Integrative approaches to study TF-DNA interactions

Thesis for the Philosophiae Doctor (Ph.D.)
University of Oslo, 2020

Marius Gheorghe

\?l'(‘

T4 Computational Biology & Gene Regulation Group
N M M Centre for Molecular Medicine Norway
Vl‘\‘ ..
u Faculty of Medicine
University of Oslo

Cancer Genome Variation
Department of Cancer Genetics
Institute for Cancer Research
Oslo University Hospital

Faculty of Medicine
University of Oslo




© Marius Gheorghe, 2020

Series of dissertations submitted to the
Faculty of Medicine, University of Oslo

ISBN 978-82-8377-622-5

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Hanne Baadsgaard Utigard.
Print production: Reprosentralen, University of Oslo.



Contents

Acknowledgements ii
List of papers iii
Abstract v
Abbreviations viii
1 Introduction 1
1.1  Generalities of transcriptional regulation . . . . . .. .. . .. 2
1.2 The organization of the genome . . . . . . . . ... ... ... 3
1.3 Transcription factors . . . . . . . .. ... ... ... ... .. 14
1.4 Identification of TF-DNA interactions . . . .. ... ... .. 20
Objectives of the study 45
2 Summary of the papers 47
2.1 Papers I-IV: towards a map of direct TF-DNA interactions in
the human genome . . . . . . . .. ... L 47
2.2 Paper' V. . . . .. 52
2.3 Paper VI . . . . . 53
3 Discussion and perspectives 55
3.1 Quality control and resource maintenance . . . . ... .. .. 56
3.2 The DNA-encoded rules of transcriptional regulation . . . . . 57
3.3 Tackling false positives to infer bona fide TFBSs genome-wide 59
3.4 Identifying regulons: still a highly complex problem . . . . . . 61
3.5  Computationally deriving molecular specificities of cancers . . 63
3.6 Biomedical considerations for targeted cancer therapy . . . . . 65
3.7 Further improvement of the tools and resources . . . . .. .. 66

3.8 General discussion . . . . ... 67



Acknowledgements

The present work has been carried out at the Centre for Molecular Medicine
Norway, Faculty of Medicine, University of Oslo and in collaboration with
the Department of Cancer Genetics, Institute for Cancer Research, Oslo
University Hospital.

Firstly, I would like to express my gratitude towards Dr. Anthony Mathelier,
my principal supervisor. I thank him for the opportunity, support, and the
patience he showed throughout my entire Ph.D. Secondly, I would like to
thank Dr. Vessela Kristensen, my co-supervisor. I am grateful for her support,
understanding, and experience shared throughout our collaboration.

I would also like to thank the members of the Computational Biology and
Gene Regulation Group, namely Dr. Aziz Khan for being such a dedicated
and inspiring person always willing to share and spread his knowledge and ex-
perience, Dr. Jaime Castro for the fruitful discussions and exchange of knowl-
edge, and Dr. Roza Berhanu Lemma for her ever joyful attitude and for shar-
ing her Ph.D. dissertation and defence experience. I also thank Dr. Xavier
Tekpli and Dr. Thomas Fleischer from the Cancer Genome Variation Group
for sharing their biological insights on cancer research. I also thank Georgios
Magklaras and George Marselis for systems support as well as all the people
that took part in the collaborations developed throughout my Ph.D.

Most importantly, I would like to acknowledge my parents, Doina and Tudor
Gheorghe, and my sister Ligia Gheorghe, for believing in me and supporting
me in any way imaginable. They are the only ones who truly know me and
I thank them for trusting in me. This is for you.

6L\¢a\»u(,¢ Hw%

ii



List of papers

Paper 1

ReMap2018: an updated atlas of regulatory regions from an inte-
grative analysis of DN A-binding ChIP-seq experiments.

Cheneby, J., Gheorghe, M., Artufel, M., Mathelier, A., and Ballester, B.
(2018). Nucleic Acids Research, 46(D1):D267-D275.

Contribution: design and development of the data processing pipeline and
processing of one third of the data available for this publication/online ser-
vices. Contributed to and revised the manuscript.

Paper II

JASPAR 2018: update of the open-access database of transcription
factor binding profiles and its web framework.

Khan, A.T, Fornes, O.f, Stigliani, A.f, Gheorghe, M., Castro-Mondragon,
J. A., van der Lee, R., Bessy, A., Cheéneby, J., Kulkarni, S. R., Tan, G.,
Baranasic, D., Arenillas, D. J., Sandelin, A., Vandepoele, K., Lenhard, B.,
Ballester, B., Wasserman, W. W., Parcy, F., and Mathelier, A.. (2018),
Nucleic Acids Research, 46(D1):D260-D266.

Contribution: provided processed ChIP-seq data that was used for the
database update and processed new data generating new and updated
transcription factor binding profiles.  Contributed to and revised the
manuscript.

Paper III

MANTAZ2, update of the Mongo database for the analysis of tran-
scription factor binding site alterations.

Fornes, O.T, Gheorghe, M.T, Richmond, P. A., Arenillas, D. J., Wasserman,
W. W., and Mathelier, A. (2018), Scientific Data, 5:180141.

Contribution: provided and processed data to predict transcription factor
binding sites. Contributed to and revised the manuscript.

iii



Paper IV

A map of direct TF-DNA interactions in the human genome
Gheorghe, M., Sandve, G. K., Khan, A., Cheneby, J., Ballester, B., and
Mathelier, A. (2019), Nucleic Acids Research, 47(4):e21-e21.

Contribution: design and development of the data processing pipeline, data
gathering, development of all programming scripts used within the project,
result assessment, all figure and table generation. Wrote and revised the
manuscript.

Paper V

TF-regulons: identifying direct targets of transcription factors
Gheorghe, M. and Mathelier, A.
Manuscript

Contribution: design and development of the processing workflow, provided
data and data gathering, development of programming scripts, result assess-
ment, generating all figures and all tables. Wrote and revised the drafted
manuscript.

Paper VI

Identifying key TFs driving ER positive and ER negative breast
cancer subtypes

Gheorghe, M., Tekpli X., Fleischer, T., Kristensen, V., Mathelier, A.
Manuscript

Contribution: design and development of the processing workflow, data gath-
ering and data sharing, development of programming scripts, result assess-
ment, generating figures. Wrote and revised the drafted manuscript.



Abstract

Transcription of DNA into RNA is mainly regulated through a complex in-
terplay between proteins and chromatin at cis-regulatory elements (CREs).
Two critical types of CREs are promoters and enhancers, which are involved
in turning on or off gene transcription. Promoters are regions of DNA ensur-
ing the transcription of genes and are located around transcription start sites
(TSSs). Enhancers are regulatory regions that are located linearly distal on
the genome with respect to the genes they are regulating but in close prox-
imity in the three-dimensional space of the nucleus of a cell. Transcription
factors (TFs) are key proteins that bind to promoters and enhancers in order
to ensure transcription at appropriate rates in the correct cell types. They
interact with DNA at their TF binding sites (TFBSs) in a sequence spe-
cific manner, recognizing specific DNA motifs. Through their binding, they
play an essential role in the development and physiology of an organism.
Therefore, genome-wide identification of TFBSs is a critical step to decipher
transcriptional regulation and how this process is altered in diseases. Our
understanding of the mechanisms controlling gene expression is still limited.
Advantageously, consortia and individual laboratories provide a milestone
with the generation of large-scale data sets for the identification, collection,
and categorization of CREs.

When focusing on TFBSs, the current most common practice to locate them
in vivo is to perform chromatin immunoprecipitation (ChIP) followed by mas-
sive parallel DNA sequencing (ChIP-seq). Unfortunately, it has been recur-
rently shown that these assays are prone to produce experimental artifacts.
Thus, delineating bona fide TF-bound regions from experimental noise is still
an ongoing problem. This affects not only primary measurements but also
the ability to compare data from multiple studies or to perform integrative
analyses across multiple data types. Together with whole genome sequenc-
ing and expression quantification data, accurately predicting the regulatory
factors ruling gene transcription will allow us to identify functional CREs
and ultimately assess how alterations occurring in these regions contribute
to disease onset.

To address this problem, my research has focused primarily on improving our



capacity to predict and analyse direct TF-DNA interactions at a genome-wide
scale. As TFs recognize their binding site through a complex interplay be-
tween base/nucleotide and DNA shape readout, computational models have
been instrumental in the prediction and characterization of TF-DNA inter-
actions. To acquire large amounts of ChIP-seq data, we participated in the
latest update of the ReMap database, which provides an atlas of ChIP-seq
peaks in the human genome. Using the extended ReMap data collection, we
participated in the latest update of the JASPAR database, which hosts high
quality TF binding motifs. In a first attempt to predict TFBSs in the human
genome, we combined both ReMap ChIP-seq peaks and JASPAR binding mo-
tifs to update the MANTA database, which predicts TFBSs genome-wide and
assesses the impact of single nucleotide variants at TFBSs. Subsequently, we
developed ChIP-eat, a uniform data processing pipeline, from raw ChIP-seq
data to high confidence direct TF-DNA interactions. The ChIP-eat pipeline
is centered around an entropy-based, non-parametric, data-driven algorithm
allowing automatic identification of direct TF-DNA interactions supported
by strong computational and experimental evidence. The predictions were a
posteriori validated using in vitro assay data. This work led to the creation
of the publicly available UniBind database in an effort to provide the com-
munity with a critical resource that will enable an array of studies aiming
at better understanding transcriptional regulation. UniBind hosts the com-
plete set of TFBS predictions from almost two thousand ChIP-seq data sets
processed using four different computational models.

A second aim of my research was the identification of genes that are specific
targets of TFs. In the past years, the focus has been mainly on identifying
DNA regions bound by TFs. Unfortunately, TF binding is not necessarily
associated to regulatory function. To better understand the functional im-
pact of TF-DNA interactions, methods have to be developed to identify not
only potential TFBSs but to characterize the ones that are regulatory func-
tional. Besides the genome-wide TFBS predictions obtained using the ChIP-
eat pipeline, we employed several other layers of genomic information, such
as: TSSs, promoter and enhancer locations, sequence conservation scores,
TF binding affinity scores, and gene-enhancer associations in a ranked list
approach to better model the prediction of TF-specific target genes. The
impact of the features upon the predictions was assessed by means of overlap
with known sets of associated genes and by gene ontology term similarities.

The third part of my research consisted of identifying key TFs driving es-



trogen receptor positive (ER+) and estrogen receptor negative (ER-) breast
cancers. As ER- breast cancers have poor or nonexistent response to hor-
mone based therapies, as opposed to ER+, it is crucial to identify the TFs
responsible for disruptions in the gene regulatory program leading to car-
cinogenesis in the two cancer subtypes. Making use of the high confidence
TFBS predictions hosted in UniBind and donor samples from TCGA, we
were able to identify candidate TFs that can ultimately serve as input in the
development of targeted therapies for the two subtypes of breast cancer.
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Introduction

Most living organisms consist of cells, the base units of life. Within each cell,
a collection of molecules allows it to live and proliferate. Throughout the
past century, scientists have tried to grasp how a single cell can give rise to a
fully developed and fully functional multicellular organism. In multicellular
organisms, how is it possible to obtain from one fertilized egg such a collec-
tion of different morphologies and different functionalities? Starting in the
embryonic stage, the stem cell divides into new cells with virtually the same
genome, and at the end of the developmental process the assembly of cells
forms an intricate pattern of outstanding complexity and precision. All this
process is attributed to the genome itself, but how does the cell determine
its final pattern?

Decades ago, the flow of genetic information was described by three different
biochemical processes: (i) replication, the process by which the DNA gener-
ates copies of itself, (ii) transcription, where DNA is copied into RNA, and
(iii) translation, the process by which RNA is synthetized into proteins (Fig-
ure 1.1). Nevertheless, special cases of information transfer can also occur
under special circumstances, such as RNA to RNA or RNA to DNA due to
virus infected cells (Crick, 1970). Around the mid-twentieth century, Barbara
McClintock revealed that to obtain such cellular and morphological diversity,
gene expression regulation plays a central role (McClintock, 1950). Yet, the
discovery of the gene regulatory mechanism was provided by Francois Ja-
cob and Jaques Monod, who showed that protein synthesis is regulated by
a distinct class of proteins termed repressors, which mediate gene activity
through their binding to short sequences of DNA termed operators (Jacob
and Monod, 1961). This led to the advent of transcriptional regulation re-
search as a subfield of molecular biology and subsequently it was established
as a level of gene expression regulation. A couple of decades later, the activa-
tors were discovered (McKay and Steitz, 1981). This new class of regulatory
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1.1 INTRODUCTION

proteins was shown to positively regulate gene expression, as opposed to re-
pressors. These two classes of proteins are commonly termed transcription
factors (TFs). As pioneer studies were performed in bacteria, it was found
that TFs bind DNA at promoters, specific regions situated upstream from
the gene body. Generalizing the studies in metazoa and plants, it was found
that transcriptional regulation is coordinated through the interplay of several
regulatory elements (Bitas et al., 2016; Riethoven, 2010).

Although the principle of passing ge-
netic information seems straightfor-
ward, the ability of the genome to
develop complex cellular states that
lead to the formation of different
tissues, which achieve specific func-
tions, should not be underestimated.
This in turn raises the question: how
is gene expression regulated during
cellular differentiation and develop-

A
PROTEIN

Figure 1.1: How the genetic material is repli-
o
mental stages? It has been shown cated and biological information passed. The

in multiple studies over the years solid lines illustrate probable transfers (sup-
how gene expression regulation plays ported by evidence) with RNA to RNA being
a role in a wide range of biologi- possible due to RNA viruses and the dashed
lines possible transfers (no experimental ev-

idence or theoretical requirement). Figure
from Crick (1970) .

cal processes, such as T-cell differ-
entiation (Zhu et al., 2010) or cell
reprogramming (Takahashi and Ya-
manaka, 2006) and also how gene
dysregulation may lead to carcinogenesis (Ell et al., 2013) or disease in gen-
eral (Mathelier et al., 2015).

1.1 Generalities of transcriptional regulation

The proper development of each cell in an eukaryotic organism is highly de-
pendent on the tightly regulated mechanism of gene expression. This ensures
that cells can evolve into diverse cell types, achieve different functionalities,
and respond to their environment and stress. This phenomenon is attained
by expressing only a specific subset of genes in a certain cell type, at a certain



INTRODUCTION 1.2

developmental stage, and only at specific levels (Lelli et al., 2012). There are
two main levels at which gene expression regulation is achieved: (i) through
transcription, which converts DNA into RNA and (ii) through translation,
which converts RNA into proteins. In this work, the focus will be only on
gene expression regulation achieved through transcriptional regulation.

Eukaryotic gene expression can be categorized into two main classes: (i)
basal, associated with the housekeeping genes and (ii) activator-dependent
or inducible gene expression, the latter being subject to differentiation and
developmental constraints arising from context-specific stimuli (Thomas and
Chiang, 2006; Weake and Workman, 2010). Such a complex process requires
a tight regulation that is achieved by the coordinated and combined action
of regulatory elements and RNA polymerase (Barrett et al., 2012). Besides
regulatory elements, such as general or sequence specific transcription factors
(TFs) and co-regulators, chromatin remodelers play an important role in the
transcription process by altering chromatin. Chromatin structural changes
will either support transcription by allowing for protein interactions if the
chromatin is in an open state or repress transcription if in a closed state (Li
et al., 2007).

1.2 The organization of the genome

One of the most important molecules within a cell is the deoxyribonucleic
acid (DNA). This double helix shaped molecule consists of two complemen-
tary strands, each representing a sequence of nucleic acids called nucleotides.
More specifically, a strand of DNA is composed of a series of four different
nucleotides: adenine (A), cytosine (C), guanine (G), and thymine (T) cou-
pled by covalent phosphodiester linkages. The four nucleotides are pairwise
complementary, A to T and G to C, and due to the double stranded nature
of DNA, each pair of nucleotides, also called a base pair, is connected by
hydrogen bonds between the two strands (Figure 1.2 (a)). Moreover, the two
strands have an antiparallel orientation, each starting from the 5’-end of the
first base (i.e., the 5th carbon of the sugar backbone), which has a phosphate
group, to the 3-end of the last base (i.e., the 3rd carbon of the sugar back-
bone), which has a hydroxyl group (Figure 1.2 (b)). This structure allows
for strand directionality, and base pairing is possible due to the opposite
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Figure 1.2: The structure of the DNA. The sugar phosphate backbone of the two strands
are connected by covalent bonds forming base pairs (a). The two strands have an anti
parallel orientation allowing for directionality, which is essential in replication and tran-
scription. Figure adapted from OpenStax CNX.

orientation of the two strands. Such conformation is therefore essential for
the replication and transcription of genetic information.

The complete set of genetic material, crucial for the development and
functionality of a cell, is encoded within the DNA and is called the genome.
In eukaryotic organisms, the genome is hosted within the nucleus of the
cell. In humans, the genetic information is distributed across 23 pairs
of chromosomes, 22 of the pairs are called autosomes and the last pair
represents the allosomes, or the sex chromosomes.

1.2.1 Chromatin organization within the nucleus

The length of a DNA molecule is around two meters and consists of ~3.3
billion base pairs (bp). To fit such a quantity of genetic material in the
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INTRODUCTION 1.2

nuclear space of an eukaryotic cell, not larger than a few micrometres, DNA
is compacted through folding and via interactions with specific proteins called
histones (Hulton et al., 1990). The complex formed between histone proteins
and the DNA during the compaction process is called the chromatin. The
base unit of the chromatin is the nucleosome, which consists of eight positively
charged histone proteins (Kornberg, 1974), two of each of H2A, H2B, H3, and
H4 (Thomas and Kornberg, 1975), around which negatively charged DNA
strips of ~147 bp wrap ~1.7 times (Davey et al., 2002; Hansen, 2002) (Figure
1.3). To reach two full turns around the histone octamer, an additional 20
bp DNA is wrapped by a linker histone (Simpson, 1978; Kepert et al., 2003).
This represents the first level of DNA compaction.

Within each chromosome, multiple nucleosomes are inter-connected via linker
DNA to form arrays of nucleosomes under a beads-on-a-string structure (Fig-
ure 1.3). Subsequently, linker histones form higher order chromatin struc-
tures through the folding of several nucleosomes into a 30 nm chromatin
fiber, which in turn folds through 300 nm loops. These loops are further
compressed into a supercoil struture, eventually resulting in a chromatid
that forms the arms of the chromosome (Woodcock and Ghosh, 2010) (Fig-
ure 1.3). This multiple level compression of the nucleosomal DNA results
in a seven-fold size reduction after the first level, followed by a 40-50 fold
compression through nucleosome-nucleosome interactions mediated by his-
tone H1 (Thoma et al., 1979). The individual 30 nm solenoid fibers resulting
from the second compression step are tail-associated and further condensed
to form the chromosome arms or chromatid.

1.2.2 Genomic compartments and topologically associ-
ating domains

Chromatin conformation capture methodologies such as 3C and Hi-C allow
for the identification of interacting chromatin regions by determining the fre-
quency of two DNA loci being in close proximity and/or physical contact
(Naumova et al., 2012; van Berkum et al., 2010). A closer look at genome-
wide chromatin interaction maps suggests that intra-chromosomal regions
segregate by preferential interactions into two distinct compartments, de-
noted A and B (Lieberman-Aiden et al., 2009) (Figure 1.5). These ~ 5M
bp regions alternate along the genome, and it has been shown that these
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At the simplest level, chromatin Znm
is a double-stranded helical DNA deuble helix
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Figure 1.3: The different levels of nucleosomal DNA compaction. The naked DNA is
wrapped around histone octamers called nucleosomes, which in turn are folded into a
30nm solenoid fiber. Further, the chromatin fiber loops and becomes supercoiled to finally
for the chromatid of the chromosomes. Figure adapted from Pierce (2012).
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Figure 1.4: The topologically associating domains or TADs. An interaction map of the
12th chromosome in human embryonic stem cells. The blue lines under each triangular
shape define the borders of each TAD. Figure adapted from Dixon et al. (2012).

chromatin domains associate with other domains of similar activity levels
(Imakaev et al., 2012). Therefore, compartment A is generally associated
with active transcription, whilst compartment B is mainly classified as in-
active (Bonev and Cavalli, 2016). It was shown that what allows for the
separation of the two regions is the preferential activity of transcriptional
regulators, the density of genes, and the DNA sequence composition (i.e.,
the differential frequency of the nucleotides, such as GC content) (Gibcus
and Dekker, 2013).

Within the A/B compartments, smaller subunits of folded DNA were identi-
fied. These regions were called topologically associating domains (TADs) and
they cover between 0.5 and 1 mega bps (Figure 1.4). These are chromoso-
mal regions where an unusually large number of chromatin interactions occur
(Dixon et al., 2012; Dekker et al., 2013). Importantly, the A/B segregation is
distinct from the TADs. In contrast to the TAD specific conservation across
cell types and tissues (Nora et al., 2012; Dixon et al., 2012), the A /B compart-
ments are tissue dependent and gene expression dependent (Xie et al., 2017).
Within TADs, chromatin forms smaller loops on the order of hundreds of kilo
bps. The TADs are defined in such a way that the number of intra-TAD loci
interactions is much higher compared to the inter-TAD interactions (Dixon
et al., 2012). Consequently, this structure facilitates interactions between
genomic regions situated within the same TAD and isolates the genomic re-
gions situated between two TADs (Symmons et al., 2014). Recent studies
have shown that inter-TAD interactions also occur and lead to spatial chro-
matin reorganization at higher levels within the nucleus (Gonzalez-Sandoval
and Gasser, 2016; Paulsen et al., 2019). The TAD borders are partly defined
by genetic elements. Nora et al. showed that if this border is removed at the
inactivation center of chromosome X, a partial blending of adjacent TADs
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Figure 1.5: A representation of the A and B genomic compartments. These higher or-
der structures host TADs that are grouped based on their activity. Depending on gene
activity and their regulators, the compartments are reorganized but not the TADs. Com-
partment A is associated with active transcription, whilst compartment B is generally
transcriptionally inactive. Figure adapted from Gibcus and Dekker (2013).

takes place (Nora et al., 2012). Moreover, it was also shown that disruptions
in TAD boundaries can cause dysregulation in gene expression and lead to
developmental disorders (Lupidnez et al., 2016).

1.2.3 Cis-regulatory elements

The genome can be divided into coding and non-coding regions. The cod-
ing genome hosts the transcriptional units that are sequences of DNA repli-
cated into RNA and subsequently translated into proteins. This accounts for
roughly 2% of the entire genome. Each chromosome contains hundreds to
thousands of such protein coding DNA sequences. The non-coding genome
is the ensemble of DNA sequences that do not encode for proteins and rep-
resents >98% of the entire genome. Part of the non-coding sequences are
transcribed into non-coding RNA molecules (ncRNA). Some of the ncRNAs
can become functional units of the genome; however, they are not translated
into proteins but regulate other classes of RNAs in eukaryotes (Mattick and
Makunin, 2006). Another crucial class of non-coding DNA sequences are the
cis-regulatory elements (CREs), which are involved in the transcriptional
regulatory process (Wittkopp and Kalay, 2012).

8
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CRM Proximal TFBS TS5 Proximal TFBS

Figure 1.6: The cis-regulatory elements in metazoan transcriptional regulation and their
relative positioning with respect to the transcription start site (TSS) of a gene. Figure
adapted from Lenhard et al. (2012).

Genomic compartmentalization and chromatin interactions coordinate the
interactions between CREs. CREs are genomic regions such as promoters,
enhancers, silencers, and insulators that come in close 3D proximity through
DNA looping during transcription (Lenhard et al., 2012) (Figure 1.6). In
brief, there are two types of promoter regions: promoters that are capable of
recruiting the RNA-polymerase (RNAP) complex without the help of other
regulatory elements, called strong promoters, and weak promoters that need
other regulatory elements to stabilize the RNAP and initiate transcription
(Qin et al., 2010). Other regulatory regions were discovered at a later stage,
and they represent distal DNA sequences with respect to the promoter: the
enhancer regions allow the activation and/or amplification of target gene
expression and the silencer regions suppress the expression of target genes
(Banerji et al., 1981). The insulator regions represent the boundary between
open and closed chromatin, and they reduce gene expression by inhibiting
the enhancer activity (Kolovos et al., 2012). In the scope of this work, only
promoters and enhancers will be detailed.

Promoters. For the transcription of a gene to occur, the transcription
machinery must be recruited at CREs situated upstream from the gene tran-
scription start site (T'SS), called the core promoter. The transcription of a
gene is initiated once the RNAP complex is loaded and stabilized. The core
promoter is a ~50 bp region located on the same DNA strand as the gene
to be transcribed and contains short specific regions, such as the TATA-box

9
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(Lifton et al., 1978), the initiator (Inr) (Smale and Baltimore, 1989), BREs
(Lagrange et al., 1998; Littlefield et al., 1999), downstream core promoters
(DPE or DCE) (Burke and Kadonaga, 1997), and RNAP components (Figure
1.7).

An individual promoter does not mnecessarily contain all these regions
(Lenhard et al., 2012), but the Inr is the most common (Xi et al., 2007).
The TATA-box allows the recruitment of the TATA-binding protein and is
present in the core promoter of 10 to 20 percent of the protein coding genes,
whilst Inr is present in 40 to 60 percent of promoters (Yang et al., 2007).
Characteristic to the core promoters is the variability of their constituents
across gene types and across species (Todeschini et al., 2014). Accordingly,
a core promoter alone can rarely ensure the transcription of a gene. Usually
the binding of general TFs is needed at the proximal promoter region located
immediately upstream of the core promoter region (Sainsbury et al., 2015).
Here, the term promoter will be used to represent both core promoters and
proximal promoters.

A gene can have multiple T'SSs and therefore multiple promoters. Recruit-
ment of the transcription machinery can thus occur at different alternative
promoters. In turn, this enables the production of an increased variety of
RNA transcripts. Overall, promoters contain short sequences of DNA or mo-
tifs that are recognized and bound by sequence specific proteins called tran-
scription factors (TFs), involved in the initiation of transcription (Cooper
et al., 2006). Transcription was thought to take place in an unidirectional
manner, occuring downstream from the promoter and the gene TSS, but it
has been shown that in metazoa, bidirectional transcription is very common
(Andersson et al., 2015). It is not yet clear if this is a consequence of spatially
close promoters or the presence of RNAP in open chromatin regions with a
high concentration of TFs. Moreover, this phenomenon occurs equally in
enhancers and it is thought to be driven by the overrepresentation of TFs,
specific histone modifications, or extended regulatory regions facilitating the
binding of additional TFs, among others (Bagchi and Iyer, 2016; Ibrahim
et al., 2018). Nevertheless, during bidirectional transcription occurring at
promoters of protein-coding genes, only one transcript produces a stable
mRNA (Wei et al., 2011) (Figure 1.8). This is not the case for enhancers,
where transcripts in both directions are found to be unstable (Andersson
et al., 2014b).
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Figure 1.7: The elements of the core promoter in metazoa and specific to vertebrates.
The TATA-box is flanked by the B-recognition element (BRE) and the initiator (Inr)
downstream from it, followed by the downstream core promoter elements (DCE). Figure
adapted from Lenhard et al. (2012).
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Figure 1.8: The bidirectionality of transcription at the promoter level. The RNA transcript
generated upstream from the TSS is unstable as opposed to the one occurring downstream
from the TSS. Figure adapted from Wei et al. (2011).

11



1.2 INTRODUCTION

Inactive promoter

Active promoter Polll

)
Core promoter

- @ H3Kdmel @ H3K27ac
Ooo DNA-binding proteins
@ H3Kdme3 @ H3K27me3

Figure 1.9: A schematic of an active promoter (left) and an inactive one (right), and their
epigenetic environments. Figure adapted from Shlyueva et al. (2014).

Importantly, active promoters are located in nucleosome depleted, open
chromatin regions flanked by promoter-associated nucleosomes. Epigenetic
marks, such as H3K4me3 and H3K27ac histone modifications, are enriched
at active promoters, while H3K27me3 is usually associated with inactive
promoters (Tserel et al., 2010; Lawrence et al., 2016) (Figure 1.9).

Enhancers. The first enhancer was described during an experiment aiming
at cloning the DNA sequence of a human virus (SV40). It was observed
that the expression of the targeted gene was considerably increased, and
its enhancement was associated to the 72 bp repeated sequence situated
in the beginning of the viral gene (Banerji et al., 1981). The increase in
gene expression was observed regardless of the viral sequence orientation or
the distance to the gene TSS. Currently, enhancers are widely studied and
numerous types were discovered in vivo and in different cell types. Enhancers
are defined as short DNA sequences that have the capacity to increase the
expression of their target genes (Blackwood and Kadonaga, 1998) regardless
of location and orientation. These CREs can be located close to the target
gene, within the gene itself, or distal to the target gene (Figure 1.10).

The size of the enhancer regulatory sequence varies in length, from 10 bp to
1000 bp and contains from a couple to tens of binding motifs for a wide range
of TFs (Blackwood and Kadonaga, 1998; Yanez-Cuna et al., 2013). Once
bound to the enhancer, TFs recruit co-activators such as p500. Importantly,
their regulatory action is irrespective to the orientation of the target gene. A
distinct characteristic of enhancers is their ability to interact directly (phys-
ically) or indirectly (through other TFs) with their target gene(s) or other
CREs (Kolovos et al., 2012) (Figure 1.11). Briefly, in the tracking model (Fig-
ure 1.11 (upper left)) the regulatory proteins are “charged” at the enhancer
level and travel along the chromatin to reach the promoter; the linking model
(Figure 1.11 (lower left)) implies that the regulatory proteins undergo poly-
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Figure 1.10: The positioning of enhancer regions relative to the target gene and its pro-
moter. Figure adapted from Levine and Tjian (2003).
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Figure 1.11: Different proposed models of physical interaction between enhancers and the
promoters of their target gene(s). Figure adapted from Kolovos et al. (2012).

merization in the direction of the promoter; the relocation model implies
that a gene relocates to a nuclear compartment that favors the enhancer-
promoter interaction; finally, the looping model describes the situation in
which an enhancer comes into proximity with a promoter via protein-protein
interactions. These interactions are important factors in the transcriptional
regulation process (Shlyueva et al., 2014). Moreover, enhancers have a low
nucleosome occupancy and they are hypersensitive to DNasel, an enzyme
able to cleave exposed DNA (Zentner et al., 2011).

Together with DNase I hypersensitivity, epigenetic modifications (e.g., his-
tone modifications) can serve as markers to identify enhancers genome-wide;
however, these are not sufficient as the variability in the epigenetic landscape
is higher compared to other CREs such as promoters (Heintzman et al., 2007).
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Figure 1.12: A schematic of an active enhancer (left) and an inactive one (right), and their
epigenetic environments. Figure adapted from Shlyueva et al. (2014).

