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COMPUTABILITY THEORY, NONSTANDARD ANALYSIS, AND
THEIR CONNECTIONS

DAGNORMANNAND SAM SANDERS

Abstract. We investigate the connections between computability theory and Nonstandard Analysis. In
particular, we investigate the two following topics and show that they are intimately related.

(T.1) A basic property of Cantor space 2N is Heine–Borel compactness: for any open covering of
2N , there is a finite subcovering. A natural question is: How hard is it to compute such a finite
subcovering? We make this precise by analysing the complexity of so-called fan functionals that
given anyG : 2N → N, output a finite sequence 〈f0 , . . . , fn〉 in 2N such that theneighbourhoods
defined from fiG(fi ) for i ≤ n form a covering of 2N .

(T.2) A basic property of Cantor space in Nonstandard Analysis is Abraham Robinson’s nonstandard
compactness, i.e., that every binary sequence is “infinitely close” to a standard binary sequence.
We analyse the strength of this nonstandard compactness property of Cantor space, compared
to the other axioms of Nonstandard Analysis and usual mathematics.

Our study of (T.1) yields exotic objects in computability theory, while (T.2) leads to surprising results in
Reverse Mathematics. We stress that (T.1) and (T.2) are highly intertwined, i.e., our study is holistic in
nature in that results in computability theory yield results in Nonstandard Analysis and vice versa.

§1. Introduction. We connect two seemingly unrelated fields, namely computabil-
ity theory and Nonstandard Analysis. We assume basic familiarity with these fields,
and theassociatedprogramReverseMathematics (RMherefafter) foundedbyFried-
man. We refer to [63, 64] for an overview of, and [67] for an introduction to, RM.
We do provide a brief introduction to Nonstandard Analysis and RM in Section 2.
In a nutshell, we shall establish the following results.
Topic (T.1): We study two new classes of functionals, namely the special fan
functionals, also called Θ-functionals, and the (computationally weaker) weak fan
functionals, also called Λ-functionals. Intuitively speaking, a Θ-functional com-
putes a finite subcovering for Cantor space from an uncountable covering, while
a Λ-functional provides such a subcover “in the limit.” We show that Θ and Λ-
functionals are easy to compute in Brouwer’s intuitionistic1 mathematics but hard
to compute in classical mathematics: the intuitionistic fan functional MUC com-
putes Θ and Λ-functionals, but the arithmetical comprehension functional ∃2 does
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not (and the same for any type two functional); the classical ∃3, which gives rise
to full second-order arithmetic, computes Θ- and Λ-functionals. Thus, the latter’s
first-order strength and computational hardness diverge significantly. We also study
the computational power of the combination of resp. Θ- and Λ-functionals with the
functional ∃2; these combinations diverge in strength quite a lot: for instance, we
show that the combination of any Θ-functional and ∃2 is equivalent to the higher-
order version of ATR0, i.e., two relatively weak objects yield a much stronger one.
By contrast, certain Λ-functionals do not compute more functions than ∃2, i.e., the
former are far weaker than ATR0.
Topic (T.2): we study the nonstandard counterparts2 of the “Big Five” systems

WKL0, ACA0, and Π11-CA0 of RM as follows: resp. the nonstandard compactness of
Cantor space STP and the Transfer axiom limited to Π01-formulas Π

0
1-TRANS,

and limited to Π11-formulas Π
1
1-TRANS. While these Big Five systems are lin-

early ordered as Π11-CA0 → ACA0 → WKL0, we show the nonimplications
Π01-TRANS �→ STP �← Π11-TRANS for the respective nonstandard counterparts.
We prove similar results for LMP, the nonstandard counterpart ofWWKL0. By way
of a surprise, we show that the combination of STP (resp. LMP) with Π01-TRANS,
can (resp. cannot) proveATR0 relative to the standardworld. It should be noted that
WKL0 andWWKL0 (and hence STP and LMP) are “very close3” in terms of logical
strength.
Surprising as this may seem to the uninitiated, topics (T.1) and (T.2) are inti-
mately connected as follows: (non)computability results in (T.1) are obtained
directly from (non)implications in (T.2), and vice versa. In fact, Θ- and Λ-
functionals emerge naturally from STP and LMP when studying the computational
content of Nonstandard Analysis. Moreover, instances of the nonstandard axiom
Transfer give rise to (well-known) comprehension and choice functionals, such as
the aforementioned ∃2. What is more, the fact that ∃2 and anyΘ-functional together
compute a realiser for ATR0 is proved (for the first time) via Nonstandard Analysis.
With regard to the structure of the article, we introduce RM and Nonstandard
Analysis in Section 2. In Sections 3.1 and 3.3, we introduce the special and weak
fan functionals via specifications of their behaviour. Their basic computational
properties are investigated in Sections 3.1–3.3, namely that no type two functional
(including the Suslin functional corresponding to Π11-CA0) can compute any Θ- or
Λ-functional in the sense4 of Kleene’s schemes S1-S9 ([30]; see also [38]). We show
that ∃3, the functional corresponding to full second-order arithmetic, computes
Θ- and Λ-functionals, while there is a Λ-functional which does not compute any
Θ-functional, even together with ∃2.

2The principles STP and LMP are called the nonstandard counterparts of resp.WKL0 andWWKL0
in [27, 28, 65]. That e.g., Π01-TRANS is (or: should be) the nonstandard counterpart of arithmetical
comprehension, follows from [60, Section 4.3]. In the latter, it is shown that the translation from
[70] converts Π01-TRANS into arithmetical comprehension as in Feferman’s mu functional. Moreover,
Π01-TRANS and Π11-TRANS imply respectively ACA0 and Π11-CA0; the former also yield conservative
extensions of the latter.
3There is no natural theorem betweenWKL0 andWWKL0 in the Reverse Mathematics ‘zoo’ ([11])

or the fine-grainedWeihrauch degrees, as discussed in Remark 6.10.
4We always useKleene’s schemes S1-S9 as themeaning of “computable” in this article, unless explicitly

stated otherwise.
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We establish in Section 4.1 basic results in theRMofNonstandardAnalysis using
well-known results in computability theory. In Section 4.2, we establish part of the
above results regarding STP, Π01-TRANS, and Π

1
1-TRANS from (T.2) by making

heavy use of the results in Section 3. For instance, negative results in (T.1) are
used to obtain negative results in (T.2). Furthermore, we study the computational
properties of Θ andΛ-functionals in detail in Section 5. As we shall observe, there is
a Λ-functional closed on the hyperarithmetical, while there is no such Θ-functional.
This difference then gives rise to the following in Section 6:Π01-TRANS+STP proves
ATR relative to the standard world, while Π01-TRANS+ LMP does not. We discuss
connections to Kohlenbach’s generalisations ofWKL in Section 6.4. We summarise
our results in Section 7 and provide directions for further research.
Finally, this article connects computability theory and Nonstandard Analysis.
The first author contributed most results in the former, while the second author
did so for the latter. However, many questions were answered by translating them
from one field to the other, solving them, and translating everything back, i.e., both
authors contributed somehow to most of the article. As the reader will agree, our
results are holistic in nature: results in computability theory give rise to results in
Nonstandard Analysis and vice versa. In other words, the latter two fields turn out
to be intimately connected, and this article establishes some of these connections.
This article is the first of a series by the authors; the second ([46]) and third ([47])
article have also been published already.

§2. Background: Internal set theory and Reverse Mathematics. In this section, we
introduce Nelson’s axiomatic approach to NonstandardAnalysis internal set theory
([42]), and it fragments based on Peano arithmetic from [70]. We also briefly sketch
Friedman’s foundational program Reverse Mathematics.

2.1. Internal set theory and its fragments.

2.1.1. Internal set theory. In Nelson’s syntactic approach to Nonstandard Anal-
ysis ([42]), as opposed to Robinson’s semantic one ([51]), a new predicate ‘st(x),’
read as x is standard is added to the language of ZFC, the usual foundation of
mathematics. The notations (∀stx) and (∃sty) are short for (∀x)(st(x) → · · · ) and
(∃y)(st(y) ∧ · · · ). A formula is called internal if it does not involve ‘st,’ and exter-
nal otherwise. The three external axioms Idealisation, Standard Part, and Transfer
govern the new predicate ‘st’; They are respectively defined5 as:

(I) (∀st finx)(∃y)(∀z ∈ x)ϕ(z, y) → (∃y)(∀stx)ϕ(x, y), for any internal ϕ.
(S) (∀stx)(∃sty)(∀stz)

(
(z ∈ x ∧ ϕ(z))↔ z ∈ y

)
, for any ϕ.

(T) (∀stt)
[
(∀stx)ϕ(x, t) → (∀x)ϕ(x, t)

]
, where ϕ(x, t) is internal, and only has

free variables t, x.

The system IST is just ZFC extended with the aforementioned external axioms; IST
is a conservative extension of ZFC for the internal language, as proved in [42].
Clearly, the extension from ZFC to IST can also be done for subsystems of the
former. Such extensions are studied in [70] for the classical and constructive formal-
isations of arithmetic, i.e., Peano arithmetic and Heyting arithmetic. In particular,

5The superscript “fin” in (I) means that x is finite, i.e., its number of elements are bounded by a
natural number.
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the systems studied in [70] are E-HA� and E-PA� , respectively Heyting and Peano
arithmetic in all finite types and the axiom of extensionality. We refer to [33, Section
3.3] for the exact definitions of the (mainstream in mathematical logic) systems
E-HA� and E-PA� . We introduce in Section 2.1.2 the system P, the (conservative)
extension of E-PA� with fragments of the external axioms of IST.
Finally, E-PA�∗ is the definitional extensions of E-PA� with types for finite
sequences, as in [70, Section 2]. For the former system, we require some notation.

Notation 2.1 (Finite sequences). The systems E-PA�∗ and E-HA�∗ are defini-
tional extensions of higher-order Peano and Heyting arithmetic with a dedicated type
for finite sequences of objects of type �, namely �∗. Since the usual coding of pairs of
numbers goes through in both, there is an easy isomorphism between 0 and 0∗.We point
out the difference between ‘s� ’ and ‘〈s�〉,’ where the former is the object s of type �,
and the latter is the sequence of type �∗ with only element s�. The empty sequence for
the type �∗ is denoted by 〈〉� , usually with the typing omitted. Furthermore, we denote
by ‘|s | = n’ the length of the finite sequence s�∗ = 〈s�0 , s

�
1 , . . . , s

�
n−1〉, where |〈〉| = 0,

i.e., the empty sequence has length zero. For sequences s�
∗
, t�

∗
, we denote by ‘s ∗ t’ the

concatenation of s and t, i.e., (s ∗ t)(i) = s(i) for i < |s | and (s ∗ t)(j) = t(j − |s |)
for |s | ≤ j < |s | + |t|. For a sequence s�∗ , we define sN := 〈s(0), s(1), . . . , s(N)〉
for N 0 < |s |. For a sequence α0→� , we also write αN = 〈α(0), α(1), . . . , α(N)〉
for any N 0. By way of shorthand, q� ∈ Q�∗ abbreviates (∃i < |Q|)(Q(i) =� q).
Finally, we shall use x, y, t, . . . as short for tuples x�00 , . . . x

�k
k of possibly different

type �i .

2.1.2. The classical system P. We now introduce the system P, a conservative
extension of E-PA� with fragments of Nelson’s IST.
To this end, we first introduce the base system E-PA�∗st . We use the same definition
as [70, Definition 6.1], where E-PA�∗ is the definitional extension of E-PA� with
types for finite sequences as in [70, Section 2]. The set T ∗ is defined as the collection
of all the constants in the language of E-PA�∗.

Definition 2.2. The system E-PA�∗st is defined as E-PA
�∗ + T ∗

st + IAst, where T ∗
st

consists of the following axiom schemas.

(1) The schema6 st(x) ∧ x = y → st(y),
(2) The schema providing for each closed term t ∈ T ∗ the axiom st(t).
(3) The schema st(f) ∧ st(x)→ st(f(x)).
The external induction axiom IAst states that for any (possibly external) Φ:

Φ(0) ∧ (∀stn0)(Φ(n)→ Φ(n + 1))→ (∀stn0)Φ(n). (IAst)

Secondly, we introduce some essential fragments of IST studied in [70].

Definition 2.3 (External axioms of P).

(1) HACint: For any internal formula ϕ, we have

(∀stx�)(∃sty�)ϕ(x, y) →
(
∃stF �→�

∗)
(∀stx�)(∃y� ∈ F (x))ϕ(x, y), (2.1)

6The language of E-PA�∗st contains a symbol st� for each finite type �, but the subscript is essentially
always omitted. Hence T ∗

st is an axiom schema and not an axiom.
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(2) I: For any internal formula ϕ, we have

(∀stx�
∗
)(∃y�)(∀z� ∈ x)ϕ(z, y) → (∃y�)(∀stx�)ϕ(x, y),

(3) The system P is E-PA�∗st + I+ HACint.

Note that I andHACint are fragments ofNelson’s axioms Idealisation andStandard
part. By definition, F in (2.1) only provides a finite sequence of witnesses to (∃sty),
explaining its name Herbrandized Axiom of Choice.
The system P is connected to E-PA� by Theorem 2.4 below which expresses
that we may obtain effective results as in (2.3) from any theorem of Nonstandard
Analysis which has the same form as in (2.2). The scope of this theorem includes
the Big Five systems of Reverse Mathematics ([58]), the Reverse Mathematics zoo
([61]), and both classical and higher-order computability theory ([46,55,59]).

Theorem 2.4 (Term extraction). If Δint is a collection of internal formulas and �
is internal, and

P+ Δint � (∀stx)(∃sty)�(x, y, a), (2.2)

then one can extract from the proof a sequence of closed terms t in T ∗ such that

E-PA�∗ + Δint � (∀x)(∃y ∈ t(x))�(x, y, a). (2.3)

Proof. See [55, Section 2] or [58, Section 2]. The proof is based on the functional
interpretation Sst from [70]. �
Curiously, the previous theorem is neither explicitly listed nor proved in [70]. For
the rest of this article, the notion normal form shall refer to a formula as in (2.2),
i.e., of the form (∀stx)(∃sty)ϕ(x, y) for ϕ internal.
Finally, the previous theorems do not really depend on the presence of full Peano
arithmetic. We shall study the following weaker systems.

Definition 2.5 (Higher-order Reverse Mathematics).

