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This work introduces a general concept of center for graphs, 
built on the model of the characteristic set ([12,14]) of trees. 
We define it as the set of cycles in a specific directed graph 
associated with the original graph G, and we let it depend on a 
function μ. In the case of trees we consider particular instances 
of μ given as weights of rooted subtrees, thus retrieving the 
characteristic set and, interestingly, the eccentricity-center. 
We investigate when the center of a graph G is simple – 
i.e., consisting of a unique cycle – and quasi-simple – i.e., 
inducing a connected subgraph of G. In particular, we prove 
that the center of a caterpillar tree associated with the so-
called combinatorial Perron parameter ρc (studied in [2] and 
[3]) is always simple. We also make use of a discrete version 
of concavity to generate examples of simple and quasi-simple 
centers for graphs.
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1. Introduction

One of the challenges in the fast-growing discipline of network science is to establish 
a rule to meaningfully associate a center – or a centrality distribution – with a given 
graph ([5,7,15]). Complex networks arising in this discipline, modeling phenomena from 
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various fields such as social science ([18]), biology ([1,8]) or telecommunication ([16,17]), 
are typically large in size. Identifying a small set of vertices which are best suited to 
control the rest of the graph is then a step to gain insight into the structure of the graph 
itself.

A common way to define the center of a graph makes use of the eccentricity of its 
vertices (see for example [9, p. 35]). Let G be a connected graph having vertex set 
V (G) and edge set E(G). Given v ∈ V (G), we let eccG(v) := max{du,v | u ∈ V (G)}, 
where du,v is the number of vertices in a shortest path connecting u to v in G.1 The 
eccentricity-center of G – denoted by EC(G) – is the set of vertices in G attaining the 
minimum eccentricity.

In the case of trees there exists another classical notion of center, coming from the 
Fiedler theory ([4,12,14]). Consider an undirected tree U with n vertices labeled 1, . . . , n, 
and let L ∈ Rn,n be its Laplacian matrix (L = D−A, where D is the degree matrix and 
A is the adjacency matrix of U). Choosing a vertex u ∈ V (U), let L[u] be the principal 
submatrix of L obtained by deleting its u-th row and column. One can show that L[u] is 
invertible; its inverse B(u) = L[u]−1 is block-diagonal, and each block corresponds to a 
connected component (branch) T of U \ {u}. We call such a block the bottleneck matrix
of T . Let us write it as M = [mij ]. Its entries have a particularly simple description. If 
i, j are two vertices of T and r is the vertex of T adjacent to u in the original tree U , 
then mij is the number of vertices (in T ) which simultaneously lie in the path joining 
i to r and in the path joining j to r ([11]). This description shows that the entries of 
M do not depend on the structure of U \ T . However, they do depend on which vertex 
in T is adjacent to u in U . For this reason, M is unambiguously associated with the 
pair (T, r), and we can refer to it as to the bottleneck matrix of the rooted tree (T, r). 
One can show that M is symmetric, positive definite and entrywise positive, so that it 
is possible to apply the Perron-Frobenius theory ([13]) to it. The Perron value ρ((T, r))
(hereafter abbreviated to ρ(T )) of the rooted tree (T, r) is defined as the spectral radius 
of M , while a corresponding positive eigenvector is called a Perron vector. Finally, a 
branch attaining the maximum Perron value among all the branches of U at the vertex 
u is called a Perron branch at u.

The following result, proved in [11], makes use of the Perron value of bottleneck 
matrices to classify unrooted trees in two disjoint sets.

Theorem 1.1. Let U be an unrooted tree with more than one vertex. There are two pos-
sibilities:

1. There exists exactly one vertex z having k ≥ 2 Perron branches B1, . . . , Bk at z. U
is said to be a type I tree and z is its characteristic vertex.

1 In the literature the distance between two vertices is usually defined as the number of edges in a shortest 
path connecting them. Here, and throughout the paper, we will adopt the less common definition given above 
in order to be consistent with [2] and [3].
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2. There exists exactly one edge pq such that the unique Perron branch Bp at p contains 
q and the unique Perron branch Bq at q contains p. U is said to be a type II tree and 
p, q are its characteristic vertices.

The characteristic set of U is the set of its characteristic vertices, and it can be 
interpreted as a sort of “gravity center”: it is the vertex or edge which best balances the 
Perron values of branches going out from it.

There is an important difference between the two notions of center introduced so far. 
To check whether a vertex v belongs to EC(G) one needs – in principle – to compare 
the eccentricity of v with the eccentricity of all the other vertices in G. In other words, 
one needs to verify that v is a global optimum for some function – namely, the function 
eccG : V (G) → R. On the other hand, to check whether a vertex v belongs to the 
characteristic set of a tree U , by virtue of Theorem 1.1 one only has to consider a 
neighborhood of v, and to compute the Perron value of branches whose roots lie in that 
neighborhood. This corresponds, intuitively, to verifying that v is a local optimum of a 
suitable function. Hence, checking whether a given vertex is central in the second case 
is virtually more efficient than in the first one (even though the actual computational 
efficiency of the various definitions of centers is affected by many other factors).

Keeping this idea in mind, in Section 2 we use the characteristic set of trees as a 
model to introduce a new notion of center for graphs. We let this depend on a real-
valued function μ defined on the set of directed edges associated with the given graph. 
We investigate when this center is simple (consisting of a unique cycle) and quasi-simple
(inducing a connected subgraph of the original graph). After proving in Section 3 a lower 
bound for the combinatorial Perron parameter ρc of a rooted tree ([2,3]), in Section 4
we adapt the new center concept to trees. Both the characteristic set (Proposition 4.4) 
and the eccentricity-center (Proposition 4.10) of a tree can be viewed as particular ex-
amples of the center notion given here, by letting μ be suitable weights – of algebraic or 
combinatorial nature – of rooted subtrees associated with the original tree. The function 
ρc is then used to provide an example of center which is simple in the case of caterpillar 
trees, as shown in Proposition 4.9. In Section 5 we present the results of a computational 
comparison of the various instances of center introduced thus far for trees, after giving a 
slightly modified definition of center – the limit center – which allows a more meaningful 
comparison. The idea introduced above of considering the center to be the result of the 
optimization of a function on the vertex set of a graph finally leads us to explore – in 
Section 6 – the notions of discrete differential and discrete concavity on graphs.

Notation: we use the word graph (resp. tree) to denote an undirected, unrooted graph 
(resp. tree). When we deal with directed or rooted graphs (trees) we specify it explicitly. 
For a directed graph, we use the word connected as a synonym of weakly connected, 
meaning that for every pair of distinct vertices i and j there exists an undirected path 
joining i and j. A cycle in a graph is a closed walk of at least three vertices with no 
repetitions of vertices other than the repetition of the first and last vertex. A cycle in 
a directed graph is a closed directed walk of at least one vertex with no repetitions of 
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vertices other than the repetition of the first and last vertex. A cycle of one vertex in 
a directed graph consists in a loop. In both the undirected and the directed case we 
usually denote a cycle of k vertices by C = c1c2 . . . ckc1. When the order of vertices is 
not important, we sometimes denote it by C = {c1, c2, . . . , ck}, making no distinction 
between the cycle and the set of its vertices. A rooted tree consisting of the tree T and 
the root r ∈ V (T ) is denoted by (T, r) or just T whenever the root is considered known 
or not relevant in the context. The set of rooted trees is denoted by T . We identify two 
rooted trees (T1, r1), (T2, r2) in T when there exists a rooted tree isomorphism between 
them (i.e. a graph isomorphism mapping r1 to r2).

