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ABSTRACT

The present-day topography in Iberia is related to geodynamic processes dealing with lithospheric-scale deformation. However, little atten-
tion has been paid to the role of inherited crustal- or lithospheric-scale structures involved in the recent observed large-scale topographic 
patterns. Whereas the analysis of brittle structures focuses on the evolution of Mesozoic sedimentary basins and their subsequent response 
to tectonic inversion, their contribution to mountain building has been underestimated. Large numbers of structures, from ductile to brittle, 
which affected the whole lithosphere, were developed during the evolution of the Cantabrian orocline (ca. 310–300 Ma). The contribution 
of these Paleozoic post-Variscan structures, together with lithospheric mantle evolution and replacement during orocline development 
in the Mesozoic and Cenozoic geological evolution of Iberia, remains unexplored. To explore the role of these inherited structures on 
the final configuration of topography during N-S Pyrenean shortening, we carried out a series of analogue experiments complemented 
by surface velocity field analyses. Our experiments indicate that strain was concentrated along preexisting crustal- to lithospheric-scale 
discontinuities, and they show several reactivation events marked by differences in the velocity vector field. Differences in fault displace-
ment were also observed in the models depending upon preexisting fault trends. The obtained results may explain the different amount 
of displacement observed during the reactivation of some of the post-orocline structures in Iberia during the Cenozoic, indicating the key 
role of unveiled structures, which probably have accommodated most of the Alpine shortening.
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INTRODUCTION

Since the advent of the Wilson cycle concept (Wilson, 1968), reac-
tivation of previous structures represents one of the main controls in 
the tectonic evolution of continents. When initiating a Wilson cycle by 
opening new oceans, the reactivation of previous suture zones is likely 
to nucleate the initiation of new oceanic realms (e.g., Burke et al., 1976; 
Bailey et al., 2000; Tikoff et al. 2001; Murphy et al., 2006; etc.). Rift 
initiation through fault reactivation is better understood in segments of 
orogens depicting a rather linear attitude (Thomas, 2006; Murphy et al., 
2006). However, in complex curved orogens, as in the case of the western 
European Variscan belt, it is still difficult to ascertain (Fig. 1A).

The tectonic evolution of north-central Iberia since the latest Carbon-
iferous includes several deformation episodes postdating the Variscan 
orogeny: (1) formation of a curved orogen, known as Cantabrian orocline 
(i.e., Gutiérrez-Alonso et al., 2004, 2008, 2012, 2015; Weil et al., 2010, 
2013; Martínez-Catalán, 2012; Pastor-Galán et al., 2016, 2017; Fernández-
Lozano et al., 2016; Murphy et al., 2016); (2) opening of the Mesozoic 
rift-related Bay of Biscay (Sibuet and Collette, 1991; García-Mondéjar, 
1996); and (3) the Alpine convergence history (among others, Cloetingh 

et al., 2002; Vergés and Fernández, 2006; Casas-Sainz and de Vicente, 
2009; de Vicente and Vegas, 2009).

However, not much attention has been paid to the putative changes 
produced in the Iberian lithospheric mantle during orocline development 
(i.e., Gutiérrez-Alonso et al., 2011a, 2011b), and the meaning and origin 
of late orocline structures attributed to the tightening of the 180° bend that 
defines the Cantabrian orocline. These structures, including faults observ-
able at the present-day erosion level, controlled the basement structural 
grain in northern Iberia (Fig. 1A), and their imprint is noteworthy on the 
subsequent Mesozoic and Cenozoic belts and basins development, on 
the Alpine evolution of the northern and central Iberia mountain chains, 
and probably on the present-day relief of western continental Europe.