(1) Let E-PRA� be the system defined in [34, Section 2] and let E-PRA�∗ be its
definitional extension with types for finite sequences as in [70, Section 2].

(2) (QF-AC�,�) For every quantifier-free internal formula ϕ(x, y), we have

(∀x�)(∃y�)ϕ(x, y)→ (∃F �→�)(∀x�)ϕ(x, F (x)) (2.4)

(3) The system RCA�0 is E-PRA
� + QF-AC1,0.

The system RCA�0 is Kohlenbach’s base theory of higher-order Reverse Mathemat-
ics as introduced in [34, Section 2]. We permit ourselves a slight abuse of notation
by also referring to the system E-PRA�∗ + QF-AC1,0 as RCA�0 .

Corollary 2.6. The previous theorem and corollary go through for P and E-PA�∗

replaced by P0 ≡ E-PRA�∗ + T ∗
st + HACint + I+ QF-AC1,0 and RCA�0 .

Proof. The proof of [70, Theorem 7.7] goes through for any fragment of E-PA�∗

which includes EFA, sometimes also called IΔ0+EXP. In particular, the exponential
function is (all what is) required to easily manipulate finite sequences. �
We note that Ferreira and Gaspar present a system similar to P in [13], which
however is less suitable for our purposes.
Finally, we discuss the exact connection between our systems of Nonstandard
Analysis and computability theory provided by Theorem 2.4. The crucial point
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here is that in the syntactic theory of Nonstandard Analysis, the usual quantifiers
∃ and ∀ play the role of uniform quantifiers (see [5]) which are ignored by the
functional interpretation Sst from [70] used in the proof of Theorem 2.4, while
the standard quantifiers ∃st and ∀st are given computational meaning. Indeed, the
functional interpretation Sst applied to the proof of (2.2) yields a term t(x) in
which the (∀stx) quantifier in (2.2) describes the input variables, while the (∃sty)
quantifier describes the output variables. This gives each of the nonstandard axioms
a clear computational meaning entirely independent of Nonstandard Analysis per
se, which may be of comfort to some who find Nonstandard Analysis alien. Those
interested in this kind of development should consult [60]. The following remark
provides more intuition regarding applications of Theorem 2.4.

Remark (Using term extraction). First of all, term extraction as in Theorem 2.4
is restricted to normal forms. We now show that normal forms are closed under
implication, as follows. Let ϕ,� be internal and consider the following implication
between normal forms:

(∀stx)(∃sty)ϕ(x, y) → (∀stz)(∃stw)�(z,w). (N1)

Since standard functionals have standard output for standard input, (N1) implies

(∀st	)
[
(∀stx)ϕ(x, 	(x)) → (∀stz)(∃stw)�(z,w)

]
. (N2)

Bringing all standard quantifiers outside, we obtain the following normal form:

(∀st	, z)(∃stw, x)
[
ϕ(x, 	(x))→ �(z,w)

]
, (N3)

as the formula in square brackets is internal. Now, (N3) is equivalent to (N2), but
one usually weakens the latter as follows:

(∀st	, z)(∃stw)
[
(∀x)ϕ(x, 	(x)) → �(z,w)

]
, (N4)

as (N4) is closer to the usual mathematical definitions.
Secondly, assuming (N1) is provable in P, so is (N4) and we obtain a term t with

(∀	, z)(∃w ∈ t(	, z))
[
(∀x)ϕ(x, 	(x))→ �(z,w)

]
(N5)

being provable in E-PA�∗. We now omit the term t and bring all quantifiers inside
again, yielding that E-PA�∗ proves:

(∃	)(∀x)ϕ(x, 	(x)) → (∀z)(∃w)�(z,w). (N6)

Finally, we shall often shorten the below proofs by just providing normal forms and
jumping straight from (N1) to (N5) or (N6) whenever possible.

2.1.3. Notations and conventions. We introduce notations and conventions for P.
First of all, we mostly use the same notations as in [70].

Remark 2.7 (Notations). We write (∀stx�)Φ(x�) and (∃stx�)Ψ(x�) as short for
(∀x�)

[
st(x�) → Φ(x�)

]
and (∃x�)

[
st(x�) ∧ Ψ(x�)

]
. A formula A is internal if it

does not involve st. The formula Ast is defined from A by appending ‘st’ to all
quantifiers (except bounded number quantifiers).

Secondly, we use the usual extensional notion of equality.
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Remark 2.8 (Equality). The system E-PA�∗ includes equality between natural
numbers =0 as a primitive. Equality =� and inequality ≤� for x�, y� is:

[x =� y] ≡ (∀z�11 . . . z
�k
k )[xz1 . . . zk =0 yz1 . . . zk ], (2.5)

[x ≤� y] ≡ (∀z�11 . . . z
�k
k )[xz1 . . . zk ≤0 yz1 . . . zk ], (2.6)

if the type � is composed as � ≡ (�1 → · · · → �k → 0). In the spirit of Nonstandard
Analysis, we define approximate equality ≈� as follows (with the type � as above):

[x ≈� y] ≡ (∀stz�11 . . . z
�k
k )[xz1 . . . zk =0 yz1 . . . zk ] (2.7)

All the above systems include the axiom of extensionality for all ϕ�→� as follows:

(∀x�, y�)
[
x =� y → ϕ(x) =� ϕ(y)

]
. (E)

However, as noted in [70, p. 1973], the so-called axiom of standard extensionality
(E)st is problematic and cannot be included in P or P0.

Thirdly, P and P0 prove the overspill principle, which expresses that no internal
formula captures the standardness predicate exactly.

Theorem 2.9. The systems P and P0 prove overspill, i.e., for any internal ϕ:

(∀stx�)ϕ(x)→ (∃y�)
[
¬st(y) ∧ ϕ(y)

]
, (OS)

Proof. See [70, Proposition 3.3]. �
Remark 2.10 (Using HACint and I). By definition, HACint produces a func-
tional F �→�

∗
which outputs a finite sequence of witnesses. However, HACint pro-

vides an actual witnessing functional assuming (i) � = 0 in HACint and (ii) the
formula ϕ from HACint is “sufficiently monotone” as in: (∀stx�, n0, m0)

(
[n ≤0

m ∧ ϕ(x, n)] → ϕ(x,m)
)
. Indeed, in this case one simply defines G�+1 by

G(x�) := maxi<|F (x)| F (x)(i) which satisfies (∀stx�)ϕ(x,G(x)). To save space
in proofs, we will sometimes skip the (obvious) step involving the maximum
of finite sequences, when applying HACint. We assume the same convention for
terms obtained from Theorem 2.4, and applications of the contraposition of
idealisation I.

2.2. IntroducingReverse Mathematics. ReverseMathematics (RM) is a program
in the foundations of mathematics initiated around 1975 by Friedman ([15, 16])
and developed extensively by Simpson ([64]) and others. We refer to [63,64] for an
overview of RM, and to [67] for a layman introduction; we do sketch some aspects
of RM essential to this article.
The aim of RM is to find the axioms necessary to prove a statement of ordinary
mathematics, i.e., dealing with countable or separable objects. The classical7 base
theory RCA0 of computable8 mathematics is always assumed. Thus:

The aim of RM is to find the minimal axioms A such that RCA0 proves [A → T ]
for statements T of ordinary mathematics.

Surprisingly, once the minimal axioms A have been found, we almost always also
have RCA0 � [A↔ T ], i.e., not only can we derive the theorem T from the axioms

7In Constructive Reverse Mathematics ([26]), the base theory is based on intuitionistic logic.
8The system RCA0 consists of induction IΣ1, and the recursive comprehension axiom Δ01-CA.
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A (the “usual” way of doing mathematics), we can also derive the axiom A from
the theorem T (the “reverse” way of doing mathematics). In light of these reversals,
the field was baptised Reverse Mathematics. Perhaps even more surprisingly, in the
majority9 of cases, for a statement T of ordinary mathematics, either T is provable
in RCA0, or the latter proves T ↔ Ai , where Ai is one of the logical systems
WKL0,ACA0, ATR0 or Π11-CA0. The latter together with RCA0 form the Big Five
and the aforementioned observation that most mathematical theorems fall into
one of the Big Five categories, is called the Big Five phenomenon ([40, p. 432]).
Furthermore, each of the Big Five has a natural formulation in terms of (Turing)
computability (see, e.g., [64, I.3.4, I.5.4, I.7.5]). As noted by Simpson in [64, I.12],
each of theBigFive also corresponds (sometimes loosely) to a foundational program
in mathematics.
Now, the logical framework for RM is second-order arithmetic, i.e., only natural
numbers and sets thereof are available. For this reason higher-order objects such as
R→ R-functions and topologies are not available directly. For instance, continuous
functions are represented in RM by so-called codes (see, e.g., [64, II.6.1] and [41]),
while discontinuous functions are represented by sequences of such codes ([64, X.1]).
Kohlenbach shows in [35, Section 4] that the use of codes to represent continuous
functions does not affect the RMofWKL0. He has also introduced higher-orderRM
in which discontinuous functions arepresent (see [34, Section 2] andDefinition 2.5).
The authors show in [48] that the use of codes in measure theory does have a major
impact on the logical strength of basic convergence theorems, and hence RM.
Finally, we consider an interesting observation regarding the Big Five systems of
Reverse Mathematics, namely, that these five systems satisfy the strict implications:

Π11-CA0 → ATR0 → ACA0 →WKL0 → RCA0. (2.8)

By contrast, there are many incomparable logical statements in second-order arith-
metic. For instance, a regular plethora of such statements may be found in the
Reverse Mathematics zoo in [11]. The latter is intended as a collection of theorems
which fall outside of the Big Five classification of RM. As detailed in Section 6,
special fan functionals do not fit into the usual hierarchy of (higher order) RM.

§3. Special fan functionals and their computational properties. In this section, we
study the relationship between the new special andweak fan functionals and existing
functionals like ∃2. As a main result, we show that the latter (and in fact any type
two functional) cannot compute any special or weak fan functional, in the sense of
Kleene’s S1-S9 (see [30,38] for the latter).
As to their provenance, special fan functionals were first introduced in [55, Sec-
tion 3] in the study10 of theGandy-Hyland functional ([20]). Special fan functionals
are part of classical mathematics in that they can be defined in a (relatively strong)

9Exceptions are classified in the so-called Reverse Mathematics zoo ([11]).
10In a nutshell, theGandy–Hyland functionalΓ is defined “in termsof itself” as follows: Γ(Y 2, s0

∗
) :=

Y (s ∗0∗
n.Γ(Y, s ∗n)). It is shown in [55] that one can replace this definition by a primitive recursive one
involving nonstandard numbers. In particular, one “only” needs to apply the definition of Γ for N -many
times, for nonstandard N , to obtain a primitive recursive functional. One uses STP defined below to
obtain this result, and applying term extraction as in Theorem 2.4 then yields that Γ is computable in
terms of any Θ-functional and other functionals.
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fragment of set theory (corresponding to full second-order arithmetic) by Theo-
rem 3.9 in Section 3.2. Furthermore, special fan functionals may be obtained from
the intuitionistic fan functional, as shown in Section 3.1. This result shows that the
existence of a special fan functional has quiteweak first-order strength in contrast to
its aforementioned considerable computational hardness in classical mathematics.
Finally, to show that special fan functionals are not an isolated accident, we
introduce the (strictly) weaker class ofweak fan functionals in Section 3.3. Intuitively
speaking, special fan functionals are based on (a nonstandard version of) WKL0
from Section 2.2 while weak fan functionals are based on (a nonstandard version
of) the weakerWWKL0, also introduced in Section 3.3. It should be noted that our
below definition of the fan functionals is different from the (original) definition used
in e.g., [55]. That these definitions are equivalent is shown in [46, Section 2.6].

3.1. The special and intuitionistic fan functionals. In this section, we define the
class of special fan functionals, also called Θ-functionals, and show that the intu-
itionistic fan functional can compute special fan functionals. In particular, the name
‘special fan functional’ derives from this relative computability result.
Intuitively, anyΘ-functional outputs a finite subcovering on input an uncountable
covering of 2N. We usually simplify the type of these fan functionals to 3. We
reserve the symbol Θ to denote special fan functionals. It goes without saying
that Θ-functionals are not unique: just add extra binary sequences to the finite
subcovering.
We write ‘f ∈ [�]’ for f|�| =0∗ �, where �∗ is the type of finite sequences of type
� objects. For w�

∗
= 〈t0, . . . , tk〉, we write |w| = k + 1 and w(i) = ti for i < |w|.

These finite sequence notations are discussed in detail in Notation 2.1.

Definition 3.1 (Special fan functionals). SFF(Θ) is as follows for Θ2→1
∗
:

(∀G2)(∀f1 ≤ 1)(∃g ∈ Θ(G))(f ∈ [gG(g)]). (3.1)

Any functional Θ satisfying SFF(Θ) is referred to as a special fan functional.

Following (3.1), any functional G2 gives rise to a canonical covering
∪f∈2N [fG(f)] of Cantor space, and Θ(G) is a finite subcovering thereof, i.e.,
∪i≤k [fiG(fi)] also covers 2N in case Θ(G) = 〈f0, . . . , fk〉. Note that Cousin
([10]) and Lindelöf ([37]) make use of such canonical coverings (forRn) rather than
the modern/general notion of covering. In light of (3.1), special fan functionals
may be called realisers for the Heine–Borel theorem or Cousin lemma for C .
We stress thatG2 inSFF(Θ)maybe discontinuous and thatKohlenbachhas argued
for the study of discontinuous functionals in higher-order RM (see Section 2.2). As
it turns out, Θ-functionals are intimately connected to Tao’s notion ofmetastability,
as explored in [57].
Secondly, we define the intuitionistic fan functional Ω3 (see [34, Section 3] and
[68, 2.6.6]). Note that combining the latter with a discontinuous functional like ∃2
leads to a contradiction.

(∀Y 2)(∀f1, g1 ≤1 1)(fΩ(Y ) = gΩ(Y )→ Y (f) = Y (g)). (MUC(Ω))

There are a number of equivalent formulations of the intuitionistic fan functional
(e.g., outputting a supremum for every Y 2 on Cantor space rather than a modulus
of uniform continuity), corresponding to the RM-equivalences from [64, IV.2.3].
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As to the logical strength of (∃Ω3)MUC(Ω), the latter yields a conservative exten-
sion of WKL0 by the following theorem, where RCA

2
0 is just the base theory RCA0

formulated with function variables (see [34, Section 2] for details and definitions).

