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Abstract. To provide better and more robust estimates of evaporation and snowmelt in a changing climate,
hydrological and ecological modeling practices are shifting towards solving the surface energy balance. In ad-
dition to precipitation and near-surface temperature (T2), which often are available at high resolution from na-
tional providers, high-quality estimates of 2 m humidity and surface incident shortwave (SW↓) and longwave
(LW↓) radiation are also required. Novel, gridded estimates of humidity and incident radiation are constructed
using a methodology similar to that used in the development of the WATCH forcing data; however, national
1 km×1 km gridded, observation-based T2 data are consulted in the downscaling rather than the 0.5◦× 0.5◦

Climatic Research Unit (CRU) T2 data. The novel data set, HySN, covering 1979 to 2017, is archived in Zen-
odo (https://doi.org/10.5281/zenodo.1970170). The HySN estimates, existing estimates from reanalysis data,
post-processed reanalysis data, and Variable Infiltration Capacity (VIC) type forcing data are compared with
observations from the Norwegian mainland from 1982 through 1999. Humidity measurements from 84 stations
are used, and, by employing quality control routines and including agricultural stations, SW↓ observations from
10 stations are made available. Meanwhile, only two stations have observations of LW↓. Vertical gradients,
differences when compared at common altitudes, daily correlations, sensitivities to air mass type, and, where
possible, trends and geographical gradients in seasonal means are assessed. At individual stations, differences
in seasonal means from the observations are as large as 7 ◦C for dew point temperature, 62 Wm−2 for SW↓,
and 24 Wm−2 for LW↓. Most models overestimate SW↓ and underestimate LW↓. Horizontal resolution is not
a predictor of the model’s efficiency. Daily correlation is better captured in the products based on newer reanal-
ysis data. Certain model estimates show different dependencies on geographical features, diverging trends, or a
different sensitivity to air mass type than the observations.

1 Introduction

Geophysical modeling is advancing, and more and more hy-
drological, ecological, and land surface models (from here
on referred to as land models) are now estimating the sur-
face energy balance (Mueller et al., 2013). Shortwave radi-
ation is the exogenous energy provider to Earth. At middle
and higher latitudes, surface downward longwave radiation is
an equally important radiative driver at the surface. Estimat-

ing the surface energy balance provides a sensible heat flux,
as well as a latent heat flux, which in turn can be converted
to evaporation or snowmelt, key variables for estimating the
surface water balance.

Recent studies have shown the added value of us-
ing more forcing data than only precipitation and tem-
perature when modeling evaporation (Milly and Dunne,
2011; Lofgren et al., 2011; Haddeland et al., 2012;
Pierce et al., 2013; Stagge et al., 2014) or snow cover
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(Raleigh et al., 2016; Harpold et al., 2017). High-quality and
robust diagnoses, forecasts, and projections of evaporation-
and snowmelt-related processes are essential for flood and
hydropower management. Further, gridded data sets of high
quality are needed to statistically bias-correct or downscale
future climate scenarios (Abatzoglou, 2013), to spin up land
surface models (e.g., Rodell et al., 2005; Koster et al., 2004;
Kristiansen et al., 2012), and to assist model development.

Considerable effort is used to improve process description
in environmental models and compare the results of different
models. When land models are run without coupling to an
atmospheric model, i.e., in offline or stand-alone mode, me-
teorological near-surface variables, commonly referred to as
forcing data, are required. In practice, different communities
use different forcing data estimates, such as the more empir-
ically based estimates from the MTCLIM algorithms (Bris-
tow and Campbell, 1984; Thornton and Running, 1999; Bohn
et al., 2013), estimates from numerical weather and climate
models, or a combination of the two (see, e.g., Mizukami
et al., 2016). The different approaches used make it more
difficult to compare the output across land models and have
resulted in dedicated projects where various models are run
with similar forcing data in, for example, the Inter-Sectoral
Impact Model Intercomparison Project (ISI-MIP; Warsza-
wski et al., 2014).

The Norwegian operational hydrological models have his-
torically been calibrated and adapted to use high-resolution,
gridded 2 m temperature and precipitation data as forcing
data. For this purpose high-resolution (1 km×1 km) data
sets, which cover the period from 1957 until the present
(2019) with a daily resolution have been developed, namely
the SeNorge data (Mohr, 2008; Tveito and Førland, 1999;
Lussana et al., 2018a, b). In recent times a long-term
high-resolution, quantile-mapping-based gridded data set of
near-surface wind speed has also been developed at the
Norwegian Meteorological Institute (MET Norway, avail-
able from http://thredds.met.no/thredds/catalog/metusers/
klinogrid/KliNoGrid_16.12/FFMRR-Nor/catalog.html, last
access: 10 June 2019). Gridded, observation-based, high-
resolution data sets for humidity and incident radiation are,
however, lacking.

Previous studies have compared and validated gridded es-
timates of humidity or incident radiation globally (Bohn
et al., 2013; Schmied et al., 2016; Weedon et al., 2011), for
regions in the US (Slater, 2016; Mizukami et al., 2014; Pierce
et al., 2013; Lapo et al., 2017), coastal Brazil (Almeida and
Landsberg, 2003), France (Szczypta et al., 2011), and the
pan-Arctic region (Shi et al., 2010). No previous studies
have, as far as we know, compared and assessed the quality
of high-resolution empirically based and reanalysis-based es-
timates of humidity and incident radiation for regions within
Europe (let alone for Norway specifically). This results in
an additional and unnecessary source of uncertainty for land
modeling in Norway.

Norway’s complex topography and coastline may suggest
that high-resolution data sets would perform better. When
land models are run the near-surface temperature from the
forcing data is usually adjusted to sea level and then to the
land model’s fine-resolution grid cell elevation that uses a
standard atmospheric lapse rate to account for the differ-
ence in terrain height in the forcing data model and the land
model to be run. A standard atmospheric temperature lapse
rate may be unreasonable in winter, at high latitudes (Kot-
larski et al., 2010; Brinckmann et al., 2016), and in complex
terrain (Mizukami et al., 2014), and a much lower resolu-
tion in the forcing data grid compared to the land model may
increase these error components. Further, if humidity is not
also adjusted for inconsistencies between temperature and
humidity will likely result in an unrealistic relative humid-
ity (Haddeland et al., 2006; Weedon et al., 2011). Incident
radiation is influenced by variables showing a strong verti-
cal dependence like near-surface temperature and humidity,
cloud cover (e.g., Marty, 2000), and local variations in sur-
face components like vegetation and snow cover (Erlandsen
et al., 2017; Rydsaa et al., 2017), and thus may likely benefit
from vertical adjustment.

While the spatial correlation may improve in a data set
with a high spatial resolution, Decker et al. (2012) high-
light the need to address temporal correlation on timescales
shorter than monthly scales in data constructed from reanal-
yses for the purposes of forcing land surface models. A high
horizontal resolution may lead to a better representation of
the average state of a variable but not necessarily to an im-
proved description of the concurrent temporal evolution of
the forcing variables on shorter timescales, e.g., during the
rapid passage of a low-pressure system with multiple distinct
air mass characteristics and precipitation types.

This study addresses the aforementioned sources of un-
certainty concerning commonly used estimates of humidity,
either in the form of vapor pressure (VP) or converted to dew
point temperature (Td), incident longwave radiation (LW↓),
and incident (global) shortwave radiation (SW↓) available
for long-term land surface modeling in the region through
the following processes.

– The construction of an original data set, HySN (to ex-
plore the benefit of utilizing a 1 km×1 km national data
set of 2 m temperature in the post-processing reanalysis
data);

– The gathering of global long-term gridded data sets
of humidity and incident radiation from two reanalysis
data sets, two post-processed reanalysis data sets, and
two versions of empirically based estimates compiled
for continental Norway;

– The aggregation of available observations of humidity
and incident radiation between 1982 and 1999 from a
variety of providers, and where necessary, implement-
ing quality control routines;
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– The construction of multiple linear regression models to
provide vertical gradients in both the observations and
the model estimates, so that the variables may be ad-
justed to a similar altitude before their differences are
assessed;

– The correlation of model estimates with observations on
a daily timescale is explored by compiling anomaly cor-
relation coefficients;

– The comparison of the model estimates’ cumulative dis-
tributions; their sensitivity to weather types, continen-
tality, and latitude; and their decadal trend to the obser-
vational data.

Additionally, two hypotheses are investigated. Ha – there
are vertical gradients in near-surface humidity and incident
radiation in our domain. Hb – the added value of the high
horizontal resolution of the more empirically based estimates
outweighs the added value of relying on estimates from
coarser-resolution numerical weather prediction reanalyses.

The data sets considered are two global reanalysis data
sets, the NASA Modern-Era Retrospective Analysis for Re-
search and Applications version 2 (MERRA2) (Bosilovich
et al., 2015, 2017), and ECMWF’s ERA-Interim (Dee et al.,
2011), two products based on reanalysis data post-processed
using higher-resolution gridded observational data, the
Princeton Global Meteorological forcing data set, version
2 (PGMFDv2) (Sheffield et al., 2006), the WATCH forcing
data methodology applied to ERA-Interim (WFDEI) (Wee-
don et al., 2014), and two versions of high-resolution empir-
ically based estimates from the preprocessor of the Variable
Infiltration Capacity (VIC) model, a macroscale hydrologi-
cal model (Liang et al., 1994) largely based on the MTCLIM
algorithms. Finally, a novel data set, the HySN data set, is
compiled for the current study and evaluated. HySN is com-
piled by employing a similar method as was used in the de-
velopment of PGMFDv2 and WFDEI; however, in this case
ERA-Interim near-surface humidity and incident radiation
are post-processed using a national, high-resolution, gridded
2 m temperature data set, SeNorge2 (Lussana et al., 2018b).

2 The gridded humidity and radiation estimates
considered

Long-term data sets that are freely available, which can
be used to drive hydrological, ecological, and land sur-
face models for the Norwegian domain, include the newer
reanalyses: MERRA2 and ERA-Interim. Due to computa-
tional constraints, currently available long-term global re-
analysis data have horizontal resolutions ranging from 2◦×2◦

to 0.5◦× 0.66◦. The MERRA2 reanalysis has a resolution
of 0.5◦ latitude ×0.66◦ longitude. Around Oslo, Norway,
this corresponds to a grid cell height and length of about
56 km×42 km. The reanalysis data sets are based on global
circulation models ingesting large amounts of observational

data by making use of complex assimilation techniques.
However, substantial biases may still occur in reanalysis
data. Heikkilä et al. (2011) found a mean error of +42.9 %
in precipitation intensity in ERA-40 over Norway between
1961 and 1990. Bromwich et al. (2016) found a negative bias
in ERA-Interim surface LW↓ radiation and precipitation be-
tween November 2007 and December 2008 across middle
and high latitudes in the Northern Hemisphere.

The coarse resolution of reanalysis data and the knowl-
edge of biases that may be present in them has spurred
the development of post-processed reanalysis data sets. The
PGMFDv2 and WFDEI are data sets consisting of variables
relevant for forcing land surface models. The relevant vari-
ables are extracted from reanalysis data and post-processed
and downscaled with gridded observational data. Both data
sets are global and have horizontal resolutions of 0.5◦×0.5◦.
PGMFDv2 and WFDEI both adjust reanalysis estimates of
humidity and LW↓ with the gridded, 0.5◦× 0.5◦ Climatic
Research Unit (CRU) T2 following the methods described in
the development of NLDAS (Cosgrove, 2003). Taking a note
from these methods, a novel high-resolution product is devel-
oped and validated in the current study: Hybrid SeNorge, ab-
breviated as HySN. HySN is constructed by post-processing
ERA-Interim humidity and radiances in a similar manner to
PGMFDv2 and WFDEI but utilizing a national data set, the
1 km×1 km SeNorge2 T2, rather than the 0.5◦× 0.5◦ CRU
T2.

