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Abstract—In multi-tenant datacenters, the hardware may be
homogeneous but the traffic often is not. For instance, customers
who pay an equal amount of money can get an unequal share
of the bottleneck capacity when they do not open the same
number of TCP connections. To address this problem, several
recent proposals try to manipulate the traffic that TCP sends
from the VMs. VCC and AC/DC are two new mechanisms
that let the hypervisor control traffic by influencing the TCP
receiver window (rwnd). This avoids changing the guest OS,
but has limitations (it is not possible to make TCP increase
its rate faster than it normally would). Seawall, on the other
hand, completely rewrites TCP’s congestion control, achieving
fairness but requiring significant changes to both the hypervisor
and the guest OS. There seems to be a need for a middle ground:
a method to control TCP’s sending rate without requiring a
complete redesign of its congestion control. We introduce a
minimally-invasive solution that is flexible enough to cater for
needs ranging from weighted fairness in multi-tenant datacenters
to potentially offering Internet-wide benefits from reduced inter-
flow competition.

I. INTRODUCTION

Datacenters have become a cornerstone of today’s net-
worked IT infrastucture. When the owner of a datacenter con-
trols all communicating endpoints, a wide range of congestion
control or traffic management mechanisms can be employed
without having to worry about backward compatibility. Ex-
amples of such mechanisms are DCTCP [1], TIMELY [2],
EyeQ [3], HyGenICC [4], Oktopus [5], SecondNet [6], and
FairCloud [7].

In multi-tenant datacenters, however, the guest OSes of
clients may be diverse and utilize an Internet-like mix of
old and new TCP congestion control implementations, with
and without ECN, following Reno, Cubic, BBR or any other
TCP “flavor” that e.g. Linux and FreeBSD allow to configure
via their pluggable congestion control frameworks [8]. This
may put some users at a disadvantage, depending on how
aggressively their congestion control probes for the available
capacity. Moreover, unfair users may have an incentive to
obtain a larger share of the capacity by opening multiple
TCP connections. This is illustrated in Fig. 1, which shows
how VM2 obtains a larger share of the capacity over time by
creating multiple TCP connections.

Efforts are underway to address this problem by harmo-
nizing the traffic coming from senders directly at the source;
this approach has been found to have advantages in terms
of scalability and resilience to churn over using switch and
router mechanisms such as CoS tags, Weighted Fair Queuing
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Fig. 1: sending rate of two VMs, with 1 flow in VM1 and 1
to 4 flows in VM2. VM2 aggressively obtains available
capacity by opening a new TCP flow every 75 seconds.

or reservations [9]. Bandwidth allocation schemes in general
(e.g., EyeQ [3], Gatekeeper [10], Oktopus [5], Secondnet [6],
Netshare [11], and FairCloud [7]) tend to operate on a VM-
level, making them insufficient to relieve the network of
congestion [12].

Mechanisms such as Seawall [9], VCC [13] and AC/DC [12]
successfully achieve this sender-side control by running dedi-
cated congestion control algorithms as part of the hypervisor
infrastructure. However, they all face a common difficulty,
which we address in this paper: how should the new algorithm
that is running as part of the hypervisor communicate with the
the guest OS?

VCC and AC/DC do not require updating the guest OS
at all, which is a significant advantage: it does not require
cooperation of tenants to update the OS (if they do bring
their own OS), which reduces burden and allows to enforce
cooperative behavior. However, these approaches also have
disadvantages: they have to resort to changing the receive
window (rwnd) as a means to control TCP’s behavior.1 A
sender can therefore only increase the sending rate as quickly
as the TCP implementation inside the guest OS allows. A
hypervisor could speed up the TCP sender inside the guest OS
by splitting the TCP connection to shorten the control loop,
and sending ACKs faster than the real receiver; this requires
managing an additional buffer inside the hypervisor, making

1Many of the alternatives discussed in [13] have similar limitations:
buffering packets or ACKs, duplicating ACKs, splitting connections, etc. The
only viable alternative listed is to directly access the guest memory, albeit
with some disadvantages as also discussed in [13].



the solution significantly more complex than the approach that
we present in this paper.