In fact, information about specific TFs that preferentially bind DNA at en-
hancer regions, such as p300, could be paired with specific histone marks to
increase the reliability of genome-wide enhancer inference. A better method
to identify enhancers genome-wide is to use Cap Analysis of Gene Expression
(CAGE), which captures the bidirectional transcription at active enhancers
(Kodzius et al., 2006; Andersson et al., 2014a). CAGE-predicted enhancers
are three times more likely to be validated using reporter assays compared
to epigenetically predicted enhancers.

One enhancer can be associated with multiple promoters, and one promoter
with multiple distinct enhancers, depending on the biological condition
and/or cell differentiation stage. The recruitment of a large number of
TFs, as well as other regulatory proteins, requires that the chromatin is
in an open state. The chromatin state is cell type dependent and, as a
consequence, not all enhancers are active at the same time (Andersson et al.,
2014a).

Another property, similar to promoters, is that enhancers are capable of
carrying out bidirectional transcription (as captured by CAGE) due to the
recruitment of the RNAP complex and the high number of TFs. This pro-
duces a different class of RNAs called enhancer RNA (eRNA). Studies have
proposed that eRNAs can be used in labelling active enhancers (Andersson
et al., 2014a), while others suggest that it is not a representative feature for
enhancer activity (Hah et al., 2013). However, eRNAs have been associated
with co-factor recruitment and stability of enhancer-promoter looping (Hsieh
et al., 2014).

Altogether, it is clear that enhancers, as promoters, play an essential role in
modulating gene expression, and they are necessary in biological processes,
such as development and cell differentiation (Bonn et al., 2012). The dif-
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ference in enhancer activity across different tissues allows for better under-
standing of the mechanisms controlling the diversity of cellular types that
share the same genome. Nevertheless, the difference between enhancers and
promoters is not easy to establish. The only apparent distinction lies in the
different classes of RNAs they produce, but their context-dependent function-
ality suggests that they are likely to represent the two extremes of a gradient
of CRE functions (Andersson, 2015). Also, enhancers were found to be more
cell type specific compared to promoters (Heinz et al., 2015).

1.3 Transcription factors

TFs are proteins that control transcription through sequence specific DNA
binding (reviewed in (Lambert et al., 2018)). This class of proteins consists
of ~1600 members characterized by a DNA-binding domain (DBD) and a
transactivation domain (Wingender et al., 2013; Lambert et al., 2018). The
DBD facilitates the binding of the protein in a sequence-specific manner to
DNA, whereas the transactivation domain provides the activation potential
of the protein (Brivanlou and Darnell, 2002; Vaquerizas et al., 2009). By
their binding at CREs (e.g., promoters or enhancers) they can activate or
repress gene transcription. Through regulatory DNA sequence recognition,
they control the level of gene expression by recruiting the transcription ma-
chinery to CREs (Sikorski and Buratowski, 2009). TFs may play different
roles through their binding to DNA. They can induce basal transcription by
interacting with general TF complexes (Sikorski and Buratowski, 2009) or, to-
gether with co-activators and specific enzymes, they can alter the chromatin
structure through histone modifications and initiate or repress gene transcrip-
tion (Brivanlou and Darnell, 2002; Li et al., 2007; Venters and Pugh, 2009).
Moreover, a hierarchical model of TFs binding to DNA has been proposed,
with some TFs altering the chromatin conformation and others responding
to changes in chromatin state (Sherwood et al., 2014).

1.3.1 Functional classification

Activators vs. repressors. Depending on their impact on transcription,
TFs can be classified as activators and repressors. Activator TFs ensure gene
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transcription and contain at least a DBD and an activation domain. In con-
trast, repressor TFs, as the name states, inhibit gene expression by masking
the transcriptional activation sequences (i.e., where RNAP binds) either by
competing with activator TFs, by direct interaction with other TFs, or by af-
fecting the chromatin structure (Payankaulam et al., 2010). For decades, this
dichotomy was used to separate TFs into these two distinct groups (Jacob
and Monod, 1961; McKay and Steitz, 1981; Busby and Ebright, 1999), but
recently it has been shown that this partition is not straightforward. Specifi-
cally, some TFs can act as both activators and repressors in given biological
conditions (Lee et al., 2012; Slattery et al., 2014).

Pioneers vs. settlers vs. migrants. The majority of DNA is wrapped
around nucleosomes and thus inacessible to TFs due to the presence of his-
tones. Higher-order chromatin structures and repressor complexes also con-
tribute to DNA inacessibility (Symmons et al., 2014). Nevertheless, regu-
latory events still occur through cooperative binding of several TFs to the
target site of a gene, activating gene expression. For regulatory events to
occur at the chromatin level, pioneer TFs are required. This special class
of TFs can access the closed chromatin independently of other factors and
facilitate the binding of other TFs by altering the chromatin conformation
(Zaret and Carroll, 2011; Young, 2011). Pioneer TFs are also necessary when
sequential binding of several TFs over time is required (Young, 2011). Two
distinct roles define pioneer TFs: shaping the chromatin landscape for other
TFs (active role) and enhancing transcription as a direct consequence of
their initial binding to chromatin (passive role) (Zaret and Carroll, 2011;
Sherwood et al., 2014). Interestingly, it was shown that some pioneer TFs
are directional, asymmetrically opening the chromatin (Kundaje et al., 2012;
Sherwood et al., 2014).

Even though pioneer TFs do not bind a high fraction of their available bind-
ing motifs, a different class of TFs, termed settler TFs, binds all the genomic
motifs found in a chromatin accessible region. This class of TFs follows a
simple rule: binding DNA if it is in an open chromatin state. Thus, settler
TFs solely rely on the ability of the pioneer TFs to open the chromatin and
therefore their binding can be determined based on chromatin accessibility
data (Sherwood et al., 2014). Other than the small fraction defined as set-
tlers, the majority of non-pioneer TFs are classified as migrants. These TFs
bind only a subset of their available genomic motifs, even if found in an open
chromatin region. Therefore, their selectivity is likely dependent on specific
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co-factor interactions (Sherwood et al., 2014). From a chromatin-based per-
spective, TF binding follows a hierarchical model; pioneer TFs opening the
chromatin, which is in turn populated by settler TFs and combinations of
migrant TFs, as the latter two TF classes do not have the capacity to evict
nucleosomes (Sherwood et al., 2014; Slattery et al., 2014).

1.3.2 Structural classification

Since the discovery of TFs, several attempts have been made to classify them,
either by function or by structure. As the DBD is characteristic to TFs, it
was used to structurally classify the TFs. Consequently, different repertoires
of human TFs have been generated based on the similarity of their DBD
(Harrison, 1991; Wingender, 1997; Vaquerizas et al., 2009). For instance, a
detailed classification of human TFs can be found in the resource TFClass
(Wingender et al., 2018). Other such resources exist, specific to a certain
organism (Ishihama et al., 2016) or multiple organisms (Portales-Casamar
et al., 2009). Further stratification was obtained based on functional crite-
ria of TFs (Wingender, 1997) (Table 1.1). The main role of the DBD is to
act as an initiator of weak interactions with DNA (i.e., unspecific binding)
during the sequence scanning process. Importantly, DBDs are able to rec-
ognize not only monads or continuous DNA sequences, but also dyads or
sequences containg spacers of fixed or variable length (Helden et al., 2000).
This allows for flexibility in the DNA sequence recognition. Commonly, TF
classes have highly similar binding motifs. However, in zinc fingers, the most
abundant TF class in mammals, the binding motifs are very different due to
the presence of spacers (Ravasi et al., 2003).

Depending on the organism, the number of TF families varies and so does
the number of members within each family. Notably, TF families can be
associated to specific biological functions, such as the basic helix-loop-helix
(bHLH), which is associated to neurogenic differentiation and myogenic dif-
ferentiation, among others (Jones, 2004). Certain TF families can be associ-
ated to the same clade whilst others are specific to subclasses of organisms.
Furthermore, a TF family can host from one member to several hundreds
(Wingender et al., 2018).
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Table 1.1: Structural classification of TFs and rank definitions. Table adapted from Win-
gender et al. (2013).

Level Rank denomination  Definition Example
1 Superclass General topology of the DBD Zinc-coordinating DBDs
2 Class Structural blueprint of the DBD Nuclear receptors with C4 zinc fingers
3 Family Sequence and functional similarities Thyroid hormone receptor-related factors (NR1)
4 Subfamily Sequence-based subgroupings Retinoic acid receptors (NR1B)
5 Genus TF gene RAR-«
6 Factor ‘species’ TF polypeptide RAR-a 1
b) 1D Slldlng a) 3D dlfoSlTOn

—0—

d) Hopping l

¢) Intersegmental
transfer

Figure 1.13: The four different TF motion models explaining the dynamics of TFBS
recognition. Figure adapted from Schmidt et al. (2014).

1.3.3 Binding site recognition

As mentioned, a key feature of the TFs is their capacity to bind DNA in
a sequence specific manner, as opposed to other co-factors taking part in
transcriptional regulation. The DBDs of TFs can recognize short sequences
of DNA, usually between 6 and 20 bp, which are termed transcription fac-
tor binding sites (TFBSs). The binding of a TF to a TFBSs is central for
transcription initiation and transcriptional rate regulation. Each TF has
multiple TFBSs across the genome, the number varying from a handful to
even hundreds of thousands in the human genome. Identifying bound TF-
BSs genome-wide is a highly complex task. The mechanism by which TFs
recognize their binding sites is not yet fully understood. How does a protein
scan for such short specific sequences of DNA among billions of nucleotides
in such a short time?

Four motion models have been proposed to encompass the dynamics of this
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Figure 1.14: The importance of the DNA regions flanking the TF binding motif. The
CACGTG enhancer box (E-box) is shown in a GC-rich environment (blue) and in an AT-
rich environment (red). The nucleotide composition of the motif environment influences
the binding affinity through the DNA shape. Figure adapted from Gordéan et al. (2013).

process: (a) 3D diffusion, implying that the TF is freely moving within the
nucleus, (b) 1D sliding, implying that the TF slides along short regions of
the DNA, (c) intersegmental transfer, implying that the TF moves between
two linearly distal DNA segments that are in close proximity due to looping,
and (d) hopping, implying that the TF jumps across the DNA (Schmidt
et al., 2014) (Figure 1.13). These models should be viewed as complementary
and not antonymic. As TFs float freely within the nucleus (a), they can
initiate weak interactions with DNA situated in an open chromatin region
and slide along until they find their binding sites (b). Nevertheless, they can
be dislodged from their binding site due to DNA movement or interaction
with other proteins. During the sliding process (b), they can jump between
segments of DNA or over closed chromatin regions (c) or hop between linearly
distal regions of DNA which are in close 3D proximity. Hopping can occur
even between chromosomes (Schmidt et al., 2014).

Furthermore, it has been shown that TFBSs tend to localize in DNA regions
having a GC composition (i.e., guanine-cytosine content) similar to the TF
binding motif (Dror et al., 2016). Therefore, TFBS flanking regions are
important for TF binding affinity and specificity (Gordan et al., 2013; Schéne
et al., 2016) (Figure 1.14).
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Figure 1.15: The interplay between TFs and co-factors. Schematic of the different mecha-
nisms by which co-factors can impact gene expression: chromatin remodeling and histone
modifications (a), post-translational modification of the RNAP complex (b), stabilizing
RNAP with co-factors (c), and interacting with PIC (d). Figure from Reiter et al. (2017).

1.3.4 Combinatorics and cooperativity

In eukaryotes, TFs can combine through protein-protein interactions to form
protein complexes and thus “coordinate”, or act in unison to achive the re-
quired regulatory effect. The entire set of TF combinatorics defines a “dictio-
nary” that follows a specific grammar (Spitz and Furlong, 2012). Although
it is known that TFs may act in a cooperative way to tune transcriptional
activation or repression, it is still not clear what the individual contribution
of each TF to gene expresion regulation is.

Two models have been proposed to describe the effect of TF combinatorics
at enhancer level on gene expression regulation. The enhanceosome model
depicts the enhancer DNA sequence as a scaffold for other proteins to form
one protein complex. This model implies high cooperative and coordinate
action between enhancer-bound proteins; therefore, alterations at individual
binding sites would have a drastic impact on the enhancer activity, as the out-
put of the enhancer is binary modeled (Thanos and Maniatis, 1995) (Figure
1.16 (A)). A second model is the billboard model, which suggests that TF-
BSs within an enhancer can be individually disposed, as the enhancer-bound
proteins do not act as a unit. In fact, they are considered an ensemble of
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Figure 1.16: The two models of TF combinatorics at enhancer level. The enhanceosome
model with high cooperativity among TFs (A) and the billboard model suggesting that
TFs act as individual units (B). Figure from Arnosti and Kulkarni (2005) .

separately acting TFs, independently interacting with their targets (Arnosti,
2003) (Figure 1.16 (B)). Therefore, the billboard model allows for more flex-
ibility as compared to the enhanceosome model, assuming individual contri-
butions rather than an overall output summed across the proteins within a
complex.

It has been shown in animals that TFs have the tendency to cluster at CREs
and form so called cis-regulatory modules (CRMs), but how the positioning of
each TF within the CRM can influence gene regulation is not fully understood
(Hardison and Taylor, 2012). To add to the complexity of the problem, in
addition to the presence of the TF, the relative orientation of the motif,
the distance between motifs, the order of the motifs, presence of co-factors,
and even biological context should be taken into account when studying the
behavior of a TF or a TF combination (Spitz and Furlong, 2012; Whitfield
et al., 2012).

1.4 Identification of TF-DNA interactions

To decipher transcriptional regulation, it is essential to understand how TFs
regulate the expression of their target genes. A first step is to identify TF-
DNA binding events, specifically TFBSs. Based on this information, regula-
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Table 1.2: A classification of experimental assays to identify TF-DNA binding events.
Table adapted from Geertz and Maerkl (2010).

Assay Approach Technique  Yield Throughput  Resolution

EMSA Gel shift in vitro around 10 sites low few binding sites only
BIAcore Surface plasmon resonance in vitro up to 100 sites low few binding sites only

PICh Reverse ChIP in vivo one genomic site low -

DNAse footprint Gel shift in vitro local genomic region  low Nucleotide resolution
MITOMI Mechanical trapping in vitro 100 to 1000 sites low-high Nucleotide resolution
SELEX, CASTing Selection of target in vitro >200 000 sites high few high affinity binding sites
HT-SELEX, Bind-n-Seq  Selection of target coupled to NGS in vitro >200 000 sites high Nucleotide resolution feasible
PBM, CSI Protein binding microarray in vitro up to 1 milion sites high Nucleotide resolution feasible
DIP-chip DNA immunoprecipitation in vitro all genomic sites high between 100 and 500 bp
ChIP-chip ChIP coupled to microarray in vivo all genomic sites high between 100 and 500 bp
ChIP-seq ChIP coupled to NGS in vivo all genomic sites high between 100 and 500 bp
ChIP-exo/ChIP-nexus ChIP + exonuclease + NGS in vivo all genomic sites high Nucleotide resolution feasible
DamID TF mediated DNA methylation profiling in vivo all genomic sites high between 100 and 500 bp
DNAsel-seq DNasel sensitivity profiling coupled to NGS  in vivo all genomic sites high Nucleotide resolution feasible
FAIRE-seq DNasel sensitivity profiling coupled to NGS  in vivo all genomic sites high Between 500 and 1000 bp
ATAC-seq DNasel sensitivity profiling coupled to NGS  in vivo all genomic sites high Between 200 and 600 bp

tory networks can be inferred and subsequently one can assess how disrup-
tions in these regulatory networks can cause gene expression dysregulation.
Over the years, several experimental assays have been designed in this scope,
varying between the characterization of TF-DNA binding affinities to the
genome-wide indentification of TFBSs for a given TF in vivo. Using these
data, computational models have also been developed in parallel with exper-
imental assays aiming at modeling TFBSs and predicting bona fide TF-DNA
interactions.

1.4.1 Experimental approaches

TF-DNA interactions are identified by both in vitro and in vivo experimen-
tal assays. In vitro assays aim at identifying the binding specificities and
affinity of a protein to a certain nucleotide sequence, while in vivo assays aim
at identifying the binding location within the genome (i.e., TFBSs). These
assays can be further classified as low-throughput and high-throughput. For
instance, low-throughput in vivo assays can identify the exact genomic loca-
tion of around a dozen TFBSs at nucleotide resolution, while high-throughput
assays can identify TF binding regions genome-wide under certain experimen-
tal conditions. Nevertheless, subsequent computational processing is needed
to determine the bona fide TFBSs. Table 1.2 contains a non-exhaustive list
of such assays and a brief description of each.

In the following subsections, the assays that have been widely used and their
characteristics will be briefly detailed.
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Figure 1.17: Schematic of the DNAse I footprint assay to identify the exact location of
the DNA bound regions. Figure from Song et al. (2015)

1.4.1.1 Low-throughput assays

DNAse I footprinting. DNAse I footprinting is an established assay that
can identify TF-DNA interactions at single nucleotide resolution (Galas and
Schmitz, 1978). This in wvitro assay is based on the molecular properties
of the enzyme deoxyribonuclease (DNAse) which is able to degrade DNA
fragments that are not bound/protected by a protein. Consequently, the
DNA fragments where a protein (e.g., TF) is bound are preserved. The
bound protein will leave a so-called footprint that becomes visible during the
gel electrophoresis step, as opposed to the cleaved naked DNA that is used
as a control (Figure 1.17). This procedure allows for the identification of the
binding site of the protein on the DNA. Through polymerase chain reaction
(PCR) amplification (Mullis et al., 1989), the isolated DNA fragments can
be used to identify the exact genomic location of the protein binding site or
the TFBS in the case of TFs (Galas and Schmitz, 1978).

In the past decades, DNAse I footprinting has been central to identifying
ligand-DNA interactions, and it was also employed in drug screening and
measurement of thermodynamic and kinetic properties of interactions with
DNA (Brenowitz et al., 1986; Ellis et al., 2007). However, there are several
downsides to the method, such as the preparation and duration of the ex-
periment, amount of biological materials needed, and the limited yield (i.e.,
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Figure 1.18: Schematic of the EMSA assay to identify the presence or absence of a protein
bound to the DNA. Figure from Song et al. (2015) .

only a few binding regions per experiment). As detailed later on, modifica-
tions have been made to the protocol during the past years, dampening its
downsides.

Electrophoretic mobility shift assay. Another in vitro low-throughput
assay making use of gel electrophoresis to detect and study nucleic acid-
protein interactions is the electrophoretic mobility shift assay (EMSA) (Gar-
ner and Revzin, 1986). This experimental procedure allows one to determine
the presence or absence of a protein in a given genomic sequence but does not
detect the exact location of the bound region. In other words, it allows one
to study which proteins, such as TFs, have preferential binding to specific
DNA sequences. As in DNAse footprinting, the naked DNA (i.e., DNA not
bound by any protein) is used as a control in the gel electrophoresis step,
by using its molecular weight as a signature pattern in the gel. If a protein
is bound to a DNA sequence, it will increase the molecular weight of the
sequence, thus changing the speed at which it travels through the gel and
consequently changing the gel pattern (Figure 1.18).

Moreover, the binding affinity of a protein to a DNA sequence can be classi-
fied as weak or strong, also based on the gel shifting patterns (Cann, 1998).
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This can help determine the preferred DNA binding motif of the protein or
the protein complex. The set of DNA sequences with the highest binding
affinity for a given protein can be thus identified, as the experiment allows
for multiple sequences (but still very few) to be evaluated in a single run.
Nevertheless, prior knowledge of the DNA sequence is required.

Mechanically induced trapping of molecular interactions. A differ-
ent approach for the identification of TF-DNA interactions introduces mi-
crofluidics to enable mechanically induced trapping of molecular interactions
(MITOMI) (Maerkl and Quake, 2007). This assay represents the transition
from low-throughput to high-throughput experimental assays (Geertz and
Maerkl, 2010). In brief, it allows one to generate the binding energy land-
scape of a protein based on the binding interactions occurring at equilibrium.
Thousands of micro-arrayed DNA sequences that are printed on microfluidic
chips allow measurement of the affinity of every interaction occurring between
the protein of interest and the micro-arrayed DNA spots. Even though this
approach in theory reduces the experimental design time and the study ma-
terials needed, its design and setup can become cumbersome, see Maerkl and
Quake (2007) for a schematic and a description of the protocol.

1.4.1.2 High-throughput assays

Protein binding microarrays. Another widely used in vitro technique for
the identification of TF binding affinities is the protein binding microarray
(PBM) assay (Mukherjee et al., 2004). This was the first technique initially
designed to be high-throughput and it is able to identify the binding events of
a given protein in a genome-independent manner (Berger and Bulyk, 2009).
The principle of PBMs is as follows: all oligonucleotides (or aptamers) of a
chosen length £ (usually 8 or 10, denoted k-mers) are represented as de Bruijn
sequences and segmented into sub-sequences overlapping a given number of
bases, each sub-sequence having different flanking regions. Next, these single-
stranded sequences are fixed on the microarray and become double-stranded
via primer extension. After the TF(s), tagged with an epitope are added,
only the sequences bound by the TF(s) are kept, via immunodetection. This
implies the use of specific fluorescent antibodies which allows calculation of
the signal intensities of each k-mer sequence, which in turn is used to score
the binding affinities to the sequences. Figure 1.19 shows a schematic of the

25



1.4 INTRODUCTION

a b (a3dccy o + ) o
aggcgtttagagtcaacaggtctat ,az,\q “(‘_99 g E E' E‘
2 “a, aaaccatcgggtggcaga a B B &
¢ I 5 = & T
aggegtttag fd 3 gagcrcaaggacgttrct 2 = 9 =
ggcgrttaga E - — — E E E g
A
gegtttagag ) 2 cttgatatgcgaattagt S £ & 8
) < & ® 5 B
cgtttagagt e & gtcccgectacactgtaa 5 & U &
2, 2
ok = 2
grmragRee ‘oo’ M
tttagagtca
.. ~ — - — = —
— —— —
de Bruijn sequence Computationally segment Synthesize on an array
into subsequences
& ;
HiE i ¢
| o= & +
o 1
: -

e —r-n--p-ccaeoooanoo
*

Figure 1.19: Overview of the protein binding microarray assay. A complete set of over-
lapping k-mers is generated (a) and converted into a de Bruijn sequence (b). Next, the
de Bruijn sequence is partitioned into sub-sequences that overlap by two bases and have
different flanking regions, which are synthesized on the microarray (b). The fluorescent
signal intensities provide an affinity score for the bound sequences (c¢). Figure from Berger
et al. (2006) .

PBM workflow.

Evaluating all the possible k-mer combinations allows the detection of both
strong and weak binding events, as opposed to the SELEX technique which
favors the strong affinity events (see below). The complete set of scored
sequences can then be used to infer a preferred binding sequence for a given
TF (Figure 1.20). Besides the clear benefits of detecting both strong and
weak binding sites and working regardless of the genome (sequenced or not),
the PBM technique has a couple of important limitations: the exact genomic
location of the inferred binding motifs cannot be determined and the inferred
binding sites cannot be tested. This technique was developed to solely study
the binding affinity of a given protein to a given nucelotide sequence.
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8-mer Median normalized E-score
a signal intensity b G G G TAT C A
GGGTATCA 21,280 0496 08 |
G.GTATCA.T 17,762 0.494 0.4
TGATATCA 17,585 0.492 0.3
T..GGTATCA 17,313 0.492 02
A.GGTATCA 17,230 0.489 o 01
A. .GATATCA 16,379 0.489 5
G.GATATCA 16,204 0.489 2 0
GATATCA.A 16,120 0486 W 01
GG.GTATCA 16,095 0.492 —02
AGGTATCA 15972 0.489 a3
T..GATATCA 15,950 0.483 :
GGTATCA.T 15,933 0.488 —0.4
GTGATATC 15,861 0.488 -0.5
GTATCAT.T 15,830 0.487
A.GATATCA 15,823 0.486 T
G. . TGATATC 15,775 0.488 P G\ I
GTATCA..TA 15,587 0.489
GGTATCA..T 15487 0.490
G.GGTATCA 15,427 0.489 EA EHc O6 BT
G..GTATCAT 15,384 0.490

Figure 1.20: Inferring the genomic sequence for the TF binding motif. All the k-mers that
were scored, including "wildcard” nucleotides (i.e., each dot within the k-mer sequence)
are assigned an enrichment score (i.e., E-score) (a) and a consensus motif representative
for the TF binding sequence is built (b). Figure from Berger and Bulyk (2009) .
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Figure 1.21: The SELEX cycle. A schematic of all the steps for in wvitro identification of
preferentially bound sequences by a target protein or molecule. Figure adapted from Wu
and Kwon (2016) .

27



1.4 INTRODUCTION

Systematic evolution of ligands by exponential enrichment. A tech-
nique generally used to determine binding preferences in wvitro is SELEX
(Systematic Evolution of Ligands by EXponential enrichment) (Tuerk and
Gold, 1990). This assay is based on the following principle: the protein or
molecule of interest, such as a TF, is incubated together with a large pool
of randomly generated aptamers (or oligonucleotides). After a washing step
involving immunoprecipitation, in which the unbound aptamers are removed,
the remaining sequences are amplified through PCR, and the entire cycle is
repeated several times. As a result, the aptamers that present the highest
binding affinity are preserved and enriched (Figure 1.21).

Initially designed to work with only one protein or molecule of interest at a
time and with a relatively limited yield (Table 1.2), more recent variants of
this technique have bypassed these limitations: (i) high-throughput SELEX
(HT-SELEX) is a massively parallelized version of SELEX, able to identify
the binding affinities of hundreds of proteins in a single assay (Jolma et al.,
2010); (ii) SELEX followed by sequencing (SELEX-seq) was designed to iden-
tify the binding sites of TF complexes (Riley et al., 2014); (iii) consecutive
affinity purification SELEX (CAP-SELEX) allows selection of aptamers that
are bound by two different TFs at the same time (Jolma et al., 2015).

Even if SELEX performs generally well and its setup is straightforward, two
major drawbacks are to be taken into account: (i) due to its design, strong
binding sites are favored over weak binding sites, which are discarded; (ii)
enriched aptamers may represent DNA sequences that do not exist within
the genome, as they are randomly generated.

Chromatin immunoprecipitation based methods. Chromatin immuno-
precipitation (ChIP) is the experimental technique of choice when investigat-
ing protein-DNA interactions in vivo (O’Neill and Turner, 1996). ChIP is
commonly used to map the cistrome, which is the genome-wide TFBS lo-
cations and/or post-translationally modified histones and histone variants
(Collas, 2010). A schematic representation of the typical ChIP workflow is
depicted in Figure 1.22. In brief, DNA and proteins are covalently bound
in vivo through formaldehyde cross-linking, which ensures that the proteins
of interest, such as TFs, are directly binding the DNA. It is worth noting
at this step that using formaldehyde alone is not suitable to study indirect
protein-DNA interactions (Zeng et al., 2006). After the cross-linking step,
the DNA is fragmented through sonication or DNAse digestion which results
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in ~500 bp long DNA segments on average. Using an antibody specific to the
protein of interest, the protein-DNA complexes are immunoprecipitated from
the chromatin, which results in pulling down the bound fragments of DNA.
The precipitated DNA is washed and the cross-linking is reversed, owing to
the heat-reversible properties of formaldehyde, thus removing the bound pro-
tein. As a last step of the experimental assay, the precipitated ChIP-enriched
DNA is purified and ready for analysis (Figure 1.22 (1-4)).

A good practice when performing ChIP assays, is to carry out a control experi-
ment, in which no protein is immunoprecipitated. This serves as background
when investigating the enrichment of DNA fragments. While ChIP-based
methods have a clear advantage over other assays such as PBM or SELEX,
a drawback is the high number of false positives that arise due to experi-
mental material quality, unspecific protein-DNA binding, or other artefacts
(Teytelman et al., 2013). Using a control ChIP experiment will help reduce
the number of false positives but not completely remove it.

The ChIP experimental yield can be analyzed wvia numerous approaches to
identify the genomic locations where protein-DNA interactions occur, such as
PCR, quantitative PCR (qPCR), microarrays, labeling and hybridization, or
high-throughput sequencing. As we will further see, the results of these ChIP-
based methods are the basis for catalogues hosting genome-wide CRE/TFBS
annotations.

ChIP-chip. The ChIP-chip (or ChIP-on-chip) technique complements the
ChIP assay by identifying enriched genomic regions using microarray chips
(Ren et al., 2000). In addition to the ChIP steps (Figure 1.22), the pre-
cipitated and purified DNA fragments are denatured to single strand DNA,
tagged with a fluorescent bead, and hybridized on a microarray chip. Next,
the microarray chip is read, and the intensities of each DNA fragment serve
as an entry point for further data analysis. For a detailed description and a
schematic of the workflow, please refer to Buck and Lieb (2004). ChIP-chip
presents several disadvantages: (i) an extra hybridization step is required
before reading the sequences, (ii) the set of DNA sequences is limited due to
the design of the microarray chip, (iii) a higher DNA quantity is required,
and (iv) the method yields lower resolution with respect to the binding region
size.

ChIP-seq. With the advent of next generation sequencing (NGS), high-
throughput methods have become fundamental for genome-wide analyses.
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Figure 1.22: Overview of the chromatin immunoprecipitatiopn (ChIP) assay (1-4), followed
by DNA sequencing and mapping to the genome (5). Figure adapted from Szalkowski and
Schmid (2011).
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To date, the most popular technique to identify genomic regions where TF-
DNA interactions occur in vivo, in a genome-wide manner, is ChIP followed
by sequencing (ChIP-seq) (Johnson et al., 2007). The experimental setup
for this assay is identical to the one for ChIP (Figure 1.22) with extra steps
added for the preliminary processing of the precipitated and purified DNA
fragments. The DNA fragments are sequenced using a short-read sequencer
and the resulting reads are mapped to a reference genome (Figure 1.22).
Next, the genomic regions where a significantly higher number of reads (or
tags) as compared to the control, the so-called ChIP-seq peaks, are identified
using a peak-caller algorithm (Pepke et al., 2009).

While ChIP-seq presents many advantages over the methods described so
far, it has of course its own drawbacks. The most important of which is the
relatively high number of false positives that arise either from experimental
or computational artefacts. Experimental artefacts, such as antibody quality
or the DNA fragmentation not being equal among the samples, result in
an uneven distribution of the reads, while computational artefacts can arise
from repetitive DNA sequences appearing as enriched genomic regions or due
to the diversity of the data analysis tools that exist, with no standardized
parameter settings (Park, 2009; Bailey et al., 2013).

Nevertheless, ChIP-seq remains the method of choice when characterizing
genome-wide TF-DNA interactions in vivo. Other derivatives of the ChIP
assay have been designed and they will be briefly discussed here in comparison
with ChIP-seq.

