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ABSTRACT

Locally advanced breast cancer patients have a worse prognosis compared to patients 

with localized tumors and require neoadjuvant treatment before surgery. The aim of this 

study was to characterize the systemic metabolic effect of neoadjuvant chemotherapy in 

patients with large primary breast cancers, and to relate these changes to treatment 

response and long-term survival. 

This study included 132 patients with large primary breast tumors randomized to receive 

neoadjuvant chemotherapy with or without the addition of the antiangiogenic drug 

bevacizumab. Tumor biopsies and serum were collected before and during treatment; 

serum additionally six weeks after surgery. Samples were analyzed by nuclear magnetic 

resonance spectroscopy (NMR). 

Correlation analysis showed low correlations between metabolites measured in cancer 

tissue and serum. Multilevel partial least squares discriminant analysis (PLS-DA) showed 

clear changes in serum metabolite levels during treatment (p-values ≤ 0.001), including 
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unfavorable changes in lipid levels. PLS-DA revealed metabolic differences between 

tissue samples from survivors and non-survivors collected 12 weeks into treatment with 

an accuracy of 72% (p-value = 0.005), however this was not evident in serum samples. 

Our results demonstrate a potential clinical application for serum-metabolomics for 

patient-monitoring during and after treatment, and indicate potential for tissue NMR 

spectroscopy for predicting patient survival. 

KEYWORDS: Metabolomics, breast cancer, serum, tissue, NMR, response, survival
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INTRODUCTION

Breast cancer (BC) is the most frequent cancer type in women in Norway. Compared to 

cancer free women of the same age, five-year survival of BC patients is 90% in Norway, 

but ranges from 28-100%, depending on the stage of the disease at the beginning of 

treatment.1 It is however challenging to accurately predict outcome for individual 

patients, as there is high diversity in prognosis and response to treatment. This is due to 

the heterogeneous biology of the disease, resulting in patients with similar histology, 

clinical diagnosis and stage of disease having a different prognosis.2, 3 BC is often 

divided into five genetic intrinsic subtypes, however many studies have shown that there 

are many subgroups within these groups.4-6 One type of treatment will thus not be 

beneficial for all patients and stratification of patients followed by application of targeted 

therapy may improve the overall long-term outcome of BC patients. 

Locally advanced breast cancer (LABC) patients, that is patients with large tumors or 

extension to lymph nodes, constitutes 10-15% of diagnosed patients with a higher risk 

of future metastasis.7 Neoadjuvant chemotherapy (NAC) is administered routinely in 
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LABC patients. This treatment was initially developed to reduce the size of inoperable 

tumors prior to surgery and for eradication of potential micrometastasis, but is now also 

a tool to enable breast-conserving surgery.8, 9 

Angiogenesis, the formation of new blood vessels from existing vasculature, has an 

essential role for supplying nutrients and oxygen to rapidly growing tumors.10  This 

process can be therapeutically targeted by anti-angiogenetic treatment.11  Bevacizumab 

has the ability to inhibit the proangiogenetic vascular endothelial growth factor.12 

Due to improvements in treatment together with earlier diagnosis, mortality due to BC 

has decreased during the last years.1 However, despite intensive treatment regimes, a 

great proportion of LABC patients will develop metastatic disease.13, 14 Additionally, 

treatment may induce unwanted long-term side effects, such as fatigue, increased risk 

of cardiovascular diseases (CVD’s) and cardiotoxicity.15-19 Characterizing the systemic 

effect of cancer treatment may further enhance our understanding of unwanted side-

effects and potentially identify mechanisms to prevent late effects. 
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Metabolomics is a rapidly growing field in medical research, and makes it possible to 

look at the contents of a biological matrix at the molecular level. Metabolites are 

downstream biochemical products in the omics cascade, and altered metabolism has 

been defined as a hallmark of cancer.11 Following a minimal sample preparation, a wide 

range of metabolites can be detected within a short amount of time using nuclear 

magnetic resonance (NMR) spectroscopy.20 NMR metabolomics has already shown 

potential in stratification of BC patients with respect to treatment response and long-

term survival.21, 22 Most studies so far have focused on metabolomics of invasive tissue 

biopsies.3, 21-24 Metabolomics of biofluids is minimally-invasive and repeated sampling is 

simple. A recent review concludes that many studies have shown impressive 

associations between biofluid metabolomics and cancer progression, suggesting that 

NMR metabolomics can be used to provide information with prognostic or predictive 

value.25

The NeoAva study is a phase II randomized clinical trial assessing the effect of anti-

angiogenesis treatment by bevacizumab in combination with standard NAC. We have 
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previously shown that metabolic profiling of tumor tissue by MR spectroscopy has a 

potential in predicting treatment response in this cohort.21 Further, both clinical and 

gene expression response was shown to differ between patients receiving combination 

therapy with bevacizumab and chemotherapy alone, and circulating cytokine profiles 

were found to correlate with different immune cell types at the tumor site.26-28

In this study, we performed metabolic profiling of serum samples from patients in the 

NeoAva study. The main aim was to characterize systemic metabolic effects of NAC in 

BC patients, and to relate these changes to treatment response and long-term survival. 

