3.12b, finds the maximum value of
the input image for each computation. The idea behind this is that we can view
the maximum value as the most important feature in the input and by using this
value for further computations, we are removing the noise and keeping the most
relevant information. The drawback of this pooling method is that if the inputs
are very close in values, we are removing a lot of relevant information. The

52 CHAPTER 3. MACHINE LEARNING

average-pooling method is essentially the same idea as max-pooling, only now
we take the average over the filter instead of the maximum value. This ensures
all inputs are included in the pooling operation, but this will also include the
noise, unlike with max-pooling.

3.7 PCA

Principal Component Analysis (PCA) was proposed by Karl Pearson in 1901 [56]
and is used in data analysis as a data transformation and reduction technique.
PCA performs a linear projection of the data points into a lower-dimensional
space. A common observation on inspection of datasets is that the bulk of rel-
evant information is often contained in the directions of largest variance. This
is illustrated in Figure 3.13 where the axis containing the least amount of vari-
ance is interpreted as noise. We consider a dataset in N ×D dimensional space

Figure 3.13: Principal component analysis seeks to find a set of orthogonal axes
where the first axis carries the most amount of variance, the second axis the
second most variance, and so on. This is illustrated in this figure as the most
variance is in the direction of the axis marked as “signal” and the least variance
is in the direction marked as “noise”. We can reduce the number of dimensions
by projecting the data from the noise axis to the signal axis and hopefully, not
lose much of the relevant information. This figure only shows two dimensions,
but the same argument holds for multiple dimensions. Figure reprinted from
Mehta et al. [47].

X = [x1,x2, · · · ,xN]
T

where xi ∈ RD is a single data point in D-dimensional
space centered around the empirical mean. The covariance is calculated by

Σ(X) =
1

N − 1
XTX. (3.35)

3.8. CLUSTERING 53

We are looking for a linear transformation which maximizes the covariance
between the feature vectors xi. To do this we make use of the Singular Value De-
composition [72] which states that a rectangular matrix can be decomposed into
three matrices: A N ×D diagonal matrix S containing the singular values si,
that is, the square roots of the eigenvalues of XTX and XXT , an orthonormal
N × N matrix U containing the eigenvectors of XXT called the left singular
vectors and an orthonormal D × D matrix V containing the eigenvectors of
XTX called the right singular values

X = USV T . (3.36)

We now insert this into equation 3.35

Σ(X) =
1

N − 1
XTX

=
1

N − 1
V SUTUSV T

= V
S2

N − 1
V T

≡ V ΛV T ,

(3.37)

where Λ is a diagonal matrix with eigenvalues in decreasing order along the
diagonal and the columns of V being the principal directions of Σ(X). To
reduce the dimensionality of X while keeping the maximum amount of variance
we simply multiply X with the columns of V corresponding to the number of
principal axes we want to keep.

3.8 Clustering

Supervised learning is a powerful tool in classification, but it has a large caveat;
we depend on acquiring a labeled dataset before any training is possible. This
is often done manually, which is a tedious and repetitive task. Unsupervised
learning is self-organizing and is of great use in finding unknown patterns in the
data without pre-existing labels. One type of unsupervised learning is called
clustering. The goal of clustering is not unlike classification, where we are trying
to group the data into different classes. The difference is we do not predefine
what the correct class or cluster of a data point is in advance. Instead, we are
evaluating the data using distance and density measures to infer if any of the
data points seem to be clustered together in the feature space.

3.8.1 K-means Clustering

The most readily understood clustering algorithm is so-called k-means cluster-
ing. It is not a particularly powerful algorithm, but it is a nice way of building
intuition about clustering as it is relatively simple. Even though k-means clus-
tering in practice is mostly used for initializing other, more powerful algorithms,
it also has its uses as a stand-alone algorithm as the computational speed scales
linearly.

We assume a dataset of N unlabelled data points {x}Nn=1 where xn ∈ Rp.
We also assume the dataset can be partitioned into a set of clusters with cluster

54 CHAPTER 3. MACHINE LEARNING

centers µk, where µk ∈ Rp. In the simplest form of the algorithm, we ran-
domly place the cluster centers in the data domain and we seek to minimize the
following function

C (x,µ) =

K∑
k=1

N∑
n=1

rnk (xn − µk)
2
, (3.38)

where rnk ∈ 0, 1 is a binary variable defining if a data point belongs to a given
cluster k. The algorithm is as follows:

1. Randomly place cluster centers µk.

2. Find rnk which minimizes C. This is done by assigning each data point to
the nearest cluster-mean.

rnk =

{
1 if k = argmink′(xn − µk′)2
0 else

. (3.39)

3. Update µk by calculating the center of mass of the assigned data points

µk =
1

Nk

∑
n

rnkxn. (3.40)

4. Repeat 2. and 3. until the change in the cost function is less than a
predefined threshold.

An example of the k-means algorithms is shown in Figure 3.14

Figure 3.14: Perfoming k-means clustering on three random data clusters over
five iterations. The black crosses are the cluster centers. In iteration one they are
randomly placed, and through the iterations they are gradually moved towards
the idividual clusters.

3.8.2 Gaussian Mixture Models

In unsupervised learning, we often speak of the concept of a latent variable,
which is a hidden variable inferred from the dataset. Just like in many physical
models, we might not be able to directly observe the construct we are trying
to understand. Instead, we observe the effect of the latent variable through
observed variables and try to build models explaining the behavior of the latent

3.8. CLUSTERING 55

variable through mathematical and numerical concepts. Finding exoplanets is
an example of this in physics. Scientists are not able to directly observe planets
around distant stars, however they are able to infer their existence and their
properties by observing the influence the planets have on the star they are
orbiting.

The estimation of latent variables is done by analyzing the statistical proper-
ties of the observed variables. In clustering, the latent variable is often thought
of as the cluster identity of which a data point initially stems. In this context,
we think of clustering as a probability algorithm for learning the most likely
value of a latent variable associated with every data point. To calculate this
probability, we need to make broad assumptions on the dataset, like what kind
of distributions generated the data. In Gaussian mixture models, we assume
these distributions are Gaussians, and we predefine how many clusters we think
the dataset contains.

K-means clustering is actually just a special case of Gaussian mixture mod-
els (GMM) where a hard boundary is set between the clusters, and no variance
or covariance is taken into account. The general GMM algorithm, on the other
hand, is referred to as a soft clustering method as there might be overlapping
boundaries between clusters, and a probability is used to predict to which cluster
a data point belongs. We assume each cluster in the dataset is characterized by
a specific probability distribution with a specific mean µk and covariance Σk

where we try to maximize the probability of retrieving the observed dataset un-
der a generative model. Points are drawn from one of K Gaussian distributions,
each defined by

N (x,µk,Σk) ≡ exp
(
−(x− µk)Σ−1k (x− µTk /2

)
. (3.41)

The probability for a point to be drawn from a distribution k is normal to
denote by πk and is often referred to as mixing components. The probability of
generating a point xi from the Gaussian distributions are given by the sum of
the K distribution probabilities

p (xi; {µk,Σk, πk}) =

K∑
k=1

N (xi|µk,Σk)πk, (3.42)

with a dataset of i.i.d data points X = {x1,x2, · · · ,xN} we can write the
complete probability, or likelihood, for generating the dataset as the product of
the individual probabilities of each data point

p (X; {µk,Σk, πk}) =

N∏
i=1

p (xi| {µk,Σk, πk}) . (3.43)

We now introduce a K-dimensional latent variable z for each data point xi.
We construct z to be a so-called one-hot-encoded variable, which is a vector
of binary values with a 1 if a point xi was generated from the k-th Gaussian
distribution and zero otherwise. In this way, we get distinct representations
of K number of clusters. We denote the elements of z as zk and there are
K possible states of z according to which elements are non-zero, as shown in
Equation 3.44.

56 CHAPTER 3. MACHINE LEARNING

z = (1, 0, · · · , 0)

z = (0, 1, · · · , 0)

...

z = (0, 0, · · · , 1).

(3.44)

We can collect all the latent variables in a single one-hot-encoded matrix
corresponding to the N data points of X denoted by Z ∈ RN×K .

The marginal distribution of the latent variables are given by the mixing
components p(zk = 1) = πk, where πk must satisfy

0 ≤ πk ≤ 1,

K∑
k=1

πk = 1.
(3.45)

Because z can be in one of K states, we can write the distribution of all the
possible states of the latent variables as

p(z; {πk}) =

K∏
k=1

πzkk , (3.46)

where zk is the k-th component of the given z, being one if xi belongs to cluster
k end zero otherwise.

Following the same logic the conditional probability of xi given z,

p(xi|zk = 1) = N (xi; {µk,Σk}), (3.47)

can be written as a product over the components of the latent variable

p(xi|z; {µk,Σk}) =

K∏
k=1

N (xi; {µk,Σk})zk . (3.48)

As we do not know the values of the latent variables, what we are really
trying to maximize is the likelihood of the latent variables under the given
dataset,

p(Z) = p(Z|X; {µk,Σk, πk}), (3.49)

by finding the best values of {µk,Σk, πk}). We do this by using an iterative
approach. From Bayes rule we have

p(z|x) =
p(x|z)p(z)

p(x)
, (3.50)

which, by using the previous results gives

γ(zk) ≡ p(zk = 1|xi; {µk,Σk, πk}) =
πkN (xi|µk,Σk)∑K
j=1N (xi|µj ,Σj)

, (3.51)

where γ is referred to as the responsibility a mixture k takes for explaining
xi. The problem of calculating the GMM is that we do not know the values

3.8. CLUSTERING 57

of the latent variables z and we also do not know the underlying parameters
{µk,Σk, πk} for any of the Gaussians. We have to infer all these variables from
the dataset. To do this, we are now going to use the so-called expectation max-
imation (EM) algorithm, which iteratively calculates the maximum expectation
value of the likelihood.

The joint probability likelihood is given by

p(X,Z; {µk,Σk, πk}) =

N∏
i=1

p(xi|zi; {µk,Σk})p(zi| {πk})

=

N∏
i=1

K∏
k=1

N (xi|µk,Σk)zkπzkk .

(3.52)

Taking the expectation value of the log-likelihood gives

E [log(p(X,Z; {µk,Σk, πk}))] =

N∑
i=1

K∑
k=1

γ
(t)
ik [logN (xi|µk,Σk) + logπk], (3.53)

where γ
(t)
ik = p(zik|X; {µ(t)

k ,Σ
(t)
k , π

(t)
k }) and (t) is the iteration step. This is

the expectation step in the EM algorithm. We now take the derivative of this
equation with respect to the parameters and setting this to zero yields the
equations

µ
(t+1)
k =

∑N
i γ

(t)
ik xi∑

i γ
(t)
ik

,

Σ
(t+1)
k =

∑N
i γ

(t)
ik (xi − µk)(xi − µk)T∑

i γ
(t)
ik

,

π
(t+1)
k =

1

N

∑
k

γ
(t)
ik ,

(3.54)

which is the maximation step.
By alternating the expectation and maximation step, we iteratively move

towards the maximum of the expected log-likelihood.

3.8.3 Agglomerative Clustering

Agglomerative clustering is known as a bottom up hierarchical clustering method.
This means we start from small initial clusters that are being merged until a
desirable number of clusters remain. Two important parameters to decide when
doing agglomerative clustering is the distance metric and the linkage criterion.
The distance metric influences the shape of the clusters as using different met-
rics might yield different results for which clusters are closest together. In each
iteration, the clusters that are closest in distance will be merged. In Table 3.2,
we define some possible distance metrics.

The linkage criterion defines between what points we calculate the distance,
e.g. between the center of the clusters, the edges of the clusters, etc. There are
several possible linkage criterions. If we define the linkage criterion asD(Xi,Xj)
where Xi and Xj is two different clusters, and the distance metric as d(xi,xj)
with xi and xj as specific points situated in these clusters, we can define the
most common linkage criterions as:

58 CHAPTER 3. MACHINE LEARNING

Table 3.2: Possible distance metrics used for agglomerative clustering.

Metric Equation

Euclidian distance d(a, b) = ||a− b||2 =
√∑

i(ai − bi)2
Manhatten distance d(a, b) = ||a− b||1 =

∑
i |ai − bi|

Cosine distance d(a, b) = cos(θ) = a·b
||a||||b|| =

∑n
i=1 aibi√∑n

i=1 a
2
i

√∑n
i=1 b

2
i

• Single-linkage: The minimum distance between two elements of different
clusters.

D(Xi,Xj) = min
xi∈Xi,xj∈Xj

d(xi − xj) (3.55)

• Complete linkage: The maximum distance between two elements in dif-
ferent clusters.

D(Xi,Xj) = max
xi∈Xi,xj∈Xj

d(xi − xj) (3.56)

• Average linkage: Average distance between points in two different clusters.

D(Xi,Xj) =
1

|Xi||Xj |
∑

xi∈Xi,xj∈Xj

d(xi − xj) (3.57)

• Ward: Minimizes the variance of the clusters. This is analagous to the
K-means clustering algorithm. That is, we are minimizing the center of
mass between the merged clusters and the individual clusters. Ward’s
method requires a euclidean distance to be used.

D(Xi, Xj) =

Ni+Nj∑
k∈Xi∪Xj

||xk − µXi∪Xj ||2 −

 Ni∑
i∈Xi

||xi − µXi ||2 +

Nj∑
j∈Xj

||xj − µXj ||2


=
|Xi||Xj |
|Xi ∪Xj |

(µi − µj)2

(3.58)

Unfortunately agglomerative clustering does not scale well computationally, as a
distance matrix between all the clusters need to be computed at every iteration.
A common way to circumvent this problem is to initialize the clusters with K-
means using a large number of clusters (but still small compared to the number
of points), and then use agglomerative clustering on the initialized clusters.

3.8.4 DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN)[16] is,
as the name implies, a density-based clustering method. Density clustering
assumes clusters to be defined by regions of space with a higher density of data
points. A significant advantage of density-based methods is that they are not
concerned with the shape of the clusters and is also able to find outliers in the
dataset. These methods assume a local density estimation is possible, which
is probably a reasonable assumption in lower dimensions. If the number of

3.8. CLUSTERING 59

dimensions is high, we encounter what is known as The curse of dimensionality
[82]. The curse of dimensionality is an important aspect in all machine learning
problems, including supervised frameworks and the previously defined clustering
algorithms, but becomes very apparent in density-based clustering as the density
of points is the only metric we consider. The curse states that as we increase
the number of dimensions, the sparsity of the data will increase, as illustrated in
Figure 3.15. To counter the curse, we are reliant on increasing the training data
to keep the density high. To illustrate the problem mathematically, we consider
a set uniformly distributed set of points in a d-dimensional unit hypercube. If
we expand a hypercube about a given point to capture a fraction ρ of the points,
we can calculate the fraction of points captured as a function of the edges L of
the hypercube

ρ(L) = Ld (3.59)

If we expand the hypercube to have edges 50% of the unit hypercube edge length
in 2 dimensions we see that this will encompass ρ = 0.52 = 25% of the data
points. Increasing the dimensionality to 10 we will, with the same edge length,
only encompass 0.1% of the data points. If we still want to include 25% of the
points, we now need to expand the hypercube to have edges 87% the length
of the unit hypercube. We defined the density-based clustering methods as a
method searching for local density, however, 87% of the cube length can no
longer be viewed as a local density, and we can see why the density methods
are so affected by high dimensionalities.

Figure 3.15: Illustration of the curse of dimensionality. As the dimensions
increase, less datapoints are included within a unit bin when using constant
edge lengths. Figure reprinted from Parsons et al. [40].

We start by reiterating the definitions given by the authors of DBSCAN as
these are the foundation for understanding both the current method and the
next density-based method we will look at; OPTICS.

Definition 1. ε-neighborhood of a point.

Nε(xi) = {xj ∈X|d(xj ,xi < ε} , (3.60)

where the ε-neighborhood is the points situated within a distance d of a
central point xi ∈X where X is the complete set of data points.

Definition 2. Directly density-reachable.
1) xj ∈ Nε(xi),
2) |Nε(xi)| ≥MinPts,

60 CHAPTER 3. MACHINE LEARNING

where condition 2 is referred to as the core-point condition. A core point
is defined as a point where the ε-neighborhood contains at least MinPts
number of points.

Definition 3. Density-reachable.
A point xn is density-reachable from point xi if, given parameters ε and
MinPts there is a chain of points xi,xi+1 · · ·xn such that each point in
the chain is directly density-reachable to the next.

Definition 4. Density-connected.
A point xi is density-connected to a point xj , given parameters ε and
MinPts, if both xi and xj are density-reachable from a point xk.

Definition 5. Clusters and noise.
We define a cluster C as a non-empty subset of all data points X given
parameters ε and MinPts.
1) If xi ∈ C and xj is density-reachable from xi, then xj ∈ C ∀xi,xj
2) ∀xi,xj ∈ C: xi is density connected to xj
3) Any point not in a cluster is classified as noise

DBSCAN starts by defining the ε-neighborhood of a point xi ∈X in defin-
ition 1, where d is some distance measure as defined in Table 3.2 in Section
3.8.3 on agglomerative clustering. Nε can be viewed as an estimate of the local
density. xi is called a core point if at least MinPts number of points are within
its ε-neighborhood. Both ε and MinPts are hyperparameters where MinPts
sets the scale of the smallest cluster we expect to find and ε can be viewed as
a density-parameter. When a point xj is within the ε-neighborhood of a core
point, it is said to be density-reachable. This core point and all density-reachable
points are considered to be a cluster, and if any of the density-reachable points
are also core points, their density-reachable points will be part of the cluster
and so on. The algorithm is defined as

Algorithm 1 DBSCAN

function DBSCAN(points)
clusters = empty list
for point in points not visited do

point=visited
N = list of neighbors of point
if MinPts ≤ |N | then

if No points in N are core points then
cluster = N
clusters.append(cluster)

else
DBSCAN(N)

end if
end if

end for
return clusters

end function

3.8. CLUSTERING 61

3.8.5 OPTICS

Ordering Points To Identify the Clustering Structure (OPTICS) [3] is similar to
DBSCAN, with the ε parameter relaxed from a single value to a value range.
OPTICS builds on the definitions of DBSCAN by adding two new concepts;
core-distance and reachability distance. Because of the similarities between the
methods, definition 1-5 is defined in Section 3.8.4 and will not be repeated here.

Definition 6. Core-distance.
The core-distance dc of a point xi ∈X is defined as

dc(xi) =

{
UNDEFINED, |Nε(xi)| < MinPts
MinPts-distance(xi), else

(3.61)

Where MinPts-distance is definied to be the minimum distance ε′ < ε
surrounding xi where xi is still a core point.

Definition 7. Reachability-distance
The reachability-distance dr between two points xi ∈ X and xj ∈ X is
defined as

dr(xi,xj) =

{
UNDEFINED, |Nε(xj)| < MinPts
max(dc(xj), d(xi,xj)), else

(3.62)

In other words, this means that for a point xj in the ε-neighborhood
of a point xi situated within the core-distance radius ε′, the reachability-
distance will be the core-distance itself, and for a neighboring point outside
the core-distance the reachability distance will be the distance between xi
and xj

Using these added definitions, OPTICS orders the points in the dataset
using a priority queue. In the way the algorithm is built up, points that are
close together will be close together in the ordering.

The first point visited x0, which we call the first central point, is always
set to UNDEFINED in the ordered list. We find the Nε(x0)-neighbors of the
central points and its core distance. If the point is a core point, that is, the
core distance is not UNDEFINED, we move on to update the priority queue
in the function UpdateSeeds. We look at each neighbor of the central point
x0 and find the reachability distances. If the neighbor is not already added to
the priority queue (which is always the case for the first central point), we just
insert them to the queue one by one. We go back to the OPTICS function and
go through each neighboring point in the priority queue by popping them off
the queue, starting with the highest priority. For each neighbor, we check if
it is itself a core point and if so, we repeat the process using each neighbor as
the new central point iteratively. Now we may encounter neighboring points
Nε(Nε(x0)), which are already in the priority queue. If this is the case, we
do not insert them again. We instead check if the reachability distances of
these points are smaller than the ones already stored in the queue. If it is, we
update the reachability distance to the smallest and increase the priority of the
neighbor. If it is not smaller, we just leave the point in the queue as is. In this
way, we are progressively ordering points that are close together towards each
other in the final ordered list. If we plot this ordering against the reachability

62 CHAPTER 3. MACHINE LEARNING

Algorithm 2 OPTICS: Main loop

function OPTICS(pointObjects, ε, MinPts)
ordered list = empty list
for point in pointsObjects do

if point.processed == False then
neighbors = pointObjects.neighbors(point, ε)
point.processed = True
point.reachability distance = UNDEFINED
point.setCoreDistance(neighbors, ε, MinPts)
ordered list.append(point)
seeds = empty priority queue
if point.core distance != UNDEFINED then

UpdateSeeds(neighbors, point, seeds)
while seeds not empty do

currentPoint = seeds.popHighestPriority
neighbors = pointObjects.neighbors(currentPoint, ε)
currentPoint.processed = True
currentPoint.setCoreDistance(neighbors, ε, MinPts)
ordered list.append(currentPoint)
if currentPoint.core distance != UNDEFINED then

UpdateSeeds(neighbors, currentPoint, seeds)
end if

end while
end if

end if
end for

end function

3.8. CLUSTERING 63

distance of each point, we can now find regions of higher density, as shown in
Figure 3.16. The minima are the regions with small reachability distance, hence
high density, which implies these regions are distinct clusters.

