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ABSTRACT

With this latest release of ReMap (http://remap.
cisreg.eu), we present a unique collection of reg-
ulatory regions in human, as a result of a large-
scale integrative analysis of ChIP-seq experiments
for hundreds of transcriptional regulators (TRs) such
as transcription factors, transcriptional co-activators
and chromatin regulators. In 2015, we introduced the
ReMap database to capture the genome regulatory
space by integrating public ChIP-seq datasets, cov-
ering 237 TRs across 13 million (M) peaks. In this re-
lease, we have extended this catalog to constitute a
unique collection of regulatory regions. Specifically,
we have collected, analyzed and retained after qual-
ity control a total of 2829 ChIP-seq datasets avail-
able from public sources, covering a total of 485 TRs
with a catalog of 80M peaks. Additionally, the updated
database includes new search features for TR names
as well as aliases, including cell line names and the
ability to navigate the data directly within genome
browsers via public track hubs. Finally, full access
to this catalog is available online together with a TR
binding enrichment analysis tool. ReMap 2018 pro-
vides a significant update of the ReMap database,
providing an in depth view of the complexity of the
regulatory landscape in human.

INTRODUCTION

Transcription factors (TFs), transcriptional coactivators
(TCAs) and chromatin-remodeling factors (CRFs) drive
gene transcription and the organization of chromatin
through DNA binding. TFs specifically bind to DNA se-
quences (TF binding sites) to activate (activators) or re-

press (repressors) transcription, TCAs enhance gene tran-
scription by binding to activator TF. While CRFs modify
the chromatin architecture to allow DNA access for tran-
scription machinery proteins. In recent years, the devel-
opment of high-throughput techniques like chromatin im-
munoprecipitation followed by sequencing (ChIP-seq) (1)
has allowed to experimentally obtain genome-wide maps of
binding sites across many cell types for a variety of DNA-
binding proteins. The popularity of ChIP-seq has led to a
deluge of data in current data warehouses (2,3) for TFs,
TCAs and CRFs, collectively named transcriptional regu-
lators (TRs). The rapid accumulation of ChIP-seq data in
public databases provides a unique and valuable resource
for hundreds of TR occupancy maps. There is a strong need
to integrate these large-scale datasets to explore the tran-
scriptional regulatory repertoire. Unfortunately, the hetero-
geneity of the pipelines used to process these data, as well as
the variety of underlying formats used, challenge the anal-
ysis processes and the underlying detection of TF binding
sites (TFBSs). Integrative studies would offer significant in-
sights into the dynamic mechanisms by which a TF selects
its binding regions in each cellular environment.
ReMap has been the first large scale integrative initia-

tive to study these data, offering significant insights into
the complexity of the human regulatory landscape (4). The
ReMap 2015 resource created a large catalog of regulatory
regions by compiling the genomic localization of 132 differ-
ent TRs across 83 different human cell lines and tissue types
based on 395 non-ENCODE datasets selected from Gene
ExpressionOmnibus (2) andArrayExpress (3). This catalog
was merged with the ENCODE multi-cell peaks (5), gener-
ating a global map of 13M regulatory elements for 237 TRs
across multiple cell types. However, since the 2015 publica-
tion of ReMap, an even greater number of ChIP-seq assays
has been submitted to genomic data repositories.
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Here, we introduce the ReMap 2018 update, which in-
cludes the integration of 2829 quality controlled ChIP-
seq datasets for TFs, TCAs and CRFs. The new ChIP-seq
datasets (n = 1763, defined as ‘Public’ for non-ENCODE)
as well as the latest ENCODE ChIP-seq data (n = 1066)
have been mapped to the GRCh38/hg38 human assembly,
quality filtered and analyzed with a uniform pipeline. In
this update, we propose a unified integration of all public
ChIP-seq datasets producing a unique atlas of regulatory
regions for 485 TRs across 346 cell types, for a total of 80M
DNA binding regions. Each experiment introduced in this
release has been assessed and manually curated to ensure
correct meta-data annotation. Our ReMap database pro-
vides DNA-binding locations for each TR, either for each
experiment, at cell line or primary cell level, or at the TR
level in a non-redundant fashion across all collected ex-
periments. This update represents a 2-fold increase in the
number of DNA-binding proteins, 7-fold in the number of
processed datasets, 4-fold in the number of cell lines/tissue
types and 6-fold in the number of identifiedChIP-seq peaks.
While the first version of the ReMap catalog covered 26%
(793Mb) of the human genome, the regulatory search space
for ReMap 2018 covers 46% (1.4Gb).
Finally, we give the community access to various options

to visualize and browse our catalog, allowing users to nav-
igate and dissect their genomic loci of interest co-occupied
by multiple TRs in various cell types. Browsing the ReMap
2018 catalog using the Public Track hub, IGV data sever,
Ensembl or UCSC sessions clearly exposes the abundance
and intricacy of combinatorial regulation in cellular con-
texts.
This report presents the extensive data increase and regu-

latory catalog expansion of ReMap as a result of our large-
scale data integration and genome-wide analysis efforts.
The manual curation specific to the ReMap initiative offers
a unique and unprecedented collection of TR binding re-
gions. These improvements, together with several novel en-
hancements (search bars, data track displays, format and
annotation), constitute a unique atlas of regulatory regions
generated by the integration of public resources.

MATERIALS AND METHODS

Available datasets

ChIP-seq datasets were extracted from theGene Expression
Omnibus (GEO) (2), ArrayExpress (AE) (3) and ENCODE
(5) databases. For GEO, the query ‘(‘chip seq’ OR ‘chipseq’
OR ‘chip sequencing’) AND ‘Genome binding/occupancy
profiling by high-throughput sequencing’ AND ‘homo
sapiens’[organism] AND NOT ‘ENCODE’[project]’ was
used to return a list of all potential datasets, which were
then manually assessed and curated for further analyses.
For ArrayExpress, we used the query (Filtered by organism
‘Homo sapiens’, experiment type ‘dna assay’, experiment
type ‘sequencing assay’, AE only ‘on’) to return datasets
not present in GEO. Contrary to other similar databases
(chip-atlas http://chip-atlas.org, (6,7)), ReMap meta-data
for each experiment are manually curated, annotated with
the official gene name from theHUGOGeneNomenclature
Committee (8) (www.genenames.org) and BRENDATissue
Ontologies (9) for cell lines (www.ebi.ac.uk/ols/ontologies/

bto). Datasets involving polymerases (Pol2 and Pol3), and
some mutated or fused TFs (e.g. KAP1 N/C terminal mu-
tation, GSE27929) were filtered out. A dataset is defined as
a ChIP-seq experiment in a given GEO/AE/ENCODE se-
ries (e.g. GSE37345), for a given TF (e.g. FOXA1), and in a
particular biological condition (e.g. LNCaP). Datasets were
labeled with the concatenation of these three pieces of infor-
mation (e.g. GSE37345.FOXA1.LNCAP).
A total of 3180 datasets were processed (Supplemen-

tary Table S1). Specifically, we analyzed 2020 datasets from
GEO (1862) andArrayExpress (158) repositories (July 2008
to May 2017). We define these non-ENCODE datasets as
the ‘Public’ set, in opposition to ENCODE datasets (1160)
(full list of experiments in Supplementary Tables S2 and 3).
ReMap 2015 contained the multi-cell peak calling pro-

cessed from ENCODE release V3 (August 2013). For the
ReMap 2018 update, we re-analyzed, starting from the raw
data, all ENCODE ChIP-seq experiments for TFs, tran-
scriptional and chromatin regulators, following the same
processing pipeline as the Public set. We retrieved the list
of ENCODE data as FASTQ files from the ENCODE por-
tal (https://www.encodeproject.org/) using the following fil-
ters: Assay: ‘ChIP-seq’, Organism: ‘Homo sapiens’, Target
of assay: ‘TF’, Available data: ‘fastq’ on 21 June 2016.Meta-
data information in JSON format and FASTQ files were
retrieved using the Python requests module. We processed
1160 datasets associated to 161 TRs and 87 cell lines. We
removed 2 TRs (POLR2A, POLR3G), and renamed TR
aliases into official HGNC identifiers (e.g. p65 into RELA,
see Supplementary Table) leading to a final list of 279 TRs
from ENCODE.

ChIP-seq processing

Both ENCODE and Public datasets were uniformly pro-
cessed and analyzed. Bowtie 2 (version 2.2.9) (10) with op-
tions –end-to-end –sensitive was used to align all reads
on the human genome (GRCh38/hg38 assembly). For
Public datasets, adapters were removed using TrimGa-
lore (https://www.bioinformatics.babraham.ac.uk/projects/
trim galore/), trimming reads up to 30 bp. Polymerase
chain reaction duplicates were removed from the align-
ments with samtools rmdup (11). For the ENCODE data,
the adapter trimming step was not employed, as this data
already passed certain quality assessment steps (https://
www.encodeproject.org/data-standards/). TR binding re-
gions were identified using the MACS2 peak-calling tool
(version 2.1.1.2) (12) in order to follow ENCODEChIP-seq
guidelines (13), with stringent thresholds (MACS2 default
thresholds, P-value: 1e-5). Input datasets were used when
available. All peak-calling files are available to download.
Among the 80M peaks identified, 99.5% of peaks (79 753
407) were below 1.5 kb in size (mean size: 286 bp, median
size: 231 bp) and only 376 017 peaks were above 1.5 kb in
size (mean size: 2209 bp, median size: 1859 bp).

Quality assessment

As raw data are obtained from various sources, under dif-
ferent experimental conditions and platforms, data qual-
ity differs across experiments. Since the ReMap 2015 re-
lease, our ChIP-seq pipeline assesses the quality of all
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datasets, unlike similar databases (chip-atlas http://chip-
atlas.org, (6,7)), (Supplementary Table S4). We compute a
score based on the cross-correlation and the FRiP (frac-
tion of reads in peaks) metrics developed by the ENCODE
consortium (13) (Supplementary Figure S1). Descriptions
of the ENCODE quality coefficients can be found on the
UCSCGenome portal (http://genome.ucsc.edu/ENCODE/
qualityMetrics.html). Our pipeline computes the normal-
ized strand cross-correlation coefficient (NSC) as a ratio be-
tween the maximal fragment-length cross-correlation value
and the background cross-correlation value, and the rel-
ative strand cross-correlation coefficient (RSC), as a ra-
tio between the fragment-length cross-correlation and the
read-length cross-correlation. The same methods and qual-
ity cutoffs were applied as in ReMap 2015 (4). Datasets not
passing the QC were not included in the catalog of peaks
available for download (http://remap.cisreg.eu).

DNA constraint scores

We provide the conservation profiles at the nucleotide level
for each of the 485 TRs present in our catalog. We assessed
the DNA constraint for each base pair by considering ±1
kb around the summit of each non-redundant peak (see be-
low). Genomic Evolutionary Rate Profiling scores (GERP)
were used to calculate the conservation of each nucleotide in
amulti-species alignment (14). The computedGERP scores
were obtained from the 24-way amniota vertebrates Pecan
(15) multi-species alignment, and extracted from the En-
sembl Compara database release v89 (16).

Genome coverage, non-redundant peak sets and CRMs

Genome coverages were computed using the BedTools suite
(17) (version 2.17.0) using the ‘genomecov’ function with
the option -max 2 that combines all positions with a depth
≥2 binding locations. Full details of the ReMap 2015 and
2018 genome coverage are available in Supplementary Ta-
ble S5. ReMap also provides a catalog of discrete, non-
redundant binding regions for each TR, a specificity not
found in other databases (chip-atlas http://chip-atlas.org,
(6,18)).We used BedTools tomerge overlapping peaks (with
at least 1 bp overlap) identified in different datasets for the
same TR. The summit of the resulting peaks was defined
as the average position of the summits of the merged peaks.
Those peaks made of at least two or more peaks for a given
factor are defined as non-redundant peaks. We observed a
mean variation of 77 bp between the summits of the non-
redundant peaks and the individual peak summits (Supple-
mentary Figure S2). Similarly, to obtain the cis-regulatory
modules (CRMs) in the genome, overlapping peaks of all
TRs were merged using BedTools. Regions bound by sev-
eral TRs are called CRMs, whereas regions bound by only
one TR are labeled as singletons.

Roadmap human epigenome annotations

Two sets of chromatin accessibility data were used to better
characterize the ReMap atlas. We employed BedTools for
overlap analyses allowing a minimum of 10% overlap.
The NIH Roadmap Epigenomics Mapping Consortium

(19) data were downloaded from the roadmap data
portal (http://egg2.wustl.edu/roadmap). Delineation of
DNaseI-accessible regulatory regions were accessed from
http://egg2.wustl.edu/roadmap/web portal/DNase reg.
html#delieation. BED files with coordinates of each
region type for each epigenome separately are available
for 81 232 promoter regions (1.44% of genome), 2 328
936 putative enhancer regions (12.63% of genome) and
129 960 dyadic promoter/enhancer regions (0.99% of
genome). The core 15-state model of chromatin combi-
natorial interactions between different chromatin marks
was downloaded from http://egg2.wustl.edu/roadmap/
web portal/chr state learning.html#core 15state. Chro-
matin state definitions and abbreviations are: 1 Active
TSS (TssA), 2 Flanking active TSS (TssAFlnk), 3 Tran-
scr. at gene 5′ and 3′(TxFlnk), 4 Strong transcription
(Tx), 5 Weak transcription (TxWk), 6 Genic enhancers
(EnhG), 7 Enhancers (Enh), 8 ZNF genes + repeats
(ZNF/Rpts), 9 Heterochromatin (Het), 10 Bivalent/poised
TSS (TssBiv), 11 Flanking bivalent TSS/Enh (BivFlnk),
12 Bivalent enhancer (EnhBiv), 13 Repressed Polycomb
(ReprPC), 14 Weak repressed Polycomb (ReprPCWk) and
15 Quiescent/low (Quies).