One of the consequences of generating 180° curved lithospheric-scale 
oroclinal bends is that they are not able to be bent any further, and if the 
strain conditions that caused the orocline persist, additional shortening 
is assumed by tectonic structures. Previous analogue experiments carried 
out by Pastor-Galán et al. (2012) suggested that conjugated strike-slip 
faults (shear zones in depth), which crosscut both parallel limbs of the 
orocline, develop shortening normal to the orocline axial plane and exten-
sion parallel to it (Fig. 1A). Similar lithospheric-scale fault patterns have 
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Figure 1. (A) Paleogeographic 
reconstruction of the Ibero-Armori-
can orocline within the framework 
of the 3000-km-long western 
European Variscan belt, after Mar-
tínez-Catalán et al. (2007) and Weil 
et al. (2010). The main late Variscan 
structures discussed in the text are 
drawn in blue (dextral) and green 
(sinistral), showing the Permian 25° 
counterclockwise rotation in the 
eastern sector of the West Astur-
ian–Leonese zone and Cantabrian 
zone according to paleomagnetic 
data by Calvín et al. (2014) and 
Pastor-Galán et al. (2018). The 
Pyrenean axial zone was trans-
posed into its current position in 
Permian times (i.e., ~100–150 km 
of calculated shortening during 
the Alpine orogeny, according to 
Roure et al., 1989; Muñoz, 1992; 
and Tugend et al., 2015). Paleo-
magnetic vectors showing the 
geometry of the Cantabrian 
orocline are indicated by Carbon-
iferous (Moscovian) white arrows 
in green circles, while Early Perm-
ian vectors (black arrows in orange 
circles) fossilized the arc formation. 
Paleomagnetic data from Spain, 
France, and eastern British Isles 
were compiled from Van der Voo 
(1967, 1969), Hernando-Costa et al. 
(1980), Turner et al. (1989), Osete 
et al. (1997), Gomes et al. (2004), 
Liss et al. (2004), Chen et al. (2006), 
Weil et al. (2000, 2010, 2013), Pas-
tor-Galán et al. (2015a, 2015b, 2016, 
2017, 2018), and Fernández- Lozano 
et al. (2016). Paleogeographic 
domains: CZ—Cantabrian zone; 
WALZ—West Asturian–Leonese 
zone; CIZ—Central Iberian zone; 
OMZ—Ossa-Morena zone; SPZ—
South Portuguese zone. (B) Map of 
central and northern Iberia depict-
ing the present-day arrangement 
of the main late and post-Variscan 
faults reactivated in Alpine times: 
MPF—Messe jana-P lasenc ia 
fault, MVBF— Manteigas- Vilariça-  
Bragança fault, MPRVF—Mon-
forte- Penacova- Régua- Verín fault, 
CF—Cantabrian fault, UF—Ubierna 
fault, PF—Pamplona fault, DF—
Demanda fault, SF—Somolinos 
fault, ATF—Altomira fault, ASF—As 
Pontes fault, MF—Meirama fault.
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been described related to the formation of the Himalayas, where litho-
spheric shortening produced conjugate faults that affected the Eurasian 
plate. These structures accommodate part of the general N-S–trending 
shortening caused by the collision of Eurasia with the Indian continent and 
dividing the Tibet, Tarim, and Tien-Shan realms (i.e., Tapponnier and Mol-
nar, 1979; Tapponnier et al., 1987; Avouac and Tapponnier, 1993; Thatcher, 
2007; England and Houseman, 1986; England and Molnar, 2005).

In Iberia, post-Variscan structures have long been described to play a 
key role during Mesozoic and Cenozoic time. However, difficulties in the 
recognition of the Alpine evolution and role of the preexisting faults have 
led several authors to suggest different mechanisms for intraplate moun-
tain building, including: (1) the westward transmission of stress along 
NW-SE–trending structures (Martín-González, 2009; Martin-González 
and Heredia, 2011); (2) effective transmission of stress into the plate inte-
rior along NE-SW and NW-SE large-scale strike-slip faults (de Vicente 
and Vegas, 2009); and (3) strain partitioning mechanisms responsible for 
the observed complex pattern of topography (de Vicente et al., 2009, 2018).

This paper explores the influence of the alleged post-orocline structures 
together with the thermomechanical variations of the mantle lithosphere 
caused by the Cantabrian orocline development (Gutiérrez-Alonso et 
al., 2011a, 2011b). We investigated the contribution of preexisting struc-
tures to the present-day topography and the tectonic influence of strain 
transmission during the N-S Pyrenean orogeny, caused by the relative 
movement between Africa and Iberia. In order to understand the effects 
of the possible lateral strength variations caused by the putative differ-
ences in the post–Cantabrian orocline lithosphere underlying Iberia, we 
propose a kinematic model based on an integrated approach that com-
bines analogue modeling, particle image velocimetry (PIV) analysis, and 
regional geology. Our results shed light on the evolution and kinematics 
of late orocline structures and lithospheric mantle variations and their 
contribution to recent deformations and present-day topography in Iberia.

GEOLOGICAL SETTING

During the final tightening of the Cantabrian orocline, in Permian times, 
the Variscan lithosphere was fractured into a conjugate system of NE-SW– 
and NNW-SSE– to NW-SE–trending strike-slip faults (Fig. 1A). This 
fracture pattern can be identified across central and eastern Iberia and in 
the French Central Massif (Fig. 1A; Vegas, 1975; Faure, 1995). In Iberia, 
this conjugate system partially controlled Permian, Triassic, and Mesozoic 
sedimentation and, subsequently, in many cases, like in the Iberian Chain, 
localized the position of the Alpine deformation fronts (Arthaud, 1975; 
Vegas, 1975; Casas-Sáinz and Gil-Imaz, 1994; Doblas et al., 1994; Gui-
merà et al., 2004; de Vicente et al., 2009). These crustal-scale structures 
are interpreted to have had horizontal displacements of ~35–50 km, and, in 
some cases (Plasencia fault, Vilariça-Bragança fault system, Lower Tagus 
fault zone), they have reached deep into the lithospheric mantle, leading to 
the injection of Triassic-Jurassic boundary–age Central Atlantic magmatic 
province mantle-derived mafic melts (Ribeiro et al., 1990; Vegas, 2000).