Seawall takes a different approach: in the guest OS, con-
gestion control implementations need to defer all congestion
control decisions to the hypervisor by always asking for al-
lowance before sending a packet [9] (similar to the Congestion
Manager (CM) [14]). Seawall alone takes care of congestion
control. According to [9], the sheer performance gain should
provide enough incentive for tenants to upgrade their OS; this
is confirmed by some of our findings (e.g. the significantly
shorter completion times of short flows in Fig. 4). However,
Seawall needs more drastic changes to the infrastructure than
e.g. VCC and AC/DC: both the sender and receiver side are
altered, and bits from the header are re-purposed to implement
the necessary signaling.

Is there a middle ground? Can we find a way to change
the guest OS that is simple and generic, allowing to control
TCP with a sender-side only algorithm? What is the missing
piece here, between requiring significant guest OS updates and
implementing a novel control loop between hypervisors on one
hand, and changing nothing but being left with only the receive
window to control on the other?

We argue that a middle ground can be found when keep-
ing the guest OS congestion control intact, yet allowing a
controlling entity to overrule its decisions. Making use of
existing congestion control code is however close to im-
possible with the “ask to send” interface of the Congestion
Manager:2 because the CM does not have knowledge about the
congestion control mechanisms it is talking to, it is limited to
either carrying out relatively simple scheduling decisions or
implementing a complete congestion control mechanism by
itself (which is what it really does).

Our novel contribution in this paper is two-fold: 1) we
present a new interface to communicate between TCP in the
guest OS and a hypervisor. We call a set of TCP connections
that are controlled via this interface controlled TCP (ctrlTCP).
2) Using both ns-2 and FreeBSD implementations, we present
the efficacy of our solution by extending our previously
proposed sender-side-only ctrlTCP algorithm [15]. This allows
precise control over intra-flow bandwidth sharing in the multi-
tenant data centers, and yields several more advantages of
coupling congestion controls.

The rest of our paper is organized as follows: After a review
of prior works in Section II, we introduce our ctrlTCP design
for datacenters in Section III. In Section IV, we present some
simulation and experimental results, and Section V concludes
the paper.

II. PRIOR WORK

Here we provide an overview of the most relevant related
research works, which we categorize according to the scopes

2The interface in [14] contains a cm_update call, which conveys
information such as “type of loss” and “round-trip time (RTT)”. While this call
is better aligned with our proposal, it also does not fit the bill: the conveyed
information is input to a congestion control mechanism — but leveraging
existing congestion control code requires to convey the output of a congestion
control mechanism instead.
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Fig. 2: Abstract ctrlTCP architecture, showing an example
where the hypervisor removes selfish VM behavior.

of the mechanisms.
Datacenter capacity management: There are several ef-

forts to fairly control and share the network capacity of
the complete datacenter. In EyeQ [3] bandwidth is shared
and guaranteed across all users of the datacenter and access
is controlled at the edges. To achieve fairness, FairCloud
[7] uses per-flow queues in the switches and HyGenICC
[4] presents a network abstraction layer to each VM. In
order to ensure that all VMs get their fair share, somewhat
static allocation of bandwidth is performed by Oktopus [5]
(coordinated centrally), SecondNet [6] (between pairs of VMs)
and Gatekeeper [16].

Generally, most schemes to manage datacenter traffic op-
erate on the data channel. This has the advantage that on-
host mechanisms for example Seawall and EyeQ can control
all traffic leaving the VM, not only TCP, and apply func-
tions ranging from congestion control to traffic shaping or
scheduling. However, it is not uncommon for hypervisors
to enable direct access to hardware drivers (e.g. VMWare’s
ESXi hypervisor supports TCP Segment Offloading (TSO) for
VMs), and this puts such traffic management functions on
a critical path regarding execution time. Our scheme is able
to utilize such direct access to hardware drivers because, as
Fig. 2 shows, ctrlTCP operates strictly on the control path: it
communicates signals (state variables) between the congestion
control implementations running in the guest OS and the
hypervisor but does not need to even examine or count the
number of outgoing or incoming data packets.

Single-path congestion control coupling: Previous work
on TCP state sharing has recognized that much can be achieved
in a simpler fashion, by sharing a number of state variables
[17, 18]. These proposals are closer in spirit to ours, however,
they really only share variables instead of defining an interface
to an algorithm. As we will see, an algorithm is needed to
take care of states of TCP. Our own prior work is more
recent [19]; it also considers sharing congestion control state
across multiple flows, but for multimedia applications in the
context of WebRTC. Different from [17, 18], an interface to
the congestion management system is proposed in [19], which
we have adapted for TCP in [15].