Another source of near-surface humidity and incident ra-
diation estimates are the MTCLIM algorithms, which com-
bine first principles from atmospheric physics with empirical
extrapolation logic. Precipitation and temperature, variables
that often are available from a dense network of surface ob-
servation stations, are used to estimate shortwave radiation
and humidity. Versions of the MTCLIM routines are used to
provide forcing data for a large number of hydrological and
ecological models; it has, for example, recently been made
available for the Mesoscale Hydrological model (MHm v5.9,
https://doi.org/10.5281/zenodo.1069202). The variables esti-
mated from MTCLIM are often utilized for impact studies,
e.g., the impacts of climate change and forest management
on ecosystem services in Europe (Bugmann et al., 2017).
The algorithms have also been used to generate several grid-
ded data set products of humidity and radiation for the US
(e.g., Livneh et al., 2013) and are used to provide climate
change projections of humidity and radiation for the US (Bu-
reau of Reclamation, 2013). However, several recent studies
have found regionally inconsistent biases in the MTCLIM
algorithms (Shi et al., 2010; Bohn et al., 2013; Pierce et al.,
2013; Slater, 2016; Mizukami et al., 2014).

The orography and land masks of the models are presented
in Fig. 1. Compared to ERA-Interim orography, the SeNorge
grid elevation is on average higher (mean: 37 m, median:
13 m; see the red areas in Fig. 1). The difference in maximum
elevation is more than 1000 m. Meanwhile, near the coast and
in inland areas the ERA-Interim orography is predominantly
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higher (see the blue areas in Fig. 1). The data sets are sum-
marized in Table 1. Further details considering ERA-Interim,
MERRA2, WFDEI, PGMFDv2, WFDEI, HySN, and two
data sets from the VIC model’s preprocessor, largely based
on the MTCLIM algorithms, are presented in the following.

2.1 ERA-Interim

The ERA-Interim (Dee et al., 2011) is a reanalysis data set
developed by ECMWF, covering the time period from 1979
until the present. It is based on a 2006 release of the ECMWF
operational model system (IFS Cy31r2) and has a horizon-
tal resolution of about 80 km. It includes a four-dimensional
variational analysis (4D-Var). Surface observations are in-
gested by optimal interpolation. The variables evaluated in
this study are daily means of 2 m temperature and dew point
temperature from analysis times (00:00, 06:00, 12:00, and
18:00 UTC) and LW↓ and SW↓ taken between +12 and
+24 h into the forecast to allow for spin-up (see, e.g., Wee-
don et al., 2014).

2.2 Modern-Era Retrospective Analysis for Research
and Applications 2 (MERRA2)

MERRA2 is an atmospheric reanalysis data set developed by
NASA, available from 1980 until the present, with a horizon-
tal resolution of 0.5◦×0.625◦(Bosilovich et al., 2015). Mass
conservation constraints are imposed so that assimilated ob-
servations do not cause large violations of the global water
balance. In MERRA2 land surface observations are not as-
similated. The data variables used in this study are model
orography (Mer, 2015a), pressure, and humidity from atmo-
spheric single level diagnostic (Mer, 2015c), LW↓, and SW↓
(Mer, 2015b).

2.3 Princeton’s global meteorological forcing data set
version 2 (PGMFDv2)

PGMFDv2 is an updated version of the 0.5◦× 0.5◦ 60-year
Princeton global meteorological forcing data set (Sheffield
et al., 2006). The updates are described in Schmied et al.
(2016). The humidity, LW↓, and SW↓ estimates are based on
the National Centers for Environmental Prediction–National
Center for Atmospheric Research (NCEP-NCAR) reanalysis
but post-processed to comply with the gridded, observation-
based time series of precipitation, temperature, and cloud
cover, with a horizontal resolution of 0.5◦×0.5◦ from the Cli-
matic Research Unit (CRU TS 3.2.1) and satellite estimates
of LW↓ and SW↓.

2.4 The WATCH forcing data methodology applied to
ERA-Interim (WFDEI)

The application of the WATCH forcing data methodology to
ERA-Interim reanalysis data, WFDEI, is described in Wee-
don et al. (2014). The data are available from 1979 to the

present and have a horizontal resolution of 0.5◦× 0.5◦. The
humidity, LW↓, and SW↓ estimates are based on ERA-
Interim data, post-processed to comply with the global grid-
ded, observation-based time series of 2 m temperature, cloud
cover, and interannual aerosol loading from CRU TS, using
CRU TS 3.2.1 prior to 2009 similar to PGMFDv2.

2.5 Hybrid SeNorge ERA-Interim, HySN (H)

As part of this study, additional estimates of humidity and
LW↓ are derived, using methods based on Cosgrove (2003),
adjusting ERA-Interim humidity and LW↓ to comply with
the newly developed, 1 km×1 km SeNorge2 T2 data set (Lus-
sana et al., 2018b). Further, the ERA-Interim SW↓ estimates
are adjusted based on the previously adjusted humidity esti-
mates and the 1 km ×1 km orography.

ERA-Interim humidity and longwave radiation are ver-
tically adjusted on a daily basis by consulting the daily
SeNorge T2. The method differs from that used in the con-
struction of the WFDEI and Princeton forcing data, where
the reanalysis T2 is adjusted to sea level and then to the
CRU grid elevation using a constant lapse rate, before ad-
justing it on a monthly basis to fit the monthly mean CRU T2.
The vertical adjustment of humidity makes use of the com-
mon approximation that relative humidity remains constant
with height (see, e.g., Feld et al., 2013), making it easy to
solve for a SeNorge2 compatible dew point temperature Td
based on ERA-Interim relative humidity (RH) and SeNorge2
T2. Humidity is corrected to saturation if supersaturation oc-
curs. Surface pressure is adjusted using an approximation of
the hypsometric equation. The vertical adjustment of long-
wave radiation is done by scaling an empirical expression for
clear-sky LW↓ to the SeNorge T2 and the previously com-
piled vertically adjusted humidity estimate. No consistent
approach is used in other forcing data sets when vertically
adjusting SW↓. Given that SW↓ is very sensitive to near-
surface humidity and that the Cosgrove (2003) method used
above adjusts humidity, we chose to scale the ERA-Interim
SW↓ to the ratio of estimated clear-sky transmissivity cal-
culated using an empirical equation from Thornton and Run-
ning (1999), taking into account the difference in altitude and
humidity in the two data sets. A clear-sky type correction ap-
proach is thus used to adjust both SW↓ and LW↓.

For consistency with SeNorge precipitation and T2, the
variables have a temporal resolution of a day, starting from
06:00 UTC. The data are currently compiled for the time pe-
riod 1979–2017 and cover the same domain as the SeNorge2
grid. The data compilation is described in detail in the Sup-
plement. The HySN data product is freely available from
Zenodo (https://doi.org/10.5281/zenodo.1970170), and the
Python code to generate the data is available on GitHub
(https://doi.org/10.5281/zenodo.1435555).
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Table 1. The following data sets provide estimates of humidity, LW↓, and SW↓, which are then evaluated. Precipitation is denoted as P ,
2 m temperature as T2. The global data sets are retrieved from online repositories, while the data sets with regional coverage are compiled
locally based on the stated input data, the VFD data sets using the VIC model’s preprocessor, and the HySN data set based on the methods
outlined in the current study. Additional references are given elsewhere in the text.

Product Resolution Coverage Type Processing methods Input data Surface obs.

M MERRA2 0.5◦× 0.66◦ Global Reanalysis No

E ERA-Interim 0.66◦× 0.66◦ Global Reanalysis Yes

P PGMFDv2 0.5◦× 0.5◦ Global, Post- VP, LW↓ re-gridded and NCEP-NCAR (2◦× 2◦), Yes
land processed adjusted to monthly CRU T2, CRU TS3.1 T2 & cloud cover,
only reanalysis method from Cosgrove (2003). NASA MEaSUREs

SW↓ & LW↓ adjusted to LW↓ & SW↓
satellite-based data set

W WFDEI 0.5◦× 0.5◦ Global, Post- VP, LW↓ re-gridded and ERA-Interim, Yes
land processed adjusted to monthly CRU T2, CRU TS3.1 T2 (1979–2009),
only reanalysis method from Cosgrove (2003). CRU cloud cover and

SW↓ re-gridded and adjusted aerosol loading
to CRU cloud cover &
interannual aerosol loading

H HySN 1 km×1 km Regional, Post- VP, LW↓ re-gridded and ERA-Interim, Yes
locally processed adjusted to daily SeNorge2 T2, SeNorge2 T2
compiled reanalysis method from Cosgrove (2003).

SW↓ re-gridding and adjustment,
method from
Thornton and Running (1999)

V1 VFDv1 1 km×1 km Regional, Empirical The VIC4.0.6 preprocessor: SeNorge P & T2, Yes
locally model MTCLIMv4.2, & Nora10 sub-daily T2
compiled TVA+Bras LW↓

V2 VFDv2 1 km×1 km Regional, Empirical The VIC4.2.d preprocessor: SeNorge2 P, T2min, & T2max Yes
locally model MTCLIMv4.3, &
compiled Prata+Deadroff LW↓

2.6 VIC type forcing data, VFDv1, and VFDv2

The humidity and radiation estimates referred to here as VIC
type forcing data (VFD) (see, e.g., Bohn et al., 2013; Pierce
et al., 2013) are products of the VIC model’s preprocessor.
The VIC model includes the option to generate gridded hu-
midity and radiation from gridded daily precipitation and
maximum and minimum temperature. The VIC model pre-
processor includes a slightly modified version of the MT-
CLIM model and algorithms for estimating longwave radi-
ation. The MTCLIM algorithms included in the VIC pre-
processors to estimate humidity use a modified version of
the Magnus formula with daily minimum temperature used
as a proxy for Td (Kimball et al., 1997). Shortwave radia-
tion is estimated using the Thornton and Running algorithm
(Thornton and Running, 1999). The variables are estimated
simultaneously; i.e., the algorithms supply each other with
information (Bohn et al., 2013).

Two versions of VFD are evaluated in this study. The first
version, from here on called VFDv1, uses daily precipita-
tion and mean temperature from SeNorge version 1.1 (Tveito
and Førland, 1999; Mohr, 2008), supported by hourly tem-

perature fields from a regional atmospheric reanalysis data
set, NOrwegian ReAnalysis (NORA10, Reistad et al., 2011),
with a resolution of about 11 km to compile maximum and
minimum temperature using a method similar to Vormoor
and Skaugen (2013). The VIC4.0.6 preprocessor is used with
default options, i.e., a modified version of MTCLIM4.2, and
the TVA clear-sky and Bras full-sky LW↓ algorithm (Bras,
1990).