2. A new center concept

Inspired by Theorem 1.1, we introduce a general definition for the center of a connected 
graph (Definition 1) and we discuss some of its properties. In Section 4 we will prove 
that it is actually a generalization of the characteristic set of a tree (Proposition 4.4). 
Interestingly, also the eccentricity-center of a tree can be obtained from Definition 1 via 
a suitable choice of the function μ (as shown in Proposition 4.10).

Let G be a connected graph. We define the directed graph Gdir by replacing each 
undirected edge ij of G with the two directed edges −→ij and 

−→
ji (where the symbol −→ij

denotes the directed edge having i as tail and j as head). In other words, V (Gdir) = V (G)
and E(Gdir) = {−→ij | i, j ∈ V (G), i and j are adjacent in G}. Consider now a function 
μ : E(Gdir) → R. If |V (G)| ≥ 2, then each vertex is adjacent to at least one other 
vertex (since G is assumed to be connected) and consequently it is the tail of at least 
one directed edge in Gdir. We can then define, for each i ∈ V (G) = V (Gdir), the set

Ai :=
{
−→
ij ∈ E(Gdir) | μ(−→ij ) = max−→

ik∈E(Gdir)
μ(
−→
ik)

}
.

That is, Ai is the set of all the directed edges in Gdir having i as tail that are maximal 
with respect to μ. The optimality graph of G w.r.t. μ is the directed graph Gμ defined 
by V (Gμ) = V (G) and

E(Gμ) =
⋃

i∈V (G)
|Ai|=1

Ai

⋃ {−→
ii | i ∈ V (G), |Ai| > 1

}
. (1)

In other words, to obtain Gμ we start from the vertex set V (G) and, for each vertex 
i ∈ V (G), we draw the directed edge 

−→
ij which maximizes μ among the edges in Gdir

having i as tail; however, if this maximum is attained in more than one edge, we draw 
the loop 

−→
ii instead. If |V (G)| = 1, letting v be the unique vertex of G, we define Gμ to 

be the directed graph having {v} as vertex set and {−→vv} as edge set. Fig. 1 illustrates 
the procedure we have just described on a graph G with 8 vertices and a function 
μ : E(Gdir) → R. Gμ has an interesting structure which we will now describe.
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Fig. 1. On the left, an undirected graph G and a function μ : E(Gdir) → R (the number next to an arrow 
going out from a vertex i and pointing towards a vertex j is μ(−→ij )). On the right, the optimality graph Gμ.

We say that a directed graph D is deterministic provided that for each v ∈ V (D) there 
exists a unique directed edge ev having v as tail. The name comes from the fact that, 
for such a graph, the route of a walker starting at any vertex and walking along directed 
edges according to their direction is uniquely determined. We notice that, if a graph 
D is deterministic, then |E(D)| = |V (D)|. It immediately follows from its construction 
that Gμ is deterministic. Furthermore, we define a directed unicyclic graph (Fig. 2) as 
a connected directed graph obtained by taking a directed cycle C = c1c2 . . . ckc1 with 
k ≥ 1, and k rooted directed trees T1, . . . , Tk (where, given u and v adjacent vertices 
in Ti, the directed edge connecting them is −→uv if the path joining u to the root of Ti

contains v, −→vu otherwise), and by identifying the root of Ti with ci for each i = 1, . . . , k. 
(Notice that Ti can also be a trivial tree, with only one vertex.)

Fig. 2. Two directed unicyclic graphs. G1 has a cycle of length 4, while G2 has a cycle of length 1 (a loop).

Proposition 2.1. A connected directed graph D is a directed unicyclic graph if and only 
if it is deterministic.

Proof. Suppose first that D is a directed unicyclic graph, and let C, T1, . . . , Tk be as in 
the definition given above. Consider a vertex v ∈ V (D). If v belongs to C, let w be the 
vertex coming immediately after v in C. If v does not belong to C, then it belongs to Ti

for an i ∈ {1, . . . , k}. Moreover, v cannot be the root of Ti, since the latter is identified 
with a vertex in C. Let w be the vertex coming immediately after v in the unique path
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joining v to the root of Ti. In both these situations, the only directed edge in D having 
v as tail is −→vw, thus showing that D is deterministic.

Suppose now that D is deterministic. We show that D is a directed unicyclic graph 
by induction on the number n of vertices in D. If n = 1 the claim is clear. Suppose 
n ≥ 2. If D is a directed cycle the claim holds, so assume that this is not the case. 
Label the vertices of D as 1, . . . , n, and let A ∈ Rn,n be the matrix whose (i, j)-th entry 
equals 1 if −→ij ∈ E(D), 0 otherwise. Let R1, . . . , Rn and C1, . . . , Cn be the row-sums and 
column-sums of A respectively. Since D is deterministic, Ri = 1 ∀i = 1, . . . , n. We claim 
that there exists j ∈ {1, . . . , n} such that Cj = 0. This would imply that no edge of D
has j as head. If the claim is not true, then Ci ≥ 1 ∀i = 1, . . . , n; since there are exactly 
n ones in A, we have that Ci = 1 ∀i = 1, . . . , n. This shows that A is a permutation 
matrix, and hence – relabeling the vertices – it can be decomposed as a direct sum 
of diagonal blocks associated with cyclic permutations. Each block corresponds to a 
connected component of D. Being D connected, the permutation associated with A must 
then have a unique cycle. This means that D is a directed cycle, which contradicts our 
assumption. Summarizing, we can find a vertex j such that no edge of D has j as head. 
Let D̃ be the connected directed graph obtained by removing from D the vertex j and 
the unique directed edge having j as tail. D̃ is still deterministic, and by the inductive 
hypothesis it is a directed unicyclic graph. It follows that D is a directed unicyclic graph 
too, thus concluding the proof. �

The structure of an optimality graph is clear from Proposition 2.1.

Theorem 2.2. Given a connected graph G and a function μ : E(Gdir) → R, the optimality 
graph Gμ is a disjoint union of directed unicyclic graphs.

We now define the main concept of the paper.

Definition 1. Consider a connected graph G and a function μ : E(Gdir) → R. The 
μ-center of G, denoted by Zμ(G), is the set of directed cycles in Gμ.

As an example, considering the graph G and the function μ illustrated in Fig. 1, 
we see that the μ-center of G consists of two directed cycles, one of which is a loop: 
Zμ(G) = {bedcb , gg}. We note, as anticipated in Section 1, that this notion of center is 
“local”: to verify that a cycle C lies in Zμ(G) we only have to observe the values of the 
function μ in directed edges having tail in C, and we do not have to deal with the rest 
of the graph.

Note. The function μ we are considering here to build the μ-center of a graph is a generic 
real-valued function defined on E(Gdir). This general setting is already enough to obtain 
some properties for the center notion, as we shall see in the rest of this section. However, 
it will be clear why this construction actually generalizes the characteristic set of a tree 
only in Section 4, when we will focus on trees and we will consider a subset of functions 
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μ which can be viewed as weights – of algebraic or combinatorial nature – of rooted 
subtrees associated with the given tree. In Section 6, on the other hand, we will apply 
the results of this section to the different setting where the underlying graph is not 
required to be a tree and μ is given as the discrete differential of some function defined 
on the vertex set of the graph.