ChIP-exo. The ChIP-exo technique extends the ChIP assay with the ad-
dition of an exonuclease digestion step. The exonuclease degrades the DNA
from 5’ to 3’ end, leaving out the fragments bound by the protein. The se-
quencing and peak-calling steps remain the same as for ChIP-seq. Due to
the exonuclease trimming, the ChIP-exo peaks are much narrower and able
to reach single nucleotide resolution for TF-DNA interaction identification
(Rhee and Pugh, 2011). Therefore, ChIP-exo peaks can correspond to indi-
vidual TFBSs, which allows for the identification of binding events, or the
organization of histones (Rhee et al., 2014; Mahony and Pugh, 2015). For
more details about this technique, please refer to Rhee and Pugh (2011).

ChIP-nexus. This technique is highly similar to ChIP-exo with the differ-
ence that an auto-circularization and fragment amplification step is added
prior to sequencing. This addition allows for better coverage of genomic se-
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quences when compared to ChIP-exo. For more details about this technique,
please refer to (He et al., 2015).

In comparison with ChIP-seq, the ChIP-exo and ChIP-nexus techniques (i)
do not allow for use of a control due to the exonuclease degrading the “naked”
DNA; thus, the peak-calling methodology differs (Wang et al., 2014), (ii) the
cost and labour is higher compared to ChIP-seq, (iii) due to the additional
washing steps, the DNA libraries are more limited compared to ChIP-seq.
For a more comprehensive comparison, please refer to (Mahony and Pugh,
2015; Hartonen et al., 2016). Nevertheless, they represent the most accurate
techniques for the identification of TF-DNA binding in vivo.

1.4.2 Computational approaches to model and predict
TF-DNA interactions

Despite the wealth of available ChIP-seq data, computational models are
necessary to infer TFBSs, as experiments cannot be performed in all cell
types and in all biological conditions. TFs are known to be sequence specific
DNA-binding proteins. While ChIP-based assays provide the binding regions
of TFs, there is a need to refine those data and extract the actual binding sites
that correspond to each TF on a genome-wide scale. As binding preferences
of TFs differ between TF classes, a plethora of computational methodologies
and tools have emerged aiming at addressing this issue.

Identifying TFBSs implies two separate issues: (i) discovering the motif to
which a given TF has the highest binding affinity and (ii) identifying instances
of these motifs genome-wide. For the former, the sequence of nucleotides that
is the most representative for a given TF (i.e., the TF binding motif, TFBM)
needs to be identified. These sequences can be derived from in vitro assays
or through de novo motif discovery, both of which are designed to identify
protein binding specificities. The identified motifs are used in a pattern
matching approach to identify all instances genome-wide. A common ap-
proach to computationally derive TFBSs through assays such as ChIP-seq is
to use ChlP-seq peaks. The short DNA fragments resulting from sequencing,
also called reads, are mapped to the genome and they pile up at specific ge-
nomic locations forming so-called peaks. These peaks represent the genomic
regions to where more reads map as compared to background (e.g., control
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Table 1.3: The ITUPAC nomenclature for nucleotide combinations. Table adapted from
TUPAC (1985).

Symbol Bases Origin of designation
G G Guanine
A A Adenine
T T Thymine
C C Cytosine
R Gor A puRine
Y Tor C pYrimidine
M Aor C aMino
K GorT Keto
S Gor C Strong interaction (3 H bonds)
W AorT Weak interaction (2 H bonds)
H AorCorT not-G, H follows G in the alphabet
B GorTor C not-A, B follows A
\Y% Gor Cor A not-T (not-U), V follows U
D GorAorT not-C, D follows C
N GorAorTorC aNy

or random expectation). Such peaks, have an average length between 300
and 400 bp and are where the 6 to 20 bp long TFBS is located.

1.4.2.1 TFBS representation

The TFBSs of the same TF are generally very similar, but not identical. The
sequence of nucleotides may vary from one TFBS to another, but a consensus
binding sequence can be inferred using computational approaches (Stormo
et al., 1982). This sequence simply summarizes the collection of DNA se-
quences bound by the TF in question (Figure 1.23 (b)). This representation
makes use of the International Union of Pure and Applied Chemistry (IU-
PAC) nucleotide code which encompasses all the possible combinations of
one or more nucleotides and follows precise rules (Cavener, 1987). As such,
each position within the TFBM corresponds to one IUPAC nomenclature
based on the nucleotides observed at that position during the alignment of
TFEFBSs.

For instance, Y corresponds to T or C, R corresponds to G or A, while N
corresponds to any nucleotide (Table 1.3 and Figure 1.23 (a-b)). Neverthe-
less, if a given nucleotide is observed at a given position in the majority
of TFBS sequences, the other observed nucleotides are sometimes ignored,
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and thus the most frequent nucleotide becomes representative for that posi-
tion within the TFBS (Wasserman and Sandelin, 2004) (Figure 1.23 (a-b)).
Even though this representation is simple and straightforward, it assumes
equiprobability among nucleotides at a given position within the TFBM. It
encodes the information if a nucleotide is present or absent at a given posi-
tion. The consensus sequence can be determined for a large number of TFs
and its accuracy depends on the number of available TFBSs for a given TF
(Wasserman and Sandelin, 2004). However, the individual nucleotides repre-
sented by a consensus do not equally contribute to the TF binding. In fact,
the most conserved nucleotides in the consensus (i.e., the largest letters in
the sequence logo (Figure 1.23 (e))) contribute the most in the DNA-binding
processs (Stormo, 1990).

To overcome this limitation, a more sensitive approach was developed
through the position frequency matrix (PFM) (Stormo, 2000). This matrix
is built by counting the occurrences of each nucleotide at each position
within the aligned TFBSs (Figure 1.23 (a-c)). By dividing the number of
occurrences by the number of sequences, the position probability matrix is
obtained (PPM). This matrix will give the probability of each nucleotide
to be present at each position within the TFBM (Wasserman and Sandelin,
2004). In case of a very limited number of identified TFBSs, these probabili-
ties are corrected to avoid having null values. One classic way of converting
a PFM into a PPM is as follows:

 f(nyi) +s(n)
p(n,i) = N+ Y weacans(n)

with p(n,i) being the probability of nucleotide n to be present at position
i within TFBSs, f(n,i) the frequency of nucleotide n at position i, s(n)
being the pseudocount which allows to correct for null values by adding a
small value, and N the number of identified TFBSs (Figure 1.23 (a)). Once
the PPM is calculated, the position weight matrix (PWM) can be derived
(Figure 1.23 (d)) by dividing the probabilities from the PPM by the expected
probability of each nucleotide to be at each position within the TFBS. One
common way to convert the PPM into a PWM is by calculating the log-
likelihood ratio:
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Figure 1.23: The aligned TFBSs (a) can be used to generate a consensus sequence (b)
or a position frequency matrix (PFM) (c) to preserve information about the nucleotide
frequency at each position within the TFBS. The PFM can be converted to a PWM (d)
used to score each observed TFBS. The PFM can be visualized under a logo representation
(e). Figure adapted from Wasserman and Sandelin (2004).

35



1.4 INTRODUCTION

w(n, i) = log? <p]§?r’$)>

with p(n) being the expected (i.e., background) probability of nucleotide
n. Commonly, the background probability of a nucleotide is set to be 0.25
(i.e., equiprobability among the four nucleotides). These weights represent
how different the observed frequencies are compared to what is expected by
chance. Positive weights translate to more frequent observations of a given
nucleotide at a given position within the TFBSs. Negative weights translate
to less frequent observations of a given nucleotide at a given position within
the TFBSs. In other words, positive weights translate to gain within the
overall score and negative weights act as penalties. This model captures the
heterogeneity of nucleotide probabilities. However, this representation can
be hard to visually interpret. To facilitate visualisation, the sequence logo
representation was invented (Schneider and Stephens, 1990) (Figure 1.23 (e)).
The sequence logo displays the PWM with information content (IC), which is
the relative importance of each nucleotide at each position within the TFBM.
The IC is calculated based on Shannon’s uncertainty theory separating the
binding site from the background probabilities (Shannon, 1948).

Even though the classic PWM representation of TFBMs is the most widely
used, one drawback is that it assumes inter-nucleotide independence. That is,
the frequency/probability of each nucleotide at each position is independent
of the frequency/probabilities of other nucleotides within the TFBM. While
this is the case for a large number of TFs, others rely on internucleotide
dependencies and allow gaps or even variable length in their binding motif
(Stormo, 2013). To address this limitation, alternatives to the PWM model
have been developed that take into consideration nucleotide interdependen-
cies and allow for spacing within the TFBM. It is important to note that
these alternatives are possible due to the vast amounts of data generated in
the past years (e.g., ChIP-seq experiments), as more sophisticated computa-
tional models generally require parameter learning and tuning, which in turn
require large amounts of data for training.

Briefly, among those alternatives are (i) the binding energy model (BEM)
which includes energy parameters for adjacent nucleotides (Zhao et al., 2012;
Stormo, 2013), (ii) the di-position-specific scoring matrix (di-PSSM) which
takes into consideration di-nucleotide dependencies and has extended the
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Table 1.4: An overview of popular binding motif databases. The organism column refers
to Homo Sapiens (HS), Mus Musculus (MM), Arabidopsis Thaliana (AT), and Multi for
multiple organisms and/or from different taxonomies.

Database Motifs  Organism Content DOI

JASPAR 1404 Multiple Manually curated TEFBMs 10.1093 /nar/gkx1126
HOCOMOCO 1302 HS + MM Manually curated TFBMs 10.1093 /nar/gkx1106
Cis-BP 11491  Multiple Collection from other DBs 10.1016/j.cell.2014.08.009
FootprintDB 7032 Multiple Manually curated inferred TFBM 10.1093 /bioinformatics /btt663
RegulonDB 3560 E. coli Regulatory units and network 10.1093 /nar/gkv1156
UniPROBE 594 Eukaryotes Motifs derived from PBM data 10.1093 /nar /gkn660
ENCODE 2065 Multiple Motifs derived from ChIP-seq data 10.1101/gr.139105.112
HOMER 331 HS Motifs compiled from several resources 10.1016/j.molcel.2010.05.004
Cistrome 862 AT Motifs discovered from DAP-seq data 10.1016/j.cell.2016.04.038
HumanTF 818 HS TFBMs from HT-SELEX and ChIP-seq  10.1016/j.cell.2012.12.009

classic PSSM (Kulakovskiy et al., 2013), (iii) the transcription factor flexible
models (TFFM) which take into consideration di-nucleotide dependencies as
well as variable TFBM length (Mathelier and Wasserman, 2013), Bayesian
networks (Barash et al., 2003), and Bayesian Markov models (BaMM) that
can be extended to a larger order, thus taking into account non successive
inter-nucleotide dependencies (Xing et al., 2003; Siebert and S6ding, 2016).
Another type of relevant information to include in the prediction model is
DNA shape and structural information. It has been shown that for some TF
families, including information such as the helix twist, minor groove width,
propeller twist, and roll can improve the prediction performance (Mathelier
et al., 2016). Even if these models have been shown to outperform the clas-
sic PWM in various scenarios (Mathelier and Wasserman, 2013; Siebert and
Soding, 2016; Mathelier et al., 2016), additional TF information can be rel-
evant when choosing between a higher order computational model and the
classic PWM in order to avoid overfitting. Table 1.4 contains a list of popular
TFBM databases derived from experimental assay and computational model-
ing of TFBSs and Table 1.5 contains a timeline of the different computational
approaches.

Table 1.5: A timeline of different computational approaches to model TFBSs.

TFBS modeling Features integrated References
methods

PWM (position NA (not applicable) Stormo et al., 1982;
weight matrix) Schneider and

Stephens, 1990
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Table 1.5: A timeline of different computational approaches to model TFBSs. (continued)

TFBS modeling
methods

Features integrated

References

HMDM (hidden
Markov Dirichlet-
multinomial)
DWM (dinucleotide
weight matrix)
BEM (binding
energy model)

TFFM (TF Flexible
Model)

PIM (pairwise
interaction model)
gkm-SVM (gapped
k-mer support vector
machine)

SeqGL
MORPHEUS

FeatureREDUCE

DeepBind
DeepSEA (deep
learning-based
sequence analyzer)

DNAshaped TFBS

Cytomod
DWT (dinucleotide
weight tensor)

TFImpute
BEESEM (short for
Binding Energy
Estimation on
SELEX with
Expectation
Maximization)
DeFine

Positional
dependencies

Dinucleotides

Dependencies
(adjacent positions)
and binding affinity
data

Dependencies
(adjacent position)
and background

Dependencies
between all positions
k-mers supporting
gaps

k-mer, chromatin
accessibility
Dependencies
between all positions
Dependencies
between all positions

NA

Integrate DNase I
hypersensitivity data
and histone-mark
profiles

Helix twist, propeller
twist, minor groove
width, and rotation
DNA methylation
Dependencies
between all positions

NA
NA

Integrate Hi-C data
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Xing et al., 2003

Siddharthan, 2010
Zhao et al., 2012;
Stormo, 2013

Mathelier and
Wasserman, 2013

Santolini et al., 2014
Ghandi et al., 2014
Setty and Leslie,
2015

Minguet et al., 2015

Riley et al., 2015

Alipanahi et al., 2015
Zhou and
Troyanskaya, 2015

Mathelier et al., 2016

Viner et al., 2016
Omidi et al., 2017

Qin and Feng, 2017
Ruan et al., 2017

Wang and Dynlacht,
2018
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Table 1.5: A timeline of different computational approaches to model TFBSs. (continued)

TFBS modeling Features integrated References

methods

DFIM (Deep Feature  Dependencies Greenside et al., 2018
Interaction Maps) between all positions,

interaction between
motifs, core motif
flanking region, and

chromatin
accessibility
NRLB (No Read Left NA Rastogi et al., 2018
Behind)
KSM model (k-mer k-mers Guo et al., 2018
set memory)
SelexGLM Core motif flanking Zhang et al., 2018
region

1.4.2.2 The plague of false positives

One of the main issues when inferring protein-DNA interactions is the high
number of false positives present in the experimental yield (Teytelman et al.,
2013; Jain et al., 2015) and in the computational predictions (Worsley Hunt
and Wasserman, 2014). To address this problem, other layers of relevant
information can be used on top of the simple sequence scanning approach
to infer TFBSs (Aerts, 2012). Briefly, these include: (i) sequence conserva-
tion, where TFBSs with a higher phastCons score (Siepel et al., 2005) are
considered more likely to be functional TFBSs, as they are conserved across
evolution, (ii) clusters of TFBS (with and without sequence conservation)
relies on identifying regions with a higher concentration of TFBSs (not nec-
essarily for the same TF) known as cis-regulatory modules (CRM) (Schmidt
et al., 2010; Ballester et al., 2014), (iii) using information about the chro-
matin state (e.g., histone modifications, DNAse footprinting or ATAC-seq)
can reduce the search space by discarding those found in a close chromatin
region, (iv) using gene expression relies on scanning for the TFBSs associated
with expressed genes only, with the limitation that distal CREs are ignored,
(v) the motif environment can give information about bona fide TFBSs as
it has been shown that the flanking regions present similar GC composition
(Dror et al., 2016), and (vi) using DNA structural information given by the
physical interactions between nucleotides (Zhou et al., 2013; Yang et al., 2014;
Mathelier et al., 2016). A schematic representation of the above methods can
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Table 1.6: An overview of relevant TF binding regions and TFBS databases derived from
human ChIP-seq data. The number of transcriptional regulators (TRs) and the number
of regulatory regions (RR) identified is noted as well as a brief description of the content
of each database

Database TRs CRRs Content DOI

UniBind 231 ~8.3M Unique TFBSs - uniformly processed  10.1093/nar/gkw951

ReMap 485 ~80M Peaks - uniformly processed 10.1093 /nar/gkx1092

MANTA 225 ~48M TFBS and TFBS variants 10.1038/sdata.2018.141
GTRD 402 ~445M TFBSs - uniformly processed 10.1093/nar/gky1128
ChIP-atlas 852 ~130M Peaks - uniformly processed 10.15252/embr.201846255
Cistrome DB - ~235M Peaks curated from public datasets 10.1093 /nar/gkw983
OregAnno - ~8K TFBSs manually curated 10.1093/bioinformatics/btk027

be found in Figure 1.24.

Nevertheless, none of the above methods can completely remove false pos-
itives, but a combination of them may present an improvement over the
performance of individual methods. Moreover, this performance is TF fam-
ily specific, as it has been shown that certain features improve the prediction
accuracy for some TF classes but not for others (Aerts, 2012; Jayaram et al.,
2016; Mathelier et al., 2016).

In general, the existence of false positives should always be minded and ac-
counted for in the context of TFBS prediction. The discrepancy between false
positives and true positives was referred to as the futility theorem, stating
that the predicted TFBSs will most likely not be functional in vivo regard-
less of their binding affinity in vitro (Wasserman and Sandelin, 2004). Still,
combining both experimental and computational evidence will help reduce
the number of false positives (Worsley Hunt et al., 2014).

1.4.2.3 Inferring binding sites from ChIP-seq genome-wide

Commonly, TFBSs are inferred from ChIP-seq data through sequence scan-
ning and scoring. The entire genomic sequence of a ChIP-seq peak is scanned
in a sliding-window manner (in one nucleotide increments) and each sub-
sequence within the ChIP-seq peak is scored based on its similarity to a refer-
ence motif. After all the positions within all of the sequences (e.g., ChIP-seq
peaks) have been scanned, the subset of bona fide TFBSs has to be identified.
This step has proven not trivial, as it is both data dependent and model de-
pendent. In the case of ChIP-seq assays, the expectations are to have direct
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Figure 1.24: A schematic representation of the TFBS prediction approaches and the dif-
ferent layers of information used. Figure from Aerts (2012) .
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Figure 1.25: Expectations from ChIP-seq data. A landscape view, as described in Worsley
Hunt et al. (2014), of the scored ChIP-seq peaks and the demarcation of an enrichment
zone discriminating between direct TF-DNA binding (in red) and indirect binding (in light
blue). Figure adapted from Mathelier et al. (2015) .

DNA binding, indirect binding, and unspecific binding/noise/experimental
artefacts (Teytelman et al., 2013; Jain et al., 2015; Worsley Hunt and Wasser-
man, 2014). The goal is to discriminate between direct TF-DNA binding and
the rest of the binding events. It may very well be that indirect DNA binding
contains useful information, but currently there is no method to discriminate
between indirect DNA binding and unspecific binding or experimental arte-
facts (Mathelier et al., 2015). In general, direct TF-DNA interactions are
expected to be enriched at ChIP-seq peak summits (Bailey and Machanick,
2012; Kulakovskiy et al., 2010; Jothi et al., 2008) and to present high compu-
tational scores (Worsley Hunt et al., 2014) (Figure 1.25). Table 1.6 contains
an overview of inferred binding regions and TFBSs derived from ChIP-seq
data.

A previous study showed that ChIP-seq data falls within one of three cate-
gories: (i) enriched for the TFBS close to the ChIP-seq peak summit (where
the highest number of ChIP-seq reads map), (ii) lacking enrichment for the
TFBS close to the peak summit, and (iii) a combination of ChIP-seq peaks
with and without the TFBS close to the peak-summit (Worsley Hunt et al.,
2014). Typically, hardcoded thresholds are set on the computational model
output (e.g., PWM score and/or distance to the ChIP-seq peak summit) to
discriminate between true TFBSs and background or noise. This approach
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works well in some cases, but in general, the choice of threshold is somewhat
arbitrary and computational model specific, depending on the motif scoring
implementation. In an attempt to automate the detection of this threshold,
a heuristic method has been proposed to delineate an enrichment zone con-
taining direct TF-DNA interactions based on the distance to the ChIP-seq
peak summit and the computational score (Worsley Hunt et al., 2014). How-
ever, this method, specifically developed for simple PWM scoring, does not
work with some more recent TFBS computational models (Zhao et al., 2012;
Mathelier and Wasserman, 2013; Mathelier et al., 2016) and uses hard-coded
parameter values.

Another approach to discriminate between bona fide TFBSs and the rest
of binding events is the use of p-values. For instance, a p-value can be
assigned based on the probability of the background to reach a PWM score
greater than the actual motif score (Touzet and Varré, 2007). The principle
behind this method is that some sub-sequences can achieve a certain PWM
score more frequently than other PWM scores. To correct for that, each
PWM score is given a p-value based on the expected distribution of all the
other PWM scores. Nevertheless, as for the PWM score threshold, the p-
value based threshold is also arbitrary and data dependent, and its value can
significantly influence the amount of false positives within the set of predicted
TFEFBSs (Touzet and Varré, 2007).

1.4.2.4 Binding motif enrichment

Another use of TFBMs is motif enrichment analyses. These analyses aim at
answering the following question: given a set of genes, what are the TFs that
regulate them? In other words, what are the TFs that show an overrepre-
sentation of their TFBM at CREs associated to these genes (e.g., promoter
regions) (Figure 1.26). In such analysis, two main approaches have been de-
veloped so far: (i) foreground versus background and (ii) ranking-and-recovery.
For the former, the background is built based on the complete set of genomic
sequences corresponding to the CREs of all genes (e.g., promoter regions)
and the foreground is represented by the genomic sequences corresponding
to CREs of the gene set of interest. The background allows one to calculate
the expected number of TFBS occurrences for a given TF relative to the
other TFs. In turn, this allows calculation of an enrichment score (e.g., a
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Figure 1.26: A schematic representation of a motif enrichment analysis. Figure from Kwon
et al. (2012).

p-value) based on the foreground. For the latter, all genes are individually
ranked based on each TF motif (i.e., ranking step) and each of the rankings
is then tested against the gene set of interest (i.e., recovery step) and an
enrichment score is calculated (e.g., area under the curve) (Herrmann et al.,
2012; Janky et al., 2014). A high enrichment score indicates that a TF motif
recovers a large fraction of the input genes within the top ranking. Other
layers of information can be added in the model, such as CRMs or chromatin
state information (Herrmann et al., 2012).

1.4.2.5 Inferring gene regulatory networks

In the same context, another question to answer is: given a TF, which are
the genes it regulates? In other words, what genes represent the direct tar-
gets of TFs. This allows one to infer gene regulatory networks and therefore
characterize TFBSs that are more likely to be functional. A regulon is the
ensemble of genes regulated by the same TF, and their common characteris-
tic is the presence of TFBSs for this TF at their CREs (Lengeler et al., 1999).
Over the past years, the focus has been on identifying DNA regions bound by
TFs. Unfortunately, TF binding is not necessarily associated with function
and tools have to be developed to characterize the ones that are functional
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Figure 1.27: The main approaches and their steps when inferring regulons from ChIP-
seq data. The ChIP-seq peaks are used as input and assigned to genes (i) and scored
(ii). Lastly, a final score is assigned to a given peak-gene pair (iii). Figure adapted from
Szalkowski and Schmid (2011) and Sikora-Wohlfeld et al. (2013).

(Whitfield et al., 2012). However, as previously mentioned, due to the rel-
atively high number of false positives in experimental data and diversity of
cell types and biological conditions, the predicted TFBSs will most likely not
be functional in wvivo regardless their binding affinity in vitro (Wasserman
and Sandelin, 2004).

Due to its abundance, ChIP-seq has also become the preferred assay to infer
direct TF targets. Generally, computational tools developed to predict TF
regulons from ChIP-seq data follow a three-step workflow (Sikora-Wohlfeld
et al., 2013): (i) assigning ChIP-seq peaks to genes, (ii) assessing the reg-
ulatory potential of a ChIP-seq peak to a gene, and (iii) integrating the
corresponding scores per gene (Figure 1.27). Classically, ChIP-seq peaks are
considered representative for TF binding to DNA. In their implementation,
the computational models assign them to the TSS of the closest gene in
linear genomic distance or to all TSSs within a certain predefined genomic
window (Sikora-Wohlfeld et al., 2013). Their scoring is either dicothomic (i.e.,
0 or 1) or gradient in relation to the distance to the TSS (Sikora-Wohlfeld
et al., 2013; Mei et al., 2017). More recent ChIP-seq based methods use
additional data, such as genome-wide binding profiles of TFs (Cheng et al.,
2011; Yang et al., 2016) or correlation between histone marks and gene ex-
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pression (O’Connor et al., 2017), to infer TF regulons. Commonly, regulon
predictions are validated using experimental data. More specifically, sets
of associated genes are generated through knock -in and -down experiments
targeting specific TFs (Subramanian et al., 2005). Subsequently, the set of
differentially expressed genes between the condition and control is associated
to the TF. Nevertheless, there is no gold standard for TF regulon prediction
validation.

Further improvement of TF regulon prediction methods can be achieved by
including associations between enhancers and the TSSs (Fishilevich et al.,
2017) and/or promoter information, which have not been included in exist-
ing methods. Also, it has been shown that CRMs are more likely to host
functional TFBSs, as they represent the genomic regions where TFs cooper-
ate (Davidson, 2006; Lambert et al., 2018). Including this information may
also increase prediction accuracy. Integrating these data together with other
layers of relevant information may allow for the identification of TFBSs that
are most likely to be functional and to have an impact on transcriptional
regulation.
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Transcriptional regulation is a biological mechanism essential to cell growth
and cell differentiation. Disruptions occurring in the gene regulatory pro-
gram can lead to disease prone phenotypes or abnormal development of tis-
sues or the organism as a whole. One way to gain more insight into the
transcriptional regulation mechanism and have a deeper understanding of
gene expression regulation is to study how key proteins involved in transcrip-
tion, such as TFs, interact with DNA and to infer gene regulatory networks.
This in turn, will facilitate the assessment of the impact of gene expression
dysregulation caused by disruptions in transcriptional regulation.

Capitalizing on the massive amounts of data that are generated through
experimental assays followed by next-generation sequencing (NGS), we can
computationally derive TF-DNA interactions, their affinities, as well as their
specificities. Impressive efforts have been made by consortia such as EN-
CODE (The ENCODE Project Consortium, 2012) and GEO (Edgar et al.,
2002) to create publicly available repositories for experimental data generated
from the study of the regulatory mechanism. Even though NGS is teeming
with positive aspects regarding genetic research, one important ubiquitous
challenge persists: making use of the data at its full potential. This implies
assembling, curating, and integrating data in common frameworks and/or
databases. Such databases should eventually include extensive linkage to
the underlying biological processes and the associated clinical data.

The most popular biological assay aiming at identifying TF-DNA interac-
tions is chromatin immunoprecipitation followed by sequencing (ChIP-seq)
(Johnson et al., 2007). In the past years, tens of thousands of ChIP-seq ex-
periments were carried out in different organisms, cell lines, and under various
biological conditions to study the dynamics and particularities of TF-DNA
interactions. A large proportion of this data was made publicly available.
Nevertheless, biological variation and experimental artefacts, as well as the
varying percentage of false positives to which ChIP-seq data is prone to,
impede the creation of a standardized, genome-wide library of TF-DNA in-
teractions and ultimately an extensive regulatory network. To achieve this,
one obvious aprroach is to curate the existing data, processes it in a uni-
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form manner, and improve the computational models used to predict bona
fide TF-DNA interactions. Altogether, the key to successful computational
biology research is access to high quality data, for which we have a strong
understanding, in order to produce dedicated processing tools.

In an attempt to fill in these gaps, the project relies on the development
of new computational methods and resources that are derived from in depth
analyses of experimentally-generated data developed to study gene expression
regulation. Specifically, to develop computational methods, tools, and data
resources to:

1. improve our capacity to predict TF-DNA interactions and
generate a genome-wide map of high confidence direct TF-
DNA interactions by

« making use of publicly available ChIP-seq data

e developing a computational pipeline to uniformly process ChIP-seq
data

« integrating multiple TFBS prediction computational models

 developing a methodology to derive high confidence TFBSs

e generating a publicly available resource based on these data

2. predict the direct TF target genes (i.e., regulons) by

« making use of the TFBS predictions from the previous step
» integrating additional layers of relevant information

o developing a statistical framework to define TF regulons
 assessing the results based on biological relevance

3. determine the transcriptional differences between oeastrogen
receptor negative (ER-) and oestrogen receptor positive
(ER+) breast cancers by

o making use of the resources generated in the previous steps
« making use of other data available for breast cancer, such as RNA-seq
 identifying the potential key TFs that are specific to ER- and ER+
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Summary of the papers

2.1 Papers I-IV: towards a map of direct TF-
DNA interactions in the human genome

Binding of TFs to DNA occurs in a sequence specific manner (Badis et al.,
2009). As TFs recognize sequence motifs, computational tools have been in-
strumental in the prediction and characterization of TF-DNA interactions.
Classically, TFBSs are modeled using PWMs and the underlying probabili-
ties of each nucleotide at each position within the motif are derived from a
collection of TFBSs taken from experimental assays. While binding affinities
are derived from in witro assays, genomic binding regions are derived from
in vivo assays such as ChIP-seq. However, ChIP-seq experiments have been
recurrently shown to be prone to noise (Teytelman et al., 2013; Worsley Hunt
and Wasserman, 2014; Jain et al., 2015). Hence, computational models of TF-
DNA interactions can be used to highlight bona fide binding regions. While
PWDMs are usually working well, more sophisticated approaches have recently
been designed to model complex features of TF-DNA interactions captured
by next-generation sequencing data and to refine binding region prediction.
Indeed, TFs recognize their binding sites through a complex interplay be-
tween base/nucleotide readout and DNA shape readout (Rohs et al., 2009).
Computational models combining both sequence and DNA shape information
have shown improvement in our capacity to predict TFBSs from ChIP-seq
data (Rohs et al., 2010; Mathelier et al., 2016). However, studies have also
shown that the best performing model for different TFs varies; therefore, de-
veloping a one-fits-all TFBS prediction model is not currently an optimal
solution (Will and Helms, 2014).

Large amounts of ChIP-seq data have been generated and a vast majority
are hosted in publicly available data repositories such as ENCODE (The
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ENCODE Project Consortium, 2012) and GEO (Edgar et al., 2002). We
combined these publicly available ChIP-seq data with manually curated TF
binding profiles to improve our capacity to predict TFBSs genome-wide (Ghe-
orghe et al., 2019) and to assess the impact of single nucleotide variants
(SNVs) at TFBSs on the alternate alleles (Fornes, Gheorghe, et al., 2018).
We combined several prediction models, varying from simple to complex, into
one data processing pipeline, ChIP-eat, to improve our capacity to predict
TFBSs genome-wide (Gheorghe et al., 2019). Our work culminated with >8
million TFBS predictions in the human genome, which are made available
to the community through the UniBind database (https://unibind.uio.no).
Following is the list of publications that led to the creation of our map of
direct TF-DNA interactions in the human genome.

2.1.1 Paperl

Cheneby, J., Gheorghe, M., Artufel, M., Mathelier, A., and Ballester, B.
(2018). ReMap2018: an updated atlas of regulatory regions from an
integrative analysis of DNA-binding ChIP-seq experiments. Nucleic
Acids Research, 46(D1):D267-D275. See published manuscript at the end of
the thesis.