The second version of VIC type forcing data, from here
on called VFDv2, is based on slightly different input data,
i.e., precipitation and mean, maximum, and minimum tem-
perature from a newer version of the 1 km by 1 km SeNorge
data, SeNorge2 (Lussana et al., 2018a, b). The VIC4.0.6 pre-
processor is used with default options, i.e., a modified ver-
sion of MTCLIMv4.3, and with LW↓ estimates based on the
Prata (1996) clear-sky algorithm combined with the Dear-
dorff (1978) full-sky algorithm (for further references see
Bohn et al., 2013).
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3 Study area

Norway is located in the receiving end of the westerlies that
pass over the North Atlantic. This, combined with a long
coast lined with mountains provides Norway with 1500 mm
of precipitation a year, with distinct regional differences in
precipitation amounts received. Although almost 40 % of
Norway is covered by forest, evaporation from the land sur-
face is estimated to be less than a fourth of the received
precipitation (Hanssen-Bauer et al., 2009). Most of Norway
will normally have snow cover in the winter season, with the
length of the snow season varying from a few days to 300 d a
year (dependent on latitude, elevation, and distance from the
coast). Mean temperature (1971–2000) is 1.3 ◦C, and varies
from 7 ◦C near the coast in southern Norway to −4 ◦C in the
mountains. Between 1976 and 2014 T2 increased by half a
degree Celsius per decade (Hanssen-Bauer et al., 2017).

4 Surface observations

The model estimates and observational data are compared
between 1982 through 1999. The observational data include
humidity measurements from 84 sites, SW↓ observed at 10
sites, and LW↓ observed at two sites. The comparison of the
model estimates of incident radiation with stations data is
only made possible by including observations from agricul-
tural stations and applying quality control routines. The ob-
servations are gathered from the University of Bergen (UiB,
SW↓ and LW↓ measurements), and from the Norwegian
Meteorological Institute’s repository for observational data,
which also includes measurements from agricultural stations
conducted by the Norwegian Institute of Bioeconomy Re-
search (NIBIO). The locations of the stations used in the
comparison with the model estimates are shown in Fig. 1.

4.1 Humidity

Humidity observations from 84 stations are included in the
study (see Fig. 1). A minimum of 5 years of daily data was
necessary for the station data to be included; however, most
stations have the complete station record (18 years) avail-
able. The observations, once converted to vapor pressure,
have an uncertainty ranging from around 5 % at 20 ◦C to 6 %
at −20 ◦C (Gabriel Kielland, personal communication, MET
Norway, 2019). The latitude, longitude, altitude, distance to
the ocean, and the start and end date of the time series are
given for each station in the Supplement (Tables S1 and S2).

4.2 Shortwave radiation

The location of the 10 stations included in the evaluation of
modeled SW↓ is displayed in Fig. 1 and covers a latitudinal
range from 58.8 to 69.7◦ N. Seven of the stations are agri-
cultural stations managed by NIBIO. The latitude, longitude,
altitude, distance to the ocean, the start and end date of the

Table 2. An overview of the automatic quality control tests, based
on the relative values of the solar zenith angle (SZA), measured
(SWraw ↓), extraterrestrial (SWE ↓), and clear-sky (SWCS ↓) inci-
dent global radiation. The table is adapted from Table 4.1.1 in Grini
(2015).

Name Quality requirement Quality procedure

Offset SWraw ↓≤ −12 Wm−2 Visual control
SWraw ↓< 6 Wm−2 if SZA< 93◦ of flagged data

Upper SWraw ↓< SWE ↓ Flagged
bound 1 as erroneous
Upper SWraw ↓≤ 1.1 SWCS ↓ if SZA< 88◦ Flagged as
bound 2 SWraw ↓≤ 2 SWCS ↓ if SZA≥ 88◦ erroneous
Lower µ

SWraw↓
SWE↓

≤ 0.03 The day flagged
bound 1 as erroneous
Lower SWraw ↓≤ 10−4 (80 SZA) SWE ↓ Flagged as
bound 2 if SZA≤ 80◦ erroneous

time series, and the percentage of flagged data are given for
each station in the Supplement (Table S3). The number of
days of data used in the validation varies from 5.6 years for
Gjengedal to more than 17 years for Bergen.

Most stations measure global radiation with a Kipp & Zo-
nen CM11 thermoelectric pyranometer. The estimated uncer-
tainty of hourly and daily totals of CM11 may be as low as
3 % in optimal conditions (Grini, 2015). Daily global SW↓
measurements from Bergen station (UiB) are included in
the World Radiation Data Centre (WRDC) and are quality-
controlled by the data provider (UiB, A. Olseth). The daily
estimates have an uncertainty of 3.5 % (Parding et al., 2016).
Measurement errors and uncertainty may depend on sensor
calibration, placement (e.g., sky-view), the temporal resolu-
tion of the measurements, cleaning of the pyranometer, and
local weather conditions.

For stations other than Bergen, quality control procedures
follow the methodology suggested by Grini (2015) as out-
lined in Table 2. This procedure involves running rtmrun
(Godøy, 2013); a Perl wrapper around Libradtran 1.7 (Mayer
and Kylling, 2005); a library for radiative heat transfer to pro-
vide solar zenith angle (SZA), extraterrestrial (SWE ↓), and
clear-sky (SWCS ↓) incident shortwave radiation for each
station location; and the Python scripts developed in Grini
(2015) to screen and flag the data based on automatic quality
control tests. Measurements exceeding the upper and lower
bounds given in Table 2 were flagged. Additionally, all sta-
tion time series were visually inspected at hourly, daily, and
monthly levels in order to flag erroneous data not captured by
the automatic routines, with emphasis on data points marked
as suspicious due to large hourly increments or very high or
low variation in the ratio of observed to extraterrestrial ra-
diation. Figure 2 shows the mean monthly values of SZA,
SWE ↓, SWCS ↓, the raw measured values (SWraw ↓), and
values passing the quality control routines (SWQC ↓) for
Løken station.
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Figure 1. Panels (a)–(e) show the orography and land mask of MERRA2 (a), ERA-Interim (b), PGMFDv2 (c), WFDEI (d), and SeNorge (c),
respectively, visualized on the SeNorge UTM33 grid with a green–brown color scheme. For reference, national borders and the coastline
derived from a high-resolution data set are delineated in black. The locations of the 84 VP stations used in the model comparison are denoted
with red crosses in (f). The locations of SW↓ and LW↓ stations are marked in (g) with red and orange markers, respectively. Note that the
southernmost LW↓ station also measures SW↓. The last map (h) displays the difference in meters between the SeNorge and ERA-Interim
orography in common land areas. Higher elevations in SeNorge are indicated with red, while blue indicates higher elevations in ERA-Interim.

Figure 2. Estimated and measured shortwave radiation (Wm−2)
at Løken station (61.1◦ N, 9.1◦ E) for the period January 1991
to December 1999. Mean monthly solar zenith angle (SZA),
(global) shortwave incident radiation at the top of the atmo-
sphere (SWE ↓), modeled clear-sky incident shortwave radiation
SWCS ↓), and station measurements of incident shortwave radiation
before (SWraw ↓) and after (SWQC ↓) quality control are shown.

In the calculation of daily means, values were flagged as
erroneous and subsequently excluded from the validation if
more than two hourly data points were flagged or missing
during daytime. The number of discarded days varied from
4 % at Kise to 29 % at Tromsø.

4.3 Longwave radiation

Bergen station and Voll station (Trondheim), denoted with
orange markers in Fig. 1g, have observations of incident
longwave radiation available for the time period considered.
The lack of LW↓ measurements is not an uncommon chal-
lenge (see, e.g., Carrer et al., 2012). The stations’ latitude,
longitude, distance to the coast, and the start and end date of
the data used are listed in the Supplement (Table S3). Both
measurement stations are located within 5 km of the coast
(see Fig. 1). The measurements from Bergen are managed
and quality-controlled by UiB. In the first part of the pe-
riod they are from a Schulze radiation balance meter, while
later in the period they are from an Eppley pyrgeometer.
The sensors are placed on the roof of UiB. The observation
station at Voll, Trondheim, was managed by MET Norway
from March 1996, until it was shut down. The Trondheim
measurements are from a Kipp & Zonen CG 1 pyrgeome-
ter located on the ground. At both stations unshaded sensors
were used, possibly leading to slight overestimation due to
solar near-infrared radiation contamination (overestimations
of 10 % on cloud-free days were found in de Oliveira et al.,
2006; Meloni et al., 2012). The data were quality-controlled
by visual inspection for spikes and jumps and by compar-
ing the consistency between the two time series. The Stefan–
Boltzmann blackbody longwave radiation was set as an up-
per limit of the measurements, using the air temperature from
the station. If more than 2 h were missing or flagged during
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a day, observations from that day were omitted in the subse-
quent validation.

5 Evaluation methods

Daily estimated values are compared to station observations.
The nearest model grid cell is selected from the data sets
without interpolation, to avoid introducing spatial or tempo-
ral smoothing of the meteorological fields (see Hofstra et al.,
2010; Gutmann et al., 2012). This study specifically looks
into the altitudinal dependence of the humidity and surface
incident radiation estimates, and as a starting point the es-
timates without adjustment to the observation stations’ alti-
tudes are used.

5.1 Vertical adjustment to station altitude

Prior to the comparison of the model estimates with the sta-
tion observations, the observations and model estimates of
VP and SW↓ were analyzed using multiple linear regression
with geographical features as predictors, in order to find ver-
tical gradients so that the model estimates could be adjusted
to station altitude. The geographical predictors used were al-
titude (either the stations’ altitude or, for the models, the alti-
tude of the nearest-neighbor grid cell to the stations), latitude
above 57◦ N, and distance to the coast, which was calculated
in Python using the Haversine distance from the station to
the coastline, extracted from a coastline data set (Wessel and
Smith, 1996) that is available via the Matplotlib Basemap
Toolkit, implemented at a coarse resolution to not include
large inland lakes. The limited number of SW↓ measure-
ment stations and the varying temporal availability of high-
quality observational data made an evaluation of the altitu-
dinal dependence of the SW↓ more demanding. The SW↓
data were first converted to clearness index (CI), which de-
scribes the daily incident shortwave radiation fraction of the
potential extraterrestrial radiation at the local position and
time (SW↓ /SWE ↓), and then daily data of over 1000 con-
current measurements from eight stations were used in the
regression.

The model estimates were adjusted to station altitude by
multiplying their grid cell values with the difference in alti-
tude to the observation station and a vertical adjustment gra-
dient. For each model the vertical adjustment gradients were
computed as the mean of coefficients found for the model in
question and those found for the observational data, linearly
interpolated from a seasonal to a daily frequency. A similar
regression model was constructed to find vertical gradients in
LW↓ using a well-performing data set in lieu of observations
due to the limited number of LW↓ observation stations.

5.2 Evaluation metrics

Seasonality and aggregated means are assessed by plotting
the mean monthly station values for the observations and

models. The differences between the model estimates and ob-
servations at individual stations are displayed in heat maps.
For each variable a table is provided listing several metrics.
The tables list the following variables for each model:

1. 1= µstation,model−µstation,observation, the mean (µ) of
the station differences;

2. |1| = |(µstation,model−µstation,observation)|, the mean of
the station absolute differences;

3. |δ|max =max(|µstation,model−µstation,observation|), the
largest absolute difference at any station;

4. |δs
|max =max(|µseason,station,model−

µseason,station,observation|), the largest absolute differ-
ence found at any station in any season.