Additionally, the metabolic information in serum and tissue samples from the same 

patients were compared, allowing for a better understanding of the difference in their 

metabolic information.
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MATERIALS AND METHODS

Patient and tumor characteristics

Details of the inclusion criteria are fully described elsewhere.21 Briefly, 132 women of 

age ≥ 18 years with large (≥ 2.5 cm), non-metastatic, human epidermal growth factor 

receptor 2 (HER 2) negative tumors were recruited in the period November 2008-July 

2012 in Norway. The study was approved for all centers involved by the Regional Ethics 

Committee (Approval number S-08354a) and the Norwegian Medical Agency and an 

informed written consent was obtained from all patients. All patients included in this 

study received NAC in the form of FEC100 (5-fluorouracil 600 mg/m2, epirubicine 100 

mg/m2, and cyclophosphamide 600 mg/m2) followed by taxane-based therapy for 12 

weeks, while they were randomized to receive bevacizumab or not. Tissue samples 

were obtained by ultrasound-guided needle biopsies prior to treatment (TP1) and 12 

weeks into treatment (TP2), while surgical biopsies were obtained from the surgically 

removed tumor (TP3). Non-fasting serum was sampled at TP1, TP2 and TP3, in 

addition to 6 weeks after surgery (TP4). See Figure S1 for a graphical representation of 
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the study design. The study cohort for further analyses has been restricted to contain 

subjects with full clinical data and available sample material from at least one sampling 

time point, giving N=118 subjects. In total 357 serum samples and 270 tissue samples 

were analyzed.  Details on the patient and tumor characteristics are summarized in 

Table 1, while sample availability, including survival data, for each time point is 

illustrated in Figure S2. 
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Table 1. Patient cohort and tumor characteristics

Survivors ≥ 5 years Non-survivors

N 105 13

Age (years)

Mean (range) 49.3 (25-70) 45.7 (31-55)

Treatment

Bev + Chemo 53 7

Chemo only 52 6

RCB class

0 19 1

I 13 1

II 58 8

III 15 3

ER status

Positive 90 10

Negative 15 3

PgR status

Positive 62 6

Negative 43 7

Histology

Ductal 84 11

Lobular 19 1

Other 2 1

Metastasis during follow-up

Yes 5 13

No 100 0

Sample availability varied for each time point, giving a slightly different number of 
survivors and non-survivors used in the prediction models. Details on sample availability 
are illustrated in Figure S2. Survivors are patients alive 5 years after treatment start; Bev 
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+ Chemo: Bevacizumab treated in addition to neoadjuvant chemotherapy; Chemo only: 
Chemotherapy only, no bevacizumab; RCB: Residual cancer burden; ER: Estrogen 
receptor; PgR: progesterone receptor 
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Prognostic measures and survival evaluation

Residual cancer burden (RCB) is a measurement of patient response to NAC. It is a 

continuous index, which combines pathologic measurements of the primary tumor (size 

and cellularity) and nodal metastases (number and size).29 RCB can be divided into four 

classes, where class 0 is equivalent to pathologic complete response (pCR), meaning 

that no cancer cells are present after treatment. 

Patients deceased within 5 years after diagnosis were classified as non-survivors 

whereas patients surviving ≥ 5 years were classified as survivors.

NMR experiments and data preprocessing

Analysis and preprocessing of serum samples

NMR spectra were obtained on a Bruker Avance III Ultrashield Plus spectrometer 

operating at 600 MHz (Bruker BioSpin GmbH, Rheinstetten, Germany) equipped with a 

5mm QCI Cryoprobe. The serum samples were thawed at 4°C prior to the analysis. 150 

µl of serum was gently mixed with 150 µl of buffer (D2O with 0.075mM Na2HPO4, 5mM 
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NaN3, 3,5mM TSP, pH 7.4). The samples were analyzed in 3-mm NMR-tubes. Data 

acquisition and sample handling was fully automated using a SampleJet with Icon-NMR 

on TopSpin 3.1 (Bruker BioSpin). Carr-Purcell-Meiboom-Gill (CPMG) spectra with water 

pre-saturation were acquired at a temperature of 37 °C. The spectra were Fourier 

transformed to 128K after 0.3 Hz exponential line broadening. 

