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ABSTRACT  1 

BACKGROUND Trauma survival prediction models can be used for quality assessment in 2 

trauma populations. The Norwegian survival prediction model in trauma (NORMIT) has 3 

recently been updated and internally validated (NORMIT 2). The aim of this observational 4 

study was to compare the accuracy of NORMIT 1 and 2 in two Swedish trauma populations.  5 

METHODS Eligible were adult patients registered in the national trauma registry during 6 

2014-2016. The study populations consisted of (1) the total national trauma (NT) population, 7 

and (2) a subpopulation of patients admitted to a single Level I trauma centre (TC). The 8 

primary outcome was 30-day mortality. Model validation included receiver operating 9 

characteristic curves and GiViTI calibration belts. The calibration was also assessed in 10 

subgroups of severely injured patients (New Injury Severity Score [NISS] >15). 11 

RESULTS 26504 patients were included. Exclusion due to missing data was 18.7% in the NT 12 

(n=21554) and 2.6% in the TC (n=3972) population. NORMIT 1 and 2 showed excellent 13 

ability to distinguish between survivors and non-survivors in both populations, but poor 14 

agreement between predicted and observed outcome in the NT population with 15 

overestimation of survival including in the subgroup of NISS >15. In the TC subpopulation, 16 

NORMIT 1 underestimated survival irrespective of injury severity, but NORMIT 2 showed 17 

good calibration both in the total subpopulation and the NISS >15 subgroup. 18 

CONCLUSION NORMIT 2 is well suited to predict survival in a Swedish trauma centre 19 

population irrespective of injury severity, but both models perform poorly in a more 20 

heterogeneous national trauma population.  21 

 22 

KEY WORDS Survival Analysis; Wounds and Injuries; Trauma Centers; Mortality; 23 

Validation studies; Registries; Area under Curve; Calibration. 24 

25 
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INTRODUCTION 1 

Trauma quality assessment and improvement are important components in all trauma systems 2 

and trauma centres1. The quality of care including mortality should be monitored 3 

continuously within the same institution over time and compared to other institutions2. 4 

However, comparisons within and between institutions must be adjusted for case-mix3 and 5 

therefore several mortality prediction models have been developed for this purpose4-8.  6 

An accurate trauma prediction model serves dual purposes. Firstly, it is 7 

necessary to have a tool that can be used to follow expected vs. actual survival in each 8 

individual hospital over time. Secondly, a trauma prediction model is of great value and use  9 

in trauma performance quality improvement programmes, such as the US TQIP2. In clinically 10 

relevant subgroups (e.g. penetrating torso trauma, multisystem or single system blunt trauma, 11 

isolated traumatic brain injury (TBI) and geriatric trauma patients) mortality can be estimated 12 

and root causes of unexpected high mortality between institutions or over time, identified and 13 

corrected. 14 

The most widely used model for the calculation of the probability of survival 15 

(Ps) in trauma populations is the TRISS methodology4, 9 introduced in the 1980s based on a 16 

North American trauma population. Because of the widespread use of TRISS, many studies, 17 

including from the authors own institution (Karolinska University Hospital – Solna [KUH])10, 18 

have identified several major limitations of the method11-13. One important limitation is that 19 

the application of the TRISS model on trauma populations other than the one from which the 20 

model was derived may result in selection differences14. Further, outcome is scored as dead or 21 

alive at end of acute care, i.e. an administrative time point; age is categorised into three 22 

groups with cut-off at 16 and 55 years; and physiology is scored only in the emergency 23 

department, effectively excluding patients who arrive intubated – a group with generally 24 

worse prognosis. The resulting models for different age groups and mechanisms of injury 25 
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contain 24 coefficients7. The UK Trauma Audit and Research Network (TARN)5 has 1 

developed an alternative probability of survival model, using survival status at 30 days as 2 

endpoint. The model has altogether 26 coefficients, with complex transformations of Injury 3 

Severity Score (ISS), seven age categories, and interactions between age categories and 4 

gender. 5 

In an attempt to address limitations and complexity in previous models, Jones et 6 

al. introduced the Norwegian survival prediction model in trauma (NORMIT)15 in 2014; the 7 

first prediction model developed and validated in a Scandinavian Level I trauma centre. In 8 

NORMIT, the anatomic injury is represented by the New Injury Severity Score (NISS)13. The 9 