Theorem 3.2. RCA�0 +(∃Ω3)MUC(Ω) is a conservative extension ofRCA20+WKL.

Proof. As suggested in [34, Section 3], one can modify the proofs in [68, Section
2.6] to establish the conservation result in the theorem, but it seems worthwhile to
discuss some details. Indeed, in the latter reference, the so-called ECF-interpretation
is defined which, intuitively speaking, replaces all higher-order functionals (of type
two or higher) by type one codes (in the sense of Reverse Mathematics).
Now, the ECF-interpretation of (∃Ω3)MUC(Ω) expresses that there is a code α1

which yields a modulus of uniform continuity on Cantor space on input a code �1

representing an (automatically continuous) type two functional. As follows from
the discussion in [38, p. 459], the ECF-interpretation of (∃Ω3)MUC(Ω) is equivalent
to weak König’s lemma. Alternatively, one can explicitly define the aforementioned
code α1 and show that it has the required properties using the contraposition of
WKL, as done in [68, 2.6.6] and [43, p. 101]. �
We note that the ECF-interpretation is related to function realizability as in
Kleene-Vesley ([31]). Next, recall that the fan theorem FAN is the classical
contraposition ofWKL, as follows:

(∀T ≤1 1)
[
(∀� ≤1 1)(∃m)(�m �∈ T )→ (∃k0)(∀� ≤1 1)(∃i ≤ k)(�i �∈ T )

]
.
(FAN)

We also introduce the effective version of the fan theorem as follows.

Definition 3.3 (Effective fan theorem).

(∀T 1 ≤1 1, g2)
[
(∀α ≤1 1)(αg(α) �∈ T )→ (∀� ≤1 1)(�h(g, T ) �∈ T )

]
.

(FANef(h))

Clearly, the existence of h as in the effective fan theorem implies FAN in RCA�0 .
Furthermore, with a further minimum of the axiom of choice QF-AC2,1, the latter
also follows from the former. We have the following theorem.

Theorem 3.4. There are terms s3→3, t3→3 such that E-PA�∗ proves:

(∀Ω3)(MUC(Ω)→ SFF(t(Ω))) ∧ (∀Θ3)(SFF(Θ)→ FANef(s(Θ))). (3.2)

Proof. The second part is immediate. For the first part, let Ω be as in MUC(Ω)
and define Θ(g) to consist of the finite sequence of binary sequences � ∗00 . . . where
|�| = k0 ∧ � ≤0∗ 1 for k0 := max|�|=Ω(g)∧�≤0∗1 g(� ∗ 00 . . . ). Since g in uniformly
continuous on 2N byMUC(Ω), we clearly have SFF(Θ). �
The previous proof seems to go through in constructive mathematics.

Corollary 3.5. RCA�0 +(∃Θ3)SFF(Θ) is a conservative extension ofRCA20+WKL.

Proof. Immediate by combining the theorem and Theorem 3.2. Alternatively,
one readily verifies that the ECF-translation of (∃Θ)SFF(Θ) is equivalent toWKL,
just like for (∃Ω)MUC(Ω). �
We now discuss the connection of Θ-functionals to the classical fan functional
and Nonstandard Analysis.
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Remark 3.6. First of all, the first part of Theorem 3.4 was first proved indirectly
in [55, Section 3] by applying Theorem 2.4 to the normal form of NUC → STP,
where

(∀f ≤1 1)(∃stg1 ≤1 1)(f ≈1 g) (STP)

(∀stY 2)(∀f1, g1 ≤1 1)(f ≈1 g → Y (f) =0 Y (g)), (NUC)

Note that NUC expresses that every type two functional is nonstandard uniformly
continuous on Cantor space, akin to Brouwer’s continuity theorem ([8]), while STP
expresses the nonstandard compactness of Cantor space as in Robinson’s theorem
(see [25, p. 42]). The implicationNUC→ STP is also proved in Theorem 6.14 below,
as it is needed for some related results. As will become clear in Theorem 4.3, the
normal form for STP gives rise to Θ-functionals, while the normal form of NUC
gives rise to the intuitionistic fan functional Ω.
Secondly, the “classical” fan functional Φ3 as in FF(Φ) below, is obtained from
the intuitionistic one by restricting the variable Y 2 in MUC(Ω) as Y 2 ∈ C , where
the latter11 formula expresses continuity as follows:

Y 2 ∈ C ≡ (∀f1)(∃N 0)(∀g1)
[
fN = gN → Y (f) = Y (g)

]
. (3.3)

(∀Y 2 ∈ C )(∀f, g ≤1 1)(fΦ(Y ) = gΦ(Y )→ Y (f) = Y (g)), (FF(Φ))

By combining [35, Propositions 4.4 and 4.7], the “arithmetical comprehension”
functional ∃2 (also defined in Section 3.2) can compute (Kleene S1-S9) the classical
fan functional, while the proof of Theorem 3.4 implies that the special fan functional
restricted to Y 2 ∈ C can be computed from the classical fan functional.

By the previous remark, Θ-functionals can be viewed as a generalisation of (a
version of) the classical fan functional to discontinuous functionals. Such a gener-
alisation is natural in our opinion, as it is well known that, e.g., restricting oneself
to recursive reals and functions, as in the Russian school of recursive mathemat-
ics, yields many strange and counter-intuitive results (see [4, IV]). In particular,
since discontinuous functions are studied in mainstream mathematics since Rie-
mann’s Habilation ([32, p. 115]), it is reasonable to study the generalisations of
known functionals to discontinuous inputs (assuming this is well defined). Further-
more, Θ-functionals can be viewed as a version of the classical fan functional with
nonstandard continuity instead of the epsilon-delta variety by Section 6.4.
In light of the previous observations regarding the classical and intuitionistic fan
functionals, special fan functionals appear to be a rather weak objects. Looks can
be deceiving, as we establish in Theorem 3.7 that no type two functional can (Kleene
S1-S9) compute a special fan functional. This includes the Suslin functional which
corresponds to the strongest Big Five system Π11-CA0 of RM. Furthermore, the
combination of a Θ-functional and ∃2, i.e., higher-order ACA0 to be introduced in
Section 3.2, turns out to be quite strong, as shown in Sections 5 and 6.

11Below, we also use C to denote Cantor space, but no confusion will arise between Y 2 ∈ C and
f1 ∈ C due to the different types.
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3.2. The special fan functional and comprehension functionals. We study the rela-
tionship between special fan functionals and comprehension functionals. In partic-
ular, we show that the former cannot be computed by the following comprehension
functional (or any type two functional):

(∃ϕ2)(∀f1)
[
(∃n)(f(n) = 0)↔ ϕ(f) = 0

]
. (∃2)

where we follow the notation from [34]. To simplify some of the below theorems
we reserve ‘∃2’ for the unique functional ϕ2 as in (∃2). Furthermore, we make our
notion of computability precise as follows.

(I) We adopt ZFC set theory as the official metatheory for all results, unless
explicitly stated otherwise.

(II) We adopt Kleene’s notion of higher-order computation as given by his nine
clauses S1-S9 (see [30,38]) as our official notion of computable.

We assume basic familiarity with computability theory, but introduce aspects of
higher-order computability theory as we need them. We shall often use set theoretic
notation when not explicitly working in E-PA� . With these conventions in place, we
can prove the following theorem.

Theorem 3.7. There is no functionalΘ3 satisfying SFF(Θ) computable in ∃2.
Proof. Assume thatΘ satisfyingSFF(Θ) is computable in∃2. Let h2 be any partial
functional computable in ∃2 which is also total on the class of hyperarithmetical
functions; let g2 be any total extension of h. By assumption, Θ applied to g will
yield a hyperarithmetical finite sequence Θ(g).
We now define a particular h20 using Gandy selection ([19] and [38, Theo-
rem 5.4.5]): let e0 be the least number e such that e is an index for α as a
hyperarithmetical function in some fixed canonical indexing of the hyperarithmeti-
cal sets. By least we mean of minimal ordinal rank, and then of minimal numerical
value among those. Define h0(α) = e0 + 2 for the aforementioned e0 and let g0
be a total extension of h0. Then Θ(g0) will consist of a finite list 〈α1, . . . , αk〉 of
hyperarithmetical functions, and the union of the neighbourhoods determined by
the αi(g(αi)) is not of measure 1. Thus these neighbourhoods cannot cover Cantor
space. This contradicts the assumption on Θ. �
The previous argument is a modification of the proof of the noncomputability of
the fan functional originally to be found in [20]. In a letter to Kreisel around 1960
(exact year unknown), Gandy gave a measure-theoretic argument even closer to the
one presented here.

Corollary 3.8. Let ϕ2 be any type two functional. There is no functional Θ3 as
in SFF(Θ) computable in ϕ.

Proof. The proof of Theorem 3.7 relativises to type 2 functionals computing
∃2. �
We now list some well-known type two functionals which will also be used below.
Feferman’s search operator as in (�2) (see e.g., [1, Section 8]) is equivalent to (∃2)
over Kohlenbach’s system RCA�0 by [36, Section 3]:

(∃�2)
[
(∀f1)

(
(∃n0)(f(n) = 0)→ f(�(f)) = 0

)]
, (�2)



COMPUTABILITY THEORY ANDNONSTANDARDANALYSIS 13

and gives rise to higher-order ACA0. The Suslin functional (S2) and the related (�1)
(see [1, Section 8.4.1], [34, Section 1], and [54, Section 3]) give rise to higher-order
Π11-CA0:

(∃S2)(∀f1)
[
(∃g1)(∀x0)(f(gn) = 0)↔ S(f) = 0

]
. (S2)

(∃�1→11 )(∀f1)
[
(∃g1)(∀x0)(f(gn) = 0)→ (∀x0)(f(�1(f)n) = 0)

]
. (�1)

On the other hand, full second-order arithmetic as given by (∃3) suffices to compute
special fan functionals, as we show in Theorem 3.9 just below.

(∃
3)(∀Y 2)
[
(∃f1)(Y (f) = 0)↔ 
(Y ) = 0

]
. (∃3)

Similar to the case for ∃2, we reserve ‘∃3’ for the unique functional 
3 from (∃3). We
do the same for other functionals, like �2, �21, S

2, . . . introduced above.

Theorem 3.9. A functionalΘ3 as in SFF(Θ) can be computed from ∃3.
Proof. Wefirst prove the existence of a functionalΘ3 such thatSFF(Θ) inZF, i.e.,
classical set theory without the axiom of choice. We then show how the construction
can be realised as an algorithm relative to ∃3.
First of all, we introduce some definitions. Let C be Cantor space 2N with the
lexicographical ordering. If � is a finite binary sequence, we let C� be the set of
binary extensions of � in C . We let f1, g1 with indices vary over C and we let α1,
�1 etc. vary over the countable ordinals. We let h2 be a fixed total functional of type
two, and our aim is to define Θ(h). In particular, by recursion on α we will define
an increasing sequence {fα}α<ℵ1 from C . We put f0 := 
x.0 and

I (α) :=
⋃
�≤α Cf�h(f� ) and I (< α) :=

⋃
�<α Cf�h(f�).

Secondly, consider α > 0 and proceed as follows:

(I) If 
x.1 ∈ I (< α), let fα = f� for the first � such that 
x.1 ∈ Cf�h(f� ).
(II) If not, let fα be the least element not in I (< α).

By construction, the sequence offα ’swill be strictly increasing untilwe capture 
x.1,
which thus must happen after a countable number αh of steps. Clearly, the least α
such that f ∈ I (α) must be a successor ordinal for each f. Thus, let α0 = αh be
this ordinal for f = 
x.1, and let g0 be the greatest strict lower bound of Cfα0h(fα0 ).
Let α1 be this ordinal for f = g0 and let g1 be the greatest strict lower bound of
Cfα1h(fα1 )

. Continue this process, defining a decreasing sequence α0, α1, . . . until

x.0 is captured, and we have a finite covering of C of neighbourhoods of the
form Cfαi h(fαi ) for i ≤ n for some n. We then define Θ(h) as the finite sequence
{fαi : i ≤ n}.
Now observe that {fαh(fα) : α ≤ αh} is definable as the closure set of a
nonmonotonic arithmetical inductive definition relative to h, so this set will have
complexity Δ12 relative to h. The extraction of Θ(h) is arithmetical in this set, so the
graph of Θ is Δ12, and Θ is computable in ∃3. A finer analysis is in Theorem 3.10. �
As it happens, Borel’s construction from [9, p. 52] can be applied to our notion of
canonical covering, yielding a Θ-functional in the same way as the previous proof.
We will refer to the one constructed in the proof of Theorem 3.9 as Borel’s Θ.
Moreover, one needs far less that ∃3 to capture the construction from the proof,
but it may be difficult to isolate a weaker “nice” functional in which the special
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fan functional is computable. Furthermore, we can refine the previous result to
computation via a term of Gödel’s T if we allow Feferman’s mu operator as an
additional parameter. Let SOC(
) be (∃3) without the leading existential quantifier.
We refer to [3, C.7] for an introduction to inductive definitions, while the connection
between the latter and Θ-functionals is investigated in [44].

Theorem 3.10. There is a term t(2×3)→3 of Gödel’s T such that

(∀�2, 
3)
[
[MU(�) ∧ SOC(
)]→ SFF(t(�, 
))

]
, (3.4)

and (3.4) is provable in E-PA�∗ + X, where X expresses that sets may be defined via
nonmonotonic inductive definitions, and that such sets are Δ12 in the parameters.