According to the different characteristics of the Mesozoic geological 
evolution of Iberia, two main domains can be defined: The western Iberian 
Massif, which is devoid of large Mesozoic basins (except for the Lusita-
nian Basin, the origin of which is related to the opening of the Atlantic 
Ocean), and the eastern Mesozoic basins (Fig. 1B). The large conjugated 
strike-slip faults generated after Cantabrian orocline development were 
reactivated during the Mesozoic and Cenozoic with different kinematic 
regimes in both regions (Arthaud, 1975; Vegas, 1975; de Vicente et al., 
2009). The different geodynamic evolution of these areas during this 
period has contributed to large lithospheric rheological variations. These 
thermomechanical differences represent a boundary between a somewhat 

stable Mesozoic western Iberian Massif, characterized by relatively cold 
and stable lithosphere, and a thinner, warmer, and younger lithosphere 
along the extended eastern sector of Iberia (Fig. 1B).

It is widely accepted that these thermomechanical differences between 
the western Iberian Massif and the eastern Mesozoic basins may have 
influenced the reactivation and tectonic inversion of late orocline–related 
faults (de Vicente and Vegas, 2009; Fernández-Lozano et al., 2012). Both 
domains are described in the following sections, together with a summary 
of their Alpine (Cenozoic) evolution.

Alpine Tectonic Evolution

The early episodes of the Alpine (Pyrenean) orogeny caused the defor-
mation of the Iberian Massif and inversion of the NE basins and subsequent 
uplift during the Late Cretaceous–Eocene and the Oligocene–early Mio-
cene, respectively (Casas-Sainz, 1993; Gómez et al., 2002; Guimerà et al., 
2004; de Vicente et al., 2009; Teixell et al., 2018). As a result, the main 
Duero and Ebro continental foreland basins and the Tagus intraplate basin 
emerged, shaping the current geography of Iberia. Because of the differ-
ent evolution of the Iberian Massif and the eastern Mesozoic domain, the 
resulting structures in both of them are significantly different.

Iberian Massif
N-S shortening was responsible for the building of the Cantabrian 

Mountains and the uplift of Paleozoic basement along the Iberian Mas-
sif and in the Central System (Spanish and Portuguese Central System), 
with shortening of ~90 km (Alonso et al., 1996; Gallastegui et al., 2002; 
de Vicente and Vegas, 2009; Tavani and Granado, 2015; Llana-Fúnez and 
López-Fernández, 2015; Quintana et al., 2015; de Vicente el al., 2018), 
and the Cantabrian continental margin, decreasing progressively to the 
west (Gallastegui, 2000; Gallastegui et al., 2002; Pedreira et al., 2007; 
Fernández et al., 2015) into predominantly strike-slip displacements (San-
tanach et al., 1988; Santanach, 1994). These differences are highlighted 
by strong changes in the depth to the Moho, from 28–30 km offshore to 
34–41 km beneath the main mountain uplifts (Montes de León, Span-
ish Central System, and Cantabrian Mountains, respectively; Pedreira et 
al., 2007; Díaz and Gallart, 2009; Díaz et al., 2015; Torne et al., 2015). 
Deformation started in the late Eocene and was well recorded in the Can-
tabrian continental shelf (Pedreira et al., 2015; Cadenas et al., 2018, and 
references therein). The cause of this shortening was the underplating of 
part of the Bay of Biscay crust under Iberian crust, as revealed by seismic 
data (Alvarez-Marrón et al., 1996, 1997; Gallart et al., 1995; Fernández-
Viejo et al., 1998, 2000, 2012; Ayarza et al., 2004; Gallastegui, 2000; 
Gallastegui et al., 2002; Pedreira et al., 2003, 2007; Pulgar et al., 1996).

Strike-slip fault activity has been broadly constrained for the Cenozoic 
(mainly Eocene–Oligocene–early Miocene activity) through the use of 
fission tracks (see above) and ages of syntectonic deposits (de Bruijne 
and Andriessen, 2000, 2002; Barbero et al., 2005; Martín-González, 2006; 
Martín-González et al., 2008, 2012; Fillon et al., 2012; de Vicente and 
Muñoz-Martín, 2012; Fillon et al., 2016). In addition, fault reactivation 
in western Iberia is suggested by the presence of structural and geo-
morphological features, including paleostress indicators and the rapid 
fluvial incision observed since the Miocene in some areas (Antón et al., 
2010, 2012). The NNW-SSE fault systems are mainly located in the 
northwestern part of Galicia, and they are characterized by right-lateral 
displacements concentrating present-day seismic activity in the western 
corner of Iberia (Santanach, 1994; Llana-Fúnez and López-Fernández, 
2015). This system includes structures such as the As Pontes fault sys-
tem, which shows compressional step-overs leading to the formation of 
depressions (Ferrús i Pinyol et al., 2005).

