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a b s t r a c t 

We propose novel modifications to an anomaly detection methodology based on multivariate signal re- 

construction followed by residuals analysis. The reconstructions are made using Auto Associative Kernel 

Regression (AAKR), where the query observations are compared to historical observations called memory 

vectors, representing normal operation. When the data set with historical observations grows large, the 

naive approach where all observations are used as memory vectors will lead to unacceptable large com- 

putational loads, hence a reduced set of memory vectors should be intelligently selected. The residuals 

between the observed and the reconstructed signals are analysed using standard Sequential Probability 

Ratio Tests (SPRT), where appropriate alarms are raised based on the sequential behaviour of the residu- 

als. 

The modifications we introduce include: a novel cluster based method to select memory vectors to be 

considered by the AAKR, which gives an extensive reduction in computation time; a generalization of the 

distance measure, which makes it possible to distinguish between explanatory and response variables; 

and a regional credibility estimation used in the residuals analysis, to let the time used to identify if a 

sequence of query vectors represents an anomalous state or not, depend on the amount of data situated 

close to or surrounding the query vector. 

We demonstrate how the anomaly detection method and the proposed modifications can be successfully 

applied for anomaly detection on a set of imbalanced benchmark data sets, as well as on recent data 

from a marine diesel engine in operation. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Anomaly detection refers to the problem of finding patterns in

data that do not conform to expected behaviour ( Chandola, Baner-

jee, & Kumar, 2009 ). In other words, anomalies can be defined

as observations, or subsets of observations, which are inconsis-

tent with the remainder of the data set ( Hodge & Austin, 2004 ).

Depending on the field of research and application, anomalies

are also often referred to as outliers, discordant observations,

exceptions, aberrations, surprises, peculiarities or contaminants

( Chandola et al., 2009; Hodge & Austin, 2004 ). Anomaly detec-

tion is related to, but distinct from noise removal ( Chandola et al.,

2009 ). 
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Traditionally, sensor based component control is typically rule-

ased. A temperature threshold might for example be predefined,

orcing the system to automatically shut-down if the temperature

urpasses a predefined threshold. The problem with the rule-based

pproach emerges when we want to analyse multiple signals, and

ase our decisions on the combined behaviour. To illustrate this,

e can consider two signals, x 1 and x 2 , where normal behaviour

s located on a circle, with an anomaly in the centre of the cir-

le (see Fig. 1 ). While the anomalous point can be easily identi-

ed when we analyse both signals together, it will not be detected

s anomalous if we analyse the signals separately. When we want

o monitor and analyse a system with many signals, the problem

pace grows rapidly, making it almost impossible to describe rules

hat cover every permutation ( Flaherty, 2017 ). Hence, more sophis-

icated anomaly detection methods are needed. 

An extensive number of anomaly detection methods are de-

cribed in the literature and used extensively in a wide vari-

ty of applications in various industries. The available techniques

omprise ( Chandola et al., 2009; Kanarachos, Christopoulos, Chro-
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Fig. 1. Points representing normal behaviour is located on a circle. An anomaly is 

located in the middle. 
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eos, & Fitzpatrick, 2017; Olson, Judd, & Nichols, 2018; Zheng,

i, & Zhao, 2016 ): classification methods that are rule-based, or

ased on Neural Networks, Bayesian Networks or Support Vector

achines; nearest neighbour based methods, including k nearest

eighbour and relative density; clustering based methods; and sta-

istical and fuzzy set-based techniques, including parametric and

on-parametric methods based on histograms or kernel functions. 

The fundamental approaches to the problem of anomaly detec-

ion can be divided into three categories ( Chandola et al., 2009;

odge & Austin, 2004 ): 

• Supervised anomaly detection: Availability of a training data set

with labelled instances for normal and anomalous behaviour is

assumed. Typically, predictive models are built for normal and

anomalous behaviour, and unseen data are assigned to one of

the classes. 
• Unsupervised anomaly detection: Here, the training data set is

not labelled, and an implicit assumption is that the normal in-

stances are far more frequent than anomalies in the test data.

If this assumption is not true then such techniques suffer from

high false alarm rate. 
• Semi-supervised anomaly detection: In semi-supervised anomaly

detection, the training data only includes normal data. A typi-

cal anomaly detection approach is to build a model for the class

corresponding to normal behaviour, and use the model to iden-

tify anomalies in the test data. Since the semi-supervised meth-

ods do not require labels for the anomaly class, they are more

widely applicable than supervised techniques. 

Our main motivation in this study is related to anomaly de-

ection in the maritime industry. Modern ships are a highly com-

lex systems, often equipped with thousands of sensors to moni-

or various features of the system. Our aim is eventually to iden-

ify anomalies and unexpected system behaviour that can repre-

ent faults in the system, but in principle, any behaviour that de-

iates from the behaviour represented in the training data can be

iscovered, not only faults. 

We repeatedly refer to the maritime case study in many of

he examples and demonstrations. However, the methods we en-
isage and the modifications we propose are widely applicable to

nomaly detection problems concerning time series data. 

In most industries, including the maritime industry, data from

ormal operating conditions are continuously collected on a large

nd increasing number of assets. However, comprehensive fault

ata are more rare, hence we pursue a semi-supervised approach,

nd present a kernel function based non-parametric statistical

nomaly detection technique. 

We use an on-line anomaly detection technique, consisting of

wo steps. In the first step, the observed signal is reconstructed

nder normal conditions. Secondly, the residuals, i.e. the differ-

nce between the observed signal and the reconstructed signal, are

nalysed. In this study, the signal reconstruction is performed us-

ng Auto Associative Kernel Regression (AAKR), (see Section 2.1 ),

nd the residual analysis is performed sequentially, with Sequen-

ial Probability Ratio Test (SPRT), (see Section 2.2 ). 

One of the main drawbacks with the AAKR signal reconstruc-

ion method becomes evident when the set of historical obser-

ations grows large. Then the crude approach where all observa-

ions are used as memory vectors will lead to unacceptable large

omputational loads. Therefore, a reduced set of memory vectors

hould be intelligently selected ( Hines, Garvey, & Seibert, 2008;

ines, Garvey, Seibert, & Usynin, 2008 ), and in this paper we sug-

est a novel approach to memory vector selection, where the orig-

nal dataset is represented by sets surrounding a selection of clus-

ers. 

In Baraldi, Di Maio, Genini, and Zio (2015) , the AAKR signal

econstruction method is compared with other popular signal re-

onstruction techniques, including Fuzzy Similarity (FS), and Elman

ecurrent Neural Network (RNN), and capabilities and drawbacks

re discussed. Hence, in this paper we will restrain to compar-

ng the results of the modifications we propose to the crude AAKR

ethod. 

The remaining of the paper is structured as follows: The

nomaly detection framework mentioned above will be briefly pre-

ented in Section 2 . In Section 3 , we propose three modifications

f the standard framework: 

A. Cluster based memory vector selection method: Perform a cluster

analysis on the training data set, which represent normal con-

ditions. Replace the original training data set with rectangular

boxes - one for each cluster, centred at the cluster means - and

define everything inside the boxes as normal condition. 

B. Modified distance measure between the query vector and the

memory vectors: Modifying the distance measure to enable the

possibility of treating the variables differently based on the

credibility of the signals, and distinguish between explanatory

and response signals. 

C. Credibility estimation: Regard some regions in the sample space

more credible or trustworthy than others. Assume that the re-

construction of a response signal is more credible if the corre-

sponding explanatory signals are similar to previously observed

signals. 

In Section 4 , the performance of the proposed cluster based

ethod is demonstrated on 14 different data sets - 13 benchmark

ata sets from the KEEL database ( Alcalá-Fdez et al., 2011 ), and

ne data set from a marine engine in operation, and the results

f the proposed cluster based method are compared to the re-

ults of the original (crude) method without memory vector se-

ection. To further demonstrate the methodology and the proposed

odifications, a more comprehensive study of the data set with

he marine engine is presented in Section 5 . A short discussion of

he assumptions and results is presented in Section 5.8 . Finally, in

ection 6 some concluding remarks are offered, together with a

iscussion on further work. 
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Fig. 2. The methodology can be divided into two main steps: signal reconstruction (via AAKR) and analysis of residuals (via SPRT). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

w

w  

w  

b  

t  

t  

t

d  

 

X  

t

X  

 

a  

o  

b  

o  

p  

s  

D  

i

X  

w

μ  

σ  

 

g  

s  

s  

r

2

 

v  
The analysis is conducted in R version 3.3.3 (2017-03-06), using

RStudio Version 1.0.136, on a single computer running Windows 10

Enterprise, version 1607, with Intel Core i5-6600 CPU @ 3.30 GHz

processor, and 3.02GB installed RAM. 