Algorithm 3 OPTICS: Priority Queue Update

function UpdateSeeds(neighborObjects, pointObject, seeds)
core dist = pointObject.core distance
for neighbor in neighborObjects do

if neighbor.processed == False then
dist = distance(pointObject, neighbor)
r dist = max(core dist, dist)
if neighbor.r dist == UNDEFINED then

neighbor.reachability distance = r dist
seeds.insert(neighbor, r dist)

else
if r dist < neighbor.reachability distance then

neighbor.reachability distance = r dist
seeds.increasePriority(neighbor, r dist)

end if
end if

end if
end for

end function

64 CHAPTER 3. MACHINE LEARNING

Figure 3.16: Figure showing the result of the OPTICS algorithm, where the
y-axis represents the reachability and x-axis the ordering. Neighboring points
in the plot are also neighbors in the dataset, and when the reachability distance
is low this indicates regions of high density. Using this observation, we can infer
that there are three clusters in this dataset, defined by the minima of the plot.
Figure reprinted from Ankerst et al. [3].

3.9 Unsupervised Performance Metrics

To perform clustering, we would ideally have a labeled dataset so we can actually
evaluate how well the algorithm is doing. When we have a dataset that is not
labeled, we need to use some other metrics for evaluating the performance.
These metrics use the clustering results themselves to do the evaluation by
calculating the density of the clusters and the distances to other clusters. This
is not perfect methods, but intuitively, if we have dense, well-separated clusters,
this is likely to be an indication of a good performance by the algorithm. We
are going to go through three such metrics in this section.

3.9.1 Calinski-Harbasz

The Calinski-Harabasz metric [9] is defined as the ratio of the between-clusters
dispersion mean B and the within-cluster dispersion W . Or in other words,
how well defined the clusters are in space.

W =

k∑
q=1

∑
x∈Cq

(x− cq)(x− cq)T ,

B =

k∑
q=1

nq(cq − cE)(cq − cE)T ,

(3.63)

where Cq is the set of points in cluster q, cq is the center of cluster q, cD is the
center of the complete dataset D and nq is the number of points in cluster q.
We sum up the variances of each dispersion mean by taking the trace tr and

3.9. UNSUPERVISED PERFORMANCE METRICS 65

calculate the ratio

s =
tr(Bk)

tr(Wk)
× nE − k

k − 1
, (3.64)

where k − 1 are the degrees of freedom of B and n− k the degrees of freedom
for W .

3.9.2 Davies-Bouldin

Davies-Bouldin (DB) index [12] is a separation measure that utilizes the ratio
between an internal dispersion measure of two clusters and the distance between
their centroids. The index is given by an average over the worst separated
clusters in the dataset. The dispersion measure is defined as

σi =

(
1

Ni

∑
x∈Ci

|x− µi|p
)1/p

, (3.65)

where i is the cluster index, Ni is the size of cluster Ci and µi is the centroid of
the cluster. Usually p is taken to be 2 which makes this the standard deviation.
The distance between the centroids of cluster i and cluster j is defined to be

di,j =

(
K∑
k=1

|µk,i − µk,j |p
)1/p

, (3.66)

where the sum runs over the dimensions of the centroids. Again with p = 2 this
is just the euclidean distance. The measure of separation between cluster Ci
and cluster Cj is now defined as

Ri,j =
σi + σj
di,j

. (3.67)

For each cluster Ci we calculate the separation measure Ri,j to all the other
clusters and find the the worst comparable cluster, that is the cluster where the
sum of standard deviations are high and the distance between the clusters are
low. We then calculate the Davies-Bouldin index by taking the average of the
worst separation measure for each cluster,

DB =
1

N

N∑
i=1

max
j 6=i

Ri,j , (3.68)

where N is the number of clusters. Because we are taking an average over the
worst separated clusters, the separation between individual clusters might be
quite good even though the Davies-Bouldin index is high.

3.9.3 Silhouette

The silhouette score [64] is calculated individually for every point in the dataset
giving a measure of how similar a point is to its assigned cluster compared to the
other clusters. For a complete silhouette score the average of every individual
score is taken.

66 CHAPTER 3. MACHINE LEARNING

We define a cluster Ci which contains a data point xi. We now define the
average distance between the data point xi and every other data point xj in
the same cluster as

a(xi) =
1

Ni − 1

∑
xj∈Ci,xi 6=xj

d(xi,xj), (3.69)

where Ni is the number of data points in Ci and d is some distance measure.
We can interpret this average distance as to how well the point is assigned to
its cluster, as a data point on the edge of the cluster will have a larger average
distance to every other point than a point in the center of the cluster. We now
calculate the mean distance from point xi to cluster Ck 6= Ci for all k. The
cluster Ck that has the smallest mean distance to the data point, is said to be
the neighboring cluster of this point. We define this as

b(xi) = min
k 6=i

1

Nk

∑
j∈Ck

d(xi,xj), (3.70)

where Nk is the number of data points in cluster Ck and d is some distance
measure. We can view the neighboring cluster as the next best cluster fit for
data point xi. The silhouette value is now defined as

s(xi) =
b(xi)− a(xi)

max a(xi), b(xi)
. (3.71)

From this we see that−1 < s(xi) < 1 and for the score to be close to 1, a(xi) <<
b(xi) which would mean that the data point is assigned to an appropriate cluster.
If, on the other hand, the value is close to −1 this means that the data point
should be assigned to the neighboring cluster. To calculate a single number for
the silhouette score, we use the average of all the data points

s̄ =
1

N

N∑
i

s(xi), (3.72)

where N is the total number of points in the dataset.

3.10 Autoencoder

An autoencoder is a special kind of neural network that seeks to recreate its
inputs, e.g. images. The whole idea is to have an encoder part of the network,
which progressively reduces the size of the input down to a predetermined num-
ber of features called the latent space. Our goal is that this latent space should
hold all the information necessary to recreate the input. In a way, we are com-
pressing the input. The output from the latent space is used as input to a
mirror opposite of the encoder, called the decoder, which outputs a result of the
same size as the input coming into the encoder. These two parts together are
called an autoencoder. We can now minimize a cost function simply given by

3.10. AUTOENCODER 67

the squared difference between the input and the output of the autoencoder

φ : X → Z,
ω : Z → X ,

φ, ω = arg min
φ,ω

∑
i

||xi − φ(ω(xi))||2,
(3.73)

where φ and ω are the encoder and decoder, respectively, X is the original
space of the dataset and Z is the latent space. An example architecture of
an autoencoder is shown in Figure 3.18. A typical task for an autoencoder is
denoising. As shown in Figure 3.17, we can add white noise to the training
samples before they are processed by the autoencoder. If we now calculate the
output loss by comparing the output with the original images we are teaching
the autoencoder to remove white noise from images. Another important use of
the autoencoder, which is how we will use it in this thesis, is for dimensionality
reduction. If the autoencoder can recreate the input prefectly, the latent space
is a perfect representation of the input in a lower dimensional space. This latent
space can then be used for different computational tasks, like clustering.

In this thesis, we do not expect the latent space to be a perfect representation
of our dataset, however, we are still hoping that the latent space will be removing
some of the least prominent features making it easier to cluster on the latent
space rather than the original input.

+ =
Autoencoder

Figure 3.17: A denoising autoencoder. We add noise to the training samples
before running them through the autoencoder. The output is compared to the
input without noise, teaching it to recognize and remove noise from the picture

Figure 3.18: An example of a convolutional autoencoder architecture, reducing
a picture of 28 × 28 pixels down to a latent space h of 10 features. Picture is
reprinted from Guo et.al [22]

68 CHAPTER 3. MACHINE LEARNING

3.11 Machine Learning in Practice

In implementations of machine learning tasks, we rarely write the algorithms
from scratch. There are extensive libraries for several programming languages
available which deliver either complete algorithms or easy to use APIs for setting
up and running network architecture. The methods mentioned in this chapter is
a mathematical foundation for the implementations developed in the next part
of this thesis.

In this thesis, we will use two popular machine learning libraries. For build-
ing neural networks, we will use Keras [11]. Keras is a high-level Python API
that can be run on top of several more low-level frameworks. As a low-level
backend, we are using the Tensorflow GPU implementation [21]. For out-of-
the-box machine learning tasks, we are using the Scikit-learn Python framework
[58]. Scikit-learn offers less flexibility than Keras and can only be run on CPU.
The advantages of Scikit-learn is the rich library of optimized machine learning
algorithms it provides, and running a complicated algorithm can often be done
in just a couple of short lines of Python code.

Moving on, we are going to classify molecular structures on data from mo-
lecular dynamics simulations with supervised learning, using fully-connected
networks and convolutional networks. In addition, we are going to use the
Gaussian mixture models, agglomerative clustering, OPTICS and DBSCAN al-
gorithms for clustering a dataset of methane hydrates subject to stress hoping
to find the grain boundaries in the system. In the clustering algorithms, we are
dependent on reducing the dimensionality of the data and are going to test two
techniques for this; the principal component analysis technique, where we keep
a certain percentage of the variance of the dataset, and an autoencoder where
we cluster on the latent space.

Part II

Implementations and
Results

69

Chapter 4

Conventional Structure
Identification Algorithms

To benchmark our machine learning implementations we are using established
structure identification algorithms. The order parameters of Steinhardt et al.
[71] and Ten Wolde et al. [78] are the basis for many modern identification al-
gorithms and we will go through the most important order parameter concepts in
this chapter. In addition, we have taken a closer look at the CHILL+ algorithm
of Nguyen and Molinero [52] which utilizes the order parameter correlation de-
veloped by Ten Wolde et al. and have been used successfully in distinguishing
water, cubic ice, hexagonal ice, and clathrate structures.

4.1 Order parameters

Order parameters [23] have been used successfully in several automated studies
of two dimensional system [6, 15]. The parameters are defined as

ψn =
1

Nj

∑
j

exp(inθij), (4.1)

where n is the symmetry of the order parameter which typically matches the
number of neighbors Nj of the particle i, the sum is over neighbors of particle
i and θij is the angle of the bond between particle j and k. The non-subscript
i indicates the imaginary unit, not a particle index. Due to the n-symmetry of
Equation 4.1 it is often referred to as the n-atic order parameters.

As a basis for most structure identification algorithms in three dimensions
lies the Steinhardt bond oriental order parameters, developed by Steinhardt et
al. in 1982. These order parameters are often referred to as natural three-
dimensional extensions of the n-atic order parameters and utilizes spherical
harmonics, as these functions are a complete set of orthogonal functions on
the sphere. Thus, they are a natural choice for representing functions defined
on a sphere in the same way the n-atic order parameters represent functions on
a two-dimensional circle.

The neighbors of a central particle i are defined as the particles j that
are within a given radius rq of the central particle. We call the vectors con-
necting the central particle to the neighbors rij . The unit vector of rij is

71

72CHAPTER 4. CONVENTIONAL STRUCTURE IDENTIFICATION ALGORITHMS

uniquely determined by the polar and azimuthal angles θij and φij . To repres-
ent the neighborhood of the central particle i, we utilize the spherical harmonics
Ylm (θij , ϕij) = Ylm (r̂ij). The local order parameter as defined by Steinhardt
et al. is formulated as follows

q̄lm(i) ≡ 1

Nb(i)

Nb(i)∑
j=1

Ylm(r̂ij), (4.2)

where q̄lm(i) as an average over the Nb(i) bonds to the nearest neighbors of
particle i. As q̄lm(i) only considered the local neighborhood of particle i they
are known as local order parameters. They are, however, sensitive to the global
reference frame of the system and thus we need to construct local rotational
invariants of these parameters for a given l

ql(i) =

[
4π

2l + 1

l∑
m=−l

| ¯qlm(i)|2
]1/2

. (4.3)

To calculate the degree of crystallinity of a system Steinhardt et al. and
later Ten Wolde et al. made use of the global version of these parameters which
averages over all particles in the system

Q̄lm ≡
∑N
i=1Nb(i)q̄lm(i)∑N

i=1Nb(i)
, (4.4)

where Q̄lm depends on the choice of reference frame. We construct rotational
invariants for the global order parameters as we did for the local parameters

Ql ≡

(
4π

2l + 1

l∑
m=−l

|Q̄lm|2
)1/2

. (4.5)

As the order parameters are based on spherical harmonics they are sensitive to
the degree of spatial correlation between vectors joined by neighboring particles.
In a liquid there is little to none correlation between these vectors and all bond-
order parameters are small or zero. In a crystal, there are repetitions of the
local structure throughout the crystal making the bond-order parameters large.
Another choice of order parameter are the third order invariants used by both
Steinhardt et al. and Ten Wolde et al. in their work

Ŵl ≡Wl/

(
l∑

m=−l

|Q̄lm|2
)3/2

, (4.6)

with Wl given by

Wl ≡
∑

m1,m2,m3
m1+m2+m3=0

(
l l l
m1 m2 m3

)
Q̄lm1Q̄lm2Q̄lm3 . (4.7)

The term in parantheses is a Wigner-3j symbol.
The bond-order parameters of choice for defining the crystallinity of a system

should be large for crystal structures and small for liquids. We can see from

4.2. CHILL+ 73

Table 4.1: Table reproduced from Ten Wolde et al. [78] showing some simple
crystal structures and their bond-parameter values. We can see the Q6 para-
meter having the desired quality of having a high parameter value for solids and
beeing zero for liquids

Structure Q4 Q6 Ŵ4 Ŵ6

fcc 0.191 0.575 -0.159 -0.013
hcp 0.097 0.485 0.134 -0.012
bcc 0.036 0.511 0.159 0.013
sc 0.764 0.354 0.159 0.013

Icosahedral 0 0.663 0 -0.170
Liquid 0 0 0 0

Table 4.1 that the parameter Q6 fulfill both these conditions and would be a
natural choice for evaluating the crystallinity of a system.

Due to the randomness of a liquid, the global order parameters add up
incoherently, and vanishes in the liquid, while it stays large for the solids. The
local bond-order parameters, on the other hand, might have large values for
both liquids and solids and on their own is not capable of distinguishing between
liquid-like and solid-like particles. Instead, we use the correlations between the
local bond order of neighboring particle as a measure of the crystallinity of
individual particles

c(i, j) =
q̄l(i)q̄l(j)

|q̄l(i)||q̄l(j)|
=

∑l
m=−l q̄lm(i)q̄∗lm(j)

(
∑l
m=−l q̄lm(i)q̄∗lm(i))1/2(

∑l
m=−l q̄lm(j)q̄∗lm(j))1/2

.

(4.8)

4.2 CHILL+

As a benchmark for methane hydrate structure identification, we have used
the CHILL+ algorithm developed by Nguyen and Molinero [52]. The CHILL+
algorithm is an extension of the CHILL algorithm developed by Moore et al.
[51], which distinguishes ice from liquids. CHILL+ extends this by using the
number of staggard, and eclipsed water-water bonds, shown in Figure 4.2, to
distinguish cubic ice, hexagonal ice, and clathrate hydrates from liquid water.
Each of these structures has distinct configurations of the number of staggard
and eclipsed bonds, as shown in Table 4.2.

CHILL+ uses the correlation of local bond orientational order of a water
molecule’s four nearest neighbors, defined in Equation 4.8, with l = 3 or l =
4, to identify staggered and eclipsed bonds of each atom, thus indicating to
which structure the atom belongs. CHILL+ identifies an eclipsed bond in the
correlation range (−0.35 ≥ c(i, j) ≥ 0.25) and staggered bonds for c(i, j) ≤
−0.8.

We have made a Python implementation of CHILL+ using the Ovito Python
interface [75] to handle particle positions, calculating the azimuthal and polar
angles between neighboring atoms, and spherical harmonics using SciPy [67].
Ovito is a powerful visualization tool with an easy to use Python interface,

74CHAPTER 4. CONVENTIONAL STRUCTURE IDENTIFICATION ALGORITHMS

Table 4.2: Table of staggered and eclipsed bond definitions.

Structure Eclipsed bonds Staggered bonds Neighbors
Cubic ice 0 4 4
Hexagonal ice 1 3 4
Interfacial ice any 2 4
Clathrate 4 0 4
Interfacial clathrate 3 any 4
Liquid N/A N/A any

Note: Table reproduced from Nguyen and Molinero [52]

(a) (b)

Figure 4.1: Probability distribution for the correlation of oriental order para-
meters for spherical harmonics with l = 3. Figure (a) is our own implementation
produced with hexagonal ice, cubic ice and liquid water but with sI clathrate
as opposed to Nguyen and Molinero [52], shown in Figure (b), which used sII
clathrate in the calculation.

which recently has been added to the Python Package Index (PyPi) as a stand-
alone package. Ovito has a useful input/output module capable of handling
several file formats.

from ovito.io import import_file

from ovito.data import NearestNeighborFinder

import numpy as np

from scipy.special import sph_harm

from collections import defaultdict

class ChillPlus:

def __init__(self , l, nn , filename):

self.used_frames = []

self.correlations_allframes = []

self.correlation_dict = dict()

self.__pipeline = import_file(filename ,

↪→ multiple_frames=True)

self.n_frames = self.__pipeline.source.num_frames

self.l = l

self.nn = nn

The Ovito processing pipeline is initiated through the import file method,

4.2. CHILL+ 75

Staggered

(a) (b)

Eclipsed

(c) (d)

Figure 4.2: Depiction of staggered bonds (a) and (b) and eclipsed bonds (c) and
(d). Figure (a) shows the top view of a staggered bond. We can see there is no
overlap between the neighboring bonds of the central atoms. They are rotated
60 degrees with respect to each other. Figure (b) shows the side view of the
same configuration. Figure (c) shows an eclipsed configuration. There is a total
overlap between the neighboring bonds of the central atoms. Figure (d) shows
the side view of Figure (c)

76CHAPTER 4. CONVENTIONAL STRUCTURE IDENTIFICATION ALGORITHMS

which reads the input data from an external data file. When initiated, the
pipeline contains global information on the dataset as a whole, which should
not change from frame to frame, like the number of particles. The purpose
of the pipeline is to enable a non-destructive and repeatable workflow. The
pipeline also handles modifiers, which are function objects made to dynamically
modify, filter and analyze the data.

def __call__(self , frame):

if frame in self.used_frames:

print(f’Frame {frame} as already run’)

pass

else:

self.used_frames.append(frame)

data = self.__pipeline.source.compute(frame)

nearest_neighbors , local_order =

↪→ self.neighbors(self.nn , data)

c = self.correlation(nearest_neighbors , local_order)

self.correlation_dict[frame] = c

To process each data frame in the pipeline, we call the compute method
with a given frame as an argument, returning a DataCollection object. This
DataCollection contains the particle information of the frame, or in other words,
the relevant information of a specific moment in time of the simulation. Particle
positions, velocities, and values calculated by modifiers added to the pipeline
can now be used externally by the Python script.

@staticmethod

def spherical_harmonics(l, angles):

return np.array([sph_harm(m, l, *angles) for m in

↪→ range(-l, l+1)])

@staticmethod

def cartesian_to_spherical(positions):

x, y, z = np.float64(positions)

r = np.linalg.norm(positions)

theta = np.arctan2(y, x, dtype=np.float64) + np.pi

phi = np.arccos(z/r, dtype=np.float64)

return theta , phi

@staticmethod

def count_eclipsed(correlation_list):

return sum(-0.34<e <0.25 for e in correlation_list)

To use the CHILL+ algorithm, we need to find the four nearest neighbors
of every atom. This is done by using the NearestNeighborFinder class of Ovito.
Another option would be to use the CutoffNeighborFinder, which uses a defined
cutoff to find the indices of the closest neighbors of a central atom within this
cutoff. The spherical harmonics are calculated by finding the azimuthal and
polar angles from the positional data of a central particle and its neighbors.

def neighbors(self , nn , data):

nn_finder = NearestNeighborFinder(nn , data)

identifiers = data.particles.identifiers.array

local_order = dict()

nearest_neighbors = defaultdict(list)

for idx , identifier in enumerate(identifiers):

4.2. CHILL+ 77

qlm = complex ()

for neigh in nn_finder.find(idx):

neighbor_id = identifiers[neigh.index]

nearest_neighbors[identifier]. append(neighbor_id)

positions = neigh.delta

angles = self.cartesian_to_spherical(positions)

qlm += self.spherical_harmonics(self.l, angles)

qlm = qlm/float(self.nn)

local_order[identifier] = qlm

return nearest_neighbors , local_order

After spherical harmonics for each atom has been calculated we can find the
correlation by using Equation 4.8. By evaluating each correlation result, we can
use the ranges of eclipsed and staggered bonds defined in Table 4.2 to infer the
structure a particle belongs to.

def correlation(self , nearest_neighbors , local_order):

chill_dict = {}

for atom , neighbor_list in nearest_neighbors.items():

atom_i = local_order[atom]

atom_i_len = np.linalg.norm(atom_i)

neighbor_correlations = []

for nn in neighbor_list:

atom_j = local_order[nn]

atom_j_len = np.linalg.norm(atom_j)

c = np.real(

np.vdot(atom_j , atom_i)/(atom_j_len*atom_i_len)

)

neighbor_correlations.append(c)

self.correlations_allframes.extend(

neighbor_correlations

)

eclipsed_neighbors = self.count_eclipsed(

neighbor_correlations

)

chill_dict[atom] = eclipsed_neighbors

return chill_dict

An important thing to note is that the CHILL+ algorithm ignores the guest
molecules in the clathrate structures. Because of this, the data provided must
first remove the guests from the data collection to have any meaningful results.

A C++ implementation of CHILL+ as recently been implemented in Ovito,
which we have used for large scale datasets due to its superior speed compared to
Python. A practical example of the algorithm is shown in Figure 4.3 applied to
a methane hydrate simulation containing 16 million particles that was recently
made in our research group [76, 77].

78CHAPTER 4. CONVENTIONAL STRUCTURE IDENTIFICATION ALGORITHMS

(a) (b)

(c)

Figure 4.3: A 16 million particle simulation of methane hydrates under external
stress. Particles colored by type (a) with methane in blue and water in red.
By using the CHILL+ algorithm implemented in Ovito (b) we see the grain
boundaries of the system with methane hydrates in orange, interfacial hydrate
in green and undefined in blue. A slice of this dataset (c) shows how cracks are
starting to form in the grain boundaries.