Downloaded from https://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/11/5/708/4830240/708.pdf
by Universitetet I Oslo user
on 29 January 2020

https://www.geosociety.org
https://pubs.geoscienceworld.org/lithosphere
http://www.gsapubs.org


Geological Society of America | LITHOSPHERE | Volume 11 | Number 5 | www.gsapubs.org 711

FERNÁNDEZ-LOZANO ET AL. | Cantabrian orocline legacy in Alpine Iberia RESEARCH

Eastern Mesozoic Basins
The observed differences in tectonic inversion style and the presence 

of a thick Mesozoic sedimentary cover deposited during an episode of 
rifting (>8 km of Jurassic and Cretaceous sediments accumulated along 
E-W basin depocenters; Hernando-Costa, 1973; Alvaro et al., 1979; Raven 
and van der Pluijm, 1986; Sopeña et al., 1988; Gómez-Pérez et al., 1998; 
López-Gómez et al., 2002; Aurell et al., 2002; Martín-Chivelet et al., 2002; 
García-Mondéjar et al., 2005; Omodeo-Salé et al., 2014, 2017) were 
controlled by the thermomechanical properties of the lithosphere. Crustal 
extension favored thermal subsidence and established the final configu-
ration of crustal blocks limited by faults across the Basque-Cantabrian 
and the Iberian Basins.

Present-day crustal thickness ranges ~36–44 km across the inverted 
Basque-Cantabrian and Iberian Basins, with a maximum up to 50 km in 
the central-west Cantabrian area, indicating a strong correlation between 
uplifted areas and Moho depth (Carballo et al., 2015; Díaz et al., 2015; 
Guimerà et al., 2016; Torne et al., 2015; Mancilla and Diaz, 2015). The 
inversion history of the basins started in the late Eocene (Guimerà and 
Alvaro, 1990; Solo et al., 2011), driven by the large-scale geodynamic con-
figuration established during the Cenozoic convergence between Europe 
and Africa. N-S compression led to uplift and crustal thickening, and the 
formation of surrounding foreland basins such as the Duero and Ebro 
Basins (Millán et al., 1995; Casas-Sáinz and Maestro-González, 1996; 
Alonso et al., 1996; Casas-Sáinz et al., 2000; Gaspar-Escribano et al., 
2001; Suárez-González, 2015). Evidence of Oligocene–early Miocene 
uplift was recorded by the formation of planation surfaces, which were 
subsequently captured during the establishment of the present-day fluvial 
network (Casas-Sáinz and Cortés-Gracia, 2002).

Cenozoic tectonic inversion of the Iberian Basin was associated with 
strike-slip displacement along NW-SE structures with compressional 
step-overs, which may have configured the strain partitioning scenario 
responsible for the mountain uplifts reported in the Iberian Range (de 
Vicente et al., 2009). In addition, observed E-W thrusts are responsible for 
fold wavelengths up to 5–13 km affecting the Variscan basement (Guimerà 
et al., 2004), and NW-SE– and NE-SW–trending faults maintain present-
day shallow seismicity (<15 km deep), indicating neotectonic activity.

METHODOLOGY

To explore the role of preexisting Variscan structures during the N-S 
Alpine shortening, we performed a study based on analogue experiments 
and surface analyses (i.e., analysis of particle displacement). Surface 
analyses consisted of a series of images acquired during modeling that 
were processed to obtain a surface velocimetry model from particle image 
velocimetry (PIV) analysis (Leever et al., 2011). The results re-create the 
fault evolution and distribution of strain during the main Alpine intraplate 
mountain-building episode that gave rise to the present-day topography 
in Iberia.

Analogue Modeling

These experiments complement previous work carried out by Fernán-
dez-Lozano et al. (2011) and Pastor-Galán et al. (2012), wherein they 
studied the role of shortening during the Alpine N-S shortening phase 
and after the closure of the Cantabrian orocline. The role of tectonic 
structures was tested by comparison of two sets of analogue experiments, 
where strips of weak silicone simulated the preexisting post-Variscan 
orocline–related fault zones.

The rheological properties of the lithosphere models were based on 
existing geological and geophysical data from Iberia. Models consisted of 

two different setups, where rheological differences were tested according 
to constraints provided by previous field studies (Fig. 2A; Suriñach and 
Vegas, 1988; Guimerà et al., 1996; Tejero and Ruiz, 2002; de Vicente and 
Vegas, 2009; Díaz and Gallart, 2009; Jimenez-Diaz et al., 2012; Carballo et 
al., 2015; Seillé et al., 2015; Torne et al., 2015). The experiments consisted 
of three layers, characterized by: a brittle upper crust, a ductile lower crust, 
and an upper lithospheric mantle (Fig. 2B). These layers rested over a 
high-density asthenospheric fluid inside a Plexiglas tank. A single moving 
wall deformed the model by 20% of bulk shortening according to rates of 
shortening suggested by de Vicente et al. (1996), and the side walls were 
lubricated to avoid side effects. Modeling materials were designed to rep-
resent two different types of lithosphere, a relatively hotter and younger 
lithosphere to the east (Iberian Basin), and a colder and older lithosphere 
to the west, highlighting the rheological differences in the lithosphere prior 
to Alpine shortening, i.e., differences that could have been inherited from 
post-Variscan orocline–triggered lithospheric thinning and delamination 
and intensely modified in the east due to Mesozoic extension. Details on 
material properties and scaling parameters are given in Table 1.