The spectral data were transferred to Matlab R2017b for preprocessing.30 The left peak 

of the alanine doublet at 1.47 ppm was used as a chemical shift reference. Three 

spectra were removed from the analysis due to poor water suppression after visual 

inspection. Spectral peaks were aligned to the peaks of the spectrum with the highest 

correlation to the other spectra using the function icoshift.31 The water region (4.3-5.0 

ppm) was removed, and the spectral area between 0.2 and 9.2 ppm was used for 

further analysis. The NMR signals were assigned to metabolites both using the HMDB 

database, published literature, and an in-house overview over previously assigned 

spectral peaks in serum based on 2D HSQC acquisitions, and the STOCSY algorithm.32 

The spectra were mean-normalized prior to quantification. Quantification was performed 
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by integrating the region under each peak, giving the relative amounts of metabolites in 

each sample. If a metabolite had more than one identifiable peak, the mean value of the 

multiple peaks were calculated and used for further analysis. Signals from ethanol at 

1.17 ppm were removed, resulting in 29 distinct peaks (27 metabolites, and two lipid 

signals, see Table S1). The lipid signals arise from the methyl (-CH3) groups at 0.85 

ppm (lipid1) and methylene (-CH2-) groups at 1.57 ppm (lipid2), mainly from triglycerides 

and esterified cholesterol within the lipoprotein particles.33 A representative spectrum 

with annotated metabolite peaks is shown in Figure S3.

As evidenced by very high negative correlations (see Figure 1A in the Results section) 

between the serum metabolites and lipid peaks, including the lipids in the analyses 

overshadowed changes in the low-molecular weight serum metabolites. We therefore 

removed the lipid peaks and normalized the metabolites a second time prior to 

statistical analyses.

Analysis and preprocessing of tissue samples
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A total of 270 tissue samples were analyzed by high resolution (HR) magic angle 

spinning (MAS) NMR. Details of NMR experiments, preprocessing and quantification of 

the tissue samples have been described previously.21 Briefly, tissue samples (mean 

weight: 4.1 mg) were analysed at 5 °C on  a Bruker Avance DRX600 spectrometer 

equipped with a 1H/13C MAS rotor. A spin-echo one dimensional experiment with 

presaturation (cpmgpr1d, Bruker BioSpin, Germany) was recorded for all samples, with 

effective echo time of 77 ms, a spectral width of 20 ppm (−5 to 15 ppm), and 256 scans. 

Spectra were baseline corrected, peak aligned using the icoshift algorithm31, and 

normalized by PQN34 after removal of lipid residuals. Quantified metabolites were 

normalized by PQN.

Statistical analysis

Multivariate analyses

All variables were auto-scaled prior to multivariate analyses. Principal component 

analysis35 (PCA) was performed on the quantified serum metabolites as a first step in 

the exploratory analysis.
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Partial least squares discriminant analyses (PLS-DA) were employed to fit classification 

models for different clinical variables.36 PLS-DA models were fitted and validated using 

10-fold cross-validation, which was repeated 20 times. The optimal number of latent 

variables was chosen to be the number of latent variables corresponding to the first 

minima in the cross-validated classification error. Averaged sensitivities and specificities 

of the 20 iterations are reported. To verify the statistical significance of the models, 

permutation testing was employed, where the original class labels were shuffled among 

the individuals.37 New models were fit to these permuted data sets and the classification 

error was calculated. The proportion of classifications equal to or better than the original 

classification was used to calculate the p-values. The permutations were repeated 1000 

times and p-values ≤ 0.05 were considered significant. For the PLS-DA plots, the y-

variance was condensed into the first LV through orthogonal projection to latent 

structures (OPLS-DA) in cases where the optimal model had more than one LV. This 

orthogonalization does not improve the model accuracy, but rather the model 

interpretation, as the predictive from non-predictive variation is separated.36 

Page 17 of 59

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



18

Metabolomics data is complex and many factors (such as age, disease state and 

genetics) influence the metabolic profile of a biological sample, thus the variations 

between samples of different individuals are often higher than the variations within the 

samples of one individual. Variations, as a result of treatment effect, can be 

overshadowed by the between-subject variations. The total effect is thus undetectable if 

the main focus is the average effect. Multilevel PLS-DA is an extension of PLS-DA and 

consists of two steps.38 First, the variation between individuals is separated from the 

variation within the samples. Second, PLS-DA analysis is performed on the within-

subject variation. This is an effective tool for longitudinal data, where there are two or 

more multivariate measurements per subject. Since the multilevel PLS-DA models 

contain multiple measurements for each patient, 10% of the patients were left out during 

each iteration, which was repeated 20 times. 

PCA, PLS-DA and multilevel PLS-DA analyses were carried out in Matlab R2017b using 

the PLS Toolbox 8.6.2.39 The loading plots of the orthogonalized PLS-DA and multilevel 

PLS-DA analyses were colored according to the variable (here metabolite) importance 
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score (VIP score). The VIP score is a measure of how important each variable was for 

creating the discrimination model. It is calculated as a weighted sum of squares of the 

PLS loadings, where the weights are based on the amount of y-variance explained in 

each dimension.40 A metabolite with a VIP score larger than or equal to 1 was 

considered to be important in the discrimination model.