Also listed are the mean daily anomaly correlation coef-
ficient (ACC), i.e., the daily Pearson correlation coefficient
of the time series where the observed day-of-year mean is
subtracted and the number of stations where the cumulative
distribution of daily mean estimates passes (p > 0.001), and
finally the Kolmogrov–Smirnov test of similarity with the cu-
mulative distribution of the observations. The Kolmogrov–
Smirnov test returns the probability that the underlying one-
dimensional probability distributions are the same (H0). The
similarity between the models and observations on a daily
frequency is visualized in Taylor plots, where the normal-
ized standard deviation, the root-mean-square error, and the
correlation coefficient of the de-seasonalized time series are
displayed. The time series are de-seasonalized by subtract-
ing the observed day-of-year climatology. The correlation
coefficient thus corresponds to a non-centered version of the
anomaly correlation coefficient (ACC).

5.3 Evaluation of geographical gradients

In order to see if the geographical dependencies of the model
estimates of humidity and shortwave radiation differ signifi-
cantly from those seen in the observational data, similar mul-
tiple linear regression models as those previously constructed
to find vertical gradients are used. The predictors are the sea-
son, altitude (z), latitude above 57◦ N, and distance to the
coast (C). The regression is first performed separately for
each model and for the observations. However, a second it-
eration of regression is performed for each of the models,
where the input data are composed of the observational data
and model data are appended together with the data sources
indicated. The data source is then used as a categorical pre-
dictor allowed to interact with any of the model coefficients.
Significance of the interaction term, e.g., between latitude
and model source, will indicate that the model’s latitudinal
gradient is significantly different from the gradient seen in
the observations.
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5.4 Air mass type sensitivity

The differences between the model estimates and observa-
tions are also inspected for an air mass type dependence.
Bower et al. (2007) found significant decreases in the fre-
quencies of dry moderate and dry polar air mass types at
Bergen (Flesland) between 1974 and 2000. If the precision
of the model estimates is dependent on air mass type, the
derived changes in the variables with time may be less ro-
bust if the frequencies of the air mass types also change
with time. The spatial, synoptic air mass type classification
has been constructed for 48 stations in Europe and 7 sta-
tions in Norway (Sola, Flesland, Fornebu, Ørlandet, Bodø,
Tromsø, and Slettnes) by Bower et al. (2007), according to
the methods developed in Sheridan (2002) and Kalkstein
et al. (1996). The categorization is done by using sub-daily
surface observations of temperature, dew point, wind, pres-
sure, and cloud cover at individual stations (often airports).
The synoptic weather-typing classifies the local air mass con-
ditions into the categories DP (dry polar), DM (dry moder-
ate), DT (dry tropical), MP (moist polar), MM (moist mod-
erate), MT (moist tropical), and TR (transitional). The dry
weather types are associated with clearer conditions, while
the moist weather types are associated with clouds and higher
humidity. TR days are defined by large shifts in the synop-
tic variables, i.e., days where the weather type is changing.
The MT weather type is often found in the warm sectors of
cyclones, while the MP and MM type may be found in the
vicinity of a front or in air transported inland from a cool
ocean.

5.5 Comparison of trends

The year 1985 is considered the start of the SW↓ brighten-
ing period in Europe after a period of SW↓ dimming due to
aerosol emissions (see, e.g., Wild et al., 2005). For time se-
ries of a sufficient length and quality, the observational data
and the model data are inspected for trends. Stations that
have less than 10 % missing daily data between January 1985
and December 1999 are considered, and trends are calcu-
lated for each calendar month using the Mann–Kendall test
and by calculating the Sen slope (Hirsch et al., 1982). The
analysis is done using the R software and functions within
the “trend” package (Pohlert, 2018). A total of 59 humid-
ity stations meet the criteria and are grouped into five geo-
graphical regions, southwest (SW, stations with < 61.8◦ N,
< 8◦ E), southeast (SE, stations with < 61.8◦ N, > 8◦ E),
central (C, 61.8> ◦ N< 64◦ N), northwest (NW, > 64◦ N,
< 20.6◦ E), and northeast (NE,> 64◦ N,> 20.6◦ E) when as-
sessing trends. For SW↓ and LW↓ only the station in Bergen
(UiB) meets the criteria. For consistency the humidity obser-
vations from Bergen-Florida are inspected for trends as well.

6 Comparison between existing long-term estimates
and the new hybrid approach, HySN

Daily estimates of near-surface humidity and SW↓ and LW↓
from MERRA2, ERA-Interim, PGMFDv2, WFDEI, VFDv1,
VFDv2, and HySN (see Table 1) from 1982 to 1999 are first
inspected for vertical gradients in order to adjust the model
estimates to station altitude in the following. Further, the es-
timates’ quality on a multi-annual timescale is assessed by
considering their mean and absolute deviations from station
measurements. The model estimate’s distribution is assessed
by comparing their daily cumulative distribution to that of the
station observations. The estimate’s similarity to the obser-
vations on a daily timescale is considered by inspecting the
anomaly correlation coefficient, i.e., their daily correlation
with the measurements after the seasonal cycle has been sub-
tracted, and by considering if their differences to station mea-
surements show sensitivity to the local daily air mass type,
which has been classified for seven Norwegian stations by
Bower et al. (2007). For humidity and SW↓, the geographical
gradients in the models are compared with those in the obser-
vations using multiple linear regression. A separate subsec-
tion presents modeled and observed trends in each calendar
month from 1985 to 1999. Humidity trends are compared af-
ter grouping the observations and model estimates into five
regions, while SW↓ and LW↓ are computed for Bergen, the
only location where long-term measurements of SW↓ and
LW↓ are available within the time period with little missing
data.

6.1 Humidity

The model estimates of near-surface humidity are compared
against humidity observations from 84 stations. The observa-
tion stations used in the validation of humidity are located on
average 200 m below the coarse-scale grid cell elevation, i.e.,
in the fjords and on the coast rather than in the surrounding
terrain.

6.1.1 Vertical gradients in humidity

Multiple linear regression of seasonal mean humidity at the
location of the humidity stations shows that altitude is a sig-
nificant predictor of humidity in the observations and all
models (see Sect. S2 of the Supplement). The vertical gra-
dient in the observations is close to the moist adiabatic lapse
rate but varies considerably with season and distance to the
coast (C). On average, dew point temperature decreases by
5.2 ◦C km−1 increase in altitude in summer and freeze point
temperature decreases by 4.4 ◦C km−1in winter. Regression
based on vapor pressure is found to give smaller relative er-
rors than regression based on dew point temperature. This
is because dew point temperature has a higher sensitivity to
temperature at low temperatures. The observed vertical gra-
dient in vapor pressure is −0.39 hPa per 100 m in summer
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and −0.24 hPa per 100 m in winter, and the vertical gradient
is weakened by 0.11 hPa per 100 m every 100 km away from
the coast.

The vertical gradients in the humidity data differ depend-
ing on the data source; e.g., the estimates from PGMFDv2
and WATCH show a weaker decrease with altitude than the
observations and other models. For each model the vertical
gradients are computed as the mean of the seasonal coeffi-
cients found in the regression analyses of the model in ques-
tion and the observations, linearly interpolated from a sea-
sonal to a daily frequency. The altitudinal adjustment results
in a mean difference in humidity, expressed as dew point tem-
perature (Td) of about 1 ◦C for the coarse-scale models and
about 0.06 ◦C for the estimates with a 1 km×1 km resolu-
tion. The largest adjustment is an increase in MERRA2’s Td
of 7.3 ◦C at Tafjord station, where the model’s orography is
1154 m above the station altitude.

6.1.2 Differences of humidity estimates to station
observations

The seasonal cycle of the observations and models (adjusted
to station altitude) is shown in Fig. 3a. The largest devia-
tions are seen in the period of highest humidity, i.e., during
summer. The signs of the average deviations are consistent
throughout the year. PGMFDv2 (denoted with P), MERRA2
(M), and to some degree ERA-Interim (E) and WFDEI (W)
show larger estimates than the observations, whereas VFDv1
(V1) and VFDv2 (V2) generally show lower estimates. The
HySN (H) estimates follow the mean monthly values of the
observations closely. This is also evident in Table 3, where
summary of statistics for the humidity estimates presented,
and HySN shows a mean station error in Td of just 0.1 ◦C.
An aggregated mean similar to the observations does not en-
sure small deviations from the measurements at individual
stations.The VFD estimates have the second smallest devia-
tion in aggregated mean (1); however, when considering the
average absolute deviation (|1|) HySN, WFDEI, and ERA-
Interim perform better than VFD.

Differences between the model estimates and the station
measurements of humidity, expressed as dew point temper-
ature, are depicted for each station, sorted from south (up-
per y axis) to north (lower y axis) in Fig. 4. The mean ab-
solute difference (|1| or MAE) varies from 0.7 ◦C for the
HySN estimates to 1.8 ◦C for the PGMFDv2 estimates. The
largest deviation occurs at an inland station, Fagernes, where
PGMFDv2 Td estimates a 5.4 ◦C higher Td than observed.
The figure suggests a latitudinally dependent bias for certain
models, and this is further explored in the following subsec-
tion by evaluating the models’ geographical gradients.

The humidity estimates are evaluated on a daily basis by
de-seasonalizing the time series (subtracting the observed
day-of-year mean). Figure 5 shows, for each model, the de-
seasonalized time series of humidity, the mean temporal cor-
relation coefficient (now equivalent to the anomaly corre-

Table 3. Summary of metrics showing the humidity estimates’
similarity to station observations. Differences (1) are given in
dew point temperature in degrees Celsius. 1 is the mean station
difference, |1| is the mean absolute station difference, |δmax| is
the largest absolute difference at any station, while |δs

|max is the
largest seasonal difference at any station. ACC is the anomaly (de-
seasonalized) daily correlation coefficient, while K-S indicates the
number of stations where the daily mean cumulative distribution
passes the Kolmogrov–Smirnov test of similarity (p > 0.001). The
best scores are shown in bold.

Model 1 |1| |δ|max| |δ
s
|max ACC K-S

MERRA2 1.4 1.5 4.1 4.7 0.79 0 %
ERA-Interim 0.9 1.0 3.7 4.4 0.86 10 %
PGMFDv2 1.7 1.8 5.4 6.2 0.52 0 %
WFDEI 0.7 0.9 3.3 3.9 0.85 15 %
VFDv1 −0.7 1.0 −4.2 −6.1 0.58 5 %
VFDv2 −1.0 1.2 −5.3 −7.2 0.66 3 %
HySN 0.1 0.7 2.8 3.7 0.83 15 %

lation coefficient, ACC), the mean normalized root-mean-
square error, and the mean standard deviation in a Taylor
plot. Figure 5a visualizes the mean station metrics for the
de-seasonalized time series of humidity. The estimates from
ERA-Interim and post-processed ERA-Interim (HySN and
WFDEI) are closest to the observations and show similar re-
sults. MERRA2 also shows a high ACC. PGMFDv2, which
is based on an older reanalysis with lower spatial resolution,
and the VIC type estimates show slightly poorer results, with
an ACC ranging between 0.5 and 0.7 (see also Table 3).

6.1.3 Evaluation of geographical humidity gradients

Multiple linear regression models are fitted to seasonal mean
humidity with the four seasons as categorical predictors,
where fall (autumn) is the baseline season in the model. The
geographical predictors considered are altitude (z given in
kilometers), latitude (above 57◦ N), and distance to the coast
(C, given in per 100 km increments). Further, interactions
between altitude and season and between altitude and con-
tinentality are included. Each model is paired with the obser-
vational data in a common regression model where the data
source is included as a categorical predictor.