To acquire large amounts of ChIP-seq data, we participated in the 2018 up-
date of the ReMap database (Cheneby et al., 2018) (http://remap.cisreg.eu),
providing an atlas of cis-regulatory elements (CREs) in the human genome.
We processed >3,000 ChIP-seq datasets from the public repositories EN-
CODE (The ENCODE Project Consortium, 2012), GEO (Edgar et al., 2002),
and ArrayExpress (Sarkans et al., 2005). Starting from the raw sequenc-
ing data, we mapped the reads to the latest version of the human genome
(GRCh38), filtered out low quality reads, and called ChIP-seq peaks (i.e.,
predicted TF binding genomic regions). As a result, we obtained a total
of ~80 million ChIP-seq peaks accounting for 485 transcriptional regulators
(including TFs).
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2.1.2 Paper 11

Khan, A.T, Fornes, O.f, Stigliani, A.T, Gheorghe, M., Castro-Mondragon,
J. A, van der Lee, R., Bessy, A., Chéneby, J., Kulkarni, S. R., Tan, G.,
Baranasic, D., Arenillas, D. J., Sandelin, A., Vandepoele, K., Lenhard, B.,
Ballester, B., Wasserman, W. W., Parcy, F., and Mathelier, A. (2018). JAS-
PAR 2018: update of the open-access database of transcription fac-
tor binding profiles and its web framework. Nucleic Acids Research,
46(D1):D260-D266. See published manuscript at the end of the thesis.

Using, among other resources, the entire collection of ChIP-seq peaks ob-
tained through the ReMap2018 collection, we updated the JASPAR database
(Khan et al., 2018) (http://jaspar.genereg.net). The JASPAR database is one
of the most popular databases of its kind. It is an open access resource and
hosts manually curated and experimentally derived TF binding profiles for
around 1400 unique TFs in six taxa. This update added 322 new PFMs and
updated 33. We complemented the existing collection of binding profiles us-
ing transcription factor flexible models (TFFM) (Mathelier and Wasserman,
2013) trained on ChIP-seq peaks (316 new profiles) to account for inter-
nucleotide dependencies. This collaboration provided us with an extended
collection of high quality TF binding profiles, which along with the ChIP-
seq peaks from ReMap2018, served as input in the computational models
employed for TEFBS predictions in the human genome.

2.1.3 Paper II1

Fornes, O.T, Gheorghe, M., Richmond, P. A., Arenillas, D. J., Wasserman,
W. W., and Mathelier, A. (2018). MANTAZ2, update of the Mongo
database for the analysis of transcription factor binding site alter-
ations. Scientific Data, 5:180141. See published manuscript at the end of
the thesis.

In a first attempt to predict TFBSs in the human genome, we combined
both the ReMap2018 (Chéneby et al., 2018) ChIP-seq peaks and the JAS-
PAR2018 (Khan et al., 2018) binding profiles to update the Mongo database
for the analysis of TFBS alterations (MANTA) database (Fornes, Gheorghe,
et al., 2018) (http://manta.cmmt.ubc.ca/manta2/upload). In a nutshell, we
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used the ReMap ChIP-seq peaks and JASPAR PWNMs to predict TFBSs us-
ing a unique PWM score threshold for all PWMs. With this update, we
expanded the database to host genome-wide TEFBSs based on the intersec-
tion between the binding profiles hosted in JASPAR and the ChIP-seq peaks
from ReMap. A predicted impact score for each SNV that could occur within
the predicted TFBS was calculated based on a z-score computation obtained
from all possible SNVs within the TFBSs. These impact scores have been
found to correlate with allelic imbalance of ChIP-seq data (i.e., allele specific
binding).

2.1.4 Paper 1V

Gheorghe, M., Sandve, G. K., Khan, A., Cheneby, J., Ballester, B., and
Mathelier, A. (2019). A map of direct TF-DNA interactions in the
human genome. Nucleic Acids Research, 47(4):e21-e21. See published
manuscript at the end of the thesis.

Making use of the ReMap2018 (Cheneby et al., 2018) ChIP-seq peaks and the
JASPAR2018 (Khan et al., 2018) binding profiles, we developed the ChIP-eat
data processing pipeline for high confidence prediction of direct TF-DNA in-
teractions (https://bitbucket.org/CBGR/chip-eat/src/master/). The entire
set of TFBS predictions is publicly available through the UniBind database
(http://unibind.uio.no). Paper provided at the end of the thesis.

The ChIP-eat pipeline. With the entire collection of uniformly processed
ChIP-seq data sets from ReMap2018 and the extended collection of TF bind-
ing profiles from JASPAR2018, we have high quality, uniformly processed
data to serve as a base for the development of an improved methodology
for TFBS prediction. We developed the ChIP-eat data processing pipeline
that takes as input ChIP-seq peak regions and TF binding profiles and pre-
dicts high confidence TFBSs. Based on the observation that currently there
is no one-fits-all model for TEBS prediction (Will and Helms, 2014), we
developed ChIP-eat to support 4 different existing prediction models, from
simple to complex: PWMs optimized with the discriminative motif optimizer
(DiMO) (Patel and Stormo, 2014), binding energy model (BEM) (Zhao et al.,
2012), transcription factor flexible models (TFFM) (Mathelier and Wasser-
man, 2013), and including DNA shape features (DNAshapedTFBS) (Math-
elier et al., 2016). While the ChIP-eat pipeline has been used on these 4
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models, it can be applied to any TF binding profile model. We uniformly
processed 1,983 ChIP-seq data sets accounting for 231 unique TFs.

The improvement of the TFBS predictions relies on the non-parametric,
entropy-based, data driven computational method we developed to automat-
ically delineate an enrichment zone (Worsley Hunt et al., 2014) containing a
subset of high confidence predicted TFBSs that are supported by both strong
experimental evidence and computational evidence (Gheorghe et al., 2019).
In brief, the enrichment zones highlight the TFBSs predicted with high com-
putational score and proximity to the ChIP-seq peak summit (where most
reads align). This method can be used regardless the prediction model, sur-
passing the limitations of a previous approach specifically designed to work
with PWMs (Worsley Hunt et al., 2014). Moreover, the entropy-based ap-
proach does not require any arbitrary/hardcoded threshold, which makes it
more flexible and data dependent.

The predictions were a posteriori assessed using protein binding microarray
and ChIP-exo data, and were predominantly found in high quality ChIP-seq
peaks. Our predictions derived co-binding TFs supported by protein-protein
interaction data and defined cis-regulatory modules (CRMs) enriched for
disease- and trait-associated SNPs.

The UniBind database. We provide our collection of >8 million of
high quality TFBS predictions and cis-regulatory modules through the
publicly available UniBind web-interface (http://unibind.uio.no).  This
online resource has a very simple and intuitive graphical interface that
allows to search, browse, and download (individual sets or in bulk) the
sets of TFBS predictions for each computational model. With this freely
available resource, we empower the community with genome-wide direct TF-
DNA interactions that can serve as entry point for various transcriptional
regulation studies.
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2.2 Paper V

Gheorghe, M., Mathelier, A., TF-regulons: identifying direct targets
of transcription factors, Draft manuscript at the end of the thesis

TFs mediate gene expression through their binding to DNA. A TF can reg-
ulate several genes and this set of genes is called a regulon. Common to all
genes within a regulon is that TFBSs for the same TF are found at their
CREs. However, TF binding is not necessarily associated with function, and
how TF-DNA interactions impact gene expression is still poorly understood.
It has become obvious that to better understand the functional impact of
TF-DNA interactions, methods have to be developed to identify not only
the potential TFBSs, but to characterize the functional ones (Whitfield et al.,
2012).

We developed TF-requlons, a ranked list-based statistical approach to pre-
dict TF target genes from individual ChIP-seq data sets. We employed high
confidence TFBS predictions from the UniBind database (Gheorghe et al.,
2019) and ChIP-seq peaks from the latest release of ReMap (Chéneby et al.,
2018). Apart from the distance to transcription start sites, we integrated
six additional features in our prediction model, such as enhancer/promoter
information and gene-enhancer associations (Fishilevich et al., 2017). The
performance of the model was assessed on 13 TFs by means of overlap be-
tween TF-requlons top scoring genes and annotated reference gene sets, and
by assessing functional similarity of enriched GO terms between TF-requlons
and annotated reference gene sets.

Our results show that using high quality TFBS predictions outperforms the
predictions obtained when relying on ChIP-seq peaks and that gene-enhancer
associations with additional feature combinations, such as sequence conser-
vation and enhancer/promoter information, performs best in predicting TF
regulons. However, predicting regulons remains a highly complex problem
and we speculate that the prediction performance can be further improved
by incorporating cell line specificities and/or by implementing a different
prediction framework.
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2.3 Paper VI

Gheorghe, M., Tekpli, X., Fleischer, T., Kristensen, V., and Mathelier, A.,
Identifying key TFs driving ER positive and ER negative breast
cancer subtypes, Draft manuscript at the end of the thesis

Regulatory disruptions in cell growth and cell differentiation can lead to
cancer. Due to its heterogenous nature, cancer accounts for a wide range
of affected tissues in the human body (Wade, 2001). The broad variation
in the genetic makeup of each individual adds to the complexity of this
problem and renders the design of a generic cancer treatment unattainable
(Burrell et al., 2013). With the advent of NGS, it has become possible to
classify cancer subtypes based on their molecular signatures by analyzing
gene expression profiles. Based on the expression levels of estrogen receptor
(ER), breast cancer can be classified as estrogen receptor positive (ER+) or
estrogen receptor negative (ER-). In contrast to ER+ breast cancers, the
ER- subtype cannot be targeted by hormone therapies, and to date, the only
effective treatment against it remains chemotherapy (Chavez et al., 2010).

We aimed at identifying the molecular differences between ER+ and ER-
breast cancers by predicting key TFs involved in driving differential protein-
coding gene expression between these two subtypes. We compared the RNA-
seq profiles of 981 ER+ and ER- breast cancer donors obtained from The
Cancer Genome Atlas (Weinstein et al., 2013) and identified sets of differ-
entially expressed genes between the two subtypes. We found that genes
upregulated in ER- were enriched within the set of genes that are involved in
hematopoietic and lymphoid tissue, suggesting the enrichment of an immune
signature in ER~ breast cancer subtype.

We extracted TFBSs from the UniBind database (Gheorghe et al., 2019) that
are found at promoter and enhancer regions associated with the sets of ER-
or ER+ differentially expressed genes to predict TFs with enriched binding
events at these CREs. The TFs with enriched TFBSs are likely regulators of
the corresponding genes in the breast cancer subtypes. We found E2F4 and
Myc motifs to be enriched at the CREs of genes upregulated in ER-, and
RFX1, TFAP2C, and FOXAT1 binding sites enriched at CREs of ER+ genes.
Interestingly, most RFXs presented a negative fold change of expression in
ER+, suggesting that they can act as repressors for Estrogen Receptor 1
(ESR1). Functional enrichment on the genes predicted to be targets of these
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TFs indicate that DNA repair and replication associated processes, and cell
cycle regulation may be affected in ER- breast cancer. For ER+ breast
cancer, we found cillium and organelle assembly processes to be enriched,
possibly due to a loss of RFX binding, as the majority of these TFs also
show a negative fold change of expression in ER+.
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3

Discussion and perspectives

Since the first whole human genome was sequenced in 2001, the sequencing
costs have unceasingly decreased from USD 100 million to ~ USD 1000 (NIH,
2019). Next generation sequencing (NGS) or massively parallel sequencing
has enabled the community to initiate a plethora of studies that aim at
improving our understanding of the intricate mechanisms underlying cellu-
lar development and differentiation, phenotypic variation, and disease onset
and progression at an unprecedented scale (Mardis, 2008). Such studies in-
clude DNA-protein interactions, DNA methylation analyses, and prediction
of disease-associated genes (Zhang et al., 2011; Buermans and den Dunnen,
2014). Moreover, the development of transcriptome sequencing technologies
has shown that the entire genome is actually transcribed and not only the
~2% coding for proteins (Kapranov et al., 2007). Albeit, what is defined as
functional is still subject to discussion (The ENCODE Project Consortium,
2012; Graur et al., 2013). Lately, as observed phenotypes could not be ex-
plained by genomic variations occurring in the protein-coding regions, the
focus has shifted towards dechiphering the remaining ~98% of the genome
(Khurana et al., 2016).

As a consequence, massive amounts of sequencing data are constantly gen-
erated. These data are hosted in private or public repositories such as EN-
CODE (The ENCODE Project Consortium, 2012) or GEO (Edgar et al.,
2002). Even though NGS is teeming with positive aspects regarding genetic
research, one important ubiquitous challenge persists: making use of the
data at its full potential. This implies assembling, curating, integrating,
and analyzing data in common frameworks or databases. Such databases
should include extensive linkage to the underlying biological processes and
the clinical data associated. The enrichment of these databases is constantly
contributed to by newly generated data and emerging analytical bioinformat-
ics tools aimed at interpreting the impact of genomic variants on phenotypes.
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The data are generally integrated into publicly available genome browsers,
and computational frameworks have been developed to provide users with
visualization and analytical tools (Kent et al., 2002; Zhang et al., 2011; We-
instein et al., 2013).

3.1 Quality control and resource maintenance

During the early years of the bioinformatics field, the diversity of such re-
sources and data heterogeneity raised substantial challenges to data integra-
tion and quality assessment (Davidson et al., 1995). Over the years, stan-
dards and guidelines were proposed to ensure a certain quality level of biolog-
ical data, using reference quality indicators and object modeling languages
(Brazma et al., 2001; Qureshi and Ivens, 2008; The ENCODE Project Con-
sortium, 2012). Nevertheless, due to the flexibility of the guidelines, the
community has fragmented and adopted variations of these standards, mak-
ing data harmonization and integration even more difficult (Burgoon, 2006).
Moreover, there is no clear definition on what represents a data standard
(Tenenbaum et al., 2014).

Recently, there have been several open calls for data sharing, which has
spurred a wide range of reactions within the research community and journals
(Tenenbaum et al., 2014; Gewin, 2016; Figueiredo, 2017; Vasilevsky et al.,
2017). Importantly, it has been shown that journals with a high impact
factor generally adhere less to public availability of data policies than lower
impact factor journals (Alsheikh-Ali et al., 2011). In fact, the quality of
scientific experiments and reliability of the findings was found to be negatively
correlated with the ascent of the impact factor (Brembs, 2018). This is an
alarming discovery, as the rule of thumb so far has been the more prestigious
the journal, the better the methodological research and results. Therefore,
it is imperative that quality indicators are put in place and that data made
publicly available rises to quality standards, because in the near future these
findings will serve as foundation to other studies (Cai and Zhu, 2015).

For instance, the ENCODE consortium has implemented quality control
procedures and data quality standards (The ENCODE Project Consortium,
2012), as opposed to the GEO repository (Edgar et al., 2002). Throughout
our work, we uniformly processed thousands of ChIP-seq data sets from both

o8



DISCUSSION 3.2

ENCODE and GEO, and we observed that numerous ChIP-seq data sets ob-
tained from GEO had considerably lower quality when compared to the ones
obtained from ENCODE, even for the same TF.

Besides quality control, of equal importance is the maintenance of online
resources. Through NGS, every research group or laboratory can generate
their own resource and/or database that become the tools to use within the
group (Cochrane and Galperin, 2010). An important fraction of these data
resources are publicly available for the research community to employ in their
studies. As most of the publicly available resources tend not to be controlled
by private institutions, their longterm maintenance can become an issue due
to external funding (Bastow and Leonelli, 2010). Longterm maintenance is
crucial for result reproducibility.

Resource maintenance can be viewed from two perspectives: infrastructure
and content. The former implies physical storage and accessibility, while the
latter implies curation, technical support, and updates. These aspects can
quickly become expensive for institutions that rely on government funding
(Bastow and Leonelli, 2010). Moreover, every funding round (i.e., through
grants) generally implies added functionalities and/or content expansion,
which in turn will further increase the maintenance cost (Methods, 2016).
In an effort to circumvent this phenomenon, non-profit organizations are put
together to maintain public databases and resources, through manual cura-
tion, updates, and infrastructure expansion (Methods, 2016). For instance,
programs such as ELIXIR (https://elixir-europe.org/) aim at implementing
standards to ensure data quality and to provide scalable infrastructure for
data storage and shareability across European countries. A smaller scale
example is the JASPAR database for manually curated TF binding profiles,
which was first created 15 years ago (Sandelin et al., 2004). Since then, it has
been regularly (i.e., every two years) maintained and updated, constantly ex-
panding and improving the quality of its TF binding profile collection (Khan
et al., 2018). This process is essential to ensure high quality data and re-
sult reproducibility, as research based on this data can serve as input in
other studies aimed at deciphering transcriptional regulation. This is a good
example that should be followed by our new UniBind resource.
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3.2 The DNA-encoded rules of transcrip-
tional regulation

To understand disease onset and progression, it is mandatory to understand
the underlying molecular mechanisms that mediate gene regulatory networks
and their impact on gene expression. TFs are central to transcriptional regu-
lation, and they subsequently control gene expression through their binding
to DNA (Chen and Rajewsky, 2007). They generally interact with DNA in
a sequence specific manner (Badis et al., 2009) and binding is achieved by
recognizing a chracteristic binding motif (Stormo, 2013) and/or DNA shape
conformation (Rohs et al., 2009). By binding DNA at CREs, such as pro-
moters and/or enhancers, TFs control the rate of RNA transcription and
subsequently gene expression, ensuring that the right genes are expressed at
the right levels in the correct cell types (Nelson and Wardle, 2013; Mathelier
et al., 2015). This in turn controls the developmental stages of an organism
and its responses to environmental stimuli. For decades, identifying TF bind-
ing motifs, TFBSs, and TF regulons (i.e., the set of targeted genes) either
in stlico, in vitro, or in vivo has remained a challenge in understanding gene
regulatory networks.

It has been suggested that the transcriptional program follows a set of pre-
defined rules that are encoded in the DNA sequence (Meireles-Filho and
Stark, 2009). These rules are in turn based on genomic organization, such as
A /B compartments (Lieberman-Aiden et al., 2009; Bonev and Cavalli, 2016),
TADs (Dixon et al., 2012; Dekker et al., 2013), and chromatin accessibility
(Chen and Rajewsky, 2007), but also on genomic sequence composition, such
as TFBS enrichment (Yan et al., 2013), CRMs (Hardison and Taylor, 2012),
and/or GC composition (Kudla et al., 2006; Dror et al., 2016). The similar-
ity or diversity of the binding motifs at CREs has also been shown to have
an influence on gene expression levels (Ezer et al., 2014; Grossman et al.,
2017). For instance, studies show that functionally related enhancers tend to
contain motifs for the same TFs (Erives and Levine, 2004), but the order of
the TFBSs within CREs is not important to mediate gene expression levels
(Zinzen et al., 2009).

Nevertheless, the presence/absence of a certain TF or its binding to DNA
does not necessarily associate with enhancer activity or function, as DNA-
bound TFs generally act in a cooperative manner by forming complexes dur-
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ing gene expression regulation (Jolma et al., 2015). In other words, the
combinatorial effect of TFs at CREs is more critical than the order in which
they bind the DNA (Schmidt et al., 2010). Based on their binding affini-
ties, TFBSs were dichotomozied in strong (i.e., high affinity) binding sites
and weak (i.e., low affinity) binding sites. In general, the strongest binding
site is considered, but it has been shown that gene expression regulation is
“fine-tuned” through the weak binding sites (Parker et al., 2011). In fact,
it has been shown that a whole spectrum of binding affinities orchestrate
gene regulation, through clusters of TFBSs at which TFs bind with different
affinities, including very low affinities (Crocker et al., 2016). Altogether, it is
obvious that to decipher the mechanisms ruling gene expression regulation
and ultimately understand how disruptions in the regulatory program can
lead to disease-prone phenotypes, it is crucial to improve the genome-wide
identification of TFBSs.

3.3 Tackling false positives to infer bona fide
TFBSs genome-wide

In parallel with experimental assays and NGS technologies developed to iden-
tify TF-DNA interactions in vivo, such as the widely used ChIP-seq (Johnson
et al., 2007), computational tools have become instrumental to process the
large amounts of data generated through such assays. These tools generally
infer so called ChIP-seq peaks, which are expected to contain the TFBSs.
Unfortunately, it has been recurrently shown that ChIP-seq is prone to ex-
perimental artefacts (Teytelman et al., 2013; Worsley Hunt and Wasserman,
2014; Jain et al., 2015), which in turn generate a varying number of false
positives. Thus, delineating bona fide bound regions from experimental noise
is still an ongoing problem. The ever-increasing number of publicly available
ChIP-seq data sets provides an unprecedented opportunity to develop and
evaluate computational tools designed to infer the precise locations of the
TFBSs within ChIP-seq peaks by combining both computational and experi-
mental evidence of direct TF-DNA interactions. ChIP-seq data sets fall into
one of three categories: (i) data sets enriched for the TF binding motif close to
the ChIP-seq peak summit, (ii) data sets lacking enrichment for the binding
motif close to the peak summit, and (iii) data sets having a combination of
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peaks with and without the TF canonical binding motif proximal to the peak
summit (Worsley Hunt et al., 2014). Regardless of the presence or absence
of a canonical binding motif enrichment close to the peak summit, useful
co-binding information may be derived from ChIP-seq peaks falling into the
(ii) or (iii) category if indirect binding is discriminated from experimental
artefacts/noise (Teytelman et al., 2013; Worsley Hunt and Wasserman, 2014;
Jain et al., 2015), although in the current work we did not address this is-
sue. Considering the amount of already publicly available ChIP-seq data, it
is also imperative to develop computational methods and tools that aim at
harmonizing the data processing workflow and results storage. Up to now,
no official standards have been created, but several guidelines were put in
place (Landt et al., 2012; Bailey et al., 2013).

Improving existing or developing new computational methods to detect
TFBS locations with high confidence is therefore necessary to reduce the
high amount of false positives. In turn, this can improve downstream
computational analyses, such as TF binding motif enrichment, genomic
region enrichment, regulatory variant detection, or TF regulon prediction.
Previous analyses have shown that up to 60% of peaks computationally
inferred from ChIP-seq experiments and stored in the ENCODE (The
ENCODE Project Consortium, 2012) public repository do not contain
a TEBS for the targeted TF (Worsley Hunt et al., 2014). Instead, they
contain genomic regions that represent clusters of TFs indirectly binding to
DNA (Worsley Hunt et al., 2014; Wreczycka et al., 2019; Gheorghe et al.,
2019), or are just a consequence of the open chromatin regions (Yan et al.,
2013). When inferring TFBSs, the trade-off is generally between sensitivity
and specificity. A common practice is to keep the best scoring binding
site, whether it presents strong binding affinity or high computational score.
However, this does not necessarily mean lower affinity or lower scoring sites
are false positives. For instance, a TF binding site with lower affinity can
still show preferential binding, which may become relevant to transcriptional
regulation depending on the interactions with other TFs within CREs
(Parker et al., 2011).

Other studies have shown that the number of false positives can be as high
as three orders of magnitude compared to the true binding locations (Fickett,
1996). It has been speculated that this may be solely due to the suitability of
the model used to infer TFBSs (Tronche et al., 1997). Indeed, in vitro assays
detect potential binding sites, but these sites do not necessarily translate to
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function ¢n vivo. This huge discrepancy between false positives and true posi-
tives was referred to as the futility theorem, stating that the predicted TFBSs
will most likely not be functional in vivo regardless of their binding affinity
in vitro (Wasserman and Sandelin, 2004). This suggests that additional in-
formation should be used to increase the prediction accuracy. As shown in
the results of the work presented here, by combining computational evidence,
such as scoring based on binding profiles derived through in vitro assays and
subsequently curated through literature (e.g, the JASPAR database (Khan
et al., 2018)) and experimental evidence, such as proximity to the ChIP-seq
peak summit (Worsley Hunt et al., 2014) we improve our prediction accuracy
and confidence of inferring bona fide direct TF-DNA interactions (Gheorghe
et al., 2019). Nevertheless, there is no hard evidence that the inferred TFBSs
are functional in the given biological condition or not.

Another important aspect regarding the rate of false positives arising from
ChIP-seq data is the parameter setting used in the computational tools. De-
pending on the aim of the ChIP-seq experiment (e.g., TFBSs or histone
modifications), the peak-caller should be chosen accordingly, as the behavior
may differ considerably. It has been shown that even slight changes in param-
eter tuning of the tools used in either read mapping, peak calling, or TFBSs
prediction can significantly affect the results (Bailey et al., 2013; Zhang et al.,
2016) and therefore the number of false positives. This is in part due to the
variation in the length of the ChIP-seq peaks. For instance, the peaks iden-
tified from a ChIP-seq experiment based on TFs have an average length of
300-400 bp, while the peaks identified from histone based ChIP-seq can reach
several thousand bps (Park, 2009). Depending on the parameter setting and
the data quality, the number of false positives may vary wildly. Attempts
to generalize the parameter settings used in the computational tools were
made, but to date there is no standard for ChIP-seq data analysis (Bailey
et al., 2013). In general, the parameter settings are based on somewhat arbi-
trary values that are either derived based on performance on the data used
in model testing or on common use within the community. While some of
these “hard-coded” values have become the gold standard in their context
(e.g., a p-value < 0.05 to determine significance), others are highly depen-
dent on the data quality used in the model, such as read depth, length, or
quality (Zhang et al., 2016). When predicting TFBSs, a threshold on the
computational score (e.g., PWM score) is generally used to define the set of
bona fide TFBSs (Medina-Rivera et al., 2011). Recently, a heuristic approach
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was developed to predict bona fide direct TF-DNA interactions based on an
enrichment zone derived from PWM scores (i.e, computational evidence) and
distance to peak summit (i.e., experimental evidence) (Worsley Hunt et al.,
2014). While this method works well with PWM scores, it is not suited for
more recent TFBS computational models (Mathelier and Wasserman, 2013;
Mathelier et al., 2016; Zhao et al., 2012). Moreover, this method also makes
use of “hard-coded”, somewhat arbitrary values that are used in the model
(Worsley Hunt et al., 2014). In this work, we did not assess the impact
of ChIP-seq peak caller parameter settings, but we aimed at developing a
method that is able to define an enrichment zone that is data driven and
not based on pre-defined thresholds. Therefore, we have developed a non-
parametric methodology that is able to automatically define this enrichment
zone for each ChIP-seq data set individually (Gheorghe et al., 2019). This
data driven method favors specificity over sensitivity and delineates a sub-
set of high confidence TFBS predictions that are supported by both strong
computational and experimental evidence.

3.4 Identifying regulons: still a highly com-
plex problem

Another challenge besides the identification of bona fide TFBSs is to infer
the subset of genes that are direct targets of TFs and, in doing so, the most
likely functional TFBSs. This will allow for the generation of gene regulatory
networks and subsequently help understanding and predicting the cascading
effect resulting from disruptions in the transcriptional regulation machinery.
A regulon is the ensemble of genes that are regulated by the same TF, and
their common characteristic is the presence of TFBSs for this TF at their
CREs (Lengeler et al., 1999). Identifying TF regulons is therefore crucial in
order to understand the pathways that are affected in disease and disease
progression.

As ChIP-seq data is so abundant and available through public repositories,
it has also become the preferred assay to infer TF regulons. The general
approach to determine if a TF regulates a gene or not is based on the dis-
tance between a ChIP-seq peak and the TSS of that gene. Subsequently,
different scoring implementations assign a certain probability of the TF to
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regulate a gene (i.e., the closer to the T'SS, the higher the probability) (Sikora-
Wohlfeld et al., 2013). In addition to the distance to T'SS and gene-enhancer
associations, we observed that adding other layers of information, such as
promoter information or sequence conservation score, can also improve pre-
dictive power, but it varies greatly between TFs and between ChIP-seq data
sets. We hypothesize that this is due to cell line and biological condition
specificities. For instance, a TFBS may be found in two different cell lines
but may not be functional in both cell lines. In our model, we have aggre-
gated promoter/enhancer/CRM information across all cell lines for simplicity
reasons. We suggest that using cell line-specific information, where available,
can further improve prediction accuracy.

Another issue is the lack of a standardized “benchmark” to assess the per-
formance of TF regulon prediction models. The general practice is to use
the overlap with known sets of associated genes as a performance metric.
These sets of genes are derived through knock -in or -down experiments, but
they are subject to false positives generated through experimental variation
and/or subsequent computational analysis. Here, we observed that using
sets of genes that are manually curated from the literature increases predic-
tion performance, when compared to using the experimentally derived genes
directly. We considered using gene ontology (GO) term similarity to assess
model performance, but due to the GO term redundancy as a consequence of
the database structure itself, we can not conclude that this metric is better
than using gene overlap. Ultimately, experimental validation should be used
to assess the prediction performance of the model, but obviously this process
is time and resource expensive.

All these aspects render TF regulon prediction a highly complex problem,
due to the high feature dimensionality and lack of a gold standard in perfor-
mance assessment. In this work, we opted for a ranked list-based prediction
model and GO term similarity for result validation, but other approaches and
performance metrics should be explored. For instance, the prediction model
could be implemented within a Bayesian framework or in a semi supervised
machine learning framework, such as neural networks. The prediction perfor-
mance can be further improved by including cell line specificities or known
biological processes associated to the TF in the model. Most importantly, the
type and quality of the data used in the prediction model strongly affects
its performance. Using precise TFBS locations instead of ChIP-seq peaks
improves the prediction performance, and using manually curated gene asso-
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ciations is likely to improve prediction validation.

3.5 Computationally deriving molecular
specificities of cancers

Using our high confidence TFBS predictions and publicly available RN A-seq
data, we were able to identify sets of genes that are dysregulated between
ER+ and ER-, and subsequently infer which TFs are enriched at the CREs
of these genes. This is an important first step in deciphering transcriptional
regulatory specificities of the two cancer subtypes. Of course, validation
of these findings is needed. One approach for validation would be through
knock-in or knock-out experiments in ER-/ER+ models. The analysis flow
herein presented can be used to identify molecular signatures of other breast
cancer subtypes or cancers in general, provided that sufficient data is avail-
able for statistical tests to be performed. This analysis could also be applied
to a case/control scenario instead of two cancer subtypes. For instance, com-
paring expression profiles between non-tumorous and tumorous samples to
identify the subset of genes that are dysregulated in an oncogenic phenotype
or any phenotype in general.