Univariate data analysis

Due to non-normality of the serum metabolites, the non-parametric Wilcoxon-signed-

rank test was used to test the significance of the changes in serum metabolite levels 

between time points.41 P-values were adjusted using the Benjamini-Hochberg 

procedure and significance was considered for q-values ≤ 0.05.42 

In this study, both serum and tumor samples from the same BC patients were analyzed, 

enabling us to investigate how much of the tissue-metabolic profile is reflected in the 

serum metabolome. To investigate this, Pearson-correlations between all quantified 

metabolites in the serum and tissue samples were calculated. P-values for significance 

were adjusted for multiple comparisons using the Benjamini-Hochberg procedure, and 
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significance was considered for q-values ≤ 0.05. The calculations and graphical 

representations of the correlation were performed in the R software environment using 

the corrplot package.43, 44

Statistical analyses of serum metabolites were performed on quantified metabolites. For 

tissue samples, multivariate analyses were performed on the whole NMR spectra as in 

Euceda et al.21 while correlation analysis was performed using quantified metabolite 

levels. 
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RESULTS

Correlation analysis of serum and tissue metabolic profiles

Availability of both tissue biopsies and serum samples from the same BC patients, 

enabled to investigate how much of the tumor metabolism is reflected in the serum. The 

majority of the correlations between the serum metabolites were high (Figure 1A). The 

low-molecular weight serum metabolites had a highly negative correlation with the lipid 

peaks, while they were positively correlated with each other. There were fewer high 

correlations between tissue metabolites. However, tissue levels of taurine and glucose, 

and glutamate and lactate were highly correlated (ϱ = 0.903 and 0.714 respectively; q-

values < 0.001). This figure also shows that correlations between serum and tissue 

metabolites, although some were significant, were low (0.005 ≤ |ϱ| ≤ 0.269; q-values ≤ 

0.05). Serum lactate was not correlated with tissue lactate (ϱ= 0.061, q-value = 0.835). In 

addition, choline stands out from the other tissue metabolites, with low but significant 

correlations with the majority of the serum metabolites (0.074 ≤ |ϱ| ≤ 0.269). To 

emphasize correlations between the low-molecular weight metabolites, the analyses 
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were repeated with the lipid peaks removed. Figure 1B shows correlation analyses of 

serum and tissue metabolic profiles after the removal of lipid peaks in serum data and a 

second normalization. The correlations in serum metabolites are then highly affected in 

both magnitude and direction.
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Figure 1. Significant Pearson correlations between metabolites in serum (blue) and tissue 

(red) samples. A: Whole data set; B: After removal of lipid peaks from serum data and a 

second normalization. Color intensity and circle sizes are proportional to the correlation 

coefficients. Red and blue circles indicate negative and positive correlations, respectively. 

Only patients with both serum and tissue samples available (TP1, TP2 and TP3) have 

been included in this analysis. 
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The effect of neoadjuvant chemotherapy on serum metabolic profiles

PCA analyses of serum metabolites did not show any clear trend or grouping of the 

patients with respect to the time point at which the samples were obtained (Figure S4). 

However, by employing multilevel PLS-DA and thus removing the between-subject 

variation in the data, significant changes in the serum metabolic profiles between each 

time point during treatment were revealed. Table 2 summarizes the fit of the multilevel 

PLS-DA models on serum data without lipid peaks included. PLS-DA results for 

separating TP1 and TP2 with and without including the lipids are shown in Figure 2. 

First, when the lipid peaks are included in the multilevel analyses, it is clear that the 

amount of lipids in serum increase during treatment (Figure 2A). The same is evident 

throughout the treatment period as seen in Figure S5, which shows multilevel analysis 

comparing TP1 with TP4 when lipids are included. Removal of lipid peaks to emphasize 

changes within the metabolic profile did not have a significant influence on the 

prediction accuracy of the models. Further results are derived from the serum metabolic 

data without including the lipid peaks. 
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Scores and loading plots of the multilevel PLS-DA models separating different time 

points are displayed in Figure S6, where the loadings are colored according to the VIP 

scores. The most important metabolites in discriminating between serum metabolic 

profiles at TP1 and TP2 are creatinine (↓), creatine (↓), isoleucine (↑), ornithine (↓) and 

histidine (↑) (Figure 2B), where the arrow shows the direction of the change with the 

treatment course. For discriminating TP2 from TP3 creatine (↑), valine (↑), 

dimethylglutarate (↓) and pyruvate (↓) are of highest importance. Finally, for 

discriminating between serum metabolic profiles at TP4 and TP3, valine (↑), glycine (↓), 

dimethylglutarate (↑) and methionine (↑) are the most important metabolites.

Table 2. Summary of multilevel PLS-DA applied on serum metabolites, after the removal 

of lipid peaks and a second normalization.