DATA COLLECTION AND CONTENT

Integration of data sources

The 2018 release of the ReMap database reflects signifi-
cant advances in the number of binding regions, the num-
ber of TFs, transcriptional co-activators, chromatin regu-
lators and overall the total number of datasets integrated
in our catalog. We initially selected, processed and ana-
lyzed 3180 ChIP-seq datasets against TRs from GEO, AE
and ENCODE. To ensure consistency and comparability,
all datasets were processed from raw data, through our uni-
form ChIP-seq workflow that included read filtering, read
mapping, peak calling and quality assessment based onEN-
CODE quality criterions. As the quality of ChIP-seq exper-
iments vary significantly (20,21), we incorporated a criti-
cal data quality filtering step in our pipeline––not imple-
mented in other databases (chip-atlas http://chip-atlas.org
(6,7,18)). Specifically, we considered four quality metrics,
twometrics independent of peak calling for assessing signal-
to-noise ratios in a ChIP-seq experiment and two metrics
based on peak properties. Following ENCODE ChIP-seq
guidelines and practices (13), we used theNSC and theRSC
(see ‘Materials andMethods’ section). Further, we used the
FRiP and the number of peaks in the dataset (see ‘Mate-
rials and Methods’ section). After applying our quality fil-
ters based on these four ChIP-seq metrics we retained 2829
datasets (89%): 1763 datasets fromGEO and ArrayExpress
and 1066 from ENCODE (Figure 1A and Supplementary
Figure S1). The significant increase of data is spread across
almost all TFs when compared to ReMap 2015 (Figure 1B).
Nevertheless, we observe TFs (e.g. AR, ESR1, FOXA1) and
CRFs (e.g. BRD4, EZH2) displaying a larger data growth
than other DNA-binding proteins. The majority of TRs
show additional datasets integrated in ReMap 2018 (Figure
1B, dark blue bars).
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Figure 1. Overview of the ReMap database expansion. (A) Analyzed datasets growth in ReMap 2018 compared to ReMap 2015. (B) Evolution of the
number of datasets per TRs, ranked across common between both ReMap versions. (C) Common TRs between Public and ENCODE sets of data (gray).
Direct comparison of Public and ENCODE repertoire, defined as percentages (%), and as number (Nb) of peaks. (D) Genome coverage fraction of each
ReMap dataset (NR non-redundant, CRM Cis Regulatory Modules). (E) Comparison of DNase I-accessible regulatory regions against the ReMap 2018,
regions from the Roadmap Epigenomics Consortium defining promoter-only, enhancer-only or enhancer–promoter alternating states (Dyadic). Each dot
represents the fraction overlap with ReMap 2018 for one of the 111 epigenomes. (F) Comparison of the Roadmap Epigenomics Consortium chromatin
states annotations against the ReMap 2018 catalog, using the Core 15 chromatin states model, and a minimum overlap of 50% between regions. Each dot
represents the overlap for one of the 111 epigenomes. Chromatin state definitions and abbreviations are as follows; 1 Active TSS (TssA), 2 Flanking active
TSS (TssAFlnk), 3 Transcr. at gene 5′ and 3′(TxFlnk), 4 Strong transcription (Tx), 5 Weak transcription (TxWk), 6 Genic enhancers (EnhG), 7 Enhancers
(Enh), 8 ZNF genes + repeats (ZNF/Rpts), 9 Heterochromatin (Het), 10 Bivalent/poised TSS (TssBiv), 11 Flanking bivalent TSS/Enh (BivFlnk), 12
Bivalent enhancer (EnhBiv), 13 Repressed Polycomb (ReprPC), 14 Weak repressed Polycomb (ReprPCWk), 15 Quiescent/low (Quies).

Regulatory catalog expansion

With all ChIP-seq data uniformly processed, the ReMap
2018 catalog displays ENCODE data down to the cell line
and dataset level rather than the simpler multi-cell analy-
sis provided by ENCODE DCC used in ReMap 2015. Our
analyses produced 48 693 300 peaks for the Public-only
(non-ENCODE) set across 331 TRs and 31 436 124 peaks
for the ENCODE set across 279 TRs, leading to a final
ReMap regulatory atlas of 80 129 705 peaks generated from
485 TRs (Figure 1C). We found 125 TRs common to the
two sets, 154 proteins specific to ENCODE and 206 spe-
cific to the Public catalog (Figure 1C). We also found that
839 400 CRMs are shared between both catalogs. Taken
separately, the ENCODE peaks overlaps by 96% the Pub-

lic regions, and 87% of the Public peaks overlap ENCODE
regions (Figure 1C). It suggests that merging both Public
and ENCODE sets complements the annotation of DNA-
bound regions, as it increases the number of regulatory re-
gions in our atlas, hence improving the annotation ofDNA-
bound elements in the human genome (Figures 1C and 2).
Indeed, about 13% (405Mb) of the human genome is cov-

ered by at least one feature only from the entire ReMap cat-
alog and 33% (1.02 Gb) are covered by two or more features
(Figure 1D and Supplementary Table S4). The Public-only
and ENCODE-only sets cover the genome by two or more
peaks by 28 and 15% respectively. The observed differences
can be explained by thewide spectrumof cell lines and treat-
ments included in the Public set (300 cell lines) compared
to the ENCODE set (86 cell lines). As a comparison, the
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ReMap 2018
ENCODE-only
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FOXA1
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FOXA1
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Figure 2. ReMap ChIP-seq binding pattern of 2829 datasets. A genome browser example of the ChIP-seq binding peak depth of the ReMap 2018 catalog
compared to ReMap 2015 at the vicinity of the ELAC1 promoter (chr18:50,967,094-50,970,983). The tracks and peaks displayed are compacted to thin
lines so the depth of ReMap 2018 bindings can be compared to ReMap 2015. A full and un-compacted screenshot is available as Supplementary Figures S2
and 3. On this location the ReMap 2018 catalog contains 1307 peaks, whereas the ReMap 2015 contains 229 peaks (ReMap 2015 lifted to GRCh38/hg38
assembly). The following genome tracks correspond to the GENCODE v24 Comprehensive Transcript Set and the 100 vertebrates base-wise conservation
showing sites predicted to be conserved (positive scores in blue), and sites predicted to be fast-evolving (negative scores in red). A detailed view of the
redundant peaks for a FOXA1 site is available in Figure 3.

ReMap 2015 catalog covered 10% (321 Mb) of the genome
with one feature only, and 15% (471Mb)with at least two or
more features. Between the twoReMap versions, we observe
that the fraction of the human genome covered by one fea-
ture remains extremely stable (+84 Mb from 2015 to 2018),
whereas the fraction covered by two or more regulatory fea-
tures increases by 545 Mb. With ReMap 2018, we increase
the range of the regulatory space, and provide binding re-

gions for similar TRs at a greater depth, revealing tight and
dense co-localization sites (Figures 2 and 3).

Overlap with cis-regulatory genomic regions

Using the NIH Roadmap 111 epigenomes analyses, we
asked whether the DNase I defined regions as well as the
core 15 chromatin states model would better characterize
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Figure 3. FOXA1 ChIP-seq peaks pattern evolution across ReMap versions. Detailed view of the FOXA1 peaks present in ReMap 2018 (60 peaks) com-
pared to the FOXA1 peaks in ReMap 2015 (15 peaks) found at the genomic location chr18:50,969,638-50,970,931 in the first intron of the ELAC1 gene.
Those 60 FOXA1 peaks are derived fromGEO, ArrayExpress and ENCODEChIP-seq across multiple cell lines. Interestingly, it can be noted that the peak
summits (vertical bars) of each peak aggregate closely from each other, defining precisely the DNA binding location. Those aggregations of the FOXA1
summits are an illustration of what is globally observed for peaks of different TFs across the genome.

the ReMap atlas (Figure 1E and F). The Roadmap con-
sortium defined a total of 3.5M DNase I-accessible regu-
latory regions by merging all DNase I hypersensitive re-
gions across epigenomes, which were then annotated using
the core 15-state model focusing on chromatin states for
promoters, enhancers and dyadic (promoter + enhancer)
ambiguous regions (see ‘Materials and Methods’ section).
Among these three categories, the ReMap atlas could re-
capitulate on average 75.2% of the Roadmap promoter re-
gions, 69.8% of enhancer regions and 70.1% of dyadic re-
gions from the Roadmap annotation. Looking at the core
15-state model, we observe that the ReMap catalog recapit-
ulates more than 70% of the regions covered by each state

(Enhancer Genic (81%), Enhancer (80%) and TSS active
(80%) states) with the exception of quiesent state (36%).
Taken together, these results suggest that some promoter
and enhancer activities from Roadmap may be cell type
specific, as about 20–30% of those regions seem specific to
Roadmap consortium cells. The ReMap initiative results
from a large-scale integration of hundreds of diverse cell
types, and leads to a regulatory landscape illustrating the
large regulatory circuitry of those cells. The constant inte-
gration of novel data will allow for a greater definition of
the regulatory space across the genome.
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Large regulatory atlas

TheReMap database provides a large view of a unique regu-
latory landscape constituted by 80M binding regions form-
ing 1.6M CRMs. The genomic organization of our occu-
pancy map reveals dense co-localizations of sites forming
tight clusters of heterogeneous binding sites with variable
TRs complexity (Figure 2). For instance, the regulatory re-
gions observed in the vicinity of the ELAC1 promoter illus-
trate the ReMap 2018 expansion (n = 1037 peaks). It high-
lights how the regulatory repertoire can be complemented
by merging both Public and ENCODE sources. We observe
a large cluster of peaks at the ELAC1 promoter followed
by two clusters at +500 bp and 1 kb from the transcrip-
tion start site. The third cluster exemplifies how integrat-
ing data from different sources improves genome annota-
tions, as few peaks are available from ENCODE at this lo-
cation. Additionally, this cluster was detailed in our pre-
vious ReMap publication (4) and consisted of 15 FOXA1
ChIP-seq peaks from different cells, antibodies, and labora-
tories (Figure 3). In this update, we consolidate this FOXA1
binding location with 60 peaks. The summit of each peak is
represented by vertical bars aggregated closely from each
other, providing an information about the putative loca-
tion of the DNA binding site. The clustering of FOXA1
peaks and summits illustrates our genome-wide repertoire.
However, this FOXA1 example shows overlapping sites de-
rived from various experimental conditions, and therefore
does not reflect the total number of discrete binding re-
gions across the genome. To address redundancy between
datasets, we merged binding regions for the same TR, re-
sulting in a catalog of 35.5M peaks for all TRs combined.
These merged peaks, defined as non-redundant peaks, are
made of at least two or more peaks and singletons for a
given factor across all experiments, and are available for
download from the ReMap website. The TRs with the most
merged binding regions across cell types are AR, FOXA1,
CTCF and ESR1 (Supplementary Figure S6). These re-
sults indicate that most bindings are shared across differ-
ent ChIP-seq experiments, either for similar or for different
cell types. Overall, ourReMap update provides a unique op-
portunity to identify complex regulatory architectures con-
taining multiple bound regions. We observe that by adding
more cell lines, more experiments and more DNA-binding
proteins, we increased the genome regulatory space and its
depth (Figure 2), but also refined the current annotations of
bound regions (Figure 3).

IMPLEMENTATION AND PUBLIC ACCESS

Web display

ReMap provides free public access to all data at http://
remap.cisreg.eu. The results presented here provide an in-
formative annotation for 80MChIP-seq peaks coming from
public data sources, which are derived from 485 TRs across
346 diverse cell lines. This catalog provides an unparal-
leled resource for dissecting site-specific TF bindings (e.g.
FOXA1 in Figures 2 and 3) or genome-wide binding analy-
ses. The ReMap web interface displays informations about
the integrated TRs (description, classification, external ref-
erences to Ensembl gene IDs, UniProt, RefSeq, WikiGene,

JASPAR, FactorBook, TF Encyclopedia and other re-
sources), peaks, and datasets (quality assessment, readmap-
ping and peak calling statistics, conservation score under
peaks). The interface provides a simple ‘Dynamic Search’
available from the TRs, Cell lines and Download pages and
is the entry point for users to search for specific data. The
search form allows users to narrow their searches based on
gene aliases, dataset names or IDs, cell line names or on-
tology. For example, entering ‘Oct’ as search term in the
‘Dynamic Search’ returns three TFs POU2F2, POU2F1,
POU5F1 having various ‘OCT’ aliases. Additionally, one
could use the search box in the Cell or Download page to
search for specific cell types containing the ‘Colo’ term for
instance, or ‘GSE66218’ for a precise experiment from the
Download page.Moreover, we provide a tool that allows the
annotation of genomic regions provided by users. Those re-
gions are compared against the ReMap catalog returning
statistical enrichments of TR bindings present within user-
provided input regions compared to random expectations.
It allows for the study of over-represented TR binding re-
gions.