Chapter 5

Creating Datasets

For training and evaluating our machine learning algorithms we need three
kinds of datasets; training data, validation data and testing data. Often these
datasets are created by splitting a single labeled dataset into three pieces where
the machine develops the algorithm by processing the training data, and during
this training process the validation data is evaluated after each epoch, creating
an assessment of how the algorithm will perform on actual unseen testing data.
After training, the model is evaluated on the last split, the unseen testing data,
to give a final measure of the performance. This way of splitting the data is a
nice method if we know that new data always stems from the same source. We
are, on the other hand, going to create a training and validation set that imitates
realistic molecular dynamics simulations since we do not have access to labeled
data of real simulations. Because of this, we can not trust the performance
calculated on a test set that stems from the same dataset as our training data.
Instead, we are going to evaluate the models on realistic unlabeled molecular
dynamics data and compare the results with established methods of structure
identification. This way we can see trends in how the models are performing on
realistic models by comparing plots, we can not, however, create quantitative
measures of the performance without labeled test data.

We will create a training dataset by implementing a web crawler, which
downloads unit structures of crystals from aflowlib.org [46, 29]. We evaluate
the models’ performances on this dataset by splitting it into a training set and
a validation set, and test the results on two types of molecular dynamics data;
one dataset generated from a methane hydrate simulation and the other created
from the oscillating pair potential.

5.1 Test Data

Ideally, we would like to have a labeled testing set to accurately assess the
performance of a machine learning algorithm. We do not have access to such
a dataset for crystal identification. Instead, we are going to use two kinds of
datasets where it is possible to evaluate the algorithm. The first dataset is shown
in Figure 5.1. The dataset is not labeled, and so we can not accurately assess
how to algorithm is doing. However, we can use the CHILL+ algorithm as a
benchmark to see if any of our machine learning models are able to recreate the

79

80 CHAPTER 5. CREATING DATASETS

grain boundaries seen in the figure. We will refer to this dataset as the methane
hydrate dataset. The second dataset is a recreation of data used by Spellings
and Glotzer [69]. This dataset was originally created by Engel et al. [14] and
our implementations of the oscillating pair potential is a direct copy from the
supplementary material of Engel et al. This dataset was manually evaluated by
Engel et al. to create a phase diagram over different Pearson structures found in
the phase space, seen in Figure 5.2. By comparing our machine learning results
with this phase diagram, we can evaluate how the algorithm is performing. We
will refer to this dataset as the phase dataset.

(a) (b)

Figure 5.1: Figures of the CHILL+ algorithm evaluated on a dataset of methane
hydrates under stress. The simulation was initiated with grain boundaries in
the data, which we see clearly in Figure (a). Orange is classified as sI methane
hydrate, green is interfacial hydrate which is hydrates with a missing bond, and
blue particles are unclassified particles. The algorithm only takes into account
the water molecules of the hydrate structures and all guest molecules need to
be removed before applying the algorithm. In Figure (b) we can see the result
when the methane guest molecules are not removed.

Figure 5.2: Phase diagram over the structures produces by the oscillating pair
potential. The drawn boundaries and classifications was manually produces by
Engel et al. [14] and the figure is reprinted from Spellings and Glotzer [69]

5.1. TEST DATA 81

This code is a direct copy of the oscillating pair potential implemented by
Engel et al. with a function OPP calculating and returning the force using a
precalculated derivative of the potential and energy, and a separate function
determineRange finding the third maximum of the potential and smoothing the
function down to zero at this point.

A simple molecular dynamics simulation script for the HOOMD -blue

↪→ package

(available for download at:

↪→ http :// codeblue.umich.edu/hoomd -blue/)

Purpose: Self -assembles an icosahedral quasicrystal.

#

This script is part of the Supplementary Information of:

M. Engel , P.F. Damasceno , C.L. Phillips , S.C. Glotzer

"Computational self -assembly of a one -component icosahedral

↪→ quasicrystal"

Nature Materials , doi: 10.1038/ nmat4152

import math

import hoomd

import hoomd.md

import hoomd.deprecated

import numpy as np

Define the OPP

def OPP(r, rmin , rmax , k, phi):

cos = math.cos(k * (r - 1.25) - phi)

sin = math.sin(k * (r - 1.25) - phi)

V = pow(r, -15) + cos * pow(r, -3)

F = 15.0 * pow(r, -16) + 3.0 * cos * pow(r, -4) + k * sin *

↪→ pow(r, -3)

return (V, F)

Determine the potential range by searching for extrema

def determineRange(k, phi):

r = 0.5

extremaNum = 0

force1 = OPP(r, 0, 0, k, phi)[1]

while (extremaNum < 6 and r < 5.0):

r += 1e-5

force2 = OPP(r, 0, 0, k, phi)[1]

if (force1 * force2 < 0.0):

extremaNum += 1

force1 = force2

return r

The run implementation uses the HOOMD-blue [1, 19] molecular dynamics
package for the simulations. A big strength of HOOMD is the user-friendly inter-
face, which provides integrations for most standard MD-calculations. Through
the hoomd.md package we are in addition able to set custom pair potentials
through Python functions, not having to implement them through the source
code.

The central interface of the Hoomd-blue Python API is the hoomd object.
By setting the initialize method of the hoomd object, we can easily switch
between running our simulations on CPU and GPU.

Our run function initializes 4096 random particles as in the work of Engel
et al. We did preliminary tests initializing the system using unit cells, and then

82 CHAPTER 5. CREATING DATASETS

breaking the structures by heating the system before cooling, but this method
had a tendency to preserve too much information about the initial structure,
leading to contaminated results. If the system is first heated sufficiently this
will not be a problem, although it will prolong the runtime of the simulation.
Instead, we randomly place the particles in the simulation box at initialization.
Through the hoomd.md.pair.table object the code utilizes the OPP and determ-
ineRange Python functions for the potential calculations and the Nosé-Hoover
thermostat for integrating the equations of motion.

def run(T_start , T_stop , timeSteps , potential_k , potential_phi):

hoomd.context.initialize("--gpu 0")

system = hoomd.deprecated.init.create_random(

N = 4096, phi_p = 0.03

)

nl = hoomd.md.nlist.cell()

all = hoomd.group.all()

range = determineRange(potential_k , potential_phi)

table = hoomd.md.pair.table(width =1000 , nlist=nl)

table.pair_coeff.set(

’A’, ’A’, func = OPP , rmin = 0.5, rmax = range ,

coeff = dict(k = potential_k , phi = potential_phi)

)

filename = (

"400 quasi/quasicrystal_k" + str(potential_k)

+ "_phi" + str(potential_phi)

)

filename += "_T" + str(T_start) + ’-’ + str(T_stop)

hoomd.dump.gsd(

filename , period=timeSteps *1e-3, group=all , overwrite=True

)

temperature_ramp = hoomd.variant.linear_interp(

[(0, T_start), (timeSteps , T_stop)]

)

hoomd.md.integrate.nvt(

group = all , kT = temperature_ramp , tau = 1.0

)

hoomd.md.integrate.mode_standard(dt = 0.01)

hoomd.run(timeSteps + 1)

In our simulation the complete dataset was created from 20 evenly spaced
values between φstart = 0.38, φstop = 0.8 and 20 evenly spaced values between
kstart = 5.8, kstop = 9.5. Each combination of φ and k gives a distinct pair
potential, which when cooled to form crystalline states yields 400 datasets of
crystal structures. Each of the 400 simulations was run over 7× 107 timesteps
and the particles system was linearly cooled from 0.4T to 0.1T in reduced tem-
perature units using the Nosé-Hoover thermostat.

Because the original dataset of Engel et al. was cooled more slowly, using 108

timesteps, there might be differences between the sets in the exact structures
created in the crystals. Some selected combinations of k and φ, and their corres-
ponding potential shapes are shown in Figure 5.3. As the crystal is cooling, the
particles will become trapped in the potential wells, and with a faster cooling
of the system we leave less opportunity for the particles to fluctuate and cross
the potential tops. This will probably mean that, for a given potential, a larger
amount of particles will be trapped in the deepest minima than would be if the
system is cooled slower, and by extension, this will slightly alter the intrinsic

5.2. TRAINING DATA 83

crystal structure. We chose to cool the structure faster as a compromise due to
time and resource constraints.

One of the 400 datasets is shown in Figure 5.4 which shows the evolution of a
simulation using parameters k = 8.137 and φ = 0.38. This results in structures
situated in the clathrate domain as shown in Figure 5.2.

Figure 5.3: Some selected combinations of k and φ for the oscillating pair po-
tential used to recreate the dataset of Engel et al. [14].

5.2 Training Data

The biggest problem to overcome when doing structure classification with ma-
chine learning on molecular dynamics simulations is obtaining a labeled data-
set for training. To automate this process we have used structures found on
aflowlib.org, which contains several hundred unit structures in POSCAR files.
All these structures are labeled in several ways, but we will use the correspond-
ing Pearson groups discussed in Section 2.5 on crystal structures. By using the
Pearson structures, our labels are directly comparable with the manual classi-
fication of Engel et al. on the phase dataset. To download these files, we have
made a web crawler in Python. This crawler downloads all POSCAR files and
information of which Pearson group the structure belongs to.

As this is a specific crawler for the AFLOW website, we start by defining the
hyperlinks we wish to search. We are only interested in the Pearson classification
and set the relevant links hardcoded in the script.

import requests

from bs4 import BeautifulSoup

import re

import numpy as np

tlds = [

84 CHAPTER 5. CREATING DATASETS

(a) Timestep 0. (b) Timestep 3.773 × 107.

(c) Timestep 7 × 107. (d) Timestep 7×107. Slice of structure
with added bonds.

Figure 5.4: Time evolution for simulation with k = 8.137 and φ = 0.38. We can
see from Figure d that these parameters yields clathrate structures.

5.2. TRAINING DATA 85

’triclinic_pearson.html’,

’monoclinic_pearson.html’,

’orthorhombic_pearson.html’,

’tetragonal_pearson.html’,

’trig_hex_pearson.html’,

’cubic_pearson.html’,

]

struk_domain = ’http :// aflowlib.org/CrystalDatabase/’

We then find all relevant sublinks and from these create the POSCAR hy-
perlinks.

def get_strukt_links(url , domain):

r = requests.get(domain+url)

html = r.text

soup = BeautifulSoup(html , ’html.parser ’)

all_imgs = list(soup.find_all("img"))

poscar_links = []

names = []

pearson = {}

for img in all_imgs:

img = str(img)

find_strukture = re.compile(’alt ="([^_]*_([^_]*)_.*).html’)

match = find_strukture.search(img)

link_name = match.group (1)

pearson_symbol = match.group (2)

names.append(link_name)

poscar_links.append(

struk_domain+’POSCAR/’+link_name+’.poscar ’

)

pearson[link_name] = pearson_symbol

return names , poscar_links , pearson

def get_all_struk_links(urls , domain):

all_names = []

all_poscar_links = []

all_pearson = {}

for url in urls:

names , poscar_links , pearson = get_strukt_links(

url , domain

)

all_names.extend(names)

all_poscar_links.extend(poscar_links)

all_pearson.update(pearson)

return all_names , all_poscar_links , all_pearson

After all the relevant links are found we collect the POSCAR data by eval-
uating the HTML code and dumping all valid information to standard text
files.

def write_poscar_files(dump_dir , names , links):

strange = []

for name , link in zip(names , links):

print(name , link)

r = requests.get(link)

if r.status_code != 200:

strange.append(link)

86 CHAPTER 5. CREATING DATASETS

continue

else:

text = r.text

with open(dumpdir+name , ’w’) as f:

f.write(text)

return strange

In addition to the unit structures downloaded with the crawler we can use
the Atomic Simulation Environment (ASE)[31] spacegroup module to create the
unit structures of methane hydrate I (sI), methane hydrate II (sII) and methane
hydrate H (H), as these structures are of special interest in this thesis.

import ase.spacegroup

import ase

import numpy as np

from ase.io import write

from ovito.io import export_file

from ovito.io.ase import ase_to_ovito

my_crystals = {

"methane_hydrate_I" :

{

"symbols" : ("O", "O", "O", "C", "C"),

"spacegroup" : 223,

"cellpar" : [12.03 , 12.03 , 12.03, 90, 90, 90],

"basis" : [(.1841 ,.1841 ,.1841) ,

(0 ,.3100 ,.1154),

(0 ,.5 ,.25),

(0,0,0),

(.25 ,.5 ,0)

],

},

"methane_hydrate_II" :

{

"symbols" : ["O", "O", "O", "C"],

"spacegroup" : 227,

"cellpar" : [17.092 , 17.092 , 17.092 , 90, 90, 90],

"basis" : [(.1822 , .1822, .3719) ,

(.2196 , .2196, .2196) ,

(.125, .125, .125) ,

(.375, .375, .375)

],

"setting" : 2,

},

"methane_hydrate_H" :

{

"symbols" : ["O", "O", "O", "O", "C", "C", "C"],

"spacegroup" : 191,

"cellpar" : [11.9100 , 11.9100 , 9.8940 , 90, 90, 120],

"basis" : [(0., 0.38, 0.125) ,

(0.22 ,0.44 ,0.25) ,

(0.125 ,0.25 ,0.5) ,

(0.333 , -0.333 , -0.375),

(0.5 ,0.5 ,0.5),

(0.3333 , -0.3333, 0.0),

(0,0,0)

],

’onduplicates ’: ’replace ’,

’symprec ’: 0.002,

},

}

def create_crystal(crystal_info , ** kwargs):

5.2. TRAINING DATA 87

return ase.spacegroup.crystal (** crystal_info , ** kwargs)

The POSCAR files are idealized unit structures and need a bit of handling
before use.

Firstly, we need to replicate the unit cell until a desired number of atoms
exists in the structure. We do this by using the ReplicateModifier in the Ovito
Python interface and testing for a minimum number of particles threshold. We
set the minimum amount of particles to 500 and stop the replication when we
are above this limit. However, there is no upper limit and because of this, the
number of particles may vary between 500 and at most 4000.

import numpy as np

from ovito.io import export_file , import_file

from ovito.modifiers import ReplicateModifier

from util import is_dir

def replicate_cell(

file_name , dump_name , replicate=None , n_minimum_particles =500

):

pipe = import_file(file_name)

data = pipe.compute ()

n_particles = data.number_of_particles

if not replicate:

min_particles_after_replicate = n_minimum_particles

rep = int(np.ceil(

(min_particles_after_replicate / n_particles)**(1/3)

)

)

replicate = {’num_x’: rep , ’num_y’: rep , ’num_z’: rep}

data.apply(ReplicateModifier (** replicate , adjust_box=True))

new_n_particles = data.number_of_particles

unique = len(np.unique(data.particles.positions [...], axis =0))

if unique != new_n_particles:

print(new_n_particles , unique)

print(file_name)

export_file(data , f’{dump_name }.data’, ’lammps/data’)

Secondly, we still only have access to idealized unit structures, which we are
unlikely to encounter in realistic MD simulations as temperature and pressure
fluctuations might slightly alter the crystals without breaking the structures.
For realistic MD simulations, specialized potentials are used depending on the
system simulated. As we need to be able to temperate hundreds of structures
to make the conditions as close to real as possible, individualized potentials for
each structure is not feasible. To imitate this temperation, we have implemented
a harmonic potential in the ASE molecular dynamics module. The harmonic
potential can be implemented by downloading the latest ASE version from Git-
Lab, copying the code into a file called harmonic.py under ase/calculators, and
compiling the code.

import numpy as np

from ase.neighborlist import NeighborList

from ase.calculators.calculator import Calculator , all_changes

from ase.calculators.calculator import PropertyNotImplementedError

Determine the potential range by searching for extrema

class Harmonic(Calculator):

implemented_properties = [’energy ’, ’forces ’, ’stress ’]

88 CHAPTER 5. CREATING DATASETS

default_parameters = {’k’: 10.0,

’rc’: None}

nolabel = True

def __init__(self , r0 , ** kwargs):

Calculator.__init__(self , ** kwargs)

self.r0 = r0

def calculate(self , atoms=None ,

properties =[’energy ’],

system_changes=all_changes):

Calculator.calculate(self , atoms ,

properties , system_changes)

natoms = len(self.atoms)

k = self.parameters.k

rc = self.parameters.rc

if rc is None:

rc = 3.0

if ’numbers ’ in system_changes:

self.nl = NeighborList ([rc / 2] * natoms ,

self_interaction=False)

self.nl.update(self.atoms)

positions = self.atoms.positions

cell = self.atoms.cell

energy = 0.0

forces = np.zeros((natoms , 3))

stress = np.zeros((3, 3))

energy += self.harmonic(positions , self.r0, k)[0]

forces -= self.harmonic(positions , self.r0, k)[1]

self.results[’energy ’] = energy

self.results[’free_energy ’] = energy

self.results[’forces ’] = forces

def harmonic(self , r, r0 , k):

V = k/2*(r - r0)**2

F = k*(r-r0)

return (V, F)

Recently a harmonic potential has been implemented in the ASE source code
and our harmonic potential is no longer strictly required but is included here as
this is the potential we have used in our simulations.

The potential can now be implemented by utilizing the ASE Langevin ther-
mostat for heating the crystal. Because there are big differences between the
densities of the unit structures, and so the impact of the fluctuations added by
the potential will vary, we have implemented a break condition to make sure
the crystals does not heat to a point where the structures completely break.
As a break condition we have used: If any atoms have moved more than 25
percent of the distance to the first minimum of the radial distribution function,
we will stop the simulation. An example of a replicated unit structure is shown
in Figure 5.5a and the same structure temperated with the harmonic potential
is shown in Figure 5.5b .

import numpy as np

from ase.md.langevin import Langevin

from ovito.io import import_file , export_file

5.3. CREATING FEATURES 89

from ovito.io.ase import ase_to_ovito

from ase.calculators.harmonic import Harmonic

from ovito.modifiers import CoordinationAnalysisModifier

from util import cutoff_finder

coordination = CoordinationAnalysisModifier(

cutoff =10, number_of_bins =100

)

def run_md(

file_name=None , dump_name=None , steps=None , crystal=None

):

crystal = import_file(file_name).compute ().to_ase_atoms ()

data = ase_to_ovito(crystal)

data.apply(coordination)

cut = cutoff_finder(data)

positions = crystal.get_positions ()

calc = Harmonic(positions)

crystal.set_calculator(calc)

start_pos = crystal.get_positions ()

dyn = Langevin(crystal , 0.1, 0.4, 0.02)

prev_step =0

for step in steps:

prev_step += step

try:

dyn.run(step)

atoms = dyn.atoms

pos = atoms.get_positions ()

if np.all(

np.linalg.norm(pos - start_pos , axis =1) < 0.25* cut

):

data = ase_to_ovito(atoms)

export_file(

data ,

f"{dump_name}_step{prev_step }.data",

↪→ ’lammps/data’

)

else:

break

except NotImplementedError as e:

print(e)

break

5.3 Creating features

We now have access to a flurry of structures, both in idealized form and tem-
perated. Before we can do any machine learning on this data we need to define
a set of features which can properly describe the structure of the dataset. The
datasets we created in Sections 5.1 and 5.2 consists of positional data of every
atom and we need to transform this data to include information of the neigh-
borhood of each atom to say anything meaningful of what structure an atom is
situated in. Inspired by Reinhart et al. [62] and Reinhart and Panagiotopoulos
[61], we have used the local topology of individual atoms to create features for
structure identification. Reinhart used common neighborhood analysis (CNA)
to classify particles by evaluating the topology of each atom. We describe the
local topology by so-called adjacency matrices. These are matrices of binary

90 CHAPTER 5. CREATING DATASETS

(a) (b)

Figure 5.5: The methane hydrate unit structure created by ASE (a), and the
same structure temperated with an harmonic potential (b). Both structures are
three-dimensional crystals seen from the side.

values where 1 indicates a nearest-neighbor relationship between two atoms and
0 indicates no such relationship. The topology of a central atom is defined by
its nearest neighbors. In Figure 5.6a, we have a 2D system of particles, and we
are focusing on a single central particle marked in blue. We now find a set of
neighboring particles either within a cutoff radius around the central particle or
by choosing a given number of nearest neighbors. We denote these neighboring
particles as the outer neighbors. In Figure 5.6b, we have focused in on nine
outer neighbors, where we count the central particle as a neighbor of itself. For
each of the outer neighbors, we then need to find which are nearest neighbors of
each other within a given cutoff radius. This, we denote as the inner neighbors.
In Figures 5.6c and 5.6d, we have marked the outer neighbor we are looking at
in dark blue and the corresponding inner neighbors in light blue. To describe
this relationship in a matrix, we start by ordering the atoms by distance from
the central particle, as shown in Figure 5.7a. We can now go through each of
the outer neighbors and see which particles are its inner nearest neighbors and
denote the relationship by a binary value, as shown in Figure 5.7b. Because we
chose to define particles as neighbors of itself, we will always have a series of
ones on the diagonal. By doing this process for each particle in a dataset, we
get a set of features for every particle describing the local topology.

To create the adjacency matrices we need to define the cutoff used to cal-
culate the inner neighbor relationships. For this task, we use the shape of the
radial distribution function.

We use the radial distribution function (RDF) to calculate how the particles
are situated in the crystal. A top in the RDF indicates order in the crystal.
In an ideal crystal, there are very sharply defined peaks as the particles can
only be situated in very defined distances from each other as given by the unit
structure. We can view these peaks as shells around the particles where we find
the nearest neighbors. We can see from Figure 5.8a that for the unit structure of
sI methane hydrates shown in Figure 5.5a, there are very sharply defined peaks
as all particles are perfectly placed to form the methane hydrate structure. In
Figure 5.8b the structure has been temperated using a harmonic potential and
the particles are no longer situated in a perfect unit structure. This results in a
less sharply defined RDF. In our structure evaluation, we have chosen to use the

5.3. CREATING FEATURES 91

(a) (b)

(c) (d)

Figure 5.6: Two dimensional figures showing the creation of adjacency matrices.
We iterate through all the particles, considering each of them as the central
particle once. Figure (a) shows a central particle marked in blue. We decide
to make an adjacency matrix out of the nine nearest neighbors of the central
particle, including itself, shown in Figure (b). For each of the nearest neighbors,
we check which are nearest neighbors of each other, shown in Figures (c) and
(d). The particle in dark blue is the nearest neighbor we are considering, and
particles in light blue are its neighbors within a cutoff distance defined by the
radial distribution function.