Given a set of vertices W ⊂ V (G), we denote by G[W ] the subgraph of G induced by 
W – i.e., the vertex set of G[W ] is W , while the edge set of G[W ] is the set of edges of 
G having both endpoints in W . We define the support of Zμ(G) to be the set

SZμ(G) :=
⋃

C∈Zμ(G)

C.

In other words, SZμ(G) is the set of vertices of G belonging to some cycle in Zμ(G). 
Given a connected graph G and a function μ : E(Gdir) → R, we say that Zμ(G) is simple
if |Zμ(G)| = 1, and quasi-simple if G[SZμ(G)] is a connected graph. Clearly a simple 
center is quasi-simple. From the structure of Gμ described in Theorem 2.2 we obtain 
some general properties of Zμ(G).

Proposition 2.3. Consider a connected graph G and a function μ : E(Gdir) → R. Then

1. Zμ(G) �= ∅.
2. The directed cycles in Zμ(G) are pairwise vertex-disjoint. Equivalently, every directed 

closed walk in Gμ is a directed cycle.
3. Zμ(G) is simple ⇔ Gμ is connected.

Proof. It directly follows from Theorem 2.2. �
We notice from the definition given above that the condition making a center simple 

puts a constraint on the number of cycles the center consists of, but not on the number 
of vertices in the cycles. However, in the case of trees there is an easy description of the 
size of the cycles belonging to the center.

Proposition 2.4. Consider a tree U and a function μ : E(Udir) → R. Then each cycle in 
Zμ(U) has either one or two vertices.

Proof. Let C = c1c2 . . . ckc1 ∈ Zμ(U), and suppose that k ≥ 3. Since C is not a loop 
we can associate with each directed edge 

−→
ij in C the corresponding undirected edge 

ij ∈ E(U). Since k ≥ 3, these undirected edges are all distinct, and they form an – 
undirected – cycle in the tree U , which is clearly impossible. �

In particular we see that, if the center of a tree is simple, then it consists of a directed 
cycle composed of either a single vertex or two adjacent vertices. We point out here that 
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in general the center of a tree is not quasi-simple and, a fortiori, not simple. Suppose, for 
example, that U is a path of n ≥ 5 vertices labeled p1, . . . , p5 in the natural way. Define 
the function μ : E(Udir) → R to be constantly equal to 1 except for the directed edges 
−−→p2p1, −−→p3p4 and −−→p4p5, where its value is 2. Then, Zμ(G) = {p1p2p1 , p4p5p4}, which is not 
simple nor quasi-simple.

Let us now give sufficient conditions for the μ-center of a graph to be simple and 
quasi-simple. Given a graph G, we say that a function μ : E(Gdir) → R is weakly 
path-monotone provided that μ(−→ij ) ≥ μ(

−→
jk) if −→ij , −→jk ∈ E(Gdir), i �= k. We say that μ is 

strongly path-monotone if the inequality above is always strict.

Proposition 2.5. Given a connected graph G and a function μ : E(Gdir) → R,

1. μ is strongly path-monotone ⇒ Zμ(G) is simple;
2. μ is weakly path-monotone ⇒ Zμ(G) is quasi-simple.

Proof. Let μ be strongly path-monotone and suppose that Zμ(G) is not simple, so that 
we can consider two distinct cycles C, C̃ in Zμ(G). We know by Proposition 2.3 that C
and C̃ are vertex-disjoint. Choose a vertex c in C and a vertex c̃ in C̃ in such a way 
that d(c, ̃c) = min{d(c′, ̃c′) | c′ ∈ C, ̃c′ ∈ C̃} (where the distances are computed in G), 
and let P be a shortest path connecting c to c̃. Clearly, no edge in P belongs to C or C̃. 
Since C and C̃ are vertex-disjoint, the number of edges in P is at least 1. Let us write 
P = p1p2 . . . pk, with p1 = c, pk = c̃ and k ≥ 2. Since Gμ is deterministic, the directed 
edge −−→p1p2 does not belong to E(Gμ). This means that there exists a vertex x ∈ V (G)
such that x �= p2 and

μ(−→p1x) ≥ μ(−−→p1p2). (2)

Analogously, we can find a vertex y ∈ V (G) such that y �= pk−1 and

μ(−→pky) ≥ μ(−−−−→pkpk−1). (3)

Note that inequality (2) (resp. (3)) can be made strict if C (resp. C̃) is not a loop. Since 
μ is strongly path-monotone, then

μ(−−→p1p2) > μ(−−→p2p3) > · · · > μ(−−−−→pk−1pk) > μ(−→pky) (4)

and

μ(−−−−→pkpk−1) > μ(−−−−−−→pk−1pk−2) > · · · > μ(−−→p2p1) > μ(−→p1x). (5)

Putting (2), (3), (4) and (5) together we obtain that

μ(−−→p1p2) > μ(−→pky) ≥ μ(−−−−→pkpk−1) > μ(−→p1x) ≥ μ(−−→p1p2)



L. Ciardo / Linear Algebra and its Applications 584 (2020) 197–220 205
which is a contradiction. We conclude that Zμ(G) is simple, thus completing the proof 
of point (1) of the Proposition.

Suppose now that μ is weakly path-monotone and Zμ(G) is not quasi-simple. This 
means that G[SZμ(G)] is not connected. Consider two cycles C and C̃ lying in two 
different connected components of G[SZμ(G)]. As above, choose c in C and c̃ in C̃ so 
that d(c, ̃c) = min{d(c′, ̃c′) | c′ ∈ C, ̃c′ ∈ C̃}, and let P = p1p2 . . . pk be a shortest 
path connecting c to c̃; P has no edges in common with C or C̃. If pi ∈ SZμ(G)
∀i = 2, . . . , k−1, then C and C̃ would lie in the same connected component of G[SZμ(G)]. 
Hence, there exists j such that 2 ≤ j ≤ k − 1 and pj /∈ SZμ(G). In particular, c, pj and 
c̃ are all distinct vertices. As before, we can find two vertices x and y such that x �= p2, 
y �= pk−1, μ(−→p1x) ≥ μ(−−→p1p2) and μ(−→pky) ≥ μ(−−−−→pkpk−1). Since μ is weakly path-monotone, 
we have

μ(−−→p1p2) ≥ μ(−−→p2p3) ≥ · · · ≥ μ(−−−−→pj−1pj) ≥ μ(−−−−→pjpj+1) ≥ · · · ≥ μ(−−−−→pk−1pk) ≥ μ(−→pky)

and

μ(−−−−→pkpk−1) ≥ μ(−−−−−−→pk−1pk−2) ≥ · · · ≥ μ(−−−−→pjpj−1) ≥ · · · ≥ μ(−−→p2p1) ≥ μ(−→p1x).