Figure 6 displays the regression coefficients for the ob-
servations and the coefficients for the models if they are
significantly different (p < 0.01) from those of the obser-
vations. Higher significance is marked with a darker color.
The HySN estimates have similar coefficients to the obser-
vations. The regression shows (Fig. 6) that MERRA2 and
PGMFDv2 have significantly higher intercepts (higher fall
mean values at the coast of southern Norway) than the obser-
vations. MERRA2 further shows a stronger latitudinal gradi-
ent and a much weaker decrease in humidity with distance
from the coast than the observations. In addition to having
a higher intercept than the observations, PGMFDv2 shows a
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Figure 3. The seasonal cycles of monthly 2 m vapor pressure (a), incident shortwave radiation (b), and incident longwave radiation (c),
averaged over the location observations are available. The month of the year is denoted on the horizontal axis. The observations (O) are
plotted with a thick, continuous black line. MERRA2 (M, solid) and ERA-Interim (E, dashed) are plotted in red, PGMFDv2 (P, solid) and
WFDEI (W, dashed) in blue, VFDv1 (V1, solid) and VFDv2 (V2, dashed) in orange, and HySN (H) with a dashed lilac line.

Figure 4. For each station, sorted from south to north (y axis), and each model (x axis) the differences between the modeled and observed
station mean dew point temperature (a), incident shortwave radiation (b), and incident longwave radiation (c) are shown.

more pronounced seasonal dependency, a weaker continen-
tal gradient, and a 50 % stronger latitudinal gradient than the
observations. VFDv1 and VFDv2 show a more than 60 %
more pronounced decrease in humidity with continentality
than the observations. VFDv2 also shows a weaker increase
in humidity in summer than the observations.

6.1.4 Air mass type sensitivity of humidity deviations

In Fig. 7a the daily deviations of the humidity estimates are
grouped according to the location’s daily air mass type clas-
sification (SSC type; see Sect. 5). The classification is avail-
able for Sola, Fornebu, Flesland, Bodø, Tromsø, and Slet-
tnes stations and the humidity observations considered are
from Saerheim, Aas, Bergen, Bodø, Tromsø, and Kirkenes
stations. All the estimates are too humid in dry weather
types. The PGMFDv2 and VFDv2 estimates show consid-
erable overestimations of humidity in dry weather types and
underestimations in moist weather types. The lack of range is
consistent with the lower normalized standard deviation seen
in the Taylor plot (Fig. 5a). The ERA-Interim, WFDEI, and
HySN differences also show a slight sensitivity to air mass

type but much less than the VFDv1, VFDv2, MERRA2, and
PGMFDv2.

6.2 Incident global shortwave radiation (SW ↓)

SW↓ observations from 10 sites on the Norwegian mainland
are considered. At most locations the coarse-scale models’
corresponding grid cells have an altitude 300–400 m above
station altitudes.

6.2.1 Vertical gradients in clearness index (CI)

Multiple linear regression was used to provide a vertical
gradient in SW↓, expressed as clearness index (CI, i.e.,
the fraction of SW↓ of the extraterrestrial incoming radi-
ation, SW↓E), in order to adjust the estimates to the sta-
tions’ altitudes. Multiple linear regressions, including both
continentality and altitude as predictors resulted in altitu-
dinal coefficients varying in both magnitude and sign for
the different models and observations (not shown). This was
likely because the correlation between altitude and conti-
nentality varies between 0.56 and 0.86 depending on the
data source. Excluding continentality from the predictors
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Figure 5. Taylor plots depicting the standard deviation ratio and correlation coefficients (ACCs) for the de-seasonalized time series of vapor
pressure (a), incident shortwave radiation (b), and incident longwave radiation (c).

Figure 6. Seasonal and geographical dependencies of seasonal humidity (a) and daily clearness index (b) are depicted. The row names
are the names of the coefficients, including the intercept (I), of the multiple linear regression model. The regression coefficients of the
observational data are shown in the leftmost column of each plot, while the coefficients found for the model estimates are only shown if they
are significantly different from those of the observations (using a limit of p < 0.01 for humidity and p < 0.05 for CI). Lower p values are
indicated with darker colors using a logarithmic color scale (log10(p)).

provided vertical CI gradients with a consistent sign. The
observations show vertical CI gradients of 0.020/100 m in
winter, 0.013/100 m in spring, 0.005/100 m in summer and
0.003/100 m in fall (see Fig. 6b). The observed SW↓ thus
increases, on average, with altitude in all seasons.

The effect of adjusting the model estimates to sta-
tion altitude is an average reduction in SW↓ of 0.7–
1.5 Wm−2 for the coarse-scale models (MERRA2, ERA-
Interim, PGMFDv2, and WFDEI) and a reduction of merely
0.1–0.3 Wm−2 for the models with a 1 km×1 km grid
(VFDv1, VFDv2, HySN). The largest adjustment is a mean
reduction of the PGMFDv2 SW↓ estimate of 4 Wm−2 at a
station in southeastern Norway (Gjengedal).

6.2.2 Differences of SW↓ estimates to station
observations

The mean monthly model estimates of SW↓ averaged over
all 10 stations, after adjustment to station altitude, are vi-

sualized in Fig. 3b. In winter the deviations are small, but
in spring and summer all models except VFDv1 overesti-
mate SW↓. The MERRA2 SW↓ is on average 35 Wm−2

higher than the observations in July, and the VFDv2 SW↓ is
29 Wm−2 higher than the observations in both June and July.
ERA-Interim, WFDEI, and HySN show the largest overesti-
mations in May, a month when solar radiation is high and
snow cover is variable.

Figure 4b depicts the mean difference between the model
estimate and the observations of SW↓ at individual sta-
tions. At half of the stations the mean difference between
the WFDEI and HySN and the observations is lower than
the measurement uncertainty of newer pyranometers in opti-
mal conditions (Sect. 4). The figure further shows that most
models consistently overestimate SW↓. This is not true for
VFDv1. While VFDv1 has the second lowest mean monthly
deviation (Fig. 3), its mean absolute difference is larger, on
average 10 Wm−2. This is also evident in Table 4 where sum-
mary statistics for the SW↓ estimates are presented.
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Figure 7. Differences between model estimates and observed values binned according to the daily air mass type, classified for nearby
stations within Norway (Bower et al., 2007). The air mass types are dry polar (DP), dry moderate (DM), dry tropical (DT), moist polar (MP),
moist moderate (MM), moist tropical (MT), and transitional (T). Panel (a) shows the mean difference in vapor pressure for Saerheim, Aas,
Bergen, Bodø, Tromsø, and Maze stations. Panel (b) shows differences between model estimates and observed incident shortwave radiation
at Saerheim (Sola airport), Aas (Fornebu airport), Bergen (Flesland airport), and Trondheim (Ørland airport). Panel (c) depicts differences in
incident longwave radiation binned according to air mass type in Bergen (Flesland airport) and Trondheim (Ørland airport).

Table 4. As in Table 3 but with metrics listed for SW↓. Except
for ACC and K-S, which are dimensionless, the units are given in
Wm−2.

Model 1 |1| |δ|max |δs
|max ACC K-S

MERRA2 13 13 32 49 0.73 10 %
ERA-Interim 4 4 19 20 0.78 60 %
PGMFDv2 11 11 19 38 0.31 0 %
WFDEI 2 4 8 19 0.76 60 %
VFDv1 −4 10 −23 −62 0.48 10 %
VFDv2 9 10 26 54 0.40 20 %
HySN 3 4 9 20 0.78 70 %

Table 4 shows that at individual stations seasonal devi-
ations in model estimates from station observations are as
large as −62 Wm−2. The large underestimation is found in
VFDv1 and not VFDv2 at a coastal station in northern Nor-
way, Bodø. Also listed in the table is the percentage of sta-
tions where the daily model estimate, adjusted to station al-
titude, passes the Kolmogorov–Smirnov test of similarity of
their cumulative distribution with the observations, which is
zero cases for PGMFDv2 and 70 % for HySN.

The similarity of the model estimates to the obser-
vations at a daily frequency is visualized in a Taylor
plot (Fig. 5b). As also seen for the humidity estimates,
PGMFDv2, VFDv1, and VFDv2 have lower ACCs (31 %–
48 %) than the estimates based on newer reanalysis data
(73 %–78 %). PGMFDv2 in particular shows a variance at
a daily frequency that is considerably smaller than the obser-
vations.

6.2.3 Evaluation of geographical gradients in clearness
index

Similar to what has been done for humidity, the observations
and the corresponding vertically adjusted model estimates of
daily CI are compared using multiple linear regression. The
seasons, latitude, and altitude are used as predictors, includ-

Figure 8. Mean daily clearness index (CI) during winter (a) and
summer (b) is depicted in violin plots, where the kernel density dis-
tribution of the observations and each model is shown, mirrored
across the y axis. The observed median value is drawn with a blue
solid line.

ing interaction between season and latitude and between sea-
son and altitude. Figure 6b shows the regression coefficients
of the observational data in the leftmost column. The coef-
ficients found for the model estimates are only displayed if
they are significantly different (p < 0.05) from those of the
observations. Larger differences (log10(p)) are marked with
a darker color.
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The estimated intercept of PGMFDv2 stands out in the
plot. It is 40 % higher than the estimated intercept of the ob-
servations. The second most evident difference is the lati-
tudinal gradient in both VFDv1 and VFDv2, which is sev-
eral times stronger than observed. PGMFDv2 also shows a
stronger latitudinal gradient than observed. Other notable dif-
ferences are the estimated summer CI values of MERRA2,
which are considerably higher than those seen in the obser-
vations.

6.2.4 Air mass type sensitivity of SW↓ deviations

Figure 7b shows the differences between the models’ SW↓
estimates and observations at Aas, Saerheim, Bergen-GFI,
Bodø, and Tromsø stations, grouped according to the weather
type at nearby weather stations (Fornebu, Sola, Flesland,
Bodø, and Tromsø, respectively). All models except VFDv1
show positive SW↓ deviations during weather types classi-
fied as moist, which occur most frequently. In the less preva-
lent dry weather types all models except MERRA2 show
slightly lower estimates than observed. The largest underes-
timations are seen for the VFDv1 estimates. Further, the de-
viations of PGMFDv2, VFDv1, and VFDv2 show a stronger
dependency on weather type than MERRA2, ERA-Interim,
WFDEI, and HySN. The MERRA2 SW↓ estimates are, how-
ever, overestimated during all weather types. The WFDEI
SW↓ estimates show considerable deviations from the ERA-
Interim estimates, with larger underestimations found during
both dry polar and dry tropical weather types, and consid-
erably lower overestimations found on days classified with
a moist tropical weather type. Grouping the clearness in-
dex into either dry or moist and transitional weather types
shows that the observed CI decreases on average by 0.22
in moist and transitional types. A similar decrease is seen
in MERRA2, ERA-Interim, WFDEI, and HySN but not in
VFDv1 and VFDv2 (−0.12) or PGMFDv2 (−0.05). The
summer and winter distributions of clearness index at the
stations considered are depicted in Fig. 8. It is evident that
PGMFDv2 spans a much smaller range of transmissivity than
observed in both summer and winter and that the VIC type
estimates have a bias towards low estimates and show less
variability than observed in winter.