NISS has been shown to better predict trauma mortality compared to ISS13, 16-18, in particular 10 

in patients with several severe injuries in a single body region, such as penetrating injuries 11 

towards the torso, and in both blunt and penetrating TBI19. In contrast to TRISS, NORMIT 12 

also accounts for the patient’s pre-injury health status according to the American Society of 13 

Anesthesiologists Physical Status (ASA-PS) classification system20. Additionally, NORMIT 14 

incorporates age as a continuous variable, includes an unweighted physiological scoring 15 

(Revised Trauma Score for Triage; T-RTS)21, defines rules for handling of missing 16 

physiological data that allow inclusion of intubated patients, and utilises mortality at 30 days 17 

after injury as endpoint. The model is also fairly simple, containing only eight coefficients. It 18 

might therefore be a viable alternative to older models for case-mix adjustment. 19 

An external validation of NORMIT in a population of severely injured patients 20 

in Finland showed good discrimination but poor calibration, and suggested that the model 21 

should be re-calibrated to better fit the more severely injured patients (NISS >15)22. NORMIT 22 

was recently updated (NORMIT 2)23 and a temporal validation of the model showed that 23 

NORMIT 2 performed better than both the TRISS 09 and two TARN prediction models. The 24 

authors concluded that external validations in other populations were warranted. The aim of 25 
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the present study was to perform an external validation of the NORMIT models by comparing 1 

NORMIT 1 and 2 with regard to accuracy in two Swedish trauma populations: (1) A national 2 

trauma (NT) population consisting of all patients registered in the national Swedish trauma 3 

registry (SweTrau)24 and (2) a subpopulation consisting of patients admitted only to a single 4 

designated trauma centre (TC). The hypothesis was that NORMIT 2 would outperform 5 

NORMIT 1 and demonstrate good performance with regard to discrimination and calibration 6 

in a Swedish NT population and a TC subpopulation. The study is also intended to contribute 7 

towards a first formal evaluation of trauma care quality between Swedish hospitals. 8 

  9 



 6 

METHODS 1 

The reporting of the study conforms to the guideline for Transparent Reporting of a 2 

multivariable Prediction model for Individual Prognosis or Diagnosis (TRIPOD)25 and to the 3 

Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement 4 

guidelines for reporting observational studies26. 5 

 6 

Inclusion criteria in SweTrau 7 

The inclusion criteria in SweTrau are (a) all trauma patients admitted through trauma team 8 

activation (TTA) irrespective of injury severity, (b) all patients with NISS >15 who did not 9 

receive TTA, and (c) all patients who were transferred from another hospital (secondary 10 

admissions) to the reporting hospital within seven days after trauma who had a NISS >15. 11 

Exclusion criteria are (a) patients with isolated subdural hematoma, and (b) patients with TTA 12 

who were not exposed to a prior traumatic event. The registry is based on the revised Utstein 13 

Trauma Template which is the current European core dataset27,  and was introduced in 14 

Sweden in 2011. To date, it includes more than 50 000 trauma patients from 48 out of 52 15 

Swedish hospitals with emergency surgical units that admit trauma patients of all ages, 24/7, 16 

365 days a year24.  17 

 18 

Inclusion criteria in the current study 19 

The study inclusion period was January 1st 2014 to December 31st 2016. Eligible were all 20 

adult patients (age ≥ 15years) registered in SweTrau who were primarily (directly) admitted 21 

to the reporting hospital. The rationale behind including only primary admissions was to limit 22 

the effect of case-mix and the differences in trauma care processes between primarily and 23 

secondary admitted (transferred) patients, which have been demonstrated in a previous 24 

study10. The extracted data were anonymized to ensure confidentiality of patients, physicians 25 
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and participating hospitals. Patients were excluded if data was missing and it was impossible 1 

to impute data for the different components of the prediction models (as described below), or 2 

if 30-day outcome could not be determined.  3 

 4 

The study populations 5 

The NT population consisted of all patients registered in SweTrau who fulfilled the inclusion 6 

criteria for the current study. The patients in this population were admitted to designated 7 

trauma hospitals, university hospitals as well as regional and local hospitals. The TC 8 

subpopulation consisted of patients fulfilling the same criteria, who were admitted to KUH in 9 