2. Standard framework for anomaly detection with AAKR and 

SPRT 

The classical framework can be divided into two main steps:

signal reconstruction and residual analysis (see Fig. 2 ). In particu-

lar, Auto Associative Kernel Regression (AAKR) is used for the re-

construction, and Sequential Probability Ratio Test (SPRT) is used

to analyse the residuals between the reconstructed and the ob-

served signal. 

At each new time t of the on-line anomaly detection moni-

toring, both the reconstruction and the residuals analysis are per-

formed in a sequential manner. In the signal reconstruction step,

the values of the monitored signals are reconstructed as an esti-

mate of the signals under normal conditions. AAKR is a data driven

method where the reconstructed signal is estimated as a weighted

linear combination of historical observations. The information from

the current observation is used to calculate the weights. In the sec-

ond step, the residuals, i.e. the difference between the observed

test points (queries) and the reconstructed signals, are analysed

sequentially, building evidence that the sensors report possibly

anomalous behaviour. 

2.1. Signal reconstruction using Auto Associative Kernel Regression 

(AAKR) 

Many excellent descriptions of the AAKR method, both compre-

hensive and more brief, are given in the literature ( Baraldi, Canesi,

Zio, Seraoui, & Chevalier, 2011; Baraldi, Di Maio, Genini et al.,

2015; Baraldi, Di Maio, Pappaglione, Zio, & Seraoui, 2012; Baraldi,

Di Maio, Turati, & Zio, 2015; Di Maio, Baraldi, Zio, & Seraoui, 2013;

Garvey, Garvey, Seibert, & Hines, 2007; Hines, Garvey, & Seibert,

2008; Hines, Garvey, Seibert, & Usynin, 2008 ). In the following

we will render a basic description, following Brandsæter, Manno,

Vanem, and Glad (2016) . 

The historical observations are collected in an L × J matrix,

where L is the total number of time points of historical observa-

tions, and J is the number of sensors. If all historical observations

should be taken into account by the AAKR, the reconstruction pro-

cess will be very computationally expensive when the data set of

historical observations grows large. Therefore, more or less intelli-

gent selection methods ( Hines, Garvey, & Seibert, 2008; Hines, Gar-

vey, Seibert, & Usynin, 2008 ) are used to select some K < L histor-

ical observations, or memory vectors, and collect them in a new

K × J matrix X 

train 
, to be used in the reconstruction procedure. 

Note that the reconstruction method does not consider time or-

dering, not even the sequentiality, of the observations in the train-

ing data. 

At each test point t , a reconstruction of the test point x test (t) =
[ x (t, 1) , . . . , x (t, J)] is calculated as a weighted linear combination
f the observations (the rows) in the training matrix X 

train . The

eight w of a row k is given by the Gaussian kernel 

 k = 

1 √ 

2 πh 

e 
− d 2 

k 
2 h 2 , (1)

here the parameter h is the bandwidth, and d k is the distance

etween the J signal measurements in the observation X 

test 
(t, ) 

and

he k th observation in X 

train 
, for k = 1 , . . . , K. Several distance func-

ions can be used ( Garvey et al., 2007 ), but the most common is

he Euclidean norm 

 k = 

√ √ √ √ 

J ∑ 

j=1 

(
X 

test 
(t, j) − X 

train 
(k, j) 

)2 
. (2)

Finally, the reconstructed value ˆ X 

test 

(t, j) of the j th observation

 

test 
(t, j) , is given as the weighted linear combination of the rows of

he training matrix, that is 

ˆ 
 

test 

(t, j) = 

∑ K 
k =1 w k · X 

train 
(k, j) ∑ K 

k =1 w k 

. (3)

The methodology processes the various signals together. To

void numerical instabilities due to possibly very different range

f magnitudes in the different signals, the signal values need to

e normalized. Without normalization, the effect of a deviation in

ne signal cannot be directly compared to the other signals. In the

resent work we have used the following normalization procedure,

ometimes referred to as the z score normalization, encouraged by

i Maio et al. (2013) . Having measured a signal X (t, j) , the normal-

zed signal, ˜ X (t, j) is given by 

˜ 
 (t, j) = 

X (t, j) − ˆ μ j 

ˆ σ j 

, (4)

here 

ˆ j = 

∑ K 
k =1 ( X 

train 
(k, j) ) 

K 

, (5)

ˆ j = 

√ ∑ K 
k =1 

(
X 

train 
(k, j) − ˆ μ j 

)2 

K 

. (6)

Alternative normalization procedures should also be investi-

ated, such as the min max-normalization or the decimal scaling,

ee e.g. Saranya and Manikandan (2013) . It is noted that in some

ituations the choice of normalization technique can influence the

esults significantly. 

.2. Residuals analysis using Sequential Probability Ratio Test (SPRT) 

The residuals, i.e. the differences between the reconstructed

alue under normal conditions, and the observed test value, R (t, ) =
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Fig. 3. The modified anomaly detection framework. 
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, are analysed sequentially by the standard SPRT to de-

ermine if the system is in normal or abnormal state. The method-

logy will be briefly described in the following. For a more thor-

ugh description we suggest ( Brandsæter et al., 2016; Cheng &

echt, 2012; Gross & Lu, 2002; Saxena et al., 2008 ). 

The normal state is described by a null hypothesis H 0 , where

ach component of the residuals, R ( t, j ) , are assumed to be normally

istributed with mean 0 and standard deviation σ . The anomalous

tate is described by an alternative hypothesis H a , which assumes

hat the residuals are normally distributed with specified mean

nd/or standard deviation different from the null hypothesis. The

PRT is performed for each signal j = 1 , . . . , J independently. 

Based on the residuals R ( t, j ) , an index is calculated and updated

equentially for each new observation. In order to determine the

ondition of the system, two threshold values, A and B , are speci-

ed and at each observation the index is compared to these lower

nd upper decision boundaries. There are three possible outcomes

t each time step: 

1. The lower limit is reached, in which the null hypothesis is ac-

cepted (normal state), and the test statistic is reset. 

2. The upper limit is reached, in which the null hypothesis is re-

jected (anomalous state), and the test statistic is reset. 

3. No limit is reached, in which case the amount of information is

not sufficient to make a conclusion. 

For each sensor signal j , the analysis is performed on the se-

uence of residuals r (i 1 , j) , . . . , r (i n , j) . When either of the limits are

eached (outcome 1 and 2), the sequence is reset to zero. If no

imits are reached (outcome 3), the sequence is extended with the

ew residual. 

The SPRT index is given as the natural logarithm of the likeli-

ood ratio L a , given by 

 a = 

prob of r (i 1 , j) , . . . , r (i n , j) given H a 

prob of r (i 1 , j) , . . . , r (i n , j) given H 0 

= 

i n ∏ 

i = i 1 

f a (r (i, j) ) 

f 0 (r (i, j) ) 
, 

here f ( · ) is the corresponding normal density. Note that this con-

truction is based on an assumption of independence among the

esiduals. 

We consider two alternative hypotheses, i.e. deviations in either

irection of the mean, leading to the following indices, for each

ensor j 

P RT 1 = 

M 

σ 2 

n ∑ 

i =1 

(
r i −

M 

2 

)
(7) 

P RT 2 = 

M 

σ 2 

n ∑ 

i =1 

(
−r i −

M 

2 

)
(8) 

The standard deviation, σ , is computed from the training data.

 is the mean value of the alternative hypothesis, which is decided

y the user. M is usually chosen to be several times larger than σ
 Cheng & Pecht, 2012 ). 

.3. Limitations associated with the standard framework 

There are some well-known challenges and limitations related

o the anomaly detection framework presented above. 

An important challenge relates to the efficiency of the AAKR

ethod. When the data set of historical observations grows large,

he signal reconstruction procedure becomes very computation-

lly costly ( Michau, Palme, & Fink, 2017 ). To encounter this, vari-

us memory vector selection techniques are used ( Hines, Garvey,

 Seibert, 2008; Hines, Garvey, Seibert, & Usynin, 2008 ). In this

aper, we present a novel cluster based memory vector selection

echnique, see Section 3.1 . 
When the relative importance of the various signals is known

nd understood, for example based on physical meaning or by sub-

ect matter expert’s experience, it should be possible to incorporate

his information in the model. We propose to impose the relative

mportance on the AAKR model by changing the distance measure,

ee Section 3.2 . The proposed generalization of distance measure

rovides the possibility to distinguish between explanatory and re-

ponse signals. This also makes it more natural to compare the re-

onstructions produced with AAKR, with reconstructions based on

ther regression methods. 

With the standard framework, all regions in the sample space

re considered equally credible. We suggest to assume that the

econstruction of a response signal is more credible if the corre-

ponding explanatory signals are similar to previously observed

ignals. In Section 3.3 , we describe one possible approach to en-

ounter this. 

Other challenges associated with the anomaly detection frame-

ork, such as challenges related to time dependency and the need

or representative training data, as well as problems associated

ith evaluating the accuracy when labelled data is lacking, are of

eneral nature and is not addressed here. 