Since both WFDEI and HySN are based on ERA-Interim,
and ERA-Interim shows overestimations of SW↓ in summer,
where observations were available, the differences in esti-
mated SW↓ in ERA-Interim and the observations were in-
spected for dependencies on differences in modeled and ob-
served cloud cover, near-surface humidity, and snow cover
using regression. The results varied with both season and lo-
cation but for the aggregated data significant dependence on
differences in observed and modeled 2 m humidity and snow
cover was found (with higher snow cover in the model as-
sociated with higher SW↓ estimates in the model), and in
the warm season larger overestimations were seen in ERA-
Interim when the model produced high clouds.

6.3 Incident longwave radiation (LW↓)

Only two stations have LW↓ observations available during
the validation period, Bergen-GFI (western Norway) and
Trondheim-Voll (central Norway); both are located near the
coast (see Fig. 1 and the Supplement). More than 17 years of
daily measurements are available from the Bergen-GFI sta-
tion, while at Trondheim-Voll only about 2 years of observa-
tions are available.

6.3.1 Vertical gradients in LW↓

Since only two stations have longwave observations, no al-
titudinal gradient can be inferred from the observations; in-
stead altitudinal gradients are taken from ERA-Interim. The
previous comparison of altitudinal gradients within the ob-
servations and models has shown that ERA-Interim has sim-
ilar altitudinal gradients to the observations. Further, ERA-
Interim has not previously been vertically adjusted. The ver-
tical gradients found ranged from −4.0 Wm−2 per 100 m in
December to −0.6 Wm−2 per 100 m in June, were weak-
ened by 0.20 Wm−2 per 100 m for every 10 km away from
the coast, and strengthened by 0.23 Wm−2 per 100 m for
every latitude north of 57◦ N. On average the vertical gra-
dients were around −4.5 Wm−2 per 100 m in winter and
−1.8 Wm−2 per 100 m in summer. The gradients were tem-
porally interpolated to day-of-year values and applied to the
models in order to adjust the estimates to the altitude of the
two observational stations. The largest change in the esti-
mates due to altitudinal adjustment is an average increase of
8.6 Wm−2 for MERRA2 when adjusted to the 278 m lower
altitude of Bergen station compared to MERRA2’s grid cell
altitude.

6.3.2 Differences of the LW↓ estimates to station
observations

Figure 3c depicts the mean monthly LW↓ at the two stations.
Summary statistics for the LW↓ estimates after adjustment to
station altitude are also presented in Table 5. At the two sta-
tions all models except WFDEI estimate lower values than
observed in all months. WFDEI, however, estimates on aver-
age 10–15 Wm−2 more LW↓ than is observed from October
through January. The largest absolute differences are found
in MERRA2, where LW↓ is underestimated at 8 Wm−2 in
winter and at 25 Wm−2 midsummer. The remaining models
estimate 11 to 17 Wm−2 less LW↓ than observed in summer,
and show smaller underestimations in winter.

The skill of the model estimates in capturing the day-
to-day variability in LW↓ is visualized in Fig. 5c, indi-
cating the correlation and normalized standard deviation
of the de-seasonalized time series. The estimates based on
newer reanalysis data, MERRA2, ERA-Interim, WFDEI,
and HySN have anomaly correlation coefficients around 0.8,
while PGMFDv2, VFDv1, and VFDv2 have lower ACCs
(46 %–60 %).
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Table 5. As in Table 3 but with metrics listed for LW↓. Except for
ACC and KS, which are dimensionless, the units are in Wm−2.

Model 1 |1| |δ|max |δs
|max ACC K-S

MERRA2 −14 14 −20 −24 0.81 0/2
ERA-Interim −8 8 −13 −14 0.79 1/2
PGMFDv2 −10 10 −12 −16 0.46 0/2
WFDEI 6 6 11 12 0.82 1/2
VFDv1 −9 9 −11 −15 0.51 0/2
VFDv2 −15 15 −17 −21 0.60 0/2
HySN −11 11 −15 −17 0.84 0/2

6.3.3 Air mass type sensitivity of LW↓ deviations

Figure 7c depicts the differences between the model’s LW↓
estimates and the observed values at Bergen and Trond-
heim stations, grouped according to the daily weather type
(classified at Flesland and Ørlandet stations). On days clas-
sified with moist or transitional weather types, all models
except WFDEI underestimate LW↓. PGMFDv2, VFDv1,
and VFDv2 clearly have weather-type-dependent devia-
tions from the observations, with underestimations in moist
weather types and smaller underestimations or even overes-
timations compared to the observations in dry weather types.
The MERRA2, ERA-Interim, WFDEI, and HySN estimates
largely show similar differences to the observed values in all
weather types. An additional comparison of the ERA-Interim
estimates at Bergen, where cloud observations are available,
showed no difference in average deviation in the estimates of
incident longwave radiation on common clear-sky days com-
pared to the remaining days (not shown). The lower estimates
of incident longwave radiation in ERA-Interim are thus not
likely to be primarily related to differences in cloud proper-
ties.

6.4 Modeled and observed trends in near-surface
humidity, SW↓, and LW↓ from 1985 to 1999

January 1985 is considered to be the start of the brighten-
ing period in Europe after a period of SW↓ dimming due to
aerosol emissions (see, e.g., Wild et al., 2005). In the fol-
lowing, where available, observations and co-located model
estimates are inspected for trends in near-surface humidity,
SW↓, and LW↓ from 1985 to 1999.

After screening the observational time series 59 humidity
stations are grouped into five geographical regions (south-
west (SW), southeast (SE), central (C), northwest (NW), and
northeast (NE); see Sect. 5). Table 6 lists the results of the
trend tests for each calendar month and region, listing only
the Sen slope if the Mann–Kendall trend test is significant
at a 5 % or 10 % level, with the latter denoted in italics. In
all regions except the northeastern part of Norway signifi-
cant increases in observed Td occurred in September from
1985 to 1999. The observations further show an increase in
Td in April in southern Norway, an increase July in the north-

eastern part of Norway, and a decrease in May Td in central
Norway. For southern and central Norway all of the models
capture the increase in September Td. The models reproduce
the observed trends in spring and in northern Norway to a
lesser degree.

Bergen is the only location in Norway where long-term
records of incident shortwave or longwave radiation are
available with little missing data within the time range.
Between January 1985 and December 1999, observations
from the University in Bergen show trends in annual SW↓
of 1.7 Wm−2 per decade (p < 0.1), while LW↓ decreases
with −8.4 Wm−2 per decade (p < 0.001). At the nearly co-
located measurement station of the Norwegian Meteorolog-
ical Institute, at Bergen-Florida, annual dew point tempera-
ture has a trend of 1.2 ◦C per decade (p < 0.0001).

In individual calendar months larger trends were found.
Observed August mean SW↓ increased with 51 Wm−2 per
decade (Table 7). The observations also show modest, but
significant, increases in October and December. Apart from
WFDEI and VFDv1, which show no significant SW↓ trends,
the models reproduce a significant increase in SW↓ in Au-
gust, and no models show trends of the opposite sign during
the time period considered.

Monthly mean LW↓ in Bergen shows a significant de-
crease during several months of the year: the largest is found
in May, with −21 Wm−2per decade (Table 8). In August,
October, and December, months when concurrent increases
in shortwave radiation were found (Table 7), the observa-
tions show significant decreases in incident longwave radia-
tion. None of the models show equally strong negative trends
in monthly mean LW↓ in their corresponding grid cells.
MERRA2 and ERA-Interim show no significant trends dur-
ing the time period, whereas PGMFDv2, WFDEI, and HySN
exhibit one single month with a negative trend. Meanwhile,
VFDv1 and VFDv2 show weakly positive trends in Septem-
ber. The increasing trend in incident longwave radiation in
September in the VIC type estimates may be related to the
concurrent increase in humidity. All the models also show an
increasing trend in humidity in the grid cell covering Bergen
in September; however, the models generally show weaker
trends than observed at Bergen-Florida station (see Table 9).

7 Discussion

Historical estimates of humidity and incident shortwave and
longwave radiation have been compared to station observa-
tions from mainland Norway from 1982 through 1999. A
total of 84 stations provide vapor pressure (VP) observa-
tions, 9 stations provided SW↓ observations, while only 2
stations provided LW↓ observations. The estimates evalu-
ated are from two reanalysis data sets, MERRA2 and ERA-
Interim; three data sets composed of reanalysis data blended
with gridded observational data, PGMFDv2, WFDEI, and
HySN; and two versions of the VIC type forcing data, es-
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Table 6. Linear, decadal trends in monthly mean Td (◦C) between 1985 and 1999, significant at a 5 % or 10 % (denoted in italics) level in
the observations (O) and the model estimates, listed with the month and region denoted on the left (month, region).

O M E P W V V2 H

Apr,SW 1.7
Apr,SE 2.2
May,SW –1.2 –1.5 –1.1
May,SE −1.8
May,C –1.3 −1.2 −1.4 −1.3 –1.3 −1.5
May,NE –0.9
Jul,NE 1.6
Aug,SW 1.1 1.0
Aug,SE 1.6
Sep,SW 2.7 2.0 2.4 2.3 2.3 2.6 2.4 2.2
Sep,SE 3.0 2.6 3.0 2.3 3.0 3.2 2.9 3.3
Sep,C 2.1 1.9 1.9 1.8 2.3 1.9 2.0
Sep,NW 1.8 1.6 1.6
Oct,C –1.6

Table 7. Linear, decadal changes in monthly mean SW↓ (Wm−2)
at Bergen between January 1985 and December 1999, significant at
a 5 % or 10 % (denoted in italics) level.

O M E P W V1 V2 H

Jan 1
Aug 51 26 47 42 25 46
Sep 24 15 23
Oct 7 7
Nov 3
Dec 1 1 2 1

Table 8. Linear, decadal changes in monthly mean LW↓ (Wm−2)
at Bergen between January 1985 and December 1999 significant at
a 5 % or 10 % (denoted in italics) level.

O M E P W V V2 H

Apr 8
May −21 –12
Aug −13 −12 –11
Sep 14 14
Oct –17
Dec −17

timates based on gridded observational data combined with
empirical algorithms.

Differences between the estimates and observations are
not necessarily due to errors in the estimates, as a vertical ad-
justment to station altitude is not a sufficient reason to require
that the model grid cell estimates should equate to the ob-
served values. The numerical model estimates may still differ
from the observations for valid reasons, such as differences
in snow cover, differences in land cover type (the observa-

Table 9. Linear, decadal changes in monthly mean Td (◦C) for
Bergen-Florida station and for the co-located grid cells of the model
estimates between January 1985 and December 1999, significant at
a 5 % or 10 % (italics) level.

O M E P W V1 V2 H

Apr 2.0 1.2 0.9
May –1.3 −1.4 −1.4
Jul 1.7
Aug 1.9
Sep 3.2 2.3 2.3 2.1 3.1 2.6 2.2

tions are from sensors usually located over grass or, in some
cases, on top of buildings), and the averaging out of sub-grid
variability in the models (see, e.g., Göber et al., 2008). The
uncertainty in the observations may also contribute to the dif-
ferences. However, large differences may suggest biases in
the estimates.