In addition to the simplest scenario (model A), characterized by a 
single weak zone representing a late Variscan structure, we compared 
the results with a more complex setup implemented with several weak 
zones (purple silicone strips in Fig. 2) representing the main E-W Late 
Cretaceous depocenters and large-scale shear zones (model B; de Vicente 
and Vegas, 2009). Similar setups have been previously implemented to 
study the effect of inherited heterogeneities in lithosphere-scale analogue 
experiments by Calignano et al. (2015a, 2015b, 2017). The role of the 
E-W–trending batholith in central Spain was also investigated accord-
ing to the effect caused by topography and the rheological differences 
between the metamorphic basement and the Central System Granites 
(Martín-Velázquez and de Vicente, 2012). This rheological variation was 
modeled using a strip of weak silicone to simulate heat transfer from the 
granite body (see Table 1).

The physical properties and scaling parameters of the models followed 
previous studies carried out by Fernández-Lozano et al. (2011, 2012) and 
Sokoutis and Willingshofer (2011), in agreement with geometric and 
dynamic similarities proposed by Ramberg (1967b) and Weijermars and 
Schmeling (1986). The geometric similarity was achieved by assuming 
the following relationship according to scaling properties suggested by 
Brun (1999):

 σ∗ = ρ∗ ∗ ∗g L , (1)

where σ refers to stress, ρ is density, g is gravitational acceleration, and L is 
the length scale. The asterisk refers to the ratio between model and nature. 
Since g* = 1 in our study, and the densities of silicon putties (~1400–1500 
kg m−3), and a wide variety of rocks in nature (2600–3000 kg m−3) are 
in the same order of magnitude, we can assume that σ* = L*. Therefore, 
considering the physical material properties and their equivalents in nature, 
the stress ratio is 3.25 × 10−7, which implies a geometric scaling of 1 cm 
in the model to ~15 km in nature.

In addition, dynamic similarity was obtained through the dimensional 
analysis proposed by Ramberg (1967a) and Weijermars and Schmeling 
(1986), based on the Ramberg (Rm) and Smoluchowsky (Sm) numbers 
(see Sokoutis et al., 2007).

PIV Analysis

The analysis of fault kinematics carried out on the model surface was 
implemented following the methodology described in Leever et al. (2011) 
and using the open source software MatPIV (Sveen, 2004). Their method 
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is based on study of the particle displacement field performed over the 
surface of the experiments. The PIV method compares two images within 
a fixed time interval. The image evaluation is carried out by dividing the 
PIV recording into several small subareas called “interrogation windows.” 
The record is measured in picture elements or pixels. Therefore, if small-
grain particles are scattered over the model surface, those particles within 
the interrogation windows will be correlated.

Evaluation of PIV recordings was conducted using the cross-corre-
lation method, defined as a standard statistical method of estimating the 
degree to which two compared series of data are correlated (Westerweel, 
1997; Raffel et al., 1998). The PIV method aimed to investigate fault slip 
by comparing the velocity field and slip orientation during model defor-
mation. The method is based on the calculation of a directional derivative, 

δυ, from the original velocity field by subtracting adjacent vectors with 
different orientations,

 δυ = υ − υ +x y x y( , ) ( 1, ), (2)

where υ is the initial vector field, and δυ is its directional derivative. Con-
sequently, if the displacement field is constant, the subtraction of adjacent 
vectors provides no resultant. However, if the magnitude and orientation 
of the vector field change, it will provide a different vector ≠ 0. When the 
length of one of the vectors in δυ exceeds a threshold value, its azimuth is 
plotted in a color scale (0–360°). Therefore, high angles indicate conver-
gence directions (~90°), while low angles (<45°) show dextral strike slip. 
Following this reasoning, we were able to identify different mechanisms 
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Figure 2. Analogue modeling setup. (A) Rheological stratification of the Iberian lithosphere in central Spain and comparison with the strength profiles 
calculated for the physical experiments. (B–C) Model setup and properties of lithosphere models A and B.
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of fault slip (oblique or parallel to convergence direction) that took place 
during model deformation.

In this way, this method allowed us to study and distinguish among 
active, reactivated, and nonactive faults. That means that we were able 
to study regions inside the models where strain localization was taking 
place during deformation. Moreover, the method provided new insights 
into the strain distribution and mechanism of partitioning inferred from 
the particle velocity field.