We obtain

μ(−−→p1p2) ≥ μ(−−−−→pj−1pj) ≥ μ(−−−−→pjpj+1) ≥ μ(−→pky) ≥ μ(−−−−→pkpk−1) ≥ μ(−−−−→pjpj−1) ≥ μ(−→p1x)

≥ μ(−−→p1p2)

which in particular implies that

μ(−−−−→pj−1pj) = μ(−−−−→pjpj+1) = μ(−−−−→pjpj−1). (6)

If v is a vertex in G adjacent to pj other than pj−1, weak path-monotonicity and (6)
imply that

μ(−→pjv) ≤ μ(−−−−→pj−1pj) = μ(−−−−→pjpj+1).

Therefore, −−−−→pjpj+1 and −−−−→pjpj−1 are both maximal w.r.t. μ among the directed edges in 
Gdir having pj as tail. This means that −−→pjpj ∈ E(Gμ) so that the cycle pjpj ∈ Zμ(G)
and hence pj ∈ SZμ(G), which is a contradiction. �

Strong path-monotonicity is a strict requirement for a function μ : E(Gdir) → R. The 
next result shows that in fact it forces the graph G to be a tree.

Proposition 2.6. Let G be a connected graph and let μ : E(Gdir) → R be a strongly 
path-monotone function. Then G is a tree.



206 L. Ciardo / Linear Algebra and its Applications 584 (2020) 197–220
Proof. Suppose that G contains an undirected cycle C = c1c2 . . . ckc1 (where k ≥ 3). The 
strong path-monotonicity of μ implies that μ(−−→c1c2) > μ(−−→c2c3) > · · · > μ(−−→ckc1) > μ(−−→c1c2)
which is a contradiction. �
3. A lower bound for the combinatorial Perron parameter ρc of a rooted tree

The combinatorial Perron parameters, introduced in [2] and [3], are computationally-
efficient approximations of the Perron value (see Section 1) of a given rooted tree. In this 
section we present a lower bound for the combinatorial Perron parameter ρc. Besides 
connecting to the study undertaken in [2] and [3], this result will be used in Section 4, 
where we will define a center for trees based on ρc.

Given a rooted tree (T, r) having n vertices labeled 1, . . . , n, let d = (d1, . . . , dn)T ∈ Rn

be its distance vector, where di is the number of vertices in the path joining i to r. Let 
also M = [mij ] ∈ Rn,n be the bottleneck matrix of (T, r), as defined in Section 1.

The parameter ρc((T, r)) (hereafter abbreviated to ρc(T )) is defined as the Rayleigh 
quotient of d with respect to M :

ρc(T ) := dTMd

dT d
. (7)

We note that the Perron value ρ(T ) is an upper bound for ρc(T ); indeed, the former is 
the maximum Rayleigh quotient w.r.t. M over each nonzero vector x ∈ Cn.

Theorem 3.1. Let T be a rooted tree and d its distance vector. Then ρc(T ) ≥ ‖d‖∞.

Proof. Consider the function ω : T → R defined by ω(T ) = dTTMTdT − ‖dT ‖∞dTT dT for 
any T ∈ T , where T is the set of rooted trees, MT is the bottleneck matrix of T and dT
is its distance vector. To prove the Theorem we need to show that ω(T ) ≥ 0 ∀T ∈ T . We 
proceed by induction on the number n of vertices in T . If n = 1, the result is trivial since 
in this case ω(T ) = 1 − 1 = 0. Suppose now n ≥ 2, and denote the distance vector dT by 
d = (di) and the bottleneck matrix MT by M = [mij ] for the sake of simplicity. Let v be 
a vertex in T s.t. dv = ‖d‖∞. We note that v must be a leaf. Moreover, v cannot be the 
root of T , since n ≥ 2. Let T̃ be the rooted tree obtained from T by removing the vertex 
v and the edge incident to it, and let d̃ = (d̃i) and M̃ = [m̃ij ] be its distance vector and 
its bottleneck matrix respectively. Notice that d̃i = di and m̃ij = mij for each i, j �= v. 
Hence,

• d̃T d̃ = dT d− d2
v

• d̃T M̃d̃ =
∑
i�=v

∑
j �=v

mijdidj =
n∑

i=1

n∑
j=1

mijdidj − 2
n∑

i=1
mivdidv + mvvd

2
v

= dTMd− 2
n∑

i=1
mivdidv + d3

v.
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Depending on whether v is the only vertex in T having distance dv or not, we can have 
that ‖d̃‖∞ = dv − 1 or ‖d̃‖∞ = dv. In both cases, ‖d̃‖∞ ≥ dv − 1. Hence, we obtain

ω(T ) − ω(T̃ ) = dTMd− ‖d‖∞dT d− d̃T M̃d̃ + ‖d̃‖∞d̃T d̃

≥ dTMd− dvd
T d− d̃T M̃d̃ + (dv − 1)d̃T d̃

= dTMd− dvd
T d− dTMd + 2

n∑
i=1

mivdidv − d3
v + (dv − 1)(dT d− d2

v)

= 2
n∑

i=1
mivdidv − 2d3

v + d2
v − dT d ≥ 2

n∑
i=1

mivdidv − 2d3
v + d2

v −
n∑

i=1
dvdi

= dv

n∑
i=1

di(2miv − 1) − 2d3
v + d2

v ≥ d2
v(2mvv − 1) − 2d3

v + d2
v

= 2d3
v − d2

v − 2d3
v + d2

v = 0 (8)

where, in the last inequality, we use that the term 2miv−1 is positive for any i = 1, . . . , n
since the entries of M are ≥ 1. Given that T̃ has n −1 vertices, by the inductive hypothesis 
ω(T̃ ) ≥ 0. Combining this with (8) we conclude the proof. �
4. Application to trees

The aim of this section is to apply the theory developed in Section 2 to trees. Consider 
a function R : T → R, where T is the set of rooted trees. Examples of such a function 
are the Perron value ρ and the combinatorial Perron parameters ρc, πe and πd described 
in [2] and [3]. Other natural choices for the function R are ϑ, ζ and λ defined as follows:

• ϑ : T → R • ζ : T → R • λ : T → R (9)

T → |V (T )| T → ‖dT ‖∞ T → |L(T )|

where dT denotes the distance vector of T (the entry in dT corresponding to a vertex v is 
the number of vertices in the path connecting v to the root of T ) and L(T ) denotes the 
set of leaves (pendant vertices) in T (if T is the rooted tree with one vertex, we consider 
that vertex to be a leaf).

Let U be a tree. Given a directed edge 
−→
ij ∈ Udir, we define U−→

ij
as the connected 

component of U \ {i} containing j. We consider U−→
ij

as a rooted tree having root j.
R induces a new function RU as follows:

RU : E(Udir) → R (10)
−→
ij → R

(
U−→
ij

)
.
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Fig. 3. On the left, the same undirected graph U is equipped with the function RU : E(Udir) → R, where R
is ϑ (top), ζ (middle) or λ (bottom). The number next to an arrow −→ij is RU (−→ij ) = R(U−→

ij
). On the right, 

the corresponding optimality graphs URU .

For instance, given 
−→
ij ∈ E(Udir), we have that ϑU (−→ij ) = |V (U−→

ij
)|, ζU (−→ij ) = ‖dU−→

ij
‖∞

and λU (−→ij ) = |L(U−→
ij

)|.

Definition 2. Given a function R : T → R and a tree U we define the R-center of U as 
ZR(U) := ZRU (U) (with ZRU (U) as in Definition 1).