Stockholm. KUH is equivalent to a Level I trauma centre with a catchment population of 2.2 10 

million inhabitants28. Trauma infrastructure including care processes as well as patient 11 

characteristics at KUH has been described previously10, 29, 30. To further explore the impact of 12 

case-mix with regard to injury severity, NORMIT’s calibration was also assessed in 13 

subgroups with NISS >15 in both study populations.  14 

 15 

Coding, scoring and outcome 16 

Anatomic injury severity was scored by Association for the Advancement of Automotive 17 

Medicine (AAAM)-certified registrars according to the Abbreviated Injury Scale (AIS) 2005 18 

– Update 2008 (AIS 08)31. Physiological derangement on arrival was classified according to 19 

the T-RTS15, 21. The T-RTS (range 0–12) is defined as the sum of the clinical category values 20 

of Glasgow Coma Scale (GCS)32 score, systolic blood pressure (SBP), and respiratory rate 21 

(RR). The scoring of physiological data into clinical categories, based on information from 22 

text in medical records in addition to numerical raw data, substantially reduces the number of 23 

patient exclusions due to missing data15. In accordance with NORMIT coding rules, the most 24 

recent pre-hospital values were used when admission data were unavailable15. Thus, for 25 
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patients arriving intubated and in general anaesthesia, GCS, SBP and RR were scored based 1 

on values documented immediately prior to intubation. If pre-hospital values were also 2 

unavailable, the patient was excluded. Outcome was defined as survival or death 30 days after 3 

injury, independent of whether the patient was admitted or discharged from hospital.  4 

 5 

Comparisons of NORMIT 1 and 2 6 

The NORMIT 1 model was developed based on trauma data from Oslo University Hospital 7 

Ullevål (OUH) from a six-year period (2000-2006) and validated in a two-year dataset from 8 

2006-200815. In NORMIT 2, the original NORMIT model coefficients were updated in a 9 

derivation dataset with patients admitted 2005-2009 and evaluated in a validation dataset with 10 

patients admitted 2010-201323, also to OUH. The coefficients for both versions were derived 11 

with injury data coded according to AIS 1990 - Update 98 (AIS 98)33.  12 

 13 

Statistical methods 14 

Data are presented as medians with quartiles. Comparisons of continuous data were 15 

performed using the Mann-Whitney U test or the Wilcoxon Signed Rank test depending on 16 

the distribution of the data. Normality was tested using the Shapiro-Wilk test. Differences 17 

between categorical variables were evaluated using the chi-square test (two-tailed). Statistical 18 

significance was assumed for two-sided P-values <0.05.  19 

 The performance of NORMIT 1 and 2 was evaluated by measuring their 20 

discrimination and calibration capabilities in the same way as in the Finnish external 21 

validation of NORMIT 1 performed by Raj et al.22. The discrimination of a survival 22 

prediction model refers to its ability to distinguish between survivors and non-survivors. 23 

Discrimination was assessed for each model by calculating the area under the receiver 24 

operating characteristic (ROC) curve (AUC)34 with 95% confidence interval (CI). Random 25 
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guess produces an AUC of 0.5, whereas 1.0 represents perfect model performance. AUCs 1 

≥0.90 are considered excellent, AUCs ≥0.80 good, and AUCs <0.70 poor35. The 2 

discrimination capabilities of two models were not considered to be significantly different if 3 

their 95% CIs overlapped. 4 

The calibration of a model refers to the agreement between predicted and 5 

observed outcomes34. To assess calibration, the GiViTI (Gruppo Italiano per la Valutazione 6 

degli Interventi in Terapia Intensiva) calibration belt was utilised, using its R-package 7 

(©Nattino & Finazzi)36, 37. The GiViTI test is specifically designed to visually demonstrate 8 

the relationship between observed and predicted outcomes by fitting a polynomial function 9 

between the two and calculating the 80% and 95% CIs, respectively36. Statistically significant 10 

deviations occur when the diagonal bisector line is not contained within the 95% CI. Thus, by 11 

using the GiViTI calibration belt, it was possible to identify specific risk intervals with over- 12 

and underprediction of survival by the model37. Wider CIs are seen with a higher degree of 13 

uncertainty, mainly caused by a lower number of patients at the specific risk stratum.  14 

Data were primarily analysed with SPSS (Statistical Package for the Social Sciences, Version 15 

23.0.0, SPSS, Inc., Chicago, IL). 16 

 17 

Ethics 18 

The study was approved by the Regional Ethical Review Board in Stockholm, Sweden 19 

(reference number: 2017/2024-31/5). 20 

 21 

  22 
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RESULTS 1 

During the 3-year period, 27953 patients were registered in SweTrau. After exclusion of 2 

secondary admissions (n=1449, 5.2%), 26504 patients were included in the study (Figure 1). 3 