Browsing and downloading data

Updates made in ReMap 2018 reflect significant improve-
ment in the variety of genome navigation options. As the
ReMap 2015 UCSC session was popular, we now pro-
vide more data navigation alternatives. The content of the
ReMap database can be browsed through four options: (i)
across two mirror sites of the UCSC Genome Browser (22)
where a public session has been created (Figure 2 and Sup-
plementary Figure S3), (ii) across three Ensembl Genome
Browser mirrors (16) (Supplementary Figure S4), (iii) using
the ReMap public track hub (23) or (iv) using the IGV data
server (24) (Supplementary Figure S5). For each option, we
provide four tracks, the full ReMap catalog containing all
peaks, the Public-only peaks, the ENCODE-only peaks and
a track containing only peaks above 1.5 kb. As the ReMap
catalog expanded, it is crucial to allow visual exploration of
regulatory regions across different platforms combinedwith
public or user-specific genome-wide annotations. In addi-
tion, the entire ReMap 2018 catalog, as well as the Public-
specific or ENCODE-specific peaks, have been compiled
into BED files allowing further interpretations and compu-
tational analyses.

FUTURE DIRECTIONS

Next-generation sequencing technologies are playing a key
role in improving our understanding of regulatory ge-
nomics. As ChIP-seq technology is applied to a broader
set of cell lines, tissues and conditions, we will continu-
ously maintain and update the database. In the near fu-
ture, we propose on adding to theReMap portfolio different
peak-caller analyses to further consolidate the peak reper-
toire. Also, we aim to provide direct access to aligned reads
through a FTP server, allowing users to upload and nav-
igate aligned raw data of their choice. We plan on releas-
ing a Bioconductor R-package for genomic region enrich-
ment analyses for large genomic catalogs such as ReMap,
which will be replacing our current web enrichment tool. In
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the coming year, we would like to provide a Bioconductor
R-package to search and download ReMap data for a spe-
cific study, to get genomic range objects, raw counts and/or
metadata used for a specific study. Overall, determining the
best approach to curate and annotate ChIP-seq data with
a very broad level of submitted annotations and metadata
into a simple-to-use, easy-to-analyze and up-to-date system
will become a focus for the ReMap project.

CONCLUSION

The 2018 release of ReMap maintains the long-term fo-
cus of providing the research community with the largest
catalog of high-quality regulatory regions by integrating
all available ChIP-seq data from DNA-binding assays. The
usefulness of ReMap is exemplified by the last release of the
JASPAR database (25), for which ReMap ChIP-seq peaks
were used to derive 45 new TF binding profiles that were
incorporated in the 2018 release of the vertebrate CORE
collection (Khan et al. 2018), providing a 9% increase from
JASPAR 2016 (26) by solely relying on the ReMap 2018
catalog. Although new datasets are constantly added to
repositories, we believe that our ReMap atlas will help in
better understanding the regulation processes in human.
In this update, we have (i) widely expanded the collection
of datasets curated and analyzed from public sources with
now 485 TFs, transcriptional co-activators and chromatin
regulators; (ii) uniformly processed and integrated the EN-
CODE ChIP-seq data; (iii) enhanced the website usability
by allowing dynamic search of TRs, aliases, cell lines and
experiments, (iv) expanded the genome browsing experience
by integrating ReMap in all UCSC and Ensembl Genome
Browsers mirror sites and provided a Track Hub for data
integration in other platforms; (v) improved the capacity to
download all ReMap files in bulk or individually.

AVAILABILITY

ReMap 2018 can be accessed through a web interface at
http://remap.cisreg.eu.Downloads are available in BED for-
mat for the entire ReMap catalog, the Public-only peaks,
the ENCODE-only peaks, and in FASTA andBED formats
for each TR. In addition, UCSC and Ensembl Genome
Browsers users can navigate ReMap across their mirror
sites, use ReMap in UCSC public sessions, or use the pub-
lic track hub. Finally, Integrative Genome Browser (IGV)
users have the option of loading an IGV optimized dataset
directly in the application.

FEEDBACK

The ReMap team welcomes your feedback on the cat-
alog, use of the website and use of the downloadable
files. Please contact us at benoit.ballester@inserm.fr or
remap@cisreg.eu for development requests. We thank our
users for their feedback to make ReMap useful for the com-
munity.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

FUNDING

French Ministry of Higher Education and Research
(MESR) PhD Fellowship (to J.C.); Norwegian Research
Council (to A.M., M.G.); Helse Sør-Øst (to A.M., M.G.);
University of Oslo (to A.M., M.G.). Funding for open ac-
cess charge: Institut national de la santé et de la recherche
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ABSTRACT

JASPAR (http://jaspar.genereg.net) is an open-
access database of curated, non-redundant tran-
scription factor (TF)-binding profiles stored as posi-
tion frequency matrices (PFMs) and TF flexible mod-
els (TFFMs) for TFs across multiple species in six tax-
onomic groups. In the 2018 release of JASPAR, the
CORE collection has been expanded with 322 new
PFMs (60 for vertebrates and 262 for plants) and 33
PFMs were updated (24 for vertebrates, 8 for plants
and 1 for insects). These new profiles represent a
30% expansion compared to the 2016 release. In ad-
dition, we have introduced 316 TFFMs (95 for verte-
brates, 218 for plants and 3 for insects). This release
incorporates clusters of similar PFMs in each taxon
and each TF class per taxon. The JASPAR 2018 CORE
vertebrate collection of PFMs was used to predict

TF-binding sites in the human genome. The predic-
tions are made available to the scientific community
through a UCSC Genome Browser track data hub. Fi-
nally, this update comes with a new web framework
with an interactive and responsive user-interface,
along with new features. All the underlying data can
be retrieved programmatically using a RESTful API
and through the JASPAR 2018 R/Bioconductor pack-
age.

INTRODUCTION

Transcription factors (TFs) are sequence-specific DNA-
binding proteins involved in the transcriptional regulation
of gene expression (1). TFs bind to DNA through their
DNA-binding domain(s) (DBDs), which are used for TF
classification (2). DNA regions at which TFs bind are de-
fined as TF-binding sites (TFBSs) and can be identified
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Table 1. Overview of the growth of the number of PFMs in the JASPAR 2018 CORE collection compared to the JASPAR 2016 CORE collection

Taxonomic group

Non-redundant
PFMs in JASPAR
2016

New non-redundant
PFMs in JASPAR
2018

Updated PFMs in
JASPAR 2018

Total PFMs
(non-redundant) in
JASPAR 2018

Total PFMs (all versions)
in JASPAR 2018

Vertebrates 519 60 24 579 719
Plants 227 262 8 489 501
Insects 133 0 1 133 140
Nematodes 26 0 0 26 26
Fungi 176 0 0 176 177
Urochordata 1 0 0 1 1
Total 1082 322 33 1404 1564

in vivo by methods such as chromatin immunoprecipita-
tion (ChIP) or in vitro by methods based on binding of
large pools of DNA fragments (e.g. Systematic evolution
of ligands by exponential enrichment (SELEX) or protein-
binding microarrays (PBM)) (reviewed in (3)). Analysis of
TFBSs for a given TF provides models for its specific DNA-
binding preferences, which in turn can be used to predict
TFBSs in DNA sequences (4). This is important as exper-
iments can only identify TFBSs that are bound in the cell
and state analyzed.
The computational representation of TF binding prefer-

ences has evolved over the years, from simple consensus se-
quences to position frequency matrices (PFMs). A PFM
summarizes experimentally determined DNA sequences
bound by an individual TF by counting the number of oc-
currences of each nucleotide at each position within aligned
TFBSs. Suchmatrices can be converted into positionweight
matrices (PWMs), also known as position-specific scoring
matrices, which are probabilistic models that can be used to
predict TFBSs in DNA sequences (reviewed in (5)).
PFMs/PWMs have been the standard models for de-

scribing binding preferences of TFs for many years. The
JASPAR database is among the most popular and longest
maintained databases for PFMs and a standard resource
in the field. In particular, the JASPAR CORE collection of
the database, which is the most used, stores non-redundant
TF binding profiles, providing a single representative DNA
binding model per TF decided by expert curators. Excep-
tionally, multiple TF-binding profiles are associated to a
TF when it is known to interact with DNA with multi-
ple distinct sequence preferences, due to differential splic-
ing for example (6,7). JASPAR was created and persists un-
der three guiding principles: (i) unrestricted open-access; (ii)
manual curation and non-redundancy of profiles; and (iii)
ease-of-use. The 2016 release of the JASPAR CORE collec-
tion stored 1082 non-redundant and manually curated TF-
binding profiles as PFMs for TFs from six different taxo-
nomic groups (vertebrates, plants, insects, nematodes, fungi
and urochordata) (8).
An intrinsic limitation to PFMs/PWMs is that they ig-

nore inter-nucleotide dependencies within TFBSs (9–13).
TF–DNA interaction data derived from next-generation se-
quencing assays has improved the computational modeling
of TF binding (14–19). For example, the TF flexible models
(TFFMs) (14), based on first-order hiddenMarkov models,
capture dinucleotide dependencies within TFBSs and were
introduced in the 2016 release of the JASPAR database.

In this report, we describe the seventh release of JASPAR
(8,20–24), which comes with a major expansion and update
of theCOREcollection of TF-binding profiles as PFMs and
TFFMs. These models have been manually assessed by ex-
pert curators who reconciled recent high-throughput data
with available literature and linked themodels to the classifi-
cation of their TFDBDs from TFClass (2). The CORE col-
lection expansion is supported by a range of new functional-
ities and resources, including PFM clustering, genome-wide
UCSC tracks of predicted TFBSs and fully redesigned user
and programming interfaces.

EXPANSION AND UPDATE OF THE JASPAR CORE
COLLECTION

In this 2018 release of the JASPAR database, we added
355 new PFMs for TFs from plants (270), vertebrates (84)
and insects (1) to the JASPAR CORE collection (Table 1).
Specifically, we added 322 PFMs (262 for plants, a 118%
increase and 60 for vertebrates, an 11% increase) for TF
monomers and dimers that were not previously present in
JASPAR and updated 33 (8 in plants, 3% of JASPAR 2016,
24 in vertebrates, 5% of JASPAR 2016 and 1 in insects).
The PFMs were manually curated using independent exter-
nal literature supporting the candidate TF-binding prefer-
ences, as previously described in (23). The curated PFMs
were derived from ChIP-seq (from ReMap (25) and (26–
30)), DAP-seq (31), SMiLE-seq (32), PBM (33) and HT-
SELEX (34) experiments. The JASPAR CORE collection
now includes 1404 non-redundant PFMs (579 for verte-
brates, 489 for plants, 176 for fungi, 133 for insects, 26 for
nematodes and 1 for urochordata) (Table 1).
We continued with the incorporation of TFFM models,

initiated in JASPAR 2016. In this release of JASPAR, we in-
troduced 316 new TFFMs for vertebrates (95), plants (218)
andDrosophila (3), which represents a 243% increase in the
number of non-redundant TFFMs stored in the JASPAR
CORE collection.

HIERARCHICAL CLUSTERING OF TF-BINDING PRO-
FILES

While the non-redundancy of binding profiles is one of the
guiding principles of JASPAR, TFs with similar DBDs of-
ten have similar binding preferences (35,36). To facilitate the
exploration of similar profiles in the JASPAR CORE col-
lection, we performed hierarchical clustering of PFMs us-
ing the RSAT matrix-clustering tool (37). Specifically, the
tool was applied to PFMs in each taxon independently as
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Figure 1. JASPAR PFM clustering. (A) Radial tree representing the clusterization of the JASPAR CORE vertebrate PFMs. (B) Zoom in view of the radial
tree where the predicted clusters are highlighted at the branches and the TF classes are indicated with different colors at the leaves. (C) Clicking on a leaf
in the radial tree will open a link to the corresponding motif description page on the JASPAR website (the MA0148.3 profile associated to FOXA1 is
provided here as an example).
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Figure 2. Overview of the JASPAR 2018 new web interface with interactive searching activity. (A) A quick and detailed search feature on the homepage.
(B) A responsive table lists the searched profile(s), which can be further selected and added to the cart listed on the right panel for users to perform their
own analyses. (C) A detailed page for the GATA3 matrix profile, which is divided into sub-panels including the profile summary, sequence logo, PFM, TF-
binding information, external links, version information, ChIP-seq centrality, TFFM and other details. (D) The PFM for the GATA3 profile (MA0037.2)
is downloaded in MEME format using the RESTful API.

well as in each TF class per taxon. The clustering results are
provided as radial trees (Figure 1), which can further be ex-
plored through dedicated web pages (http://jaspar.genereg.
net/matrix-clusters).