We can view the function R as the assignation of a weight R(T ) to any rooted tree 
T ∈ T . Then, given 

−→
ij ∈ E(Udir), RU (−→ij ) = R(U−→

ij
) is the weight of the rooted subtree 

U−→
ij

at i having root j. In this perspective, −→ij belongs to the optimality graph URU if 
U−→
ij

is the heaviest rooted subtree of the given tree U at i. Analogously, a loop 
−→
ii in 

URU means that there exist at least two rooted subtrees at i having maximum weight. A 
cycle C ∈ ZR(U), then, corresponds to a set of vertices which best balance the weights 
of rooted subtrees of U . We denote by SZR(U) the support of ZR(U):

SZR(U) := SZRU (U) =
⋃

C∈ZR(U)

C. (11)

Fig. 3 shows an instance of the construction described above on a tree U , using the three 
different weights ϑ, ζ and λ. We notice that Zϑ(U) and Zζ(U) are simple, while Zλ(U) is 
quasi-simple but not simple. Sufficient conditions for the R-center of a tree to be simple 
or quasi-simple can be derived by transferring Proposition 2.5 to our new setting. Given 
three rooted trees T1, T2, T3 we say that T1 extends T2 via T3 at v ∈ V (T3) if v is not 
the root of T3 and T1 is obtained by considering T2 and T3, identifying the root of T2
with v, and making the root of T3 be the root of T1. An example is shown in Fig. 4. 
We say that a function R : T → R is weakly extension-monotone if R(T1) ≥ R(T2)
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Fig. 4. Three rooted trees T1, T2, T3 such that T1 extends T2 via T3 at v. Root vertices are indicated by a 
square.

whenever T1, T2 ∈ T are such that T1 extends T2 via some rooted tree T3 ∈ T at some 
vertex v ∈ V (T3). We say that R is strongly extension-monotone if the inequality above 
is always strict.

Proposition 4.1. Consider a function R : T → R. Then

1. R is strongly extension-monotone ⇒ ZR(U) is simple for any tree U ;
2. R is weakly extension-monotone ⇒ ZR(U) is quasi-simple for any tree U .

Note. Proposition 4.1 is similar to Proposition 2.5 except for one aspect: in this case the 
function R and its extension-monotonicity do not depend on the underlying graph U . 
Hence, contrary to the previous situation, we can check the monotonicity of R just once, 
and use it to deduce simpleness or quasi-simpleness for the R-center of any tree.

Proof. Assume that R is strongly extension-monotone, and consider a tree U . Let i, j, k ∈
V (U) be distinct vertices such that i is adjacent to j and j is adjacent to k, and consider 
the rooted trees U−→

ij
and U−→

jk
. Define Ṽ := (V (U−→

ij
) \V (U−→

jk
)) ∪{k}, and let T̃ be the rooted 

subtree of U−→
ij

induced by vertices in Ṽ and having j as root. We claim that U−→
ij

extends 
U−→
jk

via T̃ at k. Indeed, the root of T̃ is j and not k; moreover, U−→
ij

is obtained by joining 

U−→
jk

and T̃ in k, and its root j is the root of T̃ . From strong extension-monotonicity and 

(10) we obtain that RU (−→ij ) = R(U−→
ij

) > R(U−→
jk

) = RU (
−→
jk). This shows that the function 

RU : E(Udir) → R is strongly path-monotone. If R is weakly extension-monotone we 
analogously obtain that RU is weakly path-monotone. The result then follows from 
Proposition 2.5 and Definition 2. �

We now apply Proposition 4.1 to the functions ϑ, ζ and λ defined in (9).

Proposition 4.2. Given a tree U , Zϑ(U) and Zζ(U) are simple, while Zλ(U) is quasi-
simple.

Proof. By virtue of Proposition 4.1 it suffices to prove that ϑ and ζ are strongly 
extension-monotone, and that λ is weakly extension-monotone. The strong extension-
monotonicity of ϑ and ζ follows directly from their definition. To prove the weak 
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extension-monotonicity of λ, consider three rooted trees T1, T2, T3 ∈ T such that T1
extends T2 via T3 at v ∈ V (T3), and let r1 and r2 be the roots of T1 and T2 respectively 
(in T1 r2 is identified with v). If w ∈ V (T2) is a pendant vertex in T2 and w �= r2, then w
is also pendant in T1. Analogously, if w ∈ V (T3) is pendant in T3 and w �= v, then w is 
also pendant in T1. Since V (T3) contains the distinct vertices v and r1, |V (T3)| ≥ 2. Any 
tree with at least 2 vertices contains at least 2 pendant vertices, so that |L(T3)| ≥ 2. We 
conclude that λ(T1) = |L(T1)| ≥ |L(T2)| + |L(T3)| − 2 ≥ |L(T2)| = λ(T2). �

Let us now choose the Perron value ρ as the function R in Definition 2. In Propo-
sition 4.4 we show that in this case the center we obtain is exactly the characteristic 
set, meaning that the center concept introduced here is indeed a generalization of the 
characteristic set coming from the Fiedler theory. Theorem 1.1 is hence enough to show 
that this center is simple. However, in Proposition 4.3 we prove its simpleness a priori, 
by using the machinery introduced so far.

Proposition 4.3. Given a tree U , Zρ(U) is simple.

Proof. We need to show that the function ρ : T → R is strongly extension-monotone. 
The result will then follow from Proposition 4.1. Let T1, T2, T3 ∈ T be such that T1
extends T2 via T3 at v ∈ V (T3). Notice that V (T2) ⊂ V (T1), and the inclusion is strict 
since the root of T1 does not belong to V (T2). Let n1 = |V (T1)| and n2 = |V (T2)|, so that 
n1 > n2. Consider the bottleneck matrix A = [aαβ ] ∈ Rn1,n1 associated with T1, and the 
bottleneck matrix B = [bαβ ] ∈ Rn2,n2 associated with T2. Let also C = [cαβ ] ∈ Rn2,n2

be the principal submatrix of A obtained by taking the rows and columns of A indexed 
by elements in V (T2). Denote by x the number of edges in the path (in T1) joining v to 
the root of T1, and notice that x > 0 since v is not the root of T1. From the description 
of entries in bottleneck matrices we gave in Section 1

cαβ = bαβ + x > bαβ α, β ∈ {1, . . . , n2}. (12)

Let sr(A) (resp. sr(B), sr(C)) denote the spectral radius of A (resp. B, C). Recall 
that A, B and C are symmetric and entrywise positive matrices. Then, (12) implies by 
the Perron-Frobenius theory ([10, 8.2.P5]) that sr(C) > sr(B). Moreover, the Cauchy’s 
interlacing theorem ([10, Theorem 4.3.17]) shows that sr(A) ≥ sr(C). It follows that

ρ(T1) = sr(A) ≥ sr(C) > sr(B) = ρ(T2)

thus showing that ρ is strongly extension-monotone. �
We now show that Definition 2 reduces to the characteristic set when we choose the 

Perron value ρ as the function R.