7.1 Vertical gradients

Significant vertical gradients were found for humidity, in-
cident shortwave, and incident longwave radiation, justify-
ing an altitudinal adjustment to station altitude before com-
parison of the model estimates with the station observa-
tions (Ha). The altitudinal vapor pressure gradients found
here were on average −0.25 hPa per 100 m in winter and
−0.34 hPa per 100 m in summer. The summer gradient is
similar to what Marty (2000) found in the Alps in sum-
mer, −0.35 hPa per 100 m; however, the winter gradient is
considerably higher than found in the Alps (−0.14 hPa per
100 m). The impact of adjustment to station height was small
for the estimates with a finer spatial scale, only a 0.06 ◦C
change in Td on average, while for the coarser-scale esti-
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mates, MERRA2, ERA-Interim, PGMFDv2, and WFDEI,
the impact of the vertical adjustment was considerably larger,
resulting in an average 1 ◦C increase in Td. The WFDEI and
PGMFDv2 showed weaker vertical humidity gradients than
observed. This may be a result of the interpolation techniques
employed in the CRU T2 data set used to bias-correct and
downscale both the ERA-Interim and NCEP-NCAR Reanal-
ysis, or due to the use of a constant temperature lapse rate of
6.5 ◦C when interpolating the temperature of the two reanal-
yses to the CRU orography. Notably, the vertical gradients in
near-surface humidity in MERRA2, a reanalysis where sur-
face observations are not assimilated (see Table 1), are sim-
ilar to the vertical gradients found in the observations and
those found in ERA-Interim.

Observed SW↓ in the form of clearness index (CI; see
Sect. 5) showed the highest altitudinal gradient in winter, a
slightly lower gradient in spring, and rather low gradient in
summer and fall. The vertical gradients found are larger than
the gradient of 0.00295 per 100 m used in the implementation
of the Bristow and Campbell (1984) algorithm in historical
versions of the VIC preprocessor (MTCLIM versions before
4.2, before the Thornton and Running, 1999, algorithm was
implemented). Though the CI gradient is stronger in winter,
the considerably smaller amount of SW↓ received leads to a
weaker gradient in SW↓. The CI gradients translates to SW↓
gradients of about 0.3 Wm−2 per 100 m in fall and winter,
1.6 Wm−2 per 100 m in spring, and 1.2 Wm−2 per 100 m
in summer. Marty (2000) found all-sky gradients in SW↓ in
the Alps of 1.1 W m−2 per 100 m in winter and 0.7 Wm−2

per 100 m in summer. The differences between the gradients
found here and those given in Marty (2000) may likely be
explained by the differences in the received extraterrestrial
radiation and differences in cloud and snow cover climatol-
ogy. The models largely showed similar vertical CI gradi-
ents to the observations. The exceptions were PGFMDv2 and
VFDv1; PGMFDv2 showed significantly (p < 0.01) weaker
vertical gradients with a weaker seasonality, and VFDv1 pro-
duced a stronger vertical CI gradient in summer than in win-
ter. The adjustment of the coarser-scale estimates resulted,
on average, in a 5 times larger change in SW↓ for the coarse-
scale estimates than the finer-scale estimates. The regression-
based vertical adjustment produced similar SW↓ estimates
for ERA-Interim and the HySN estimates.

Since two LW↓ stations located more than 400 km apart
could not provide an observation-based vertical gradient in
LW↓, ERA-Interim was consulted instead. The gradients
were, on average, −4.5 Wm−2 per 100 m in winter and
−1.8 Wm−2 per 100 m in summer. Marty (2000) found ver-
tical gradients in incident longwave radiation of−2.8 Wm−2

per 100 m in winter and −3.1 Wm−2 per 100 m in summer
for the Alps and of −4.1 Wm−2 per 100 m in winter and
−2.6 Wm−2 per 100 m in summer, when considering a sub-
set of observation stations in Switzerland. The different ver-
tical gradients found may be explained by differences in tem-
perature and humidity gradients, different climatological dis-

tributions of clouds, and the difference in initial temperature,
as LW↓ is a function of temperature to the power of 4. The
regression-based vertical adjustment of ERA-Interim LW↓
estimates resulted in a larger correction of LW↓ than the
clear-sky adjustment implemented in HySN, alluding to the
fact that the clear-sky altitudinal adjustment implemented in
similar data products might be too low, especially for loca-
tions with a maritime climate, like Bergen.

7.2 Differences to station observations

7.2.1 Humidity estimates

The empirically based model estimates, VFDv1 and VFDv2,
show, on average, slightly lower estimates of humidity than
observed. Both VFD type estimates are found to show a 50 %
stronger decrease in humidity with continentality than the
observations (see Sect. 6.1.3). The modified version of the
Magnus type formula, based on Kimball et al. (1997), used
in MTCLIM to generate the VFD humidity estimates is likely
not appropriate for Norway. Previous studies, e.g., in the de-
velopment of gridded climate variables by New et al. (1999)
and in the application of the MTCLIM model over complex
terrain in Australia (Thornton et al., 2000) and in the west-
ern US (Pierce et al., 2013), found that the Kimball et al.
(1997) method did not result in overall improved humidity
estimates. Indeed, in Kimball et al. (1997) the method is
found to give improved estimates of humidity in locations
where the ratio of potential evaporation to annual precipita-
tion is larger than 2.5. In most regions of Norway this ratio
is well below unity. The more conventional method of using
daily minimum temperature as a proxy for dew point tem-
perature will likely give relatively small overestimations of
humidity compared to the underestimations resulting from
using the Kimball et al. (1997) method.

The reanalysis-based estimates all overestimate humidity,
and the overestimations are generally higher in weather types
classified as dry according to the methodology of Bower et al.
(2007). MERRA2 and PGFMDv2 particularly overestimate
humidity in dry conditions. The same two models also show a
significantly stronger decrease in humidity with latitude than
observed. MERRA2 also shows a weaker decrease in hu-
midity with continentality. The weaker decrease in humidity
with continentality seen in MERRA2 may perhaps be partly
explained by the model’s coarse resolution and land mask
(see Fig. 1), and MERRA2’s exaggerated latitudinal gradi-
ent in humidity in Norway may perhaps be associated with
MERRA2’s larger latitudinal gradient in SW↓.

The humidity estimates from HySN match the observa-
tions best, considering all metrics except from the anomaly
correlation coefficient (ACC). The ACC of ERA-Interim es-
timates is marginally higher (0.02) than in HySN. This is
likely due to the capping of relative humidity at 100 % when
applying the SeNorge2 temperature in the development of
HySN. Combining the methods outlined in Cosgrove (2003),
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which for humidity relies on the assumption of constant rela-
tive humidity with altitude, a high-quality reanalysis data set
(ERA-Interim), and a high-resolution, national, observation-
based temperature data set is found to provide high-quality
daily estimates of humidity in the current study region. The
coarser, reanalysis-based data sets generally show higher
ACCs than the VFD estimates. Numerical weather predic-
tion (NWP) models are skilled at capturing synoptic events,
i.e., weather or climatological patterns on a spatial order of
1000 km, and a temporal order of days or weeks, such as cold
air outbreaks and the changing sources of air masses during
the passage of warm and cold fronts. Though the NWPs may
have systematic biases and a much lower spatial resolution
than empirically based estimates, it is not surprising that they
are useful in representing daily weather variability.

7.2.2 Incident shortwave radiation

Shortwave incident radiation is, on average, overestimated
for all model estimates except VFDv1. HySN, ERA-Interim,
and WFDEI vary in obtaining the highest ranking depend-
ing on the metric considered. For instance, WFDEI shows a
slightly lower average deviation from the observations than
ERA-Interim and HySN. On the other hand, WFDEI shows
larger underestimations in dry weather types than ERA-
Interim and HySN (Fig. 7). Overall, the three models pro-
vide vertically adjusted estimates of incident SW↓ close to
the observations, with average deviations from station mea-
surements below 4 Wm−2 and ACCs above 0.76.

The average difference between the ERA-Interim esti-
mates and the observations is smaller than in Urraca et al.
(2018), where an average overestimation of 12 Wm−2 was
found when comparing ERA-Interim SW↓ estimates to sta-
tion measurements in Europe between 2010 and 2014. The
smaller difference seen in the current study may in part
be explained by the relatively small amount of solar radi-
ation reaching Norway, the different time periods consid-
ered, and the vertical adjustment included in the current
study. Urraca et al. (2018) also found that MERRA2 shows
poorer results than ERA-Interim, with average overestima-
tions of 18 Wm−2. This is consistent with our findings,
where MERRA2 has the highest mean deviation from the
observations of any of the considered estimates. Overestima-
tions of incident shortwave radiation over land are not only
an issue of reanalysis data sets covering Europe but have
been a long-standing issue in global (Wild et al., 2015) and
regional climate models (Katragkou et al., 2015; Jerez et al.,
2015).

Two versions of VIC type forcing data are evaluated in the
current study. The two versions differ in their input data and
in the version of VIC preprocessor used. The oldest version
of the VFD data sets is partly based on a 11 km national re-
analysis (NORA10) to provide maximum and minimum tem-
perature. The older version showed large underestimations of
incident shortwave radiation at several stations, particularly

near the coast in northern Norway (Fig. 4). These findings
are in line with Bohn et al. (2013), where the MTCLIM al-
gorithms were found to underestimate incident SW↓ radi-
ation by 26 %, on average, at coastal sites. The MTCLIM
algorithms implemented in VFD rely in part on the diurnal
temperature range to estimate cloud cover, using a low range
as an indication of cloud cover. Near the coast, the diurnal
temperature range may be low due to the moderating influ-
ence of the nearby ocean, due to its high heat capacity. The
more recently compiled version of VFD data, VFDv2, which
is based on a newly developed, high-resolution gridded data
set of Tmin and Tmax, does not show similar underestimations
near the coast of northern Norway. The different estimates
produced indicate that great care must be taken to make sure
the VIC style forcing data have consistent input data and al-
gorithm versions if the data are used in, for example, climate
change impact studies.

The newer and higher-resolution input data used in VFDv2
did not result in a lower mean absolute station deviation,
as its SW↓ estimates were consistently overestimated. Both
VFD versions show a much stronger latitudinal gradient than
observed and a too strong altitudinal gradient in summer. The
latter finding is in line with Mizukami et al. (2014), where
VFD type estimates for the Colorado River basin showed
increasing overestimations of SW↓ with increasing altitude.
The exaggerated latitudinal gradient in SW↓ may be con-
nected to the use of the diurnal temperature range in the al-
gorithm. Bohn et al. (2013) found that the relationship be-
tween cloud cover and the diurnal temperature range breaks
down for ranges below 5 ◦C. Further, New et al. (1999) states
that the relationship between diurnal temperature range and
cloud cover is weak at around 60◦ N in winter and, further,
becomes positive in the Arctic.

Binning the estimates according to air mass type shows
that the PGFv2 and VIC type estimates show less sensitiv-
ity to the prevailing weather type than the observations. The
observations and the remaining model estimates show a de-
crease in clearness index of about 0.22 on days classified
as moist or transitional weather types rather than dry, while
the VIC type estimates and PGFv2 show reductions of 0.12
and 0.05, respectively. On average, the VIC type estimates
and PGFv2 underestimate incident radiation in dry weather
types (see Fig. 7). The similarity between the PGMFDv2 and
VFD estimates of SW↓may be explained by the fact that the
PGMFD SW↓ is bias-corrected based on gridded cloud cover
from CRU using the Thornton and Running (1999) relation-
ship between SW↓ and cloud cover, which is also used in
VFD. Further, the gridded CRU cloud cover data set is a sec-
ondary or derived observational data set, which is, similar to
VFD, in part based on regression using diurnal temperature
range as a predictor (New et al., 1999). The lower sensitivity
to air mass type found in PGMFDv2 and the VIC type forc-
ing data might contribute to the lower ACC found for these
estimates.
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7.2.3 Incident longwave radiation

The evaluation of incident longwave radiation is compro-
mised by the lack of observational data. Only two sites ob-
serve incident longwave radiation in the considered time pe-
riod. The difference between the annual mean of the model
estimates and observations are for the two stations consid-
ered larger for incident longwave radiation than for incident
shortwave radiation. The annual deviations ranges from −16
to+7 Wm−2. Underestimations of monthly means are found
throughout the year for all models except WFDEI. The devi-
ations from the station observations for WFDEI, MERRA2,
ERA-Interim, and HySN are largely similar in all weather
types; i.e., the underestimations are also found on days clas-
sified with dry weather types. An additional evaluation of the
ERA-Interim LW estimates for Bergen, where cloud obser-
vations are available, showed that the deviations from station
observations were similar on days where clouds were present
in the observations, the model, and the remaining days.