MODELING RESULTS

Two sets of lithospheric-scale model runs were performed under a 
unidirectional convergence direction. Material properties and scaling 
parameters are summarized in Table 1 (Fig. 2B).

Model A

The rapid evolution of deformation was controlled by the presence 
of preexisting weak zones and the net discontinuity between both litho-
spheric types, localizing the strain distribution. The weak zones were 
immediately reactivated, showing two stages of deformation related to 
strike-slip displacements followed by thrusting producing between 10% 
and 15% of bulk shortening (Fig. 3). The surface velocity field calculated 
with the PIV method implemented by Leever et al. (2011) revealed coun-
terclockwise rotation of velocity vectors caused by displacement along the 
main fault limiting the two lithospheric types. However, clockwise rotation 
of slip vectors was also recorded inside the stiffest lithosphere, along and 
close to the preexisting central weak zone, which was at a large angle to 
the boundary between the two different types of lithospheric mantle. These 
changes observed in vector distribution support the notion of different 
reactivation of crustal heterogeneities during compression according to 
their initial orientation to the prevailing stress field.

The fault displacement regime was affected by subsequent episodes 
of reactivation, changing from pure strike-slip to thrust components and 
leading to topographic uplift (between 5% and 20% of bulk shortening). 
Back-thrusting occurred at 15% and 20% of bulk shortening in the central 
part of the model. In addition, non-coeval episodes of thrusting (fore- and 
back thrust) led to compensation of the observed uplift through a series of 

triangle zones that accommodated the amount of displacement caused by 
thrust reactivation. Strike-slip movement was apparently restricted to the 
main oblique discontinuities deformed under a regime of transpression 
(i.e., lithosphere boundaries and weak zones). Consequently, a component 
of transpression was always associated with fault reactivation (compare 
top-view images with digital elevation models in Fig. 3).

The modeling results show that faulting resulted mostly in imbricated 
thrusts and back thrusts producing pop-up structures, whereas wide, flat, 
and highly elevated regions formed between the main thrust systems. Dis-
tribution of brittle deformation was focused within strong lithosphere. 
However, deformation of the weak lithosphere resulted in strain localization 
along closely spaced thrust systems. It is worth noticing the interference 
deformation patterns among E-W, NE-SW, and NW-SE crustal structures 
occurring under unidirectional shortening (coexisting strike-slip and thrust-
ing components), suggesting strain partitioning limited by the previous 
faults, either crustal or lithospheric. Although strain partitioning seems to 
have been strongly influenced by the presence of lateral strength variations 
affecting the lithosphere, the initial position of preexisting weak zones also 
appears to have played a major role in the mode through which strain was 
spread over the surface of the model. These weak zones also defined the 
boundary of different strain transmission domains.

Clear differences in the topographic elevation above the different types 
of lithosphere are highlighted by the digital elevation models (DEM) 
shown in Figure 3. The weak lithosphere shows high uplift rates and 
deep depressions (compare DEMs in Fig. 3). These differences are also 
observed in the relative magnitude of displacement calculated on the 
model’s surface. The central part of the model represents a major boundary 
for displacement vectors, probably associated with the main preexist-
ing zones of weakness (5%, 10%, 15% bulk shortening). Major rates of 
uplift were found at 20% bulk shortening along the weak lithosphere, as 
indicated by the position of uplifted areas.

Model B

Model B was implemented with four weak zones representing the 
main Iberian margin conjugated fault system (NW-SE faults comprising 
the Plasencia, Vilariça-Bragança-Manteigas, and Penacova-Regua-Verin 
faults and the Lower Tagus fault zone; and the NE-SW system, including 

TABLE 1. MATERIAL PROPERTIES AND SCALING PARAMETERS

Layer Density 
ρ (kg/m3)

Viscosity
η (Pa·s)

Layer thickness
h (m)

Coefficient Velocity
v (m s–1)

Rm Sm Rmn/Rmm

Smn/Smm

Model A

Upper crust nature 2670 – 1.50E+04 0.4 7.00E-03 – 5.17 1.701
Upper crust model 1330 – 1.00E-02 0.6 5.00E-03 – 3.04

Lower crust nature 2900 1.00E+21 1.50E+04 – 7.00E-03 1777 – 0.78
Lower crust model 1486 4.08E+04 1.00E-02 – 5.00E-03 2278 –

Upper lithosphere mantle nature 3400 4.00E+22 3.00E+04 – 7.00E-03 417 – 0.778
Upper lithosphere mantle model 1606 1.87E+05 2.00E-02 – 5.00E-03 535 –

Model B

Upper crust nature 2670 – 1.50E+04 0.4 7.00E-03 – 5.17 1.701
Upper crust model 1330 – 1.00E-02 0.6 5.00E-03 – 3.04

Lower crust nature 2920 1.00E+22 1.50E+04 – 7.00E-03 1789 – 0.772
Lower crust model 1511 1.87E+05 1.00E-02 – 5.00E-03 2316 –

Upper lithosphere mantle nature 3460 1.00E+21 3.00E+04 – 7.00E-03 410 – 0.775
Upper lithosphere mantle model 1590 2.30E+04 2.00E-02 – 5.00E-03 529 –

Note: Rm—Ramberg number; Sm—Smoluchowsky number (see text).
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the Somolinos, Cantabrian, Ubierna, Pamplona, Demanda, and Altomira 
faults). Moreover, a weak zone within the model upper crust was used to 
represent the granitic belt that entirely crosses the Spanish Central Sys-
tem (oriented around 80° with the direction of convergence). It is also 
important to remark that the main E-W Cretaceous depocenters were also 
modeled using strips of weak silicone in the upper mantle.