Proposition 4.4. Let C be the characteristic set of a tree U with more than one vertex. 
Then Zρ(U) = {C}.
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Proof. We know that Zρ(U) = ZρU (U) is the set of directed cycles in the optimality 
graph UρU . The vertex set of UρU is V (U); its edge set is {e(i) | i ∈ V (U)}, where

• e(i) = −→
ij if the number ni of directed edges maximizing ρU (

−→
ik) = ρ(U−→

ik
) among all 

the directed edges 
−→
ik in Udir having i as tail is 1, and 

−→
ij is the edge attaining the 

maximum;
• e(i) = −→

ii if ni > 1.

Proposition 4.3 shows that Zρ(U) contains a unique cycle D, while Proposition 2.4 tells 
us that D can either have one or two vertices. In the first case, D corresponds to a 
vertex v having more than one Perron branches. In the second case, D corresponds to 
two adjacent vertices u and v such that the unique Perron branch at u contains v and 
the unique Perron branch at v contains u. In either case, from Theorem 1.1 we see that 
D is the characteristic set of U . �

To find the characteristic set of a tree we ultimately need to compute the spectral 
radius of bottleneck matrices. As we will show in more detail in Section 5, this makes 
the computation of Zρ relatively expensive in terms of CPU time. A more computation-
ally efficient choice consists in using a combinatorial Perron parameter as the function 
R, instead of the Perron value ρ. Among the various combinatorial Perron parameters 
described in [2] and [3] we focus here on ρc, defined in (7).

Contrary to ρ, the function ρc is not strongly nor weakly extension-monotone, so that 
we cannot apply Proposition 4.1. Indeed, the ρc-center of a tree is in general not quasi-
simple, even if it is quite laborious to find an example of this. Nevertheless, simpleness 
of the ρc-center can be achieved if we consider a specific class of trees – the so-called 
caterpillars – as we show in Proposition 4.9 after proving some technical results. Given 
a function R : T → R, we say that R is nontrivial if

R(T ) ≥ 1 ∀T ∈ T , (13a)

R(T ) = 1 if and only if |V (T )| = 1. (13b)

Proposition 4.5. The functions ρ, ρc, ϑ, ζ and λ are nontrivial.

Proof. The nontriviality of ϑ and ζ follows from their definition. To see that λ is non-
trivial we use the known fact that every tree with at least two vertices has at least two 
leaves. To prove the nontriviality of ρ and ρc consider a rooted tree T . If |V (T )| = 1, 
then its bottleneck matrix is M = [1] and its distance vector is d = (1). Hence, both 
ρ(T ) and ρc(T ) are equal to 1. If |V (T )| ≥ 2, then we have that

ρ(T ) ≥ ρc(T ) ≥ ‖d‖∞ = ζ(T ) > 1. (14)
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The first inequality in (14) is due to the fact that ρc is a lower bound for ρ; the second 
is Theorem 3.1; the last comes from the nontriviality of ζ proved above. �
Proposition 4.6. Let U be a tree with n > 2 vertices, and let R : T → R be a nontrivial 
function. Then each cycle C ∈ ZR(U) does not contain leaves.

Proof. Denote by p the number of vertices in C. Let v ∈ V (U) be a leaf, and suppose 
that v ∈ C. Since there is a unique (undirected) edge in U incident to v, there is a unique 
(directed) edge in Udir having v as tail. This means that −→vv /∈ E(URU ), and hence p > 1. 
Applying Proposition 2.4, then, we conclude that p = 2. Let w be the vertex in C other 
than v. We have that −→wv ∈ E(URU ), and therefore

R (U−→wv) > R (U−−→wu) ∀ u adjacent to w, u �= v.

Since v is a leaf, the rooted tree U−→wv has only one vertex. Using (13b) and (13a) we 
obtain that

1 = R (U−→wv) > R (U−−→wu) ≥ 1 ∀ u adjacent to w, u �= v.

This means that v is the only vertex in U adjacent to w, which in turn implies that U
has exactly 2 vertices, contradicting the hypothesis of the Proposition. �

Combining Proposition 4.5 and Proposition 4.6 we obtain the following useful result.

Corollary 4.7. Let U be a tree with n > 2 vertices, and let R be one of the functions 
ρ, ρc, ϑ, ζ, λ. Then each cycle C ∈ ZR(U) does not contain leaves.

We now focus on a class of trees called caterpillars. Given nonnegative integers 
n1, . . . , nk, we define the rooted caterpillar C(n1, . . . , nk) to be the rooted tree con-
sisting in a path P of k vertices, and ni pendant vertices attached to the i-th vertex in P
(i ≤ k). We take the first vertex in P (associated with n1) to be the root of C(n1, . . . , nk). 
We report here a result proved in [2] (Proposition 7.3), showing that the parameter ρc
preserves the strict partial order defined by an extension relation in the set of rooted 
caterpillars.

Proposition 4.8 ([2]). Let C1, C2, C3 be rooted caterpillars such that C1 extends C2 via 
C3 at v ∈ V (C3) and suppose that v attains the maximum distance from the root of C3
among the vertices of C3. Then ρc(C1) > ρc(C2).

Finally, by unrooted caterpillar (or just caterpillar) we mean a rooted caterpillar where 
we ignore the root. Alternatively, an unrooted caterpillar can be characterized by being 
a tree such that there exists a path containing every non-pendant vertex.

Proposition 4.9. Let U be a caterpillar. Then Zρc
(U) is simple.
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Proof. Denote by n the number of vertices in U . If n = 1 or n = 2 the proof is trivial, 
so suppose n ≥ 3. Among the possibly many paths in U containing every non-pendant 
vertex, choose one having maximum length, and denote it by P . Suppose that P has k
vertices; since n ≥ 3, then k ≥ 3 too. Let C, D be two distinct cycles in Zρc

(U), each 
of them containing either one or two vertices by virtue of Proposition 2.4. Corollary 4.7
shows that vertices in C and in D are non-pendant, and hence they must belong to 
P . We can label the vertices in P by p1, . . . , pk in such a way that the vertices in C
have a smaller index than the vertices in D. Let c = max{i ∈ {1, . . . , k} | pi ∈ C}
and d = min{i ∈ {1, . . . , k} | pi ∈ D}. Using Corollary 4.7 and the second point of 
Proposition 2.3 we have that 1 < c < d < k. Reasoning as in the proof of Proposition 2.5, 
we see that there must exist a vertex x ∈ U adjacent to pc such that x �= pc+1 and 
ρUc (−→pcx) ≥ ρUc (−−−−→pcpc+1). If x is a leaf, then ρUc (−→pcx) = ρc(U−−→pcx) = 1 by Proposition 4.5. 
Hence, ρUc (−−−−→pcpc−1) ≥ 1 = ρUc (−→pcx) ≥ ρUc (−−−−→pcpc+1). If x is not a leaf, then x = pc−1. In 
either case, we obtain that

ρUc (−−−−→pcpc−1) ≥ ρUc (−−−−→pcpc+1). (15)

Analogously, we find that

ρUc (−−−−→pdpd+1) ≥ ρUc (−−−−→pdpd−1). (16)

Define Ṽ := (V (U−−−−−→pcpc+1) \ V (U−−−−−→pdpd+1)) ∪ {pd+1}, and let T̃ be the rooted subtree of 
U−−−−−→pcpc+1 induced by vertices in Ṽ and having pc+1 as root. Note that U−−−−−→pcpc+1 , U−−−−−→pdpd+1

and T̃ are rooted caterpillars, and that U−−−−−→pcpc+1 extends U−−−−−→pdpd+1 via T̃ at pd+1. Moreover, 
pd+1 attains the maximum distance from the root pc+1 of T̃ among the vertices of T̃ . 
Proposition 4.8 then shows that ρc(U−−−−−→pcpc+1) > ρc(U−−−−−→pdpd+1) or, equivalently,