While overestimation of incident shortwave radiation has
been a long-standing issue in many climate models and re-
analyses, incident longwave radiation is typically underes-
timated (Katragkou et al., 2015; Li et al., 2016; Zib et al.,
2012; Wild et al., 2017). The causes of the underestima-
tion are, however, debated. Li et al. (2016) points to an im-
proper representation of interactions between radiation and
suspended frozen water particles in the atmosphere (solid hy-
drometeors) as a culprit, while Zib et al. (2012) speculate that
errors in simulated aerosols, water vapor content, and cloud
properties (rather than cloud amounts) are the cause. Local
issues such as longwave emissions from nearby terrain may
also contribute to the deviations (Rontu et al., 2016). Lastly,
observational uncertainty confounds the picture further, par-
ticularly given that the two sensors were unshaded.

The anomaly correlation coefficients are, as also seen
for humidity and incident shortwave radiation, considerably
lower for PGFMDv2 and the VFD estimates than the esti-
mates based on newer reanalysis data (0.46–0.60 vs. 0.79–
0.82). This may be caused by the representation of clouds in
the models. As discussed for the PGFMDv2 and the VFD
SW↓ estimates, the use of diurnal temperature range as a
proxy for cloud cover may not be suitable for the current
maritime, high-latitude study region.

7.3 Trends

The analysis of observed humidity trends from 1985 to 1999
showed significant increases in April in southern Norway, a
decrease in May in central regions of Norway, significant in-
creases in July in the northeastern part of Norway, and in-
creases in all regions except the northeastern part of Norway
in September. All the data sets, both the reanalysis-based es-
timates and the more empirically based VFD estimates, cap-
ture the increase in humidity seen in September. The signif-
icant increases found in humidity when averaging over the

stations in southeastern and southwestern Norway in April
are not seen in any of the models. The VFD estimates do,
however, capture some of the increases in humidity that were
seen in the measurements from Bergen-Florida (Table 9). A
recent study by Nilsen et al. (2017) found that changes in
large-scale weather patterns can, in part, explain the signif-
icant increases in 2 m temperature between 1981 and 2010
seen in Scandinavia in September but not most of the in-
creases seen in April. Another inquiry by Rizzi et al. (2017)
found that the increasing temperature trends seen in May
in many parts of Norway showed a strong correlation with
a concurrent decrease in snow cover. The decline in snow
cover in May found in Rizzi et al. (2017) was particularly
strong in low-lying areas. If the changes in temperature and
humidity are connected to local changes in snow cover, it is
possible that the coarser-scale reanalysis data, which often
have a mean grid cell altitude above the measurement station
elevation, do not capture the measured changes.

Surface incident radiation was inspected for trends from
1985 to 1999 at the one station where measurements are
available in the time period with little missing data: Bergen.
A hardly significant (p < 0.1) annual trend in SW↓ was
found in the observations, 1.7 Wm−2 per decade. However,
in individual calendar months larger trends were found. The
largest trend, 51 Wm−2 per decade, was found in the obser-
vations in May. The observed August trend was reproduced
fairly well in ERA-Interim, PGMFDv2, and HySN, and a
weaker but still significant trend was seen in MERRA2 and
VFDv2. While ERA-Interim largely reproduces the trend,
WFDEI shows no significant trends. For the considered lo-
cation, the post-processing of ERA-Interim radiances, based
on CRU cloud cover and interannual aerosol loading con-
ducted in the production of WFDEI, has a negative effect
on its ability to reproduce the observed trend. The clear-sky
type post-processing of ERA-Interim implemented in HySN
estimates left the trend close to its original value. The two
versions of VFD also differed in their ability to capture the
SW↓ trend. This might be due to the maritime location of
Bergen and coarser VFDv1 input data for Tmin and Tmax.
A previous study by Parding et al. (2016) showed that cir-
culation type changes could account for a large part of the
dimming that was observed in Bergen before around 1980
but a lesser fraction of the subsequent brightening. The fact
that ERA-Interim, which does not explicitly account for in-
terannual aerosol changes, picks up the trend while WFDEI,
where a correction for interannual aerosol loading has been
applied does not, implies that a considerable part of the
trend before 2000 must be included in the indirect effects
of aerosol changes, which ERA-Interim assimilates, or other
factors. On the other hand, MERRA2 accounts for interan-
nual aerosol loading in the time period considered and cap-
tures a positive, albeit weaker trend in SW.

The annual trends in LW↓ during the same period in
Bergen were larger in magnitude than those found for SW↓,
−8.4 Wm−2 per decade. The observed trend in any calen-
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dar month was larger for SW↓, while the LW↓ trend showed
more consistency throughout the year. More of the models
reproduced the SW↓ trend than the LW↓ trend. Both ver-
sions of the VIC type forcing data, VFDv1 and VFDv2, sim-
ulated a weak increasing trend in September. Given that the
VFD estimates did not produce changes in SW↓ in the same
month, the increase is likely due to the clear-sky parametriza-
tion and the concurrent simulated increase in September Td.
WFDEI and HySN reproduce the decrease in LW↓ seen in
August, while ERA-Interim does not. This points to the fact
that changes in near-surface temperature, which are used as a
scaling factor and to adjust near-surface humidity in WFDEI
and HySN, capture the signal that contributes to the decrease
in LW↓. A larger sample of stations measuring incident radi-
ation with a high quality is needed to evaluate how well the
models capture trends within the region, particularly given
the uncertainty in the observational data.

8 Code and data availability

The HySN data product is available archived in Zen-
odo (https://doi.org/10.5281/zenodo.1970170, Erlandsen,
2018a). The code used to produce the HySN estimates
is written in Python and is available at https://github.
com/helene-b-e/HySN.git (last access: 10 June 2019). Fur-
ther, the particular version of the software code used to
produce the HySN estimates validated here is archived
in Zenodo (https://doi.org/10.5281/zenodo.1435555, Erland-
sen, 2018b). The remaining data sets are available from the
various named data providers.

9 Conclusions

Hydrological, ecological, and crop modellers seek
landscape-scale data. Norway has a long coastline with
mountains, fjords, and small islands. Strong land–sea
contrast, high mountains, and a seasonal snow cover that
is highly dependent on continentality and altitude results
in a fine-scale variability difficult for coarse-scale models
to represent. A Python script to downscale and consoli-
date reanalysis data with high-resolution national gridded
temperature data has been developed, which, leaning on
previously well-tested empirical relationships, provides esti-
mates of humidity and incident radiation on a fine-scale grid.
The downscaled humidity ensures that relative humidity
is constrained at 100 %, so that, for example, reasonable
evaporation estimates can be sought. The new estimates,
HySN, provide humidity estimates with the overall highest
quality given for the metrics considered here, also surpassing
those based on estimating humidity from temperature alone,
such as for the VIC type forcing data. The new estimates
outperform the VIC type forcing data and the MERRA2
estimates of incident radiation; however, it is not clear that
the new estimates have an added value compared to ERA-

Interim and WFDEI. The lack of high-quality historical
observations, particularly of incident longwave radiation,
hinders a proper evaluation of the data sets.

– Additionally, this study has shown that (Ha) altitude is
a significant predictor of humidity, SW↓, and LW↓ in
the domain. The coarse-scale estimates of Td increased
on average by 1 ◦C, SW↓ by 0.7–1.5 Wm−2, and LW↓
increased by as much as 8.6 Wm−2, when adjusted to
station altitude.

– Further, the results have shown that a high resolution
does not necessarily indicate high-quality estimates.
The added value of the high horizontal resolution of
the more empirically based estimates does not out-
weigh the added value of relying on estimates from
coarser-resolution numerical weather prediction reanal-
yses (Hb). Not only is a higher daily temporal corre-
lation (ACC) seen in the estimates based on newer re-
analysis data compared to the VIC type forcing data but
also a lower mean absolute station bias is seen for sev-
eral reanalysis-based products (ERA, WFDEI, HySN).
VFDv1 and VFDv2 show a 60 % stronger decrease in
humidity with distance from the coast than the observa-
tions, alluding to the fact that the modified version of the
Magnus type formula based on Kimball et al. (1997),
implemented in VFD to estimate humidity from daily
minimum temperature, is not appropriate for the Nor-
wegian domain. Both VFDv1 and VFDv2 also show a
decrease that is several times stronger in solar radia-
tion with latitude than the observations, likely a result
of using diurnal temperature range as a proxy for cloud
cover, an assumption likely not appropriate in coastal
environments and at high latitudes.

To our knowledge reanalysis-based estimates have not
been compared with VIC type forcing data for regions within
Europe (or Norway specifically). The comparison of model
estimates may assist impact modellers that have not yet se-
lected data to use. Some of the findings might help ex-
plain persistent errors, for instance found in the timing of
snowmelt in a hydrological model. The findings provide em-
phasis for climate researchers to not only downscale T2 and
precipitation from climate projections, and later use these to
estimate humidity and incident radiation, but to utilize the
climate model estimates of near-surface humidity and inci-
dent radiation. This is already done, for example, in Tekle-
sadik et al. (2017), where the impact of climate change on
surface hydrology is examined based on, depending on the
hydrological model’s structure, bias-corrected climate model
output of precipitation, temperature, humidity, and incident
radiation from the ISI-MIP project (Hempel et al., 2013).
Similarly, we envisage that further work would involve ap-
plying the HySN as an input to a hydrological model. Such
a model exercise would imply modulating the model’s code
to accommodate humidity and radiation as input variables.
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Once the model includes more physically based parameter-
izations, the sensitivity in simulated runoff to the choice of
forcing data can be assessed, including the impact of errors
or perturbations in each of the forcing data variables.

The source code for computing HySN has been made
available and may easily be configured to use other reanal-
ysis data or other national data sets as input. The compilation
of HySN requires merely half a day on a modern desktop
computer. Part of the code might also be implemented in a
model preprocessor or in the calculation of various indices,
so that the variables do not need to be stored for long time
spans. Future work entails calculating indices, such as refer-
ence evaporation, and updating the input data to ERA5 and
a new version of SeNorge once the full historical time series
of the two are available. Additionally, sub-daily estimates,
the inclusion of terrain features such as slope and aspect, and
adding a correction based on the lack of coupling between
the land surface and the atmosphere at times when the dif-
ferences in the local snow cover and snow cover modeled
by the reanalysis are large might be promising, as initial re-
sults showed that differences in ground snow conditions be-
tween the reanalysis and the observations were significant in
predicting the difference between ERA-Interim estimates of
SW↓ and the observations.
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