The evolution of the topography in the model was strongly influenced 
by fault growth. Tectonic thrust structures caused the elevation of the 
model surface at successive steps (Fig. 4; compare DEMs). Rapid uplift of 
the model surface was caused first inside the weak lithosphere, following 
the orientation of the main (E-W) depocenters and the boundary between 
both types of lithosphere (trending NW-SE) at ~10% bulk shortening. 
Uplift along the modeled depocenters was caused by thrusting, whereas 
dextral strike slip across the lithosphere boundary involved a component 
of transpression. The analysis of surface displacement of particles indi-
cated a counterclockwise rotation of the vectors along the southern tip 
of the lithosphere boundary and the presence of oblique velocity vectors 
around the entire discontinuity. Moreover, the PIV analysis also recorded 
movement along the preexisting weak zones trending NW-SE, NE-SW, 
and E-W. No deformation was recorded along structures oriented NNE-
SSW within the strong lithosphere. Successive episodes of displacement 
were observed along NE-SW structures after reactivation during further 
deformation, finally leading to left-lateral strike-slip movements combined 
with thrusting (uplift between 5% and 10% bulk shortening). Similarly, the 
weak zone representing the Spanish-Portuguese Central System granitoids 
caused an abrupt uplift along two well-oriented E-W thrusts facing north 
and south, and defining a crustal pop-up structure. This part was reacti-
vated at 10%, 15%, and 20% of bulk shortening (see vectors in Fig. 4). The 
thrusts’ vergence significantly changed from one lithosphere to another. 
Generally, north-verging thrusts were characteristic of a weak lithosphere 
(i.e., facing the moving wall), whereas the strong lithosphere was associ-
ated mainly with south-vergent thrusts and pop-ups, as was revealed from 
displacement vectors (see 15% bulk shortening in Fig. 4). Magnitudes 
of displacement vectors showed small differences between deformed 
areas. However, at 15% bulk shortening, a major rate of displacement 
was observed to occur along the weak lithosphere, probably enhanced 
by reactivation of NW-SE weak zones. This situation suddenly changed, 
reaching higher-elevation magnitudes along the moving wall within the 
strong lithosphere sector, and it is interpreted to be a border effect.

DISCUSSION

The Mesozoic–Cenozoic tectonic evolution of Cantabrian orocline–
related structures remains controversial and varies from east to west 
Iberia according to variations in lithospheric strength attributed to inheri-
tance from the Mesozoic rifting episode (de Vicente and Vegas, 2009) 
together with changes in the mantle derived from orocline-triggered 
lithospheric delamination (Gutiérrez-Alonso et al., 2004). The tectonic 
inversion style in both regions also differs and was governed by the geom-
etry and location of preexisting conjugate fault sets and the position of 
depocenters developed during the Mesozoic N-S extension that acted as 
buttresses (Fig. 5A). Altogether, we propose a new model that represents 
an analogue of other Alpine settings, including the Himalayas or the Alps 
(Peltzer and Tapponnier, 1988; Luth et al., 2013), where N-S shortening 
was accommodated in E-W reverse fault corridors, whereas the conjugate 
fault system represented by NE-SW to NNE-SSW and NW-SE structures 
played a scarp-like role as a result of strain partitioning between NE-SW 
strike-slip fault corridors and E-W thrusts (Fig. 5B). This model of dis-
tributed deformation in two sectors of Iberia with different lithospheric 
characteristics best fits the observed differences between the western 

Iberian Massif and the eastern Mesozoic basins. While other models 
based on a large-scale crustal detachment or a combination of lithospheric 
folding and strain partitioning have been proposed, none of them success-
fully and independently explain the differences in geometry and tectonic 
style observed between the Iberian Massif and the eastern Iberian Chain 
(Warburton and Alvarez, 1989; Cloetingh et al., 2002; Fernández-Lozano 
et al., 2012; Quintana et al., 2015).

However, our analogue experiments have shown that under N-S short-
ening, NE-SW structures showed sinistral strike-slip movements. These 
faults were successively reactivated, and in some cases developed a thrust 
component. The small displacement shown by NNE-SSW structures could 
be the result of a distribution of deformation toward the nearby Variscan 
structures, which was enhanced by the rotation into a NE-SW direction 
during the development of the Variscan orocline.