. Proposed modifications 

In the following, we propose three novel modifications aiming

o improve the anomaly detection framework as presented above,

nd to address associated challenges. A sketch of the suggested

odified anomaly detection framework is shown in Fig. 3 , with the

ew boxes marked with dashed borders. 

.1. Cluster based memory vector selection for AAKR 

In the maritime industry, as in many other industries, the

mount of available and potentially interesting data is large and

rowing. In the AAKR method, the distance between the observed

uery vector and each of the memory vectors have to be calcu-

ated, as well as the weights associated with each memory vector

nd eventually the weighted linear combination of all the mem-

ry vectors. Consequently, if we use a naive approach, and let all

raining data points be represented in the set of memory vectors,

he algorithm will be very computationally costly for large training

ata sets. Hence, intelligent memory vector selection methods are

eeded. 

Several memory vector selection methods exist, including vec-

or ordering, min-max selection, combination of vector order-

ng and min-max selection ( Boechat, Moreno, & Haramura, 2012;

oble, Humberstone, & Hines, 2010; Hines, Garvey, & Seibert,

008 ). The methods all strive to adequately represent the operating

onditions expected in future fault free operations. If variants of
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Fig. 4. Illustration of the surrounding hyperrectangles, and their unique closest 

points to a query vector. 
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normal operating conditions, such as changes in weather, seasonal

variations, are not included in the memory vectors, no confidence

can be given to predictions of the model and the memory matrix

must either be appended or replaced with new data ( Boechat et al.,

2012; Hines & Garvey, 2006 ). 

In our experience, a ship’s operation pattern can be divided into

relatively few sub-operations, such as for example harbour, transit

(in a few different speeds) and manoeuvring. This relatively sim-

ple operation pattern is typically also reflected in related systems

such as the machinery. Hence, we propose to use a memory selec-

tion method based on clustering, which exploits this property of

the data. Our first experiences with this method was presented in

Brandsæter, Vanem, and Glad (2017) . Here we elaborate and sys-

tematically investigate the methodology. 

3.1.1. Clustering for anomaly detection 

Several clustering based anomaly detection techniques have

been developed (see e.g. Chandola et al., 2009 ), and various cat-

egories of clustering methods for anomaly detection are suggested

in the literature. One common approach is to cluster the data first,

and then classify the data according to one of the following as-

sumptions: 

1. Normal data instances belong to a cluster in the data, while

anomalies do not belong to any cluster. 

2. Normal data instances lie close to their closest cluster centroid,

while anomalies are far away from their closest cluster cen-

troid. 

3. Normal data instances belong to large and dense clusters, while

anomalies either belong to small or sparse clusters. 

The approach we propose in this paper, is somewhat inspired

by both 1 and 2 above. In brief, we suggest to first cluster all his-

torical observations. Secondly, the regions surrounding the cluster

centroids are identified. The clustering and identification of sur-

rounding sets are performed off-line, prior to operation. Then, dur-

ing operation, for each new query point, one memory vector from

each of the surrounding sets are selected such that the distance

between the query point and the representative of the surround-

ing set is minimized. Finally, the selected memory vectors are used

in the AAKR reconstruction procedure. In this way, a new set of

memory vectors is selected for each query vector. 

3.1.2. Prediction based on representatives from the surrounding sets 

After the clustering process is executed on the training data,

and the surrounding sets are identified, the reconstruction of the

test data can take place. The reconstruction of the query vector,
ˆ X 

test 
(t, ) 

, is produced using AAKR as described in Section 2.1 , but now

the training data X 

train which contains selected or all historical ob-

servations, is replaced by a matrix X 

closest containing the unique

closest point per cluster, i.e. the i th row of X 

closest is given by 

p 

∗ = arg min 

p ∈ O i 

J ∑ 

j=1 

(
p j − X 

test 
(t, j) 

)2 
, (9)

where O i is the surrounding set of cluster i . Uniqueness follows in

the Euclidean space for surrounding sets that are closed and con-

vex ( Dattorro, 2010 ). 

Hence, if a test point X 

test lies inside a surrounding set O i , the

distance between the test point and the closest point in that sur-

rounding set is 0. If on the other hand, the test point lies outside

the surrounding set, the distance between the test point and the

closest point in that surrounding set is strictly greater than 0, and

the closest point will be on the surrounding set’s border. This is

illustrated in Fig. 4 a simplistic example in 2 dimensions. 
.1.3. Surrounding sets 

One candidate for the surrounding set of a cluster is the convex

ull of its members (see left hand plots of Fig. 5 ). Another sugges-

ion is to use an ellipsoid, centred at the cluster mean with shape

arameters based on the standard deviation of the cluster mem-

ers, for each sensor signal (see the centre plots of Fig. 5 ). Fur-

hermore, the clustering can be performed using clustering tech-

iques such as Density-based spatial clustering of applications with

oise (DBSCAN) ( Ester, Kriegel, Sander, Xu et al., 1996 ), CLARA ( Ng

 Han, 1994 ) and CLARANS ( Ng & Han, 2002 ). Such techniques en-

ble identification of clusters with arbitrary shape, that are non-

inearly separable, which cannot be adequately clustered with k -

eans or Gaussian Mixture EM clustering ( Ester et al., 1996 ). 

However, for simplicity, and due to the computational cost of

alculating the distance between a query vector and the boundary

f more complex shapes ( Cameron, 1997; Jarvis, 1973 ), we chose

o use axis-aligned hyperrectangles/boxes. 

If the data set is in R 

2 , it is possible to find the set of k axis-

ligned rectangles of minimum area that covers the points in the

ata set using optimization techniques such as for example mixed

nteger and linear programming (see Ahn et al.; Park & Kim ). But

o our knowledge, no efficient method exists that applies to large

ata sets in high dimensions. 

Fortunately, we do not need to determine the optimal set of

yperrectangles/boxes and can be satisfied with a good selection.

ence, we will explore the use of well-known clustering tech-

iques to cluster the data. When the data set is divided into clus-

ers the size and position of the hyperrectangles are determined in

ne of the following ways: 

1. Centred: The boxes are centred at the mean value of the mem-

bers of the cluster (in each dimension), where the distance be-

tween cluster centroids and boundary are given by the standard

deviation. 

2. Enclosed: The boxes are placed such that they cover all points

assigned to each specific cluster. 

In addition, a rectangle scaling factor γ is used to increase or

ecrease the size of the surrounding set. 

Four different surrounding sets for a simplistic two dimensional

xample are illustrated in Fig. 5 : convex hulls, ellipses, rectangles

entred at the cluster mean and rectangles placed such that they

over all points assigned to each specific cluster. In the upper and

ower plots, the number of clusters is set to 7 and 15 respectively.
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Fig. 5. Illustration of different surrounding sets, with 7 and 15 clusters (upper and lower). 
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ierarchical clustering has been used to find the cluster centroids,

ith the complete linkage criterion, see ( Section 3.1.4 ). The rect-

ngle scaling factor, γ , which adjusts the shape and size of the el-

ipses and the rectangles is set to 2. In the lower plot, the rectangle

caling factor is set to 1, and the number of clusters is increased to

5. 

.1.4. Clustering techniques 

The following clustering techniques are explored (See e.g. Cord

 Cunningham, 2008; Friedman, Hastie, & Tibshirani, 2009 ): 

1. Standard k-means clustering: In the initialization, k cluster cen-

troids are chosen randomly. Then for each iteration, the obser-

vations are reassigned to the closest cluster centroid, before the

cluster centroids are updated to reflect the new cluster mean.

The iterations continue until the cluster centroids no longer

change from one iteration to another. 

2. Agglomerative hierarchical clustering: Each observation starts in

its own cluster, and the pair of clusters with minimum distance,

according to a linkage criterion, are merged. To calculate the

distance between two points, we use Euclidean distance. We

explore two different linkage criteria: 
• Single: Where the distance between two clusters A and B , is

given as min { d ( a, b ): a ∈ A , b ∈ B }, where a and b are obser-

vations assigned to cluster A and B respectively. 
• Complete: Where the distance between two clusters A and

B , is given as max { d ( a, b ): a ∈ A , b ∈ B }, where a and b are

observations assigned to cluster A and B respectively. 

.1.5. Choosing the number of clusters 

Unlike in classification tasks, cluster analysis procedures will

enerally be unable to refer to predefined class labels when em-

loyed in real-world applications. Consequently, there is usually no

lear definition of what constitutes a correct clustering for a given

ata set ( Cord & Cunningham, 2008 ). However, since the final goal

f our analysis in this study is anomaly detection, which is a clas-

ification task, we can claim that the best number of clusters is the

ne which provides the most accurate anomaly detection. However

n practice, this approach can only be utilized through cross vali-

ation, on a training set with labelled anomalies. 