Here, we used RNA-seq data to analyse genome-wide expression profiles.
Our methodology can also be applied to GRO-seq data (Lopes et al., 2017),
which measures nascent RNA as opposed to steady-state RNA measured by
RNA-seq. Based on data availability, the analysys workflow can be further
developed to measure nascent RNA levels at different time points (i.e., as a
time series) and study the dynamics of the two cancer subtypes. Another
data type that can be used is ATAC-seq (Buenrostro et al., 2015), which is an
assay for measurement of chromatin accessibility genome-wide. Using such
data, one can study the chromatin state at CREs as an indication of enhancer
and/or promoter activity (i.e., if in an open chromatin region, the CRE is
more likely to be functional), and the CREs that are active or inactive in
each of the two conditions (i.e., ER+ vs. ER-) can be inferred. Subsequently,
TF motif and/or TFBS enrichment analysis can be performed on these sets
of CREs. However, these two experimental assays are fairly new and to date,
data availability is quite limited.
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A potential limitation of this analysis workflow could be the set of TF binding
profiles used in the motif enrichment analysis. Depending on the size and
diversity of the binding motifs, the results of the motif enrichment may be
hindered. The same applies to the TFBS enrichment analysis, as the results
are restricted by the set of TFBSs serving as input. When performing the
genomic region enrichment analysis, one could use ChIP-seq peaks instead
of TFBSs, but this could lead to a high number of false positives (Teytelman
et al., 2013; Worsley Hunt et al., 2014; Jain et al., 2015). Here we opted for
high confidence, precise TFBS locations, favoring specificity over sensitivity.

Another layer of information that can be added to this workflow is the set
of mutations for each sample. This will potentially allow one to further
cluster or stratify the samples between the two conditions and perform a
multilayered analysis. As such, more refined sets of differentially expressed
genes can be identified based on subsets of mutations, again, provided that
sufficient data is available. One can also use genome-wide DNA methylation
status instead of (or complementary to) mutation information. Subsequently,
more tailored targeted therapies can be developed based on the unique set
of mutations of a patient and the TFs enriched within each subset. This
type of approach to characterize cancer subtypes or disease in general, from
a molecular perspective, has opened the door to personalized medicine. As
such, the individual genetic makeup of a patient can be analysed and efficient
treatments can be developed faster than a generic treatment (Wang, 2016;
Nussinov et al., 2019).

3.6 Biomedical considerations for targeted
cancer therapy

Understanding the causes of cellular regulatory program disruption leading to
carcinogenesis is key to the development of targeted cancer therapies. There
are several other factors besides genetic background that can lead to carcino-
genesis, such as DNA replication errors, exposure to environmental stress,
or inappropriate diet. As a result of these factors, cells may accumulate
somatic mutations over time, which are DNA modifications occurring in non-
germ cells. As opposed to passenger mutations that do not affect cell fitness,
specific somatic mutations are considered as cancer drivers when they dys-
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regulate the cell regulatory program and provide a fitness advantage to the
cells carrying them (Martincorena and Campbell, 2015).

An ongoing challenge lies in discriminating between such driving events from
background passenger mutations. The broad variation in the genetic makeup
of each individual adds to the complexity of this problem (Burrell et al., 2013).
Personalized medicine arises from the fact that each patient has a unique set
of mutations (Chin et al., 2011). Recently, the focus has shifted towards the
non-coding part of the genome, as mutations occurring within the protein
coding region were not sufficient to explain the resulting oncogenic pheno-
type (Khurana et al., 2016). This translates to, among others, assessing the
impact of somatic mutations occurring at CREs and thus assessing how mu-
tations occurring at promoters and/or enhancers can disrupt gene regulatory
networks, ultimately leading to carcinogenesis.

One approach to designing targeted therapies can be based on the set of
mutations of each individual. The entire set of patient-specific mutations can
be extracted, together with their gene expression profiles, from data portals
such as ICGC (Zhang et al., 2011). This information, in combination with
high confidence TF-DNA interactions, such as the ones hosted in UniBind
(Gheorghe et al., 2019) can be used to determine the subset of mutations
that occur at TFBSs. These mutations can be associated with gene activity
within regulatory networks and their impact on gene expression assessed.
Computational frameworks that allow prediction of such associations have
already been developed; one an example is zseq (Ding et al., 2015). This
tool was initially developed to analyze the effect of somatic mutations in
protein-coding regions on transcription. The zseq tool can be adapted to
work with CRE information and predict mutations that are likely to present
a functional impact on gene regulation.

The set of mutations identified to be highly likely responsible for disruptions
in gene regulatory programs associated with cancer can be experimentally
validated using, for instance, genome editing techniques. Ultimately, these
results can lead to the development of personalized approaches that would
inhibit gene expression dysregulation.
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3.7 Further improvement of the tools and re-
sources

The tools and resources developed here represent an effort to improve our
understanding of the intricate mechanisms of transcriptional regulation. The
ChIP-eat pipeline was designed to predict direct TF-DNA interactions from
ChIP-seq data. It is able to automatically identify a set of high confidence
TFBS predictions, supported by both strong computational and experimental
evidence in a non-parametric, data driven manner. Nevertheless, ChIP-eat
can be improved by adding a ChIP-seq peak rescanning step. This translates
to keeping the top scoring sequence per ChIP-seq peak that falls within the
enrichment zone, even if it does not represent the top scoring sequence across
the entire ChIP-seq peak (Gheorghe et al., 2019) (see Results subsection
2). Moreover, the UniBind database (https://unibind.uio.no/), which to our
knowledge is the most comprehensive of its kind to date, can be extended by
adding TFBS predictions from multiple species and/or from different ChIP-
seq peak callers.

Our framework of predicting TF regulons was designed to use additional
layers of relevant information, besides the distance to the closest T'SS. The
ranked-list based approach implemented in TF-requlons may not be the op-
timal implementation to solve this highly complex problem. Other machine
learning approaches can be used to infer TF target genes with more accu-
racy. For instance, if unsupervised learning is the weapon of choice, Bayesian
networks can be employed. A further improvement would also be to use hy-
brid Bayesian networks, which should be better at modeling the features
represented as continuous variables. If a semi-supervised machine learning
approach is of more interest, deep learning approaches such as neural net-
works can be employed and biological information used as prior knowledge.
Nevertheless, the features which improve the prediction performance should
be thoroughly assessed, as prediction accuracy and feature selection might
prove to be highly variable among biological conditions, even for the same
cell type.

As for identifying sets of TFs that are specific to different types of cancer or
phenotypes in general, one important aspect is the quality and quantity of
data used as input. Here, we aimed at employing high quality input data
(i.e., UniBind predictions) in our analyses to identify key TFs between ER-
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and ER+ breast cancers. A limitation might be the relatively small number
of TFs for which we had manually curated binding profiles and subsequently
predicted TFBSs. Therefore, a more comprehensive set of input data might
identify a wider set of potential TF candidates. Nevertheless, this relies on
the presence, diversity, and quality of the ChIP-seq data sets made publicly
available that are used to derive TF-DNA interactions.

3.8 General discussion

The work presented here fits in the general context of developing, improving,
and applying bioinformatics tools and resources to shed more light on the
intricate molecular mechanisms governing gene expression regulation. More
specifically, the focus has been on transcriptional regulation achieved through
TFs and how disruptions in the gene regulatory networks they rule can ex-
plain oncogenic phenotypes. This translates to a multilayered, highly com-
plex problem, as transcriptional regulation is governed by a complex interplay
between these key proteins and DNA. To resolve this puzzle, high quality, re-
liable data should be employed in order to obtain reliable results. Generally,
multiple analyses are used in a workflow in which the output of one process-
ing step serves as input for the next. Therefore, using low quality data will
generate low quality results, as the late computer scientist Wilf Hey coined
the phrase, “garbage in, garbage out”.

Computational tools are critical to reduce the search space in such contexts,
where the posibilities and combinations are countless. Nevertheless, these
tools have to be reliable and transparent. In other words, they should be
able to reproduce the results they generate, and ideally all processing steps
should be visible. The bioinformatics field is relatively new, and the ten-
dency is to generate bits and pieces of software aiming at solving one highly
specific task. This is a direct consequence of the high speed at which biolog-
ical assays are developed and new data types and approaches are generated
(Phan et al., 2009). As such, software developed with the same aim can be
produced independently in different institutions and written in different pro-
gramming languages. This in turn translates to differences in implementation
and thus differences in the results obtained. In most of the cases, there is no
gold standard for comparison when choosing what computational tool to use.
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Moreover, a large portion of these tools do not have a graphical interface
that allows the users to easily interact with the tool. As such, these tools
require the user to launch the processing through a command line interface,
which for most researchers constitutes an early roadblock (Stein, 2002).

As a consequence, the massive amounts of biological data that are generated
through next-generation sequencing cannot be used at their full potential
(Stein, 2002). Lately, guidelines have been put in place to ensure data qual-
ity standards and, to a lesser extent, uniformity in processing the data from
different experimental assays (Bailey et al., 2013; Landt et al., 2012; Mason
et al., 2010). This encourages the community to use software suites, which
represent a collection of individual computational tools that are able to fulfill
a broader set of tasks in a more standardized manner (Bailey et al., 2009;
Quinlan and Hall, 2010). In parallel with the development of such software
toolboxes, processing pipelines have been developed (Leipzig, 2017). Gen-
erally, they represent a data processing workflow able to perform an entire
analysis from raw data to the final results. It is increasingly common that
suites and pipelines also integrate quality checks, as the biological data quality
can vary greatly due to experimental conditions, material and instruments
used, etc. Large consortia, such as ENCODE, host thousands of publicly
available data sets and have compiled sets of guidelines and reference quality
indicators for different types of data to ensure input quality in the processing
pipelines (The ENCODE Project Consortium, 2012). Moreover, pipelines en-
sure result reproducibility, as the same set of tools and data processing steps
with the same parameter settings is applied on every data set (Kanwal et al.,
2017).

Besides the development of computational tools, suites of tools, and data
processing pipelines, the generation, update, and maintenance of databases
is equally important. These are important resources for the community, en-
abling larger scale, higher level analyses. In some cases, the development of
databases even precedes the development of tools. For instance, in the world
of TFs, databases hosting reference binding motifs were generated through
literature curation before tools for motif enrichment or motif discovery were
developed. Two examples of such databases that appeared around the same
time are TRANSFAC (Wingender et al., 1996) for eukaryotic organisms and
RegulonDB (Huerta et al., 1998) for bacteria.

In general, databases hosting TFBMs, PFMs and/or TFBSs, or any CRE
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information specialize in one organism or the same taxonomy. Others, such
as JASPAR (Sandelin et al., 2004) host data for several organisms. For every
database, the methods through which the TFBSs or PFMs were obtained, as
well as their representation format, varies. Regardless, most (if not all) of the
information contained in these databases comes from manual curation, which
means that the TFBSs and PFMs are more likely to be trustworthy. Such
curation is feasible when dealing with simpler organisms like bacteria where
the regulatory network is less complex. When dealing with higher organisms,
such as vertebrates, the manual curation process becomes tedious, and huge
efforts are made to populate and update the databases. Moreover, as the
vast majority of these databases rely on data coming from high-throughput
assays and sequencing, the manual curation process becomes even more time
consuming due to the large amounts of data. However, directly inferring
TFBSs from high-throughput data is prone to introduce a large number of
false positives, as it has been shown for the RegulonDB (Weiss et al., 2013).

Most of these databases are constantly updated and maintained, and with
every update the size of the database increases considerably. This is a normal
phenomenon given the huge increase in the amounts of data generated every
year as sequencing costs become lower. These updates allow for the refine-
ment of the inferred PFMs, but also increase the number of redundant motifs.
However, some databases are a “side product” of large scale studies (Jolma
et al., 2015; Whitaker et al., 2015) and they are not maintained nor updated.
Due to the ever increasing number of databases, the question becomes which
database to use in a study. Recently, some databases such as footprintDB
(Sebastian and Contreras-Moreira, 2014) and Cis-BP (Weirauch et al., 2014)
implemented and standardized data from multiple databases complementary
to their own.

As personalized medicine is a rapidly growing field, it is crucial to rely on
high quality data and dependable computational tools to develop targeted
therapies based on the unique genetic makeup of each patient. With the
work presented here, we improved our capacity to predict bona fide TFBSs
genome-wide and made this resource publicly available. These data may
serve as a base in numerous research projects that aim at understanding the
impact of alterations occurring in the transcriptional regulatory machinery.
As a direct application of our UniBind database hosting the entire set of
TFBS predictions, we showed that we can infer key TFs that are specific
to ER- and ER+ breast cancer subtypes. These TFs can be used to infer

72



DISCUSSION 3.8

associated regulons (i.e., gene regulatory networks) and ultimately develop
targeted therapies replacing for instance chemotherapy as treatment for ER-
breast cancers.
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ABSTRACT

With this latest release of ReMap (http://remap.
cisreg.eu), we present a unique collection of reg-
ulatory regions in human, as a result of a large-
scale integrative analysis of ChIP-seq experiments
for hundreds of transcriptional regulators (TRs) such
as transcription factors, transcriptional co-activators
and chromatin regulators. In 2015, we introduced the
ReMap database to capture the genome regulatory
space by integrating public ChiP-seq datasets, cov-
ering 237 TRs across 13 million (M) peaks. In this re-
lease, we have extended this catalog to constitute a
unique collection of regulatory regions. Specifically,
we have collected, analyzed and retained after qual-
ity control a total of 2829 ChIP-seq datasets avail-
able from public sources, covering a total of 485 TRs
with a catalog of 80M peaks. Additionally, the updated
database includes new search features for TR names
as well as aliases, including cell line names and the
ability to navigate the data directly within genome
browsers via public track hubs. Finally, full access
to this catalog is available online together with a TR
binding enrichment analysis tool. ReMap 2018 pro-
vides a significant update of the ReMap database,
providing an in depth view of the complexity of the
regulatory landscape in human.

INTRODUCTION

Transcription factors (TFs), transcriptional coactivators
(TCAs) and chromatin-remodeling factors (CRFs) drive
gene transcription and the organization of chromatin
through DNA binding. TFs specifically bind to DNA se-
quences (TF binding sites) to activate (activators) or re-

press (repressors) transcription, TCAs enhance gene tran-
scription by binding to activator TF. While CRFs modify
the chromatin architecture to allow DNA access for tran-
scription machinery proteins. In recent years, the devel-
opment of high-throughput techniques like chromatin im-
munoprecipitation followed by sequencing (ChIP-seq) (1)
has allowed to experimentally obtain genome-wide maps of
binding sites across many cell types for a variety of DNA-
binding proteins. The popularity of ChIP-seq has led to a
deluge of data in current data warehouses (2,3) for TFs,
TCAs and CRFs, collectively named transcriptional regu-
lators (TRs). The rapid accumulation of ChIP-seq data in
public databases provides a unique and valuable resource
for hundreds of TR occupancy maps. There is a strong need
to integrate these large-scale datasets to explore the tran-
scriptional regulatory repertoire. Unfortunately, the hetero-
geneity of the pipelines used to process these data, as well as
the variety of underlying formats used, challenge the anal-
ysis processes and the underlying detection of TF binding
sites (TFBSs). Integrative studies would offer significant in-
sights into the dynamic mechanisms by which a TF selects
its binding regions in each cellular environment.

ReMap has been the first large scale integrative initia-
tive to study these data, offering significant insights into
the complexity of the human regulatory landscape (4). The
ReMap 2015 resource created a large catalog of regulatory
regions by compiling the genomic localization of 132 differ-
ent TRs across 83 different human cell lines and tissue types
based on 395 non-ENCODE datasets selected from Gene
Expression Omnibus (2) and ArrayExpress (3). This catalog
was merged with the ENCODE multi-cell peaks (5), gener-
ating a global map of 13M regulatory elements for 237 TRs
across multiple cell types. However, since the 2015 publica-
tion of ReMap, an even greater number of ChIP-seq assays
has been submitted to genomic data repositories.
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Here, we introduce the ReMap 2018 update, which in-
cludes the integration of 2829 quality controlled ChIP-
seq datasets for TFs, TCAs and CRFs. The new ChIP-seq
datasets (n = 1763, defined as ‘Public’ for non-ENCODE)
as well as the latest ENCODE ChIP-seq data (n = 1066)
have been mapped to the GRCh38/hg38 human assembly,
quality filtered and analyzed with a uniform pipeline. In
this update, we propose a unified integration of all public
ChIP-seq datasets producing a unique atlas of regulatory
regions for 485 TRs across 346 cell types, for a total of S0M
DNA binding regions. Each experiment introduced in this
release has been assessed and manually curated to ensure
correct meta-data annotation. Our ReMap database pro-
vides DNA-binding locations for each TR, either for each
experiment, at cell line or primary cell level, or at the TR
level in a non-redundant fashion across all collected ex-
periments. This update represents a 2-fold increase in the
number of DNA-binding proteins, 7-fold in the number of
processed datasets, 4-fold in the number of cell lines/tissue
types and 6-fold in the number of identified ChIP-seq peaks.
While the first version of the ReMap catalog covered 26%
(793 Mb) of the human genome, the regulatory search space
for ReMap 2018 covers 46% (1.4Gb).

Finally, we give the community access to various options
to visualize and browse our catalog, allowing users to nav-
igate and dissect their genomic loci of interest co-occupied
by multiple TRs in various cell types. Browsing the ReMap
2018 catalog using the Public Track hub, IGV data sever,
Ensembl or UCSC sessions clearly exposes the abundance
and intricacy of combinatorial regulation in cellular con-
texts.

This report presents the extensive data increase and regu-
latory catalog expansion of ReMap as a result of our large-
scale data integration and genome-wide analysis efforts.
The manual curation specific to the ReMap initiative offers
a unique and unprecedented collection of TR binding re-
gions. These improvements, together with several novel en-
hancements (search bars, data track displays, format and
annotation), constitute a unique atlas of regulatory regions
generated by the integration of public resources.

MATERIALS AND METHODS
Available datasets

ChIP-seq datasets were extracted from the Gene Expression
Omnibus (GEO) (2), ArrayExpress (AE) (3) and ENCODE
(5) databases. For GEO, the query ‘(‘chip seq” OR ‘chipseq’
OR ‘chip sequencing’) AND ‘Genome binding/occupancy
profiling by high-throughput sequencing’ AND ‘homo
sapiens’[organism] AND NOT ‘ENCODE’[project] was
used to return a list of all potential datasets, which were
then manually assessed and curated for further analyses.
For ArrayExpress, we used the query (Filtered by organism
‘Homo sapiens’, experiment type ‘dna assay’, experiment
type ‘sequencing assay’, AE only ‘on’) to return datasets
not present in GEO. Contrary to other similar databases
(chip-atlas http://chip-atlas.org, (6,7)), ReMap meta-data
for each experiment are manually curated, annotated with
the official gene name from the HUGO Gene Nomenclature
Committee (8) (www.genenames.org) and BRENDA Tissue
Ontologies (9) for cell lines (www.ebi.ac.uk/ols/ontologies/

bto). Datasets involving polymerases (Pol2 and Pol3), and
some mutated or fused TFs (e.g. KAP1 N/C terminal mu-
tation, GSE27929) were filtered out. A dataset is defined as
a ChIP-seq experiment in a given GEO/AE/ENCODE se-
ries (e.g. GSE37345), for a given TF (e.g. FOXA1), and in a
particular biological condition (e.g. LNCaP). Datasets were
labeled with the concatenation of these three pieces of infor-
mation (e.g. GSE37345.FOXA1.LNCAP).

A total of 3180 datasets were processed (Supplemen-
tary Table S1). Specifically, we analyzed 2020 datasets from
GEO (1862) and ArrayExpress (158) repositories (July 2008
to May 2017). We define these non-ENCODE datasets as
the ‘Public’ set, in opposition to ENCODE datasets (1160)
(full list of experiments in Supplementary Tables S2 and 3).

ReMap 2015 contained the multi-cell peak calling pro-
cessed from ENCODE release V3 (August 2013). For the
ReMap 2018 update, we re-analyzed, starting from the raw
data, all ENCODE ChIP-seq experiments for TFs, tran-
scriptional and chromatin regulators, following the same
processing pipeline as the Public set. We retrieved the list
of ENCODE data as FASTQ files from the ENCODE por-
tal (https://www.encodeproject.org/) using the following fil-
ters: Assay: ‘ChIP-seq’, Organism: ‘Homo sapiens’, Target
of assay: “TF’, Available data: ‘fastq’ on 21 June 2016. Meta-
data information in JSON format and FASTQ files were
retrieved using the Python requests module. We processed
1160 datasets associated to 161 TRs and 87 cell lines. We
removed 2 TRs (POLR2A, POLR3G), and renamed TR
aliases into official HGNC identifiers (e.g. p65 into RELA,
see Supplementary Table) leading to a final list of 279 TRs
from ENCODE.

ChIP-seq processing

Both ENCODE and Public datasets were uniformly pro-
cessed and analyzed. Bowtie 2 (version 2.2.9) (10) with op-
tions —end-to-end —sensitive was used to align all reads
on the human genome (GRCh38/hg38 assembly). For
Public datasets, adapters were removed using TrimGa-
lore (https://www.bioinformatics.babraham.ac.uk/projects/
trim_galore/), trimming reads up to 30 bp. Polymerase
chain reaction duplicates were removed from the align-
ments with samtools rmdup (11). For the ENCODE data,
the adapter trimming step was not employed, as this data
already passed certain quality assessment steps (https://
www.encodeproject.org/data-standards/). TR binding re-
gions were identified using the MACS2 peak-calling tool
(version 2.1.1.2) (12) in order to follow ENCODE ChIP-seq
guidelines (13), with stringent thresholds (MACS2 default
thresholds, P-value: le-5). Input datasets were used when
available. All peak-calling files are available to download.
Among the 80M peaks identified, 99.5% of peaks (79 753
407) were below 1.5 kb in size (mean size: 286 bp, median
size: 231 bp) and only 376 017 peaks were above 1.5 kb in
size (mean size: 2209 bp, median size: 1859 bp).

Quality assessment

As raw data are obtained from various sources, under dif-
ferent experimental conditions and platforms, data qual-
ity differs across experiments. Since the ReMap 2015 re-
lease, our ChIP-seq pipeline assesses the quality of all
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datasets, unlike similar databases (chip-atlas http://chip-
atlas.org, (6,7)), (Supplementary Table S4). We compute a
score based on the cross-correlation and the FRiP (frac-
tion of reads in peaks) metrics developed by the ENCODE
consortium (13) (Supplementary Figure S1). Descriptions
of the ENCODE quality coefficients can be found on the
UCSC Genome portal (http://genome.ucsc.edu/ENCODE/
qualityMetrics.html). Our pipeline computes the normal-
ized strand cross-correlation coefficient (NSC) as a ratio be-
tween the maximal fragment-length cross-correlation value
and the background cross-correlation value, and the rel-
ative strand cross-correlation coefficient (RSC), as a ra-
tio between the fragment-length cross-correlation and the
read-length cross-correlation. The same methods and qual-
ity cutoffs were applied as in ReMap 2015 (4). Datasets not
passing the QC were not included in the catalog of peaks
available for download (http://remap.cisreg.cu).

DNA constraint scores

We provide the conservation profiles at the nucleotide level
for each of the 485 TRs present in our catalog. We assessed
the DNA constraint for each base pair by considering 41
kb around the summit of each non-redundant peak (see be-
low). Genomic Evolutionary Rate Profiling scores (GERP)
were used to calculate the conservation of each nucleotide in
a multi-species alignment (14). The computed GERP scores
were obtained from the 24-way amniota vertebrates Pecan
(15) multi-species alignment, and extracted from the En-
sembl Compara database release v89 (16).

Genome coverage, non-redundant peak sets and CRMs

Genome coverages were computed using the BedTools suite
(17) (version 2.17.0) using the ‘genomecov’ function with
the option -max 2 that combines all positions with a depth
>2 binding locations. Full details of the ReMap 2015 and
2018 genome coverage are available in Supplementary Ta-
ble S5. ReMap also provides a catalog of discrete, non-
redundant binding regions for each TR, a specificity not
found in other databases (chip-atlas http://chip-atlas.org,
(6,18)). We used BedTools to merge overlapping peaks (with
at least 1 bp overlap) identified in different datasets for the
same TR. The summit of the resulting peaks was defined
as the average position of the summits of the merged peaks.
Those peaks made of at least two or more peaks for a given
factor are defined as non-redundant peaks. We observed a
mean variation of 77 bp between the summits of the non-
redundant peaks and the individual peak summits (Supple-
mentary Figure S2). Similarly, to obtain the cis-regulatory
modules (CRMs) in the genome, overlapping peaks of all
TRs were merged using BedTools. Regions bound by sev-
eral TRs are called CRMs, whereas regions bound by only
one TR are labeled as singletons.

Roadmap human epigenome annotations

Two sets of chromatin accessibility data were used to better
characterize the ReMap atlas. We employed BedTools for
overlap analyses allowing a minimum of 10% overlap.
The NIH Roadmap Epigenomics Mapping Consortium
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(19) data were downloaded from the roadmap data
portal (http://egg2.wustl.edu/roadmap). Delineation of
DNasel-accessible regulatory regions were accessed from
http://egg2.wustl.edu/roadmap/web_portal/DNase_reg.
html#delieation. BED files with coordinates of each
region type for each epigenome separately are available
for 81 232 promoter regions (1.44% of genome), 2 328
936 putative enhancer regions (12.63% of genome) and
129 960 dyadic promoter/enhancer regions (0.99% of
genome). The core 15-state model of chromatin combi-
natorial interactions between different chromatin marks
was downloaded from http://egg2.wustl.edu/roadmap/
web_portal/chr_state_learning.html#core_15state. ~ Chro-
matin state definitions and abbreviations are: 1 Active
TSS (TssA), 2 Flanking active TSS (TssAFlnk), 3 Tran-
scr. at gene 5 and 3'(TxFInk), 4 Strong transcription
(Tx), 5 Weak transcription (TxWk), 6 Genic enhancers
(EnhG), 7 Enhancers (Enh), 8 ZNF genes + repeats
(ZNF /Rpts), 9 Heterochromatin (Het), 10 Bivalent/poised
TSS (TssBiv), 11 Flanking bivalent TSS/Enh (BivFlInk),
12 Bivalent enhancer (EnhBiv), 13 Repressed Polycomb
(ReprPC), 14 Weak repressed Polycomb (ReprPCWk) and
15 Quiescent/low (Quies).

DATA COLLECTION AND CONTENT
Integration of data sources

The 2018 release of the ReMap database reflects signifi-
cant advances in the number of binding regions, the num-
ber of TFs, transcriptional co-activators, chromatin regu-
lators and overall the total number of datasets integrated
in our catalog. We initially selected, processed and ana-
lyzed 3180 ChIP-seq datasets against TRs from GEO, AE
and ENCODE. To ensure consistency and comparability,
all datasets were processed from raw data, through our uni-
form ChIP-seq workflow that included read filtering, read
mapping, peak calling and quality assessment based on EN-
CODE quality criterions. As the quality of ChIP-seq exper-
iments vary significantly (20,21), we incorporated a criti-
cal data quality filtering step in our pipeline—not imple-
mented in other databases (chip-atlas http://chip-atlas.org
(6,7,18)). Specifically, we considered four quality metrics,
two metrics independent of peak calling for assessing signal-
to-noise ratios in a ChIP-seq experiment and two metrics
based on peak properties. Following ENCODE ChIP-seq
guidelines and practices (13), we used the NSC and the RSC
(see ‘Materials and Methods’ section). Further, we used the
FRiP and the number of peaks in the dataset (see ‘Mate-
rials and Methods’ section). After applying our quality fil-
ters based on these four ChIP-seq metrics we retained 2829
datasets (89%): 1763 datasets from GEO and ArrayExpress
and 1066 from ENCODE (Figure 1A and Supplementary
Figure S1). The significant increase of data is spread across
almost all TFs when compared to ReMap 2015 (Figure 1B).
Nevertheless, we observe TFs (e.g. AR, ESR1, FOXA1)and
CRFs (e.g. BRD4, EZH2) displaying a larger data growth
than other DNA-binding proteins. The majority of TRs
show additional datasets integrated in ReMap 2018 (Figure
1B, dark blue bars).
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Figure 1. Overview of the ReMap database expansion. (A) Analyzed datasets growth in ReMap 2018 compared to ReMap 2015. (B) Evolution of the
number of datasets per TRs, ranked across common between both ReMap versions. (C) Common TRs between Public and ENCODE sets of data (gray).
Direct comparison of Public and ENCODE repertoire, defined as percentages (%), and as number (Nb) of peaks. (D) Genome coverage fraction of each
ReMap dataset (NR non-redundant, CRM Cis Regulatory Modules). (E) Comparison of DNase I-accessible regulatory regions against the ReMap 2018,
regions from the Roadmap Epigenomics Consortium defining promoter-only, enhancer-only or enhancer—promoter alternating states (Dyadic). Each dot
represents the fraction overlap with ReMap 2018 for one of the 111 epigenomes. (F) Comparison of the Roadmap Epigenomics Consortium chromatin
states annotations against the ReMap 2018 catalog, using the Core 15 chromatin states model, and a minimum overlap of 50% between regions. Each dot
represents the overlap for one of the 111 epigenomes. Chromatin state definitions and abbreviations are as follows; 1 Active TSS (TssA), 2 Flanking active
TSS (TssAFInk), 3 Transcr. at gene 5’ and 3'(TxFInk), 4 Strong transcription (Tx), 5 Weak transcription (TxWk), 6 Genic enhancers (EnhG), 7 Enhancers
(Enh), 8 ZNF genes + repeats (ZNF/Rpts), 9 Heterochromatin (Het), 10 Bivalent/poised TSS (TssBiv), 11 Flanking bivalent TSS/Enh (BivFInk), 12
Bivalent enhancer (EnhBiv), 13 Repressed Polycomb (ReprPC), 14 Weak repressed Polycomb (ReprPCWk), 15 Quiescent/low (Quies).

Regulatory catalog expansion

With all ChIP-seq data uniformly processed, the ReMap
2018 catalog displays ENCODE data down to the cell line
and dataset level rather than the simpler multi-cell analy-
sis provided by ENCODE DCC used in ReMap 2015. Our
analyses produced 48 693 300 peaks for the Public-only
(non-ENCODE) set across 331 TRs and 31 436 124 peaks
for the ENCODE set across 279 TRs, leading to a final
ReMap regulatory atlas of 80 129 705 peaks generated from
485 TRs (Figure 1C). We found 125 TRs common to the
two sets, 154 proteins specific to ENCODE and 206 spe-
cific to the Public catalog (Figure 1C). We also found that
839 400 CRMs are shared between both catalogs. Taken
separately, the ENCODE peaks overlaps by 96% the Pub-

lic regions, and 87% of the Public peaks overlap ENCODE
regions (Figure 1C). It suggests that merging both Public
and ENCODE sets complements the annotation of DNA-
bound regions, as it increases the number of regulatory re-
gions in our atlas, hence improving the annotation of DNA-
bound elements in the human genome (Figures 1C and 2).