92 CHAPTER 5. CREATING DATASETS

(a)

=⇒

1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 0 0 0 0
2 1 1 0 0 0 1 1 0 0
3 1 0 1 0 0 0 1 1 0
4 1 0 0 1 0 0 0 1 1
5 1 0 0 0 1 1 0 0 1
6 0 1 0 0 1 1 0 0 0
7 0 1 1 0 0 0 1 0 0
8 0 0 1 1 0 0 0 1 0
9 0 0 0 1 1 0 0 0 1

(b)

Figure 5.7: A numbering by distance of the nearest neighbors of a central particle
marked in dark blue (a). We iterate through the nearest neighbors in the order
shown and calculate which nearest neighbors are neighbors of each other. If
they are nearest neighbors this is denoted with a 1 in the adjacency matrix and
0 otherwise, as shown in Figure (b).

first minimum of the RDF as the cutoff distance for the inner nearest neighbor
calculations. For some temperated crystals there might, however, be some small
tops in the RDF before we reach a very distinct top. Because of this we have
used the condition that what is considered as the first top in the RDF has to
be over a certain height. The arbitrary height we have chosen is 40 percent of
the global maximum of the RDF.

(a) (b)

Figure 5.8: Radial distribution function of water molecules in methane hydrate
sI crystal as a unit structure (a) and temperated with an harmonic potential
(b). The red markings show where the cutoff would be set for each function.

from operator import itemgetter

from collections import Counter

from ovito.io import import_file

import os

import numpy as np

import freud

from util import is_dir , cutoff_finder , check_frame

def adjacency(

5.3. CREATING FEATURES 93

data , num_neighbors , inner_cutoff ,

frame , dump_filename , recompute=False

):

if inner_cutoff ==None:

cutoff = cutoff_finder(data)

else:

cutoff=inner_cutoff

dump_filename = (

dump_filename

+ (f’_frame{frame}_nneigh{num_neighbors}’

+ f’_icut{np.round(cutoff , 3)}.npy’

)

)

if os.path.isfile(dump_filename) and not recompute:

adjacency_matrix = np.load(dump_filename)

return adjacency_matrix

else:

N_particles = data.particles.count

sim_cell = data.cell.matrix

box = freud.box.Box.from_matrix(sim_cell)

positions = data.particles.positions

We make use of the Freud-Analysis [13] Python library for nearest neighbor
queries. The freud.locality module is used for finding a given number of outer
nearest neighbors. The returned list from Freud is sorted by atom index which is
not ideal for creating adjacency matrices, and has to be sorted by their distances
to the central atom to be consistent for each adjacency matrix.

query_args = { ’mode’: ’nearest ’,

’num_neighbors ’: num_neighbors ,

’exclude_ii ’:False

}

aabb = freud.locality.AABBQuery(box , positions)

nearest_neighbors = aabb.query(

positions , query_args=query_args

).toNeighborList ()

neighbor_counts = nearest_neighbors.neighbor_counts

outer_distances = nearest_neighbors.distances.reshape(

-1, num_neighbors

)

outer_distances = np.argsort(outer_distances , axis =1)

outer_list = nearest_neighbors.point_indices.reshape(

-1, num_neighbors

)

outer_list = outer_list[np.arange(

len(outer_distances)

), outer_distances.T].T

outer_repeat = np.repeat(

outer_list , neighbor_counts , axis=0

).astype(np.int64)

To finish the adjacency matrix, we need to find which of the outer nearest
neighbors of a central atom are inner nearest neighbors of each other. We filter
the list found in the outer neighbor query by a cutoff distance defined using the
first minimum after the first clearly defined maximum in the radial distribution
function.

nearest_neighbors = nearest_neighbors.filter_r(

94 CHAPTER 5. CREATING DATASETS

r_max=cutoff

)

inner_segments = nearest_neighbors.segments

point_indices = nearest_neighbors.point_indices

inner_list = np.split(

point_indices , inner_segments

)[1:]

inner_list_getter =

↪→ itemgetter (* outer_list.ravel())(inner_list)

adjacency_matrix = np.asarray(

[np.isin(x, y) for x, y in zip(

outer_repeat ,

inner_list_getter)

], dtype=np.int8

).reshape(-1, num_neighbors , num_neighbors)

np.save(dump_filename , adjacency_matrix)

return adjacency_matrix

The nearest neighbor query is done entirely in Freud, which utilizes parallel-
ized C++, while the construction of the adjacency matrices is done with Numpy
and a Python loop. This process in Python is slow and memory intensive and
should ideally be implemented in C++ at the same time as finding the nearest
neighbors.

Depending on the structure we are trying to classify, different sizes of ad-
jacency matrices might be needed. For small, simple structures, only a few
nearest neighbors are needed to completely describe the local topology. For
large, complicated structures, like methane hydrates, we need quite a lot of
nearest neighbors just to include one complete structure. Including additional
neighbors should not lead to worse classification of the small structures, al-
though the computation time will increase, so we will generally expect many
neighbors to perform better than few. There might be a limit to this, however,
as extra neighbors do mean increased dimensionality, and as discussed in Sec-
tion 3.8.4 adding more dimensions does not necessarily give a better learning
outcome because of the curse of dimensionality.

We have created two different training datasets for supervised learning. The
first set was created from the AFLOW library with structures matching the
ones defined by Engel et al. found in Figure 5.2, except for the quasicrystal and
disordered regions. We have included the methane hydrate structures sI, sII and
H which we created ourselves and all cP8, cP4, cI16, hP10 and hP2 Pearson
structures found at aflowlib.org. We will call this the aflow dataset. The second
dataset was created from only the clathrate hydrate structures, which we call
the clathrate dataset. All the structures have been temperated with the har-
monic potential for 300 timesteps, unless the break condition takes effect before
the timestep limit is reached, and we made adjacency matrices for the particle
configurations every 10 timesteps still labeling each particle as part of the same
structure it was situated in the non-temperated configuration. Hopefully these
small displacements in the crystal structures make the dataset more similar to
how particles are crystallized in a realistic MD simulation without breaking the
crystal structure.

Chapter 6

Supervised learning

Creating powerful structure identification algorithms like CHILL+ is not an
easy task and the authors of the algorithm needs to have deep insight into the
structures they are trying to identify. These kinds of algorithms are also likely
to be very specialized, forcing us to keep developing new algorithms for every
identification problem we encounter. As mentioned in the machine learning the-
ory, we are not developing a specialized algorithm in machine learning. We only
implement a framework defining what we value as good or bad results with a few
additional rules on how to improve towards the best result possible. The task
of actually developing the algorithm is left to the machine. The immediate ad-
vantage of this is that the machine can develop an algorithm as general as need
be, depending on the data and framework we provide. Theoretically, the ma-
chine can develop an algorithm capable of differentiating between every known
molecular structure if the data provided is ideal and the framework is perfectly
set up. This is, of course, a dream scenario and in actual implementations, it
is often hard to find a machine learning algorithm that can compete with a
well thought out, specialized algorithm. In this chapter, we will use the aflow
and clathrate datasets created in the previous chapter to train a fully-connected
neural network and a convolutional network, as well as testing the best network
architectures on the phase dataset and the methane hydrate dataset.

6.1 Neural network

In Section 5.3, we transformed the datasets into adjacency matrices which we can
use as input features for developing machine learning models for classification.
In this section, we will construct two kinds of machine learning architectures.
A fully-connected network with all nodes in each layer connected to all nodes
in the previous layer and a convolution neural network. Convolutional neural
networks are traditionally used for image classification, however, we can view
the adjacency matrices as black and white images with binary values instead of
pixel values, as illustrated in Figure 6.1 using the adjacency matrix defined in
Figure 5.7b.

Each machine learning architecture as been tested for adjacency matrices of
10-80 neighbors with 10 neighbor increments. This gives us between 100 and
6400 features per atom as input to the networks, as shown in Table 6.1. The

95

96 CHAPTER 6. SUPERVISED LEARNING

Figure 6.1: An adjacency matrix converted into a black and white image.

Table 6.1: Outer neighbors of adjacency matrices and the number of input
features to the machine learning algorithm

Neighbors Input Dimensions

10 100
20 400
30 900
40 1600
50 2500
60 3600
70 4900
80 6400

adjacency matrices are symmetric, and for a fully-connected network we could
decide to just use the upper triagonal as inputs to the network as the lower
triagonal does not add any new information. This would, on the other hand,
not work for a convolutional network as we need to keep the input in an image-
like form. Because we want to compare the two networks on the same input,
we have chosen to keep the adjacency matrices in its original square shape.

For implementing the two network types, we are going to use Keras. Keras
is a high-level neural network API which can utilize TensorFlow, CNTK and
Theano as backends. In our implementations, we have chosen to use the Tensor-
flow 2.0 GPU version as the backend, compatible with Python 3.6 and Cuda
10.0.

The Sequential Keras object stacks layers linearly, meaning each layer is only
connected to the previous layer. Keras also provides a functional API for more
flexibility if a more complex architecture with communication between several
layers is required. Layers to the sequential model are added to the code in a
top-down approach, as shown in the code snippet below of a network with one
10 node layer and one 5 node layer.

6.2. FULLY-CONNECTED NETWORK 97

from keras.models import Sequential , Dense

model = Sequential ()

model.add(Dense (10))

model.add(Dense (5))

In addition to the Seqential object, we make use of the Keras History object
for storing the training and validation results for each epoch during training
time. As both network types need some of the same methods, we implement
these common methods in a parent class called NeuralNet. This class defines
how we save the models after training and a fit method that trains the model.

import keras

import numpy as np

from keras.callbacks import EarlyStopping , History

from keras.layers import Dense , Dropout , Conv2D , AveragePooling2D ,

↪→ Flatten

from keras.models import Sequential

class NeuralNet:

def __init__(self , patience =10):

self.history = History ()

self.callbacks = [

EarlyStopping(

monitor=’val_loss ’,

patience=patience ,

verbose =1), self.history

]

def save_model(self , model_dumpname , history_dumpname):

model_json = self.model.to_json ()

with open(model_dumpname+’.json’, "w") as json_file:

json_file.write(model_json)

self.model.save_weights(f"{model_dumpname }.h5")

print("Saved model to disk")

np.save(history_dumpname , self.history.history)

print("Saved history to disk")

def fit(

self , X, y, epochs =100,

batch_size =512, validation_split =0.4,

):

self.model.fit(

X, y, epochs=epochs ,

validation_split=validation_split ,

batch_size=batch_size , shuffle=True ,

callbacks=self.callbacks ,

)

6.2 Fully-Connected Network

To implement a fully-connected network, we have made a DenseNet class which
utilizes the Keras Dense object with the option of adding a dropout layer every
other layer. It inherits from the NeuralNet class and takes parameters defining
the output size and activation for each layer.

class DenseNet(NeuralNet):

98 CHAPTER 6. SUPERVISED LEARNING

def __init__(

self , num_classes =255, dropout_rate = 0.1,

dropout=True , layer_params =[]

):

super().__init__ ()

model = Sequential ()

for layer in layer_params:

model.add(Dense (** layer))

if dropout:

model.add(Dropout(dropout_rate))

print(model)

model.add(Dense(num_classes , activation=’softmax ’))

model.summary ()

model.compile(

optimizer=’adam’, loss=’categorical_crossentropy ’,

metrics =[’accuracy ’]

)

self.model=model

We have trained networks consisting of four hidden layers on the aflow data-
set, where the output sizes of each layer depend on the input size to the network.
The output size of each layer is defined by the formula N/(2 + 2l) where N is
the size of the input and l = [0, 1, 2, 3] are the hidden layers. We have imple-
mented this scheme because we want the output size to decrease throughout the
network, but because the input has vastly different dimensionalities depending
on the number of neighbors used in the adjacency matrix, we can not set the
output sizes as fixed numbers. The network was tested for the relu, tanh and
sigmoid activation functions as well as dropout rates of 0, 0.1, 0.3 and 0.5. The
complete set of hyperparameters tested is shown in Appendix A. The architec-
tures and hyperparameters of the best testing networks are shown in Table 6.2,
where we see that all the best architectures use relu as an activation function
throughout the network and a high dropout rate gives the best performance.
A high dropout rate in a fully-connected network is not that surprising as the
number of parameters per layer is very high. Using many parameters equates to
using a complex model, and as we discussed in the theory on machine learning,
a complex model is prone to overfitting. A high dropout rate counteracts this
problem.

In Figure 6.2 we can see the best validation accuracy and validation loss for
each of the nearest neighbor combinations. We see that there is a dramatic dif-
ference in accuracy between 10 and 20 neighbors, and for 40 to 80 neighbors the
accuracy difference is less prominent. Even though the dataset of 80 neighbors
performs best during training, we have to keep in mind that the dataset we
have created does use a harmonic potential for temperating the crystals, which
is not the case for a realistic MD simulation, and because of this a small increase
in accuracy on the validation set does not necessarily translate perfectly to a
testing set.

The Phase Dataset

In Figure 6.3 we have tested the best networks on the phase dataset at the end
of simulations for each combination of φ and k. We count the occurrence of
different structures found in the dataset and plot the most prevalent structure

6.2. FULLY-CONNECTED NETWORK 99

(a) (b)

(c) (d)

Figure 6.2: Valdidation accuracy and validation loss for the best fully-connected
network for each nearest neighbor configuration. Figures (a) and (b) shows the
complete results, while (c) and (d) is zoomed in on the best testing networks.

Table 6.2: Best performing fully-connected networks trained and validated on
the aflow dataset.

Neighbors Layers Activations Dropout Accuracy
10 [66, 40, 28, 22] [Relu, Relu, Relu, Relu] 0.5 0.6876
20 [266, 160, 114, 88] [Relu, Relu, Relu, Relu] 0.5 0.9182
30 [600, 360, 257, 200] [Relu, Relu, Relu, Relu] 0.5 0.9367
40 [1066, 640, 457, 355] [Relu, Relu, Relu, Relu] 0.5 0.9458
50 [1666, 1000, 714, 555] [Relu, Relu, Relu, Relu] 0.5 0.9491
60 [2400, 1440, 1028, 800] [Relu, Relu, Relu, Relu] 0.5 0.9533
70 [3266, 1960, 1400, 1088] [Relu, Relu, Relu, Relu] 0.5 0.9552
80 [4266, 2560, 1828, 1422] [Relu, Relu, Relu, Relu] 0.5 0.9566

100 CHAPTER 6. SUPERVISED LEARNING

φ

k

(a) 10 Neighbors

φ

k

(b) 60 Neighbors

φ

k

(c) 80 Neighbors
(d) Engel et al. manual classification

Figure 6.3: A phase representation of the structures found in the datasets cre-
ated from the oscillating pair potential. We have plotted the most prevalent
structure found in each dataset using fully-connected machine learning models
trained on adjacency matrices of 10, 60 and 80 nearest neighbors.

6.2. FULLY-CONNECTED NETWORK 101

φ

k

(a) 10 Neighbors

φ

k

(b) 60 Neighbors

φ

k

(c) 80 Neighbors
(d) Engel et al. manual classification

Figure 6.4: A phase representation of the structures found in the datasets cre-
ated from the oscillating pair potential. We have plotted the second most pre-
valent structure found in each dataset using fully-connected machine learning
models trained on adjacency matrices of 10, 60 and 80 nearest neighbors.

102 CHAPTER 6. SUPERVISED LEARNING

at every grid point. Counting the occurence and using the most prevalent struc-
tures is the same technique used by Engel et al. in their manual classification.
The manual classification was done very rigorously by comparing five different
simulations at each grid point.

The figures shown are for 10, 60 and 80 neighbors. We chose this set of
neighbors to evaluate the performance between the worst and best performing
network, 10 and 80 neighbors respectively, as well as 60 neighbors to see if a
slightly worse performance on the training set have any impact on the results
on the test set. The complete set of results is found in Appendix B.2. In all
figures some of the structures are classified as disordered. We did not include a
disordered classification in the training process of the networks, but to simulate
a disordered dataset we set a limit on the probability of the classification of
individual structures. If a structure is classified with a probability of less than
30 %, it is reclassified as disordered.

Starting with the 10-neighbors result, we see that albeit completely misclas-
sified, the model does separate the cP8 region quite well, when comparing with
the manual classification of Engel et al. in Figure 6.3d. We could also argue
that the hP2 and cP4 regions er somewhat separated though none of them are
correctly classified. What is a bit surprising is that it does find the clathrate
sI structure quite well even though its unit cell contains 46 particles and we
are only evaluating the topology of the 10 nearest neighbors. When increasing
the neighbor count to 60 and 80 we see the same tendencies of finding separate
regions, only with a better classification of the cP8 region. Unfortunately, the
cP8 structure completely dominates the phase space making the classification
useless. Because of this, we have tried in, Figure 6.4, plotting the second most
prevalent structure if more than one structure is found in the data, and the most
prevalent structure if only one structure is found. We try this approach because
the classifier might find a high number of the correct structure in the dataset
though the most prevalent structure is not the correct one. If the second most
classified structure is the correct one, we can at least infer that the model is
close to finding the correct structures after all.

When plotting the second most prevalent structure, we remove the domin-
ance of cP8 in the phase space and even though we see better separation of the
regions, the classification is still quite useless in all cases. Especially we can
note that the cP4 structure has not been present in any of the plots. Another
thing to notice is that when comparing the clathrate regions of 60 and 80 neigh-
bors with the previous plots of the most prevalent structures, we actually get
a good separation between the individual clathrate structures if the dominance
of clathrate sI is reduced.

The cP8 structure which dominates the phase space is the Cr3Si structure,
shown in Figure 6.5. It is not obvious why exactly this structure is the dominant
one, but when comparing the bonds of this structure for timestep 0 and timestep
300 during temperation, in Figure 6.5a and Figure 6.5b, we can see that the
temperation has actually changed the structure to a large degree by adding
several bonds in the structure. The goal of temperation is to add irregularities
in the unit structures without breaking them. It is clear that the preliminary test
of the break condition during temperation was not sufficient, and in this case,
the temperation should have stopped earlier. As we are training our dataset
on 30 sampling points of the temperation where the adding of bonds will get
progressively worse throughout, this might make this structure look similar to

6.2. FULLY-CONNECTED NETWORK 103

several other structures in the dataset, making it harder to separate them in
the phase space.

Another possibility for this dominance might be that we cooled the particle
systems faster when creating the datasets than the original authors did, altering
the intrinsic structures too much in the process. The fact that the network is
largely able to find the manually classified regions of Engel et al. but not classify
them correctly might suggest that this is actually a significant contributing
factor to the results.

(a) Cr3Si (cP8): Timestep 0 (b) Cr3Si (cP8): Timestep 300

Figure 6.5: Figure (a) and (b) shows a side view of the most prevalent structure
found in the phase dataset. In Figure (a) we see the idealized unit structure
and in Figure (b) the same structure temperated for 300 timesteps using a
harmonic potential. We can see that the temperation of the crystal has been
too excessive, and there have been added several new bonds to the structure.
The goal of temperation is to add some irregularities to the unit structure,
however, the structure should still be largely intact and this figure shows the
structure has been altered to a large extent. This suggests that the criterion for
stopping the temperation should have been more rigorous.

The Methane Hydrate Dataset

In Figure 6.7 we have tested the best network for 10, 60 and 80 neighbors on
the methane hydrate dataset. The complete set of results is found in Appendix
C.2.

All the networks shown in this section find several structures in the dataset,
which makes the cluster colors blend together. Because of this, we have kept
the three most prevalent structures as separate colors and merged the rest into
an unlabeled cluster, which is shown in blue. Comparing with the result of
CHILL+ in Figure 6.7d, we see that the same grain boundaries appear for
all neighbor configurations, although far more clearly for a higher number of
neighbors. For a high number of neighbors, we can argue that visually the
grain boundaries are just as defined, if not more so, as the result of CHILL+.
A thing to notice is that the grain boundaries are almost entirely classified
as unlabeled, which is a big difference between these results and the result of
CHILL+, where the grain boundaries are a mixture of unlabeled particles and
interfacial hydrate. The CHILL+ algorithm is, however, completely dependant
on the removal of the methane particles before the algorithm is applied, as

104 CHAPTER 6. SUPERVISED LEARNING

(a) FeSi (cP8): Timestep 0 (b) FeSi (cP8): Timestep 300

Figure 6.6: When testing the network on the methane hydrate dataset and
only keeping the three most prevalent structures, we find an abundance of the
structure shown in (c) and (d). This structures exhibits a cage-like nature after
the temperation, which might make them look like deformed methane hydrate
structures to the machine learning network.

we have seen in Figure 5.1b, while the machine learning approach makes no
such assumptions and is able to find the grain boundaries while the methane
particles are still present. The three most prevalent structures and their cluster
sizes are shown in Table 6.3. The structure found by the 60 and 80 neighbor
networks, in addition to the unlabeled and methane hydrate structures, can be
seen in Figure 6.6. After temperation, this structure exhibits a cage-like nature
and we can argue that again the temperation has been too excessive. Because
the temperation is not to be entirely trusted, we can not be certain that the
structure found is indeed the correct structure in the dataset, but to represent
the interfacial (deformed) hydrates found in the CHILL+ algorithm we do need
some structures which exhibits similarity to the clathrate hydrates, only with
some deformation. Because of the shape of this structure after temperation, it
is not unreasonable that it is classified as a deformed hydrate by the algorithm.