For standard clustering analysis, not involving classification, a

ide variety of validation methods have been proposed (For an

verview, see for example Cord & Cunningham, 2008; Friedman

t al., 2009; Guha & Mishra, 2016; Wilks, 2011 ). Cord and Cun-

ingham (2008) organize them into three distinct categories: 

1. Internal validation: Compare clustering solutions based on the

goodness-of-fit between each clustering and the raw data on

which the solutions were generated. 



424 A. Brandsæter, E. Vanem and I.K. Glad / Expert Systems With Applications 121 (2019) 418–437 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Illustrating the usage of the modified distance measure, with different dis- 

tance scaling vectors s . (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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2. External validation: Assess the agreement between the output of

a clustering algorithm and a predefined reference partition that

is unavailable during the clustering process. 

3. Stability-based validation: Evaluate the suitability of a given

clustering model by examining the consistency of solutions

generated by the model over multiple trials. 

In this study, we concentrate on internal validation, which

means that we compare the various combinations of clustering

methods and number of clusters, based on the goodness-of-fit ac-

cording to some evaluation function. In addition to well-known

methods such as the elbow, silhouette and gap statistic meth-

ods, there are more than thirty other indices and methods that

have been published for identifying the optimal number of clus-

ters ( Charrad, Ghazzali, Boiteau, Niknafs, & Charrad, 2014 ). We can

for example use the NbClust package ( Charrad et al., 2014 ) in R,

which provides 30 of the most popular indices for determining the

number of clusters for a given data set. The number of clusters is

chosen according to the majority rule. However, to allow easy com-

parison between the various clustering methods, and to illustrate

the effect of using different number of clusters, we use a fixed ar-

ray of number of clusters in the demonstration in Section 4 . 

As described above, choosing the optimal number of clusters

is often ambiguous. Fortunately however, the cluster based AAKR

method proposed in this paper, does not require that the optimal

number of clusters is found. The motivation behind the clustering

is to increase the computational speed. If we increase the number

of clusters, we know that we should retain more of the informa-

tion in the original data. But the number of clusters to use is a

trade-off between computational speed and accuracy. With too few

clusters, a lot of the information in the data is lost, but with suffi-

ciently many clusters, the assumption is that we can approximate

the information in the full training data with sets surrounding the

clusters. The aim is to find the right balance between model per-

formance and model run time ( Hines, Garvey, & Seibert, 2008 ). If

the model performance turns out to be poor, more clusters should

be included to expand the memory matrix coverage of the opera-

tional region ( Coble et al., 2010 ). 

That being said, we see that in some of the cases presented in

Section 4 , the results show that the cluster based AAKR outper-

forms the crude method, where no clustering has been performed.

We believe this is due to insufficient training data, and do not re-

gard this performance improvement significant. 

3.2. Modified distance measure to distinguish explanatory and 

response signals 

When reconstructions are produced using AAKR, usually all sig-

nals are weighted equally when the distance between the query

vector and the memory vectors is calculated. In Baraldi, Di Maio,

Turati et al. (2015) , a new procedure for determining the distance

is proposed, where the data are projected into a new signal space,

by defining a penalty vector which reduces the contribution of sig-

nals affected by malfunctioning. The procedure is motivated by the

conjecture that faults or malfunctions causing variations of a small

number of signals are more frequent than those causing variations

of a large number of signals. 

In this paper, we propose to modify the distance calculation, in

a fashion inspired by Baraldi, Di Maio, Turati et al. (2015) , such that

the contribution of the various signals can be weighted differently.

Instead of the standard Euclidean norm (see Eq. (2) ), we propose to

use a weighted version by multiplying the difference in each direc-

tion with a penalty vector which we refer to as the distance scaling
ector s = [ s 1 , . . . , s J ] . This gives the following distance measure 

 

mod 
k = 

√ √ √ √ 

J ∑ 

j=1 

{ [(X 

test 
(t, j) 

− X 

train 
(k, j) 

]
· s j } 2 . (10)

If all elements of s are equal to 1, the classical distance measure

s used. Note that if one of the signals is completely disregarded,

.e. the weight is set to 0, and the weights of the other signals are

ot changed, then the AAKR reconstruction resembles the tradi-

ional Nadaraya–Watson estimator, where the signal with 0 weight

s the response variable, and the remaining signals are the explana-

ory variables. This choice of s , also makes comparisons to other

egression methods more natural. 

This generalization of the AAKR method can be particularly use-

ul when we are not interested in finding anomalies in all the

ensor signals, such as sensors measuring environmental condi-

ions. For example, if our aim is to detect anomalies that could be

aused by or lead to engine failure, we might find it uninteresting

o search for anomalies in the outside air temperature sensor. As

ong as there is nothing wrong with the sensor, there is obviously

othing wrong with the air temperature, and we are not interested

n alarms regarding this. At the same time, this sensor signal could

e important in explaining the behaviour in other signals, such as

ngine temperature or bearing temperature. Hence, we do want to

e able to include it in the analysis as an explanatory variable. 

In Fig. 6 the usage of the modified distance measure is illus-

rated with a simplistic example in two dimensions. The black

oloured stars are the training data (also referred to as mem-

ry vectors), and the light blue coloured square is a query vector

also referred to as test data), located at [ x 1 , x 2 ] = [0 , 0] . The AAKR

ethod with the standard Euclidean distance measure would re-

onstruct the signal at [0.43, −0.24], as shown by the green circle.

f signal x 1 measures an environmental parameter, such as for ex-

mple outside temperature or wind speed, and we assume that

he sensor recordings are without faults, we are not interested in
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Fig. 7. The upper plot shows a simplistic data set, in two dimensions. In the two 

lower plots the credibility estimate is calculated for points along the horizontal axis, 

with different bandwidths. In the middle plot, the distances to all historical obser- 

vations has been calculated, while the estimates in the lower plot are based on the 

distance to the unique closest point per cluster and the number of cluster members 

in that cluster. The number of clusters used in this figure is 15. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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esiduals in this dimension. Hence, we would regard signal x 1 as

n explanatory variable, and place the reconstruction at the query

ector, in this dimension. This is represented by the dark blue tri-

ngle. If we reduce the second entry of the distance scaling vector

 , we reduce the contribution of observations that are near to the

uery point in the x 2 direction, and far away in the x 1 direction.

he orange triangle shows the reconstructions produced with dis-

ance scaling vector s equal to [1,0.5], while the blue cross, and

he yellow star shows the reconstructions produced using distance

caling vector [1,0.1] and [1,0] respectively. 

In many real-life applications, the choice of explanatory and re-

ponse variables is determined by the subject matter experts. Of-

en, it is natural to let s take values 0 or 1, but other values are also

cceptable. The distance scaling vector can be chosen to achieve

cceptable levels of expected detection delay (EDD) and average

un length (ARL), as described and demonstrated in Section 5 . 

.3. Reconstruction credibility 

As the training data is not evenly distributed in the data space,

e propose to regard reconstructions from some regions of the

ample space more credible or trustworthy than others. The idea is

hat we should have more confidence in our reconstructions when

he query vector is close to, or at least not too far away from, the

istorical observations for the subset of the signals which we can

reat as explanatory variables, such as environmental conditions or

imilar. 

If reconstructions are made using AAKR with the cluster based

emory vector selection method presented in Section 3.1 , the

umber of members of a nearby cluster can also be taken into con-

ideration when assessing the credibility of a reconstruction. One

an argue that a high number should lead to higher confidence. 

To illustrate the idea, we look at the simplistic example in 2

imensions, shown in the upper plot of Fig. 7 . The signal on the

orizontal axis, x 1 , can for example represent an environmental

ariable such as wind speed and we decide to treat this as an ex-

lanatory variable. Furthermore, the vertical axis, x 2 , can for ex-

mple represent the bearing temperature, and we decide to treat

his as a response variable. Now, if we observe a value [ x 1 , x 2 ] =
 −0 . 75 , 1 . 00] (see the leftmost red point in Fig. 7 ), we will be con-

dent that this is an anomaly, since we have many historical ob-

ervations of x 1 in the area around −0 . 75 , and no corresponding

alues of x 2 near 1.00. However, for [ x 1 , x 2 ] = [ −0 . 25 , 1 . 00] (right-

ost red point) we have very few historical observations, hence

ur confidence in the reconstructions in this area is decreased. 

A credibility estimate can be taken into account when the resid-

als are analysed in the Sequential Probability Ratio Test (SPRT).

e suggest to multiply the credibility estimate with the SPRT in-

ex (see Eqs. (7) and (8) ). This enables the anomaly detection

ramework to reach a conclusion faster when our confidence in the

econstruction is high, and use more time when our confidence is

ow. It should be noted, however, that the statistical properties of

he SPRT will change. 