The proportion of missing data was 18.7% (n=4950) in the NT population and 2.6% (n=103) 4 

in the TC subpopulation. After exclusion of patients with missing data, the NT population 5 

consisted of 21554 patients, and the TC subpopulation consisted of 3972 patients. The 6 

number of patients with NISS >15 was 3133 in the NT population and 1094 in the TC 7 

subpopulation. The characteristics of the two study populations are presented in Table 1. In 8 

comparison with the NT population, patients in the TC subpopulation were more severely 9 

injured, were more physiologically deranged on admission, and had a higher comorbidity and 10 

mortality. 11 

Median Ps values for survivors and non-survivors in the NT and TC populations 12 

calculated by NORMIT 1 and 2 are shown in Table 2. Median Ps for non-survivors was 13 

higher with NORMIT 2 than with NORMIT 1 in both populations. Both NORMIT 1 and 2 14 

produced higher median Ps values for non-survivors in the NT population than in the TC 15 

subpopulation. 16 

Both models displayed excellent discrimination in all populations and subgroups 17 

when evaluated with AUC (Figure S1, supporting information), with no significant 18 

differences between the groups (Table 3). However, both models displayed a poor calibration 19 

in the NT population (Figure 2) with lower observed than predicted survival, in particular for 20 

NORMIT 2 which overestimated survival through the Ps interval of 0.23-0.98 (Figure 2, 21 

upper right panel). Similar relationships were demonstrated in the severely injured (NISS 22 

>15) subgroup of the NT population, where NORMIT 2 overestimated survival through the 23 

entire Ps interval (Figure 2, lower right panel). In contrast, in the TC subpopulation NORMIT 24 

1 underestimated survival in the Ps interval 0.38-1.00 (Figure 3 upper left panel), while 25 



 11 

NORMIT 2 showed good calibration as the 95% CI calibration belt never crossed the 1 

diagonal bisector line, i.e., there was no under- or overestimation of survival (Figure 3, upper 2 

right panel). A nearly identical picture was observed in the TC subpopulation with NISS >15 3 

(Figure 3, lower panels).   4 

  5 
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DISCUSSION 1 

Key findings 2 

External validation of the NORMIT 1 and 2 prediction models showed that they had excellent 3 

survival prediction abilities in both the NT and TC populations. Calibration was poor for both 4 

models in the NT population with overestimated survival, particularly for NORMIT 2. In the 5 

TC subpopulation, NORMIT 1 showed poor calibration due to underestimated survival, 6 

whereas the updated NORMIT 2 showed good calibration including in the subgroup of 7 

severely injured patients. 8 

 9 

Model accuracy – discrimination and calibration 10 

The high AUCs for NORMIT 1 and 2 in the current study demonstrated an excellent ability to 11 

separate survivors and non-survivors38 in both study populations, and also in their subgroup 12 

with severe injuries. The AUC statistics are popular in development of diagnostic tests but 13 

may not necessarily detect small differences in discriminative ability between two models39. 14 

A large majority of the trauma patients did not have life-threatening injuries, thus yielding a 15 

high Ps and therefore easy to predict as survivors. A better indicator of high discriminating 16 

ability is therefore less overlap in Ps values between trauma survivors and non-survivors34. In 17 

both populations, NORMIT 1 and 2, yielded higher median Ps values among trauma survivors 18 

than among non-survivors. The median Ps value in non-survivors was higher in the NT 19 

population than the TC subpopulation (0.60 vs. 0.35 with NORMIT 1 and 0.66 vs. 0.49 with 20 

NORMIT 2). In other words, patients who died in the NT population had a clearly higher 21 

probability of surviving than those who died in the TC subpopulation. The actual difference 22 

between trauma centres and non-trauma centres in the current study is probably even larger, 23 

since the TC subpopulation also constituted 18% of the NT population (Figure 1 and Table 1). 24 
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The observed differences need to be commented. Firstly, the TC subpopulation 1 

is expected to have generally lower Ps values because it consists of more severely injured 2 

patients who are also older and have more comorbidity (Table 1). Secondly, the resources and 3 

trauma competences available at a designated trauma centre should be associated with better 4 

performance, leading to more lives saved and thus to lower Ps in non-survivors. The observed 5 

median Ps values in the TC subpopulation in the current study are comparable to those 6 

previously found in the Norwegian OUH population, where median Ps values were 0.32 7 