6.2. FULLY-CONNECTED NETWORK 105

(a) 10 Neighbors:
Red: sI, Yellow: sII,
Green: Er3Ru2 (hP10),
Blue: Unlabeled

(b) 60 Neighbors:
Red: sI, Yellow: FeSi (cP8),
Green: sII, Blue: Unlabeled

(c) 80 Neighbors:
Red: sI, Yellow: sII,
Green: FeSi (cP8), Blue: Unlabeled

(d) CHILL+

Figure 6.7: Fully-connected network trained on the aflow dataset applied to
simulation of methane hydrate under stress. Figures shown are for adjacency
matrices of 10 (a), 60 (b) and 80 (c) neighbors. Only the three most prevalent
structures are kept and the rest are merged into an unlabeled cluster. Compar-
ing with the results of CHILL+ (d) we see that both 60 and 80 neighbors are
able to find the grain boundaries of the system.

106 CHAPTER 6. SUPERVISED LEARNING

Table 6.3: Structures found in methane hydrate dataset.

Structure Cluster Size

10 Neighbors

Methane hydrate I (sI) 82113
Methane hydrate II (sII) 52229
ErrRu2 (hP10) 19819
Unlabeled 92859

60 Neighbors

Methane hydrate I (sI) 180738
FeSi (cP8) 14348
Methane hydrate II (sII) 11318
Unlabeled 40616

80 Neighbors

Methane hydrate I (sI) 162544
Methane hydrate II (sII) 16527
FeSI (cP8) 7792
Unlabeled 60157

6.3 Convolutional Network

The particle datasets are transformed into adjacency matrices which can be
interpreted as black and white images. Because the most widely used neural
network for classifying images are convolutional networks, utilizing this seems
like a reasonable approach. To construct a convolutional network, we create a
ConvNet class which inherits from the NeuralNet class.

class ConvNet(NeuralNet):

def __init__(

self , num_classes =255, layers=’caccaca ’,

dropout =0.1, layer_params=None

):

super().__init__ ()

layer_names = {’c’: Conv2D , ’a’:AveragePooling2D}

model = Sequential ()

for i, layer in enumerate(layers):

model.add(layer_names[layer](** layer_params[i]))

if dropout and layer==’a’:

model.add(Dropout(dropout))

model.add(Flatten ())

if dropout:

model.add(Dropout(dropout))

model.add(Dense(num_classes , activation=’softmax ’))

model.compile(

optimizer=’adam’, loss=’categorical_crossentropy ’,

metrics =[’accuracy ’]

)

model.summary ()

self.model=model

6.3. CONVOLUTIONAL NETWORK 107

Table 6.4: Architectures Tested

Input Dim < 30× 30 Input Dim ≥ 30× 30

Conv[16] Conv[16]
Pool[2] Pool[2]

Conv[32] Conv[32]
Conv[64] Conv[64]
Conv[128] Pool[2]

Conv[128]

The architecture of the convolutional network is given in the layers argument
of the constructor. In this implementation, we only allow two layer types, the
convolutional two-dimensional layer and an averaging 2×2 pooling layer, which
reduces the size of the image by averaging a pixel area. Before calculating the
loss function, the output from the last convolutional layer is flattened and run
through a fully-connected layer with softmax activation. If the dropout argu-
ment is given, dropout layers are also added after every pooling layer and after
the flattening of the convolutional output. To prevent overfitting, we also use
the EarlyStopping callback to stop the training process when no improvement
is detected on the validation set for 10 epochs. In Appendix A, an overview of
the hyperparameters tested are given.

In Table 6.4 we see the two types of architectures tested, where we have used
one less pooling layer for adjacency matrices with less than 30 neighbors to keep
the output feature map at a reasonable size.

The best results for each of the nearest neighbor configurations of the adja-
cency matrices trained on the aflow dataset are shown in table 6.5. We can see
the accuracy does increase as we increase the number of neighbors. However,
the size of the added improvement declines for each neighbor configuration, as
was the case for the fully-connected network. One could argue there are two
reasons for this. Firstly, even though adding more neighbors adds more inform-
ation about the local topology of each atom, there is probably a limit to how
much extra information is added as we increase the number of neighbors beyond
the number of particles in the unit cell of the largest structure. Secondly, we
are adding quite a lot of dimensions to the classification problem as we increase
the number of neighbors which does make it harder for the network to find the
relevant information for a good classification.

From Figure 6.8, we see the same trend as with the fully-connected network,
a higher number of neighbors tends to increase the accuracy on the validation
data and there is a large jump in accuracy from 10 to 20 neighbors. Just like with
the fully-connected network there is also not that big of a difference between the
accuracy for 40-80 neighbors. However, there is a more distinct separation in
the accuracy between each neighbor increment. The convolutional network also
performs better for each of the neighbor configurations than the fully-connected
networks. However, the difference is so small we can not infer just from this
result that the convolutional networks will perform better on testing data than
the fully-connected ones.

108 CHAPTER 6. SUPERVISED LEARNING

Table 6.5: Best Architectures

Neighbors Filter Activation Dropout Accuracy

10 5× 5 [Relu, Tanh, Tanh, Relu] 0.3 0.7937
20 5× 5 [Relu, Relu, Relu, Relu] 0.5 0.9295
30 5× 5 [Relu, Relu, Relu, Tanh] 0.3 0.9427
40 5× 5 [Tanh, Relu, Tanh, Relu] 0.5 0.9509
50 5× 5 [Relu, Relu, Tanh, Relu] 0.5 0.9566
60 5× 5 [Relu, Relu, Tanh, Relu] 0.5 0.9616
70 5× 5 [Relu, Tanh, Tanh, Relu] 0.5 0.9659
80 5× 5 [Relu, Relu, Relu, Relu] 0.5 0.9678

(a) (b)

(c) (d)

Figure 6.8: The best convolutional networks for each nearest neighbor size used
in the adjaceny matrix calculation. Figures a and c shows the validation accur-
acy of the networks and figures b and d shows, the loss for the same networks.
We clearly see that increasing the number of neighbors does improve the accur-
acy and loss of the network.

6.3. CONVOLUTIONAL NETWORK 109

Table 6.6: Structures found with convolutional network.

Structure Cluster Size

10 Neighbors
Methane hydrate I (sI) 81237

Methane hydrate II (sII) 47141
CoU (cI16) 34064
Unlabeled 84578

60 Neighbors
Methane hydrate I (sI) 142124
High pressure Li (cI16) 36903

FeSi (cP8) 21305
Unlabeled 46688

80 Neighbors
Methane hydrate I (sI) 161231

BC8 (cI16) 29086
High pressure Li (cI16) 16026

Unlabeled 40677

The Phase Dataset

We tested the network on the phase dataset in the same fashion as for the fully-
connected network, using the same probability tolerance of 30%. The results
for all neighbor combinations can be seen in Appendix B.1.

The most prevalent structure of neighbors 10, 60 and 80, for each combin-
ation of φ and k, are shown in Figure 6.9. In this figure, we can see the same
trends as with the fully-connected network. The 10 neighbor network seems to
be somewhat able to separate interesting regions. However, the classification it-
self is very inaccurate except arguably for the clathrate sI structure. Increasing
the neighbors also shows the same trends with separation of regions and cP8
being the dominant structure.

When plotting the second most prevalent structure in Figure 6.10 we can
perhaps argue we get a better result than for the fully-connected case. Especially
we can see that the hP10 region is mostly correctly classified for both 60 and 80
neighbors, which was not the case for the fully-connected network. In addition,
we see that the cP4 structure is present in the phase space, although it is not
correctly classified. Again the separation of clathrates is quite good, which we
will examine more closely on the methane hydrate dataset.

If we accept the argumentation put forth in the discussion of the fully-
connected networks, and assume the misclassification is, to a large degree, a
result of the cooling process in the dataset creation, then these results are actu-
ally not that bad. Ignoring the regions of disorder and quasicrystals, we can see
that at least for the 60 and 80 neighbor networks, the regions are all quite well
separated. This means that the networks understand that there are separate
structure types in these regions. Iit is just not able to find the correct structures
with the current dataset.

110 CHAPTER 6. SUPERVISED LEARNING

φ

k

(a) 10 Neighbors

φ

k

(b) 60 Neighbors

φ

k

(c) 80 Neighbors
(d) Engel et al. manual classification

Figure 6.9: A phase representation of the structures found in the datasets cre-
ated from the oscillating pair potential. We have plotted the second most pre-
valent structure found in each dataset using a convolutional neural network
trained on adjacency matrices of 10, 60 and 80 nearest neighbors.

6.3. CONVOLUTIONAL NETWORK 111

φ

k

(a) 10 Neighbors

φ

k

(b) 60 Neighbors

φ

k

(c) 80 Neighbors
(d) Engel et al. manual classification

Figure 6.10: A phase representation of the structures found in the datasets
created from the oscillating pair potential. We have plotted the second most
prevalent structure found in each dataset using a convolutional neural network
trained on adjacency matrices of 10, 60 and 80 nearest neighbors.

112 CHAPTER 6. SUPERVISED LEARNING

(a) BC8 (cI16): Timestep 0. (b) BC8 (cI16): Timestep 300.

(c) High-pressure Li (cI16):
Timestep 0.

(d) High-pressure Li (cI16):
Timestep 300.

(e) FeSi (cP8): Timestep 0 (f) FeSi (cP8): Timestep 300

Figure 6.11: Structures found in methane hydrate simulation in adition to meth-
ane hydrate structures, using 60 and 80 neighbors. All structures exhibit a
cage-like nature after temperation.

6.3. CONVOLUTIONAL NETWORK 113

The Methane Hydrate Dataset

For the methane hydrate dataset, we again focus on the results of 10, 60 and 80
neighbors. The complete set of results for all neighbors can be seen in Appendix
C.1. We color the three most prevalent structures individually and merge the
rest into a single cluster of unlabeled structures colored in blue. The results are
shown in Figure 6.12.

The results look very similar to the fully-connected case and the grain-
boundaries found in the CHILL+ algorithm is unmistakable once again. There
is a slight difference compared to the fully-connected result, however. For 60
and 80 neighbors, we see a much larger number of labeled particles in the grain
boundaries, meaning the network is far more confident in the clustering results
of the three largest clusters. In Table 6.6 we see the structures found for each
nearest neighbor model, and the structures found by the 60 and 80 neighbor
networks are shown in Figure 6.11. The BC8 structure in Figures 6.11a and
6.11b largely keeps its initial structure during temperation only with some ad-
ded irregularities. Because the structure has not been completely altered, we
can have more confidence that this is actually a structure which is present in
the dataset. This is only to some extent though, as we have only trained the
network to recognize a small subset of Pearson structures, and the confidence
the network has in the BC8 structure might drop drastically if other structures
were to be introduced in the training set.

The two other structures, in Figures 6.11d and 6.11f, has been excessively
temperated leading to altered structures. When temperated they both look
cage-like, and because of this, they might look like deformed hydrates to the al-
gorithm. Even though this helps in finding the grain boundaries, because of the
structure alteration, we can not have any confidence in the actual classification
of these structures in the grain boundaries.

Finally, we have trained the best models on the clathrate dataset only con-
taining the three clathrate structures and tested on the methane hydrate data-
set. The results are shown in Figure 6.13. We see that even though the grain
boundaries are still present, they are far less prevalent than the results using the
phase dataset. This is not that surprising considering the previous results did
not find a lot of sII and H structures in the grain boundaries, and to represent
the interfacial hydrate structures of CHILL+ we need some structures in the
training dataset that are quite similar to the sI structure only with some bonds
added or removed. So, to find hydrate grain boundaries, it is more advantageous
for the network to have seen both hydrates and other structures. Not just the
sI, sII and H hydrates.

114 CHAPTER 6. SUPERVISED LEARNING

(a) 10 Neighbors:
Red: sI, Yellow: sII,
Green: CoU (cI16), Blue: Unlabeled.

(b) 60 Neighbors:
Red: sI, Yellow: BC8 (cI16),
Green: FeSi (cP8), Blue: Unlabeled.

(c) 80 Neighbors:
Red: sI, Yellow: BC8 (cI16),
Green: High pressure Li (cI16), Blue:
Unlabeled.

(d) CHILL+

Figure 6.12: Convolutional neural network trained on the aflow dataset applied
to simulation of methane hydrate under stress. Figures shown are for adjacency
matrices of 10 (a), 60 (b) and 80 (c) neighbors. Only the three most prevalent
structures are kept and the rest are merged into an unlabeled cluster. Compar-
ing with the results of CHILL+ (d) we see that both 60 and 80 neighbors are
able to find the grain boundaries of the system.

6.3. CONVOLUTIONAL NETWORK 115

(a) 10 Neighbors (b) 60 Neighbors

(c) 80 Neighbors (d) CHILL+

Figure 6.13: Convolutional neural network trained on the clathrate hydrate
dataset containing sI, sII and H clathrate structures. The trained network is
applied to a simulation of sI methane hydrates under stress. Figures shown are
for 10 (a), 60 (b) and 80 (c) neighbors in the adjacency matrices. Comparing
with the results of CHILL+ (d) we see that both 60 and 80 neighbors are able to
find the grain boundaries of the system, however, they are not very prominent
suggesting there are not many sII and H structures developing in the boundaries.

116 CHAPTER 6. SUPERVISED LEARNING

Chapter 7

Unsupervised Learning

Unsupervised learning removes the difficulty of acquiring labeled data for ma-
chine learning tasks. Because of this significant advantage, finding unsupervised
models which perform as well as supervised models are of great interest. The
most common unsupervised learning task is the clustering of data. With clus-
tering the machine is trying to find underlying structures in the dataset by
evaluating such metrics as the density and the distances within the dataset.

The dataset we have used for unsupervised clustering is a methane hydrate
simulation under stress which has grain boundaries in the crystal. A side view of
the dataset is shown in Figure 7.1a, where the blue atoms are methane and the
red are water molecules. In Figure 7.1b, we have applied the CHILL+ algorithm
to this dataset, which is able to find the grain boundaries. The CHILL+ result
will be our benchmark for the unsupervised clustering results.

The dataset was first transformed into adjacency matrices for each of the
particles in the dataset. We have used a range of nearest neighbors for the adja-
cency calculations, starting from 20 and up to 70 with 10 neighbor increments.
This gives in total six different datasets ranging from 400 to 4900 features as
shown in Table 7.1.

7.1 Dimensionality Reduction

There are two main reason, for performing dimensionality reduction on a data-
set.

Table 7.1: Outer neighbors of adjacency matrices and the number of input
features to the clustering algorithm

Neighbors Input Dimensions

20 400
30 900
40 1600
50 2500
60 3600
70 4900

117

118 CHAPTER 7. UNSUPERVISED LEARNING

(a) (b)

Figure 7.1: Side view of the three-dimensional 30716 particle methane hydrate
simulation used for testing and training. The blue atoms are methane and the
red are water molecules (a).The same simulation with the CHILL+ algorithm
of Ovito coloring the atoms is shown in (b). The orange atoms are classified as
sI hydrate, the green as interfacial hydrate and the blue as unlabeled.

Firstly, we are working with datasets containing thousands of features, and
without a reduction in the number of features it is not feasible to expect the
machine to find any meaningful patterns in the data. One reason for this is the
time complexity of unsupervised learning, but the most important is the curse
of dimensionality, as we discussed in Section 3.8.4 on density-based clustering.
Because we are very dependent on the density and the distance between data
points in clustering algorithms, adding too many dimensions is likely to influence
the prediction outcome negatively.

Secondly, most datasets contain a certain amount of noise. It might not
be inherently obvious from the dataset itself and a dimensionality reduction
technique, like principal component analysis, might help improve the learning
accuracy by removing the dimensions containing the least amount of informa-
tion.

We have used two techniques for reducing the dimensionality of the data.
Principal component analysis, where we have kept 90% of the explained vari-
ance, and an autoencoder mapping the features into a latent space of lower
dimensionality.

7.1.1 Autoencoder

As a means of dimensionality reduction in unsupervised learning, we have im-
plemented an autoencoder. If the autoencoder perfectly recreates the input, the
latent space of the autoencoder is a perfect representation of the input in lower
dimensions. We have tried to utilize this when clustering by clustering directly
on the latent space after the autoencoder has been trained.

We have used Keras to implement an AutoEncoder class, which handles
the splitting of input data into training and validation data defined using a
percentage argument defining the amount of training data we want, as well as
the setup of the autoencoder architecture.

from keras.layers import Input , Dense , Dropout

from keras.models import Model

7.1. DIMENSIONALITY REDUCTION 119

from keras.callbacks import EarlyStopping

from keras import regularizers

from sklearn.metrics import roc_auc_score

import tensorflow as tf

import numpy as np

import os

class AutoEncoder:

def __init__(self , epoch , frame , dump_filename):

self.epoch = epoch

self.data_train = None

self.data_test = None

self.dump_filename = dump_filename + f’_frame{frame}’

def train_test(self , data , percent_training_data =0.6):

data = data.reshape(len(data), np.prod(data.shape [1:]))

N_training_samples = int(

np.floor(percent_training_data*data.shape [0])

)

data_train = data[: N_training_samples]

data_test = data[N_training_samples :]

data_train = data_train.reshape(

len(data_train), np.prod(data_train.shape [1:])

)

data_test = data_test.reshape(

len(data_test), np.prod(data_test.shape [1:])

)

self.data_train = data_train

self.data_test = data_test

self.data = data

return data_train , data_test

For the autoencoder architecture, we have implemented two options. The
autoconstruct method adds fully-connected layers with output sizes correspond-
ing to powers of two, with the smallest possible power defined in the argument
and the largest power being the largest possible without being larger than the
input data. So with 100 input features and a power start of 4 we get an encoder
architecture as described in Table 7.2.

Table 7.2: Example layer structure of autoencoder.

Input Size Hidden Layers Size Latent Space Size
100 26 25 24

The encoder and decoder are mirror images of each other, not considering
the latent space, with the output of the decoder being the same size as the input,
as is required for an autoencoder. Each layer in the autoconstruct method uses
relu as the activation function.

def autoconstruct_layers(

self , N_input_features , power_start =4

):

bases = np.arange (15)

powers = np.power(2, bases)[power_start :]

startunit = np.argmax(powers > N_input_features) - 1

input_img= Input(shape=(N_input_features ,))

encoded = Dense(

units=powers[startunit], activation=’relu’

120 CHAPTER 7. UNSUPERVISED LEARNING

)(input_img)

for i in reversed(range(startunit)):

encoded = Dense(

units=powers[i], activation=’relu’

)(encoded)

decoded = Dense(

units=powers [1], activation=’relu’

)(encoded)

for i in range(startunit +1):

decoded = Dense(

units=powers[i], activation=’relu’

)(decoded)

decoded = Dense(

units=N_input_features , activation=’relu’

)(decoded)

return input_img , encoded , decoded

The construct method gives more options to the user as the parameters of
each layer must be defined explicitly with size and activation function. Only the
encoder layers are given since the decoder is just the reverse implementation of
the encoder layers.

def construct_layers(

self , N_input_features ,

layers:list , activations=None

):

if activations ==None:

activations =[’relu’]*len(layers)

input_img = Input(shape =(N_input_features ,))

encoded = Dense(

units=layers [0], activation=activations [0],

kernel_regularizer=regularizers.l2 (0.01) ,

activity_regularizer=regularizers.l1 (0.01)

)(input_img)

for layer , activation in zip(

layers [1:], activations [1:]

):

encoded = Dense(

units=layer , activation=activation ,

kernel_regularizer=regularizers.l2 (0.01) ,

activity_regularizer=regularizers.l1 (0.01)

)(encoded)

decoded = Dense(

units=layers[-2], activation=activations [-2],

kernel_regularizer=regularizers.l2 (0.01) ,

activity_regularizer=regularizers.l1 (0.01)

)(encoded)

for layer , activation in zip(

layers [-3::-1],

activations [-3::-1]

):

decoded = Dense(

units=layer , activation=activation ,

kernel_regularizer=regularizers.l2 (0.01) ,

activity_regularizer=regularizers.l1 (0.01)

)(decoded)

decoded = Dense(

units=N_input_features , activation=’relu’

)(decoded)

7.1. DIMENSIONALITY REDUCTION 121

return input_img , encoded , decoded

The autoencoder method trains the autoencoder with the training data
given. What we are really interested in is the latent space of the autoencoder.
Because of this, what is returned from the autoencoder method is the encoded
inputs of the entire dataset after the autoencoder has been trained. The input
has now been mapped to the same dimension as the latent space.

def autoencoder(

self , data_train=None , data_test=None ,

autoconstruct_layers=True , power_start =4,

input_layers=None , activations=None ,

recompute=False ,

):

if input_layers is None:

self.dump_filename = (

self.dump_filename

+ f’_autoconstructpowerstart{power_start }.npy’

)

else:

layers = ’|’.join(map(str , input_layers))

act = ’|’.join(activations)

self.dump_filename = (

self.dump_filename

+ f’_layers{layers}_act{act}.npy’

)

if (os.path.isfile(self.dump_filename)

and not recompute

):

print(

f’Precalculated: Loading {self.dump_filename}’

)

encoded_imgs = np.load(self.dump_filename)

return encoded_imgs , self.dump_filename

else:

if (self.data_train is not None

and self.data_test is not None

):

data_train , data_test = (self.data_train ,

self.data_test

)

N_input_features = data_train.shape [1]

if input_layers ==None:

input_img , encoded , decoded = (

self.autoconstruct_layers(

N_input_features , power_start

)

)

else:

input_img , encoded , decoded = (

self.construct_layers(

N_input_features ,

input_layers ,

activations

)

)

autoencoder=Model(input_img , decoded)

encoder = Model(input_img , encoded)

autoencoder.summary ()

122 CHAPTER 7. UNSUPERVISED LEARNING

Table 7.3: Autoencoder architectures tested.