No of LV's Class accuracy (%) Sensitivity/Specificity (%) P-value

TP1 vs TP2 4 90 90/90 <0.001

TP2 vs TP3 2 77 77/77 <0.001

TP3 vs TP4 4 87 87/87 <0.001

Sensitivities and specificities are averaged on 20 repetitions of 10-fold cross validation. 
The reported p-values are based on permutation testing, with 1000 random permutations 
of the original class labels. Significant classification models in bold. LV: latent variable.
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The median percentage change of each metabolite level between the different time 

points is displayed in Table 3, with corresponding q-values to assess statistical 

significance. Most significant changes occur between TP1 and TP2; however the 

metabolic profiles change significantly throughout the treatment period.  Only two 

metabolites exhibited significant changes across all sampling time points during the 

treatment course: dimethylglutarate (↑↓↑) and acetate (↓↑↑).
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Figure 2. Scores and loadings plots from the multilevel PLS-DA analyses for 

discriminating between the serum metabolic profiles at TP2 from TP1. A: Analysis 

including lipid peaks.  B: Analysis after excluding lipid peaks and a second normalization. 

Orthogonalized loadings colored according to VIP scores. LV: latent variable. 1: leucine; 

2: valine; 3: isoleucine; 4: dimethylglutarate; 5: tri-hydroxybutyrate; 6: alanine; 7: lysine; 

8: acetate; 9: acetoacetate; 10: glutamate; 11: pyruvate; 12: glutamine; 13: citrate; 14: 
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methionine; 15: creatine; 16: creatinine; 17: ornithine; 18: proline-betaine; 19: 

dimethylsulfone; 20: glucose; 21: methanol; 22: glycine; 23: lactate; 24: tyrosine; 25: 

phenylalanine; 26: histidine; 27: formate; 28: lipid1; 29: lipid2.

Table 3. Median percentage changes in the serum metabolite levels during treatment.

Metabolite name TP1 to 
TP2 (%) q-value TP2 to 

TP3 (%) q-value TP3 to 
TP4 (%) q-value

1 Leucine 4.88 0.001 -2.52 0.613 4.64 0.029
2 Valine -1.76 0.082 5.55 0.004 7.19 <0.001
3 Isoleucine 12.46 <0.001 -0.95 0.706 -0.73 0.512
4 Dimethylglutarate 3.28 0.036 -8.27 0.001 9.36 0.001
5 Alanine -3.26 0.294 2.06 0.386 2.48 0.271
6 Lysine 5.06 0.001 -4.24 0.010 1.95 0.319
7 Acetate -3.43 <0.001 1.81 0.010 3.57 0.002
8 Acetoacetate -2.16 0.156 5.82 0.030 -0.20 0.589
9 3-Hydroxybutyrate 0.84 0.562 3.65 0.212 5.82 0.178

10 Glutamate 1.63 0.974 -0.06 0.613 1.22 0.280
11 Pyruvate -3.83 0.808 -6.28 0.010 -0.98 0.722
12 Glutamine 1.81 0.244 0.16 0.955 -2.37 0.062
13 Citrate -2.38 0.974 -1.82 0.953 -7.37 0.039
14 Methionine -1.83 0.294 3.40 0.187 4.80 0.002
15 Creatine -13.30 <0.001 9.01 <0.001 5.34 0.089
16 Creatinine -7.80 <0.001 2.30 0.185 4.19 0.040
17 Ornithine -6.33 <0.001 1.38 0.355 4.17 0.002
18 Proline-betaine -3.10 0.974 4.22 0.585 1.58 0.604
19 Dimethyl-sulfone -2.14 0.294 4.66 0.207 3.31 0.163
20 Methanol -2.74 0.294 -0.54 0.706 -1.48 0.452
21 Glucose -3.83 0.095 1.61 0.491 -0.51 0.798
22 Glycine 3.08 0.156 0.81 0.603 -6.08 0.001
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23 Lactate -1.19 0.974 -3.01 0.813 -14.40 0.002
24 Tyrosine -3.83 0.303 -2.38 0.603 4.43 0.452
25 Phenylalanine -1.50 0.887 0.83 0.799 8.24 0.025
26 Histidine -9.81 <0.001 -0.33 0.706 9.84 0.010
27 Formate -10.60 0.036 -6.57 0.603 -5.17 0.936

> 10 % < -10 %
5 to 10 % -5 to 10 %
0 to 5 % 0 to -5 %

Only patients with samples available at each of the two time points were included when 
calculating the percentage changes. Q-values show p-values obtained from Wilcoxon 
signed-rank test, adjusted for multiple comparisons. Significant changes are marked in 
bold. 

The effect of bevacizumab on serum metabolic profiles

We further examined if the serum metabolites are affected by treatment with the drug 

bevacizumab in addition to chemotherapy. A significant discrimination model for 

separating patients receiving and not receiving bevacizumab was obtained at TP2, but 

not at later time points (accuracy = 64%; p-value = 0.014, Figure 3A and Table 4), even 

though the admission of bevacizumab was continued until TP3. The most important 

metabolites in the discrimination model for TP2 are higher levels of leucine, acetoacetate, 

tri-hydroxybutyrate and lower of formate (VIP scores 1.76, 1.59, 1.56 and 1.47 
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respectively) for the group of patients treated with bevacizumab compared to patients 

treated with chemotherapy only. 
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Figure 3. Scores and loading plots of the PLS-DA models for serum metabolic profiles. A: 

Bevacizumab-treated vs Chemotherapy only at TP2. B: RCB 0 or I vs RCB II or III at TP4. 