(NORMIT 1 with AIS 98) and 0.41 (NORMIT 2 with AIS 08)23. Both OUH and KUH are 8 

designated trauma centres with comparable trauma populations, and assumedly with similar 9 

trauma processes and quality of care which should yield similar outcomes. 10 

Furthermore, the Ps values for non-survivors were lower for NORMIT 1 11 

compared to NORMIT 2  in the NT population (0.60 vs. 0.66) and even more pronounced in 12 

the TC subpopulation (0.35 vs 0.49). This observation might suggest that the NORMIT 1 13 

model showed better discrimination than NORMIT 2. An alternate interpretation is that Ps 14 

values estimated with NORMIT 2 can be expected to be higher because the NORMIT 2 15 

model was derived from a more recent OUH trauma population (2005-2009) with improved 16 

treatment and therefore lower risk-adjusted mortality compared to the original NORMIT 1 17 

population (2000-2006). A study of risk-adjusted survival as a function of time at OUH 18 

during 2001–2011 has confirmed this assumption, demonstrating improved survival in 19 

patients with critical neurotrauma after late 200440.  20 

More important in this setting is to accurately assess the model calibration, i.e., 21 

the agreement between survival predictions and observed outcomes over the full range of 22 

probabilities38. Skaga et al. stated23 that the mildly and the very severely injured patients are 23 

easier to predict as survivors and non-survivors respectively, and therefore a well-calibrated 24 

prediction model is distinguished by high performance in the mid-bands of Ps strata. In the 25 
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current study, the GiViTI calibration belts displayed a variety of deviations dependent of 1 

population and injury severity. In the NT population, both models performed poorly 2 

(generally too optimistic) but NORMIT 1 overestimated survival in both injury severity 3 

groups to a lesser extent than NORMIT 2. Contrary to this, the observed survival rates in both 4 

injury severity groups in the TC subpopulation were equal to those predicted by NORMIT 2, 5 

while NORMIT 1 underestimated survival in the higher Ps intervals.  6 

Differences in case-mix may have contributed to the the different model 7 

performance between the NT and TC populations. However, this is exactly what the 8 

NORMIT model was designed to adjust for. The variation in outcome between the two 9 

trauma populations may more probably be caused by differences in care processes, systems 10 

and quality of care. Designated trauma centres receive higher volumes of critically injured 11 

patients and are expected to perform better than non-designated trauma hospitals, in particular 12 

amongst severely injured patients. Consequently, risk-adjusted survival can be expected to be 13 

lower in the NT population which consisted of patients admitted to all Swedish hospitals with 14 

an emergency unit.  15 

The poor performance of the NORMIT model in a national Swedish setting 16 

might also be due to differences between the Swedish national trauma system and the local 17 

system in Southeast Norway where the NORMIT model was derived (i.e. selection 18 

differences). In the Southeast Norway trauma system, there is a single regional Level 1 19 

trauma centre with cooperating local trauma receiving hospitals and an extensive emergency 20 

medical system including anaesthesiologist-manned rapid response cars and helicopters 21 

delivering advanced emergency care at the site of injury and during patient transport23, that 22 

supplement ground ambulances41, 42. This may also contribute to explain the good 23 

performance at KUH, which in many regards is similar to the original model derivation and 24 

validation system10.  25 
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 1 

Different methods of measuring model performance 2 

In development of the NORMIT 1 model, calibration was first explored through calibration 3 

plots, and second by using a Hosmer–Lemeshow (H-L) goodness-of-fit test43. In the 4 

NORMIT 2 model, calibration was explored as in NORMIT 1 through calibration plots but 5 

the overall model performance was evaluated with the scaled Brier score44. In the current 6 

study, the GiViTI calibration belt was used. Even though the GiViTI belt and H-L test have 7 

been found to generate similar results37, 45, 46, the different methods of exploring model 8 

performance might, although less likely, have contributed to the different results observed. 9 

 10 

Different coding  11 

Differences in injury severity coding might also have contributed to the poor calibration 12 

ability of NORMIT 1 and 2 in the NT population. In SweTrau, NISS is coded according to 13 

AIS 08, while both NORMIT models are based on AIS 98.  Different AIS versions are not 14 

always comparable34 and it has been suggested that AIS 08 generates lower ISS and NISS 15 

than AIS 9847. Seemingly lower injury severity would lead to higher estimated Ps, i.e., 16 

overestimated survival for a given injury. This could however not explain the results from the 17 