ρUc (−−−−→pcpc+1) > ρUc (−−−−→pdpd+1). (17)

Analogously,

ρUc (−−−−→pdpd−1) > ρUc (−−−−→pcpc−1). (18)

Putting (15), (16), (17) and (18) together we find

ρUc (−−−−→pcpc+1) > ρUc (−−−−→pdpd+1) ≥ ρUc (−−−−→pdpd−1) > ρUc (−−−−→pcpc−1) ≥ ρUc (−−−−→pcpc+1)

which is a contradiction. �
Recall that by EC(G) we denote the eccentricity-center of a connected graph G, i.e., 

the set of vertices in G which minimize the eccentricity. Interestingly, the new notion 
of center that we have developed generalizes the eccentricity-center in the case of trees. 
This is obtained by choosing the function ζ as R in Definition 2.
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Proposition 4.10. Given a tree U , Zζ(U) = {EC(U)}.

Proof. If U has only one vertex the proof is trivial, so suppose that U has at least 2
vertices. Proposition 4.2 and Proposition 2.4 show that Zζ(U) consists of a unique cycle 
X with either one or two vertices.

Suppose that X has a unique vertex a. We want to prove that EC(U) = {a}. Let 
v1, . . . , vk be the vertices adjacent to a in U , where k is the degree of a. For each 
i = 1, . . . , k let us denote by Ai the rooted tree U−−→avi for the sake of simplicity; let also 
ai be a vertex in Ai attaining the maximum distance from the root of Ai:

dAi
(ai) = max {dAi

(v) | v ∈ V (Ai)} = ζU (−→avi).

Let

S = {i ∈ {1, . . . , k} | ζU (−→avi) = max
j=1,...,k

ζU (−→avj)}.

Since a is the unique vertex in the cycle X, the optimality graph UζU contains the loop 
−→aa. This means that ζU attains its maximum value among the directed edges in E(Udir)
having a as tail in at least two different edges (cfr. (1)). As a consequence, k̄ := |S| ≥ 2. 
We can assume without loss of generality that S = {1, . . . , ̄k}, with 2 ≤ k̄ ≤ k. For any 
α, β ∈ V (U) we denote by dα,β the number of vertices in the path joining α and β in U . 
We have that

eccU (a) = max
u∈V (U)

(da,u) = max
j=1,...,k

(
1 + max

v∈V (Aj)
(dAj

(v))
)

= 1 + max
j=1,...,k

(
max

v∈V (Aj)
(dAj

(v))
)

= 1 + max
j=1,...,k

(
dAj

(aj)
)

= 1 + dAi
(ai) ∀i = 1, . . . , k̄.

Given a vertex w ∈ V (U), w �= a, choose h ∈ {1, . . . , ̄k} in such a way that w /∈ V (Ah). 
Then,

eccU (w) ≥ dw,ah
= dw,a − 1 + da,ah

= dw,a − 1 + 1 + dAh
(ah)

= dw,a − 1 + eccU (a) > eccU (a),

where the last inequality comes from the fact that dw,a ≥ 2 since w �= a. This shows that 
w /∈ EC(U) for each w ∈ V (U) \ {a}. Since EC(U) �= ∅, we conclude that EC(U) = {a}.

Suppose now that X has two distinct vertices a and b. In this case the optimality 
graph UζU contains both the directed edges 

−→
ab and 

−→
ba. Choose a vertex ã ∈ V (U−→

ab
) in 

such a way that

dU−→(ã) = max
{
dU−→(v) | v ∈ V

(
U−→

)}
= ζU (

−→
ab)
ab ab ab
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and analogously choose b̃ ∈ V (U−→
ba

) in such a way that

dU−→
ba

(b̃) = max
{
dU−→

ba
(v) | v ∈ V

(
U−→
ba

)}
= ζU (

−→
ba).

Reasoning as before, we see that

eccU (a) = 1 + dU−→
ab

(ã) and eccU (b) = 1 + dU−→
ba

(b̃). (19)

Let w ∈ V (U), w �= a, b. If w /∈ V (U−→
ab

), then

eccU (w) ≥ dw,ã = dw,a − 1 + da,ã = dw,a − 1 + 1 + dU−→
ab

(ã)

= dw,a − 1 + eccU (a) > eccU (a).

If w ∈ V (U−→
ab

), then w /∈ V (U−→
ba

), and hence

eccU (w) ≥ dw,b̃ = dw,b − 1 + db,b̃ = dw,b − 1 + 1 + dU−→
ba

(b̃)

= dw,b − 1 + eccU (b) > eccU (b).

This shows that EC(U) ⊂ {a, b}. If we manage to prove that eccU (a) = eccU (b) we can 
conclude that EC(U) = {a, b} = X. Suppose eccU (a) �= eccU (b) and assume w.l.o.g. that 
eccU (a) < eccU (b). From (19) we have that dU−→

ab
(ã) < dU−→

ba
(b̃). This in particular implies 

that dU−→
ba

(b̃) > 1, and hence a �= b̃. Let c be the vertex adjacent to a lying on the path 

connecting a to b̃. We have that

dU−→ac
(b̃) = dU−→

ba
(b̃) − 1 > dU−→

ab
(ã) − 1

and therefore, since we are dealing with integers, dU−→ac
(b̃) ≥ dU−→

ab
(ã). We obtain that

ζU (−→ac) = max
{
dU−→ac

(v) | v ∈ V (U−→ac)
}
≥ dU−→ac

(b̃) ≥ dU−→
ab

(ã) = ζU (
−→
ab)

which is impossible since 
−→
ab ∈ E(UζU ). This shows that eccU (a) = eccU (b), thus con-

cluding the proof. �
5. The limit center and a computational comparison

We have described so far five different center-instances for a given tree U , all of them 
coming from Definition 2: Zρ(U), Zρc

(U), Zϑ(U), Zζ(U) and Zλ(U). It is interesting to 
see how computationally efficient it is to find each one of these centers, and how “close” 
they are. By virtue of Proposition 4.2 and Proposition 4.3 we know that Zρ(U), Zϑ(U)
and Zζ(U) are simple – which means, as shown in Proposition 2.4, that they consist of 
either one or two adjacent vertices. In order to make the comparison more meaningful, 
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Fig. 5. One iteration of the “center” operator on a path P with 8 vertices, using the weight R = λ.

however, we would like each one of the five centers to be simple. This can be achieved by 
iterating the “center” operator for a sufficient number of times. We formalize this idea 
by defining the limit center of a tree.

Consider a set of vertices S ⊂ V (U). The convex hull of S in U – denoted by ConvU (S)
– is the smallest subtree of U containing all the vertices in S. Given a function R : T → R, 
we recursively define the sequence of trees (Fi)i as follows:

F0 := U ;

Fi+1 := ConvFi
(SZR(Fi)), i = 0, 1, 2, . . .

(20)

where SZR was defined in (11) (see Fig. 5). Also, we let Vi := V (Fi), i = 0, 1, 2, . . . , and 
we define the limit R-center of U to be

Z∞
R (U) :=

⋂
i≥0

Vi.