.3.1. Suggested formula for credibility estimate calculation 

Different estimates can be used to calculate the credibility esti-

ates, and we believe that different estimates should be used in

ifferent applications and cases. In the case presented here, we

ave used the following credibility estimate, ψ , of a query vector

 

test 
(t, ) 

, 

 = 1 − 1 

1 + log (ηκ + 1) 
(11) 

here η denotes the sum of the number of points in the surround-

ng sets which are close to X 

test 
(t, ) 

. A surrounding set is regarded as

lose if the distance between the point and the cluster centre is
ess than a predefined parameter λ. We experiment with different

alues for λ, and in the following section we show results using

he following values: inf , 0.5, 0.25, 0.1, 0.05 and 0.01. When λ is

nfinite, all data points are regarded as close, and the credibility

stimate will be constant throughout the data set. A parameter, κ ,

s set to control the importance of the number of points. Here, for

implicity, we fix κ to 0.1. 

We see that the credibility estimate in Eq. (11) requires that the

istances between X 

test 
(t, ) 

and all the historical observations are cal-

ulated. To avoid this, we replace the full training data set with

he clusters as explained in the earlier section. Also the number of

oints in each cluster is taken into consideration. Hence, the cred-

bility is given by Eq. (11) where η is substituted by ˜ η, the sum of

luster members in clusters with nearby centres, i.e. the distance

s less than a specified bandwidth. 

The lines in the middle and lower plot of Fig. 7 show the pro-

osed credibility estimates, obtained with different values of λ.

he estimates in the middle plot are based on the full training data

et, and the estimates in the lower plot are based on the 15 clus-

ers and their surrounding data sets. 
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Table 1 

Data sets used in the analysis. 

Data set no. Data set name Imbalance ratio No. of features No. of training samples 

1 vehicle0 3.23 18 428 

2 yeast6 53.89 8 963 

3 ecoli-0-1-3-7_vs_2-6 14.50 6 186 

4 glass5 6.89 9 142 

5 shuttle-c0-vs-c4 3.99 9 1218 

6 dermatology-6 13.88 32 226 

7 shuttle-6_vs_2-3 18.00 9 147 

8 winequality-red-4 24.33 11 1034 

9 poker-9_vs_7 12.50 10 160 

10 yeast1 2.89 8 687 

11 segment0 5.99 18 1319 

12 vehicle2 3.23 18 409 

13 vehicle3 3.04 18 415 

14 engine1 1.50 5 10,0 0 0 a 

a Data set 14 originally includes 175,558 training samples. Due to this high number, computing the 

results of the crude methods is impractical. Hence, we sample 10,0 0 0 training samples without replace- 

ment, and use the result of this as an approximation of the crude method. 
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4. Demonstration on benchmark data sets 

In this section we demonstrate the cluster based AAKR method

on multiple imbalanced data sets. We present results using differ-

ent clustering techniques and surrounding sets (see Section 3.1.3 ),

and compare them to the results obtained with the crude AAKR

method. 

4.1. Data sets 

We use 13 imbalanced data sets from the KEEL database

( Alcalá-Fdez et al., 2011 ) (See Table 1 ). The rows in the data sets

are pre-labelled, such that all anomalies are known, and we as-

sume that all datapoints that are not marked as anomalies, repre-

sent normal behaviour. 

The imbalanced data sets we envisage here, are data sets orig-

inated from data sets of multiple classes, where one (or more)

of the classes are labelled as anomalous. For example, the imbal-

anced data set yeast6 is based on the classification data set yeast ,

which contains information about a set of yeast cells, for predicting

the cellular localization sites of proteins. In the classification data

set, each instance is classified in 10 different localizations. In the

imbalanced version, yeast6 , the positive examples consist of class

EXC and the negative examples consist of the other 9 classes. See

Appendix A for a description of the other data sets. 

We train on 2/3 of the data, and test on the remaining 1/3.

Rows with anomalies occurring in the fraction of the data set used

for training are removed. 

In addition to the benchmark data sets from the KEEL database,

we include another imbalanced data set from a marine engine in

operation. The data set originally includes 175,558 rows. Due to the

high number of rows, computing the results of the crude meth-

ods is impractical. Hence, we sample 10,0 0 0 rows without replace-

ment, and use the result of this as an approximation of the crude

method. A thorough description of this data set, together with a

comprehensive analysis, is provided in Section 5 . 

The data sets represent various real world applications. In this

section, we do not take into account any possible knowledge of

the real application, and all columns of the data set are treated as

equally important for detecting anomalous behaviour. 

4.2. Algorithms 

We present results based on the combinations of clustering al-

gorithms and surrounding sets as presented in Table 2 . The k -

means clustering is performed with the kmeans implementation in
he stats package in R ( R Core Team, 2017 ), with the Lloyd algo-

ithm ( Lloyd, 1982 ). For hierarchical clustering we use the hclust

mplementation, also from the stats package, with the following

wo linkage criteria: single and complete. 

Even for the largest data set, the clustering with k -means is per-

ormed in less than a second, hence we will not report the time

o perform the clustering. For the engine 1 data set, with 175,558

ows, the hierarchical clustering method cannot be performed due

o memory restrictions. It requires that the dissimilarity structure

as produced by the dist function in R) is provided, which needs

llocation of more than 100GBs memory. 

.3. Simple threshold based residual analysis 

Many of the data sets considered in this section are not time

ependent, and many of the anomalies occur alone, i.e. the obser-

ation imminently before and after are not anomalous. Due to this,

e will not use the Sequential Probability Ratio Test (SPRT) when

omparing the methods here. A comprehensive demonstration of

PRT will be provided in the maritime case study in Section 5 .

ere, we will restrain to a simple threshold method when we anal-

se the residuals. Again to ease the comparison between the meth-

ds, we adjust the threshold limit for each feature with a parame-

er τ , which controls the false alarm rate. 

Furthermore, for the data sets we investigate, we have no

nowledge about which signals are causing the anomaly, hence

e do not distinguish this here. If an alarm is triggered in one of

he signals, we consider all signals anomalous at this row/time in-

tance. 

The threshold limits obtained using this procedure should be

imilar to the limits we can obtain with cross validation on a train-

ng set, assuming we have known anomalies present in the training

et. 

.4. Results 

We present results using a range of different number of clus-

ers, k , and a range of 50 different threshold values, τ , between 0.7

nd 1. In the following, we highlight a selection of the results. The

ull table of results can be found in the supplementary material. 

.4.1. Decreased computation time for the cluster based methods 

The main goal of the proposed cluster based method is to de-

rease the computation time of the different methods, and at the

ame time keeping the performance at an acceptable level. Fig. 8

hows savings in prediction time relative to the crude method
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Table 2 

Combinations of clustering algorithms and surrounding sets in the presented results. 

Clustering algorithm Surrounding set 

1 crude , no clustering points , every point is represented 

2 k-means , points , centred at mean with γ = 0 , i.e. every cluster is 

Lloyd’s algorithm represented with a single point 

3 k-means , centred , centred at mean with γ = 1 , i.e. every cluster is 

Lloyd’s algorithm represented with a box centred at the mean of the cluster 

members, with size based on the standard deviation 

4 k-means , enclosed , every cluster is represented with a box which 

Lloyd’s algorithm encloses the cluster members 

5 hierarchical , enclosed , every cluster is represented with a box which 

complete linkage criteria encloses the cluster members 

6 hierarchical , enclosed , every cluster is represented with a box which 

single linkage criteria encloses the cluster members 

Fig. 8. Decreased computation time per prediction: The vertical axis of the figure shows the maximum computation time, when using the cluster based methods, relative 

to the computation time when the crude method is used. The horizontal axis represents the number of samples in the training divided by the number of clusters. 
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chieved with the proposed methods. The horizontal axis in the

gure shows the number samples in the original training set di-

ided by the number of clusters. As expected, as this ratio in-

reases, i.e. when we have fewer clusters than training samples,

e achieve greater time savings. 

.4.2. Comparing performance 

When comparing the different methods ability to classify the

nomalies, we have to balance the number of: 

• True Positives (TP) - anomalous instance which is correctly

identified as anomalous, 
• False Positives (FP) - normal instances which are incorrectly

identified as anomalous, 
• False Negatives (FN) - anomalous instance which is incorrectly

identified as normal 
• True Negatives (TN) - normal instances which are correctly

identified as normal 

In this analysis, it is often useful to examine the sensitivity,

hich is also called the True Positive Rate. It is a measure of the

robability of predicting that an instance is anomalous given that

he true state is anomalous ( Friedman et al., 2009 ). The True Posi-

ive Rate has the following expression 

 P R = 

T P 

T P + F N 

. (12)
Another useful measure is the specificity, which is the prob-

bility of predicting that an instance is normal (non-anomalous)

iven that the true state is normal (non-anomalous). This informa-

ion can also be presented as the False Positive Rate, which is given

s 1 minus the specificity, that is: 

 P R = 

F P 

F P + T N 

= 1 − specificity (13)

The TPR and FPR are often presented in a receiver operating

haracteristics (ROC) graph, which is a scatterplot with the TPR

n the vertical axis, and the FPR on the vertical axis. The ROC

raphs have properties that make them especially useful for do-

ains with skewed class distribution and unequal classification er-

or costs, which is important for cost-sensitive learning and learn-

ng in the presence of imbalanced classes ( Fawcett, 2006 ). 