Proof. First of all, let Θ be as constructed in the proof of Theorem 3.9 and recall
that C denotes Cantor space. As observed in the proof of Theorem 3.9, the graph
of Θ is Σ12, i.e., the formula Θ(h

2) = 〈f11 , . . . , f1k〉 is equivalent to a Σ12-formula with
parameters as shown. Assuming this claim, there is a primitive recursive predicate
S0 such that

Θ(h2) = 〈f11 , . . . , f1k〉 ↔ (∃g1)(∀z1)(∃n0)S0
(
h, g, z, n, 〈f11 , . . . , f1k〉)

and a primitive recursive predicate S such that

Θ(h)(i) = j ↔ (∃g1)(∀z1)(∃r1)S(h, i, j, g, z, r(0)), (3.5)

where Θ(h)(i) refers tofi in the output. Hence, there is a term t in Gödel’s T which
agrees with the characteristic function of S. The exact form of S will depend on
how finite sequences are coded, and we need access to the length k of the sequence
of functions 〈f11 , . . . , f1k〉 somehow. For this, Feferman’s mu-operator is needed,
since Gödel’s T only provides bounded search.
Secondly, we eliminate all quantifiers in (3.5) via ∃3 and obtain a term t1 with
parameter ∃3 defining the characteristic function of the right-hand side of (3.5).
From this, we use Feferman’s mu to extract the values Θ(h)(i) for i = 1, . . . , k.
Thirdly, in order to prove that the term t1 has the desired property, we need axioms
proving the totality of Θ as defined via the process in the proof of Theorem 3.9. To
this end, if A is a finite set of binary sequences, we put Γ(A) := {fh(f)} where f1
is the least binary sequence not covered by

⋃
s∈A Cs , if such exists. Otherwise, we

put Γ(A) := ∅. Note that Γ is a nonmonotonic inductive arithmetical operator, and
we let Γ∞ be its closure.
With this definition, Γ∞ is a well-ordered set (for the lexicographical ordering) of
binary sequences, and such that the corresponding neighbourhoods coverC . Given
s = fαh(fα) ∈ Γ∞, we can recover fα as the least function not covered by all Ct
for t < s and t ∈ Γ∞. In this way, Θ(h) is arithmetical in Γ∞ uniformly in h. The
only “nontrivial” axiom beyond arithmetical comprehension needed to verify the
correctness of this construction is an axiom of inductive definability. �
We finish this section with a note on the use of the intuitionistic mathematics in
the formalisation of mathematics in proof assistants.

Remark 3.11. The proof assistant Nuprl is based on Martin-Löf type theory
([39,49]). To expedite the laborious process of formalisingmathematics, someproofs
in Nuprl make use of axioms of Brouwer’s intuitionistic mathematics (see e.g., [50]).
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The latter can have innocent looking classical consequences (like the existence of a
special fan functional) which however have tremendous computational hardness.

3.3. A weak version of the special fan functional. We introduce the class of weak
fan functionals which are in general strictly weaker than special fan functionals. As
will become clear in Section 5, weak fan functionals are not just “more of the same”
but occupy an important place relative to the special fan functionals.
Intuitively speaking, where Θ(G) provides a finite subcovering for the canon-
ical covering ∪g∈C [gG(g)], if Λ(G, k) = 〈f0, . . . , fm〉, then the associated finite
subcovering has measure at least 1− 1

2k , i.e., as follows:

m
(
∪i≤m [fiG(fi)]

)
≥ 1− 1

2k , (3.6)

wherem is the usual coin-tossmeasure on 2N. It is straightforward,but cumbersome,
to formally express (3.6) in our formal language.

Definition 3.12 (Weak fan functionals). WFF(Λ) is as follows for Λ(2×0)→1
∗
:

(∀G2, k0)
(
m
(
∪g∈Λ(G,k) [gG(g)]

)
≥ 1− 1

2k
)
. (3.7)

Any functional Λ satisfyingWFF(Λ) is referred to as a weak fan functional.

Weak fan functionals are not literally realisers of theorems from the literature,
but these functionals do capture the core complexity of several theorems concerning
measure-theoretic approximations, like the Vitali Covering Theorem ([72]). This is
investigated further in [48]. As it happens, weak fan functionals also arise from
nonstandard compactness, as discussed in Sections 4.2.3.
In light of the above definitions, there is a (trivial) term of Gödel’s T computing
a weak fan functional in terms of a special one. We also have the following theorem.

Theorem 3.13. There is no functionalΛ3 satisfyingWCF(Λ) which is computable
in ∃2 (or any type two functional).
Proof. Analogous to the proof of Theorem 3.7. �
As noted above, WWKL is strictly weaker than WKL, and this is reflected in
the following computability result, which is a consequence of Corollary 3.14 and
Theorem 3.31 of [46].

Theorem 3.14. There exists a functional Λ1 satisfyingWCF(Λ1) such that no Θ
satisfying SFF(Θ) is computable in Λ1 and ∃2.
Finally, Λ-functionals relate toWWKL in the samewayΘ-functionals do toWKL.

Theorem 3.15. RCA�0 + (∃Λ)WCF(Λ) is conservative over RCA20 +WWKL.

Proof. Similar to the proof of Corollary 3.5, one verifies that the ECF-
interpretation of (∃Λ3)WCF(Λ) follows fromWWKL. �

§4. From computability theory to Nonstandard Analysis. In this section, we use
(non)computability results (some established above) to obtain (negative and pos-
tive) results in Nonstandard Analysis. By way of a preliminary result and some
illustration, we first consider some well-known negative computability theoretic
results in Section 4.1 and derive some negative results in Nonstandard Analysis.
The main nonimplications in Nonstandard Analysis are proved in Section 4.2; the
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computability theoretic results from Section 3.2 are used in an essential way. Our
other conceptual result is that the RM of Nonstandard Analysis is fundamentally
different from usual RM, in that the nonstandard counterparts of the Big Five
systems behave quite differently from the originals.

4.1. Computability theory and Nonstandard Analysis. We show how to translate
well-known negative results from higher-order computability theory to negative
results in Nonstandard Analysis. The former negative results are:

(a) There is no computable functional that outputs a modulus-of-continuity on
input a continuous functional on Baire space.

(b) There is no computable functional that outputs a modulus-of-uniform-
continuity on Cantor space on input a continuous functional on Baire
space.

We now show how these translate to negative results in Nonstandard Analysis. In
particular, the negative results in items (a) and (b) are translated to proofs that
certain systems of Nonstandard Analysis cannot prove the equivalence of normal
and nonstandard continuity.
First of all, we consider the modulus-of-continuity functional Ψ as follows:

(∀Y 2 ∈ C,f1, g1)(fΨ(Y,f) = gΨ(Y,f)→ Y (f) = Y (g)). (MPC(Ψ))

From Ψ as inMPC(Ψ), one can define a discontinuous type two functional (see [12]
and [4, Theorem 19.1]). By [34, Proposition 3.7] and [33, Section 3], a discontinuous
type two functional can be used to obtain (�2) inside RCA�0 .
By the previous, there is no computable modulus-of-continuity functional. As a
consequence normal continuity (3.3) does not imply nonstandard continuity

(∀stf1)(∀g1)(f ≈1 g → Y (f) =0 Y (g)) (4.1)

without extra nonstandard axioms, by the following theorem.

Theorem 4.1. Let ϕ be internal and such that P + ϕ is consistent. The system
P+ ϕ cannot prove that

(∀stY 2 ∈ C )[(∀stf1)(∀g1)(f ≈1 g → Y (f) =0 Y (g))], (4.2)

i.e., that all ε-� continuous functionals are nonstandard continuous (on Baire
space).

Proof. Let ϕ be as in the theorem and suppose P+ ϕ proves (4.2). The latter is

(∀stY 2 ∈ C )(∀stf1)(∀g1)
(
(∀stk0)(fk =0 gk)→ Y (f) =0 Y (g)

)
with ≈1 resolved. Pushing outside the standard quantifier involving k, we obtain

(∀stY 2 ∈ C )(∀stf1)(∀g1)(∃stk)(fk =0 gk → Y (f) =0 Y (g)).

Applying idealisation I while bearing in mind Remark 2.10, we obtain:

(∀stY 2 ∈ C )(∀stf1)(∃stN)(∀g1)(fN =0 gN → Y (f) =0 Y (g)). (4.3)

Applying Theorem 2.4 to ‘P+ ϕ � (4.3),’ we obtain a term t such that

(∀Y 2 ∈ C,f1)(∃N ∈ t(Y,f))(∀g1)(fN =0 gN → Y (f) =0 Y (g))
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is provable in E-PA�∗+ϕ. Then Ψ(Y,f) := maxi<|t(Y,f)| t(Y,f)(i) is a computable
(even part of Gödel’s T ) modulus-of-continuity functional, a contradiction. �
Note that (4.2) is provable in IST by fixing standard f1 in (3.3) and applying the
contraposition of Transfer to the resulting existential formula.
Secondly, the fan functional Φ3 as in FF(Φ) was introduced by Tait as an example
of a functional not computable (Kleene S1-S9; see [20] or e.g., [38, Chapter 8]),
over the total continuous functionals. The aforementioned property of the classical
fan functional translates to the fact that normal continuity does not imply uniform
nonstandard continuity (on Cantor space), defined as follows:

(∀f1, g1 ≤1 1)(f ≈1 g → Y (f) =0 Y (g)), (4.4)

without the use of nonstandard axioms by the following theorem.
Theorem 4.2. Let ϕ be internal and such that P + ϕ is consistent. The system

P+ ϕ cannot prove that

(∀stY 2 ∈ C )(∀f1, g1 ≤1 1)(f ≈1 g → Y (f) =0 Y (g)), (4.5)

i.e., ε-� continuous functionals are nonstandard uniformly cont. on Cantor space.
Proof. Let ϕ be as in the theorem and suppose P + ϕ proves (4.5). Similar to
the proof of Theorem 4.1, (4.5) can be brought into the following form:

(∀stY 2 ∈ C )(∃stN 0)(∀f1, g1 ≤1 1)(fN =0 gN → Y (f) =0 Y (g)). (4.6)

Applying Theorem 2.4 to “P+ ϕ � (4.6),” we obtain a term t such that
(∀Y 2 ∈ C )(∃N ∈ t(Y ))(∀f1, g1)(fN =0 gN → Y (f) =0 Y (g))

is provable in E-PA�∗+ϕ. Then Φ(Y ) := maxi<|t(Y )| t(Y )(i) is a computable (even
part of Gödel’s T ) fan functional, a contradiction. �
Note that (4.5) is provable in IST by concluding (inside ZFC) from (3.3) that
Y 2 ∈ C is uniformly continuous on Cantor space as follows:

(∃N 0)(∀f1, g1 ≤1 1)(fN = gN → Y (f) = Y (g)). (4.7)

Since Y 2 in (4.5) is standard, we can apply the contraposition of Transfer to (4.7)
to obtain uniform nonstandard continuity as in (4.4).
In conclusion, we have used well-known noncomputability results to establish
nonimplications between the usual and nonstandard definitions of continuity over
the system P extended with any internal sentence. In other words, certain negative
results in computability theory imply that Transfer is essential to connect epsilon-
delta and nonstandard continuity.

4.2. Reverse mathematics and nonstandard analysis.

4.2.1. Introduction: Nonstandard counterparts of the Big Five. In section 2.2, we
observed that the Big Five of RM are linearly ordered as in (2.8). Here, we show
that the nonstandard counterparts of Π11-CA0, ACA0 on one hand, and of WKL0
andWWKL0 on the other hand, are however incomparable. Surprisingly, we make
essential use of Theorem 3.7 to establish this result, rather than taking the usual
model-theoretic12 route. Thus, the RM of Nonstandard Analysis is fundamentally

12The fact that the full axiom Transfer does not imply the full axiom Standard Part is known (over
various systems; see [7, 21]), and is established using model-theoretic techniques.
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different from usual RM, in that the nonstandard counterparts of the Big Five
systems behave quite differently from the originals.
Before introducing the aforementioned nonstandard counterparts, we should
clarify what is meant by this expression.We stress that there is no deep philosophical
meaning to be found in the words ‘nonstandard counterpart’: in case of STP and
LMP, this is just what these principles are called in the literature: see e.g., [27,
28, 65]. Furthermore, term extraction as in Theorem 2.4 converts Π01-TRANS and
Π11-TRANS into resp. (�

2) and (S2) (see [60, Section 4]), which are higher order
versions of ACA0 and Π11-CA0. Thus, the moniker ‘nonstandard counterpart’ seems
apt in this case, more so since all the aforementioned nonstandard axioms are
natural fragments of the IST-axioms Transfer and Standard Part.
We now introduce the nonstandard counterparts of the aforementioned logical
systems. Recall Nelson’s system IST and the associated fragment P which were
introduced in Section 2. The system P includes Nelson’s axiom Idealisation (formu-
lated in the language of finite types), but to guarantee a conservative extension of
Peano arithmetic, Nelson’s axiom Transfermust be omitted, while Standard Part is
weakened to HACint. Indeed, the fragment of Transfer for Π01-formulas as follows

(∀stf1)
[
(∀stn)(f(n) �= 0)→ (∀m)(f(m) �= 0)

]
(Π01-TRANS)

is the nonstandard counterpart of arithmetical comprehension as in ACA0. Similar
to how one bootstrapsΠ01-comprehension to the latter, the system P0 +Π01-TRANS
proves ϕ ↔ ϕst for any internal arithmetical formula (only involving standard
parameters). Furthermore, the fragment13 of Transfer for Π11-formulas as follows

(∀stf1)
[
(∃g1)(∀n0)(f(gn) = 0)→ (∃stg1)(∀n0)(f(gn) = 0)

]
(Π11-TRANS)

is the nonstandard counterpart of Π11-CA0. The following fragment of StandardPart
is the nonstandard counterpart of weak König’s lemma ([27,28]):

(∀α1 ≤1 1)(∃st�1 ≤1 1)(α ≈1 �), (STP)

whereα ≈1 � is short for (∀stn)(α(n) =0 �(n)). The following fragment ofStandard
Part is the nonstandard counterpart of weak weak König’s lemma ([65]):

(∀T 1 ≤1 1)
[
�(T )� 0→ (∃st�1 ≤1 1)(∀stm0)(�m ∈ T )

]
, (LMP)

where ‘�(T )� 0’ is just the formula (∃stk0)(∀stn0)
(

{�∈T :|�|=n}
2n ≥ 1

k

)
.

4.2.2. The nonstandard counterpart of WKL. We study STP, the nonstandard
counterpart of WKL. While Π11-CA0 → ACA0 → WKL0 by (2.8), we show in
Theorem 4.5 and Corollary 4.6 that the associated nonstandard counterparts satisfy
Π01-TRANS �→ STP and Π11-TRANS �→ STP (over P and extensions).
As noted above,we shall establish these nonimplications inNonstandardAnalysis
using Theorem 3.7.We require the following theoremwhich provides a normal form
for STP and establishes the latter’s relationship with the special fan functional.

13The bootstrapping trick for Π01-TRANS does not work for Π11-TRANS (or Π11-CA0) as the latter is
restricted to type one objects (like g1 in Π11-TRANS) occurring as call by value.
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Theorem 4.3. In P0, STP is equivalent to either of the following:

(∀stG2)(∃stw1∗ ≤1∗ 1, k0)
[
(∀T 1 ≤1 1)

(
(∀α1 ∈ w)(αG(α) �∈ T ) (4.8)

→ (∀� ≤1 1)(∃i ≤ k)(�i �∈ T )
)]
,

(∀stG2)(∃stw1
∗
)(∀f1 ≤ 1)(∃g ∈ w)(f ∈ [gG(g)]). (N)

Furthermore, P0 proves (∃stΘ)SFF(Θ)→ STP.