Indeed, about 13% (405 Mb) of the human genome is cov-
ered by at least one feature only from the entire ReMap cat-
alog and 33% (1.02 Gb) are covered by two or more features
(Figure 1D and Supplementary Table S4). The Public-only
and ENCODE-only sets cover the genome by two or more
peaks by 28 and 15% respectively. The observed differences
can be explained by the wide spectrum of cell lines and treat-
ments included in the Public set (300 cell lines) compared
to the ENCODE set (86 cell lines). As a comparison, the
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Figure 2. ReMap ChIP-seq binding pattern of 2829 datasets. A genome browser example of the ChIP-seq binding peak depth of the ReMap 2018 catalog
compared to ReMap 2015 at the vicinity of the ELACI promoter (chr18:50,967,094-50,970,983). The tracks and peaks displayed are compacted to thin
lines so the depth of ReMap 2018 bindings can be compared to ReMap 2015. A full and un-compacted screenshot is available as Supplementary Figures S2
and 3. On this location the ReMap 2018 catalog contains 1307 peaks, whereas the ReMap 2015 contains 229 peaks (ReMap 2015 lifted to GRCh38/hg38
assembly). The following genome tracks correspond to the GENCODE v24 Comprehensive Transcript Set and the 100 vertebrates base-wise conservation
showing sites predicted to be conserved (positive scores in blue), and sites predicted to be fast-evolving (negative scores in red). A detailed view of the

redundant peaks for a FOXAL site is available in Figure 3.

ReMap 2015 catalog covered 10% (321 Mb) of the genome
with one feature only, and 15% (471 Mb) with at least two or
more features. Between the two ReMap versions, we observe
that the fraction of the human genome covered by one fea-
ture remains extremely stable (+84 Mb from 2015 to 2018),
whereas the fraction covered by two or more regulatory fea-
tures increases by 545 Mb. With ReMap 2018, we increase
the range of the regulatory space, and provide binding re-

gions for similar TRs at a greater depth, revealing tight and
dense co-localization sites (Figures 2 and 3).

Overlap with cis-regulatory genomic regions

Using the NIH Roadmap 111 epigenomes analyses, we
asked whether the DNase I defined regions as well as the
core 15 chromatin states model would better characterize
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Figure 3. FOXA1 ChIP-seq peaks pattern evolution across ReMap versions. Detailed view of the FOXA1 peaks present in ReMap 2018 (60 peaks) com-
pared to the FOXA1 peaks in ReMap 2015 (15 peaks) found at the genomic location chr18:50,969,638-50,970,931 in the first intron of the ELACI gene.
Those 60 FOXA1 peaks are derived from GEO, ArrayExpress and ENCODE ChIP-seq across multiple cell lines. Interestingly, it can be noted that the peak
summits (vertical bars) of each peak aggregate closely from each other, defining precisely the DNA binding location. Those aggregations of the FOXA1
summits are an illustration of what is globally observed for peaks of different TFs across the genome.

the ReMap atlas (Figure 1E and F). The Roadmap con-
sortium defined a total of 3.5M DNase I-accessible regu-
latory regions by merging all DNase I hypersensitive re-
gions across epigenomes, which were then annotated using
the core 15-state model focusing on chromatin states for
promoters, enhancers and dyadic (promoter + enhancer)
ambiguous regions (see ‘Materials and Methods’ section).
Among these three categories, the ReMap atlas could re-
capitulate on average 75.2% of the Roadmap promoter re-
gions, 69.8% of enhancer regions and 70.1% of dyadic re-
gions from the Roadmap annotation. Looking at the core
15-state model, we observe that the ReMap catalog recapit-
ulates more than 70% of the regions covered by each state

(Enhancer Genic (81%), Enhancer (80%) and TSS active
(80%) states) with the exception of quiesent state (36%).
Taken together, these results suggest that some promoter
and enhancer activities from Roadmap may be cell type
specific, as about 20-30% of those regions seem specific to
Roadmap consortium cells. The ReMap initiative results
from a large-scale integration of hundreds of diverse cell
types, and leads to a regulatory landscape illustrating the
large regulatory circuitry of those cells. The constant inte-
gration of novel data will allow for a greater definition of
the regulatory space across the genome.
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Large regulatory atlas

The ReMap database provides a large view of a unique regu-
latory landscape constituted by 80M binding regions form-
ing 1.6M CRMs. The genomic organization of our occu-
pancy map reveals dense co-localizations of sites forming
tight clusters of heterogeneous binding sites with variable
TRs complexity (Figure 2). For instance, the regulatory re-
gions observed in the vicinity of the ELACI promoter illus-
trate the ReMap 2018 expansion (n = 1037 peaks). It high-
lights how the regulatory repertoire can be complemented
by merging both Public and ENCODE sources. We observe
a large cluster of peaks at the ELAC1 promoter followed
by two clusters at +500 bp and 1 kb from the transcrip-
tion start site. The third cluster exemplifies how integrat-
ing data from different sources improves genome annota-
tions, as few peaks are available from ENCODE at this lo-
cation. Additionally, this cluster was detailed in our pre-
vious ReMap publication (4) and consisted of 15 FOXA1
ChIP-seq peaks from different cells, antibodies, and labora-
tories (Figure 3). In this update, we consolidate this FOXA1
binding location with 60 peaks. The summit of each peak is
represented by vertical bars aggregated closely from each
other, providing an information about the putative loca-
tion of the DNA binding site. The clustering of FOXA1
peaks and summits illustrates our genome-wide repertoire.
However, this FOXA1 example shows overlapping sites de-
rived from various experimental conditions, and therefore
does not reflect the total number of discrete binding re-
gions across the genome. To address redundancy between
datasets, we merged binding regions for the same TR, re-
sulting in a catalog of 35.5M peaks for all TRs combined.
These merged peaks, defined as non-redundant peaks, are
made of at least two or more peaks and singletons for a
given factor across all experiments, and are available for
download from the ReMap website. The TRs with the most
merged binding regions across cell types are AR, FOXAI,
CTCF and ESRI1 (Supplementary Figure S6). These re-
sults indicate that most bindings are shared across differ-
ent ChIP-seq experiments, either for similar or for different
cell types. Overall, our ReMap update provides a unique op-
portunity to identify complex regulatory architectures con-
taining multiple bound regions. We observe that by adding
more cell lines, more experiments and more DNA-binding
proteins, we increased the genome regulatory space and its
depth (Figure 2), but also refined the current annotations of
bound regions (Figure 3).

IMPLEMENTATION AND PUBLIC ACCESS
Web display

ReMap provides free public access to all data at http://
remap.cisreg.eu. The results presented here provide an in-
formative annotation for 80M ChIP-seq peaks coming from
public data sources, which are derived from 485 TRs across
346 diverse cell lines. This catalog provides an unparal-
leled resource for dissecting site-specific TF bindings (e.g.
FOXAT1 in Figures 2 and 3) or genome-wide binding analy-
ses. The ReMap web interface displays informations about
the integrated TRs (description, classification, external ref-
erences to Ensembl gene IDs, UniProt, RefSeq, WikiGene,
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JASPAR, FactorBook, TF Encyclopedia and other re-
sources), peaks, and datasets (quality assessment, read map-
ping and peak calling statistics, conservation score under
peaks). The interface provides a simple ‘Dynamic Search’
available from the TRs, Cell lines and Download pages and
is the entry point for users to search for specific data. The
search form allows users to narrow their searches based on
gene aliases, dataset names or IDs, cell line names or on-
tology. For example, entering ‘Oct’ as search term in the
‘Dynamic Search’ returns three TFs POU2F2, POU2FI,
POUSFI having various ‘OCT’ aliases. Additionally, one
could use the search box in the Cell or Download page to
search for specific cell types containing the ‘Colo’ term for
instance, or ‘GSE66218’ for a precise experiment from the
Download page. Moreover, we provide a tool that allows the
annotation of genomic regions provided by users. Those re-
gions are compared against the ReMap catalog returning
statistical enrichments of TR bindings present within user-
provided input regions compared to random expectations.
It allows for the study of over-represented TR binding re-
gions.

Browsing and downloading data

Updates made in ReMap 2018 reflect significant improve-
ment in the variety of genome navigation options. As the
ReMap 2015 UCSC session was popular, we now pro-
vide more data navigation alternatives. The content of the
ReMap database can be browsed through four options: (i)
across two mirror sites of the UCSC Genome Browser (22)
where a public session has been created (Figure 2 and Sup-
plementary Figure S3), (ii) across three Ensembl Genome
Browser mirrors (16) (Supplementary Figure S4), (iii) using
the ReMap public track hub (23) or (iv) using the IGV data
server (24) (Supplementary Figure S5). For each option, we
provide four tracks, the full ReMap catalog containing all
peaks, the Public-only peaks, the ENCODE-only peaks and
a track containing only peaks above 1.5 kb. As the ReMap
catalog expanded, it is crucial to allow visual exploration of
regulatory regions across different platforms combined with
public or user-specific genome-wide annotations. In addi-
tion, the entire ReMap 2018 catalog, as well as the Public-
specific or ENCODE-specific peaks, have been compiled
into BED files allowing further interpretations and compu-
tational analyses.

FUTURE DIRECTIONS

Next-generation sequencing technologies are playing a key
role in improving our understanding of regulatory ge-
nomics. As ChIP-seq technology is applied to a broader
set of cell lines, tissues and conditions, we will continu-
ously maintain and update the database. In the near fu-
ture, we propose on adding to the ReMap portfolio different
peak-caller analyses to further consolidate the peak reper-
toire. Also, we aim to provide direct access to aligned reads
through a FTP server, allowing users to upload and nav-
igate aligned raw data of their choice. We plan on releas-
ing a Bioconductor R-package for genomic region enrich-
ment analyses for large genomic catalogs such as ReMap,
which will be replacing our current web enrichment tool. In
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the coming year, we would like to provide a Bioconductor
R-package to search and download ReMap data for a spe-
cific study, to get genomic range objects, raw counts and/or
metadata used for a specific study. Overall, determining the
best approach to curate and annotate ChIP-seq data with
a very broad level of submitted annotations and metadata
into a simple-to-use, easy-to-analyze and up-to-date system
will become a focus for the ReMap project.

CONCLUSION

The 2018 release of ReMap maintains the long-term fo-
cus of providing the research community with the largest
catalog of high-quality regulatory regions by integrating
all available ChIP-seq data from DNA-binding assays. The
usefulness of ReMap is exemplified by the last release of the
JASPAR database (25), for which ReMap ChIP-seq peaks
were used to derive 45 new TF binding profiles that were
incorporated in the 2018 release of the vertebrate CORE
collection (Khan et al. 2018), providing a 9% increase from
JASPAR 2016 (26) by solely relying on the ReMap 2018
catalog. Although new datasets are constantly added to
repositories, we believe that our ReMap atlas will help in
better understanding the regulation processes in human.
In this update, we have (i) widely expanded the collection
of datasets curated and analyzed from public sources with
now 485 TFs, transcriptional co-activators and chromatin
regulators; (i) uniformly processed and integrated the EN-
CODE ChIP-seq data; (iii) enhanced the website usability
by allowing dynamic search of TRs, aliases, cell lines and
experiments, (iv) expanded the genome browsing experience
by integrating ReMap in all UCSC and Ensembl Genome
Browsers mirror sites and provided a Track Hub for data
integration in other platforms; (v) improved the capacity to
download all ReMap files in bulk or individually.

AVAILABILITY

ReMap 2018 can be accessed through a web interface at
http://remap.cisreg.eu. Downloads are available in BED for-
mat for the entire ReMap catalog, the Public-only peaks,
the ENCODE-only peaks, and in FASTA and BED formats
for each TR. In addition, UCSC and Ensembl Genome
Browsers users can navigate ReMap across their mirror
sites, use ReMap in UCSC public sessions, or use the pub-
lic track hub. Finally, Integrative Genome Browser (IGV)
users have the option of loading an IGV optimized dataset
directly in the application.
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ABSTRACT TF-binding sites in the human genome. The predic-
tions are made available to the scientific community
through a UCSC Genome Browser track data hub. Fi-
nally, this update comes with a new web framework
with an interactive and responsive user-interface,
along with new features. All the underlying data can
be retrieved programmatically using a RESTful API
and through the JASPAR 2018 R/Bioconductor pack-
age.

JASPAR (http://jaspar.genereg.net) is an open-
access database of curated, non-redundant tran-
scription factor (TF)-binding profiles stored as posi-
tion frequency matrices (PFMs) and TF flexible mod-
els (TFFMs) for TFs across multiple species in six tax-
onomic groups. In the 2018 release of JASPAR, the
CORE collection has been expanded with 322 new
PFMs (60 for vertebrates and 262 for plants) and 33
PFMs were updated (24 for vertebrates, 8 for plants
and 1 for insects). These new profiles represent a INTRODUCTION
O, H -
351@:3‘32“:;32 ::;I:L%aJ::dt(;:geT?:(::1“ﬁsr?;e5afS:r ‘Ilrérat:_ Transcription factors (TFs) are sequence-specific DNA-

. . binding proteins involved in the transcriptional regulation
brates, 218 for plants and 3 for insects). This release of gene expression (1). TFs bind to DNA through their

incorporates clusters of similar PFMs in each taxon DNA-binding domain(s) (DBDs), which are used for TF
and each TF class per taxon. The JASPAR2018 CORE  (|agsification (2). DNA regions at which TFs bind are de-

vertebrate collection of PFMs was used to predict  fined as TF-binding sites (TFBSs) and can be identified
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Table 1. Overview of the growth of the number of PFMs in the JASPAR 2018 CORE collection compared to the JASPAR 2016 CORE collection

Non-redundant New non-redundant Total PFMs
PFMs in JASPAR PFMs in JASPAR Updated PFMs in (non-redundant) in Total PFMs (all versions)
Taxonomic group 2016 2018 JASPAR 2018 JASPAR 2018 in JASPAR 2018
Vertebrates 519 60 24 579 719
Plants 227 262 8 489 501
Insects 133 0 1 133 140
Nematodes 26 0 0 26 26
Fungi 176 0 0 176 177
Urochordata 1 0 0 1 1
Total 1082 322 33 1404 1564
in vivo by methods such as chromatin immunoprecipita- In this report, we describe the seventh release of JASPAR

tion (ChIP) or in vitro by methods based on binding of (8,20-24), which comes with a major expansion and update
large pools of DNA fragments (e.g. Systematic evolution of the CORE collection of TF-binding profiles as PFMs and
of ligands by exponential enrichment (SELEX) or protein- TFFMs. These models have been manually assessed by ex-
binding microarrays (PBM)) (reviewed in (3)). Analysis of pert curators who reconciled recent high-throughput data
TFBSs for a given TF provides models for its specific DNA- with available literature and linked the models to the classifi-
binding preferences, which in turn can be used to predict cation of their TF DBDs from TFClass (2). The CORE col-

TFBSs in DNA sequences (4). This is important as exper- lection expansion is supported by a range of new functional-

iments can only identify TFBSs that are bound in the cell ities and resources, including PFM clustering, genome-wide

and state analyzed. UCSC tracks of predicted TFBSs and fully redesigned user
The computational representation of TF binding prefer- and programming interfaces.

ences has evolved over the years, from simple consensus se-
quences to position frequency matrices (PFMs). A PFM EXPANSION AND UPDATE OF THE JASPAR CORE
summarizes experimentally determined DNA sequences COLLECTION
bound by an individual TF by counting the number of oc-
currences of each nucleotide at each position within aligned In this 2018 release of the JASPAR database, we added
TFBSs. Such matrices can be converted into position weight 355 new PFMs for TFs from plants (270), vertebrates (84)
matrices (PWMs), also known as position-specific scoring and insects (1) to the JASPAR CORE collection (Table 1).
matrices, which are probabilistic models that can be used to Specifically, we added 322 PFMs (262 for plants, a 118%
predict TFBSs in DNA sequences (reviewed in (5)). increase and 60 for vertebrates, an 11% increase) for TF
PFMs/PWMs have been the standard models for de- monomers and dimers that were not previously present in
scribing binding preferences of TFs for many years. The JASPAR and updated 33 (8 in plants, 3% of JASPAR 2016,
JASPAR database is among the most popular and longest 24 in vertebrates, 5% of JASPAR 2016 and 1 in insects).
maintained databases for PFMs and a standard resource The PFMs were manually curated using independent exter-
in the field. In particular, the JASPAR CORE collection of nal literature supporting the candidate TF-binding prefer-
the database, which is the most used, stores non-redundant ences, as previously described in (23). The curated PFMs
TF binding profiles, providing a single representative DNA were derived from ChIP-seq (from ReMap (25) and (26—
binding model per TF decided by expert curators. Excep- 30)), DAP-seq (31), SMiLE-seq (32), PBM (33) and HT-
tionally, multiple TF-binding profiles are associated to a SELEX (34) experiments. The JASPAR CORE collection
TF when it is known to interact with DNA with multi- now includes 1404 non-redundant PFMs (579 for verte-

ple distinct sequence preferences, due to differential splic- brates, 489 for plants, 176 for fungi, 133 for insects, 26 for
ing for example (6,7). JASPAR was created and persists un- nematodes and 1 for urochordata) (Table 1).
der three guiding principles: (i) unrestricted open-access; (ii) We continued with the incorporation of TFFM models,

manual curation and non-redundancy of profiles; and (iii) initiated in JASPAR 2016. In this release of JASPAR, we in-
ease-of-use. The 2016 release of the JASPAR CORE collec- troduced 316 new TFFMs for vertebrates (95), plants (218)

tion stored 1082 non-redundant and manually curated TF- and Drosophila (3), which represents a 243% increase in the
binding profiles as PFMs for TFs from six different taxo- number of non-redundant TFFMs stored in the JASPAR
nomic groups (vertebrates, plants, insects, nematodes, fungi CORE collection.

and urochordata) (8).
An intrinsic limitation to PFMs/PWMs is that they ig-  HjERARCHICAL CLUSTERING OF TF-BINDING PRO-

nore inter-nucleotide dependencies within TFBSs (9-13). FILES

TF-DNA interaction data derived from next-generation se-

quencing assays has improved the computational modeling While the non-redundancy of binding proﬁles is one of the

of TF binding (14-19). For example, the TF flexible models ~ guiding principles of JASPAR, TFs with similar DBDs of-

(TFFMs) (14), based on first-order hidden Markov models, ten have similar binding preferences (35,36). To facilitate the

capture dinucleotide dependencies within TFBSs and were ~ exploration of similar profiles in the JASPAR CORE col-

introduced in the 2016 release of the JASPAR database. lection, we performed hierarchical clustering of PFMs us-
ing the RSAT matrix-clustering tool (37). Specifically, the
tool was applied to PFMs in each taxon independently as

6102 8UN[ L Z UO Jasn sa0usidg YleaH pue audipajy 1o Alelqi "Alelqi] oSO 10 Alsiaaiun Agq 8€€129+/092a/ L A/9/10BASqe-a]oie/leu/woo  dno olwepeoe//:sdny Wwoll pspeojumod



D262 Nucleic Acids Research, 2018, Vol. 46, Database issue

A

C Detailed information of matrix profile MA0148.3 # Home - MatrxsMADLAS.3

Profile summary
Name:

Matrix ID:

Class:

Family:

Collection:

Taxon:

Species:

Data Type:
Validation:

Uniprot ID:

Pazar TF:
TFBSshape ID:
Trencyclopedia IDs:
Source:

Comment:

FOXAL
MA0148.3

Fork head / winged helix factors
Forkhead box (FOX) factors
CORE

Vertebrates

Homo sapiens

chiP-seq

18798982

Ps5317

TF0000263

175

PAZAR

Sequence logo

Frequency matrix

A[ 5183 11242 12493 10160 1452 0O 19149 20716 22008 0O 21926 6915 5074 5767 8729 ]
cl sas 63 1392 0 o 3756 2859 1292 0 16125 12 3641 5314 4731 4124 |
G[ 2603 1 7296 2655 20556 0 0 0 o 0 0 4317 8558 6851 4827 ]
T[ 4807 10702 827 9193 0O 18252 0 o o 5883 70 7135 3062 4659 4328 ]
Binding sites information - TFBS profiles =

Figure 1. JASPAR PFM clustering. (A) Radial tree representing the clusterization of the JASPAR CORE vertebrate PFMs. (B) Zoom in view of the radial
tree where the predicted clusters are highlighted at the branches and the TF classes are indicated with different colors at the leaves. (C) Clicking on a leaf
in the radial tree will open a link to the corresponding motif description page on the JASPAR website (the MA0148.3 profile associated to FOXAL is

provided here as an example).
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Figure 2. Overview of the JASPAR 2018 new web interface with interactive searching activity. (A) A quick and detailed search feature on the homepage.
(B) A responsive table lists the searched profile(s), which can be further selected and added to the cart listed on the right panel for users to perform their
own analyses. (C) A detailed page for the GATA3 matrix profile, which is divided into sub-panels including the profile summary, sequence logo, PFM, TF-
binding information, external links, version information, ChIP-seq centrality, TFFM and other details. (D) The PFM for the GATA3 profile (MA0037.2)

is downloaded in MEME format using the RESTful API.

well as in each TF class per taxon. The clustering results are
provided as radial trees (Figure 1), which can further be ex-
plored through dedicated web pages (http://jaspar.genereg.
net/matrix-clusters).

JASPAR UCSC TRACKS FOR GENOME-WIDE ANAL-
YSES OF TFBSs

A typical application of JASPAR TF-binding profiles in
gene regulation studies is the identification of TFBSs in
DNA sequences for further analyses. Although, we recog-
nize that genome-wide PWM-based predictions contain a
high number false positives, we believe that they are a pow-
erful resource for the research community in the context

of a variety of genomic information, including transcrip-
tion start site activity, DNA accessibility, histone marks,
evolutionary conservation or in vivo TF binding (38-46).
To facilitate such integrative analyses, we have performed
TFBS predictions on the human genome using the JASPAR
CORE vertebrate PFMs (see Supplementary Data for de-
tails on the computation). The predicted TFBSs are publicly
available through a UCSC Genome Browser data hub (47)
containing tracks for the human genome assemblies hgl9
and hg38 (http://jaspar.genereg.net/genome-tracks/).
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A NEW, POWERFUL AND USER-FRIENDLY WEB IN-
TERFACE

A new web interface

The JASPAR 2018 release comes with a completely re-
designed web interface that meets modern web standards.
This interactive web framework is implemented using
Django, a model-view-controller based web-framework for
Python. We used MySQL as a backend database to store
profile metadata and Bootstrap as a frontend template en-
gine. We have greatly improved the visibility and usability
of existing functionality, created easier navigation with se-
mantic URLs, and enhanced browsing and searching. On
the homepage, we provide a dynamic tour of JASPAR 2018,
walking users through the main features of the new website.
A video of the tour is available at http://jaspar.genereg.net/
tour. The database can be browsed for individual collections
by using the navigation links on the left sidebar. Moreover,
it can be searched for each of the six different taxonomic
groups included in the JASPAR CORE collection using
the tabs available on the homepage (Figure 2). TF-binding
profiles can be further filtered through the case insensi-
tive search option available on the homepage. In addition,
through the ‘Advanced Options’, the search criteria can be
further restricted (Figure 2A). Search results are presented
in a responsive and paginated table along with sequence lo-
gos of the PFMs, which can be selected for download or to
perform a variety of analyses available on the right panel
(Figure 2B). All information in the tables can be down-
loaded as comma-separated value files. Profile IDs and se-
quence logos can be clicked to view the detailed profile
pages (Figure 2C). PFMs can be downloaded in several for-
mats including JASPAR, TRANSFAC and MEME (Figure
2D). Furthermore, we have incorporated new features to the
web interface, such as ‘Add to Cart’, where users can add TF
profiles of interest for download or further analyses (Figure
2B). Finally, we have introduced semantic URLs to facili-
tate external linking to the detailed pages of individual pro-
files (e.g. http://jaspar.genereg.net/matrix/MA0059.1/). We
have implemented a URL redirection mechanism to cor-
rectly direct the links pointing to previous JASPAR URL
patterns from external resources.

RESTful API

In previous releases, the underlying data could be retrieved
as flat files or by using programming language-specific
modules. Associated with this release, we introduced a
RESTful API to access the JASPAR database program-
matically (see https://www.biorxiv.org/content/early/2017/
07/06/160184 for details). The RESTful API enables pro-
grammatic access to JASPAR by most programming lan-
guages and returns data in seven widely used formats:
JSON, JSONP, JASPAR, MEME, PFM, TRANSFAC and
YAML. Further, it provides a browsable interface and ac-
cess to the JASPAR motif inference tool for bioinformat-
ics tool developers. The RESTful API is implemented in
Python using the Django REST Framework and is freely
accessible at http://jaspar.genereg.net/api/. The source code
for the website and RESTful API are freely available at
https://bitbucket.org/CBGR/jaspar under GPL v3 license.

CONCLUSION AND PERSPECTIVES

In this seventh release of the JASPAR database, we continue
our commitment to provide the research community with
high-quality, non-redundant TF-binding profiles for TFs in
six taxa. As in previous releases, we have greatly expanded
the number of available profiles in the database, both for
PFMs and TFFMs. We also greatly improved user experi-
ence through a new easy-to-use website and a RESTful API
that grants universal programmatic access to the database.
Moreover, for the PFMs in the JASPAR CORE collec-
tion, we provide a hierarchical clustering and genome-wide
TFBS predictions for the hgl19 and hg38 human genome as-
semblies as UCSC tracks.

During the curation process, hundreds of PFMs were
discarded because our curators failed to find any support
from existing literature. As new experiments and data be-
come available, binding preferences for these TFs will be
considered for JASPAR incorporation. For instance, we re-
examined data from (34) to incorporate seven previously ex-
cluded PFMs into JASPAR 2018. In the future, we would
like to engage the scientific community in the curation pro-
cess to increase our capacity to introduce new TF-binding
profiles in JASPAR. We plan to dedicate a specific section of
the website to hosting the profiles that were not introduced
into JASPAR, to encourage researchers to perform experi-
ments and/or point us to literature that our curators missed
in order to support these profiles. We believe that the en-
gagement of the scientific community to support JASPAR
will further improve our capacity to expand the collection
of high quality TF-binding profiles.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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Interpreting the functional impact of noncoding variants is an ongoing challenge in the field of genome
analysis. With most noncoding variants associated with complex traits and disease residing in regulatory
regions, altered transcription factor (TF) binding has been proposed as a mechanism of action. It is
therefore imperative to develop methods that predict the impact of noncoding variants at TF binding sites
(TFBSs). Here, we describe the update of our MANTA database that stores: 1) TFBS predictions in the
human genome, and 2) the potential impact on TF binding for all possible single nucleotide variants (SNVs)
at these TFBSs. TFBSs were predicted by combining experimental ChIP-seq data from ReMap and
computational position weight matrices (PWMs) derived from JASPAR. Impact of SNVs at these TFBSs was
assessed by means of PWM scores computed on the alternate alleles. The updated database, MANTAZ2,
provides the scientific community with a critical map of TFBSs and SNV impact scores to improve the
interpretation of noncoding variants in the human genome.
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Background & Summary

Understanding the relationship between DNA sequence variation (genotype) and observable traits and
diseases (phenotype) is one of the central paradigms of the post-genomics era. While most analyses have
focused on the ~2% of the genome that codes for proteins, genome-wide association studies have shown
that up to 88% of disease- and trait-associated variants are located in the 98% of the genome that is
noncoding'. Several computational tools, such as SIFT> and Polyphen’, are well established for the
assessment of the deleterious impact of coding variation on protem functions yet interpreting the
functional impact of noncoding variants continues to be challengmg

Recently, bioinformatics methods have been developed for scoring the impact of noncoding variants
based on their pathogenicity and regulatory capacity (Table 1). These methods vary both in their
algorithmic approaches and the underlying genomic features used. For instance, evolutionary
conservation® can be used to evaluate nucleotides under purifying selection, and experimental data
such as histone modifications®, chromatin accessibility”®, and DNA methylation® are used to identify
biochemically active DNA, which is indicative of regulatory capacity.

Transcription factors (TFs) are sequence-specific DNA-binding proteins that regulate gene
transcription'’. Genomic locations at which TFs interact with DNA are defined as TF binding sites
(TFBSs). They are typically short (6-10 bp) and often exhibit degeneracy. Chromatin immunoprecipita-
tion combined with sequencmg (ChIP-seq)'" provides in vivo TF-DNA interactions at ~200-300 bp
resolution. These ChIP-seq regions are expected to encompass the 6-10 bp fragments corresponding to
TF-DNA interactions (TFBSs). The ReMap database'” is a publicly available resource providing an atlas
of such regions obtained from 2,829 uniformly processed human ChIP-seq data sets.

The DNA sequences bound by a given TF can be represented as position frequency matrices (PFMs),
which count the number of occurrences of each nucleotide within the TFBSs for that TF'>. PFMs can be
converted into probabilistic computational models, namely position weight matrices (PWMs), which can
be used to predict TFBSS on any DNA sequence (reviewed by Wasserman and Sandelin'*). Several
databases of PFMs exist'®, including the recently updated JASPAR database'®, which stores manually-
curated and non-redundant DNA-binding profiles such as PEMs for TFs across six taxonomic groups.