JASPAR UCSC TRACKS FOR GENOME-WIDE ANAL-
YSES OF TFBSs

A typical application of JASPAR TF-binding profiles in
gene regulation studies is the identification of TFBSs in
DNA sequences for further analyses. Although, we recog-
nize that genome-wide PWM-based predictions contain a
high number false positives, we believe that they are a pow-
erful resource for the research community in the context

of a variety of genomic information, including transcrip-
tion start site activity, DNA accessibility, histone marks,
evolutionary conservation or in vivo TF binding (38–46).
To facilitate such integrative analyses, we have performed
TFBS predictions on the human genome using the JASPAR
CORE vertebrate PFMs (see Supplementary Data for de-
tails on the computation). The predictedTFBSs are publicly
available through a UCSC Genome Browser data hub (47)
containing tracks for the human genome assemblies hg19
and hg38 (http://jaspar.genereg.net/genome-tracks/).
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A NEW, POWERFUL AND USER-FRIENDLY WEB IN-
TERFACE

A new web interface

The JASPAR 2018 release comes with a completely re-
designed web interface that meets modern web standards.
This interactive web framework is implemented using
Django, a model-view-controller based web-framework for
Python. We used MySQL as a backend database to store
profile metadata and Bootstrap as a frontend template en-
gine. We have greatly improved the visibility and usability
of existing functionality, created easier navigation with se-
mantic URLs, and enhanced browsing and searching. On
the homepage, we provide a dynamic tour of JASPAR 2018,
walking users through the main features of the new website.
A video of the tour is available at http://jaspar.genereg.net/
tour. The database can be browsed for individual collections
by using the navigation links on the left sidebar. Moreover,
it can be searched for each of the six different taxonomic
groups included in the JASPAR CORE collection using
the tabs available on the homepage (Figure 2). TF-binding
profiles can be further filtered through the case insensi-
tive search option available on the homepage. In addition,
through the ‘Advanced Options’, the search criteria can be
further restricted (Figure 2A). Search results are presented
in a responsive and paginated table along with sequence lo-
gos of the PFMs, which can be selected for download or to
perform a variety of analyses available on the right panel
(Figure 2B). All information in the tables can be down-
loaded as comma-separated value files. Profile IDs and se-
quence logos can be clicked to view the detailed profile
pages (Figure 2C). PFMs can be downloaded in several for-
mats including JASPAR, TRANSFAC andMEME (Figure
2D). Furthermore, we have incorporated new features to the
web interface, such as ‘Add toCart’, where users can addTF
profiles of interest for download or further analyses (Figure
2B). Finally, we have introduced semantic URLs to facili-
tate external linking to the detailed pages of individual pro-
files (e.g. http://jaspar.genereg.net/matrix/MA0059.1/). We
have implemented a URL redirection mechanism to cor-
rectly direct the links pointing to previous JASPAR URL
patterns from external resources.

RESTful API

In previous releases, the underlying data could be retrieved
as flat files or by using programming language-specific
modules. Associated with this release, we introduced a
RESTful API to access the JASPAR database program-
matically (see https://www.biorxiv.org/content/early/2017/
07/06/160184 for details). The RESTful API enables pro-
grammatic access to JASPAR by most programming lan-
guages and returns data in seven widely used formats:
JSON, JSONP, JASPAR,MEME, PFM, TRANSFAC and
YAML. Further, it provides a browsable interface and ac-
cess to the JASPAR motif inference tool for bioinformat-
ics tool developers. The RESTful API is implemented in
Python using the Django REST Framework and is freely
accessible at http://jaspar.genereg.net/api/. The source code
for the website and RESTful API are freely available at
https://bitbucket.org/CBGR/jaspar under GPL v3 license.

CONCLUSION AND PERSPECTIVES

In this seventh release of the JASPARdatabase, we continue
our commitment to provide the research community with
high-quality, non-redundant TF-binding profiles for TFs in
six taxa. As in previous releases, we have greatly expanded
the number of available profiles in the database, both for
PFMs and TFFMs. We also greatly improved user experi-
ence through a new easy-to-use website and a RESTful API
that grants universal programmatic access to the database.
Moreover, for the PFMs in the JASPAR CORE collec-
tion, we provide a hierarchical clustering and genome-wide
TFBS predictions for the hg19 and hg38 human genome as-
semblies as UCSC tracks.
During the curation process, hundreds of PFMs were

discarded because our curators failed to find any support
from existing literature. As new experiments and data be-
come available, binding preferences for these TFs will be
considered for JASPAR incorporation. For instance, we re-
examined data from (34) to incorporate seven previously ex-
cluded PFMs into JASPAR 2018. In the future, we would
like to engage the scientific community in the curation pro-
cess to increase our capacity to introduce new TF-binding
profiles in JASPAR.We plan to dedicate a specific section of
the website to hosting the profiles that were not introduced
into JASPAR, to encourage researchers to perform experi-
ments and/or point us to literature that our curators missed
in order to support these profiles. We believe that the en-
gagement of the scientific community to support JASPAR
will further improve our capacity to expand the collection
of high quality TF-binding profiles.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Interpreting the functional impact of noncoding variants is an ongoing challenge in the field of genome
analysis. With most noncoding variants associated with complex traits and disease residing in regulatory
regions, altered transcription factor (TF) binding has been proposed as a mechanism of action. It is
therefore imperative to develop methods that predict the impact of noncoding variants at TF binding sites
(TFBSs). Here, we describe the update of our MANTA database that stores: 1) TFBS predictions in the
human genome, and 2) the potential impact on TF binding for all possible single nucleotide variants (SNVs)
at these TFBSs. TFBSs were predicted by combining experimental ChIP-seq data from ReMap and
computational position weight matrices (PWMs) derived from JASPAR. Impact of SNVs at these TFBSs was
assessed by means of PWM scores computed on the alternate alleles. The updated database, MANTA2,
provides the scientific community with a critical map of TFBSs and SNV impact scores to improve the
interpretation of noncoding variants in the human genome.
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Background & Summary
Understanding the relationship between DNA sequence variation (genotype) and observable traits and
diseases (phenotype) is one of the central paradigms of the post-genomics era. While most analyses have
focused on the ~2% of the genome that codes for proteins, genome-wide association studies have shown
that up to 88% of disease- and trait-associated variants are located in the 98% of the genome that is
noncoding1. Several computational tools, such as SIFT2 and Polyphen3, are well established for the
assessment of the deleterious impact of coding variation on protein functions yet interpreting the
functional impact of noncoding variants continues to be challenging4.

Recently, bioinformatics methods have been developed for scoring the impact of noncoding variants
based on their pathogenicity and regulatory capacity (Table 1). These methods vary both in their
algorithmic approaches and the underlying genomic features used. For instance, evolutionary
conservation5 can be used to evaluate nucleotides under purifying selection, and experimental data
such as histone modifications6, chromatin accessibility7,8, and DNA methylation9 are used to identify
biochemically active DNA, which is indicative of regulatory capacity.

Transcription factors (TFs) are sequence-specific DNA-binding proteins that regulate gene
transcription10. Genomic locations at which TFs interact with DNA are defined as TF binding sites
(TFBSs). They are typically short (6–10 bp) and often exhibit degeneracy. Chromatin immunoprecipita-
tion combined with sequencing (ChIP-seq)11 provides in vivo TF-DNA interactions at ~200–300 bp
resolution. These ChIP-seq regions are expected to encompass the 6–10 bp fragments corresponding to
TF-DNA interactions (TFBSs). The ReMap database12 is a publicly available resource providing an atlas
of such regions obtained from 2,829 uniformly processed human ChIP-seq data sets.

The DNA sequences bound by a given TF can be represented as position frequency matrices (PFMs),
which count the number of occurrences of each nucleotide within the TFBSs for that TF13. PFMs can be
converted into probabilistic computational models, namely position weight matrices (PWMs), which can
be used to predict TFBSs on any DNA sequence (reviewed by Wasserman and Sandelin14). Several
databases of PFMs exist15, including the recently updated JASPAR database16, which stores manually-
curated and non-redundant DNA-binding profiles such as PFMs for TFs across six taxonomic groups.

With most noncoding variants associated with complex traits and disease residing in regulatory
sequences17, it is expected that some will alter the binding of TFs to DNA18,19. Therefore, it is imperative
to develop methods that prioritize noncoding variants based on their impact on TF-DNA interactions. In
2015, we developed MANTA, a Mongo database for the analysis of TFBS alterations, to study the impact
of regulatory mutations in B-cell lymphomas20. The database stores TFBSs in ChIP-seq regions predicted
using PWMs derived from the JASPAR database, as well as the potential impact on TF binding of all
possible single nucleotide variants (SNVs) that could occur at these TFBSs (Fig. 1). Building on the recent
updates of both the JASPAR and ReMap databases, we have largely expanded MANTA. This second
release of the database, MANTA2, hosts over 48 million TFBS predictions within ChIP-seq regions of 225
human TFs, covering about 8% of the human genome, together with computed impact scores for all

Method Designed for Algorithmic approach Genomic features PMID

CADD pathogenicity support vector machine conservation, epigenomic annotations 24487276

CpGenie impact on methylation deep neural network conservation, epigenomic annotations, TFBS alterations 28334830

DANN pathogenicity deep neural network conservation, epigenomic annotations 25338716

DeepSEA regulatory potential deep neural network, logistic regression classifier conservation, epigenomic annotations, TFBS alterations 26301843

deltaSVM regulatory potential support vector machine epigenomic annotations, TFBS alterations 26075791

Eigen pathogenicity spectral clustering conservation, epigenomic annotations 26727659

FATHMM pathogenicity hidden Markov model conservation, epigenomic annotations 28968714

fitCons fitness consequence generative probability, genome partitioning conservation, epigenomic annotations 25599402

FunSeq2 cancer pathogenicity feature-based scoring, PWM scoring, somatic hotspots conservation, epigenomic annotations, TFBS alterations 25273974

GWAVA pathogenicity random forest conservation, epigenomic annotations, TFBS alterations 24487584

LINSIGHT regulatory potential linear regression, generative probability conservation, epigenomic annotations, TFBS alterations 28288115

MANTA regulatory potential PWM scoring TFBS alterations 25903198

RegulomeDB regulatory potential feature-based scoring, PWM scoring conservation, epigenomic annotations, TFBS alterations 22955989

ReMM pathogenicity random forest conservation, epigenomic annotations 27569544

RVSP regulatory potential random forest conservation, epigenomic annotations 27406314

SNP2TFBS regulatory potential PWM scoring TFBS alterations 27899579

Table 1. List of published tools with the capacity to evaluate the impact of noncoding variants. For
each “Method”, we describe its “Intended use”, “Algorithmic approach”, underlying “Genomic features” and
PubMed ID (“PMID”) of the corresponding publication.
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possible overlapping SNVs. Hence, MANTA2 provides the scientific community with a critical map of
TFBSs and SNV impact scores for the interpretation of noncoding variants in the human genome.

Methods
Transcription factor binding site predictions
From ReMap12, we retrieved 1,902 uniformly processed ChIP-seq data sets (i.e. sets of ChIP-seq regions)
for 227 human TFs for which we had binding profiles in JASPAR16. Each ChIP-seq data set was paired
with one or more PFMs associated to the ChIP’ed TFs from the JASPAR CORE vertebrates collection (see
Supplementary Table 1). For each pair, we intersected the ChIP-seq regions with the corresponding
TFBSs predicted for the ChIP’ed TF using bedtools intersect21 with "-wa -wb" options to preserve the
original coordinates. The PWM-based TFBS predictions are publicly available as part of the JASPAR
human genome track at http://expdata.cmmt.ubc.ca/JASPAR/downloads/UCSC_tracks/2018/hg38/tsv/.
The intersection resulted in 48,512,399 TFBSs for 225 TFs, covering 255,918,025 bp of the human
genome (Fig. 1a). No overlap was found for 2 TFs between the ChIP-seq regions and PWM-based TFBS
predictions. Note that all data relates to the build 38 of the Genome Reference Consortium human
genome (hg38).

Computation of SNV impact scores
For each TFBS, we computed the impact on TF binding of all possible overlapping SNVs as described in
the manuscript describing MANTA20 (Fig. 1b). First, both strands of the 2n− 1 bp region centered
around each possible SNV, where n is the length of the considered PWM, were scanned with the
corresponding PWM using the TFBS Perl module22 (version 0.7.1) to identify the best PWM score on the
alternate allele. Note that we only kept the best match per SNV. We then computed the distribution of
PWM scores for all these SNVs and calculated the corresponding mean, m, and standard deviation, sd.

a

b c

Figure 1. Overview of MANTA2. a) Intersection of the ReMap ChIP-seq regions with JASPAR TFBS

predictions to produce a set of TFBSs with both experimental and computational evidence of TF binding. A

mock example of JUN is given for a region on chromosome one. b) A matrix representing the difference in

PWM score for all possible SNVs compared to the reference sequence at that TFBS, including negative impact

(− ), positive impact (+), and no change (0) of score. Black boxes indicate that nucleotides of the reference

TFBS sequence are not stored in the database. The sequence logo for JUN is provided below the matrix where

the information content is proportional to the size of the nucleotide letters. c) Mock distribution of TFBS SNV

impact scores when considering all possible SNVs in the TFBS. The distribution is annotated with examples of

decreased TF binding capacity (red), no change in TF binding capacity (yellow), and increased TF binding

capacity (green).
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For each SNV, the final impact score was calculated as the Z-score of its TFBS score, S, within the
distribution of alternate PWM scores at that TFBS (i.e. (S�m)/sd). Users can refer to the webinar video
describing the original MANTA database (http://www.cisreg.ca/Webinars/JASPAR_BioPython_-
MANTA.flv). Therefore, for each SNV, MANTA stores its associated reference and alternate TFBS
PWM scores and locations, along with the computed impact score.