Orthogonalized loadings colored according to the VIP scores. 1: leucine; 2: valine; 3: 

isoleucine; 4: dimethylglutarate; 5: tri-hydroxybutyrate; 6: alanine; 7: lysine; 8: acetate; 9: 

acetoacetate; 10: glutamate; 11: pyruvate; 12: glutamine; 13: citrate; 14: methionine; 15: 

creatine; 16: creatinine; 17: ornithine; 18: proline-betaine; 19: dimethylsulfone; 20: 
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glucose; 21: methanol; 22: glycine; 23: lactate; 24: tyrosine; 25: phenylalanine; 26: 

histidine; 27: formate.
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Table 4. Summary of PLS-DA classification models fitted to the serum and tissue 
metabolic profiles at different time points.

Discriminated 
classes

Time 
point

n
Class 

accuracy (%)
Sensitivity/

Specificity (%)
Permutation 

p-value
TP2 89 64 58/70 0.0140
TP3 93 59 60/57 0.0870

Bev-treat. /
Chemo treat. only

TP4 86 57 67/47 0.0960
TP1 89 36 27/44 0.9580
TP2 89 48 33/63 0.6500
TP3 93 58 58/57 0.1700

RCB class 0 + I / 
RCB class II + III

TP4 86 69 65/73 0.0010
TP1 89 37 5/70 0.7700
TP2 89 64 48/81 0.2570
TP3 93 61 43/79 0.1780

Se
ru

m

5 year survival

TP4 86 48 23/73 0.5620
TP1 105 58 30/86 0.2190
TP2 78 72 55/90 0.0050

Ti
ss

ue 5 year survival
TP3 87 57 26/88 0.2210

Sensitivities and specificities are averaged on 20 repetitions of 10-fold cross validation. 
The reported p-values are based on permutation testing, with 1000 random permutations 
of the original class labels. Significant classification models are marked in bold. n: number 
of samples included in model.
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Serum metabolic differences between responders and non-responders of neoadjuvant 
treatment

PLS-DA classification models were fitted to the serum metabolites for each time point 

separately to examine if there were metabolic differences between patients with a good 

or poor response to treatment. The model results are summarized in Table 4. Summary 

of PLS-DA classification models fitted to the serum and tissue metabolic profiles at 

different time points. Patients with good response (RCB 0 or I) could be significantly 

discriminated from patients with a poor response (RCB II or III) at TP4 with an accuracy 

of 69% (p-value = 0.001, Figure 3B). The most important metabolites in the discrimination 

were citrate, phenylalanine and histidine (VIP scores 2.25, 1.75 and 1.53, respectively), 

with higher levels of citrate and lower of the latter in RCB II or III compared to RCB 0 or I 

patients. 

Predicting survival from serum and tissue metabolic profiles

Discrimination models were fitted to assess if there is predictive power in the serum and 

tissue metabolites to predict long-term outcome. Results of the analyses show that the 
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serum metabolites have no predictive power for 5-year survival (Table 4). Similar models 

were employed on the tissue metabolic profiles at the different time points, and showed 

that tissue metabolic profiles at TP2 have a predictive potential for discriminating 

survivors from non-survivors, with a prediction accuracy of 72% (p-value = 0.0050). 

Scores and loading plots for the corresponding PLS-DA model at TP2 are displayed in 

Figure 4.

Figure 4. Scores and loadings plots for predicting survival from tissue metabolic profiles 

at TP2. Orthogonalized loadings colored according to their VIP score. LV: latent variable; 

Glc: glucose; Asc: ascorbate; Lac: lactate; Lip: lipid; Gly: glycine; Tau: taurine; Cho: 
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cholines (glycerophosphocholine, phosphoscholine and choline); Cr: creatine; Succ: 

succinate; Glu: glutamate; Ala: alanine;
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DISCUSSION

In this study we show that the NMR-based metabolic profile of serum from BC patients 

undergoing NAC changes significantly throughout treatment. Further, we show that 5-

year survival can be predicted from metabolic profiles in tissue, but not serum. Significant 

associations between serum metabolic profiles and response to treatment, in addition to 

changes in the serum metabolic profiles in patients receiving bevacizumab, were 

detected.