Proposition 5.1. Let U be a tree and let R be one of the functions ρ, ρc, ϑ, ζ, λ. Then 
Z∞

R (U) consists of either one or two adjacent vertices.

Proof. Consider the three statements

1. Vi+1 ⊂ Vi, i = 0, 1, 2, . . . ;
2. |Vi| > 0, i = 0, 1, 2, . . . ;
3. |Vi+1| < |Vi| if |Vi| > 2.

They together imply the Proposition. Statement 1. directly follows from the recursive 
definition (20). Statement 2. is also clear by virtue of the first point of Proposition 2.3. 
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Fig. 6. Left: average CPU time to find the limit R-centers of randomly generated trees with increasing 
number of vertices. Right: average distance between the limit R-centers of randomly generated trees with 
200 vertices (distances are computed here following the same procedure used in a similar analysis in [2, 
§7]). All the computations use algorithms written in MATLAB.

To prove statement 3., suppose that |Vi| = |V (Fi)| > 2 for some i, and let v be a pendant 
vertex of Fi. Corollary 4.7 shows that v does not belong to any cycle in ZR(Fi); hence, 
v /∈ SZR(Fi). Since v is pendant in Fi, then v /∈ ConvFi

(SZR(Fi)) = Fi+1. Hence, 
statement 3. holds and the Proposition is proved. �

We can give the limit R-center a more intuitive description. Start with a tree, take 
the convex hull of the support of its R-center and iterate this operation. After a finite 
number of iterations, this process stabilizes; moreover, if R is one of the five functions 
considered above, Proposition 5.1 shows that, when it stabilizes, we necessarily have 
one or two adjacent vertices. If R = ρ, ϑ or ζ, this result is not surprising; indeed, in 
this case ZR(U) is already simple, so that the process stabilizes after just one iteration: 
F1 = F2 = F3 = . . . (notice, in this regard, that if Fi is the tree of one or two vertices, 
then Fi+1 = Fi for any function R), and therefore Z∞

R (U) = V1 = SZR(U). If R = ρc
or λ, however, more iterations may be necessary. For example, when R = λ and the 
starting tree is P16 (we denote by Pn the path on n vertices), applying repeatedly the 
procedure outlined in Fig. 5 we obtain that the sequence (Fi)i is given by

F0 = P16, F1 = P12, F2 = P8, F3 = P4, F4 = F5 = F6 = · · · = P2.

Fig. 6 shows the results of a computational comparison of the various limit R-centers. 
It emerges that computing Z∞

ρ (i.e. the characteristic set, see Proposition 4.4) is signifi-
cantly more expensive than computing the other four centers. The reason behind this is 
that the former requires the calculation of spectral radii of matrices, while all the other 
centers only use algebraic and combinatorial expressions. On the other hand, the five 
centers are in general very close among each other; in particular, the average distance 
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between Z∞
ρ and Z∞

ρc
is extremely small, which confirms the results presented in [2] and 

[3], showing that ρc is a good approximation of ρ.
In summary, the center concept presented in this work not only generalizes the char-

acteristic set coming from the Fiedler theory, but it also provides – in the case of trees 
– very close approximations of it, which are significantly cheaper to compute in terms of 
CPU time.

6. Discrete differential and discrete concavity

In Section 4 and Section 5 we adapted the notion of μ-center (Definition 1) to make 
it fit the situation where the underlying graph is a tree and μ comes from a function 
R defined on rooted trees. Here we abandon the requirement of the graph being a tree, 
and we focus on a class of functions μ which can be viewed as “differentials” of functions 
defined on the vertex set of the given graph.

Consider a connected graph G and a function f : V (G) → R. We define the discrete 
differential of f to be the function

Df : E(Gdir) → R

−→
ij → f(j) − f(i).

Note the similarity of this definition to that of the standard differential of a function 
g : Rn → R at a point P ∈ Rn along a vector u ∈ TPRn, where TPRn is the tangent 
space of Rn at P . In our setting, the vertex i represents the point P , while the directed 
edge 

−→
ij has the role of u. This new object allows us to define in a natural way a center 

of G associated with f .

Definition 3. Given a connected graph G and a function f : V (G) → R we define the 
f -center of G as Zf (G) := ZDf (G) (with ZDf (G) as in Definition 1).

We now investigate some conditions making the center defined above simple or 
quasi-simple. It is useful, for this purpose, to find a more intuitive interpretation of 
Zf (G). Consider the optimality graph GDf . This is obtained by drawing, for each vertex 
i ∈ V (G) = V (GDf ), the directed edge 

−→
ij maximizing Df among all the directed edges 

having i as tail (we only consider, for simplicity, the case where the maximum is unique). 
In other words, −→ij is the direction of maximum increase of f at i, so that we can consider 
it to be the discrete gradient of f at i, and GDf to be the discrete gradient map of f . A 
cycle in GDf corresponds to a change in direction of the gradient and would imply the 
existence – in the continuous case – of an attractor point in the gradient map, where 
the gradient is zero: a local maximum. We can then interpret Zf (G) as the set of local 
maxima of f . In this perspective, Zf (G) being simple corresponds to f having a unique 
local maximum in G. This suggests that the feature f should have to make Zf (G) simple 
is concavity.
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Fig. 7. The graph G. Next to each vertex there is its label and the corresponding value of f . The f-center 
of G consists of two 1-cycles corresponding to the two vertices in white.

Given two vertices α, β ∈ V (G), we let d̃α,β denote the number of edges in a shortest 
path connecting α and β. Following [6], we say that the function f : V (G) → R is weakly 
concave if the inequality

f(y) ≥ d̃y,z

d̃x,z
f(x) + d̃y,x

d̃x,z
f(z) (21)

holds for each triplet of distinct vertices x, y, z ∈ V (G) such that y lies in some shortest 
path joining x to z. We say that f is strongly concave if inequality (21) is always strict.

Proposition 6.1. Let G be a triangle-free connected graph. If f : V (G) → R is strongly 
concave (resp. weakly concave), then Zf(G) is simple (resp. quasi-simple).

Proof. Suppose that f is strongly concave, and consider three distinct vertices i, j, k ∈
V (G) such that i is adjacent to j and j is adjacent to k. Since G is triangle-free, i is not 
adjacent to k. This means that j lies in the shortest path P = ijk connecting i to k. 
Using the concavity of f we obtain that f(j) > 1

2f(i) + 1
2f(k), which can be rewritten as 

f(j) − f(i) > f(k) − f(j) or, alternatively, as Df(−→ij ) > Df(
−→
jk). The map Df is hence 

strongly path-monotone. If f is weakly concave we analogously obtain that Df is weakly 
path-monotone. The result then follows from Proposition 2.5. �

The requirement of the graph being triangle-free is necessary in Proposition 6.1. Con-
sider for example the graph G in Fig. 7, and the function f : V (G) → R defined by 
f(a) = 0, f(b) = f(c) = 2, f(d) = 3. One can check that f is strongly concave: the only 
triplets of vertices which need to be considered are abd and acd, and they both satisfy 
(21) with strict inequality. However, Zf (G) consists of the two cycles aa and dd, so that 
it is not simple and not even quasi-simple.
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