While these prior works already show that our method does
a good job at controlling multiple congestion control instances,
datacenters have not been the focus of any of these previously
published papers. Here, for the first time, we consider the API
that TCP instances must use, and implemented the coupling



entity in a hypervisor to control flows in the guest OS.
Multiplexing: Another method to avoid the competition of

multiple flows is to merge application-layer data streams above
a single transport instead of changing the congestion control
mechanism to work together. This is done by HTTP/2 [20],
for example, which multiplexes web sessions on top of a
single TCP connection between client and server. Multiplexing
application flows onto a single TCP connection can result in
a head-of-line (HoL) blocking, where faster application-layer
threads are forced to wait while serialized messages from
slower threads are handled at the TCP destination. Solving
HoL blocking usually involves entirely different transport
protocols, such as QUIC [21] or SCTP [22].

Multi-path congestion control coupling: Coupled conges-
tion control is an important part of MultiPath TCP (MPTCP)
[23]. There are several proposals, e.g. LIA [24, 25], OLIA
[26] and BALIA [27]. Similar to E-TCP and the CM, these
mechanisms try to make multiple flows behave like a single
flow when they traverse a single bottleneck (and [28] proposes
to detect whether shared bottlenecks exist and switch behavior
accordingly). However, MPTCP’s coupling assumes that flows
could take a different path, and ideally also traverse different
bottlenecks.

MPTCP’s subflows also use different tuples in order to be
able to use different paths. On the contrary, in our mechanism,
shared bottlenecks are assumed, rendering it unsuitable when
TCP connections between the same source and destination pair
are placed on different paths. Which mechanism to use under
which circumstances is a policy decision, depending on how
the administrator of the datacenter wishes to control fairness
and load-balance traffic.

III. OUR SOLUTION

We present a new interface to communicate between TCP
in the guest OS and a hypervisor. We call a set of TCP
connections that are controlled via this interface ctrlTCP int.
We extended our ctrlTCP algorithm from [15] that emulates
the behavior of a single TCP congestion controller (much like
the CM) and supports priorities (for practical management of
both inter- and intra-VM capacity allocation).

Each TCP session communicates with an entity that we
call a Coupled Congestion Controller (CCC). As the name
suggests, a CCC typically makes decisions that combine the
collected knowledge that it receives from all TCP instances
that talk to it (thereby “coupling” them in some way). A CCC
can operate in a hypervisor (as shown in Fig. 2, and done for
the test shown in Fig. 3) or in an OS.

Our algorithm shares state variables across multiple TCP
Connections. There are three phases: i) Register: TCP connec-
tions register with the CC upon joining, providing a connection
identifier c, a priority p, their congestion window cwnd, and
their slow start threshold ssthresh ii) Update: whenever
a connection changes its cwnd, it updates its status with
the CCC. CCC then responds with the calculated cwnd and
ssthresh values. iii) Leave: when a connection terminates,

CCC removes its variables and states and recalculates the
aggregates.

Using the ctrlTCP int interface, it is possible to develop a
variety of algorithms that combine the individual congestion
controls in some way. For example, LISA [29] is a simple
algorithm that shares the cwnd of MPTCP subflows in slow
start. This happens only at the moment when new subflows
join (while a range of coupled congestion control mechanisms
exist for MPTCP, they only work in congestion avoidance,
leading to bursts in slow start as multiple subflows start up at
the same time, potentially across the same bottleneck). With
ctrlTCP int, the LISA algorithm would only share the cwnd in
the “Register” phase, provided that an existing flow in the same
coupled group is in slow start. The “Update” phase would
only be used to note which flows have left slow start, and the
“Leave” phase would remove flows from the list of flows the
CCC keeps track off.

Implementing the Congestion Manager [14] with
ctrlTCP int is also straightforward: the input from parameters
in the “register” and “update” calls could generally be
ignored, and the “accept” and “response” calls would be used
to dictate the cwnd that a flow should use. Implementing
“ask to send” would just mean that the internally-maintained
CCC cwnd value would increase or decrease as determined
by the CCC logic and then be given to TCP such that it can
either send more data or not. This makes an internal variable
explicitly visible to the outside, but changes nothing else.