Proof. The equivalence STP ↔ (N) was proved in [46, Theorem 2.6]. First of
all, STP is easily seen to be equivalent to

(∀T 1 ≤1 1)
[
(∀stn)(∃�0)(|� | = n ∧ � ∈ T )→ (∃stα1 ≤1 1)(∀stn0)(αn ∈ T )

]
,
(4.9)

and this equivalence may also be found implicitly in [55]. For completeness, we
first prove STP ↔ (4.9). Assume STP and apply overspill to (∀stn)(∃�0)(|� | =
n ∧ � ∈ T ) to obtain �00 ∈ T with nonstandard length |�0|. Now apply STP
to �1 := �0 ∗ 00 . . . to obtain a standard α1 ≤1 1 such that α ≈1 � and hence
(∀stn)(αn ∈ T ). For the reverse direction, let f1 be a binary sequence, and define a
binary treeTf which contains all initial segments off. Now apply (4.9) forT = Tf
to obtain STP.
For (4.8)→(4.9), note that (4.8) implies for standard g2, there is k0 such that

(∀T 1 ≤1 1)
[
(∀stα1 ≤1 1)(αg(α) �∈ T ),→ (∀� ≤1 1)(∃i ≤ k)(�i �∈ T )

]
, (4.10)

which in turn yields, by bringing all standard quantifiers inside again, that

(∀T ≤1 1)
[
(∃stg2)(∀stα ≤1 1)(αg(α) �∈ T )→ (∃stk)(∀� ≤1 1)(�k �∈ T )

]
, (4.11)

To obtain (4.9) from (4.11), apply HACint to (∀stα1 ≤1 1)(∃stn)(αn �∈ T ) to obtain
standardΨ1→0

∗
such that (∀stα1 ≤1 1)(∃n ∈ Ψ(α))(αn �∈ T ), and defining g(α) :=

maxi<|Ψ|Ψ(α)(i) we obtain g as in the antecedent of (4.11). Hence, (4.11) yields

(∀T 1 ≤1 1)
[
(∀stα1 ≤1 1)(∃stn)(αn �∈ T )→ (∃stk)(∀� ≤1 1)(�i �∈ T )

]
, (4.12)

which is the contraposition of (4.9), using classical logic.For the implication (4.9) →
(4.8), consider the contraposition of (4.9), i.e., (4.12), andnote that the latter implies
(4.11). Now push all standard quantifiers outside as follows:

(∀stg2)(∀T 1 ≤1 1)(∃st(α1 ≤1 1, k0))
[
(αg(α) �∈ T )→ (∀� ≤1 1)(∃i ≤ k)(�i �∈ T )

]
,

and applying idealisation I yields (4.8). The equivalence involving the latter also
immediately establishes the second part of the theorem. �
Corollary 4.4. The system P0 + STP is conservative over RCA20 +WKL.

Proof. Let ϕ be a sentence in the language of RCA20. If P0 + STP � ϕ,
then P0 � (∃stΘ)SFF(Θ) → ϕ by the theorem. Applying Theorem 2.4 to
P0 � (∀stΘ)(SFF(Θ) → ϕ) yields RCA�0 � (∀Θ)(SFF(Θ) → ϕ), and Corollary
3.5 finishes the proof. �
In light of the previous theorem, the nonstandard provenance of special fan
functionals becomes clear. Indeed, these were actually discovered during the study
of the Gandy-Hyland functional in [55, Sections 3–4], as discussed in Footnote 10.
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Thirdly, we establish the aforementioned nonimplications and related results. In
the case of independence results like in the following theorem, we always implicitly
assume the system at hand to be consistent.

Theorem 4.5. The system P+Π01-TRANS does not prove STP.
Proof. Suppose P +Π01-TRANS � STP and note that Π01-TRANS is equivalent
to

(∀stf1)(∃stn0)
[
(∃m)f(m) = 0→ (∃i ≤ n)f(i) = 0

]
, (4.13)

by contraposition. Then the implication Π01-TRANS→ STP becomes

(∀stf1)(∃stn0)A(f, n)→ (∀stg2)(∃stw1∗ , k0)B(g,w, k), (4.14)

where B is the formula in square brackets in (N) and where A is the formula in
square brackets in (4.13). We may strengthen the antecedent of (4.14) as follows:

(∀sth2)
[
(∀stf1)A(f, h(f))→ (∀stg2)(∃stw1

∗
, k0)B(g,w, k)

]
, (4.15)

In turn, we may strengthen the antecedent of (4.15) as follows:

(∀sth2)
[
(∀f1)A(f, h(f))→ (∀stg2)(∃stw1∗ , k0)B(g,w, k)

]
, (4.16)

Bringing out the standard quantifiers, we obtain

(∀sth2, g2)(∃stw1∗ , k0)
[
(∀f1)A(f, h(f))→ B(g,w, k)

]
, (4.17)

and applying Theorem 2.4 to ‘P � (4.17),’ we obtain a term t such that
(∀h2, g2)(∃w1∗ , k0 ∈ t(h, g))

[
(∀f1)A(f, h(f))→ B(g,w, k)

]
, (4.18)

is provable in E-PA�∗. Clearly, the antecedent of (4.18) expresses that h is Fefer-
man’s search functional �2. Furthermore, it is straightforward to define Θ as in
SFF(Θ) in terms of (
g)t(h, g); However, this implies that a special fan functional
is computable in �2 via a term from Gödel’s T . This contradicts Corollary 3.8. �
In the previous proof, we observed that applying Theorem 2.4 results in
Π01-TRANS being converted to Feferman’s mu operator, which is a kind of com-
prehension axiom (with a dash of choice). The same holds for other instances of
Transfer, like in the folllowing corollary.
Corollary 4.6. The system P+Π11-TRANS does not prove STP.
Proof. Follows from Corollary 3.8 in the same way as the theorem. Indeed,
Π11-TRANS has the following normal form:

(∀stf1)(∃stg1)
[
(∃g1)(∀x0)(f(gn) = 0)→ (∀x0)(f(gn) = 0)

]
,

and hence applying Theorem 2.4 to “P + Π11-TRANS � STP” yields, in the
same way as in the theorem, a term of Gödel’s T converting �1 to a special fan
functional. �
Similarly, Corollary 3.8 yields that Transfer limited to Π1k-formulas cannot imply

STP. Indeed, the comprehension functional for Π1k-formulas has type two, and
hence does not compute any special fan functional by Corollary 3.8. Similarly, we
can obtain the nonimplicationP+Π11-TRANS+ϕ �� STP forϕ any internal sentence
(provable in ZFC and such that the former system is consistent). Finally, the same
holds for certain external sentences, like WKLst and ATRst, as long as they follow
from Π11-TRANS (or Transfer limited to Π

1
k-formulas).
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Finally, we derive STP using the following versions of Transfer:

(∀stY 2)
[
(∃f1)(Y (f) = 0)→ (∃stf1)(Y (f) = 0)

]
, (SOT)

(∀stZ3)
[
(∃Y 2)(Z(Y ) = 0)→ (∃stY 2)(Z(Y ) = 0)

]
. (TOT)

Recall the axiom X from Theorem 3.10; we obtain the following theorem.

Theorem 4.7. The system P+ X+ TOT proves STP.

Proof. By Theorem 3.10, (3.4) is also provable in P + X. For standard �2 and
∃3, the term t provides standard output by Definition 2.2, i.e., P+ X proves

(∀st�2, 
3)
[
[MU(�) ∧ SOC(
)]→ (∃stΘ)SFF(Θ)

]
. (4.19)

The theorem now follows from Theorem 4.3 and TOT → SOT → Π01-TRANS,
SOT→ (∃st�2)MU(�) and TOT→ (∃st
2)SOC(
), which are readily proved. �
Finally, we discuss the connection between standardness and computability.

Remark 4.8 (Standardness and computability). The previous proof hinges on
the basic axioms ofP fromDefinition 2.2, which imply that the standard functionals
in P are closed under ‘computability via a term fromGödel’s T .’ It is then a natural
question whether the standard functionals (resp. functions) in P are closed under
(resp. Turing) computability? As it turns, out, the answer depends on the presence
of Transfer: in case of Turing computability, one readily proves that Π01-TRANS
is equivalent to the aforementioned closure property, while one seems to require
prohibitively strong fragments ofTransfer to guarantee this property for functionals
of higher type. Thus, ‘computability via a term from Gödel’s T ’ produces results in
P (and vice versa by Theorem 2.4), but ‘S1-S9 computability’ only seems to produce
results in extremely strong extensions of P.

The previous remark explains why we insisted on obtaining Theorem 3.10, and
the term fromGödels T therein in particular. In conclusion, we have shown that the
computability theoretic results from Section 3.2 give rise to (non)implications in
the RM of Nonstandard Analysis. In particular, quite strong fragments of Transfer
do not imply the weak version of Standard Part as in STP. As a bonus, these results
imply that the RM of Nonstandard Analysis is quite different from “vanilla” RM,
as will be further explored in the following sections.

4.2.3. The nonstandard counterpart ofWWKL. We study LMP, the nonstandard
counterpart of WWKL. While Π11-CA0 → ACA0 → WWKL0 by (2.8), we show in
Theorem 4.10 that the associated nonstandard counterparts satisfy Π01-TRANS �→
LMP and Π11-TRANS �→ LMP, all over the system P.
As noted above,we shall establish these nonimplications inNonstandardAnalysis
using Theorem 3.7.We require the following theoremwhich provides a normal form
for LMP and establishes the latter’s relationship with the weak fan functional.

Theorem 4.9. In P0, the principle LMP is equivalent to either of the following:

(∀stG2, k0)(∃stw1∗ ≤1∗ 1, n0) (4.20)

(∀T ≤1 1)
[
(∀α ∈ w)(αG(α) �∈ T )→ |{�∈T :|�|=n}|

2n ≤ 1
k

]
.

(∀stG2, k0)(∃stw1∗)
(
m
(
∪g∈w [gG(g)]

)
≥ 1− 1

2k
)
. (4.21)
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Furthermore, P0 proves (∃stΛ)WCF(Λ)→ LMP.

Proof. Analogous to the proof of Theorem 4.3. �
Asystem is called robust (see [40, p. 432]) inReverseMathematics if it is equivalent
to small perturbations of itself. It is an easy exercise to verify that STP ↔ LMP′,
where the latter is LMP with �(T ) >R 0 rather than �(T )� 0. On the other hand,
STP is equivalent to (4.9) with the ‘st’ in the antecedent removed. Hence, STP
seems to be robust, while LMP is not. Nonetheless, we have the following version of
Corollary 4.6 for LMP.

Theorem 4.10. The system P+Π11-TRANS does not prove LMP.

Proof. Analogous to the proof of Theorem 4.5 by Theorem 4.9. �
The followingTheoremestablishes the nonstandard version of the nonimplication

WWKL �→WKL, which was first proved in [73].

Theorem 4.11. The system P0 + LMP does not prove STP.

Proof. We proceed similar to Theorem 4.5. Suppose P0 + LMP � STP; in the
same way as for the aforementioned theorem, we obtain some term t such that
RCA�0 proves (∀Λ)(WCF(Λ) → SFF(t(Λ))). In particular RCA�0 + (∃Λ)WCF(Λ)
proves (∃Θ)SFF(Θ). Since (∃Θ)SFF(Θ)→WKL over RCA�0 , we have that RCA

�
0 +

(∃Λ)WCF(Λ) provesWKL, contradicting Corollary 3.15. We could obtain a similar
contradiction from Theorem 3.14. �
The following theorem generalises the previous result.

Theorem 4.12. The system P+Π01-TRANS+ LMP does not prove STP.

Proof. Follows from Theorem 3.14 in the same way as Theorem 4.5 follows
from Corollary 3.8. In particular, suppose P+Π01-TRANS+ LMP does prove STP
and note that following the proof of Theorem 4.5, we obtain a term t of Gödel’
T computing the special fan functional in terms of ∃2 and a weak fan functional.
However, this contradicts Theorem 3.14. An alternative proof is given in Corollary
6.7 below. �
The following corollary, a weak version of Theorem 3.14, is now straightforward.

Corollary 4.13. Let ϕ in the language of E-PA�∗ be such that the latter plus ϕ is
consistent. For any term t of Gödel’s T , E-PA�∗ + ϕ does not prove

(∀Λ3, �2)
(
[WCF(Λ) ∧MU(�)]→ SFF(t(Λ))

)
.

We will sharpen the previous corollary in Section 5 via a detailed analysis of the
computational power of the special and weak fan functionals.

§5. A more refined analysis of weak and special fan functionals. In this section,
we show that (certain) weak fan functionals are indeed computationally weaker
than (all) special fan functionals, as follows. Intuitively speaking, we show that
Θ-functionals always can escape a certain well-known computational class, called
the hyperarithmetical functionals, while there is a Λ-functional that does not escape
this class.

5.1. Introduction. In the previous sections, we have established a number of strik-
ing properties of the special andweak fan functionals and ∃2. This section is devoted
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to a detailed analysis of the computational power of the aforementioned functionals
and their combinations. For the sake of readability, we will use capital letters from
the Latin alphabet to denote objects of type 2.
As a result of our refined analysis, certain weak fan functionals will be established
as being weaker than special ones in the following concrete way: there exists a weak
fan functionalwhich provides hyperarithmetical output for hyperarithmetical input,
but no such special fan functional exists. These results are interesting in their own
right, but are also the key to the results from Section 6.
We recall the agreed-uponmeaning of computable (Kleene S1-S9) andmetatheory
(ZFC) from Section 3.2. In this section, we will rely heavily on the classical theory
for the hyperarithmetical, Π11, and Σ

1
1-sets, and on the computability theory of ∃2.

We do not give original references to each result we make use of, but refer to [53]
for an introduction to the field.
Section 5.2 is devoted to the proof of Theorem 5.1, which has useful corollaries. In
[46] it is proved that any special fan functionalΘ computes a realiser for arithmetical
transfinite recursion, which is sufficient for proving Corollary 5.2. Theorem 5.1 was
proved prior to this result from [46], and even though some of the consequences
can be proved differently, the construction in the proof of Theorem 5.1 may be of
independent interest.