With most noncoding variants associated with complex traits and disease residing in regulatory
sequences'”, it is expected that some will alter the binding of TFs to DNA'®'®, Therefore, it is imperative
to develop methods that prioritize noncoding variants based on their impact on TF-DNA interactions. In
2015, we developed MANTA, a Mongo database for the analysis of TFBS alterations, to study the impact
of regulatory mutations in B-cell lymphomas™. The database stores TEBSs in ChIP-seq regions predicted
using PWMs derived from the JASPAR database, as well as the potential impact on TF binding of all
possible single nucleotide variants (SNVs) that could occur at these TFBSs (Fig. 1). Building on the recent
updates of both the JASPAR and ReMap databases, we have largely expanded MANTA. This second
release of the database, MANTAZ2, hosts over 48 million TFBS predictions within ChIP-seq regions of 225
human TFs, covering about 8% of the human genome, together with computed impact scores for all

Method Designed for Algorithmic approach Genomic features PMID

CADD pathogenicity support vector machine conservation, epigenomic annotations 24487276
CpGenie impact on methylation deep neural network conservation, epigenomic annotations, TFBS alterations 28334830
DANN pathogenicity deep neural network conservation, epigenomic annotations 25338716
DeepSEA regulatory potential deep neural network, logistic regression classifier conservation, epigenomic annotations, TFBS alterations 26301843
deltaSVM regulatory potential support vector machine epigenomic annotations, TFBS alterations 26075791
Eigen pathogenicity spectral clustering conservation, epigenomic annotations 26727659
FATHMM pathogenicity hidden Markov model conservation, epigenomic annotations 28968714
fitCons fitness consequence generative probability, genome partitioning conservation, epigenomic annotations 25599402
FunSeq2 cancer pathogenicity feature-based scoring, PWM scoring, somatic hotspots conservation, epigenomic annotations, TFBS alterations 25273974
GWAVA pathogenicity random forest conservation, epigenomic annotations, TFBS alterations 24487584
LINSIGHT regulatory potential linear regression, generative probability conservation, epigenomic annotations, TFBS alterations 28288115
MANTA regulatory potential PWM scoring TEBS alterations 25903198
RegulomeDB regulatory potential feature-based scoring, PWM scoring conservation, epigenomic annotations, TFBS alterations 22955989
ReMM pathogenicity random forest conservation, epigenomic annotations 27569544
RVSP regulatory potential random forest conservation, epigenomic annotations 27406314
SNP2TFBS regulatory potential PWM scoring TEBS alterations 27899579

Table 1. List of published tools with the capacity to evaluate the impact of noncoding variants. For
each “Method”, we describe its “Intended use”, “Algorithmic approach”, underlying “Genomic features” and
PubMed ID (“PMID”) of the corresponding publication.
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Figure 1. Overview of MANTAZ2. a) Intersection of the ReMap ChIP-seq regions with JASPAR TFBS
predictions to produce a set of TFBSs with both experimental and computational evidence of TF binding. A

SNV Impact Score

mock example of JUN is given for a region on chromosome one. b) A matrix representing the difference in
PWM score for all possible SNVs compared to the reference sequence at that TFBS, including negative impact
(—), positive impact (+), and no change (0) of score. Black boxes indicate that nucleotides of the reference
TFBS sequence are not stored in the database. The sequence logo for JUN is provided below the matrix where
the information content is proportional to the size of the nucleotide letters. ¢) Mock distribution of TFBS SNV
impact scores when considering all possible SNVs in the TEBS. The distribution is annotated with examples of
decreased TF binding capacity (red), no change in TF binding capacity (yellow), and increased TF binding
capacity (green).

possible overlapping SNVs. Hence, MANTA2 provides the scientific community with a critical map of
TFBSs and SNV impact scores for the interpretation of noncoding variants in the human genome.

Methods

Transcrlptlon factor binding site predictions

From ReMap'?, we retrieved 1,902 uniformly processed ChIP-seq data sets (i.e. sets of ChIP-seq regions)
for 227 human TFs for which we had binding profiles in JASPAR'®. Each ChIP-seq data set was paired
with one or more PFMs associated to the ChIP’ed TFs from the JASPAR CORE vertebrates collection (see
Supplementary Table 1). For each pair, we intersected the ChIP seq regions with the corresponding
TFBSs predicted for the ChIP’ed TF using bedtools intersect*" with "-wa -wb" options to preserve the
original coordinates. The PWM-based TFBS predictions are publicly available as part of the JASPAR
human genome track at http://expdata.cmmt.ubc.ca/JASPAR/downloads/UCSC_tracks/2018/hg38/tsv/.
The intersection resulted in 48,512,399 TFBSs for 225 TFs, covering 255,918,025 bp of the human
genome (Fig. 1a). No overlap was found for 2 TFs between the ChIP-seq regions and PWM-based TFBS
predictions. Note that all data relates to the build 38 of the Genome Reference Consortium human
genome (hg38).

Computation of SNV impact scores

For each TFBS, we computed the impact on TF binding of all possible overlapping SNVs as described in
the manuscript describing MANTA?® (Fig. 1b). First, both strands of the 2n—1bp region centered
around each possible SNV, where n is the length of the considered PWM, were scanned with the
corresponding PWM using the TFBS Perl module™ (version 0.7.1) to identify the best PWM score on the
alternate allele. Note that we only kept the best match per SNV. We then computed the distribution of
PWM scores for all these SNVs and calculated the corresponding mean, m, and standard deviation, sd.
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Figure 2. Assessing MANTA2 impact scores with heterozygous TF-binding events. a) Allelic imbalance is
calculated as the number of ChIP-seq reads mapped on the alternate allele divided by the total number of reads
mapped at heterozygous sites. b) MANTA2 impact scores correlate with allelic imbalance of ChIP-seq data.
Events (blue dots) are plotted with respect to their allelic imbalance of ChIP-seq reads (x-axis) and impact
scores from MANTA2 (y-axis). The Pearson coefficient (R) and P-value (p) of the correlation between allelic
imbalance and impact score are provided in the plot.

For each SNV, the final impact score was calculated as the Z-score of its TFBS score, S, within the
distribution of alternate PWM scores at that TFBS (i.e. (S—m)/sd). Users can refer to the webinar video
describing the original MANTA database (http://www.cisreg.ca/Webinars/JASPAR_BioPython_-
MANTA. flv). Therefore, for each SNV, MANTA stores its associated reference and alternate TFBS
PWM scores and locations, along with the computed impact score.

Validation using heterozygous TF-binding events

We downloaded ChIP-seq data for 35,703 TF-binding events at heterozygous sites in GM12878 and HeLa
cells for 36 different TFs'®, For each event, allelic imbalance was calculated as the number of ChIP-seq
reads mapped on the alternate allele divided by the total number of reads mapped at that position
(Fig. 2a). The coordinates from the original publication refer to the hgl9 version of the human genome;
we used the liftOver tool from the UCSC Genome Browser”™ to convert them to the hg38 assembly
(the conversion process failed for 12 coordinates).

Code availability
MANTA?2 is freely distributed as a GitHub repository at https://github.com/wassermanlab/MANTA2.

Data Records
The Mongo database dump of MANTA2, is deposited as a tarball on Zenodo (Data Citation 1).

Technical Validation
The quality and technical validation of the ChIP-seq data and TFBS predictions is described in the 2018
manuscripts of ReMap'? and JASPAR'S, respectively, and is summarised below.

ReMap ChIP-seq data

ReMap ChIP-seq datasets were uniformly processed using a well-established pipeline'®. ChIP-seq reads
were aligned to the human genome using bowtie2 (ref. 24) (version 2.2.9) using options “-end-to-end”
and “-sensitive”. When necessary, reads were trimmed and polymerase chain reaction duplicates were
removed from the alignments with samtools rmdup®®. ChIP-seq regions were identified using the MACS2
peak-calling tool*® (version 2.1.1.2) with default parameters. The quality of all ChIP-seq datasets was
assessed based on metrics developed by the ENCODE consortium?’.

JASPAR TFBS predictions
JASPAR TFBSs were predicted by scanning the human genome using two different methods'®: the TFBS
Perl module®? (version 0.7.1) and FIMO?®, as distributed within the MEME suite® (version 4.11.2).
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FIMO is one of the best performing tools for scanning DNA sequences with PWM:s to predict TFBSs™’.
To scan the human genome with the BioPerl TFBS module, PFMs were converted to PWMs and
predictions with a relative score >0.8 were kept. In preparation for the FIMO scan, PFMs were
reformatted to MEME motifs and motifs that matched with a P-value < 0.05 were kept. For quality
control, TEBS predictions that were not consistent between the two methods were filtered out. Such
consistency ensures, for instance, technical validation for the coordinates of the TFBS predictions.

MANTA2

The technical validation of MANTA2 involved assessing data quality and database integrity controls. A
spot check data quality control was performed using the UCSC Genome Browser”’. For 15 randomly
selected TFBSs (of different TFs) from MANTA2 we manually checked that: 1) the TFBS overlapped a
ReMap ChIP-seq region associated with that TF; 2) the JASPAR PFM matched the start, end, and strand
stored for that TFBSs; and 3) the stored SNVs for that TFBS had the expected impact on TF binding.
Moreover, we assessed the usefulness of MANTA2 impact scores on an external dataset of heterozygous
TF-binding events'®. As expected, the allelic imbalance calculated for ChIP-seq reads (see Methods)
significantly correlated with the impact scores from MANTA?2 (Pearson correlation coefficient =0.567,
P-value =3.7e-127; Fig. 2b). Additionally, we checked the database integrity for MANTA2 by dumping
and restoring the database on common operating systems and workstations. Finally, we tested the
command line and web interface access to MANTA?2 (see Usage Notes section) to interpret variant files in
VCEF, GFF, and BED format.

Usage Notes

MANTA2 can be accessed either programmatically or via its web interface. To access the database
programmatically, users must first clone (i.e. “git clone https://github.com/wassermanlab/MANTA?2.git”)
or download MANTA2 from GitHub (see Code availability in the Methods section). The script
“search_manta2.py” provides programmatic access to MANTA2. It requires the following inputs:

The name of the MANTA?2 database in the MongoDB system (option “-d”)

The name of the server where the MongoDB system is hosted (option “-H”)

A user with “read” privileges to the MANTA2 database (option “-u”)

The password for that user (option “-p”)

A file containing a list of variants in “VCF”, “BED” or “GFF” format (option “-i”)

Non-mandatory options include:

® The format of the input variant file (option “-t”; by default the script tries to identify the input format
automatically)

e The name of a file to output the results (option “-0”; by default is set to the standard output stream
(stdout))

As a usage example, the MANTA2 database hosted by the Wasserman lab can be accessed as follows:
“python search_manta2.py -d manta2 -H manta.cmmt.ubc.ca -u manta_r -p mantapw -i < variant
file>".

A variant file can be obtained by executing the shell script: “bash ./examples/get_VCF_example.sh”.

The resulting VCF file (i.e. “chr20.vcf”) contains high-confidence SNP, small indel, and homozygous
reference calls on chromosome 20 from the Genome in a Bottle (version 3.3.2) sample HG001 (ref. 31). In
response, “search_manta2.py” returns all TFBS predictions potentially impacted by these variants as tab-
separated values. For each TFBS alteration, the script provides the variant information along with the
associated wild-type (reference) and mutated (alternative) TFBS information, including:

the chromosome and position of the variant;

the reference and alternative alleles at that genomic location;

the mutation ID (if the input file format allowed for it, otherwise the field is displayed as “.”);

the TF name and associated JASPAR profile ID;

the start, end and strand, as well as the absolute (raw) and relative scores for both the reference and
alternative TFBSs;

and the impact score.

Users who plan on performing large numbers of searches should create a local build of the MANTA2
database. Instructions are provided in the “README.md” file of the GitHub repository.

The MANTA?2 database hosted by the Wasserman lab can also be accessed via a dedicated web server
at http://manta.cmmt.ubc.ca/manta2. Similar to the “search_manta2.py” script, the server requires as
input a list of variants in VCF, GFF, or BED format (see help page), and it returns all TFBS predictions
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potentially impacted by these variants as a tab-separated values table. The table can be sorted on any
column by clicking on the column header.

References
. Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337,
1190-1195 (2012).
Ng, P. C. & Henikoff, S. Predicting Deleterious Amino Acid Substitutions. Genome Res. 11, 863-874 (2001).
Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248-249 (2010).
Mathelier, A., Shi, W. & Wasserman, W. W. Identification of altered cis-regulatory elements in human disease. Trends Genet. 31,
67-76 (2015).
Bejerano, G. Ultraconserved Elements in the Human Genome. Science 304, 1321-1325 (2004).
. Tan, M. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146,
1016-1028 (2011).
Boyle, A. P. et al. High-resolution mapping and characterization of open chromatin across the genome. Cell 132, 311-322 (2008).
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and
sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10,
1213-1218 (2013).
. Varley, K. E. et al. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res. 23, 555-567 (2013).
. Vaquerizas, J. M., Kummerfeld, S. K., Teichmann, S. A. & Luscombe, N. M. A census of human transcription factors: function,
expression and evolution. Nat. Rev. Genet. 10, 252-263 (2009).
. Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-Wide Mapping of in Vivo Protein-DNA Interactions. Science
316, 1497-1502 (2007).
. Chéneby, J., Gheorghe, M., Artufel, M., Mathelier, A. & Ballester, B. ReMap 2018: an updated atlas of regulatory regions from an
integrative analysis of DNA-binding ChIP-seq experiments. Nucleic Acids Res. 46, D267-D275 (2018).
13. Stormo, G. D. Modeling the specificity of protein-DNA interactions. Quantitative Biology 1, 115-130 (2013).
14. Wasserman, W. W. & Sandelin, A. Applied bioinformatics for the identification of regulatory elements. Nat. Rev. Genet. 5,
276-287 (2004).
15. Stormo, G. D. DNA Motif Databases and Their Uses. Curr. Protoc. Bioinformatics 51, 2.15.1-6 (2015).
16. Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework.
Nucleic Acids Res. 46, D260-D266 (2018).
17. Albert, F. W. & Kruglyak, L. The role of regulatory variation in complex traits and disease. Nat. Rev. Genet. 16, 197-212 (2015).
18. Shi, W., Fornes, O., Mathelier, A. & Wasserman, W. W. Evaluating the impact of single nucleotide variants on transcription factor
binding. Nucleic Acids Res. 44, 10106-10116 (2016).
19. Kumar, S., Ambrosini, G. & Bucher, P. SNP2TFBS - a database of regulatory SNPs affecting predicted transcription factor binding
site affinity. Nucleic Acids Res. 45, D139-D144 (2017).
. Mathelier, A. et al. Cis-regulatory somatic mutations and gene-expression alteration in B-cell lymphomas. Genome Biol. 16,
84 (2015).
. Quinlan, A. R. BEDTools: The Swiss-Army Tool for Genome Feature Analysis. Curr. Protoc. Bioinformatics 47,
11.12.1-34 (2014).
. Lenhard, B. & Wasserman, W. W. TFBS: Computational framework for transcription factor binding site analysis. Bioinformatics
18, 1135-1136 (2002).
23. Tyner, C. et al. The UCSC Genome Browser database: 2017 update. Nucleic Acids Res. 45, D626-D634 (2017).
24. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359 (2012).
25. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079 (2009).
26. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
27. Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22,
1813-1831 (2012).
28. Grant, C. E,, Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017-1018 (2011).
29. Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202-W208 (2009).
30. Jayaram, N., Usvyat, D. & R. Martin, A. C. Evaluating tools for transcription factor binding site prediction. BMC Bioinformatics
(2016); doi:10.1186/s12859-016-1298-9.
31. Zook, J. M. et al. Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. Nat.
Biotechnol. 32, 246-251 (2014).

L

o v

N

i

el

—_
o

—_
—

—
0o

2

o

2

—

2

8]

=]

Data Citation
1. Fornes, O., Gheorghe, M., Richmond, P. A., Arenillas, D. J., Wasserman, W. W. & Mathelier, A. Zenodo http://doi.org/10.5281/
zenodo.1044747 (2017).

Acknowledgements

We thank Alice M. Kaye and Rachelle Farkas for proofreading the manuscript, and Georgios Magklaras
and his team for IT support. We acknowledge the support provided by WestGrid (https://www.westgrid.
ca/) and Compute Canada/Calcul Canada (https://www.computecanada.ca/). A.M. and M.G. were
supported by funding from the Norwegian Research Council, Helse Sor-@st, and the University of Oslo
through the Centre for Molecular Medicine Norway (NCMM), which is part of the Nordic European
Molecular Biology Laboratory Partnership for Molecular Medicine. D.J.A., O.F., P.AR,, and W.W.W.
were supported by funding from Genome Canada and the Canadian Institutes of Health Research
(OnTarget grants 2550NT and BOP-149430), the Natural Sciences and Engineering Research Council of
Canada (discovery grant RGPIN-2017-06824), the Weston Brain Institute (20R74681), and the BC
Children’s Hospital Foundation and Research Institute (UBC:17W33804 award to P.A.R.).

Author Contributions

AM. and M.G. provided the ReMap ChIP-seq regions, and O.F. the JASPAR TEFBS predictions. M.G.
intersected the two data sets and A.M. generated the TFBS SNV scores. O.F. assessed the MANTA2
scores against heterozygous TF-binding events. D.J.A. updated MANTA and created the web server. P.A.

SCIENTIFIC DATA | 5:180141 | DOI: 10.1038/sdata.2018.141



www.nature.com/sdata/

R. generated the figures and tables, and reviewed the most relevant literature. A.M., O.F., and WW.W.
devised the project and wrote the manuscript with input from all authors.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/sdata

Competing interests: The authors declare no competing interests.

How to cite this article: Fornes, O. et al. MANTA2, update of the Mongo database for the analysis of
transcription factor binding site alterations. Sci. Data 5:180141 doi: 10.1038/sdata.2018.141 (2018).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 Interna-

BY tional License, which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless indicated otherwise in
a credit line to the material. If material is not included in the article’s Creative Commons license and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/

The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/
zero/1.0/ applies to the metadata files made available in this article.

© The Author(s) 2018

SCIENTIFIC DATA | 5:180141 | DOI: 10.1038/sdata.2018.141






A map of direct TF-DNA interactions in the human genome
Gheorghe, M., Sandve, G. K., Khan, A., Chéneby, J., Ballester, B., and Mathelier, A."

2019, Nucleic Acids Research, 47(4):e21—e21.







Published online 4 December 2018

Nucleic Acids Research, 2019, Vol. 47, No. 4 e21
doi: 10.1093/narlgky1210

A map of direct TF-DNA interactions in the human

genome

Marius Gheorghe ', Geir Kjetil Sandve “2, Aziz Khan "', Jeanne Chéneby?,

Benoit Ballester “2 and Anthony Mathelier “ 14"

Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway, 2Department of Informatics,
University of Oslo, Oslo, Norway, 3Aix Marseille Université, INSERM, TAGC, Marseille, France and 4Department of
Cancer Genetics, Institute for Cancer Research, Radiumhospitalet, Oslo, Norway

Received August 18, 2018; Revised October 31, 2018; Editorial Decision November 18, 2018; Accepted November 20, 2018

ABSTRACT

Chromatin immunoprecipitation followed by se-
quencing (ChlIP-seq) is the most popular assay to
identify genomic regions, called ChIP-seq peaks, that
are bound in vivo by transcription factors (TFs).
These regions are derived from direct TF-DNA in-
teractions, indirect binding of the TF to the DNA
(through a co-binding partner), nonspecific binding
to the DNA, and noise/bias/artifacts. Delineating the
bona fide direct TF-DNA interactions within the ChIP-
seq peaks remains challenging. We developed a ded-
icated software, ChiP-eat, that combines computa-
tional TF binding models and ChiP-seq peaks to au-
tomatically predict direct TF-DNA interactions. Our
work culminated with predicted interactions covering
>4% of the human genome, obtained by uniformly
processing 1983 ChIP-seq peak data sets from the
ReMap database for 232 unique TFs. The predictions
were a posteriori assessed using protein binding mi-
croarray and ChIP-exo data, and were predominantly
found in high quality ChIP-seq peaks. The set of
predicted direct TF-DNA interactions suggested that
high-occupancy target regions are likely not derived
from direct binding of the TFs to the DNA. Our predic-
tions derived co-binding TFs supported by protein-
protein interaction data and defined cis-regulatory
modules enriched for disease- and trait-associated
SNPs. We provide this collection of direct TF-DNA
interactions and cis-regulatory modules through the
UniBind web-interface (http://unibind.uio.no).

INTRODUCTION

The transcription of DNA into RNA is mainly regulated
through a complex interplay between proteins and the chro-
matin at cis-regulatory regions such as promoters and en-
hancers. Transcription factors (TFs) are key proteins specif-

ically binding short DNA sequences, known as TF binding
sites (TFBSs), to ensure transcription at appropriate rates in
the correct cell types (1). Therefore, genome-wide identifica-
tion of TFBSs is a critical step to decipher transcriptional
regulation, and how this process is altered in diseases (2).

Classically, genome-wide in vivo TF binding regions are
identified through the chromatin immunoprecipitation fol-
lowed by sequencing (ChIP-seq) assay (3). The genomic
regions obtained with ChIP-seq, the so-called ChIP-seq
peaks, are usually a few hundred base pairs (bp)-long and
should encompass the TFBSs (~10 bp-long), where di-
rect TF-DNA interactions occur. However, ChIP-seq peaks
derive from either direct TF-DNA interactions, protein-
protein interactions with other regulators such as co-
factors, or unspecific binding. Moreover, ChIP-seq exper-
iments are prone to artifacts and delineating bona fide TF-
bound regions is still an ongoing challenge (4-6) (Wreczy-
cka et al., bioRxiv, 10.1101/107680).

As TFs specifically recognize DNA sequence motifs,
computational tools have been instrumental in the predic-
tion and characterization of direct TF-DNA interactions
(7). TFBSs are commonly modelled with position weight
matrices (PWMs), which represent the probability of each
nucleotide to be present at each position within bona fide
TFBSs (7). While PWMs work well (8), more sophisticated
approaches have recently been designed to model com-
plex features of TF—-DNA interactions captured by next-
generation sequencing data (e.g. (9-13)). However, the best
performing model varies for different TFs or TF families
(8,14,15).

While multiple resources collecting TF binding regions
derived from ChIP-seq exist (16-19), a limited number store
genome-wide identification of TFBSs (17,20,21). The TFBS
Conserved Track of the UCSC Genome Browser combined
phylogenetic sequence conservation and PWMs to iden-
tify TFBSs (22) while the MANTA resource (23) integrated
ChIP-seq peaks from ReMap (16) with PWMs from JAS-
PAR (24) for TFBS predictions. A strong limitation of
these approaches is that they use the same pre-defined score
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thresholds for all PWMs and all data sets. The ORegAnno
database provides TFBSs obtained through literature cura-
tion (21), but the number of TFBSs available for human is
limited to ~8000.

A previous study showed that ChIP-seq data sets fall
within one of three categories: (i) data sets enriched for
the TF canonical binding motif close to the ChIP-seq peak
summit (Where the highest number of ChIP-seq reads map),
(1) data sets lacking enrichment for the canonical binding
motif close to the peak summit and (iii) data sets having
a combination of peaks with and without the TF canoni-
cal binding motif proximal to the peak-summit (25). Most
ChIP-seq data sets were observed in category (iii). As direct
TF-DNA interactions are expected to be enriched at ChIP-
seq peak summits (25-30), Worsley Hunt et al. developed a
heuristic approach specifically based on PWMs to automat-
ically identify, in each ChIP-seq data set, this enrichment
zone. The method determines the thresholds on the PWM
scores and distances to the peak summits delimiting the en-
richment zone that contains direct TF-DNA interactions.
However, this method does not work with some more re-
cent TFBS computational models (15,31,32).

In this study, we mapped direct TF-DNA interactions in
the human genome in a refined manner by capitalizing on
uniformly processed TF ChIP-seq data sets and computa-
tional tools modelling TFBSs. We provide (i) a new soft-
ware to predict direct TF-DNA interactions within ChIP-
seq peaks along with (ii) genome-wide predictions of such
interactions in the human genome. Using an entropy-based
algorithm, we have developed ChIP-eat, a tool that auto-
matically identifies direct TF-DNA interactions using both
ChIP-seq peaks and any computational model for TFBSs.
We applied ChIP-eat to 1983 human ChIP-seq peak data
sets from the ReMap database (16), accounting for 232 dis-
tinct TFs. The set of predicted direct TF-DNA interactions
derived from PWMs covers >4% of the human genome. To
make this resource available to the community, we have cre-
ated UniBind (http://unibind.uio.no/), a web-interface pro-
viding public access to the predictions. We validated a pos-
teriori these TFBS predictions using protein binding mi-
croarray (33) and ChIP-exo (34) data, and multiple ChIP-
seq peak-callers. We used these TFBSs to (i) confirm that
hotspots of ChIP-seq peaks (also known as high occupancy
target regions (35)) are likely not derived from direct TF—
DNA interactions, (ii) predict co-binding TFs and (iii) de-
fine cis-regulatory modules, which are enriched for disease-
and trait-associated SNPs.

MATERIALS AND METHODS
ChIP-seq data

The ChIP-seq data sets considered were retrieved, pro-
cessed, and classified as part of the last update (2018) of
the ReMap database (16) (Supplementary Figure S1).

TF binding profiles

For 1983 ChIP-seq data sets used in the last ReMap update,
we were able to manually assign TF binding profiles corre-
sponding to the ChIP’ed TFs as position frequency matrices
(PFMs) from the JASPAR (2018) database (24).
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Training data sets

To train the TFBS computational models (see below), we
considered 101 bp sequences centered around the peak sum-
mits as positive training sets. When required for training,
negative training sets were obtained by shuffling the pos-
itive sequences using the g subcommand of the BiasAway
(version 0.96) tool to match the %GC composition (25).

TFBS computational models

Position weight matrices. JASPAR PFMs were converted
to PWMs as previously described in (36). For each ChIP-
seq data set, PWMs were optimized using DiMO (ver-
sion 1.6; default parameters with a maximum of 150 op-
timization steps) using the corresponding training sets (37).
For TFBS predictions, we considered PWM relative scores,
which were computed as relative score = 100 x (absolute
score —min)/(max — min) where absolute score corresponds
to the PWM absolute/raw score and min and max to the
minimal and maximal absolute/raw PWM scores, respec-
tively.

Binding energy models. JASPAR PFMs were converted
to binding energy models (BEMs; (32)) using the im-
plementation from the MARS Tools (https://github.com/
kipkurui/MARSTools; Kibet and Machanick, bioRxiv,
doi:10.1101/065615). We modified the implementation to
return a BEM score corresponding to 1 — (original score) to
consider the best site of the DNA sequence as the one with
the highest BEM score (instead of the lowest one).

Transcription factor flexible models. ~ First-order transcrip-
tion factor flexible models (TFFMs) (version 2.0) were
initialized with the DiMO-optimized PFMs and trained
with default parameters (https://github.com/wassermanlab/
TFFM; (31)) on the positive training sets.

DNAshapedTFBS models. The DNA shape-
based models were trained on the training sets
using the DNAshapedTFBS tool (version 1.0;
https://github.com/amathelier/DNAshapedTFBS/;  (15)).
We trained three types of DNAshapedTFBS models with
the following features: (i) DiIMO-optimized PWM + DNA
shape, (ii) first-order TFFM + DNA shape and (iii) 4-bits
encoding + DNA shape following (15). We considered the
first and second order DNA shape features helix twist,
propeller twist, minor groove width, and roll with values
extracted from GBShape (38).

Landscape plots

Each TFBS computational model was applied to each
ChIP-seq data set independently. Following the strategy de-
scribed in (25), we considered 1001 bp sequences centered
around the peak summits, obtained using the bedtools (ver-
sion 2.25) slop subcommand (39). The trained computa-
tional models were used to extract the best (maximal score)
site per 1001 bp ChIP-seq peak region. For each ChIP-seq
data set, landscape plots were constructed from the corre-
sponding sites following the TFBS_Visualization tool (25).
These scatter plots were also converted into heat maps using
the kde2d function from the MASS R package (40).
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Automated identification of the enrichment zone

To define the enrichment zone for each landscape plot, we
automatically identified the thresholds for the TFBS com-
putational model scores and distances to peak summits us-
ing the entropy-based algorithm from (41). The algorithm
aims at identifying two classes of elements. Given a his-
togram, the algorithm selects the threshold that maximizes
the within-class sum of the Shannon entropies for the ele-
ments in two classes (42). The two classes of elements identi-
fied are defined by the elements with values (i) above and (ii)
below the threshold, respectively. This procedure optimally
separates the input elements in two classes. Given a ChIP-
seq data set, we applied the algorithm to the histograms
of the TFBS computational model scores and distances to
peak summits, independently. The maximum entropy im-
plementation of the algorithm available in ImageJ (43) was
used with default parameters.

The source code of the ChIP-eat software used to pro-
cess ChIP-seq peak data sets to predict direct TF-DNA
binding events is freely available at https://bitbucket.org/
CBGR/chip-eat. Specifically, ChIP-eat trains a TFBS com-
putational model and automatically defines the enrichment
zone in the landscape plots to predict the underlying direct
TF-DNA interactions. The identification of the enrichment
zone has been applied to each TF ChIP-seq peak data set
independently, allowing for the automatic detection of the
thresholds that are specific to each data set with each TFBS
computational model. Note that only the best hit per ChIP-
seq peak has been considered to identify the enrichment
zones and for all the downstream analyses.

Assessing the robustness of the enrichment zone identification

Random noise. For each ChIP-seq data set, we sampled
the set of peaks using the seqtk (version 1.0) (https://github.
com/lh3/seqtk) sample subcommand. The sequences of the
sampled peaks were shuffled using the fasta-shuffle-letters
subcommand of the MEME suite (version 4.11.4) (44) and
added to the original set of ChIP-seq peaks. The auto-
matic thresholding algorithm was applied to this new set.
We tested the addition of shuffled peaks representing 10%,
25%, and 50% of the original set peaks.

Window size variability. For each ChIP-seq data set, we
considered the region around the peak summit by extend-
ing with 300, 400, and 500 bp on each side using the bed-
tools slop subcommand. We considered ChIP-seq data sets
where at least one TFBS was predicted within the enrich-
ment zones obtained for all three window sizes.

Comparison  with the heuristic —approach to pre-
dict the enrichment zone. ChIP-eat was com-
pared to the heuristic approach described in (25)
and implemented in the TFBS_Visualization tool
https://github.com/wassermanlab/TFBS_Visualization

using the default parameters. The centrality of the TFBSs
within the enrichment zones predicted by ChIP-eat and
TFBS_Visualization was assessed using centrality P-value
computations as described in the CentriMo tool (27).
The statistical difference between the centrality P-values
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obtained with the heuristic method and ChIP-eat was
assessed using a Mann-Whitney signed-rank test.

Genome coverage. The entire set of predicted TFBSs
(within enrichment zones) was concatenated and then
sorted using the cat and sort commands of the Unix oper-
ating system. The resulting set of locations was merged us-
ing the bedtools merge subcommand with default parame-
ters. The genome coverage of the corresponding merged and
non-overlapping positions was calculated as the percentage
of the total number of nucleotides covered out of the to-
tal number of nucleotides in the hg38 version of the human
genome.

TF-DNA binding affinity assessment with protein binding
microarray data. Protein binding microarray (PBM) (45)
data were retrieved from UniProbe (http://the_brain.bwh.
harvard.edu/uniprobe/; (46)) for 40 TFs with available
ChIP-seq data. For each ChIP-seq data set landscape plot,
we extracted the DNA sequences at the sites within and out-
side of the predicted enrichment zone. The binding affinity
of a TF to each site was computed as the median PBM in-
tensity value of all the de Bruijn sequences containing the
site sequence. The statistical difference between the distri-
bution of PBM binding affinities from sites within and out-
side the enrichment zone was assessed using a two samples
Mann-Whitney U test (47) implemented in the R package
stats. A Bonferroni correction was applied to the computed
P-values. The P-value density plot in Figure 3B was gen-
erated with the density R function with default parameters
and the corresponding computed bandwidth was used to
plot Supplementary Figure S10.

ChlP-exo data. ChIP-eat was applied with DiMO-
optimized PFMs to the ChIP-exo data sets from (48),
which were lifted over to hg38 using the liftOver tool (20).
As for ChIP-seq peaks, we considered 1 001 bp regions
centered around the peak summits.