Several factors affect the serum metabolome, such as diet, age, body mass index (BMI), 

drug use and diurnal variations.45-47 The serum metabolome will contain metabolic signals 

from both the tumor itself and the host organism, both affected by treatment. Some 

studies have investigated the difference in the serum metabolic profiles of women with 

BC compared to healthy controls, showing that presence of the tumor has an evident 

effect on the serum metabolome48-52, while only few have looked into treatment-induced 

changes.53, 54 A previous study revealed baseline levels of formate and acetate as 
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potential predictive biomarkers of treatment response in metastatic BC patients, linking 

these changes to the accelerated proliferation of aggressive BC cells.55 In this study, we 

describe significant serum metabolic changes in response to treatment at all time points, 

showing that BC treatment has an effect on the overall metabolism. Particularly lipid levels 

in serum increased throughout the treatment course (Figure 2A, Figure S5). These results 

are in agreement with a previous study where we describe serum metabolic changes from 

adjuvant BC treatment, where unfavorable changes in the lipoprotein profiles were 

observed during treatment.56 Altered lipid metabolism may predispose for weight gain, 

increased risk of CVD and a worse overall health and quality of life. Increased lipid levels 

in serum post treatment have additionally been observed and associated with an 

increased risk of disease recurrence.57 

The most evident effect of BC treatment on the serum metabolome occurred during the 

first weeks of treatment (TP1 to 2) and from surgery to 6 weeks follow-up (TP3 to 4).  

When comparing samples acquired before treatment onset and 12 weeks into treatment, 

11 of the 27 metabolites changed significantly, mainly to decreased levels. Comparing 
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the first weeks of treatment revealed decreased histidine, creatine, creatinine and 

ornithine levels and increased isoleucine, to be of highest importance (Figure 2B). Serum 

levels of isoleucine were previously shown to be upregulated in of metastatic compared 

to early BC50, 58 and higher isoleucine has also been associated with pCR54. Thus the 

predictive value of changes in isoleucine levels should be further investigated. Creatinine 

is a breakdown product of phosphocreatine in muscles and is usually produced at a 

constant rate by the body; it is thus plausible that the observed increase is induced by 

treatment. Creatine, creatinine and ornithine are amino acids closely linked together 

through the arginine and proline metabolism pathway, through which glutamate is 

synthetized from arginine and proline.

Twelve weeks into treatment, increased levels of valine and creatine, and decreased 

levels of dimethylglutarate, lysine and pyruvate were observed, compared to six weeks 

into treatment. Similarly, increased levels of valine and creatine during BC treatment, 

compared to baseline levels, were observed in a longitudinal study with HER-2 positive 

BC patients in the trastuzumab and everolimus treatment arm.53 Increased valine levels 
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have also been shown to be important in discriminating BC patients from healthy controls 

(post-treatment).49 Pyruvate is a key intermediate in several metabolic pathways 

throughout the cell, including gluconeogenesis and the Krebs cycle; lower pyruvate levels 

therefore possibly reflect an increased energy metabolism due to the treatment.

Patients switched from FEC treatment to taxane-based therapy twelve weeks into the 

treatment (TP2), followed by no further treatment, other than surgery, between the last 

two sampling points (TP3 to 4). It appears that the serum metabolism tends to return to 

its pre-treatment state in this period; valine, acetate, creatine, ornithine and histidine all 

experienced a decrease at the beginning of treatment, followed by an increase after 

surgery. Glycine levels remained relatively constant throughout treatment, but decreased 

significantly after treatment. Low levels of circulating glycine have previously been 

associated with metabolic syndrome; this decrease may thus indicate a negative side-

effect of treatment.59 
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Five year survival was predicted with an accuracy of 72% at TP2. Non-survivors had 

higher lactate and glycine levels compared to survivors at TP2, which is in accordance 

with previous studies in similar patient cohorts.22, 23 Elevated lactate and glycine levels 

was also been associated with lower survival rates in ER positive BC patients receiving 

surgery as primary treatment.60  Furthermore, lactate has been associated with poor 

prognosis in other cancers and is a generally accepted marker for tumor aggressiveness, 

as high levels of lactate have been correlated to low survival rates, high incidence of 

distant metastasis and recurrence.61, 62 Increased lactate production and rapid glucose 

consumption are known characteristics of the Warburg effect, which can be observed in 

most cancer cells.63 Glycine has been linked to cancer-induced metabolic 

reprogramming, and glycine consumption and expression of the mitochondrial glycine 

biosynthetic pathway have been identified to be strongly correlated with the rates of 

proliferation across cancer cells.64 

The RCB response measure represents an independent prognostic factor of distant 

relapse-free survival (DRFS) in multivariate Cox regression analyses of cancer patients.29 
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RCB 0 and I are associated with good prognosis, while RCB II and III are associated with 

poor prognosis. Based on serum metabolic profiles, we could not predict patient response 

to treatment before or during treatment. However, patients with a good prognosis could 

be discriminated from patients with a poor prognosis six weeks after treatment completion 