TC subpopulation with underestimation of survival by NORMIT 1 and good model 18 

performance by NORMIT 2, which in fact contradicts the above reasoning. Further, in the 19 

original NORMIT 2 study the model showed even better performance when it was “stressed” 20 

with AIS 0823. 21 

 22 

Missing data  23 

The pattern of missing data in trauma registries is rarely at random, and studies from US 24 

trauma populations have demonstrated that patients excluded due to missing RTS values had 25 
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worse prognosis than patients with complete data and that such differential exclusion could 1 

bias the conclusions drawn7, 14, 48, 49. Large numbers of patients with missing data may 2 

therefore bias study results. In the original NORMIT study by Jones et al. missing data was 3 

<1%15, in the Finnish external validation study by Raj et al. 7.1%22, and in the recent 4 

NORMIT 2 update study by Skaga et al. 0.26%23. In the current study, missing data was 5 

18.7% in the NT population and 2.7% in the TC subpopulation. There is no established cut-6 

off in the literature regarding an acceptable percentage of missing data for valid statistical 7 

inferences, but a missing rate of greater than 10% has been suggested to interfere with 8 

statistical analysis50. Similar to other studies, missing RTS values and ASA-PS classification 9 

were the most common reason for exclusion in the present study and this may have affected 10 

the analysis regarding NORMIT’s accuracy, particularly in the NT population. Therefore, 11 

corrective actions should be taken to minimize the amount of missing data in SweTrau, in 12 

particular in the national population, in order to increase its reliability for future research. 13 

 14 

In summary, the study suggests that NORMIT 2 is well suited to predict survival in a Swedish 15 

trauma centre population for both less and severely injured patients, but both NORMIT 16 

models perform poorly in a more heterogeneous national trauma population. The reasons for 17 

these discrepancies are not clear, but differences in quality of care between dedicated trauma 18 

centres and the national population may contribute. 19 

 20 
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FIGURE LEGENDS 1 
 2 
Figure 1. Study populations. 3 
ASA-PS: American Society of Anesthesiologists Physical Status classification system 4 
NISS: New Injury Severity Score 5 
RTS: Revised Trauma Score 6 
SBP: Systolic blood pressure 7 
RR: Respiratory rate 8 
GCS: Glasgow Coma Scale. 9 
 10 
Figure 2. GiViTI calibration belt for NORMIT 1 (left panels) and NORMIT 2 (right panels) 11 
in the national trauma (NT) population (upper panels) and in the same population but with 12 
NISS >15 (lower panels). The bisector (red reference line) represents agreement between 13 
predicted and observed survival rate. The calibration belt (grey area) depicts the estimated 14 
relationship between the model predictions and the probabilities of the true response, with 15 
80% (light grey) and 95% (dark grey) confidence levels. The bottom-right table reports the 16 
ranges of the predicted probabilities where the calibration belt deviates significantly from the 17 
bisector, i.e., where observed survival is significantly different from what the model predicts. 18 
NORMIT: Norwegian survival prediction model in trauma.  19 
NISS: New Injury Severity Score.  20 
 21 
Figure 3. GiViTI calibration belt for NORMIT 1 (left panels) and NORMIT 2 (right panels) 22 
in the trauma centre (TC) subpopulation (upper panels) and in the same subpopulation but 23 
with NISS >15 (lower panels). See Figure 2 for details. 24 
NORMIT: Norwegian survival prediction model in trauma. 25 
NISS: New Injury Severity Score.  26 
  27 
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SUPPORTING INFORMATION 1 
 2 
Additional supporting information is found in the online version of this article: 3 
 4 
Figure S1. Receiver operating characteristic (ROC) curves for NORMIT 1 (black line) and 5 
NORMIT 2 (green line). A, National trauma (NT) population; B, Trauma centre (TC) 6 
subpopulation. The red reference (diagonal) line represents the performance of a model that is 7 
no better than a random guess, i.e., AUC = 0.5. See Table 3 for numeric values regarding 8 
AUC. 9 
NORMIT: Norwegian survival prediction model in trauma 10 
AUC: Area under the receiver operating characteristic (ROC) curve. 11 
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Table 1. Patient baseline characteristics for the national trauma (NT) population and the trauma centre (TC) 
subpopulation. 
 