The ROC graphs of four selected data sets are shown in Fig. 9 .

e find the most favourable results, of a ROC graph, in the upper

eft corner, where the FNR is low at the same time as the TPR is

igh. Similarly, the least favourable results are found in the lower

ight corner. 

From Fig. 9 , we observe that the different methods’ per-

ormance is quite similar, except for the hierarchical clustering

ethod with the single linkage criterion, which is clearly out-

erformed by the other methods especially on the vehicle0 and

emgnet0 data sets. On the engine1 data set, the hierarchical meth-

ds are not used due to the computational burden of performing

he clustering. 
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Fig. 9. The ROC graph for four selected data sets. Results are shown for 50 threshold values τ between 0.7 and 1. Straight lines are drawn between the points for increased 

readability. 
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In model selection, the area under the ROC curve is a popular

measure, where the model with the highest area under the ROC

curve will be selected. The area under the ROC-curve for the 14

data sets is provided in Table 3 . 

We observe that the area under the curve for the different

methods are quite similar, again with a somewhat decreased per-

formance for the hierarchical clustering with the single linkage cri-

terion. The performance differs extensively on the different data

sets, with area under the curve as high as 1.00 on some data sets,

meaning that all instances are correctly labelled, both the true nor-

mal and the true anomalous. On other data sets, however, the per-

formance is quite low, and for some data sets even close to 0.5.

That being said, we have not investigated how subtle the anoma-

lies are in the different data sets. In some of the data sets, the

anomalies can be very obvious, and in others they can be well-

hidden. Hence, the numbers presented here are intended for com-

parison of performance of the proposed methods with each other,
 c
nd with the crude method. Our claim is not that the proposed

luster based methods are specifically suitable to solve the par-

icular problems of the specific data sets, but we aim to demon-

trate that the best proposed cluster based methods efficiently

an achieve performance results comparable to the crude method,

hile inducing considerable reduction in computation time. 

.4.3. Number of clusters 

Fig 10 illustrates how changes in the number of clusters used

ffects the performance. In figure (a) and (b) respectively, the True

ositive Rate and True Negative Rate for the segment0 data set are

hown for various number of clusters. The threshold value τ is

ept constant at 0.97. We observe, as expected, that the results

onverge towards the result of the crude method, as the number

f clusters increases. However, we also observe surprisingly good

esults with very few clusters for all methods, except the hierar-

hical clustering method which uses the single linkage criterion. 
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Table 3 

Area under the ROC curve. (Hierarchical clustering is not performed for data set 14 due to the large size of the training set). The number of clusters is 25 for data set 

1–13. For data set 14, 100 clusters are used. 

Dataset Crude K-means points K-means centred K-means enclosed Hier. complete Hier. single Time crude Time cluster Relative time 

1 0.92 0.88 0.92 0.91 0.89 0.47 179 5.2 2.9% 

2 0.59 0.71 0.52 0.52 0.35 0.16 371 4.2 1.1% 

3 0.75 0.77 0.93 0.76 0.83 0.69 11 0.6 5.4% 

4 0.41 0.62 0.57 0.55 0.60 0.51 9 0.7 8.3% 

5 1.00 1.00 0.98 0.97 1.00 0.71 629 5.8 0.9% 

6 1.00 1.00 1.00 1.00 1.00 0.86 64 3.9 6.2% 

7 1.00 0.99 0.99 0.97 1.00 1.00 10 0.7 7.5% 

8 0.59 0.70 0.59 0.60 0.59 0.33 538 6.0 1.1% 

9 0.96 0.86 0.95 0.97 0.93 0.14 12 0.9 7.5% 

10 0.61 0.51 0.54 0.48 0.53 0.24 265 4.3 1.6% 

11 0.91 0.79 0.88 0.90 0.75 0.45 1511 15.3 1.0% 

12 0.94 0.81 0.88 0.88 0.79 0.46 159 5.5 3.5% 

13 0.73 0.74 0.77 0.74 0.68 0.55 158 5.0 3.2% 

14 0.73 0.82 0.81 0.75 5834 19.6 0.3% 

Fig. 10. The True Positive Rate and False Positive Rate of data set segment0 is shown, where the number of clusters used by the cluster based methods vary on the horizontal 

axis. The threshold value τ is kept constant at 0.97. 
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. Marine engine case study with comparisons 

In this section, the anomaly detection framework using AAKR in

ombination with SPRT, both with and without the modifications

roposed in Section 3 , are applied on the data set consisting of

ensor measurements from a large marine diesel engine. The data

s collected from a large ocean going ship in operation. 

We limit the further analysis to only consider the surrounding

ets that are centred at the cluster mean. The size of the surround-

ng sets are determined by the standard deviation of the clus-

er members, multiplied with the rectangle scaling factor γ . We

resent results using three different sizes of γ , and refer to them

s points ( γ = 0 ), small rectangles ( γ = 0 . 5 ) and large rectangles

 γ = 1 ). 

.1. Data description 

The data is collected over a period of 10 months, starting in De-

ember 2014. A total of 333,144 observations are recorded, which

ncludes idling. In this study, we concentrate on normal operation

nd use a simple filter based on engine speed [rpm] to remove the

dling states, leaving us with a data set consisting of 175,558 rows.

We consider the following sensors: 

• engine speed [rpm], 
• lubricant oil inlet pressure [bar], 
• lubricant oil inlet temperature [C], 
• engine power [kW] 
• engine bearing temperature [C] 

The bearing temperature is considered the response signal, and

he others are used as explanatory variables, when this is distin-

uished. The time series are shown in Fig. 11 . 

.2. Operational mode 

The ship investigated in this study, is operated in different oper-

tional modes, such as transit (in different speeds), port and stand

y (with or without anchor), in addition to transient modes. A ship

s in a transient mode when its operation changes from one de-

ned mode to another. According to our experience, these modes

re the most challenging ones, in respect to anomaly detection. 

.3. Cross validation 

When predictions from a statistical model is evaluated on the

ata set used to train the model, the accuracy estimates tend to

e overoptimistic ( Arlot & Celisse, 2010 ). Hence, the data set D
hould be divided into exclusive parts where one part, D train , is

sed to train the model, and the other, D test , is reserved for test-

ng. To build robust and accurate models we ideally want to in-

lude all data available in the training data set. The same applies

o testing; we want to test our models in many situations. Cross

alidation introduces various methods of repetitively splitting the
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Fig. 11. Time series with training data for the evaluated signals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Illustration of the test set up. 
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data into training and test data sets. A range of different splitting

techniques can be applied. See for example ( Arlot & Celisse, 2010;

Kohavi, 1995 ) for a brief overview of the most common splitting

techniques. We also note that repeated k -fold cross validation can

be used to stabilize the error estimation and reduce the variance

( Jiang & Wang, 2017; Kohavi, 1995; Rodriguez, Perez, & Lozano,

2010 ). 

In this study, we repeatedly select folds or time intervals con-

taining 10 0 0 query vectors, which constitute the test data set,

D test . The remaining 174,0 0 0 points constitute the training data set

D train . We repeat this procedure 15 times, leaving us with a total

of 15,0 0 0 tested points. 

5.4. Fault simulation 

To our knowledge, no faults or anomalies are registered and re-

ported by the crew, shipowner, etc. for the data set we envisage.

Hence, we assume that the data set represent normal behaviour

and we define normal states based on this data. 

To be able to test the anomaly detection framework, we alter

some of the signals to simulate faulty states. The anomaly we in-

duce in the test data, is a temperature change in one of the main

bearings of the engine. The other signals remain unchanged. For

each test set D test , we increase the temperature with A 

+ degrees

Celsius in the area 20 0:40 0, and decrease the temperature with

A 

− degrees Celsius in the area 60 0:80 0. The set up is illustrated in

Fig. 12 . 

The signals are only altered slightly. Fig. 13 shows a scatter plot

comparing the training and the test data set, with both A 

+ and A 

−

set to 1.0. The training data are shown in purple, and the test data

are shown in blue, green and red, to mark the normal state and the

two states with increased and decreased temperatures respectively.

On the diagonal, a density plot of each individual signal are shown.

The correlations are shown in the upper triangle. We observe that

the test values, both in the regions with normal condition, and in

the regions were we have altered the signals, lie within the normal

operating mode of that specific signal. Hence, a rule based anomaly
etection method based on a single threshold would not be able to

etect the anomaly. 