(TP4) with an accuracy of 69% (p-value = 0.001). RCB II or III patients had higher serum 

levels of citrate and lower levels of phenylalanine and histidine. Significantly higher 

serum levels of citrate and lower of phenylalanine and histidine have been observed 

in metabolic profiles of metastatic compared to early BC implying that they play a role 

in the formation of metastasis.58

Patients receiving bevacizumab were significantly discriminated from those treated only 

with chemotherapy 12 weeks into treatment (TP2). Discriminating metabolites were lower 

levels of leucine, acetoacetate, and tri-hydroxybutyrate and higher levels of formate in 

patients receiving bevacizumab.  A previous study has linked the rate of β-

hydroxybutyrate and acetoacetate in blood to mitochondrial activity.65 The effect of 

bevacizumab on the serum metabolome of BC patients has, to our knowledge, not been 
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described previously. A study on metastatic renal cell carcinoma identified changes in 

glucose, N-acetylglycoproteins, lipids and lipoproteins as an effect of treatment, relating 

these to known side effects of the drugs bevacizumab and temsirolimus.66 Our previous 

study on tissue metabolites from the same patient cohort21 showed weak associations 

between bevacizumab and tissue metabolic profiles. 

An advantage of this study cohort is that both tissue biopsies and serum samples were 

available from the same patients, allowing for a comparison of metabolic information. 

Importantly, the metabolic information from these two types of biological samples is 

different, with some significant, but low correlations (Figure 1B). This explains why we 

could predict patient survival from tissue, but not serum metabolites.  Although tumors 

are often characterized by high lactate production, there was no correlation between 

tissue and serum lactate levels. A study linking tumor information in early BC patients 

with plasma metabolites, showed an inverse correlation between plasma lactate levels 

and the tumor size.67 In general, despite possible leakage of metabolites from the cancer 

tissue into the bloodstream of the host organism, the overall serum metabolism has larger 
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variation that may mask these tumor-derived metabolites; thus, metabolites which have 

been associated with treatment response when analyzing tumor tissue, are not 

necessarily relevant in the context of serum metabolomics. 

Multivariate analysis, taking advantage of the multilevel structure of the data focusing on 

the within-subject variations resulted in models with high classification accuracy for 

characterizing the serum metabolic changes from treatment. Our study also pinpoints that 

awareness regarding the effect of normalization procedures is necessary, given the 

different results observed with the exclusion of lipid signals prior to a second 

normalization of the serum metabolic profiles. Although different normalization strategies 

did not affect the quality of the multivariate models per se, making their robustness 

evident, variables important for the classifications were affected, making comparisons of 

potential biomarkers across studies challenging. 
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CONCLUSION

By metabolic profiling of serum sampled before, during and after neoadjuvant treatment 

in breast cancer patients, we have revealed significant metabolic changes in serum as a 

response to treatment. This gives an insight into how the body is affected by treatment, 

and provides a possible tool for understanding negative side-effects of treatment. Serum 

metabolomics therefore has a potential for longitudinal patient-monitoring during and after 

breast cancer treatment.

Tissue metabolic profiles during treatment were significantly correlated to five-year 

survival, while no such information was apparent in the serum metabolic profiles. 

Importantly, we demonstrate low correlations between serum and tissue metabolites, 

emphasizing the complementary nature of the metabolic information in these biological 

matrices. 
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ABBREVIATIONS

BC: Breast cancer; BMI: Body Mass Index; CPMG, Carr-Purcell-Meiboom-Gill; CVD: 

Cardio-Vascular Disease; DRFS, Distant Relapse-Free Survival; ER, Estrogen 

Receptor; HER, Human Epidermal Growth Factor Receptor; LABC Locally advanced 

breast cancer; LV, Loading Vector; MR, Magnetic Resonance; NAC: Neoadjuvant 

chemotherapy; NMR, Nuclear Magnetic Resonance; NOESY, Nuclear Overhauser 

Effect Spectroscopy; PC, Principal Component; PCA, Principal Component Analysis; 

pCR, Pathologic Complete Response; PgR, Progesterone Receptor; PLS-DA, Partial 

Least Squares Discriminant Analysis; RCB, Residual Cancer Burden; TP1, TP2, TP3, 

TP4, Time points for sampling: Before treatment, 12 weeks into treatment, 25 weeks 

into treatment, and 6 weeks after treatment, respectively; VIP, Variable Importance in 

Projection

SUPPORTING INFORMATION

The following files are available free of charge at ACS website: http://pubs.acs.org :

Figure S1. Flow diagram showing the experimental set up of the study.
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Figure S2. Sample availability at each sampling time point, including survival data.

Table S1. Details on quantification of serum metabolites.

Figure S3. A representative spectrum with annotated metabolite peaks. 

Figure S4. PCA scores plot of the serum metabolites, colored according to the time point 

at which they have been obtained.

Figure S5. Scores and loading plot of multilevel PLS-DA analyses on serum metabolites 

with lipid peaks, comparing TP1 with TP4. 

Figure S6. Scores and loading plots of multilevel PLS-DA analyses on serum metabolites.

Notes

The NeoAva study was co-sponsored by Roche Norway and Sanofi-Aventis Norway. Oslo 

University Hospital is the main sponsor for the NeoAva study.
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