 National trauma (NT) 

population  
(n=21554) 

Trauma centre (TC) 
subpopulation  

(n=3972) 

P-
value 

Age (years) 35 (21-56) 41 (26-59) <0.001 
Male gender  13531 (62.8) 2689 (67.7) 0.015 
Penetrating injury 1498 (7.0) 457 (11.5) <0.001 
ISS 2 (1-9) 5 (1-12) <0.001 
NISS 3 (1-9) 6 (3-17) <0.001 
30-day mortality 652 (3.0) 172 (4.3) <0.001 
Pre-injury ASA-PS 
  1 
  2 
  3 
  4 

 
15595 (72.4) 
4169 (19.3) 
1688 (7.8) 
102 (0.5) 

 
2534 (63.8) 
980 (24.7) 
425 (10.7) 

33 (0.8) 

 
<0.001 

RR RTS Category 
  4  
  3 
  2 
  1 
  0 

 
20435 (94.8) 

837 (3.9) 
110 (0.5) 
26 (0.1) 
146 (0.7) 

 
3716 (93.6) 
156 (3.9) 
47 (1.2) 
9 (0.2) 
44 (1.1) 

 
<0.001 

SBP RTS Category 
  4 
  3 
  2 
  1 
  0 

 
21139 (98.1) 

175 (0.8) 
99 (0.5) 
34 (0.1) 
107 (0.5) 

 
3854 (97.0) 

37 (0.9) 
35 (0.9) 
9 (0.2) 
37 (0.9) 

 
<0.001 

GCS RTS Category 
  4 
  3 
  2 
  1 
  0 

 
20264 (94.0) 

547 (2.5) 
268 (1.3) 
128 (0.6) 
347 (1.6) 

 
3489 (87.8) 
179 (4.5) 
115 (2.9) 
60 (1.5) 

129 (3.3) 

 
<0.001 

T-RTS 12 (12-12) 12 (12-12) <0.001 

 
Categorical data are presented as numbers and proportions (%) and continuous data as medians and quartiles.  
ISS: Injury Severity Score 
NISS: New Injury Severity Score 
ASA-PS: American Society of Anesthesiologists Physical Status 
RR: Respiratory rate 
RTS: Revised Trauma Score 
SBP: Systolic blood pressure 
GCS: Glasgow Coma Scale 
T-RTS: Triage-RTS. 
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Table 2. Predicted survival in survivors and non-survivors in the national trauma (NT) population and the 
trauma centre (TC) subpopulation. 
 
 National trauma (NT) population  

(n=21554) 
Trauma centre (TC) subpopulation 

(n=3972) 
 

 Survivors 
(n=20902) 

Non-survivors 
(n=652) 

Survivors 
n=3800 

Non-survivors 
n=172 

P-value* 

NORMIT 1 Ps 0.9994  
(0.9961-0.9997) 

0.6004  
(0.2450-0.8689) 

0.9983  
(0.9889-0.9996) 

0.3464  
(0.0838-0.6983) 

<0.001 

NORMIT 2 Ps 0.9984  
(0.9954-0.9991) 

0.6647  
(0.3139-0.9051) 

0.9973  
(0.9902-0.9989) 

0.4881  
(0.1245-0.7671) 

<0.001 

P-value†  <0.001  <0.001  
 
Data are presented as medians and quartiles. 
*P-value measured between non-survivors in the two populations in each model 
†P-value measured between non-survivors in the two models in each population   
NORMIT: Norwegian survival prediction model in trauma 
Ps: Probability of survival.  
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Table 3. Area under the receiver operating characteristic (ROC) curve (AUC) for NORMIT 1 and 2 in the 
national trauma (NT) and trauma centre (TC) populations and their subgroups (NISS >15).  
 

 NORMIT 1 NORMIT 2 
National trauma (NT) population 0.968 (0.962-0.974) 0.971 (0.965-0.977) 

NISS >15 subgroup 0.933 (0.922-0.945) 0.937 (0.926-0.948) 
Trauma centre (TC) subpopulation 0.974 (0.965-0.983) 0.976 (0.967-0.985) 

NISS >15 subgroup 0.964 (0.952-0.976) 0.965 (0.954-0.977) 
 
Data are presented with 95% confidence intervals (CI). The discrimination capabilities of the two models were 
not considered to be significantly different if their 95% CIs overlapped. 
NORMIT: Norwegian survival prediction model in trauma 
NISS: New Injury Severity Score. 
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