Activations Layers
Relu [2N , 2N−1, · · · , 23]
Relu [2N , 2N−1, · · · , 24]
Relu [2N , 2N−1, · · · , 25]
Relu [2N , 2N−1, · · · , 26]
Relu [2N , 2N−1, · · · , 27]
Relu [2N , 2N−1, · · · , 28]
Relu [1500, 1000]
Relu [1500, 1000, 500]
Relu [1500, 1000, 500, 256]

autoencoder.compile(

optimizer=’adam’,

loss=’binary_crossentropy ’,

metrics =[’accuracy ’]

)

callbacks = [

EarlyStopping(monitor=’val_loss ’, patience =10)

]

autoencoder.fit(data_train , data_train ,

epochs=self.epoch ,

callbacks=callbacks ,

batch_size =256,

shuffle=True ,

validation_data =(

data_test ,

data_test)

)

evaluation = autoencoder.evaluate(

data_train , data_train

)

np.save(

self.dump_filename+’_evaluation ’,

evaluation

)

encoded_imgs = encoder.predict(

self.data , verbose =1

)

print(f’Creating file {self.dump_filename}’)

np.save(self.dump_filename , encoded_imgs)

return encoded_imgs , self.dump_filename

In Table 7.3 we see all the autoencoder architectures tested. Each of these
architectures was tested on adjacency matrices of the methane hydrate dataset,
shown in Figure 7.1, using between 20 and 70 nearest neighbors with 10 neighbor
increments, as defined in Table 7.1.

In Figure 7.2a, we see the validation accuracy of the autoencoder as a func-
tion of the number of neighbors in the adjacency matrices. This gives the im-
pression that increasing the number of neighbors yields a better result. This is,
however, not a correct assessment. As we increase the number of neighbors we
are also increasing the percentage of 0s in the adjacency matrix because adding
more neighbors in the matrix does not, in general, mean that more neighbors

7.1. DIMENSIONALITY REDUCTION 123

(a) (b)

(c)

Figure 7.2: The accuracy (a) and recall (b) of the autoencoders tested. Because
the percentage of 0s in the dataset is far greater than the 1s (c), we have to use
the recall as a performance measure.

124 CHAPTER 7. UNSUPERVISED LEARNING

become neighbors of each other. In Figure 7.2c we see the percentage of 1s in
the matrices as a function of the number of neighbors. We can see that for
70 neighbors, only 5.47% of the 4900 binary numbers in the matrix are 1s. In
practice, this means that if the machine predicts all the numbers to be 0s, it will
have an accuracy of 94.53%. Because of this, we need another metric to define
how well the algorithm is doing. In Figure 7.2b we see the recall of the class
of 1s as a function of neighbors. We can now see that reducing the number of
neighbors actually yields better results as the recall is higher. We can also see
that a higher latent dimensionality generally gives a better recall score. None of
the networks gives a very impressive recall score, however, as it ideally should
have been close to 1. The best recall score of 0.476 means that only about half
of the 1s in the adjacency matrix is actually recreated. The rest are set to zero.
We can also see that the autogenerated hidden layers of powers of two give the
best result of the networks tested. The general trend for the latent dimension is
that higher dimensions give better recreation results, which is not surprising as
we can view this as less compression of the image, and less compression makes
it easier to recreate.

7.1.2 PCA

For the principal component analysis dimensionality reduction we have used
the Scikit-learn built-in PCA class. This object as a method for finding the
explained variance of each component in the new eigenvector space, which as
we explained in the theory chapter is ordered from highest variance to lowest.
To ensure we do not remove too much of the relevant information, we take
the cumulative sum of the explained variance and keep the first n components
equating to 90 percent of the variance. There is no rule of thumb explaining
how much variance and how many components should be kept, other than it
should be “high enough”, and so the choice of 90 percent is a bit arbitrary.
Our reasoning has been that if we are working in a low dimensional space, each
component is more likely to account for a larger percentage of the variance,
making each component more “valuable” and thus keeping a large percentage
in the high 90s might be reasonable. In addition, it is not as relevant to remove
many dimensions in a low dimensional space as the dimensionality may already
be quite manageable. We are, on the other hand, working in a space of between
400 and 4900 dimensions and we are likely to have many components with low
variance. These components may add up to a large variance but individually
their variance may be very low, and hence expendable.

def compute_pca(self , data=None):

if data is None:

data = self.data

if data.ndim > 2:

print(

f’Data shape is {data.ndim}, raveling down to 2 dims’

)

data = data.reshape(len(data), np.prod(data.shape [1:]))

pca = PCA().fit(data)

explained_v = pca.explained_variance_ratio_

cum = np.cumsum(explained_v)

idx = np.argmax(cum > 0.9)

7.2. CLUSTERING 125

return pca.transform(data)[:, :idx]

With the dimensionality reduction techniques applied, we now move on to
clustering the data.

7.2 Clustering

The unsupervised clustering task is particularly difficult as we do not have a
labeled training set to validate the performance of the clustering method. We
instead used the unsupervised performance metrics defined in Section 3.9 to
evaluate the models. These methods measure the density and separation of the
clusters but are not guaranteed to be good measures of how well the clustering
method is doing. There is also not a given which of the evaluation methods are
best, and they often do not agree on which model is the best. Because of this,
we have used the metrics separately to order the models from best to worst for
each evaluation metric , and manually check the results for each of them. All
the results can be seen in Appendix D.

A big difference between the supervised and unsupervised implementations
is that the clustering results say nothing about what kinds of structures exist
in the dataset. Clustering can only help reveal clusters of similar structures by
coloring the particles in a simulation by their respective cluster values, but the
actual labeling of what kinds of structures exist must be done manually.

In this section, we are only going to focus on some selected results. Most
of the results only found one or two clusters in the dataset, and we will focus
on the results that found three or more. A thing to notice is that none of the
selected results use PCA as a dimensionality reduction technique. We have not
kept track of the number of dimensions retained after the PCA reduction, but
with 90% variance kept it is likely that quite a lot of dimensions prevail. The
bad results for PCA are then likely to be because of the curse of dimensionality,
though we have not tested this explicitly.

We did not use separate testing and training sets for the clustering imple-
mentations. We tested and trained the four clustering algorithms defined in
Section 3.8; agglomerative clustering, Gaussian mixture models (GMM), OP-
TICS and DBSCAN on the methane hydrate data shown in Figure 7.1. The
dataset was first transformed into adjacency matrices with nearest neighbors
N ∈ [20, 30, 40, 50, 60, 70]. The dimensionality of these matrices was then re-
duced by using both PCA and the latent spaces of the autoencoder networks
shown in Table 7.3. This gives a total of 60 different sets of features describing
the methane hydrate dataset. These 60 feature sets were then clustered with
the different clustering algorithms. Furthermore, the results were evaluated
with the unsupervised performance metrics; Calinski-Harbasz, Davies-Bouldin
and silhouette score.

The Cluster class we have implemented uses Scikit-learn for all clustering and
evaluation tasks as all the algorithms are implemented in the framework. Scikit-
learn has no GPU implementation available as it is trying to keep its library as
lightweight as possible. Advantages of Scikit-learn is that we can keep the code
very compact for machine learning methods implemented in the library but
we are sacrificing flexibility and so other machine learning frameworks might

126 CHAPTER 7. UNSUPERVISED LEARNING

be more suitable for more complex tasks, like implementing a new clustering
algorithm from scratch.

The unsupervised performance metrics are all implemented in Scikit-learn,
and we use these functions directly in our own implementations.

Class Cluster:

def __init__(self , data):

self.data = data

def evaluate(self , data , labels):

calinski = metrics.calinski_harabasz_score(data , labels)

silhouette = metrics.silhouette_score(data , labels)

davies = metrics.davies_bouldin_score(data , labels)

return {

’calinski ’: calinski ,

’silhouette ’: silhouette ,

’davies ’: davies

}

We have chosen to separate the clustering results into density-based clus-
tering, referencing the OPTICS and DBSCAN methods which both bases their
algorithms on density measures, and non-density-based clustering, referencing
Gaussian mixture models and agglomerative clustering as these methods base
their algorithms purely on distance measures.

7.2.1 Density Based Clustering

With density-based clustering, we are referring to the DBSCAN and OPTICS
algorithms. We have created separate methods in the Cluster class for each of
the clustering methods, both using the implementations imported from Scikit-
learn.

def optics(self , params):

for eps , sample in params:

optics_model = OPTICS(

eps=eps ,min_samples=sample

).fit(self.data)

labels = optics_model.labels_

try:

evaluate = (

self.evaluate(self.data , labels),

Counter(labels)

)

except ValueError:

evaluate = Counter(labels)

yield labels , evaluate

def dbscan(self , params):

for eps , sample in params:

dbscan_model = DBSCAN(

eps=eps , min_samples=sample

).fit(self.data)

labels = dbscan_model.labels_

try:

evaluate = (

self.evaluate(self.data , labels),

Counter(labels)

)

7.2. CLUSTERING 127

Table 7.4: Clustering parameters tested

DBSCAN OPTICS

ε MinPts ε MinPts
0.0001 2 0.0001 2
0.001 5 0.001 5
0.01 10 0.01 10
0.1 20 0.1 20
1 40 1 40
10 100 10 50

200 20

except ValueError:

evaluate = Counter(labels)

yield labels , evaluate

The parameters tested for each algorithm is shown in Table 7.4 and by
analyzing the datasets of Appendix D.3 and Appendix D.4 we have chosen to
look closer at one model for each algorithm that seems the most promising. In
Table 7.5 we can see the parameters and evaluation results for these selected
models.

An important thing to keep in mind when reading the evaluation scores is
that they are not comparable between the algorithms. If they where there would
be no doubt which model gives the best result as all the scores for DBSCAN is
better than the ones for OPTICS.

As we can see from Table 7.5 the neighbor count for both models are 60,
which is not the highest number of neighbors we tested for. As a higher neighbor
count gives a lower recall score for the autoencoder reconstruction it makes sense
that the best testing network is a compromise between the information gained
by adding more neighbors to the adjacency matrix and the lowered recall value
for doing so. What is a bit surprising is that the best results use a latent
space of only eight dimensions for both methods. The reason for this might
be the curse of dimensionality. Even though using a higher dimensionality for
the latent space gives a better recall value, this might make the clustering a
lot harder as the data points might be moved further apart in hyperspace. A
very distinct difference between the two models is that DBSCAN finds three
clusters in the dataset while OPTICS finds 10000. In Figures 7.3 and 7.4, we
have colored the particles of the methane hydrate dataset using the OPTICS
model and the DBSCAN model, respectively. The DBSCAN model we chose to
look closer at was the only top-scoring model that found more than two clusters
in the dataset. As we can see in Figure 7.4a, the model is able to separate the
methane from the water particles, but that is about it. The blue cluster is just
particles classified as noise and this result is not useable for finding any grain
boundaries in the dataset.

Because the OPTICS model finds 10000 clusters in the dataset, the colors of
the different clusters are blended together in the color spectrum. To see if there
is any pattern in the data, we have tried merging the 3000 biggest clusters into
one cluster of red particles and the 4000 smallest clusters into one cluster of red

128 CHAPTER 7. UNSUPERVISED LEARNING

Table 7.5: Best models

OPTICS

Evaluation Score

Calinski 21.28
Silhouette 0.54

Davies 8.31

Parameters

Neighbors 60
Clusters 10050
MinPts 2

ε 0.0001
Latent Dim 8

DBSCAN

Evaluation Score

Calinski 130624.75
Silhouette 0.77

Davies 0.96

Parameters

Neighbors 60
Clusters 3
MinPts 40

ε 0.1
Latent Dim 8

Note: Clustered on latent space of autoencoder. Best Calinski-Harabasz score for DBSCAN
and silhouette score for OPTICS

particles, as we can see in Figure 7.3a. This looks mostly like noise but there
seems to be a bit higher density of blue and green particles around the grain
boundaries when comparing with the CHILL+ algorithm in Figure 7.3d. By
removing the methane particles the apparent grain boundaries become slightly
more explicit, but this is too vague to make the model useable, and with 10000
clusters found in a dataset of just over 30000 particles, we can not conclude
that the model has any merit. The vague appearance of the grain boundaries
does, however, suggest that the algorithm might be useable for some other
combination of parameters.

One thing to keep in mind is that the performance metrics use the clustering
results itself to evaluate the model. We have no guarantee that the best results
from these metrics are indeed the best models of the ones we have tested, and by
using a labeled dataset for comparison, one of the other models might actually
have been shown to perform better.

7.2. CLUSTERING 129

(a) All clusters. (b) Merged clusters.

(c) Merged clusters.
Methane removed.

(d) CHILL+ results.

Figure 7.3: Selected result for the OPTICS algoritm. The algorithm finds 10000
clusters in the dataset (a). To see any trends in the color spectrum we merge
the 4000 least prevalent structures into a single blue cluster, and the 3000 most
prevalent structures into a red cluster (b). After doing this merge we can vaguely
see the grain boundaries when comparing with the CHILL+ results (d). This
becomes more prominent when removing the methane atoms from the system
(c).

(a) All clusters. (b) Colored by particle type.

Figure 7.4: Selected result for the DBSCAN algorithm. Figure shows the
particles colored by cluster value (a) and the particles clustered by type (b).
This algorithm is only able to separate the blue methane and red water particles
as we can see when comparing with the system colored by particle type.

130 CHAPTER 7. UNSUPERVISED LEARNING

7.2.2 Non-Density-Based Clustering

The non-density-based clustering methods we tested was the agglomerative clus-
tering algorithm and the Gaussian mixture models. We group these two al-
gorithms together because they give similar results and we have used the same
parameters for the algorithms. In the Cluster class, we have implemented these
two algorithms as separate methods using Scikit-learn.

def agglomerative(self , params):

for c in params:

agglomerative_model = AgglomerativeClustering(

n_clusters=c

).fit(self.data)

labels = agglomerative_model.labels_

try:

evaluate = (

self.evaluate(self.data , labels),

Counter(labels)

)

except ValueError:

evaluate = Counter(labels)

yield labels , evaluate

def gauss(self , params):

for c in params:

gauss_model = GaussianMixture(c).fit(self.data)

labels = gauss_model.predict(self.data)

try:

evaluate = (

self.evaluate(self.data , labels),

Counter(labels)

)

except ValueError:

evaluate = Counter(labels)

yield labels , evaluate

The only parameter we have varied for agglomerative clustering and Gaus-
sian mixture models is the predefined number of clusters. The parameters we
have tested for agglomerative clustering and GMM can be seen in Table 7.6.

By viewing the sorted results of the different evaluation metrics, which can
be seen in Appendix D.1 and Appendix D.2, we have chosen one result for each
of the clustering methods which found more than two clusters in the dataset.
The evaluation score and parameters used for these “best” models is shown in
Table 7.7 and Table 7.8 for agglomerative clustering and GMM, respectively.

Again we see that the best testing models are using a neighbor count of 60
and only eight latent dimensions, suggesting that for any meaningful clustering
result, the dimensionality has to be kept to a minimum. Both algorithms use
the maximum number of 10 clusters tested for on this dataset. Increasing the
number of clusters might yield an even better result, but we know that this

Table 7.6: Parameters agglomerative clustering and GMM

Clustering Parameters

Clusters 2 3 4 5 6 7 8 9 10

7.2. CLUSTERING 131

Table 7.7: Agglomerative

Evaluation Score

Calinski 368796.71
Silhouette 0.49

Davies 0.55

Parameters

Neighbors 60
Clusters 10

Latent Dim 8

Table 7.8: GMM

Evaluation Score

Calinski 417665.15
Silhouette 0.52
Davies 0.53

Parameters

Neighbors 60
Clusters 10
Latent Dim 8

Note: Clustered on latent space of autoencoder. Sorted by best Calinski-Harabasz score

dataset should mostly consist of one cluster of sI hydrates and only a few other
clusters in the grain boundaries. Even though increasing the number of clusters
might give better scores in the performance metrics, it would probably not give
us any better separation of the grain boundaries.

(a) All clusters. (b) Merged clusters.

(c) Merged clusters.
Methane removed.

(d) CHILL+ results.

Figure 7.5: Selected agglomerative clustering results. The best model finds 10
clusters in the dataset (a). By merging the three most prevalent clusters and
the six least prevalent clusters we can see the grain boundaries appearing (b)
when comparing with the CHILL+ result (d). When removing the methane
particles from the system this becomes more apparent (c).

132 CHAPTER 7. UNSUPERVISED LEARNING

The clusters found in each of the algorithms were sorted by size of the
clusters, with the most prevalent clusters using the highest index and colored
by their respective cluster value. The result of this can be seen in Figures 7.5a
and 7.6a, which does not seem very promising when comparing to the CHILL+
result in Figure 7.5d. We know there should probably not be as many as 10
clusters in the dataset, and because of this, we have merged the three most
prevalent clusters into one cluster of red particles and the six least prevalent
clusters into one cluster of blue particles. The result of this is shown in Figures
7.5b and 7.5c, and Figures 7.6b and 7.6c, which are plotted with and without
the methane particles, respectively. We can see from these results that the
grain boundaries found by CHILL+ are starting to appear but just like with
CHILL+ we need to remove the methane for any meaningful result. This is
not an inherent trait of the algorithm but simply because the methane particles
are themselves a separate cluster. This is a quite small cluster, and because of
this, they are merged together with the least prevalent clusters, cluttering the
figure. It is not obvious which of the two algorithms produces the best results
but at least with some manual merging of clusters, they are both able to find
some disparity between the methane hydrates and the grain boundaries in the
dataset. This suggests that with some improvements, these methods might be
viable alternatives to supervised methods.

7.2. CLUSTERING 133

(a) All clusters. (b) Merged clusters.

(c) Merged clusters.
Methane removed.

(d) CHILL+ result.

Figure 7.6: Selected GMM clustering results. The best model finds 10 clusters
in the dataset (a). By merging the three most prevalent clusters and the six
least prevalent clusters we can see the grain boundaries appearing (b) when
comparing with the CHILL+ result (d). When removing the methane particles
from the system this becomes more apparent (c).

134 CHAPTER 7. UNSUPERVISED LEARNING

Part III

Conclusions

135

Chapter 8

Summary and Conclusions

In this thesis, we have developed machine learning algorithms for the identific-
ation of molecular structures in simulations of crystals. Conventional structure
identification algorithms are very specialized and only able to recognize a small
set of predefined structures. The development of generalized identification al-
gorithms is of particular interest for the understanding of mechanical properties
in systems of mechanical failure. This is because the dissociation of a crystal
will necessarily alter its intrinsic structure, and several structures might develop
in the system in this process.

The development of machine learning algorithms for structure identification
is to a large degree halted by the requirement of labeled datasets for the training
process. We have explored two options for overcoming this problem in the
present work; developing an automatic method for creating labeled datasets
and using unsupervised clustering methods, which requires no such labeling.

In this chapter, we summarize and discuss the results of the previous chapters,
emphasizing the methods’ strengths and weaknesses.

8.1 Summary

In this thesis, we have created a method for automatically labeling training data
for the development of supervised learning algorithms. We utilized this training
data for the development of supervised algorithms for structure identification. In
addition, we explored unsupervised clustering algorithms for the same purpose.

Conventional structure identification: We implemented the CHILL+ al-
gorithm of Nguyen and Molinero in Python and were able to reproduce the
results from the original article. With this verification, we could use CHILL+
as a benchmark for the development of new algorithms, and chose to use the
newly implemented CHILL+ Ovito modification for creating these benchmarks
on large systems of methane hydrates.

For testing our supervised machine learning algorithms on a dataset of mul-
tiple structures, we recreated the manually classified dataset of Engel et al.,
which utilized an oscillating pair potential for the self-assembly process of col-
loidal crystals. The dataset was largely created with the same code as used by
the original authors, but due to time and computational resource constraints
we used 7 × 107 timesteps as opposed to the original authors 108 timesteps.

137

138 CHAPTER 8. SUMMARY AND CONCLUSIONS

For benchmarking our own algorithms we used the manual classifications by
the original authors and their separation of the pair potential parameter phase
space into distinct regions.

Automatic feature creation: To acquire a set of unit structures, we created
a web crawler in Python which was applied to aflowlib.org, downloading all
molecular unit structures and marking them by their respective Pearson sym-
bols. We induced irregularities into the unit structures by temperating them
using a harmonic potential with a break condition to prevent the irregularities
from becoming too excessive. We still found the temperation to have been too
aggressive for several of the unit structures, which taints the results.

The positional data of the unit- and temperated structures was then trans-
formed into feature vectors by utilizing adjacency matrices, defined by the local
neighborhood topology of the particles.

Supervised learning: We implemented two supervised machine learning frame-
works; convolutional neural networks and fully-connected neural networks and
trained them using the automatically labeled datasets from aflowlib.org. To
make the training process faster and simpler, we only used the Pearson struc-
tures existing in the phase space defined by Engel et al. We found that using a
topological neighborhood of 40 neighbors or more was sufficient for both frame-
works to achieve an accuracy in the high 90s.

We applied the best performing models of both frameworks, trained on ad-
jacency matrices of 10, 60 and 80 neighbors to the manually classified dataset
of Engel et al. When plotting the most prevalent structures in the phase space
we found that increasing the number of neighbors generally did increase the ac-
curacy of the classification when comparing to Engel et al. However, the phase
space became dominated by one cP8 structure. To counter this domination,
we chose to plot the second most prevalent structures in the phase space which
gave much better separation between the structure regions in the space, how-
ever the actual classification of the regions was ambiguous. We concluded that
the convolutional neural network performed the best because it was able to sep-
arate and correctly classify the cP8 region and the hP10 region as well as the
separation between the individual clathrate structures in the clathrate region.