Validation using heterozygous TF-binding events
We downloaded ChIP-seq data for 35,703 TF-binding events at heterozygous sites in GM12878 and HeLa
cells for 36 different TFs18. For each event, allelic imbalance was calculated as the number of ChIP-seq
reads mapped on the alternate allele divided by the total number of reads mapped at that position
(Fig. 2a). The coordinates from the original publication refer to the hg19 version of the human genome;
we used the liftOver tool from the UCSC Genome Browser23 to convert them to the hg38 assembly
(the conversion process failed for 12 coordinates).

Code availability
MANTA2 is freely distributed as a GitHub repository at https://github.com/wassermanlab/MANTA2.

Data Records
The Mongo database dump of MANTA2, is deposited as a tarball on Zenodo (Data Citation 1).

Technical Validation
The quality and technical validation of the ChIP-seq data and TFBS predictions is described in the 2018
manuscripts of ReMap12 and JASPAR16, respectively, and is summarised below.

ReMap ChIP-seq data
ReMap ChIP-seq datasets were uniformly processed using a well-established pipeline12. ChIP-seq reads
were aligned to the human genome using bowtie2 (ref. 24) (version 2.2.9) using options “-end-to-end”
and “-sensitive”. When necessary, reads were trimmed and polymerase chain reaction duplicates were
removed from the alignments with samtools rmdup25. ChIP-seq regions were identified using the MACS2
peak-calling tool26 (version 2.1.1.2) with default parameters. The quality of all ChIP-seq datasets was
assessed based on metrics developed by the ENCODE consortium27.

JASPAR TFBS predictions
JASPAR TFBSs were predicted by scanning the human genome using two different methods16: the TFBS
Perl module22 (version 0.7.1) and FIMO28, as distributed within the MEME suite29 (version 4.11.2).

a b

Figure 2. Assessing MANTA2 impact scores with heterozygous TF-binding events. a) Allelic imbalance is

calculated as the number of ChIP-seq reads mapped on the alternate allele divided by the total number of reads

mapped at heterozygous sites. b) MANTA2 impact scores correlate with allelic imbalance of ChIP-seq data.

Events (blue dots) are plotted with respect to their allelic imbalance of ChIP-seq reads (x-axis) and impact

scores from MANTA2 (y-axis). The Pearson coefficient (R) and P-value (p) of the correlation between allelic

imbalance and impact score are provided in the plot.
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FIMO is one of the best performing tools for scanning DNA sequences with PWMs to predict TFBSs30.
To scan the human genome with the BioPerl TFBS module, PFMs were converted to PWMs and
predictions with a relative score ≥0.8 were kept. In preparation for the FIMO scan, PFMs were
reformatted to MEME motifs and motifs that matched with a P-value o0.05 were kept. For quality
control, TFBS predictions that were not consistent between the two methods were filtered out. Such
consistency ensures, for instance, technical validation for the coordinates of the TFBS predictions.

MANTA2
The technical validation of MANTA2 involved assessing data quality and database integrity controls. A
spot check data quality control was performed using the UCSC Genome Browser23. For 15 randomly
selected TFBSs (of different TFs) from MANTA2 we manually checked that: 1) the TFBS overlapped a
ReMap ChIP-seq region associated with that TF; 2) the JASPAR PFM matched the start, end, and strand
stored for that TFBSs; and 3) the stored SNVs for that TFBS had the expected impact on TF binding.
Moreover, we assessed the usefulness of MANTA2 impact scores on an external dataset of heterozygous
TF-binding events18. As expected, the allelic imbalance calculated for ChIP-seq reads (see Methods)
significantly correlated with the impact scores from MANTA2 (Pearson correlation coefficient= 0.567,
P-value= 3.7e-127; Fig. 2b). Additionally, we checked the database integrity for MANTA2 by dumping
and restoring the database on common operating systems and workstations. Finally, we tested the
command line and web interface access to MANTA2 (see Usage Notes section) to interpret variant files in
VCF, GFF, and BED format.

Usage Notes
MANTA2 can be accessed either programmatically or via its web interface. To access the database
programmatically, users must first clone (i.e. “git clone https://github.com/wassermanlab/MANTA2.git”)
or download MANTA2 from GitHub (see Code availability in the Methods section). The script
“search_manta2.py” provides programmatic access to MANTA2. It requires the following inputs:

● The name of the MANTA2 database in the MongoDB system (option “-d”)
● The name of the server where the MongoDB system is hosted (option “-H”)
● A user with “read” privileges to the MANTA2 database (option “-u”)
● The password for that user (option “-p”)
● A file containing a list of variants in “VCF”, “BED” or “GFF” format (option “-i”)

Non-mandatory options include:

● The format of the input variant file (option “-t”; by default the script tries to identify the input format
automatically)

● The name of a file to output the results (option “-o”; by default is set to the standard output stream
(stdout))

As a usage example, the MANTA2 database hosted by the Wasserman lab can be accessed as follows:
“python search_manta2.py -d manta2 -H manta.cmmt.ubc.ca -u manta_r -p mantapw -i ovariant
file>”.

A variant file can be obtained by executing the shell script: “bash ./examples/get_VCF_example.sh”.

The resulting VCF file (i.e. “chr20.vcf”) contains high-confidence SNP, small indel, and homozygous
reference calls on chromosome 20 from the Genome in a Bottle (version 3.3.2) sample HG001 (ref. 31). In
response, “search_manta2.py” returns all TFBS predictions potentially impacted by these variants as tab-
separated values. For each TFBS alteration, the script provides the variant information along with the
associated wild-type (reference) and mutated (alternative) TFBS information, including:

● the chromosome and position of the variant;
● the reference and alternative alleles at that genomic location;
● the mutation ID (if the input file format allowed for it, otherwise the field is displayed as “.”);
● the TF name and associated JASPAR profile ID;
● the start, end and strand, as well as the absolute (raw) and relative scores for both the reference and

alternative TFBSs;
● and the impact score.

Users who plan on performing large numbers of searches should create a local build of the MANTA2
database. Instructions are provided in the “README.md” file of the GitHub repository.

The MANTA2 database hosted by the Wasserman lab can also be accessed via a dedicated web server
at http://manta.cmmt.ubc.ca/manta2. Similar to the “search_manta2.py” script, the server requires as
input a list of variants in VCF, GFF, or BED format (see help page), and it returns all TFBS predictions
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potentially impacted by these variants as a tab-separated values table. The table can be sorted on any
column by clicking on the column header.
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ABSTRACT

Chromatin immunoprecipitation followed by se-
quencing (ChIP-seq) is the most popular assay to
identify genomic regions, called ChIP-seq peaks, that
are bound in vivo by transcription factors (TFs).
These regions are derived from direct TF–DNA in-
teractions, indirect binding of the TF to the DNA
(through a co-binding partner), nonspecific binding
to the DNA, and noise/bias/artifacts. Delineating the
bona fide direct TF–DNA interactions within the ChIP-
seq peaks remains challenging. We developed a ded-
icated software, ChIP-eat, that combines computa-
tional TF binding models and ChIP-seq peaks to au-
tomatically predict direct TF–DNA interactions. Our
work culminated with predicted interactions covering
>4% of the human genome, obtained by uniformly
processing 1983 ChIP-seq peak data sets from the
ReMap database for 232 unique TFs. The predictions
were a posteriori assessed using protein binding mi-
croarray and ChIP-exo data, and were predominantly
found in high quality ChIP-seq peaks. The set of
predicted direct TF–DNA interactions suggested that
high-occupancy target regions are likely not derived
from direct binding of the TFs to the DNA. Our predic-
tions derived co-binding TFs supported by protein-
protein interaction data and defined cis-regulatory
modules enriched for disease- and trait-associated
SNPs. We provide this collection of direct TF–DNA
interactions and cis-regulatory modules through the
UniBind web-interface (http://unibind.uio.no).

INTRODUCTION

The transcription of DNA into RNA is mainly regulated
through a complex interplay between proteins and the chro-
matin at cis-regulatory regions such as promoters and en-
hancers. Transcription factors (TFs) are key proteins specif-

ically binding short DNA sequences, known as TF binding
sites (TFBSs), to ensure transcription at appropriate rates in
the correct cell types (1). Therefore, genome-wide identifica-
tion of TFBSs is a critical step to decipher transcriptional
regulation, and how this process is altered in diseases (2).
Classically, genome-wide in vivo TF binding regions are

identified through the chromatin immunoprecipitation fol-
lowed by sequencing (ChIP-seq) assay (3). The genomic
regions obtained with ChIP-seq, the so-called ChIP-seq
peaks, are usually a few hundred base pairs (bp)-long and
should encompass the TFBSs (∼10 bp-long), where di-
rect TF–DNA interactions occur. However, ChIP-seq peaks
derive from either direct TF–DNA interactions, protein-
protein interactions with other regulators such as co-
factors, or unspecific binding. Moreover, ChIP-seq exper-
iments are prone to artifacts and delineating bona fide TF-
bound regions is still an ongoing challenge (4–6) (Wreczy-
cka et al., bioRxiv, 10.1101/107680).
As TFs specifically recognize DNA sequence motifs,

computational tools have been instrumental in the predic-
tion and characterization of direct TF–DNA interactions
(7). TFBSs are commonly modelled with position weight
matrices (PWMs), which represent the probability of each
nucleotide to be present at each position within bona fide
TFBSs (7). While PWMs work well (8), more sophisticated
approaches have recently been designed to model com-
plex features of TF–DNA interactions captured by next-
generation sequencing data (e.g. (9–13)). However, the best
performing model varies for different TFs or TF families
(8,14,15).
While multiple resources collecting TF binding regions

derived fromChIP-seq exist (16–19), a limited number store
genome-wide identification of TFBSs (17,20,21). The TFBS
Conserved Track of the UCSCGenome Browser combined
phylogenetic sequence conservation and PWMs to iden-
tify TFBSs (22) while the MANTA resource (23) integrated
ChIP-seq peaks from ReMap (16) with PWMs from JAS-
PAR (24) for TFBS predictions. A strong limitation of
these approaches is that they use the same pre-defined score
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thresholds for all PWMs and all data sets. The ORegAnno
database provides TFBSs obtained through literature cura-
tion (21), but the number of TFBSs available for human is
limited to ∼8000.
A previous study showed that ChIP-seq data sets fall

within one of three categories: (i) data sets enriched for
the TF canonical binding motif close to the ChIP-seq peak
summit (where the highest number of ChIP-seq reads map),
(ii) data sets lacking enrichment for the canonical binding
motif close to the peak summit and (iii) data sets having
a combination of peaks with and without the TF canoni-
cal binding motif proximal to the peak-summit (25). Most
ChIP-seq data sets were observed in category (iii). As direct
TF–DNA interactions are expected to be enriched at ChIP-
seq peak summits (25–30), Worsley Hunt et al. developed a
heuristic approach specifically based on PWMs to automat-
ically identify, in each ChIP-seq data set, this enrichment
zone. The method determines the thresholds on the PWM
scores and distances to the peak summits delimiting the en-
richment zone that contains direct TF–DNA interactions.
However, this method does not work with some more re-
cent TFBS computational models (15,31,32).
In this study, we mapped direct TF–DNA interactions in

the human genome in a refined manner by capitalizing on
uniformly processed TF ChIP-seq data sets and computa-
tional tools modelling TFBSs. We provide (i) a new soft-
ware to predict direct TF–DNA interactions within ChIP-
seq peaks along with (ii) genome-wide predictions of such
interactions in the human genome. Using an entropy-based
algorithm, we have developed ChIP-eat, a tool that auto-
matically identifies direct TF–DNA interactions using both
ChIP-seq peaks and any computational model for TFBSs.
We applied ChIP-eat to 1983 human ChIP-seq peak data
sets from the ReMap database (16), accounting for 232 dis-
tinct TFs. The set of predicted direct TF–DNA interactions
derived from PWMs covers >4% of the human genome. To
make this resource available to the community, we have cre-
ated UniBind (http://unibind.uio.no/), a web-interface pro-
viding public access to the predictions. We validated a pos-
teriori these TFBS predictions using protein binding mi-
croarray (33) and ChIP-exo (34) data, and multiple ChIP-
seq peak-callers. We used these TFBSs to (i) confirm that
hotspots of ChIP-seq peaks (also known as high occupancy
target regions (35)) are likely not derived from direct TF–
DNA interactions, (ii) predict co-binding TFs and (iii) de-
fine cis-regulatory modules, which are enriched for disease-
and trait-associated SNPs.