Despite the relatively large amount of displacement along NE-SW 
structures in the analogue experiments, geological evidence in central 
Spain has shown that displacement rates are low (i.e., <3–5 km for the 
550 km Plasencia fault; Villamor-Pérez et al., 2012). These differences 
might be caused by the presence of minor thrusts affecting the Paleozoic 
basement next to the fault, which may absorb part of the deformation, 
or they may be the result of movements in opposite directions along the 
fault planes that have been obliterated. All in all, the vector field obtained 
over the model’s surface suggests a large deformation area with limited 
uplift along these structures when compared with the observations made 
along NW-SE faults (compare DEMs for models A and B in Figs. 3 and 4).

The heterogeneous crust in the central part of the experiments (weak 
zone representing granites from the Spanish and Portuguese Central Sys-
tem [SPCS] in model B; Fig. 4) was efficiently reactivated, leading to 
strain localization and subsequent tectonic uplift (see PIV results in Fig. 
4 and DEM results). This weak zone controlled the evolution of the Span-
ish and Portuguese Central System range during deformation. However, 
in absence of this heterogeneity, strike-slip faulting provides an efficient 
mechanism for strain partitioning (compare PIV data from models A and B 
in Figs. 3 and 4) due to the buttress effect associated with the heterogeneity. 
Modeling results suggest a similarity with observations made in Iberia. 
The presence of lateral lithospheric variations in central Iberia may have 
actively contributed to the tectonic uplift of the Spanish and Portuguese 
Central System during the final stages of deformation (Oligocene–early 
Miocene), suggesting that preexisting basement faults may have played 
a minor role in the evolution of the E-W–trending chain.

In addition, analogue experiments demonstrate the contribution of 
these fault systems to the overall high topography along the Basque-Can-
tabrian and Iberian Ranges (Demanda Range). However, the magnitude of 
displacement rates varies considerably depending upon proximity to the 
collision border. This is in agreement with the large amount of displace-
ment observed in the natural prototype along the Cantabrian-Ubierna 
corridor (>40 km) and at Somolinos (>35 km; Bergamin et al., 1996; 
Tavani et al., 2011).

The modeling of the vector field carried out over the surface of the 
analogue experiments showed dextral strike slip along the main preex-
isting faults, and restraining bends laterally developed at the fault tips, 
leading to E-W thrust faults. Moreover, several episodes of successive fault 
reactivation occurred during N-S shortening, involving different tectonic 
regimes (i.e., transcurrent to transpression). Similar conditions have been 
reported along fault segments in the Iberian Range, where tectonic inver-
sion of preexisting rift-related structures has occurred (Casas-Sainz and 
Maestro-González, 1996; de Vicente et al., 2009). This complex scenario 
may explain the observed differences in the present-day topography across 
Iberia, providing a coherent model for strain distribution during the N-S 
Alpine shortening event.
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CONCLUSIONS

Analogue experiments provide new insights into the Alpine evolution 
of preexisting Iberian structures developed during the formation of the 
Cantabrian orocline. The raising of the Cantabrian orocline between ca. 
310 and 300 Ma led to important crustal thickness variations, injection of 
magmatic bodies, and widespread faulting along the western European 
Variscan belt. Analogue experiments showed such rheological variations 
in lithosphere strength play a key role in the nucleation of new structures. 
During the final stages of N-S post-Variscan convergence, the orocline was 
retightened, giving rise to a conjugate system of faults trending NW-SE 
and NE-SW to NNE-SSW, which accommodated most of the late oro-
cline deformation. These structures strongly influenced the subsequent 
geological evolution of the western Iberian Massif and the eastern Meso-
zoic basins during the Mesozoic, as shown by the analogue experiments. 
The Cenozoic continental convergence between Africa and Iberia led to 
important geodynamic plate configuration changes that were responsible 
for simultaneous reactivation and tectonic inversion of previous structures, 
with the following important tectonic implications: (1) Major strike-slip 
movements ceased by the final stages of deformation (early Miocene); 
(2) NNE-SSW–trending structures underwent little displacement, prob-
ably absorbed by adjacent reactivation of NE-SW structures; and (3) the 
latter together with the NW-SE faults had a complex activity, leading to 
strain partitioning mechanisms that efficiently transferred the Alpine strain 
from the northern border of Iberia toward the plate interior. The small 
amount of displacement observed along some preexisting structures can 
be explained by the observation of movements in opposing directions or 
a combination of different tectonic movements. The presence of igneous 
bodies in central Spain may have influenced the formation of E-W–trend-
ing structures as a result of thermomechanical variations in lithospheric 
strength derived from different extension modes in the Iberian Massif and 
the eastern Iberian basins. These differences may have facilitated fault 
reactivation and topographic uplift. Our results contribute to clarify the 
role of late Variscan structures in the final evolution of intraplate mountain 
building during N-S Alpine convergence, providing new insights into the 
present-day configuration of topography in Iberia.
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