We applied the same trained models to a simulation of methane hydrates and
benchmarked against the CHILL+ results on the same dataset. After merging
the least prevalent clusters in the dataset and keeping the three most prevalent
as separate labeled clusters, the three models of both frameworks was able to find
the grain boundaries in the dataset. The definition of these boundaries increased
when using a higher number of nearest neighbors in the adjacency matrices.
We concluded that again, the convolutional neural network performed the best
because it found a higher number of labeled structures in the grain boundaries,
while the fully-connected models mostly found the merged unlabeled structures
in the boundaries.

Dimensionality reduction: Two dimensionality reduction techniques were
implemented; principal component analysis, keeping 90 % of the explained vari-
ance, and an autoencoder. The autoencoder was trained on adjacency matrices
of 20 to 70 neighbors, created from a methane hydrate simulation. We found the
autoencoder to struggle with recreating the input as we increased the number
of neighbors in the binary adjacency matrices. We found this to be caused by
the increased skewness of the adjacency matrices as the neighborhood topology
increased, and the best recall value was achieved using 20 nearest neighbors.

8.2. DISCUSSION 139

The bad recreation of the input was also aggravated when reducing the latent
space size of the autoencoder.

Clustering: We applied four clustering algorithms to a methane hydrate sim-
ulation of 30000 particles, which had been transformed to adjacency matrices
and reduced in dimensionality. The clustering algorithms; agglomerative clus-
tering, Gaussian mixture models, OPTICS and DBSCAN, were evaluated using
unsupervised performance metrics, all calculating the degree of cluster compact-
ness as well as cluster separation.

We found that all the best results used adjacency matrices of 60 neighbors as
well as an encoded latent space of 8 dimensions. The best performing OPTICS
model produced 10000, clusters but through manual merging of the clusters,
we could vaguely see the grain boundaries of the simulation when benchmarked
against the CHILL+ algorithm. The best agglomerative clustering and Gaussian
mixture results both used 10 clusters in the calculation. Again by manually
merging the clusters, we could see the grain boundaries in the system.

8.2 Discussion

The most profound limitation of supervised machine learning algorithms is
the development of labeled training data. The manual labeling of individual
particles of molecular systems is not a feasible task, hence developing automatic
ways of labeling data would aid in further development of machine learning
applications in the field of molecular dynamics. In the present work, we have
proposed a way of automating this process by utilizing various predefined unit
structures as labeled data.

Realistic molecular dynamics simulations use specialized potentials for the
specific material simulated in the system. During the creation or temperation
of such materials, the intrinsic structure of the crystals will be altered slightly
compared with the unit structures, due to the fluctuations of atoms caused
by differences in pressure and temperature. The biggest difficulty regarding
the automatic approach we have proposed is to imitate these slightly altered
structures found in realistic molecular dynamics simulations.

We found that our approach of temperating the crystals using a harmonic
potential was too aggressive, which altered the unit structures excessively. The
supervised machine learning algorithms were still able to separate several of the
structures in the dataset of Engel et al. which suggests that even though our
results were not conclusive, there should still be merit in pursuing this approach
further.

On the dataset of Engel et al. we found that both the fully-connected net-
work and the convolutional network was to a large extent able to reproduce the
boundaries of the manually classified regions. However, they both performed
poorly in the actual classification of these regions. There might be two reasons
for explaining this behavior.

Firstly, due to time and resource constraints our recreation of the dataset
used fewer timesteps in the cooling of the individual crystals. This might have
altered the crystals and in which case, we would not be able to reproduce the
manual results at all. The fact that the networks were largely able to separate
the different regions but not classify them correctly can be argued to support
this hypothesis because the networks understand that there are in fact different

140 CHAPTER 8. SUMMARY AND CONCLUSIONS

structures in these regions, they just do not agree with the manual classification
on which structures the regions contain.

Secondly, we found in the results that the temperation we used in the creation
of the labeled dataset was too excessive and many of the unit structures were
altered to a large degree. This alteration had the effect of adding too many
bonds between the individual atoms, becoming progressively worse throughout
the temperation. This might have made the features of the altered crystal
similar to several other crystals in the dataset, hence making them difficult to
classify correctly.

On the methane hydrate dataset, we found that both frameworks were able
to identify the grain boundaries of the crystal, recreating a similar result as
the CHILL+ algorithm. CHILL+ is specialized for finding ice and clathrate
structures in simulations and the fact that we can compete with this algorithm
using machine learning is very promising. As opposed to CHILL+, the machine
learning algorithms have not been explicitly programmed to recognize clathrate
structures and because of this we can simply expand the networks ability to
recognize structures by adding other structures to the training set.

The most significant difference between the two supervised frameworks tested
was that the fully-connected network classified most of the grain boundaries as
an unlabeled cluster, while the convolutional neural network to a larger degree
found separate labeled structures in the boundaries. However, because of the
temperation problem we can not be completely confident in the classification of
these separate structures. Ideally, we would like to classify precisely which struc-
tures exist in the grain boundaries to aid the understanding of their mechanical
properties and because the convolutional neural network seems more promising
for this purpose we will conclude that there seems to be most merit in pursuing
further implementations using the convolutional neural network.

We also tested a convolutional network trained only on the three clathrate
structures, which produced less prominent grain boundaries on the test set.
When comparing with the previous result, this is not that surprising because the
bulk of the grain boundaries were not classified as sII or H clathrate structures
but rather as some different cage-like structures.

When applying unsupervised learning to a methane hydrate dataset, we
first reduced the dimensionalities of the features. We found that we produced
the best clustering results when using an autoencoder for the dimensionality
reduction. The reason the autoencoder did so much better might be due to the
curse of dimensionality. For principal component analysis, we set a condition of
keeping at least 90 % of the explained variance from the original dataset. This
is likely to keep the dimensionality high and thus making the clustering task
very difficult.

The autoencoder was shown to best recreate the input if we kept the number
of neighbors in the adjacency matrices low and the latent dimensionality of the
autoencoder high. The autoencoder was very sensitive to the number of nearest
neighbors used in the calculation of adjacency matrices. This is because these
matrices are binary, and as the number of neighbors increases, the matrices be-
come heavily skewed towards the zero class, making it easier for the network to
achieve a high accuracy by simply setting every value in the matrices to zero.
When using a higher number of nearest neighbors in the adjacency matrices
we are collecting more information about the neighborhood of a particle, but
because an increase in neighbors also produces a worse recreation for the au-

8.2. DISCUSSION 141

toencoder we saw that the best clustering algorithms all used a compromise
between the two by using 60 neighbors, not the maximum neighbor count of 70.
We also found that even though the best recreation result of the autoencoder
was produced with a high number of dimensions in the latent space, the best
clustering results used a latent space of only eight dimensions. This was the
lowest number of dimensions we tested and this further confirmes the assump-
tion that we are reliant on keeping the number of dimensions very low for the
clustering algorithms to be of any use.

We were able to reproduce the grain boundaries found by CHILL+ when
using agglomerative clustering, Gaussian mixture models and to some degree
when using OPTICS. However, they all had to be manually evaluated by mer-
ging some of the clusters. The fact that we found any grain boundaries was
because we already knew what to look for, and without having the result of
CHILL+ to compare to, all the results would probably be discarded as noise.
Nevertheless, the results do suggest that it is possible to use clustering tech-
niques for identifying the grain boundaries if we find the ideal clustering al-
gorithm and hyperparameters. Unsupervised learning would remove the need
for creating labeled datasets altogether and the fact that we have shown that
it is possible to use clustering techniques for structure identification is a very
promising prospect for future implementations.

Some selected results are shown in Figure 8.1.

142 CHAPTER 8. SUMMARY AND CONCLUSIONS

Selected Results Benchmarks

Figure 8.1: Top: Plot of the second most prevalent structures found by a con-
volutional neural network in the phase space produced by the oscillating pair
potential (left). The manually classified regions of Engel et al. is laregly repro-
duced by the network, but the classification within the regions differ somewhat
from the benchmark(right).
Middle: The result of agglomerative clustering after merging the three most
prevalent clusters and the four least prevalent clusters (left), and the result of
CHILL+ on the same dataset (right). Both plots are three-dimensional datasets
viewed from the side.
Bottom: Result of convolutional neural network when using adjacency matrices
of 80 neighbors on a dataset of methane hydrates (left), and the results of
CHILL+ (right).

8.3. OUTLOOK 143

8.3 Outlook

In this section, we will mention some immediate improvements to our algorithms
based on what we discovered in the results, as well as some new ideas for meth-
ods to test in the future.

Temperation:
We found in the result section that the temperation process tended to alter the
molecular structures excessively. The first step to fixing this problem would be
to set a more rigorous break condition for the temperation. We tried setting a
condition which stops the temperation if one of the particles had moved more
than a certain distance from its initial position and unfortunately we set this
distance too high, allowing the particles to move too freely. With this approach,
we used the same harmonic potential for all structures, and a better solution
might be to alter the harmonic potential depending on how thightly packed
the structure in question is instead of stopping the temperation based on the
particle movements.

Setting a high constant of proportionality would make the potential well
deeper, forcing the particles to move less about their initial positions. This
would be a problem in sparse structures as there might not be enough forces
acting on a particle to actually temperate the crystal at all, and for a thightly
packed structure the temperation might still become too excessive. We could
solve this by finding some relationship between the first minimum of the ra-
dial basis function and the constant of proportionality; if the first minimum
is situated at a small radial distance, the structure is tightly packed and we
should increase the constant of proportionality before temperation, if the radial
distance is high, the structure is sparse and we should have a lower constant
of proportionality. The most difficult part of this approach would be to find
a suitable relationship between the radial basis function and the constant of
proportionality, however, if a working relationship is established this is likely to
be a far more rigorous approach than what was done in this thesis.

Recreate the dataset of Engel et al.:
As we suggested in the discussion, the bad classification on the dataset of Engel
et al. is likely to be because of our choice of cooling the crystals quicker than
what was done in the original simulations. Creating this dataset took several
weeks on a high-end GPU but to make a more accurate comparison we would
need to recreate the dataset with the same conditions as the original.

Dimensionality reduction:
The dimensionality reduction techniques used in this thesis was only applied
to the unsupervised learning algorithms. The curse of dimensionality is more
prominent in the unsupervised case, but it is still a problem in supervised learn-
ing. Applying these techniques to the supervised algorithms developed in this
thesis would be a natural next step for improving the accuracy of the models.

For the unsupervised models, we found that clustering on reduced features
using PCA gave unsatisfactory results. We argued that this might be because
we used the explained variance as a criterion for how many dimensions should
be kept. Because the best result of the autoencoder only used eight dimensions

144 CHAPTER 8. SUMMARY AND CONCLUSIONS

in the reduced space, we could retry PCA with a fixed, low number of retained
dimensions to see if this would yield any improvements in the clustering result.

Another technique we could try is to use a convolutional autoencoder instead
of the fully-connected autoencoder we implemented in this thesis. We estab-
lished that convolutional neural networks generally seem to have a slightly im-
proved performance on the adjacency matrices compared to the fully-connected
networks. The fact that a convolutional autoencoder would use filters to eval-
uate small regions in the adjacency matrices might make it less susceptible to
the skewness of the adjacency matrices, as the filters finds regions of interest
instead of considering the entire matrix at once.

Labeled training set for unsupervised learning:
To evaluate our clustering methods we used unsupervised performance metrics,
which is not guaranteed to find the best models in our dataset. To test the clus-
tering algorithms more rigorously we could train them on the labeled dataset we
developed in this thesis. This way we could test quantitatively which algorithm
works best on a training set, before applying the best ones to a test set.

Adding ice to the training set:
When evaluating the methane hydrate dataset, we used networks trained with
some selected Pearson structures. A polycrystal of methane hydrate is very
similar to ice, and regular ice is likely to be created in the grain boundaries
during the deformation process. Because of this it would be interesting to train
a network for recognizing the solid phases of water in addition to the different
clathrate structures.

Utilizing other feature vectors:
We chose to use local neighborhood topology as our feature vectors to the neural
networks. This is, however, not the only option of features to use. Spellings and
Glotzer [69] used the neighborhood average of spherical harmonics over the N
nearest neighbors of a particle i

Ȳ ml (i,N) =
1

N

∣∣∣∣∣∣
N∑
j=1

Y ml (θij , φij)

∣∣∣∣∣∣ . (8.1)

Spellings and Glotzer found these features to work well for supervised learning
but due to the combinatorial degeneracy of placing particles inside neighbor
shells, they did not work as well for unsupervised learning. We did preliminary
tests of using spherical harmonics for unsupervised learning but found the results
to be unsatisfying, we did not test this with supervised learning, however.

Another option is to use so-called Smooth Overlap of Atomic Position (SOAP)-
vectors [5], which can be calculated using the DScribe Python package [30]. The
description of the SOAP vectors as given in the DScribe documentation states

SOAP vectors encode regions of atomic geometries by using a
local expansion of a Gaussian smeared atomic density with orthonor-
mal functions based on spherical harmonics and radial basis func-
tions.

We did preliminary testing with these descriptors in supervised learning but the
results could not compete with using adjacency matrices. We did not test this

8.3. OUTLOOK 145

thoroughly, however, and because the vectors are based on comparing the sim-
ilarity between any two neighborhood environments, they might show promise
if investigated properly.

Transfer Learning:
Transfer learning refers to a technique in machine learning of storing know-
ledge gained from solving one problem an applying it to another. The general
benchmark for convolutional neural networks (CNN) is how it performs on the
ImageNet Large Scale Visual Recognition Challenge [66] (ILSVRC). ILSVRC
uses about 1.4 million images divided into 1000 classes and in 2015 Microsoft de-
veloped ResNet [27], the first CNN which was able to outperform human image
classification. We could utilize ResNet in our training on adjacency matrices by
using transfer learning. We assume that this deep, powerful network is finding
very general features in images in the bulk of the network which are applicable
to our own classification problem. To adapt the network to our own dataset,
we would keep the weights fixed for all layers, except the last few, and train the
network on our own dataset. The fixed weights would hopefully be able to find
information in the adjacency matrices our own network did not, and by simply
training the last few layers on our own dataset we could improve on our results.

3D convolutional network:
In this thesis, we first transformed the positional data of atoms into adjacency
matrices and used these as feature vectors. An interesting thing to test would
be to skip this step entirely. We could consider the molecular systems as three-
dimensional images, and apply 3D convolution to the systems. In this approach,
the network would have to infer the topology itself, and we have no guarantee
that it would work. The most computationally time consuming and memory
intensive part of the techniques we developed in this thesis was the transform-
ation of positional data into adjacency matrices. With the approach of 3D
convolution, we would drastically reduce the time complexity when the trained
algorithm is applied to testing sets, which would be a vast improvement over
our own algorithm.

146 CHAPTER 8. SUMMARY AND CONCLUSIONS

Bibliography

[1] Joshua A. Anderson, Chris D. Lorenz and A. Travesset. ‘General purpose
molecular dynamics simulations fully implemented on graphics processing
units’. In: Journal of Computational Physics (2008). issn: 10902716. doi:
10.1016/j.jcp.2008.01.047.

[2] K. Andreassen et al. ‘Massive blow-out craters formed by hydrate-controlled
methane expulsion from the Arctic seafloor’. In: Science (2017). issn:
10959203. doi: 10.1126/science.aal4500.

[3] Mihael Ankerst et al. ‘OPTICS: Ordering Points to Identify the Clustering
Structure’. In: SIGMOD Record (ACM Special Interest Group on Manage-
ment of Data) (1999). issn: 01635808. doi: 10.1145/304181.304187.

[4] David Archer, Bruce Buffett and Victor Brovkin. ‘Ocean methane hy-
drates as a slow tipping point in the global carbon cycle’. In: Proceed-
ings of the National Academy of Sciences of the United States of America
(2009). issn: 00278424. doi: 10.1073/pnas.0800885105.

[5] Albert P. Bartók, Risi Kondor and Gábor Csányi. ‘On representing chem-
ical environments’. In: Physical Review B - Condensed Matter and Mater-
ials Physics (2013). issn: 10980121. doi: 10.1103/PhysRevB.87.184115.
arXiv: 1209.3140.

[6] Etienne P. Bernard and Werner Krauth. ‘Two-step melting in two dimen-
sions: First-order liquid-hexatic transition’. In: Physical Review Letters
(2011). issn: 00319007. doi: 10.1103/PhysRevLett.107.155704. arXiv:
1102.4094.

[7] Gerhard Bohrmann and Marta E. Torres. ‘Gas hydrates in marine sedi-
ments’. In: Marine Geochemistry. 2006. isbn: 3540321438. doi: 10.1007/
3-540-32144-6_14.

[8] Tom Bugge et al. ‘A giant three-stage submarine slide off Norway’. In:
Geo-Marine Letters (1987). issn: 02760460. doi: 10.1007/BF02242771.

[9] T. Calinski and J. Harabasz. ‘A Dendrite Method for Cluster Analysis’.
In: Communications in Statistics - Simulation and Computation (1974).
issn: 0361-0918. doi: 10.1080/03610917408548446.

[10] Murray Campbell, A. Joseph Hoane and Feng Hsiung Hsu. ‘Deep Blue’.
In: Artificial Intelligence (2002). issn: 00043702. doi: 10.1016/S0004-
3702(01)00129-1.

[11] François Chollet. ‘Keras (2015)’. In: URL http://keras. io (2017). issn:
1550-235X.

147

148 BIBLIOGRAPHY

[12] David L. Davies and Donald W. Bouldin. ‘A Cluster Separation Meas-
ure’. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(1979). issn: 01628828. doi: 10.1109/TPAMI.1979.4766909.

[13] Bradley Dice et al. ‘Analyzing Particle Systems for Machine Learning
and Data Visualization with freud’. In: Proceedings of the 18th Python in
Science Conference. 2019. doi: 10.25080/majora-7ddc1dd1-004.

[14] Michael Engel et al. ‘Computational self-assembly of a one-component ico-
sahedral quasicrystal’. In: Nature Materials (2015). issn: 14764660. doi:
10.1038/nmat4152.

[15] Michael Engel et al. ‘Hard-disk equation of state: First-order liquid-hexatic
transition in two dimensions with three simulation methods’. In: Physical
Review E - Statistical, Nonlinear, and Soft Matter Physics (2013). issn:
15393755. doi: 10.1103/PhysRevE.87.042134. arXiv: 1211.1645.

[16] Martin Ester et al. ‘A Density-Based Algorithm for Discovering Clusters
in Large Spatial Databases with Noise’. In: Proceedings of the 2nd Inter-
national Conference on Knowledge Discovery and Data Mining. 1996.

[17] Andre Esteva et al. ‘Dermatologist-level classification of skin cancer with
deep neural networks’. In: Nature (2017). issn: 14764687. doi: 10.1038/
nature21056.

[18] Daan Frenkel and Berend Smit. Understanding molecular simulation: From
algorithms to applications. 1996. isbn: 9780122673702. doi: 10.1063/1.
881812.

[19] Jens Glaser et al. ‘Strong scaling of general-purpose molecular dynam-
ics simulations on GPUs’. In: Computer Physics Communications (2015).
issn: 00104655. doi: 10.1016/j.cpc.2015.02.028. arXiv: 1412.3387.

[20] Xavier Glorot and Yoshua Bengio. ‘Understanding the difficulty of train-
ing deep feedforward neural networks’. In: Journal of Machine Learning
Research. 2010.

[21] GoogleResearch. ‘TensorFlow: Large-scale machine learning on heterogen-
eous systems’. In: Google Research (2015). arXiv: arXiv:1603.04467v2.

[22] Xifeng Guo et al. ‘Deep Clustering with Convolutional Autoencoders’. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). 2017. isbn:
9783319700953. doi: 10.1007/978-3-319-70096-0_39.

[23] B. I. Halperin and David R. Nelson. ‘Theory of Two-Dimensional melt-
ing’. In: Physical Review Letters (1978). issn: 00319007. doi: 10.1103/
PhysRevLett.41.121.

[24] E. G. Hammerschmidt. ‘Formation of Gas Hydrates in Natural Gas Trans-
mission Lines’. In: Industrial and Engineering Chemistry (1934). issn:
00197866. doi: 10.1021/ie50296a010.

[25] T; Tibshirani Hastie. ‘The Elements of Statistical Learning Second Edi-
tion’. In: Math. Intell. (2017). issn: 03436993. doi: 111. arXiv: arXiv:
1011.1669v3.

BIBLIOGRAPHY 149

[26] Kaiming He et al. ‘Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification’. In: Proceedings of the IEEE In-
ternational Conference on Computer Vision. 2015. isbn: 9781467383912.
doi: 10.1109/ICCV.2015.123. arXiv: 1502.01852.

[27] Kaiming He et al. ‘ResNet’. In: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (2016). issn:
10636919. doi: 10.1109/CVPR.2016.90. arXiv: 1512.03385.

[28] J. P. Henriet and J. Mienert. ‘Gas hydrates: relevance to world margin
stability and climatic change’. In: Geological Society Special Publication
(1998). issn: 03058719. doi: 10.5860/choice.36-5103.

[29] David Hicks et al. ‘The AFLOW Library of Crystallographic Prototypes:
Part 2’. In: Computational Materials Science (2019). issn: 09270256. doi:
10.1016/j.commatsci.2018.10.043. arXiv: 1806.07864.

[30] Lauri Himanen et al. ‘DScribe: Library of descriptors for machine learning
in materials science’. In: Computer Physics Communications (2020). issn:
00104655. doi: 10.1016/j.cpc.2019.106949. arXiv: 1904.08875.

[31] Ask Hjorth Larsen et al. The atomic simulation environment - A Python
library for working with atoms. 2017. doi: 10.1088/1361-648X/aa680e.

[32] William G. Hoover. ‘Canonical dynamics: Equilibrium phase-space distri-
butions’. In: Physical Review A (1985). issn: 10502947. doi: 10.1103/
PhysRevA.31.1695.

[33] Kurt Hornik. ‘Approximation capabilities of multilayer feedforward net-
works’. In: Neural Networks (1991). issn: 08936080. doi: 10.1016/0893-
6080(91)90009-T.