MATERIALS AND METHODS

ChIP-seq data

The ChIP-seq data sets considered were retrieved, pro-
cessed, and classified as part of the last update (2018) of
the ReMap database (16) (Supplementary Figure S1).

TF binding profiles

For 1983 ChIP-seq data sets used in the last ReMap update,
we were able to manually assign TF binding profiles corre-
sponding to theChIP’edTFs as position frequencymatrices
(PFMs) from the JASPAR (2018) database (24).

Training data sets

To train the TFBS computational models (see below), we
considered 101 bp sequences centered around the peak sum-
mits as positive training sets. When required for training,
negative training sets were obtained by shuffling the pos-
itive sequences using the g subcommand of the BiasAway
(version 0.96) tool to match the %GC composition (25).

TFBS computational models

Position weight matrices. JASPAR PFMs were converted
to PWMs as previously described in (36). For each ChIP-
seq data set, PWMs were optimized using DiMO (ver-
sion 1.6; default parameters with a maximum of 150 op-
timization steps) using the corresponding training sets (37).
For TFBS predictions, we considered PWM relative scores,
which were computed as relative score = 100 × (absolute
score – min)/(max – min) where absolute score corresponds
to the PWM absolute/raw score and min and max to the
minimal and maximal absolute/raw PWM scores, respec-
tively.

Binding energy models. JASPAR PFMs were converted
to binding energy models (BEMs; (32)) using the im-
plementation from the MARS Tools (https://github.com/
kipkurui/MARSTools; Kibet and Machanick, bioRxiv,
doi:10.1101/065615). We modified the implementation to
return a BEM score corresponding to 1 – (original score) to
consider the best site of the DNA sequence as the one with
the highest BEM score (instead of the lowest one).

Transcription factor flexible models. First-order transcrip-
tion factor flexible models (TFFMs) (version 2.0) were
initialized with the DiMO-optimized PFMs and trained
with default parameters (https://github.com/wassermanlab/
TFFM; (31)) on the positive training sets.

DNAshapedTFBS models. The DNA shape-
based models were trained on the training sets
using the DNAshapedTFBS tool (version 1.0;
https://github.com/amathelier/DNAshapedTFBS/; (15)).
We trained three types of DNAshapedTFBS models with
the following features: (i) DiMO-optimized PWM + DNA
shape, (ii) first-order TFFM + DNA shape and (iii) 4-bits
encoding + DNA shape following (15). We considered the
first and second order DNA shape features helix twist,
propeller twist, minor groove width, and roll with values
extracted from GBShape (38).

Landscape plots

Each TFBS computational model was applied to each
ChIP-seq data set independently. Following the strategy de-
scribed in (25), we considered 1001 bp sequences centered
around the peak summits, obtained using the bedtools (ver-
sion 2.25) slop subcommand (39). The trained computa-
tional models were used to extract the best (maximal score)
site per 1001 bp ChIP-seq peak region. For each ChIP-seq
data set, landscape plots were constructed from the corre-
sponding sites following the TFBS Visualization tool (25).
These scatter plots were also converted into heatmaps using
the kde2d function from the MASS R package (40).
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Automated identification of the enrichment zone

To define the enrichment zone for each landscape plot, we
automatically identified the thresholds for the TFBS com-
putational model scores and distances to peak summits us-
ing the entropy-based algorithm from (41). The algorithm
aims at identifying two classes of elements. Given a his-
togram, the algorithm selects the threshold that maximizes
the within-class sum of the Shannon entropies for the ele-
ments in two classes (42). The two classes of elements identi-
fied are defined by the elements with values (i) above and (ii)
below the threshold, respectively. This procedure optimally
separates the input elements in two classes. Given a ChIP-
seq data set, we applied the algorithm to the histograms
of the TFBS computational model scores and distances to
peak summits, independently. The maximum entropy im-
plementation of the algorithm available in ImageJ (43) was
used with default parameters.
The source code of the ChIP-eat software used to pro-

cess ChIP-seq peak data sets to predict direct TF–DNA
binding events is freely available at https://bitbucket.org/
CBGR/chip-eat. Specifically, ChIP-eat trains a TFBS com-
putational model and automatically defines the enrichment
zone in the landscape plots to predict the underlying direct
TF–DNA interactions. The identification of the enrichment
zone has been applied to each TF ChIP-seq peak data set
independently, allowing for the automatic detection of the
thresholds that are specific to each data set with each TFBS
computational model. Note that only the best hit per ChIP-
seq peak has been considered to identify the enrichment
zones and for all the downstream analyses.

Assessing the robustness of the enrichment zone identification

Random noise. For each ChIP-seq data set, we sampled
the set of peaks using the seqtk (version 1.0) (https://github.
com/lh3/seqtk) sample subcommand. The sequences of the
sampled peaks were shuffled using the fasta-shuffle-letters
subcommand of the MEME suite (version 4.11.4) (44) and
added to the original set of ChIP-seq peaks. The auto-
matic thresholding algorithm was applied to this new set.
We tested the addition of shuffled peaks representing 10%,
25%, and 50% of the original set peaks.

Window size variability. For each ChIP-seq data set, we
considered the region around the peak summit by extend-
ing with 300, 400, and 500 bp on each side using the bed-
tools slop subcommand. We considered ChIP-seq data sets
where at least one TFBS was predicted within the enrich-
ment zones obtained for all three window sizes.

Comparison with the heuristic approach to pre-
dict the enrichment zone. ChIP-eat was com-
pared to the heuristic approach described in (25)
and implemented in the TFBS Visualization tool
https://github.com/wassermanlab/TFBS Visualization
using the default parameters. The centrality of the TFBSs
within the enrichment zones predicted by ChIP-eat and
TFBS Visualization was assessed using centrality P-value
computations as described in the CentriMo tool (27).
The statistical difference between the centrality P-values

obtained with the heuristic method and ChIP-eat was
assessed using a Mann-Whitney signed-rank test.

Genome coverage. The entire set of predicted TFBSs
(within enrichment zones) was concatenated and then
sorted using the cat and sort commands of the Unix oper-
ating system. The resulting set of locations was merged us-
ing the bedtools merge subcommand with default parame-
ters. The genome coverage of the correspondingmerged and
non-overlapping positions was calculated as the percentage
of the total number of nucleotides covered out of the to-
tal number of nucleotides in the hg38 version of the human
genome.

TF–DNA binding affinity assessment with protein binding
microarray data. Protein binding microarray (PBM) (45)
data were retrieved from UniProbe (http://the brain.bwh.
harvard.edu/uniprobe/; (46)) for 40 TFs with available
ChIP-seq data. For each ChIP-seq data set landscape plot,
we extracted theDNA sequences at the sites within and out-
side of the predicted enrichment zone. The binding affinity
of a TF to each site was computed as the median PBM in-
tensity value of all the de Bruijn sequences containing the
site sequence. The statistical difference between the distri-
bution of PBM binding affinities from sites within and out-
side the enrichment zone was assessed using a two samples
Mann-Whitney U test (47) implemented in the R package
stats. A Bonferroni correction was applied to the computed
P-values. The P-value density plot in Figure 3B was gen-
erated with the density R function with default parameters
and the corresponding computed bandwidth was used to
plot Supplementary Figure S10.

ChIP-exo data. ChIP-eat was applied with DiMO-
optimized PFMs to the ChIP-exo data sets from (48),
which were lifted over to hg38 using the liftOver tool (20).
As for ChIP-seq peaks, we considered 1 001 bp regions
centered around the peak summits.

ChIP-seq peaks from HOMER and BCP peak-callers. We
successfully applied the HOMER (version 4.7.2) (49) and
BCP (version 1.1) (50) peak-callers to 670 ENCODE
ChIP-seq data sets (Supplementary Table S1). ChIP-eat
was applied to the corresponding ChIP-seq peak regions
with DiMO-optimized PFMs as described above. ChIP-seq
peaks predicted to contain a direct TF–DNA interaction
or not (using the enrichment zones) from the three peak-
callers (MACS2 (51), HOMER, and BCP) were overlapped
using the bedtools intersect subcommand. Hypergeometric
tests were performed to assess the significance of the inter-
sections using the R phyper function for every combination
of two peak-callers with the following contingency matrix:

number of overlapping peaks
with TFBSs from two
peak-callers - 1

number of peaks without TFBSs
from the two peak-callers

number of peaks with TFBSs
from the two peak-callers

number of overlapping peaks from
the two peak-callers
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HOT/XOT regions. The high occupancy target (HOT)
and extreme occupancy target (XOT) regions in all
contexts were downloaded through the ENCODE
data portal at http://encode-ftp.s3.amazonaws.com/
modENCODE VS ENCODE/Regulation/Human/
hotRegions/maphot hs selection reg cx simP05 all.
bed and http://encode-ftp.s3.amazonaws.com/
modENCODE VS ENCODE/Regulation/Human/
hotRegions/maphot hs selection reg cx simP01 all.bed.
ChIP-seq peaks were overlapped with the HOT/XOT
regions using the bedtools intersect subcommand. The
enrichment for overlap was assessed with a hypergeomet-
ric test using the R phyper function with the following
contingency matrix:

number of peaks without TFBSs
overlapping HOT/XOT
regions - 1

number of peaks with TFBSs

number of peaks without TFBSs total number of peaks

Identification of TFs with co-localized TFBSs. For each
pair of distinct TFs (TFA, TFB), we extracted the closest
TFBS associated with TFB for each TFBS associated with
TFA and computed the geometric mean distance between
midpoints of the paired TFBSs. With this approach, the ge-
ometric meanmAB for the pair (TFA, TFB) is different from
the geometric mean of the pair (TFB, TFA). With 232 TFs
available in our analyses, we computed geometric means for
53 592 ordered pairs of TFs.
The colocalization of TFBSs for each TF pair was as-

sessed using aMonte Carlo-based approach as follows. The
number of TFBSs per TF ranged from 1 to 404 566, with
455 as the fifth percentile. We uniformly discretized the
range [455, 414 172] to consider 50 TFBS set sizes (Si for
i in [1, 50]). We chose 414 172 as the maximum value to be
able to compute a P-value for the set of 404 566 TFBSs. For
each set size Si, we created 500 sets of TFBSs by randomly
selecting TFBSs from the total pool. Using these random
sets, we computed null distributions for 500 Monte Carlo
samples of geometricmean distances for each of the 2601 set
size combinations. Specifically, this computation led to 2601
distributions of 500 geometricmeans. For the TFpair (TFA,
TFB) withNA andNB TFBSs, respectively, we extracted the
Monte Carlo sample of geometric mean distances M ob-
tained from the random sets with SA and SB TFBSs, where
SA = min(Si) with Si > NA and SB = min(Si) with Si >
NB. The empirical P-value associated with the pair (TFA,
TFB) was computed as the number of times we observed a
geometric mean smaller thanmAB fromM over the 500 pre-
computed geometric means; if no smaller geometric mean
was observed, the empirical P-value is defined as <0.002
(i.e. 1/500).
Since the expected geometric mean distance increases

with a decreasing number of TFBSs, this P-value computa-
tion is conservative (under-estimated significance). The ob-
tainedP-values were corrected for multiple testing using the
Benjamini–Hochberg method (52), only the TF pairs with
a FDR <5% were considered significant.
The detailed null distribution values can be down-

loaded and reproduced at https://hyperbrowser.uio.

no/geirksa sandbox/u/gsandve/h/null-distributions-for-
manuscript-a-map-of-direct-tf-dna-interactions-in-the-
human-genome. These computations are based on
running the static methods ‘ConcatenateNullDistribu-
tionsTool.execute’ and ‘ComputeNullDistributionForE-
achCombinationFromSuiteVsSuiteTool.execute’ (with
argument values corresponding to parameter settings
annotated in the Galaxy (53) history above) in the code
provided at https://hyperbrowser.uio.no/geirksa sandbox/
static/hyperbrowser/files/div/hb.zip. The source code for
the comparison with null distributions is available at
https://bitbucket.org/CBGR/co-binding/.

GeneMANIA. Weused theGeneMANIA software (54) to
extract known protein–protein interactions from the list of
TFs with significant co-localized TFBSs and plot the corre-
sponding network.

Prediction of cis-regulatorymodules. TheTFBSs predicted
by ChIP-eat were sorted and merged using the bedtools
sort and merge subcommands. The CREAM tool (Madani
Tonekaboni et al., bioRxiv, doi:10.1101/222562) was ap-
plied to the merged TFBSs to define cis-regulatory modules
(CRMs) as genomic regions enriched for clusters of TFBSs.

GWAS trait- and disease-associated single nucleotide poly-
morphism enrichment analysis. We assessed the enrich-
ment for GWAS trait- and disease-associated single nu-
cleotide polymorphisms (SNPs) at CRMs using the traseR
R package (version 1.10.0 (55)). CRM genomic positions
were lifted over to the hg19 version of the human genome to
perform the analyses. The set of SNPs (as of 30 April 2018)
considered by traseR combined data from dbGaP (56) and
NHGRI (57) as described in the corresponding bioconduc-
tor package vignette (https://bioconductor.org/packages/
release/bioc/vignettes/traseR/inst/doc/traseR.pdf).