Theorem 5.1. There is a total functional F : 2N → N computable in ∃2 such that
the set of neighbourhoods CfF (f), where f varies over all binary hyperarithmetical
functions, is not a cover of 2N.

Recall the intuitive description of Θ-functionals right below Definition 3.1 and
recall that functionals computable in ∃2 only produce hyperarithmetical functions;
we have the following immediate corollary.

Corollary 5.2. For any Θ as in SFF(Θ), there are more functions of type one
computable in Θ and ∃2 than just in ∃2.
For further discussions of Theorem 5.1, we refer to Section 5.3 where we also
prove that the combination of Borel’s Θ and (∃2) computes the Suslin functional.
Finally, in Section 5.4, we will construct a particular functional Λ0 such that

WCF(Λ0) and which yields hyperarithmetical output for hyperarithmetical input.

5.2. The proof of Theorem 5.1. We prove Theorem 5.1 in Section 5.2.2, but first
introduce some necessary notations and preliminaries in Section 5.2.1.

5.2.1. Notation and preliminaries. To save space, some claims are described as
“Fact”; proofs can be found in text-book level literature like [52, 53]. We make use
of the following standard definitions which can be found in any textbook.

Definition 5.3 (Basic notations). (1) Let φe denote the partial computable
function with index e as obtained from the Kleene T -predicate.

(2) Similarly, φAe denotes partial function number e with oracle A ⊂ N.
(3) We let KA be the jump of A, i.e., the set {e : φAe (e)↓}.
(4) Kleene’s set O with the partial ordering ≺ is the minimal 〈O,≺〉 s.t.
(a) 0 ∈ O and a ∈ O ⇒ 2a ∈ O ∧ a ≺ 2a ,
(b) if φe(n) ∈ O for all n and φe(n) ≺ φe(n + 1) for all n, then 3 · 5e ∈ O
and φe(n) ≺ 3 · 5e for all n,
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(c) the partial ordering ≺ is partial.
Fact 5.4. There is an arithmetical end-extension 〈O+,≺+〉 of 〈O,≺〉 that is a fixed
point of the inductive definition defining O and ≺, and such that all initial segments
are totally ordered.
We will let {e}(∃2, �a) = b mean that the computable functional with index e and
inputs ∃2 and the number sequence �a, terminates with value b.
Fact 5.5. For hyperarithmetical A1, its characteristic function is computable in
∃2.
Fact 5.6. There is a classically computable, total function � such that for all e, �a
and b, we have �(e, �a, b) ∈ O ⇔ {e}(∃2, �a) = b.

Definition 5.7. Let b ∈ O+. A b-chain will be a set {Ha}a�+b such that
a) H0 = ∅ and if a = 2c thenHa = KHc .
b) If a = 3 · 5e , thenHa = {〈n,m〉 : m ∈ Hφe(n)}.
Fact 5.8. We have the following properties of b-chains.
a) If b ∈ O+ then there is a hyperarithmetical b-chain if and only if b ∈ O.
b) There is a Kleene index e0 such that for all a ∈ O and c ∈ N:

{e0}(∃2, a, c) =
{
1 if c ∈ Ha
0 if c �∈ Ha

.

c) The set of b-chains is uniformly arithmetically defined for any b ∈ O+.
The above facts constitute (partly) the key steps in the proof of the Spector-Gandy
theorem ([18,66], see also [53, p. 61]).

Remark 5.9 (Well-orderings and the hyperarithmetical). For any b ∈ O, there is
exactly one b-chain and the latter is definable using arithmetical transfinite recursion
as formalised in ATR0. One technical challenge in our proof of Theorem 5.1 is that
there are elements c ∈ O+ \O for which there is neither a hyperarithmetical c-chain
nor a hyperarithmetical descending sequence.
On the other hand, in the proof of Theorem 6.3 we exploit the existence of such c
to obtain a negative result while the associated Corollary 6.8 yields a “softer” proof
of the main theorem of this section. Still, we find the explicit construction here to
be of independent interest.

5.2.2. The construction establishing Theorem 5.1. We construct the functional F
from Theorem 5.1. To this end, let α1 be the following partial binary function:

α(e) :=

{
{e}(∃2, e) if {e}(∃2, e) ∈ {0, 1}
undefined otherwise

Let X be the set of all total binary functions extending α. Hence, X is a nonempty,
closed Σ11-set with no

14 hyperarithmetical elements.

Lemma 5.10. Iff ∈ X and {e}(∃2, �a) ∈ {0, 1}, then we can, uniformly�-recursive
in f, find {e}(∃2, �a).

14That X contains no hyperarithmetical elements is proved in the same way as one proves that the
Kleene-tree has no computable infinite branches, just relativised to computability in ∃2.



COMPUTABILITY THEORY ANDNONSTANDARDANALYSIS 25

Proof. There is a primitive recursive function 
 such that if {e}(∃2, �a)↓ then

{
(e, �a)}(∃2, 
(e, �a)) = {e}(∃2, �a).

This is seen by a simple index manipulation using only Kleene’s S1-S7. Then
{e}(∃2, �a) = f(
(e, �a)) and we are done. �
We are now ready to give the proof of Theorem 5.1.

Proof. Given a binary f1 we will look for two sorts of evidence: evidence that
f ∈ X and evidence of the opposite. If we, for each e, gather evidence for f(e)
being compatible with α(e), our construction will ensure that f ∈ X , and we may
put F (f) = 0. This is because f is not hyperarithmetical in this case.
If we, for some e, find an indication off(e) being incompatible with α(e), we will
give F (f) a value so large that an alleged incompatibility is manifested for some
x < F (f). We will see to it that if f is hyperarithmetical (something that cannot
be decided, that is the underlying problem) then the alleged incompatibility is a real
one. Asking for compatibility at e is the same as asking if we have:

¬({e}(∃2, e) = 1− f(e)).

This is the same as asking: is �(e, e, 1 − f(e)) �∈ O? If �(e, e, 1 − f(e)) �∈ O+, we
have confirmation of the compatibility at e, so assume that �(e, e, 1 −f(e)) ∈ O+.
Wenowemploy the index e0 fromFact 5.8.b) and the algorithm fromLemma5.10.
Fromf, compute an alleged �(e, e, 1−f(e))-chain of the form {Hfa }a��(e,e,1−f(e)),
i.e., we let Hfa be the set with characteristic function 
b.f(
(e0, a, b)). Given e,
there will be three possibilities, and ∃2 can decide which one holds:
(i) {Hfa }a��(e,e,1−f(e)) is a proper chain.
(ii) {Hfa }a��(e,e,1−f(e)) is not a chain, and there is no least place where the
inductive definition breaks down.

(iii) {Hfa }a��(e,e,1−f(e)) is not a chain, and there is a least place where the
induction breaks down.

For each of these possibilities, we will either conclude that we have a confirmation
of the compatibility of f with α at e, or we will find a value xe such that we may
let F (f) = xe + 1. The point is that if f is hyperarithmetical, then we find some
xe , and any choice of xe will be such that f and α are incompatible at xe . Thus, no
extension of fF (f) will be in X with this choice of F (f).
In case of (i), if f is hyperarithmetical, then the chain is hyperarithmetical; due
to Fact 5.8.a), �(e, e, 1 − f(e)) ∈ O, so {e}((∃2), e) = 1 − f(e). In this case put
xe = e.
In case of (ii), we have spotted an arithmetical nonempty subset of theO+-initial
segment of �(e, e, 1−f(e)) without least element. This implies �(e, e, 1−f(e)) �∈ O
and yields a confirmation of the compatibility of f and α at e.
This leaves us with case (iii). Let a be the least element in the initial segment of
�(e, e, 1 − f(e)) where the chain constructed from f fails to satisfy the induction.
This means that if H is the candidate for the chain at a (that we arithmetically
define from the corresponding initial segment of the chain), thenH �= Hfa . Viewing
H and Hfa as characteristic functions, there will be a least b such that H (b) �=
Hfa (b) = f(
(e0, a, b)). We let xe = 
(e0, a, b) in this case.
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If, in this case, f is hyperarithmetical, we must have that a ∈ O, by Fact 5.8.a),
since there is a proper chain up to a. This implies in turn that ifH is the set defined
above,H is really Ha , which is computed from ∃2 by

Ha(b) = {e0}(∃2, a, b) = φ(
(e0, a, b)).

Thus, the least b chosen as above will, in this case, give a correct witness xe =

(e0, a, b) to the fact that f is incompatible with φ.
We can now finalise the definition of F (f) as follows:

(i) If we, for all e, obtain a confirmation of the compatibility of f(e) and α(e)
as above, we let F (f) = 0. In this case, f is not hyperarithmetical.

(ii) Otherwise, let x be minimal such that there is e for which we do not have
a confirmation like this by the considerations above and x = xe . We let
F (f) = x + 1. For hyperarithmetical f, fF (f) has no extension in X .

As is easily verified, we never left the arithmetical in our constructions, so F is, with
good margin, computable in ∃2. The construction ensures that X is disjoint from
{g : fF (f) ⊂ g} whenever f is hyperarithmetical. �

5.3. Computing the Suslin functional fromBorel’sΘ. In this section, we show that
the Suslin functional is computable in the particular special fan functional called
Borel’s Θ, which was introduced in Section 3.2.
As to the history of this result, in a preprint version of this article (see [45]),
we proved that Borel’s Θ, when applied to the functional F constructed in the
proof of Theorem 5.1, yields a function with the same Turing degree as a complete
Π11-set; from this we concluded that the Suslin functional is computable in the
functional Borel’s Θ. In [44], this fact is used to prove that the closure operator for
nonmonotone inductive definitions, seen as a functional of type 3, is computable in
∃2 and Borel’s Θ. Later, we discovered a more transparent proof, showing directly
that Borel’s Θ can decide if a total ordering is a well-ordering or not, and this
argument replaces in this article the original content of Section 5.3 from [45]. We
warn the reader that due to the rewrite of Section 5.3, the numbering in this section
has been changed from [45]. The numbering in the latter was used when writing,
e.g., [46].
First of all, we introduce a decision procedure forwell-orderings relative to Borel’s
Θ, as follows. Intuitively, given a total orderingR of N, we can consider the tree TR
of sequences 〈n0, . . . , nk〉 that are strictly increasing in the ordering ofN and strictly
decreasing in the ordering R. Then R is a well-ordering if and only if TR is well
founded. We may then, informally, use a transfinite top-down, left-to-right search
for an infinite branch in TR in order to decide if R is a well-ordering. This intuition
can be formalised as follows.

Theorem 5.11. Let Θ0 be Borel’s Θ. Let R be a binary relation on N. Uniformly
in R there is an arithmetical functional FR such that we can decide, arithmetically in
R and Θ0(FR), if R is a well-ordering of N or not.

Proof. Since we may arithmetically decide if R is a total ordering or not, we
assume that it is, and rename it<R. We let <L be the lexicographical ordering ofC .
Whenwe evaluateΘ0 onF , we are constructing an<L-increasing sequence {f�}�≤α
where α is a countable ordinal and the following holds:
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(i) The function f0 is constant 0.
(ii) If � is a limit ordinal, then f� = sup{f� | � < �} in the sense of <L.
(iii) If � + 1 ≤ α, then

⋃
{Cf̄�(F (f� )) | � ≤ �} is a proper initial segment of C ,

and f�+1 is the <L-least element in the complement.
(iv) The collection

⋃
{Cf̄�(F (f� )) | � ≤ α} covers Cantor space C .

From the covering in item (iv), we extract a finite subcovering from right to left. In
particular, if we hit upon some f such that F (f) = 0 in this process, this f will
be our fα , and Θ0(F ) = {fα}. Our aim is to construct FR such that this will be
the case whenever R is not a well-ordering, and then fα will code a<R- descending
sequence.
For f ∈ C , define Af := {n | f(n) = 0}, which is enumerated (in N-increasing
order) as {mfk }k<Nf , and where Nf ∈ N∪ {∞}. We now define FR(f) by cases.

(1) If {mfk }k<Nf is an <R-descending sequence, then there is a least k > 0 such
thatmfk >R m

f
k−1. We let FR(f) = m

f
k + 1.

(2) If {mfk }k<Nf is an infinite <R-descending sequence, then FR(f) := 0.
(3) If {mfk }k<Nf is finite, nonempty, and <R-descending, then m

f
k is the largest

number in this set and FR(f) := m
f
k + 1.

(4) If {mfk }k<Nf = ∅, i.e., f is constant 1, then FR(f) := 0.
Now let {f�}�≤α be the<L-increasing sequence constructed through the evaluation
of Θ0(FR). If for some � we define FR(f�) via items (2) or (4), we have that α = �
and that Θ0(FR) = {fα}.
On the other hand, if we define FR(f�) via items (1) or (3), then consider the

corresponding mf�k where FR(f�) = m
f�
k + 1. We then have that

• f�+1(n) = f�(n) for n < mf�k ,
• f�+1(n) = 1 and f�(n) = 0 for n = mf�k ,
• f�+1(n) = 0 for n > mf�k .
Thus the process cannot stop in any of those cases. Then the theorem follows from
the following claim (5.1) for all f ∈ C , which we prove by induction on � ≤ α.

If {mfk }k<Nf is an infinite <R-descending sequence, then fα ≤L f. (5.1)

For � = 0, (5.1) is trivial, and for � a limit ordinal, the induction step is trivial.
So assume that the induction hypothesis holds for � and that f is such that
{mfk }k<Nf is an infinite <R-descending sequence. Since f� ≤L f, we cannot have
that f� is the constant 1. Further, if f� codes an infinite descending <R-sequence,
then the process stops, and there is no f�+1. So the interesting cases are the cases
where either item (1) or item (3) holds in the definition of FR.
If {mf�k }k<Nf� is not a descending sequence, let k be as in the definition ofFR(f�).
If f(n) > f�(n) for some least n < m

f�
k , we also have that f(n) > f�+1(n) for the

same least n, and the induction hypothesis is preserved.
If f(n) = f�(n) for all n < m

f�
k , we must have that f�(m

f�
k ) = 0, by the choice

of mf�k in this case, and that f(m
f�
k ) = 1, since otherwise f would not even code a
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descending sequence, and then not an infinite one, as assumed. Then it is clear that
f�+1 ≤L f as well.
Now assume that FR(f�) = f�(m

f�
k ) due to item (3) in the definition of FR. This

requires that f�(n) = 1 for all n > m
f�
k . Then we use the universal formulation of

the induction hypothesis to see thatmf�k must be in the well-ordered initial segment
of <R, since otherwise there would be an infinite descending sequence continuing
the finite sequence coded by f� , and this sequence can again be coded by some f′

below f� in <L, contradicting the induction hypothesis.