ChIP-seq peaks from HOMER and BCP peak-callers. We
successfully applied the HOMER (version 4.7.2) (49) and
BCP (version 1.1) (50) peak-callers to 670 ENCODE
ChIP-seq data sets (Supplementary Table S1). ChIP-eat
was applied to the corresponding ChIP-seq peak regions
with DiMO-optimized PFMs as described above. ChIP-seq
peaks predicted to contain a direct TF-DNA interaction
or not (using the enrichment zones) from the three peak-
callers (MACS2 (51), HOMER, and BCP) were overlapped
using the bedtools intersect subcommand. Hypergeometric
tests were performed to assess the significance of the inter-
sections using the R phyper function for every combination
of two peak-callers with the following contingency matrix:

number of overlapping peaks
with TFBSs from two
peak-callers - 1

number of peaks without TFBSs
from the two peak-callers

number of peaks with TFBSs
from the two peak-callers

number of overlapping peaks from
the two peak-callers
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HOT/XOT regions. The high occupancy target (HOT)
and extreme occupancy target (XOT) regions in all
contexts were downloaded through the ENCODE
data portal at http://encode-ftp.s3.amazonaws.com/
modENCODE_VS_ENCODE/Regulation/Human/
hotRegions/maphot_hs_selection_reg_cx_simP05_all.

bed and http://encode-ftp.s3.amazonaws.com/
modENCODE_VS_ENCODE/Regulation/Human/
hotRegions/maphot_hs_selection _reg_cx_simP01 _all.bed.
ChIP-seq peaks were overlapped with the HOT/XOT
regions using the bedtools intersect subcommand. The
enrichment for overlap was assessed with a hypergeomet-
ric test using the R phyper function with the following
contingency matrix:

number of peaks without TFBSs
overlapping HOT/XOT
regions - 1

number of peaks with TFBSs

number of peaks without TFBSs total number of peaks

Identification of TFs with co-localized TFBSs. For each
pair of distinct TFs (TFa, TFp), we extracted the closest
TFBS associated with TFg for each TFBS associated with
TFa and computed the geometric mean distance between
midpoints of the paired TFBSs. With this approach, the ge-
ometric mean map for the pair (TF4, TF3p) is different from
the geometric mean of the pair (TFg, TF4). With 232 TFs
available in our analyses, we computed geometric means for
53 592 ordered pairs of TFs.

The colocalization of TFBSs for each TF pair was as-
sessed using a Monte Carlo-based approach as follows. The
number of TFBSs per TF ranged from 1 to 404 566, with
455 as the fifth percentile. We uniformly discretized the
range [455, 414 172] to consider 50 TFBS set sizes (S; for
iin [1, 50]). We chose 414 172 as the maximum value to be
able to compute a P-value for the set of 404 566 TFBSs. For
each set size S;, we created 500 sets of TFBSs by randomly
selecting TFBSs from the total pool. Using these random
sets, we computed null distributions for 500 Monte Carlo
samples of geometric mean distances for each of the 2601 set
size combinations. Specifically, this computation led to 2601
distributions of 500 geometric means. For the TF pair (TF4,
TFp) with Ny and Ng TFBSs, respectively, we extracted the
Monte Carlo sample of geometric mean distances M ob-
tained from the random sets with Sx and Sg TFBSs, where
Sa = min(S;) with S; > N and Sg = min(S;) with S; >
Npg. The empirical P-value associated with the pair (TFa,
TFp) was computed as the number of times we observed a
geometric mean smaller than map from M over the 500 pre-
computed geometric means; if no smaller geometric mean
was observed, the empirical P-value is defined as <0.002
(i.e. 1/500).

Since the expected geometric mean distance increases
with a decreasing number of TFBSs, this P-value computa-
tion is conservative (under-estimated significance). The ob-
tained P-values were corrected for multiple testing using the
Benjamini-Hochberg method (52), only the TF pairs with
a FDR <5% were considered significant.

The detailed null distribution values can be down-
loaded and reproduced at https://hyperbrowser.uio.
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no/geirksa_sandbox/u/gsandve/h/null-distributions-for-
manuscript-a-map-of-direct-tf-dna-interactions-in-the-
human-genome. These computations are based on
running the static methods ‘ConcatenateNullDistribu-
tionsTool.execute’ and ‘ComputeNullDistributionForE-
achCombinationFromSuiteVsSuiteTool.execute’ (with
argument values corresponding to parameter settings
annotated in the Galaxy (53) history above) in the code
provided at https://hyperbrowser.uio.no/geirksa_sandbox/
static/hyperbrowser/files/div/hb.zip. The source code for
the comparison with null distributions is available at
https://bitbucket.org/CBGR/co-binding/.

GeneMANIA. We used the GeneMANIA software (54) to
extract known protein—protein interactions from the list of
TFs with significant co-localized TFBSs and plot the corre-
sponding network.

Prediction of cis-regulatory modules. The TFBSs predicted
by ChIP-eat were sorted and merged using the bedtools
sort and merge subcommands. The CREAM tool (Madani
Tonekaboni et al., bioRxiv, doi:10.1101/222562) was ap-
plied to the merged TFBSs to define cis-regulatory modules
(CRMs) as genomic regions enriched for clusters of TFBSs.

GWAS trait- and disease-associated single nucleotide poly-
morphism enrichment analysis. We assessed the enrich-
ment for GWAS trait- and disease-associated single nu-
cleotide polymorphisms (SNPs) at CRMs using the traseR
R package (version 1.10.0 (55)). CRM genomic positions
were lifted over to the hg19 version of the human genome to
perform the analyses. The set of SNPs (as of 30 April 2018)
considered by traseR combined data from dbGaP (56) and
NHGRI (57) as described in the corresponding bioconduc-
tor package vignette (https://bioconductor.org/packages/
release/bioc/vignettes/traseR/inst/doc/traseR.pdf).

Conservation analysis. The hg38 phastCons (58) scores
for multiple alignments of 99 vertebrate genomes to
the human genome were retrieved as a bigWig file
at http://hgdownload.cse.ucsc.edu/goldenpath/hg38/
phastCons100way/hg38.phastCons100way.bw. The TFBSs
predicted by ChIP-eat were sorted and merged using the
bedtools sort and merge subcommands. The locations over-
lapping CRMs were obtained using the bedtools intersect
subcommand. The corresponding genomic locations (for
all TFBSs and TFBSs in CRMs) in BED format were
decomposed into 1 bp intervals using bedops v.2.4.14 (59)
with the —chop 1 option. The phastCons scores at every bp
were extracted with the ex subcommand of the bwtool (60)
using the corresponding BED and phastCons bigWig files.

The UniBind web interface. ~ All the TFBS predictions, cor-
responding ReMap ChIP-seq peaks, trained TFBS com-
putational models, and CRMs are available through the
UniBind database at http://unibind.uio.no/. The UniBind
web interface was developed in Python using the model-
view-controller framework Django. It uses MySQL to store
TFBS metadata and Bootstrap as the frontend template en-
gine. The source code is available at https://bitbucket.org/
CBGR /unibind.
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Statistical analyses. All statistical analyses were per-
formed in the R environment (version 3.4.4).

RESULTS

Predicting direct TF—-DNA interactions in the human genome
from ChIP-seq data

Given a set of ChIP-seq peaks and a TFBS computational
model such as a PWM, one can extract the best site per
peak, which corresponds to the DNA subsequence of the
peak with the highest score for the model. The higher the
score, the stronger the computational evidence that the site
is similar to TFBSs known to be bound by the TF (36).
Moreover, it has been shown that the closer the site to
the peak summit, the more likely it is to represent a direct
TF-DNA interaction with experimental evidence from the
ChIP-seq assay (25,27,30). Hence, direct TF-DNA interac-
tions captured by ChIP-seq are enriched for high scores and
small distances to the peak summits (Figure 1A,B). These
characteristics have previously been used to automatically
predict direct TF-DNA interactions by selecting score and
distance thresholds defining these enrichment zones using
a heuristic approach (25). This approach used pre-defined
parameter values and was specifically designed for PWMs,
but is not applicable to more recent TFBS computational
models such as binding energy models (BEMs) (32), tran-
scription factor flexible models (TFFMs) (31), and DNA
shape-based models (DNAshapedTFBS) (15).

We aimed to predict direct TF-DNA interactions (TF-
BSs) within ChIP-seq peaks and developed the ChIP-
eat software that automatically identifies the enrichment
zone for any TFBS computational model. It uses a non-
parametric, entropy-based algorithm originally designed to
separate background/noise from foreground/signal in im-
age processing (41) (Supplementary Figure S2). We applied
this algorithm to the distributions of site scores and distance
to peak summits independently to separate direct TF-DNA
interaction events from other binding subtypes and ChIP-
seq artifacts (Figure 1C,D; Materials and Methods). The
two thresholds define the enrichment zone, which delimits
the sites that are predicted as TFBSs with both experimen-
tal and computational evidence of direct TF-DNA interac-
tions. With this approach, we automatically adjust the en-
richment zone discovery specifically for each TF ChIP-seq
peak data set and for each computational model. The iden-
tified enrichment zone defines the thresholds on the TFBS
computational model scores and distances to the peak sum-
mits in a data set-specific manner.

We retrieved 1983 ChIP-seq peak data sets from ReMap
(16), accounting for 232 TFs with a PFM available in the
JASPAR database (24). Using DiMO-optimized PWMs,
we compared the enrichment zones predicted by ChIP-eat
with the ones obtained with the heuristic approach devel-
oped in (25). The enrichment zones predicted with ChIP-eat
were more stringent than with the heuristic algorithm (Sup-
plementary Figure S3A,B,D,E). The corresponding TFBSs
predicted in the enrichment zones were more central to the
peak summits with ChIP-eat than with the heuristic method
as evaluated with CentriMo (27) (Supplementary Figure
S3C, F). Moreover, ChIP-eat does not require any fixed val-
ues such as a predefined bin size (25) to predict the enrich-
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ment zones. Finally, ChIP-eat is not restricted to work with
PWMs only and can be used with any TFBS computational
model.

We applied ChIP-eat to the 1983 human ChIP-seq
data sets with four types of computational TFBS mod-
els: DiMO-optimized PWMs, BEMs, TFFMs, and
DNAshapedTFBS. These models were optimized for
each ChIP-seq data set, independently (see Materials and
Methods). In the following analyses, we focused on the
predictions obtained with the DiMO-optimized PWMs
(see Materials and Methods). This set of direct TF-DNA
interactions (TFBSs) extracted from the enrichment zones
covers ~4% of the human genome, encompassing 8 304
135 distinct TFBS locations.

Predicted direct TF—-DNA interactions are likely bona fide
TFBSs

Robustness of the enrichment zone identification. The ro-
bustness of the method was first evaluated by applying
ChIP-eat to genomic regions of +300, 400, and 500 bp
around the peak summits. The median distance threshold to
the peak summit shifted from 72 bp using +500 bp to 64 and
55 using +400 and 300 bp, respectively. The median PWM
scores thresholds were 85, 84.6 and 83.9 with +500, 400,
and 300 bp regions, respectively (see Supplementary Figure
S8 for a visual representation using the 10 most frequent
ChIP’ed TFs). The variability of the predicted enrichment
zone when using different window sizes is similar to the vari-
ability between ChIP-seq data sets for the same TF (see be-
low). Further, the number of predicted TFBSs within the
enrichment zones were similar when using the different re-
gion sizes (Supplementary Figure S9). These analyses con-
firmed the robustness of the entropy-based thresholding al-
gorithm to the window size considered. As previously used
in (25), we considered the £500 bp regions around the peak
summits in the following analyses.

Considering the ChIP-seq data sets for the 10 most fre-
quently ChIP’ed TFs, we observed that the thresholds on
the PWM scores and distances to peak summits, defining
the enrichment zones, were consistent between data sets for
the same TF (Figure 2A,B). Namely, the median pairwise
difference between PWM score thresholds for the same TF
ranged from 1.7 to 3.7 and the median distance thresholds
from 12 to 35 bp. As expected, the thresholds identified for
distinct TFs are different (Figure 2C, D). Taken together,
these results highlight that the entropy-based algorithm al-
lows for the identification of enrichment zones specific to
each TF and ChIP-seq data set, with consistent predictions
between data sets for the same TF. Results were consistent
with BEM, TFFM, and DNAshapedTFBS models (Sup-
plementary Figures S4-S6).

We further evaluated the robustness of the method to
noise by adding 10%, 25%, and 50% of shuffled sequences
to the initial set of ChIP-seq peaks for all ChIP-seq peak
data sets (see Materials and Methods). The median thresh-
old on the distances to peak summits shifted from 73 bp in
the initial set of ChIP-seq peaks to 70 bp with 10% noise,
67 bp with 25% noise, and to 63 bp when adding 50% noise.
The median PWM score threshold was 85.2 for the initial
set of ChIP-seq peaks and shifted to 85 when adding 10%
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Figure 1. Automatic detection of the TFBS enrichment zone. Landscape plots (25) obtained with SRF ChIP-seq peaks using the DiMO-optimized PWM
MAO0083.3 from JASPAR are presented as scatter (A) and heatmap (B) plots. The enrichment zone (defined within the red and green dashed line boundaries,
A-B) is automatically obtained by ChIP-eat with thresholds on PWM scores (red dashed lines; C) and distances to peak summits (green dashed lines; D).
The enrichment zone provides TFBSs in ChIP-seq peaks (points in A) with supporting evidence for direct TF-DNA binding from the ChIP-seq assay
(close distance to peak-summits, A-B, x-axis) and the computational model (PWM score, A-B, y-axis). Distances to peak summits in A, B and D are

provided using a base pair unit.

of noise, to 84.8 when adding 25% of noise, and to 84.4
when adding 50% of noise. A visual representation for the
10 most frequently ChIP’ed TFs is available in Supplemen-
tary Figure S7. The variability of the thresholds defining the
enrichment zones when adding noise is limited, within the
range of variability between ChIP-seq peak data sets for the
same TF (Figure 2). Taken together, these results show that
the entropy-based thresholding algorithm delimiting the en-
richment zones, as implemented in ChIP-eat, provides con-
sistent results between data sets for the same ChIP’ed TF
and is robust to the window sizes considered and random
noise.

Validation using in vitro DNA binding affinities. To confirm

a posteriori the high quality of our set of TFBS predictions,
we assessed the TF binding affinity to DNA sequences
derived experimentally from protein binding microarrays
(PBM) (61). The PBM assay quantifies the binding affin-
ity of a protein to all possible combinations of 8-mer DNA
sequences. We retrieved PBM data from the UniPROBE
database (46) for 40 different TFs present in our collec-
tion, corresponding to 249 ChIP-seq data sets (Supplemen-
tary Table S2). Note that the JASPAR PFMs for the ATF1,
ATF3, and FOXJ2 TFs were originally derived from PBM
data. For each ChIP-seq data set, we tested if the sites lo-
cated in the enrichment zone presented higher binding affin-
ity than sites outside (see Materials and Methods). The
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Figure 2. Assessment of the thresholds predicted by ChIP-eat across data sets. Boxplots of the pairwise differences for DiMO-optimized PWM score
thresholds and distances to peak summits thresholds between ChIP-seq data sets for the same TF are provided in panels (A) and (B), respectively. Absolute
variations of DiMO-optimized PWM score thresholds and distances to the peak summits within all data sets for the same TF are provided in panels (C)
and (D), respectively. The ten TFs with the highest number of data sets were selected; the number of data sets for each TF is provided between brackets.

distributions of the binding affinity scores for sites within
and outside the enrichment zones were compared using a
Mann-Whitney U test (Figure 3A; Materials and Meth-
ods). Predicted direct TF-DNA interactions (sites within
the enrichment zone) had significantly higher binding affin-
ity than the other sites for 75% of the data sets with P-value
<0.01 and 81% with P-value <0.05 (Figure 3B). Similar re-
sults were obtained when considering BEM, TFFM, and
DNAshapedTFBSs computational models (Supplementary
Figure S10). This analysis emphasizes that the sites pre-
dicted in the defined enrichment zones are likely to corre-
spond to direct TF-DNA interactions.

Predicted direct TF-DNA interactions are found in high con-
fidence ChIP-seq peaks. We hypothesized that the ChIP-
seq signal at ChIP-seq peaks containing a predicted direct
TF-DNA interaction were more likely to be higher than
at the other peaks. To test this hypothesis, we looked at (i)
the quality of the peaks based on P-values assigned to the
peaks by the MACS2 peak-caller and (ii) the reproducibility
of calling these peaks with multiple peak-callers (MACS2,
HOMER, and BCP; see Materials and Methods).

We observed that the distribution of P-values assigned
by MACS?2 to the peaks containing a predicted TFBS were
significantly (P-value < 0.01; Mann—Whitney U test) lower
than for the rest of the peaks for 1862 (96%) data sets (Fig-

6102 ABI\ 20 UO JBSN S82UBIDS Y}|edaH pue auiipa|y Jo Alelqi "Aseiqi] o[sQ Jo Alsieniun Aq 202622S/129/v/.Aoelisqe-ajoie/1eu/wod dno ojuwspede//:sdyy woly papeojumoq



e21 Nucleic Acids Research, 2019, Vol. 47, No. 4

U test p—value: 9.91e-53

<~ Within the enrichment zone
—e— Outside the enrichment zone

0.00012
|

Density
0.00006
l

I I | I I T |
0 20000 40000 60000

0.00000
|

Median PBM intensity

PAGE 8 OF 13

B
o _|
[ee]
o _|
> ©
=
2
o g
[a]
o _|
Al
o - ot

| T I I I |
00 02 04 06 08 1.0

U-test p—value

Figure 3. Binding affinity assessment for the predicted direct TF-DNA interactions. (A) Distribution of the median PBM intensity scores for the
ENCSR0O00BMX GATA3 ChIP-seq data set between sequences at TFBSs (i.e. sites within the enrichment zone; in red) and sites outside the enrich-
ment zone (in blue). (B) Distribution of Mann—-Whitney U test P-values across the 249 data sets, showing distinct distributions of PBM intensity scores

between sites within and outside the enrichment zones.
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Figure 4. Quality assessment of the ChIP-seq peaks derived from direct
TF-DNA interactions. Distribution of the median MACS2 P-values (y-
axis) across all data sets. Values for peaks containing a predicted TFBS
are provided in blue and values for the other peaks in grey. 1939 ChIP-seq
data sets were predicted to contain direct TF-DNA interactions (x-axis).

ure 4). The other 77 data sets contained a reduced number of
peaks (median of 837 compared to 18 968 for the complete
set of ChIP-seq data sets), which can explain the lack of sta-
tistical significance. These results confirm that the predic-
tions of direct TF-DNA interactions were found in ChIP-
seq peaks of higher quality as assessed by MACS?2.

To test ChIP-seq peak-calling reproducibility, we used
two other peak-callers (HOMER and BCP) on 670 ChIP-
seq data sets from ENCODE. Our choice of peak-callers
was motivated by their distinct statistical approaches for
peak prediction. While MACS2 and HOMER are based
on an empirical model supported by a Poisson distribution,
BCP uses a Bayesian approach implementing infinite-state
hidden Markov models. We applied ChIP-eat to the ChIP-
seq peaks to predict TFBSs. For each pair of peak-callers,
we assessed whether the peaks predicted to contain a di-
rect TF-DNA interaction were more prevalent (P-value <
0.01, hypergeometric test) in the set of peaks called by both

peak-callers. This was observed for 63% of the data sets for
MACS?2 and BCP, 70% for MACS2 and HOMER, and 66%
for HOMER and BCP. The data sets without significant en-
richment had a median number of peaks predicted to be
derived from direct TF-DNA interactions that was ~7 fold
smaller (e.g. 3358 compared to 22 499 between MACS2 and
BCP) than for the data sets with significant enrichment, and
a median number of peaks without TFBS ~2 fold larger
(e.g. 40 050 compared to 21 256 between MACS2 and BCP)
(Supplementary Table S3). Moreover, the median quality
scores assigned by the peak-callers to the peaks from the en-
riched data sets were significantly (P-value < 0.01, Mann—
Whitney U test) higher than for the peaks in the other data
sets (Supplementary Figure S11). It suggests that the data
sets enriched for reproducible peaks containing predicted
direct TF-DNA interactions are of better quality than the
rest of the data sets.

Taken together, these results highlight that the ChIP-seq
peaks in which ChIP-eat predicts direct TF-DNA interac-
tions are of higher quality than the other peaks. Note that
the ChIP-eat tool does not consider the peak quality when
predicting direct TF-DNA interactions. These observations
reinforce the confidence in the predicted TFBSs by ChIP-
eat.

Predictions of direct TF—DNA interactions in ChIP-exo data

The ChIP-exo assay has been developed to provide a higher
resolution than ChIP-seq to identify TFBSs in vivo (34).
We aimed at assessing the performance of ChIP-eat on pre-
dicting direct TF-DNA interactions using ChIP-exo data.
The ChExMix tool has recently been introduced to char-
acterize protein-DNA binding event subtypes from ChIP-
exo peak (48). ChExMix predicted different binding event
subtypes for ChIP-exo data obtained for the TFs ESR1 and
FOXAI, one of these subtypes corresponding to direct TF—
DNA interactions (48). We applied ChIP-eat on the same
ESR1and FOXA1 ChIP-exo data sets. We compared the set
of peaks identified to contain direct TF-DNA interactions
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predicted by ChExMix and ChIP-eat in these two data sets.
We found that 93.6% (for ESR1) and 91.3% (for FOXA1)
of the peaks predicted to contain TFBSs by ChIP-cat were
also predicted as direct binding events by ChExMix (Sup-
plementary Table S4). The high overlaps between the pre-
dictions from ChExMix and ChIP-eat were confirmed by
Jaccard similarity indexes of 63.7% and 68.7% for ESR1
and FOXAL, respectively. The similar results obtained with
the two tools suggest that ChIP-eat, designed for the more
noisy and less precise ChIP-seq data, is able to capture di-
rect binding events from ChIP-exo data.

High-occupancy target regions are likely not derived from di-
rect TF-DNA interactions

High-occupancy target (HOT) and extreme-occupancy tar-
get (XOT) regions are genomic regions where ChIP-seq
peaks were observed for a large number of distinct ChIP’ed
TFs (35,62,63). These regions are observed across species
(63) and contain an unusually high frequency of ChIP-seq
peaks (35,62,63). We used our set of high quality TFBS
predictions to confirm that HOT/XOT regions were de-
pleted of direct TF-DNA interactions. Indeed, we found
that ChIP-seq peaks that do not contain a predicted TFBS
were significantly enriched at HOT/XOT regions (odds ra-
tio = 1.43 for HOT and 1.44 for XOT, P-value < 2.2¢e-16,
hypergeometric test, Supplementary Table S5). Similar re-
sults were obtained when considering the three other com-
putational models (BEM, TFFM, and DNAshapedTFBSs;
Supplementary Table S5). This observation, combined with
a previous study describing that HOT/XOT regions are
likely to be derived from ChIP-seq artifacts (Wreczycka
et al., bioRxiv, 10.1101/107680), suggests that HOT/XOT
regions are not derived from the direct binding of the
ChIP’ed TFs.

Predicted direct TF—-DNA interactions reveal co-binding TFs
and cis-regulatory modules enriched for disease- and trait-
associated SNPs

TFs are known to collaborate through specific co-binding
at cis-regulatory modules (CRMs) to achieve their func-
tion (1,36). Hence, identifying co-binding TFs is critical
to decipher transcriptional regulation of gene expression.
We aimed at using our predicted direct TF-DNA interac-
tions to reveal co-binding TFs and CRMs. We hypothesized
that the distances between TFBSs of cooperating TFs are
smaller than expected by chance. We tested this hypothe-
sis for all pairs of TFs for which we predicted TFBSs (232
TFs, 53 592 pairs tested; see Materials and Methods). For
each TF pair, we used a conservative Monte Carlo-based
approach to compare the geometric mean of the distances
between their TFBSs to the geometric mean distance ex-
pected by chance for a similar number of TFBSs randomly
selected from the complete pool of TFBSs (see Materials
and Methods). This approach predicted 150 pairs of TFs
(accounting for 112 distinct TFs) with TFBSs closer in the
genome than expected by chance (FDR < 5%; Supplemen-
tary Table S6). For 82% of the predicted TF pairs, we con-
firmed that the corresponding TFs physically interact us-
ing the protein-protein interaction networks from the Gen-
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eMANIA tool (54) (Supplementary Figure S12). This anal-
ysis further supports the biological relevance of the TFBSs
predicted by ChIP-eat.

Next, we aimed to automatically identify CRMs,
which correspond to clusters of direct TF-DNA inter-
actions, using the clustering of genomic regions analysis
method (CREAM; (Madani Tonekaboni et al., bioRxiv,
doi:10.1101/222562)). When considering our complete set
of TFBSs, CREAM detected 61 934 CRMs in the human
genome, encompassing 2 474 587 distinct TFBS locations.
We found that the predicted CRMs were significantly en-
riched (FDR-corrected P-value = 2.9¢~'*") for disease- and
trait-associated SNPs using traseR (55). Further, we ob-
served that the TFBSs lying within the CRMs were more
conserved than the TFBSs predicted outside (Supplemen-
tary Figure S13). Taken together, these results indicate a po-
tentially functional role of the CRMs identified as clusters
of direct TF-DNA interactions.

The UniBind web interface to access our collection of direct
TF-DNA interactions

We catalogued the complete set of TFBS predictions from
each prediction model, trained models, original ChIP-seq
peaks from ReMap, and computed CRMs, and made them
publicly available through UniBind at http://unibind.uio.
no/. UniBind provides an interactive web interface with easy
browsing, searching, and downloading for all our predic-
tions (Figure 5). For instance, users can search for predic-
tions for specific TFs, cell lines, and conditions.

The data can be searched by using the case insensitive
search option available on the homepage. The database
can be searched for each of the four TF binding models,
cell/tissue type, and TF name using the ‘Advanced Op-
tions’, available on the homepage (Figure 5A). Search re-
sults are presented in a responsive and paginated table
along with metadata information (Figure 5B), which can
be clicked to view the detailed information and download
TFBSs, summary plots, and ReMap ChIP-seq peaks (Fig-
ure 5C-D). All the metadata in the responsive tables can be
downloaded as CSV files. UniBind displays by default the
results obtained with the DiMO-optimized PWMs, but re-
sults obtained from all TFBS computational models along
with the trained models are available for browsing and/or
download.

DISCUSSION

To summarize, we have uniformly processed 1983 ChIP-
seq peak data sets to predict high quality direct TF-DNA
binding interactions in the human genome. The predictions
were obtained using a non-parametric, entropy-based algo-
rithm that automatically detects thresholds for TFBS com-
putational model scores and distances to peak summits for
each ChIP-seq data set. This new approach identified TF-
BSs supported by strong experimental and computational
evidences for direct TF-DNA interactions. The accuracy
of the predictions was a posteriori validated using the PBM
in vitro assay, ChIP-exo data, and multiple ChIP-seq peak-
calling algorithms. Our set of direct TF-DNA interactions
confirmed that HOT genomic regions are likely not de-
rived from direct binding of the TFs to the DNA. We used
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Figure 5. Overview of the UniBind user interface with interactive searching activity. (A) A quick and detailed search feature on the homepage. (B) A
responsive table lists the searched data set(s), which can be clicked to view the details. (C) A detailed page shows the analysis for the JUND TF in cell-line
A549, which is divided into sub-panels including the TF summary, external links, summary plots, and download options for each computational TFBS
model. (D) Statistical details of the results.
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our TFBSs to predict TFs with proximal binding events in
the human genome, which could cooperate to achieve spe-
cific functions. Further, we defined cis-regulatory modules,
which are clusters of TFBSs, that were enriched for disease-
and trait-associated SNPs from GWAS. The complete set
of predictions is publicly and freely available through the
UniBind web-interface (http://unibind.uio.no/), in an effort
to provide the community with an unprecedented collection
of high quality direct TF-DNA interaction events in the hu-
man genome.

The output of ChIP-seq assays is generally com-
posed of direct protein-DNA interactions, indirect bind-
ing of the protein to the DNA (through a co-binding
partner), nonspecific protein binding to the DNA, and
noise/bias/artifacts (4-6). Here, we specifically aimed at
identifying direct TF-DNA interaction events by using an
entropy-based algorithm (41). This algorithm was origi-
nally developed to discriminate between foreground and
background in image processing. Hence, it assumes the
presence of background (or noise) in the data. As a con-
sequence, our approach is limited by the assumption that
there is background/noise in the ChIP-seq data sets ana-
lyzed. We assume that this noise represents indirect bind-
ing of TFs, nonspecific binding, or ChIP-seq experimen-
tal artifacts. Moreover, our approach considered the best
site per ChIP-seq peak (defined using TFBS computational
models), which represents the best candidate. We recognize
that other sites with lower scores could represent direct TF—
DNA interactions. These limitations denote that our ap-
proach is stringent for the prediction of direct TF-DNA
interactions, favoring specificity over sensitivity. The ChIP-
seq peaks that our method did not predict to contain direct
TF-DNA binding events could be further analyzed to dis-
criminate other mechanisms for protein-DNA interactions
from background noise, as proposed in the ChExMix tool
established for ChIP-exo data (48).

The ChIP-eat pipeline developed for this study used four
TFBS computational models to predict TF-DNA bind-
ing events. These models were specifically trained for each
ChIP-seq data set to improve the quality of the predictions,
as the best-performing computational model varies for dif-
ferent TFs or TF families (8,14,15). As a consequence, we
advocate that a ‘one-fits-all’ TFBS prediction model is not
optimal and that one should compare results from multiple
models. With the predictions available through UniBind,
users can assess which model would perform better for each
data set. Of course, it requires to use a specific metric to
compare performance. As our methods aimed at identifying
enrichment zones centered around ChIP-seq peak summits,
we suggest to rely on a centrality measure as implemented
in the CentriMo method (27). In UniBind, we provide cen-
trality P-values computed following (27) for the predictions
from each model in each ChIP-seq data set. Moreover, the
ChIP-eat pipeline is generalizable and users can incorporate
other TFBS computational models to predict direct TF—
DNA interactions and compare them to the ones already
stored in UniBind.

While studies alike focus on determining where TFs
directly interact with DNA, our understanding of how
these TF-DNA interactions influence expression is limited.
Surely, it is critical to decipher the relationship between TF—
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DNA interactions and transcriptional regulation (64). It is
expected that a large portion of the TFBSs identified in our
study are not functional, as suggested by the futility the-
orem (36). Nevertheless, functional TF binding events are
likely to be clustered (65-68) and associated with stronger
ChIP-seq peak signals (12,69). We expect that the direct
TF-DNA interactions predicted in cis-regulatory modules
and stored in UniBind are more likely to be enriched for
functional events. Determining the specific set of functional
TF-DNA interactions would require dedicated computa-
tional models and experiments.
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