Conservation analysis. The hg38 phastCons (58) scores
for multiple alignments of 99 vertebrate genomes to
the human genome were retrieved as a bigWig file
at http://hgdownload.cse.ucsc.edu/goldenpath/hg38/
phastCons100way/hg38.phastCons100way.bw. The TFBSs
predicted by ChIP-eat were sorted and merged using the
bedtools sort andmerge subcommands. The locations over-
lapping CRMs were obtained using the bedtools intersect
subcommand. The corresponding genomic locations (for
all TFBSs and TFBSs in CRMs) in BED format were
decomposed into 1 bp intervals using bedops v.2.4.14 (59)
with the –chop 1 option. The phastCons scores at every bp
were extracted with the ex subcommand of the bwtool (60)
using the corresponding BED and phastCons bigWig files.

The UniBind web interface. All the TFBS predictions, cor-
responding ReMap ChIP-seq peaks, trained TFBS com-
putational models, and CRMs are available through the
UniBind database at http://unibind.uio.no/. The UniBind
web interface was developed in Python using the model-
view-controller framework Django. It usesMySQL to store
TFBSmetadata and Bootstrap as the frontend template en-
gine. The source code is available at https://bitbucket.org/
CBGR/unibind.
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Statistical analyses. All statistical analyses were per-
formed in the R environment (version 3.4.4).

RESULTS

Predicting direct TF–DNA interactions in the human genome
from ChIP-seq data

Given a set of ChIP-seq peaks and a TFBS computational
model such as a PWM, one can extract the best site per
peak, which corresponds to the DNA subsequence of the
peak with the highest score for the model. The higher the
score, the stronger the computational evidence that the site
is similar to TFBSs known to be bound by the TF (36).
Moreover, it has been shown that the closer the site to
the peak summit, the more likely it is to represent a direct
TF–DNA interaction with experimental evidence from the
ChIP-seq assay (25,27,30). Hence, direct TF–DNA interac-
tions captured by ChIP-seq are enriched for high scores and
small distances to the peak summits (Figure 1A,B). These
characteristics have previously been used to automatically
predict direct TF–DNA interactions by selecting score and
distance thresholds defining these enrichment zones using
a heuristic approach (25). This approach used pre-defined
parameter values and was specifically designed for PWMs,
but is not applicable to more recent TFBS computational
models such as binding energy models (BEMs) (32), tran-
scription factor flexible models (TFFMs) (31), and DNA
shape-based models (DNAshapedTFBS) (15).
We aimed to predict direct TF–DNA interactions (TF-

BSs) within ChIP-seq peaks and developed the ChIP-
eat software that automatically identifies the enrichment
zone for any TFBS computational model. It uses a non-
parametric, entropy-based algorithm originally designed to
separate background/noise from foreground/signal in im-
age processing (41) (Supplementary Figure S2). We applied
this algorithm to the distributions of site scores and distance
to peak summits independently to separate direct TF–DNA
interaction events from other binding subtypes and ChIP-
seq artifacts (Figure 1C,D; Materials and Methods). The
two thresholds define the enrichment zone, which delimits
the sites that are predicted as TFBSs with both experimen-
tal and computational evidence of direct TF–DNA interac-
tions. With this approach, we automatically adjust the en-
richment zone discovery specifically for each TF ChIP-seq
peak data set and for each computational model. The iden-
tified enrichment zone defines the thresholds on the TFBS
computational model scores and distances to the peak sum-
mits in a data set-specific manner.
We retrieved 1983 ChIP-seq peak data sets from ReMap

(16), accounting for 232 TFs with a PFM available in the
JASPAR database (24). Using DiMO-optimized PWMs,
we compared the enrichment zones predicted by ChIP-eat
with the ones obtained with the heuristic approach devel-
oped in (25). The enrichment zones predicted with ChIP-eat
were more stringent than with the heuristic algorithm (Sup-
plementary Figure S3A,B,D,E). The corresponding TFBSs
predicted in the enrichment zones were more central to the
peak summits with ChIP-eat thanwith the heuristic method
as evaluated with CentriMo (27) (Supplementary Figure
S3C, F). Moreover, ChIP-eat does not require any fixed val-
ues such as a predefined bin size (25) to predict the enrich-

ment zones. Finally, ChIP-eat is not restricted to work with
PWMs only and can be used with any TFBS computational
model.
We applied ChIP-eat to the 1983 human ChIP-seq

data sets with four types of computational TFBS mod-
els: DiMO-optimized PWMs, BEMs, TFFMs, and
DNAshapedTFBS. These models were optimized for
each ChIP-seq data set, independently (see Materials and
Methods). In the following analyses, we focused on the
predictions obtained with the DiMO-optimized PWMs
(see Materials and Methods). This set of direct TF–DNA
interactions (TFBSs) extracted from the enrichment zones
covers ∼4% of the human genome, encompassing 8 304
135 distinct TFBS locations.

Predicted direct TF–DNA interactions are likely bona fide
TFBSs

Robustness of the enrichment zone identification. The ro-
bustness of the method was first evaluated by applying
ChIP-eat to genomic regions of ±300, 400, and 500 bp
around the peak summits. Themedian distance threshold to
the peak summit shifted from 72 bp using±500 bp to 64 and
55 using ±400 and 300 bp, respectively. The median PWM
scores thresholds were 85, 84.6 and 83.9 with ±500, 400,
and 300 bp regions, respectively (see Supplementary Figure
S8 for a visual representation using the 10 most frequent
ChIP’ed TFs). The variability of the predicted enrichment
zonewhen using different window sizes is similar to the vari-
ability between ChIP-seq data sets for the same TF (see be-
low). Further, the number of predicted TFBSs within the
enrichment zones were similar when using the different re-
gion sizes (Supplementary Figure S9). These analyses con-
firmed the robustness of the entropy-based thresholding al-
gorithm to the window size considered. As previously used
in (25), we considered the±500 bp regions around the peak
summits in the following analyses.
Considering the ChIP-seq data sets for the 10 most fre-

quently ChIP’ed TFs, we observed that the thresholds on
the PWM scores and distances to peak summits, defining
the enrichment zones, were consistent between data sets for
the same TF (Figure 2A,B). Namely, the median pairwise
difference between PWM score thresholds for the same TF
ranged from 1.7 to 3.7 and the median distance thresholds
from 12 to 35 bp. As expected, the thresholds identified for
distinct TFs are different (Figure 2C, D). Taken together,
these results highlight that the entropy-based algorithm al-
lows for the identification of enrichment zones specific to
each TF and ChIP-seq data set, with consistent predictions
between data sets for the same TF. Results were consistent
with BEM, TFFM, and DNAshapedTFBS models (Sup-
plementary Figures S4–S6).
We further evaluated the robustness of the method to

noise by adding 10%, 25%, and 50% of shuffled sequences
to the initial set of ChIP-seq peaks for all ChIP-seq peak
data sets (see Materials and Methods). The median thresh-
old on the distances to peak summits shifted from 73 bp in
the initial set of ChIP-seq peaks to 70 bp with 10% noise,
67 bp with 25% noise, and to 63 bp when adding 50% noise.
The median PWM score threshold was 85.2 for the initial
set of ChIP-seq peaks and shifted to 85 when adding 10%

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article-abstract/47/4/e21/5229207 by U

niversity of O
slo Library. Library of M

edicine and H
ealth Sciences user on 07 M

ay 2019



e21 Nucleic Acids Research, 2019, Vol. 47, No. 4 PAGE 6 OF 13

Figure 1. Automatic detection of the TFBS enrichment zone. Landscape plots (25) obtained with SRF ChIP-seq peaks using the DiMO-optimized PWM
MA0083.3 from JASPARare presented as scatter (A) and heatmap (B) plots. The enrichment zone (definedwithin the red and green dashed line boundaries,
A-B) is automatically obtained by ChIP-eat with thresholds on PWM scores (red dashed lines; C) and distances to peak summits (green dashed lines; D).
The enrichment zone provides TFBSs in ChIP-seq peaks (points in A) with supporting evidence for direct TF–DNA binding from the ChIP-seq assay
(close distance to peak-summits, A-B, x-axis) and the computational model (PWM score, A-B, y-axis). Distances to peak summits in A, B and D are
provided using a base pair unit.

of noise, to 84.8 when adding 25% of noise, and to 84.4
when adding 50% of noise. A visual representation for the
10 most frequently ChIP’ed TFs is available in Supplemen-
tary Figure S7. The variability of the thresholds defining the
enrichment zones when adding noise is limited, within the
range of variability between ChIP-seq peak data sets for the
same TF (Figure 2). Taken together, these results show that
the entropy-based thresholding algorithmdelimiting the en-
richment zones, as implemented in ChIP-eat, provides con-
sistent results between data sets for the same ChIP’ed TF
and is robust to the window sizes considered and random
noise.

Validation using in vitroDNA binding affinities. To confirm

a posteriori the high quality of our set of TFBS predictions,
we assessed the TF binding affinity to DNA sequences
derived experimentally from protein binding microarrays
(PBM) (61). The PBM assay quantifies the binding affin-
ity of a protein to all possible combinations of 8-mer DNA
sequences. We retrieved PBM data from the UniPROBE
database (46) for 40 different TFs present in our collec-
tion, corresponding to 249 ChIP-seq data sets (Supplemen-
tary Table S2). Note that the JASPAR PFMs for the ATF1,
ATF3, and FOXJ2 TFs were originally derived from PBM
data. For each ChIP-seq data set, we tested if the sites lo-
cated in the enrichment zone presented higher binding affin-
ity than sites outside (see Materials and Methods). The
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A B

C D

Figure 2. Assessment of the thresholds predicted by ChIP-eat across data sets. Boxplots of the pairwise differences for DiMO-optimized PWM score
thresholds and distances to peak summits thresholds between ChIP-seq data sets for the same TF are provided in panels (A) and (B), respectively. Absolute
variations of DiMO-optimized PWM score thresholds and distances to the peak summits within all data sets for the same TF are provided in panels (C)
and (D), respectively. The ten TFs with the highest number of data sets were selected; the number of data sets for each TF is provided between brackets.

distributions of the binding affinity scores for sites within
and outside the enrichment zones were compared using a
Mann-Whitney U test (Figure 3A; Materials and Meth-
ods). Predicted direct TF–DNA interactions (sites within
the enrichment zone) had significantly higher binding affin-
ity than the other sites for 75% of the data sets with P-value
<0.01 and 81% with P-value <0.05 (Figure 3B). Similar re-
sults were obtained when considering BEM, TFFM, and
DNAshapedTFBSs computationalmodels (Supplementary
Figure S10). This analysis emphasizes that the sites pre-
dicted in the defined enrichment zones are likely to corre-
spond to direct TF–DNA interactions.

Predicted direct TF–DNA interactions are found in high con-
fidence ChIP-seq peaks. We hypothesized that the ChIP-
seq signal at ChIP-seq peaks containing a predicted direct
TF–DNA interaction were more likely to be higher than
at the other peaks. To test this hypothesis, we looked at (i)
the quality of the peaks based on P-values assigned to the
peaks by theMACS2 peak-caller and (ii) the reproducibility
of calling these peaks with multiple peak-callers (MACS2,
HOMER, and BCP; see Materials and Methods).
We observed that the distribution of P-values assigned

by MACS2 to the peaks containing a predicted TFBS were
significantly (P-value < 0.01; Mann–Whitney U test) lower
than for the rest of the peaks for 1862 (96%) data sets (Fig-

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article-abstract/47/4/e21/5229207 by U

niversity of O
slo Library. Library of M

edicine and H
ealth Sciences user on 07 M

ay 2019



e21 Nucleic Acids Research, 2019, Vol. 47, No. 4 PAGE 8 OF 13

0 20000 40000 60000

0.
00

00
0

0.
00

00
6

0.
00

01
2

Median PBM intensity

D
en

si
ty

U test p−value: 9.91e−53

Within the enrichment zone
Outside the enrichment zone

A

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

U−test p−value

D
en

si
ty

B

Figure 3. Binding affinity assessment for the predicted direct TF–DNA interactions. (A) Distribution of the median PBM intensity scores for the
ENCSR000BMX GATA3 ChIP-seq data set between sequences at TFBSs (i.e. sites within the enrichment zone; in red) and sites outside the enrich-
ment zone (in blue). (B) Distribution of Mann–Whitney U test P-values across the 249 data sets, showing distinct distributions of PBM intensity scores
between sites within and outside the enrichment zones.