But then, we must have that f(mf�k ) = 1, since this function only can take the
value 0 in the non–well-ordered part, and we can argue as in the previous case. This
ends the proof of the claim.
As a consequence of the claim, we see thatΘ0(FR) will give us the leftmost infinite
descending sequence, if there is one, and the constant 1 if there are none. Thus we
can use Θ0(FR) to decide if <R is a well-ordering or not. �
Corollary 5.12. The Suslin functional S is computable in Borel’s Θ.

Proof. Given f, S decides if (∀g1)(∃n0)(f(ḡn) = 0) or not. This is computably
equivalent to asking if the Kleene-Brouwer ordering of a certain tree is a well-
ordering or not, a problem decidable by Borel’s Θ. �

5.4. Weak versus the special fan functionals. We construct a particular functional
Λ0 satisfying WCF(Λ0) and which produces hyperarithmetical output for hyper-
arithmetical input. By Theorem 5.1, the functional Λ0 cannot be a Θ-functional.
In [46] there is a stronger theorem, with a more complex proof. We include the
construction below partly because it is less of an ad hoc construction of a weak fan
functional and partly because it illustrates how the Sacks basis theorem is used.
We warn the reader that due to the rewrite of Section 5.3, the numbering in
this section has been changed from [45]. The numbering in the latter was used
when writing e.g., [46]. We first prove the following consequence of the Sacks Basis
Theorem; we refer to [53, IV.2] for an account of the latter.

Theorem 5.13. For every hyperarithmetical function G2, the set
⋃
f CfG(f) has

measure 1, where f ranges over the binary hyperarithmetical functions.

Proof. The Sacks Basis Theorem is the following statement ([53, p. 93]):

If D is a hyperarithmetical set of functions of positive measure, then D contains a
hyperarithmetical element.

Let G2 be hyperarithmetical, let m be the standard measure on Cantor space, and
let ε > 0 be given. It suffices to prove that the set above has measure> 1− ε. To this
end, let n be so large thatm({f : G(f) < n}) > 1−ε. Let Sn be the set of sequences
s of length n such that Cs intersected with the set above has positive measure. By
the basis theorem, each set Cs will contain a hyperarithmetical f with G(f) < n
whenever s ∈ Sn , and the union of these sets Cs has measure > 1− ε. �
We now define, based on Gödel’s constructible universe L relativized to any
functional G2, an explicit construction of a specific weak (and a special) fan
functional.
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Definition 5.14 (The functionals Λ0 and Θ0). We let Lα[G ] be level α in the
constructible universe relativized to G2, where we have added a symbol for the
functional G to the language of set theory.

(1) In order to “compute” Λ0(G, k), first find the least ordinal α such that
m
(⋃

f∈Lα [G ]CfG(f)
)
> 1− 1k , and then use theG-definable well-ordering of

Lα[G ] to select a finite list of f’s doing the job.
2 In order to “compute” Θ0(G), continue the process above until we have a
covering of Cantor space.

We have to prove that this process will go on until we have a covering of Cantor
space, by proving that unless we have a covering at stage α, there is an element of
Lα+1[G ] not covered by the open set Oα considered at stage α. This is trivial, since
Lα[G ] ∈ Lα+1[G ], and then the leftmost function not covered by Oα is definable,
and thus an element of Lα+1[G ].

The definition of Θ0 constitutes (in a technical sense) the optimal way of
computing a special fan functional, as will be explored in future research.

Corollary 5.15. Let Λ0 be as constructed above, and let G be a total, hyperarith-
metical function of type 2. ThenΛ0(G, k) is a finite list of hyperarithmetical functions.
Indeed, there is a partialΛ− ⊆ Λ0 that is computable in ∃2 and that terminates on all
total G computable in ∃2.
Proof. IfG2 is hyperarithmetical and α is a computable ordinal, Lα ⊆ Lα[G ] ⊆
L�CK1 . By Theorem 5.13 the search for a value of Λ0(G, k) will end at a com-
putable ordinal, and theoutput is hyperarithmetical. ByGandy selection, the process
evaluating Λ0(G) is computable in ∃2 to the extent it terminates below �CK1 . �

§6. Explosions and nonexplosions. An“explosion” refers to two logical principles
(or functionals) that are relatively weak in isolation, but much stronger when com-
bined.We show thatSTP gives rise to an explosionwhen combinedwithΠ01-TRANS,
while LMP is shown to yield no such explosion. These results are partly based on
explosions (resp. nonexplosions) involvingΘ-functionals (resp.Λ-functionals) from
the previous section. We also study the relation of Θ-functionals to other explosive
functionals.

6.1. Introduction. We proved in Section 5.3 that Borel’s Θ computes the Suslin
functional in combinationwith ∃2. By contrast, we proved in Section 5.4 that there is
a Λ-functional that produces hyperarithmetical output for hyperarithmetical input
(i.e., computable in ∃2). Thus, Θ-functionals seem to be relative strong, while Λ-
functionals seem to be (or can be) rather weak. Based on the connection between
NonstandardAnalysis and computability theory, the aforementioned results suggest
that Π01-TRANS+ STP and Π01-TRANS+ LMP are resp. quite strong and relatively
weak, all compared to say ∃2.
This hunch turns out to be correct: we show in this section thatΠ01-TRANS+STP
implies ATR relative to ‘st’ while Π01-TRANS+LMP does not. In other words, STP is
explosivewhen combinedwithΠ01-TRANS, while LMP is not; note however that STP
and LMP (and WKL and WWKL) are “quite close,” as discussed in Remark 6.10.
Furthermore, Corollary 6.12 provides a (positive) answer to Hirschfeldt’s question
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(see [40, Section 6.1]) concerning equivalences in RMwhich require a stronger base
theory.
Finally, we discuss the connection between special fan functionals and Kohlen-
bach’s generalisations of weak König’s lemma in Section 6.4. These results show
that special fan functionals can be viewed as a version of the classical fan functional
with nonstandard continuity instead of the epsilon-delta variety.

6.2. Transfinite recursion and nonstandard compactness I. We prove the main
negative result of this section, namely that P0 + Π01-TRANS+ LMP does not prove
ATRst0 . Regarding definitions, ATR0 is ACA0 plus the second-order schema:

(∀X 1)
[
WO(X )→ (∃Y 1)H�(X,Y )

]
, (ATR�)

for any arithmetical �, and where WO(X ) expresses that X is a countable well-
ordering and H�(X,Y ) expresses that Y is the result from iterating � along X .
More details and related results may be found in [64, V.2].
Secondly, to gain some intuitions regarding Π01-TRANS and ATR0, we list a
few facts which are merely the nonstandard analogues of well-known results, and
thus readily proved. For instance, an early theorem of higher-order computability
theory going back to Kleene (see [38, Theorem 5.4.1] or [52, 53]) states that the
functions computable in ∃2 are exactly the Δ11 (or hyperarithmetical) functions. The
nonstandard counterpart of ∃2 (actually the equivalent �2) is Π01-TRANS and we
thus expect that P + Π01-TRANS can prove comprehension for Δ

1
1-sets (relative to

‘st’). This suspicion turns out to be correct, as follows.

Theorem 6.1. The system P0 + Π01-TRANS proves
(
Δ11-CA

)st
, i.e., we have for all

standard f1, g1 that

(∀stn0)
[
(∃stk1)(∀stm0)(f(km, n) = 0)↔ (∀stl 1)(∃str0)(g(l r, n) �= 0)

]
(6.1)

→ (∃sth1)(∀stn)
[
(∃stk1)(∀stm0)(f(km, n) = 0)↔ h(n) = 0

]
.

Proof. We only provide a sketch of the proof. First of all, we can obtain (�2)st

from Π01-TRANS by applying HACint to (4.13). Now use this standard version of
Feferman’s mu to remove the type zero quantifiers (with variables m0, r0) in the
equivalence from the antecedent of (6.1). Consider the reverse implication of the
resulting formula and applyHACint. The resulting functional, combined with (�2)st,
now readily yields the function h from the consequent of (6.1). �
Thirdly, Π01-TRANS does not really provide anything beyond the hyperarithmeti-
cal, which is suggested by the following result.

Theorem 6.2. Assuming it is consistent, P+Π01-TRANS does not prove ATR
st
0 .

Proof. Suppose P + Π01-TRANS does prove ATR
st
0 . We shall focus on the latter

for the special case �0(n,Y ) expressing that n0 is an element of the Turing jump of
Y 1. Hence, P+Π01-TRANS proves

(∀stX 1)
[
[WO(X )]st → (∃stY 1)[H�0 (X,Y )]st

]
. (6.2)

As noted in [64, V.2.2],H� is arithmetical if � is. Hence, [H�0 (X,Y )]
st ↔ H�0 (X,Y )

for standard X,Y thanks to Π01-TRANS. Similarly, WO(X ) → [WO(X )]st for
standard X using Π01-TRANS, and (6.2) thus implies

(∀stX 1)
[
WO(X )→ (∃stY 1)H�0 (X,Y )

]
, (6.3)
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where the only ‘st’ inside the square brackets is with the Y -quantifier. Clearly, (6.3)
has a normal form and applying Theorem 2.4 to P � [Π01-TRANS → (6.3)], we
obtain a term t such that E-PA�∗ proves

(∀�2)
[
MU(�)→ (∀X 1)

[
WO(X )→ (∃Y 1 ∈ t(X,�))H�0 (X,Y )

]]
. (6.4)

We now derive a contradiction from (6.4): By the latter, E-PA�∗ + (�2) proves

(∀X 1)
[
WO(X )→ (∃Y 1)H�0 (X,Y )

]
, (6.5)

which is equivalent to a Π12-formula since WO(X ) is Π11 and the consequent of
(6.5) is Σ11. However, the conservation result in [54, Theorem 2.2] implies that ACA0
and E-PA� + QF-AC1,0 + (�2) prove the same Π12-formulas. But (6.5) implies the
existence of the �-th Turing jump, which is not provable in ACA0 by [64, I.11.2], a
contradiction. Alternatively, since HYP, the model consisting of all hyperarithmeti-
cal sets (see, e.g., [64, V] for details on this model), is a model of ACA0, (6.5) holds
in HYP, which is impossible as shown in the proof of [64, V.2.6]. �
Clearly, the previous proof also goes through for any Π12-formula not provable in

ACA0 (instead of ATR0). Next, we prove one of the main theorems of this section.

Theorem 6.3. Given its consistency, P+Π01-TRANS+ LMP cannot prove ATRst0 .

Proof. First of all, we sketch an interesting aspect of well-orderings relating to
the model HYP. As shown in [64, VIII], HYP is not a model of ATR0. In particular,
�0 from the proof of Theorem 6.2 satisfies (see [64, V.2.6]):

HYP |= (∃X 10 )
[
WO(X ) ∧ (∀Y 1)¬H�0 (X,Y )

]
. (6.6)

It is important to note that X 10 from (6.6) is not necessarily a well-ordering: As
studied in [23], there exist (Turing computable) pseudo-well-orderings which have
no hyperarithmetical infinite descending sequences but which nonetheless do have
nonhyperarithmetical infinite descending sequences. In colloquial terms, the model
HYP “thinks” that a pseudo-well-ordering is a well-ordering, while it is not.
Secondly, to accommodate the previous observation regarding these pseudo-
well-oderings, a slight tweak is needed to the proof of Theorem 6.2, as follows:
Let WO(g,X ) be the (arithmetical) formula expressing that g1 is not an infinite
descending sequence through X , i.e., (∀g1)WO(g,X ) is just the familiar WO(X ).
Using Π01-TRANS, we observe that [WO(X )]st follows from (∀stg1)WO(g,X 1) for
standardX (and is actually equivalent). Now suppose P+Π01-TRANS+ LMP does
prove ATRst and obtain, like in the previous proof, that

(∀stX 1)
[
(∀stg1)WO(g,X )→ (∃stY 1)H�0 (X,Y )

]
. (6.7)

Now bring outside all standard quantifiers in (6.7) to obtain the following:

(∀stX 1)(∃stg1, Y 1)
[
WO(g,X )→ H�0 (X,Y )

]
. (6.8)

Applying Theorem 2.4 to ‘P+LMP+Π01-TRANS � (6.8),’ we obtain terms i, o such
that E-PA�∗ (and hence also any extension, like ZFC) proves that:

(∀�2,Λ3, X 1)
[
[MU(�) ∧WCF(Λ)] (6.9)

→
[
(∀g ∈ i(X,�,Λ))WO(g,X )→ (∃Y 1 ∈ o(X,�,Λ))H�0 (X,Y )

]
.
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Now, by Theorem 3.14, there exists (provable in ZFC) an instance Λ1 of the weak
fan functional which from a functional computable in ∃2 produces hyperarithmeti-
cal functions in a uniform way (computable in ∃2). Furthermore, the functions
computable in ∃2 (and thus Feferman’s mu) are the hyperarithmetical ones.
Finally, fix some Turing computable pseudo-well-ordering X1 (as introduced in
the first part of this proof). By the choice of inputs, i(X1, �,Λ1) and o(X1, �,Λ1)
from (6.9) are both finite sequences of hyperarithmetical functions. Hence, the
correct Y 1 ∈ o(X1, �,Λ1) from (6.9) is hyperarithmetical, while the antecedent
(∀g ∈ i(X1, �,Λ1))WO(g,X1) of (6.9) holds by the assumption that X1 has no
infinite descending sequences which are also hyperarithmetical. However, by [64,
V.2.6 and VIII.3.23], there is no hyperarithmetical Y such thatH�0 (X1, Y ). Hence,
(6.9) yields a contradiction, thanks to the existence of Turing computable pseudo-
well-orderings and the weak fan functional Λ1 from Theorem 3.14. �
Clearly, the previous proof also goes through for other sentences (thanATR) false
in the model HYP. As a result, the system from the theorem is consistent if ACA0 is,
a rather mild assumption in the grand scheme of things. WhileWKL0 andWWKL0
are rather close in the sense of logical strength, we next prove thatΠ01-TRANS+STP
behaves very differently in that it does imply ATRst0 .