To summarize, the required changes to TCP are:
• This function call, to be executed at the beginning of a

TCP session:
register(c, p, cwnd, sshtresh);
returns: cwnd, ssthresh, state

• This function call, to be executed whenever TCP newly
calculates cwnd:
update(c, cwnd, sshthresh, state);
returns: cwnd, ssthresh, state

• This function call, to be executed whenever a TCP session
ends:
leave(c)

IV. RESULTS

We have implemented our mechanism in the FreeBSD 11
kernel3 with state shared across the freely available
VirtualBox4 hypervisor. Figure 3 was produced with
this implementation, showing Jain’s Fairness Index [30]
( (

∑N
i=1 xi(t))

2/N
∑N

i=1 xi(t)
2 ) for N = 2 aggregate flows

x1 and x2, calculated using the traffic that originated from two
VMs across a 10 Mbit/s×100 ms bottleneck with and without
the coupled congestion control algorithm. It can be seen from
Fig. 3 that fairness between two VMs, with 1 flow in VM1 and
1 to 4 flows in VM2. Without coupling, fairness deteriorates;
ctrlTCP algorithm achieves perfect fairness.

We complement our real-life tests with simulations using
ns-2. Simulations have the advantage of not being affected by

3the source code is available at: http://safiquli.at.ifi.uio.no/tcp-ccc/
4https://www.virtualbox.org
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CPU processing power or other OS delay, which can easily
become a limit for tests in realistic data center conditions. As
Section IV shows, a range of typical datacenter and Internet
setups exhibit comparable bandwidth×delay product (BDP)
values. The behavior of TCP does not depend on bandwidth or
the RTT alone but is a function of the BDP (with the exception
of the retransmission timer; however, no timeouts occurred in
the simulations that are discussed here). Hence our simulation
results apply to both datacenter and Internet scenarios with
equal BDP.

To illustrate that our mechanism can significantly reduce
short flow completion times (FCT) by giving a large share of
the aggregate, we ran a test with a long flow (25 Mb) and a
short flow (200 Kb), with and without ctrlTCP, while varying
the capacity from 1 Mbps to 10 Mbps. The test was repeated
10 times with randomly picked flow start times over the first
second for the long flow and the sixth second for the short flow.
It can be seen from Fig. 4 that ctrlTCP significantly improves
the short flow’s FCT. Coupling also removes a synchronization
effect: in the uncoupled 2 Mbps scenario, the short flow was
even faster than in the 3 Mbps scenario because it was the
first to send its initial window (IW) into the queue, which did
not have enough space for the IWs of two flows. Since the
long flow gets to rapidly increase its cwnd when a short flow
terminates, our mechanism also reduced the FCT of a long
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flow, but the impact was negligible.
Since connections in data centers may have different RTTs

[32], we therefore consider the case where two connections are
originated from the same host, traverse a common bottleneck
and arrive at two different destinations. We varied RTT ratios
between two flows. Fig. 5(a) and 5(b) illustrate that coupling
with our mechanism significantly reduces the average queue
length and loss ratio of the connections. Coupling resulted in
a small reduction in throughput, but never more than 3%. In
these simulations, we added preprocessed TMIX background
traffic, taken from a 60-minute trace of campus traffic at the
University of North Carolina [33], to get an approximate load
of 50% on a 10 Mbps link, with RTTs of the background TCP
flows in the range of 80-100 ms.

V. CONCLUSIONS

TCP connections between the same endpoints often traverse
the same bottleneck and compete with each other in both
data centers and the Internet. We have introduced a new
interface to communicate between a TCP implementation in
a guest OS and a hypervisor such that TCP connections
from multiple VMs can be controlled together. This allows
datacenter administrators to exert precise control over the
relative bandwidth share offered to coupled flows, with only
minimal interfacing to the kernel TCP code. Using both ns-2
and FreeBSD implementations, we have explored the benefits
of our mechanism.

Adapting our CCC algorithm to be more or less aggressive
is straightforward, e.g. by changing the increase/decrease
behavior as a function of the number of flows in a coupled
group similar to the way in which EFCM [18] differs from
E-TCP [17], or the way in which MulTCP [34] differs from
TCP. We plan to develop such extensions of our algorithm in
future work, and also investigate controlling a larger variety
of congestion control mechanisms with it. We also plan to
investigate our solution on 10 Gbps links while considering
typical practical challenges at high speeds such as CPU delay.
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