.5. Evaluating the signal reconstruction 

First, we evaluate the signal reconstructions, by comparing the

oot mean squared error (RMSE) under various conditions. When

o anomalies or faults are present in the data, we want the differ-

nce between the observed signals and their reconstructions to be

s small as possible. The RMSE of the reconstructed temperature

ignal using the proposed cluster based AAKR is shown in Fig. 14 .

ue to high computational cost, for very large number of clusters,

e select a subset of the available data consisting of 20,0 0 0 points,

nd produce predictions combining different number of clusters

nd rectangle scaling factors. Here, no anomalies are simulated ( A 

+ 

nd A 

− are set to 0), and the data are assumed to be collected from

ormal operation. 

Note that a rectangle scaling factor of 0 corresponds infinitely

mall rectangles, i.e. points. Hence, if the rectangle scaling factor is

, and the number of clusters is equal to the number of historical

bservations, the reconstruction method resembles the standard

AKR method with the crude memory vector selection where all

istorical observations are included. The RMSE, using this method,

s shown in the lower right hand corner in Fig. 14 . 

The choice of number of clusters depends on the requirements

n calculation time. More clusters will increase accuracy, but com-

utation time will also increase. In this study, we chose to use 100

lusters, and experiment with three rectangle scaling factors 0, 0.5,

nd 1. We refer to these three options as points, rectangles and

arge rectangles respectively. 

.5.1. Difference in RMSE with and without anomalies 

For the Sequential Probability Ratio Test (SPRT) to be able to

uccessfully detect anomalies, the residuals, i.e. the difference be-

ween the observed and the reconstruction signals, should be more

ronounced for observations from the anomalous states, compared

o observations from normal state. To indicate how the residuals

hange when we induce anomalies, we reconstruct the signals on

he 15 different folds, and calculate the RMSE before and after the

nomalies are induced. 

The results are shown in the box plots in Fig. 15 , for the 15

ifferent folds. Results based on the crude AAKR, where all his-

orical observations are included as memory vectors, and the clus-

er based version with points (infinitely small rectangles), rectan-

les and large rectangles are shown. We observe that the calcu-
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Fig. 13. A scatter plot comparing the training (purple) and the test data set from one of the tested folds, which contains two regions with anomalies (red and green), and 

the remaining points are considered normal (blue). In this illustration, the training and test data consists of 174,0 0 0 and 10 0 0 points respectively. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 14. The root mean squared error (RMSE) of the cluster based AAKR, with different number of clusters and different rectangle scaling factors. Note that when the number 

of clusters is equal to the number of points, in this example 20,0 0 0, and the rectangle scaling factor is set to 0, it resembles the crude AAKR. The kernel bandwidth h is set 

to 0.2. 
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Fig. 15. Box plot of RMSE values calculated with the different memory vector se- 

lection methods with and without induced anomalies, on 15 different folds or folds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. RMSE values calculated based on reconstructions using the different mem- 

ory vector selection methods. Values based on calculations with and without 

anomalies induced are showed with in filled and dotted lines respectively. Here, 

we vary the J th component of the distance scaling vector s , and keep the other 

distance scalings factors constant at 1. The J th signal is the bearing temperature. 

Fig. 17. Estimated densities of the residuals based on the reconstructions from 

the crude AAKR and the cluster based AAKR, with large rectangles, rectangles and 

points as surrounding sets. In the upper plot, the densities are based on signals 

that are not changed. In the middle and lower plot, the densities are based on val- 

ues from signals that are altered in the positive and negative direction respectively. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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lated RMSE is greater after anomalies are introduced, which indi-

cates that it should be possible to detect the anomalies. The low-

est RMSE is achieved with the crude method, closely followed by

the method which use large rectangles. We observe that the differ-

ences between RMSE before and after anomalies are induced are

more pronounced for reconstructions based on the cluster based

methods. 

5.5.2. Distance scaling vector 

Now we analyse how the distance scaling vector s , as intro-

duced in Section 3.2 , effects the RMSE before and after anoma-

lies are induced. Fig. 16 shows the average of the RMSE calculated

from the different 15 folds. The filled and dotted lines are based on

calculations before and after anomalies are induced respectively.

Here, we only vary the J th component of the distance scaling vec-

tor s , and keep the other distance scaling vectors constant at 1. The

J th signal is the bearing temperature. 

When the J th component of the distance scaling vector is 0,

the results of both the crude method and the cluster based meth-

ods are small and similar, with values in the range [0.12,0.15]. For

larger values of the J th component of the distance scaling vec-

tor, we observe a significant difference in favour of the cluster

based version. Remember, when anomalies are induced we want

the AAKR method to produce reconstructions resulting in large

residuals, and large RMSE values, while for fault-free signals, with-

out anomalies, we want the RMSE values to be as low as possible. 

5.5.3. Analysing the empirical distributions of the residuals 

The empirical distribution of the residuals based on reconstruc-

tions made with the crude AAKR and the cluster based AAKR,

with large rectangles, rectangles and points as surrounding sets,

are shown in Fig. 17 . As described in Section 5.4 , a positive and

negative change in mean has been induced in the time intervals

20 0:40 0 and 60 0:80 0 respectively. Outside of these two time in-

tervals, no anomalies are induced. 

The vertical dotted lines in the figure show the means of the

three hypotheses; H 0 in the middle, where no anomalies are in-

duced, and the two chosen alternative hypotheses, H on the right
1 
and side and H 2 on the left hand side, for respectively positive

nd negative changes in mean. 

When no anomalies are introduced, we expect the residuals to

e small, and centred around zero. The estimated densities of the

esiduals, when no anomalies are induced, are shown in the upper

lot of Fig. 17 . We observe that the residuals are mainly situated

round zero, but especially the density of the residuals based on
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Fig. 18. The residuals are shown in the upper plot. The middle and lower plot show the SPRT indices for positive and negative changes in the mean. 
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econstructions using points as surrounding sets (green line) seems

o be shifted in the negative direction. 

The middle and lower plots show estimated densities from sig-

als which are altered to mimic anomalies. Residuals based on a

ositive and a negative change in mean are shown in the middle

nd lower plots respectively. The middle plot shows a slight shift

n the positive direction. The shift is most evident in the residuals

rom reconstructions using the cluster based AAKR with points as

urrounding sets. Also the residuals based on reconstructions using

ectangles as surrounding sets are quite noticeable. In the lower

lot, a shift in negative direction is indisputable, for all reconstruc-

ions. 

.5.4. Computation time 

The computation time of producing 10 0 0 reconstructions with

75,0 0 0 historical observations is about 22 minutes using the

rude memory vector selection method. In comparison, the cluster

ased version, with 100 clusters, produces the 10 0 0 reconstruc-

ions in less than 5 s. The time to perform the clustering, using

 -means clustering, with the Lloyd algorithm, is about 95 s. How-

ver, the clustering only needs to be performed once, and does not

eed to be performed on-line, hence we believe the time to per-

orm clustering should not be an issue. 

.6. Illustration of the sequence of residuals and the SPRT indices 

An example of the residuals analysis using SPRT is displayed in

ig. 18 . The residuals are displayed in the upper plot, while the

iddle and lower plots show the SPRT indices of the positive and

egative change in mean respectively. If a value exceeds the up-

er horizontal dotted line, an alarm is raised, either for positive or

egative change in mean, and the sequential test is reset. Similarly,

f the value is below the lower horizontal line, the sequential test
s reset. But now, confidence of normal state is reached, and no

larm is raised. 

The approximated expected detection delay (EDD) and average

un length (ARL) of the various reconstruction methods are re-

orted in the figure. The EDD is the expected number of time

oints from an anomaly is introduced until it is detected, and ARL

s the expected number of time points between false alarms. 

The induced fault in the example presented in Fig. 18 is a tem-

erature change of +1 °C in the first anomalous time interval and

1 °C in second anomalous time interval. Furthermore, the ker-

el bandwidth, h , is 0.1, the mean value of the two alternative hy-

othesis, for positive and negative change in mean, M , is set to 1,

nd the standard deviation, σ , is extracted from the training data.

he distance scaling factor s is fixed at [1,1,1,1,0.1]. Note that if the

ast entry is 1, the original AAKR reconstruction will be performed,

hile if the last entry is 0, a standard Nadaraya–Watson regression

ill be used. See Figs. 19 and 21 for results with other choices of

 . 

For positive change in mean, an EDD of 29 is returned when

oints are used as surrounding sets, while it is 100 when large

ectangles are used. Otherwise no alarms for positive change in

ean are raised in this example. Neither, no false alarms are

aised. For negative change in mean, more alarms are raised. We

bserver that the lowest EDD is achieved by the use of points as

urrounding sets, but this also provides a low ARL of 12. We note

hat the results are well aligned with Fig. 17 . 