Figure 4. Quality assessment of the ChIP-seq peaks derived from direct
TF–DNA interactions. Distribution of the median MACS2 P-values (y-
axis) across all data sets. Values for peaks containing a predicted TFBS
are provided in blue and values for the other peaks in grey. 1939 ChIP-seq
data sets were predicted to contain direct TF–DNA interactions (x-axis).

ure 4). The other 77 data sets contained a reduced number of
peaks (median of 837 compared to 18 968 for the complete
set of ChIP-seq data sets), which can explain the lack of sta-
tistical significance. These results confirm that the predic-
tions of direct TF–DNA interactions were found in ChIP-
seq peaks of higher quality as assessed by MACS2.
To test ChIP-seq peak-calling reproducibility, we used

two other peak-callers (HOMER and BCP) on 670 ChIP-
seq data sets from ENCODE. Our choice of peak-callers
was motivated by their distinct statistical approaches for
peak prediction. While MACS2 and HOMER are based
on an empirical model supported by a Poisson distribution,
BCP uses a Bayesian approach implementing infinite-state
hidden Markov models. We applied ChIP-eat to the ChIP-
seq peaks to predict TFBSs. For each pair of peak-callers,
we assessed whether the peaks predicted to contain a di-
rect TF–DNA interaction were more prevalent (P-value <
0.01, hypergeometric test) in the set of peaks called by both

peak-callers. This was observed for 63% of the data sets for
MACS2 and BCP, 70% forMACS2 andHOMER, and 66%
for HOMER and BCP. The data sets without significant en-
richment had a median number of peaks predicted to be
derived from direct TF–DNA interactions that was ∼7 fold
smaller (e.g. 3358 compared to 22 499 betweenMACS2 and
BCP) than for the data sets with significant enrichment, and
a median number of peaks without TFBS ∼2 fold larger
(e.g. 40 050 compared to 21 256 betweenMACS2 and BCP)
(Supplementary Table S3). Moreover, the median quality
scores assigned by the peak-callers to the peaks from the en-
riched data sets were significantly (P-value < 0.01, Mann–
Whitney U test) higher than for the peaks in the other data
sets (Supplementary Figure S11). It suggests that the data
sets enriched for reproducible peaks containing predicted
direct TF–DNA interactions are of better quality than the
rest of the data sets.
Taken together, these results highlight that the ChIP-seq

peaks in which ChIP-eat predicts direct TF–DNA interac-
tions are of higher quality than the other peaks. Note that
the ChIP-eat tool does not consider the peak quality when
predicting direct TF–DNA interactions. These observations
reinforce the confidence in the predicted TFBSs by ChIP-
eat.

Predictions of direct TF–DNA interactions in ChIP-exo data

The ChIP-exo assay has been developed to provide a higher
resolution than ChIP-seq to identify TFBSs in vivo (34).
We aimed at assessing the performance of ChIP-eat on pre-
dicting direct TF–DNA interactions using ChIP-exo data.
The ChExMix tool has recently been introduced to char-
acterize protein-DNA binding event subtypes from ChIP-
exo peak (48). ChExMix predicted different binding event
subtypes for ChIP-exo data obtained for the TFs ESR1 and
FOXA1, one of these subtypes corresponding to direct TF–
DNA interactions (48). We applied ChIP-eat on the same
ESR1 andFOXA1ChIP-exo data sets.We compared the set
of peaks identified to contain direct TF–DNA interactions
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predicted by ChExMix and ChIP-eat in these two data sets.
We found that 93.6% (for ESR1) and 91.3% (for FOXA1)
of the peaks predicted to contain TFBSs by ChIP-eat were
also predicted as direct binding events by ChExMix (Sup-
plementary Table S4). The high overlaps between the pre-
dictions from ChExMix and ChIP-eat were confirmed by
Jaccard similarity indexes of 63.7% and 68.7% for ESR1
and FOXA1, respectively. The similar results obtained with
the two tools suggest that ChIP-eat, designed for the more
noisy and less precise ChIP-seq data, is able to capture di-
rect binding events from ChIP-exo data.

High-occupancy target regions are likely not derived from di-
rect TF–DNA interactions

High-occupancy target (HOT) and extreme-occupancy tar-
get (XOT) regions are genomic regions where ChIP-seq
peaks were observed for a large number of distinct ChIP’ed
TFs (35,62,63). These regions are observed across species
(63) and contain an unusually high frequency of ChIP-seq
peaks (35,62,63). We used our set of high quality TFBS
predictions to confirm that HOT/XOT regions were de-
pleted of direct TF–DNA interactions. Indeed, we found
that ChIP-seq peaks that do not contain a predicted TFBS
were significantly enriched at HOT/XOT regions (odds ra-
tio = 1.43 for HOT and 1.44 for XOT, P-value < 2.2e–16,
hypergeometric test, Supplementary Table S5). Similar re-
sults were obtained when considering the three other com-
putational models (BEM, TFFM, and DNAshapedTFBSs;
Supplementary Table S5). This observation, combined with
a previous study describing that HOT/XOT regions are
likely to be derived from ChIP-seq artifacts (Wreczycka
et al., bioRxiv, 10.1101/107680), suggests that HOT/XOT
regions are not derived from the direct binding of the
ChIP’ed TFs.

Predicted direct TF–DNA interactions reveal co-binding TFs
and cis-regulatory modules enriched for disease- and trait-
associated SNPs

TFs are known to collaborate through specific co-binding
at cis-regulatory modules (CRMs) to achieve their func-
tion (1,36). Hence, identifying co-binding TFs is critical
to decipher transcriptional regulation of gene expression.
We aimed at using our predicted direct TF–DNA interac-
tions to reveal co-binding TFs and CRMs.We hypothesized
that the distances between TFBSs of cooperating TFs are
smaller than expected by chance. We tested this hypothe-
sis for all pairs of TFs for which we predicted TFBSs (232
TFs, 53 592 pairs tested; see Materials and Methods). For
each TF pair, we used a conservative Monte Carlo-based
approach to compare the geometric mean of the distances
between their TFBSs to the geometric mean distance ex-
pected by chance for a similar number of TFBSs randomly
selected from the complete pool of TFBSs (see Materials
and Methods). This approach predicted 150 pairs of TFs
(accounting for 112 distinct TFs) with TFBSs closer in the
genome than expected by chance (FDR < 5%; Supplemen-
tary Table S6). For 82% of the predicted TF pairs, we con-
firmed that the corresponding TFs physically interact us-
ing the protein-protein interaction networks from the Gen-

eMANIA tool (54) (Supplementary Figure S12). This anal-
ysis further supports the biological relevance of the TFBSs
predicted by ChIP-eat.
Next, we aimed to automatically identify CRMs,

which correspond to clusters of direct TF–DNA inter-
actions, using the clustering of genomic regions analysis
method (CREAM; (Madani Tonekaboni et al., bioRxiv,
doi:10.1101/222562)). When considering our complete set
of TFBSs, CREAM detected 61 934 CRMs in the human
genome, encompassing 2 474 587 distinct TFBS locations.
We found that the predicted CRMs were significantly en-
riched (FDR-corrected P-value= 2.9e−150) for disease- and
trait-associated SNPs using traseR (55). Further, we ob-
served that the TFBSs lying within the CRMs were more
conserved than the TFBSs predicted outside (Supplemen-
tary Figure S13). Taken together, these results indicate a po-
tentially functional role of the CRMs identified as clusters
of direct TF–DNA interactions.

The UniBind web interface to access our collection of direct
TF–DNA interactions

We catalogued the complete set of TFBS predictions from
each prediction model, trained models, original ChIP-seq
peaks from ReMap, and computed CRMs, and made them
publicly available through UniBind at http://unibind.uio.
no/.UniBind provides an interactiveweb interfacewith easy
browsing, searching, and downloading for all our predic-
tions (Figure 5). For instance, users can search for predic-
tions for specific TFs, cell lines, and conditions.
The data can be searched by using the case insensitive

search option available on the homepage. The database
can be searched for each of the four TF binding models,
cell/tissue type, and TF name using the ‘Advanced Op-
tions’, available on the homepage (Figure 5A). Search re-
sults are presented in a responsive and paginated table
along with metadata information (Figure 5B), which can
be clicked to view the detailed information and download
TFBSs, summary plots, and ReMap ChIP-seq peaks (Fig-
ure 5C-D). All the metadata in the responsive tables can be
downloaded as CSV files. UniBind displays by default the
results obtained with the DiMO-optimized PWMs, but re-
sults obtained from all TFBS computational models along
with the trained models are available for browsing and/or
download.

DISCUSSION

To summarize, we have uniformly processed 1983 ChIP-
seq peak data sets to predict high quality direct TF–DNA
binding interactions in the human genome. The predictions
were obtained using a non-parametric, entropy-based algo-
rithm that automatically detects thresholds for TFBS com-
putational model scores and distances to peak summits for
each ChIP-seq data set. This new approach identified TF-
BSs supported by strong experimental and computational
evidences for direct TF–DNA interactions. The accuracy
of the predictions was a posteriori validated using the PBM
in vitro assay, ChIP-exo data, and multiple ChIP-seq peak-
calling algorithms. Our set of direct TF–DNA interactions
confirmed that HOT genomic regions are likely not de-
rived from direct binding of the TFs to the DNA. We used
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Figure 5. Overview of the UniBind user interface with interactive searching activity. (A) A quick and detailed search feature on the homepage. (B) A
responsive table lists the searched data set(s), which can be clicked to view the details. (C) A detailed page shows the analysis for the JUND TF in cell-line
A549, which is divided into sub-panels including the TF summary, external links, summary plots, and download options for each computational TFBS
model. (D) Statistical details of the results.
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our TFBSs to predict TFs with proximal binding events in
the human genome, which could cooperate to achieve spe-
cific functions. Further, we defined cis-regulatory modules,
which are clusters of TFBSs, that were enriched for disease-
and trait-associated SNPs from GWAS. The complete set
of predictions is publicly and freely available through the
UniBind web-interface (http://unibind.uio.no/), in an effort
to provide the community with an unprecedented collection
of high quality direct TF–DNA interaction events in the hu-
man genome.
The output of ChIP-seq assays is generally com-

posed of direct protein-DNA interactions, indirect bind-
ing of the protein to the DNA (through a co-binding
partner), nonspecific protein binding to the DNA, and
noise/bias/artifacts (4–6). Here, we specifically aimed at
identifying direct TF–DNA interaction events by using an
entropy-based algorithm (41). This algorithm was origi-
nally developed to discriminate between foreground and
background in image processing. Hence, it assumes the
presence of background (or noise) in the data. As a con-
sequence, our approach is limited by the assumption that
there is background/noise in the ChIP-seq data sets ana-
lyzed. We assume that this noise represents indirect bind-
ing of TFs, nonspecific binding, or ChIP-seq experimen-
tal artifacts. Moreover, our approach considered the best
site per ChIP-seq peak (defined using TFBS computational
models), which represents the best candidate. We recognize
that other sites with lower scores could represent direct TF–
DNA interactions. These limitations denote that our ap-
proach is stringent for the prediction of direct TF–DNA
interactions, favoring specificity over sensitivity. The ChIP-
seq peaks that our method did not predict to contain direct
TF–DNA binding events could be further analyzed to dis-
criminate other mechanisms for protein-DNA interactions
from background noise, as proposed in the ChExMix tool
established for ChIP-exo data (48).
The ChIP-eat pipeline developed for this study used four

TFBS computational models to predict TF–DNA bind-
ing events. These models were specifically trained for each
ChIP-seq data set to improve the quality of the predictions,
as the best-performing computational model varies for dif-
ferent TFs or TF families (8,14,15). As a consequence, we
advocate that a ‘one-fits-all’ TFBS prediction model is not
optimal and that one should compare results from multiple
models. With the predictions available through UniBind,
users can assess which model would perform better for each
data set. Of course, it requires to use a specific metric to
compare performance. As ourmethods aimed at identifying
enrichment zones centered around ChIP-seq peak summits,
we suggest to rely on a centrality measure as implemented
in the CentriMo method (27). In UniBind, we provide cen-
trality P-values computed following (27) for the predictions
from each model in each ChIP-seq data set. Moreover, the
ChIP-eat pipeline is generalizable and users can incorporate
other TFBS computational models to predict direct TF–
DNA interactions and compare them to the ones already
stored in UniBind.
While studies alike focus on determining where TFs

directly interact with DNA, our understanding of how
these TF–DNA interactions influence expression is limited.
Surely, it is critical to decipher the relationship between TF–

DNA interactions and transcriptional regulation (64). It is
expected that a large portion of the TFBSs identified in our
study are not functional, as suggested by the futility the-
orem (36). Nevertheless, functional TF binding events are
likely to be clustered (65–68) and associated with stronger
ChIP-seq peak signals (12,69). We expect that the direct
TF–DNA interactions predicted in cis-regulatory modules
and stored in UniBind are more likely to be enriched for
functional events. Determining the specific set of functional
TF–DNA interactions would require dedicated computa-
tional models and experiments.

DATA AVAILABILITY

Source code of the ChIP-eat software is available at https:
//bitbucket.org/CBGR/chip-eat and of UniBind at https:
//bitbucket.org/CBGR/unibind. The source code used for
the identification of co-localized TFs is available at https://
bitbucket.org/CBGR/co-binding. Users can browse and/or
download the data through the UniBind web interface at
http://unibind.uio.no/.
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Supplementary Data are available at NAR Online.
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