[34] Camden R. Hubbard and Lauriston D. Calvert. ‘The pearson symbol’. In:
Bulletin of Alloy Phase Diagrams (1981). issn: 01970216. doi: 10.1007/
BF02881453.

[35] Philippe H. Hünenberger. Thermostat algorithms for molecular dynamics
simulations. 2005. doi: 10.1007/b99427.

[36] Aaron Courville Ian Goodfellow, Yoshua Bengio. ‘Deep Learning Book’.
In: Deep Learning (2015). issn: 1437-7780. doi: 10.1016/B978-0-12-
391420-0.09987-X. arXiv: arXiv:1011.1669v3.

[37] Diederik P. Kingma and Jimmy Lei Ba. ‘Adam: A method for stochastic
optimization’. In: 3rd International Conference on Learning Represent-
ations, ICLR 2015 - Conference Track Proceedings. 2015. arXiv: 1412.
6980.

[38] Konstantina Kourou et al. Machine learning applications in cancer pro-
gnosis and prediction. 2015. doi: 10.1016/j.csbj.2014.11.005.

[39] Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton. ‘ImageNet clas-
sification with deep convolutional neural networks’. In: Communications
of the ACM (2017). issn: 15577317. doi: 10.1145/3065386.

[40] Parsons L., Haque E. and Liu H. ‘Subspace Clustering for High Dimen-
sional Data: A Review’. In: SIGKDD Explorations, Newsletter of the ACM
Special Interest Group on Knowledge Discovery and Data Mining (2004).

150 BIBLIOGRAPHY

[41] Yann LeCun et al. ‘Gradient-based learning applied to document recogni-
tion’. In: Proceedings of the IEEE (1998). issn: 00189219. doi: 10.1109/
5.726791.

[42] James Leibold. ‘Surveillance in China’s Xinjiang Region: Ethnic Sorting,
Coercion, and Inducement’. In: Journal of Contemporary China (2020).
issn: 14699400. doi: 10.1080/10670564.2019.1621529.

[43] Jun Ma et al. ‘Analyzing the Leading Causes of Traffic Fatalities Us-
ing XGBoost and Grid-Based Analysis: A City Management Perspective’.
In: IEEE Access (2019). issn: 21693536. doi: 10.1109/ACCESS.2019.
2946401.

[44] Y. F. Makogon, S. A. Holditch and T. Y. Makogon. ‘Natural gas-hydrates
- A potential energy source for the 21st Century’. In: Journal of Petroleum
Science and Engineering (2007). issn: 09204105. doi: 10.1016/j.petrol.
2005.10.009.

[45] John McCarthy et al. ‘A proposal for the Dartmouth summer research
project on artificial intelligence’. In: AI Magazine (2006). issn: 07384602.

[46] Michael J. Mehl et al. ‘The AFLOW Library of Crystallographic Proto-
types: Part 1’. In: Computational Materials Science (2017). issn: 09270256.
doi: 10.1016/j.commatsci.2017.01.017. arXiv: 1607.02532.

[47] Pankaj Mehta et al. A high-bias, low-variance introduction to Machine
Learning for physicists. 2019. doi: 10.1016/j.physrep.2019.03.001.
arXiv: 1803.08823.

[48] Bjoern H. Menze and Jason A. Ur. ‘Mapping patterns of long-term set-
tlement in Northern Mesopotamia at a large scale’. In: Proceedings of the
National Academy of Sciences of the United States of America (2012).
issn: 00278424. doi: 10.1073/pnas.1115472109.

[49] Marek Mihalkovič and C. L. Henley. ‘Empirical oscillating potentials for
alloys from ab initio fits and the prediction of quasicrystal-related struc-
tures in the Al-Cu-Sc system’. In: Physical Review B - Condensed Matter
and Materials Physics (2012). issn: 10980121. doi: 10.1103/PhysRevB.
85.092102.

[50] James Moor. ‘The Dartmouth College Artificial Intelligence Conference:
The next fifty years’. In: AI Magazine. 2006.

[51] Emily B. Moore et al. ‘Freezing, melting and structure of ice in a hydro-
philic nanopore’. In: Physical Chemistry Chemical Physics (2010). issn:
14639076. doi: 10.1039/b919724a.

[52] Andrew H. Nguyen and Valeria Molinero. ‘Identification of Clathrate Hy-
drates, Hexagonal Ice, Cubic Ice, and Liquid Water in Simulations: The
CHILL+ Algorithm’. In: Journal of Physical Chemistry B (2015). issn:
15205207. doi: 10.1021/jp510289t.

[53] Fulong Ning et al. Mechanical properties of clathrate hydrates: Status and
perspectives. 2012. doi: 10.1039/c2ee03435b.

[54] Shuichi Nosé. ‘A unified formulation of the constant temperature molecu-
lar dynamics methods’. In: The Journal of Chemical Physics (1984). issn:
00219606. doi: 10.1063/1.447334.

BIBLIOGRAPHY 151

[55] Shüichi Nosé. ‘A molecular dynamics method for simulations in the ca-
nonical ensemble’. In: Molecular Physics (1984). issn: 13623028. doi: 10.
1080/00268978400101201.

[56] Karl Pearson. ‘ LIII. On lines and planes of closest fit to systems of
points in space ’. In: The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science (1901). issn: 1941-5982. doi: 10.1080/
14786440109462720.

[57] W. B. Pearson and George H. Vineyard. ‘A Handbook of Lattice Spacings
and Structures of Metals and Alloys’. In: Physics Today 11.9 (Sept. 1958),
pp. 36–36. issn: 0031-9228. doi: 10.1063/1.3062734. url: http://

physicstoday.scitation.org/doi/10.1063/1.3062734.

[58] Fabian Pedregosa et al. ‘Scikit-learn: Machine Learning in Python Pedre-
gosa, Varoquaux, Gramfort et al’. In: Journal of Machine Learning Re-
search (2011). arXiv: arXiv:1201.0490v4.

[59] Joseph Priestley. Experiments and Observations on Different Kinds of
Air. 2013. doi: 10.1017/cbo9781139644419.

[60] Rachel Metz. The Daily: Why Microsoft Accidentally Unleashed a Neo-
Nazi Sexbot. 2016.

[61] Wesley F. Reinhart and Athanassios Z. Panagiotopoulos. ‘Automated
crystal characterization with a fast neighborhood graph analysis method’.
In: Soft Matter (2018). issn: 17446848. doi: 10.1039/c8sm00960k.

[62] Wesley F. Reinhart et al. ‘Machine learning for autonomous crystal struc-
ture identification’. In: Soft Matter (2017). issn: 17446848. doi: 10.1039/
c7sm00957g.

[63] F. Rosenblatt. ‘The perceptron: A probabilistic model for information
storage and organization in the brain’. In: Psychological Review (1958).
issn: 0033295X. doi: 10.1037/h0042519.

[64] Peter J. Rousseeuw. ‘Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis’. In: Journal of Computational and Ap-
plied Mathematics (1987). issn: 03770427. doi: 10.1016/0377-0427(87)
90125-7.

[65] Carolyn D. Ruppel and John D. Kessler. The interaction of climate change
and methane hydrates. 2017. doi: 10.1002/2016RG000534.

[66] Olga Russakovsky et al. ‘ImageNet Large Scale Visual Recognition Chal-
lenge’. In: International Journal of Computer Vision (2015). issn: 15731405.
doi: 10.1007/s11263-015-0816-y. arXiv: 1409.0575.

[67] SciPy Developers. Scientific Computing Tools for Python — SciPy.org.
2019.

[68] E. Dendy Sloan and Carolyn Ann Koh. Clathrate hydrates of natural gases,
thrid edition. 2007. isbn: 9781420008494.

[69] Matthew Spellings and Sharon C. Glotzer. ‘Machine learning for crystal
identification and discovery’. In: AIChE Journal (2018). issn: 15475905.
doi: 10.1002/aic.16157. arXiv: 1710.09861.

[70] Nitish Srivastava et al. ‘Dropout: A simple way to prevent neural networks
from overfitting’. In: Journal of Machine Learning Research (2014). issn:
15337928.

152 BIBLIOGRAPHY

[71] Paul Steinhardt, David Nelson and Marco Ronchetti. ‘Phys. Rev. B 28,
784 (1983): Bond-orientational order in liquids and glasses’. In: Physical
Review B (1983). issn: 0163-1829. doi: 10.1103/PhysRevB.28.784.

[72] G. W. Stewart. ‘On the early history of the singular value decomposition’.
In: SIAM Review (1993). issn: 00361445. doi: 10.1137/1035134.

[73] Stephen M. Stigler. ‘Gauss and the Invention of Least Squares’. In: The
Annals of Statistics (1981). issn: 0090-5364. doi: 10.1214/aos/1176345451.

[74] Frank H. Stillinger and Thomas A. Weber. ‘Computer simulation of local
order in condensed phases of silicon’. In: Physical Review B (1985). issn:
01631829. doi: 10.1103/PhysRevB.31.5262.

[75] Alexander Stukowski. ‘Visualization and analysis of atomistic simulation
data with OVITO-the Open Visualization Tool’. In: Modelling and Simu-
lation in Materials Science and Engineering (2010). issn: 09650393. doi:
10.1088/0965-0393/18/1/015012.

[76] Henrik Andersen Sveinsson. ‘Molecular dynamics modeling of mechanical
failure processes in methane hydrates.’ PhD thesis. University of Oslo,
2019. url: http://urn.nb.no/URN:NBN:no-73734.

[77] Henrik Andersen Sveinsson. Molecular dynamics simulations of polycrys-
talline methane hydrates under shear loading: Positions at maximum stress.
2019. doi: 10.5281/zenodo.3228754. url: https://doi.org/10.5281/
zenodo.3228754.

[78] Pieter Rein Ten Wolde, Maria J. Ruiz-Montero and Daan Frenkel. ‘Nu-
merical calculation of the rate of homogeneous gas-liquid nucleation in
a Lennard-Jones system’. In: Journal of Chemical Physics (1999). issn:
00219606. doi: 10.1063/1.477799.

[79] Yongjun Tian et al. ‘Ultrahard nanotwinned cubic boron nitride’. In:
Nature (2013). issn: 00280836. doi: 10.1038/nature11728.

[80] Loup Verlet. ‘Computer ”experiments” on classical fluids. I. Thermo-
dynamical properties of Lennard-Jones molecules’. In: Physical Review
(1967). issn: 0031899X. doi: 10.1103/PhysRev.159.98.

[81] Sandra Vieira, Walter H.L. Pinaya and Andrea Mechelli. Using deep learn-
ing to investigate the neuroimaging correlates of psychiatric and neur-
ological disorders: Methods and applications. 2017. doi: 10 . 1016 / j .

neubiorev.2017.01.002.

[82] E. M. Wright and Richard Bellman. ‘Adaptive Control Processes: A Guided
Tour’. In: The Mathematical Gazette (1962). issn: 00255572. doi: 10.

2307/3611672.

Appendix A

Network Architectures

153

154 APPENDIX A. NETWORK ARCHITECTURES

Table A.1: Convolutional architectures

Input Dim < 30× 30 Input Dim ≥ 30× 30

Conv[16] Conv[16]
Pool[2] Pool[2]

Architecture Conv[32] Conv[32]
Conv[64] Conv[64]
Conv[128] Pool[2]

Conv[128]

None
Dropout Rate 0.3

0.5

[Relu, Relu, Relu, Relu]
Activations [Relu, Relu, Relu, Tanh]

[Relu, Relu, Tanh, Relu]
...

[Tanh, Tanh, Tanh, Tanh]

Kernel Sizes 3× 3
5× 5

Padding Keep input dimensions

Batch Sizes 512

Max Epochs 150

Optimizer Adam

Note: Table over convolutional neural networks tested. Separate architectures
are implemented depending on the size of the input. The larger inputs utilize
an extra pooling layer to reduce the feature map size. Numbers in brackets
show the number of filters used per layer. Each network architecture was run
for all combinations of parameters below. The activations functions tested was
all combinations of length 4 of relu and the hyperbolic tangent function.

155

Table A.2: Fully-connected architectures

Neighbors Layer Sizes

10 [66, 40, 28, 22]
20 [266, 160, 114, 88]
30 [600, 360, 257, 200]

Architecture 40 [1066, 640, 457, 355]
50 [1666, 1000, 714, 555]
60 [2400, 1440, 1028, 800]
70 [3266, 1960, 1400, 1088]
80 [4266, 2560, 1828, 1422]

None
Dropout Rate 0.3

0.5

[Relu, Relu, Relu, Relu]
[Relu, Relu, Relu, Tanh]

[Relu, Relu, Relu, Sigmoid]
Activations [Relu, Relu, Tanh, Sigmoid]

...
[Tanh, Tanh, Tanh, Tanh]

[Sigmoid, Sigmoid, Sigmoid, Sigmoid]

Batch Sizes 512

Max Epochs 150

Optimizer Adam

Note: Table over fully-connected neural networks tested. We used four hidden
layers in all architectures but varied the layer sized depending on the input size.
Each network architecture was run for all combinations of hyperparameters. The
activations functions tested was all combinations of length 4 of relu, sigmoid and
the hyperbolic tangent function.

156 APPENDIX A. NETWORK ARCHITECTURES

Appendix B

Oscillating Pair Potential
Results

B.1 Convolutional Network

10 neighbors

M
o
s
t

c
o
m

m
o
n

φ

k

S
e
c
o
n
d

m
o
s
t

c
o
m

m
o
n

φ

k

20 neighbors

φ

k

φ

k

30 neighbors

φ

k

φ

k

157

158 APPENDIX B. OSCILLATING PAIR POTENTIAL RESULTS

40 neighbors

M
o
s
t

c
o
m

m
o
n

φ

k

S
e
c
o
n
d

m
o
s
t

c
o
m

m
o
n

φ

k

50 neighbors

φ

k

φ

k

60 neighbors

φ

k

φ

k

70 neighbors

M
o
s
t

c
o
m

m
o
n

φ

k

S
e
c
o
n
d

m
o
s
t

c
o
m

m
o
n

φ

k

80 neighbors

φ

k

φ

k

B.2. DENSE NETWORK 159

B.2 Dense Network

10 neighbors

M
o
s
t

c
o
m

m
o
n

φ

k

S
e
c
o
n
d

m
o
s
t

c
o
m

m
o
n

φ

k

20 neighbors

φ

k

φ

k

30 neighbors

φ

k

φ

k

40 neighbors

M
o
s
t

c
o
m

m
o
n

φ

k

S
e
c
o
n
d

m
o
s
t

c
o
m

m
o
n

φ

k

50 neighbors

φ

k

φ

k

60 neighbors

φ

k

φ

k

160 APPENDIX B. OSCILLATING PAIR POTENTIAL RESULTS

70 neighbors

M
o
s
t

c
o
m

m
o
n

φ

k

S
e
c
o
n
d

m
o
s
t

c
o
m

m
o
n

φ

k

80 neighbors

φ

k

φ

k

Appendix C

Methane Hydrate Results

C.1 Convolutional Network

10 neighbors

A
ll

C
lu

s
t
e
r
s

4
B

ig
g
e
s
t

C
lu

s
t
e
r
s

20 neighbors 30 neighbors

161

162 APPENDIX C. METHANE HYDRATE RESULTS

40 neighbors

A
ll

C
lu

s
t
e
r
s

4
B

ig
g
e
s
t

C
lu

s
t
e
r
s

50 neighbors 60 neighbors

70 neighbors

A
ll

C
lu

s
t
e
r
s

4
B

ig
g
e
s
t

C
lu

s
t
e
r
s

80 neighbors

C.2. DENSE NETWORK 163

C.2 Dense Network

10 neighbors

A
ll

C
lu

s
t
e
r
s

4
B

ig
g
e
s
t

C
lu

s
t
e
r
s

20 neighbors 30 neighbors

40 neighbors

A
ll

C
lu

s
t
e
r
s

4
B

ig
g
e
s
t

C
lu

s
t
e
r
s

50 neighbors 60 neighbors

164 APPENDIX C. METHANE HYDRATE RESULTS

70 neighbors

A
ll

C
lu

s
t
e
r
s

4
B

ig
g
e
s
t

C
lu

s
t
e
r
s

80 neighbors

Appendix D

Clustering Results

D.1 Gaussian Mixtures

Table D.1: Autoencoder

Sorted by best Calinski-Harbasz

Score Parameters

Calinski 417665.15 Neighbors 60
Silhouette 0.52 MinPts -

Davies 0.53 ε -

Sorted by best Davies-Boulding

Score Parameters

Calinski 238287.03 Neighbors 60
Silhouette 0.86 MinPts -

Davies 0.26 ε -

Sorted by best Silhouette

Score Parameters

Calinski 238287.03 Neighbors 60
Silhouette 0.86 MinPts -

Davies 0.26 ε -

Table D.2: PCA

Sorted by best Calinski-Harbasz

Score Parameters

Calinski 920.64 Neighbors 20
Silhouette 0.07 MinPts -

Davies 4.72 ε -

Sorted by best Davies-Boulding

Score Parameters

Calinski 732.77 Neighbors 30
Silhouette 0.06 MinPts -

Davies 4.7 ε -

Sorted by best Silhouette

Score Parameters

Calinski 920.64 Neighbors 20
Silhouette 0.07 MinPts -

Davies 4.72 ε -

(a) Calinski (b) Davies (c) Silhouette

Figure D.1: Best clustering results for gaussian mixture models using autoen-
coder reduction.

165

166 APPENDIX D. CLUSTERING RESULTS

(a) Calinski (b) Davies (c) Silhouette

Figure D.2: Best clustering results for gaussian mixture models using PCA
reduction.

D.2 Agglomerative Clustering

Table D.3: Autoencoder

Sorted by best Calinski-Harbasz

Score Parameters

Calinski 368796.71 Neighbors 60
Silhouette 0.49 MinPts -

Davies 0.55 ε -

Sorted by best Davies-Boulding

Score Parameters

Calinski 1.0 Neighbors 60
Silhouette 0.0 MinPts -

Davies 0.0 ε -

Sorted by best Silhouette

Score Parameters

Calinski 249274.13 Neighbors 60
Silhouette 0.86 MinPts -

Davies 0.24 ε -

Table D.4: PCA

Sorted by best Calinski-Harbasz

Score Parameters

Calinski 1104.08 Neighbors 20
Silhouette 0.09 MinPts -

Davies 3.86 ε -

Sorted by best Davies-Boulding

Score Parameters

Calinski 1104.08 Neighbors 20
Silhouette 0.09 MinPts -

Davies 3.86 ε -

Sorted by best Silhouette

Score Parameters

Calinski 1104.08 Neighbors 20
Silhouette 0.09 MinPts -

Davies 3.86 ε -

(a) Calinski (b) Davies (c) Silhouette

Figure D.3: Best clustering results for agglomerative clustering using autoen-
coder reduction.

D.3. OPTICS 167

(a) Calinski (b) Davies (c) Silhouette

Figure D.4: Best clustering results for agglomerative clustering using PCA re-
duction.

D.3 OPTICS

Table D.5: Autoencoder

Sorted by best Calinski-Harbasz

Score Parameters

Calinski 741.62 Neighbors 40
Silhouette -0.25 MinPts 50

Davies 4.83 ε 0.01

Sorted by best Davies-Boulding

Score Parameters

Calinski 71.21 Neighbors 20
Silhouette 0.34 MinPts 20

Davies 0.57 ε 20

Sorted by best Silhouette

Score Parameters

Calinski 21.28 Neighbors 60
Silhouette 0.54 MinPts 2

Davies 8.31 ε 0.0001

Table D.6: PCA

Sorted by best Calinski-Harbasz

Score Parameters

Calinski 2.25 Neighbors 20
Silhouette -0.05 MinPts 5

Davies 2.36 ε 0.001

Sorted by best Davies-Boulding

Score Parameters

Calinski 1.52 Neighbors 20
Silhouette -0.19 MinPts 2

Davies 1.72 ε 0.0001

Sorted by best Silhouette

Score Parameters

Calinski 1.12 Neighbors 70
Silhouette -0.04 MinPts 2

Davies 2.06 ε 0.01

(a) Calinski (b) Davies (c) Silhouette

Figure D.5: Best clustering results for OPTICS using autoencoder reduction.

168 APPENDIX D. CLUSTERING RESULTS

(a) Calinski (b) Davies (c) Silhouette

Figure D.6: Best clustering results for OPTICS using PCA reduction.

D.4 DBSCAN

Table D.7: Autoencoder

Sorted by best Calinski-Harbasz

Score Parameters

Calinski 130624.75 Neighbors 60
Silhouette 0.77 MinPts 40

Davies 0.96 ε 0.1

Sorted by best Davies-Boulding

Score Parameters

Calinski 21.01 Neighbors 70
Silhouette 0.72 MinPts 5

Davies 0.17 ε 1

Sorted by best Silhouette

Score Parameters

Calinski 123495.48 Neighbors 60
Silhouette 0.81 MinPts 20

Davies 0.5 ε 0.1

Table D.8: PCA

Sorted by best Calinski-Harbasz

Score Parameters

Calinski 4.86 Neighbors 40
Silhouette -0.02 MinPts 10

Davies 4.13 ε 10

Sorted by best Davies-Boulding

Score Parameters

Calinski 1.46 Neighbors 30
Silhouette 0.1 MinPts 10

Davies 0.83 ε 10

Sorted by best Silhouette

Score Parameters

Calinski 1.46 Neighbors 30
Silhouette 0.1 MinPts 2

Davies 0.83 ε 10

(a) Calinski (b) Davies (c) Silhouette

Figure D.7: Best clustering results for DBSCAN using autoencoder reduction.

D.4. DBSCAN 169

(a) Calinski (b) Davies (c) Silhouette

Figure D.8: Best clustering results for DBSCAN using PCA reduction.