.7. Results using multiple surrounding sets, distance scaling vectors 

nd credibility factors 

Results of the proposed anomaly detection framework are pre-

ented in Figs. 19–21 . Multiple surrounding sets are used for the

luster based AAKR reconstruction, and this is combined with mul-

iple distance scaling vectors and credibility factors. All entries in
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Fig. 19. Surrounding set and distance scaling vector: EDD and ARL at various sur- 

rounding sets and distance scaling vectors. If no alarms are raised, the EDD and ARL 

cannot be calculated. These are represented with black colour. The bandwidth of 

the credibility estimation is set to infinity, which means that all areas are consid- 

ered equally credible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20. Surrounding set and credibility factors: EDD and ARL at various sur- 

rounding sets and various credibility estimate factors. If no alarms are raised, the 

EDD and ARL cannot be calculated. These are represented with black colour. The 

distance scaling vector, s J , is 0.1. 

Fig. 21. Distance scaling vectors and credibility factors: EDD and ARL at various 

distance scaling vectors, and credibility factors. The figure is based on reconstruc- 

tions produced using cluster based AAKR, with large rectangles. 
the distance scaling vector can be adjusted, but here we concen-

trate on the J th component. The values in the tables represent

approximations of the mean EDD and mean ARL, taken over the

whole test period of 15 folds, with 10 0 0 points in each. The pre-

sented results are well aligned with our expectations, and show

consistent behaviour. 

In Fig. 19 , the anomaly detection capability of the methodol-

ogy using the crude and the cluster based AAKR with different sur-

rounding sets for reconstruction, combined with residuals analysis

using a range of different distance scaling factors, are presented.

We observe that the lowest EDD is achieved by combining points

(infinitely small rectangles) as surrounding sets with distance scal-

ing vector 0. Furthermore, the EDD increases when the distance

scaling vector is increased. Also, the EDD seems to increase when

the size of the surrounding sets is increased. As expected, the ARL

follows the same pattern. This illustrate the usual trade-off be-

tween EDD and ARL; we want low EDD, but this will of course

cause a decrease in the ARL. 

Fig. 20 illustrates how changes in credibility factor effects the

EDD and ARL. Again, we apply reconstructions produced both with

the crude and cluster based AAKR. Here, we fix the distance scal-

ing vector s at [1 , 1 , . . . , 1 , 0 . 1] , and concentrate on the change in

credibility factor. We observe, as expected, that both the EDD and

the ARL decreases with when the credibility factor increases. 

In Fig. 21 , EDD and ARL based on various combinations of dis-

tance scaling vectors and credibility factor are presented. We chose

to use the reconstruction version with large rectangles as sur-

rounding set. 

5.8. Discussion and suggestions for further research 

In the following, we discuss some key challenges and sugges-

tions for anomaly detection, with emphasis on the maritime in-

dustry. 
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Fig. 22. Partial auto correlation function of the residuals in the bearing temperature 

sensor. 
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.8.1. Extensions to high-dimensional sensor data 

In this paper we apply the anomaly detection framework on

ata sets containing a very limited amount of sensor signals and

erformed the reconstruction of the measured signals based on

istances from the training data in low-dimensional space. How-

ver, sensor monitoring of typical ship systems will often consist

f hundreds of sensors and it remains to be seen how well the

roposed approach scales in higher dimensions. The method will

uffer from the curse of dimensionality ( Keogh & Mueen, 2011 ),

hich will make it more challenging to establish similar models

or high-dimensional data. Sensible techniques for dimension re-

uction will have to be carried out before the signals are analysed

ith AAKR. Additionally, feature extraction should be investigated

urther. We believe this is an interesting and important topic for

urther research. 

.8.2. Operational mode selection 

During the different operating modes the behaviour of a ship

hanges substantially, and it might therefore be advantageous to

evelop reconstruction models dedicated to the different opera-

ional modes. This could also allow the alarm limits to vary in the

ifferent modes, depending on the operations criticality. To achieve

his, the training data should be divided and used to fit different

odels. This will result in reduced computational efforts and in-

reased model reconstruction accuracy ( Al-Dahidi, Baraldi, Di Maio,

 Zio, 2014; Baraldi et al., 2012 ). 

.8.3. Partial auto correlation in the residuals 

The partial auto correlation function of the residuals, made with

rude AAKR and cluster based AAKR, with large rectangles, rectan-

les and points as surrounding sets are shown in Fig. 22 . The fig-

re reveals that some time dependence is present in the residuals,

or time lags below 5–10 s. We also observe that the dependency

tructure is similar in the four cases. 

.8.4. Training data extension 

Sometimes training data are not available. For instance when a

hip is entering a type of operation that has not been tested be-

ore, or if a ship is moved to a new geographical area, where it has
ever operated before, the training data might need to be modi-

ed to represent the “new” normal conditions. If the sensors are

ffected in a deterministic way, new training data can be simu-

ated, based on the other training data. Ships are usually built in

ister series. The sensor data collected by the first ship in a series,

an possibly be reused by a later ship in the series. Also when the

hips are not identical, it is possible that the training data from

he first ship can be used on the later one, after necessary cali-

rations and modifications detailed by simulation software such as

or example Dimopoulos, Georgopoulou, Stefanatos, Zymaris, and

akalis (2014) . 

. Conclusion 

The paper introduces three generalizations and modifications of

n on-line anomaly detection framework consisting of signal re-

onstruction with Auto Associative Kernel Regression (AAKR) and

esiduals analysis using Sequential Probability Ratio Test (SPRT). 

We demonstrate the ability of the cluster based memory vector

election method for AAKR, which is successfully used for faster

ignal reconstruction. The methodology is applied to multiple im-

alanced benchmarking data sets, in addition to the data set with

ensor signals from a marine diesel engine in operation. Many of

he anomalies are quite subtle, restrained enough not to easily be

evealed by for example analysing scatter plots of the data. Re-

ults of the crude and the cluster based methods are presented

nd compared, and the analysis show that comparable results are

chieved, even when very few ( < 25) clusters are used. The ad-

antage of the cluster based methods is the increased speed. The

omputation time of the AAKR grows rapidly when the size of the

raining data increases, and we demonstrate how the presented

luster based memory vector selection technique can be used to

ramatically decrease the computation time, at the same time as

he performance is kept at an acceptable level. 

We also show how the cluster based AAKR can be used in com-

ination with the SPRT, which is used for residuals analysis, to

onstruct a robust and fast anomaly detection framework. The re-

ults are well aligned with our expectations, and show consistent

ehaviour. A generalization of the distance measure used in the

ignal reconstruction process is proposed, which enables the users

ystem-knowledge to be imposed on the anomaly detection frame-

ork to distinguish response and explanatory variables and opti-

ize the weighting of the different features. The distance scaling

ector can be chosen to achieve acceptable levels of expected de-

ection delay (EDD) and average run length (ARL). 

We also introduce a credibility estimate which enables the SPRT

ethod to reach a conclusion faster when it operates in regions

lose to instances which are well represented in the training data

et, and allows it to use more time to reach a conclusion when it

perates in less explored regions. 
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Appendix A 

Abstracts of the original classification data sets is provided belo

of the data sets. The descriptions are collected here: Alcalá-Fdez et

Data set Abstract 

vehicle0 3D objects within a 2D image by application of an ensem

feature extractors to the 2D silhouettes of the objects 

yeast6 Predicting the Cellular Localization Sites of Proteins 

ecoli-0-1-3-7_vs_2- 

6 

This data contains protein localization sites 

glass5 From USA Forensic Science Service; 6 types of glass; defi

of their oxide content (i.e. Na, Fe, K, etc.) 

shuttle-c0-vs-c4 The shuttle data set contains 9 attributes all of which ar

Approximately 80% of the data belongs to class 1 

dermatology-6 Aim for this data set is to determine the type of Eryhem

Disease. 

shuttle-6_vs_2-3 The shuttle data set contains 9 attributes all of which ar

Approximately 80% of the data belongs to class 1. The ta

what type of control of the vessel should be employed. 

winequality-red-4 The data set is related to red variant of the Portuguese V

wine. Due to privacy and logistic issues, only physicoche

and sensory (the output) variables are available (e.g. ther

about grape types, wine brand, wine selling price, etc.). 

poker-9_vs_7 Each record of this data set is an example of a hand con

playing cards drawn from a standard deck of 52. Each ca

using two attributes (suit and rank), for a total of 10 nom

attributes. The class attribute describes the Poker Hand o

yeast1 Predicting the Cellular Localization Sites of Proteins 

segment0 This data set is an image segmentation database similar 

already present in the repository (Image segmentation d

a slightly different form. 

vehicle2 3D objects within a 2D image by application of an ensem

feature extractors to the 2D silhouettes of the objects 

vehicle3 3D objects within a 2D image by application of an ensem

feature extractors to the 2D silhouettes of the objects 

Supplementary material 

Supplementary material associated with this article can be foun
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