6.3. Transfinite recursion and nonstandard compactness II. We prove the main
positive result of this section, namely, we obtain ATRst0 from Π

0
1-TRANS + STP.

This result should be contrasted with Π01-TRANS+LMP and Theorem 6.3 from the
previous section,
Theorem 6.4. The system P0 + Π01-TRANS+ STP proves ATRst0 .
Proof. As shown in [64, V.5.1], RCA0 proves that ATR0 is equivalent to Σ11-SEP;
the latter is defined as: For ϕ1, ϕ2 ∈ Σ11 not involving the variable Z1, we have
(∀n0)(¬ϕ1(n) ∨ ¬ϕ2(n))→ (∃Z1)(∀n0)

(
ϕ1(n)→ n ∈ Z ∧ ϕ2(n)→ n �∈ Z

)
.
(6.10)

We shall prove [Σ11-SEP]
st in P0 + Π01-TRANS + STP. Since P0 proves the axioms

of RCA0 relative to ‘st,’ we therefore obtain ATR
st
0 . Now let ϕi(n) be short for the

formula (∃g1i )(∀x0i )(fi(gixi , n) = 0) and fix standardf1i for i = 1, 2. Then assume[
(∀n0)(¬ϕ1(n) ∨ ¬ϕ2(n))

]st
, which is the formula

(∀stn0)
[
(∀stg11 )(∃stx01)(f1(g1x1, n) �= 0) ∨ (∀stg12 )(∃stx02 )(f2(g2x2, n) �= 0)

]
.

ForfixednonstandardN 0, the previous formula implies (without usingΠ01-TRANS):

(∀stn0, g11 , g12 )
[
(∃x01 ≤ N)(f1(g1x1, n) �= 0) ∨ (∃x02 ≤ N)(f2(g2x2, n) �= 0)

]
.
(6.11)

LetAi(n, gi) be the (equivalent to quantifier-free) formula (∃x0i ≤ N)(fi (gixi , n) �=
0) and letA(n, g1, g2) be the formulaA1(n, g1)∨A2(n, g2), i.e., the formula in square
brackets in (6.11). By assumption, (∀stn0, g11 , g12 )A(n, g1, g2). Now consider:

(∀stv1∗ , x0∗)(∃w1∗ , y0∗)(∀g1 ∈ v, n0 ∈ x) (6.12)[
g ∈ w ∧ n ∈ y ∧ (∀h1, h2 ∈ w,m ∈ y)A(m, h1 , h2)

]
,

which holds by taking w = v, y = x. Applying Idealisation I to (6.12), we obtain

(∃w1∗ , y0∗)(∀stg1, n0)
[
g ∈ w ∧ n ∈ y ∧ (∀h1, h2 ∈ w,m ∈ y)A(m, h1 , h2)

]
, (6.13)
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which -intuitively speaking- provides two sequences w, y (of nonstandard length)
encompassing all standard functions and standard numbers and such that all of
its elements satisfy A. In particular, one can view (6.13) as obtained by applying
overspill to (6.11) while making sure all standard functions are in w.
Next, define the set Z10 (actually a binary sequence) as follows: n ∈ Z0 ↔ (∃g1 ∈
w)¬A1(n, g), where w is the sequence from (6.13). Note that the right-hand side of
the equivalence is actually (∃i0 < |w|)¬A1(n,w(i)), i.e., Z0 is definable in P0.
Let Z1 be a standard set such that Z0 ≈1 Z as provided by STP. Furthermore,
Π01-TRANS establishes the following implications (for standard n):

(∃stg11 )(∀stx01)(f1(g1x1, n) = 0)→ (∃stg11 )(∀x01 ≤ N)(f1(g1x1, n) = 0)
→ (∃g11 ∈ w)(∀x01 ≤ N)(f1(g1x1, n) = 0)
→ (∃g11 ∈ w)¬A1(n, g1)→ n ∈ Z0 → n ∈ Z.

Note that Π01-TRANS is (only) necessary to establish the first implication. Now,
since y from (6.13) contains all standard numbers, the second conjunct of (6.13)
implies (by definition) that for standardm (by the definition of A):

(∀h1 ∈ w)A1(m, h1) ∨ (∀h2 ∈ w)A2(m, h2). (6.14)

Similarly, consider the following series of implications (for standard n):

(∃stg12 )(∀stx02)(f2(g2x2, n) = 0)→ (∃stg12 )(∀x02 ≤ N)(f2(g2x2, n) = 0)
→ (∃g12 ∈ w)(∀x02 ≤ N)(f2(g2x2, n) = 0)
→ (∃g12 ∈ w)¬A2(n, g2) (6.15)

→ (∀g11 ∈ w)A1(n, g1)→ n �∈ Z0 → n �∈ Z.
(6.16)

Note that Π01-TRANS is (only) necessary to establish the first implication, while
(6.16) follows from (6.15) by (6.14). Thus, we observe that Z is as required for
Σ11-comprehension (6.10) relative to ‘st,’ and we are done. �
Note that the previous proofmakes essential use of STP to obtainZ fromZ0 asw
from (6.13) is nonstandard, i.e.,WKLst does not suffice. Furthermore, the previous
proof seems to go through in the constructive system H from [70], as well as in P0
without the axiom of extensionality (E). We also note that the particular use of
Idealisation to obtain (6.13) from (6.12) is inspired by [22]. We now discuss some
more interesting aspects of the previous proof.

Remark 6.5 (The power of Nonstandard Analysis). Comparing the previous
proof to that of Σ11-SEP in [64, V.5], the proof in Nonstandard Analysis is much
shorter and conceptually much simpler. This may be explained as follows: It is often
said that “one can search through the naturals, but not through the reals (or Baire
space).” The previous proof showcases a powerful feature ofNonstandardAnalysis:
Thanks to the sequence w from (6.13), we can search through the standard reals
(standard functions of Baire space) in a specific sense. Thanks to this “search”
feature of Nonstandard Analysis, the previous proof is very similar15 to that STP

15To prove that STP implies [Σ01-SEP]
st, apply overflow (which is an instance of Idealisation) to

[(∀n0)(¬ϕ1(n) ∨ ¬ϕ2(n))]st for ϕi (n) ≡ (∃n0i )(fi (n, ni ) = 0), and define the set Z0 by n ∈ Z0 ↔
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implies [Σ01-SEP]
st as in Footnote 15. Hence, the similarities between WKL and

ATR0, from [64, I.11.7], also exist in Nonstandard Analysis. Finally, we point out
that by [64, V.5.1], a single application of Σ11-SEP provides the set Y from ATR0.

We now discuss a number of interesting corollaries.
Corollary 6.6. There are terms i, o of Gödel’s T such that E-PRA�∗ proves

(∀�2,Θ3)
[
[MU(�) ∧ SFF(Θ)] (6.17)

→ (∀X 1)
[
(∀g ∈ i(X,�,Θ))WO(g,X )→ (∃Y 1 ∈ o(X,�,Θ))H�0 (X,Y )

]
.

where �0(n,Z) expresses that n0 is a member of the Turing jump of Z1.
Proof. Immediate following the proof of Theorem 6.3. �
The following corollary has the advantage that it directly establishes that
Π01-TRANS �→ STP, but the disadvantage is that it does not generalise to
Π11-TRANS.
Corollary 6.7. The system E-PRA�∗ + (�2) + (∃Θ)SFF(Θ) proves ATR0.
Assuming the system is consistent, P+Π01-TRANS+ LMP cannot prove STP.
Proof. The first part is immediate from (6.17). For the second, part, if P +
Π01-TRANS+LMP could prove STP, then it would also proveATRst by the theorem,
but this impossible by Theorem 6.3. �
The following corollary proves results analogous to Theorem 5.1; the latter is
proved using computability theory while the former follows from Nonstandard
Analysis. Both approaches have pros and cons: Theorem 5.1 requires a tricky
construction which however does give rise to additional information, namely, a
Θ-functional in which the hyper-jump is computable. The approach using Nonstan-
dard Analysis avoids the tricky construction needed in the computability theoretic
approach, but does not tell us anything about the hyper-jump.
Corollary 6.8. Let Θ be such that SFF(Θ). There is G2 computable in ∃2 such
that Θ(G) is not hyperarithmetical.
Proof. Suppose Θ1 satisfying SFF(Θ1) is such that Θ1(g) is hyperarithmetical
for all g2 computable in ∃2. Without loss of generality we may assume that Θ1,
restricted to the hyperarithmetical functions of type 2, is partially computable in
∃2, by the following argument: by assumption, for every hyperarithmetical g2 there
is hyperarithmetical 〈f1, . . . , fk〉 that yields an open covering of Cantor space via
g. By Gandy selection, we may search for one such sequence uniformly computable
in ∃2. We may then construct Θ2 agreeing with Θ1 on nonhyperarithmetical inputs,
and with the result of this search on hyperarithmetical input. We have SFF(Θ2) and
Θ2 satisfies our extra assumption.
Applying (6.17) for a pseudo-well-ordering X1 (as discussed in the proof of
Theorem 6.3), we obtain a contradiction as in the proof of Theorem 6.3. Indeed,
in this case, i(X1, �,Θ1) and o(X1, �,Θ1) are finite sequences of hyperarithmetical
functions, and hence (∀g ∈ i(X,�,Θ))WO(g,X1) holds as X1 is a pseudo-well-
ordering. But there is no hyperarithmetical Y such thatH�0 (X,Y ), as discussed in
the proof of Theorem 6.3, i.e., (6.17) implies a contradiction. �

(∃n01 ≤ N0)f1(n, n1) = 0 where N0 is the number obtained by overflow. Applying STP to Z0 finishes
the proof.
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The previous corollary also follows from Theorem 5.1 and its corollary, but the
previous proof is interesting in its own right.
The following corollary strengthens the above results slightly. Let con(S) be the
usual Π01-sentence expressing the consistency of the system S (see e.g., [64, II.8.2]).

Corollary 6.9. The systems P + Π01-TRANS + STP and E-PA�∗ + (�2) +
(∃Θ3)SFF(Θ) prove the consistency of ATR0, i.e., con(ATR0).
Proof. By definition, P includes external induction IAst, and hence [Σ11-IND]

st.
By the theorem, P + Π01-TRANS + STP proves [ATR0 + Σ11-IND]

st. However, [64,
IX.4.7] states that ATR0 + Σ11-IND proves con(ATR0). Since consistency state-
ments are Π01 and since P proves the axioms of RCA0 relative to ‘st,’ we observe
that P + Π01-TRANS + STP � con(ATR0). Applying term extraction yields the
corollary. �
Next, we discuss the “explosion” in our above results.

Remark 6.10 (Explosion of strength). As shownabove, the difference in strength
between Π01-TRANS + STP and Π01-TRANS + LMP is significant, and the same
holds for ∃2 when combined with resp. Θ-functionals and Λ1. Now, STP and Θ-
functionals are based onWKL, while LMP and Λ1 are based onWWKL. However,
to the best of our knowledge, there is no natural principle between WKL and
WWKL: there is no principle between the latter two in the RM zoo ([11]), and
even in the highly fine-grained structure of theWeihrauch degrees, there is currently
no known natural problem between WWKL and WKL, as communicated to us by
Vasco Brattka. Thus, one can say that WWKL and WKL are very close, but we
nonetheless have a dramatic shift in strength for the associated Π01-TRANS+ STP
and Π01-TRANS + LMP, and the same holds for ∃2 when combined with resp.
Θ-functionals and Λ1.

Finally, we obtain an interesting result in RM as follows: a small number of
equivalences in RM are known to require a base theory stronger than RCA0, and
Hirschfeldt has asked whether there are more such equivalences (see [40, Section
6.1]).
We provide such an example based on our above results. To this end, let Σ11-SEPns

be (6.10)st for ϕi (n) ≡ (∃g1i )(∀x0i )(fi(gixi , n) = 0) and any fi ≤1 1. Thus,
Σ11-SEPns is essentially just [Σ11-SEP]

st with the leading ‘st’ in (∀stf1, f2 ≤1 1)
removed. Recall that STP is justWKLst with the leading ‘st’ in (∀stT ≤1 1) removed
as in (4.9). The following is a corollary to Theorem 6.4.

Corollary 6.11. The system P0 +Π01-TRANS proves STP↔ Σ11-SEPns, while P0
cannot prove STP→ Σ11-SEPns.

Proof. Regarding the first part, the forward implication follows from Theorem
6.4 if [Σ11-SEP]

st → Σ11-SEPns. The latter implication follows by taking f1, f2 ≤1 1
as in Σ11-SEPns and applying STP to obtain standard f′

1, f
′
2 such that f

′
1 ≈1 f1

and f′
2 ≈ f2. Since Σ11-SEP is a statement of second-order arithmetic, f1, f2 only

occur as f1(n) and f2(n), and we may thus replace f′
1, f

′
2 by f1, f2 in [Σ

1
1-SEP]

st,
yielding the desired implication. The reverse implication follows from applying
Σ11-SEPns for ϕ1(n) ≡ (f(n) = 0) and ϕ2(n) ≡ (f(n) = 1) for given f ≤1 1:
The resulting standard Z1 is such that (∀stn0)(f(n) = 0 ↔ n ∈ Z), and the
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characteristic function of Z yields the desired standard g ≤1 1 such that f ≈1 g.
The second part follows from the fact that P0 +STP is conservative overWKL0 and
ATR0 is not. �
Corollary 6.11 could be dismissed as a curiosity, but Corollary 6.12 constitutes a
challenge to the Big Five picture. We need a trivially uniform version of ATR0:

(∃Φ1→1)(∀X 1, f1)
[
WO(X )→ Hf(X,Φ(X,f))

]
, (UATR)

whereHf(X,Y ) is justH�(X,Y ) with �(n,Z) defined as (∃m0)(f(n,m,Zm) = 0).
Corollary 6.12. RCA�0 + (∃Θ)SFF(Θ) proves (�2) ↔ UATR; RCA�0 + WKL
doesn’t.

Proof. The reverse implication is immediate. The nonimplication is immediate as
RCA�0 +(�

2) is Π12-conservative overACA0 ([54, Theorem 2.2]) while RCA
�
0 +UATR

is not.The forward implication follows fromCorollary 6.6.Note that sinceH�(X,Y )
is arithmetical if � is, �2 can select the correct Y in (6.17). �
As noted in Section 4.2.3, STP seems to be robust, i.e., equivalent to small pertur-
bations of itself. The same of course holds for variations of Θ, which suggests that
the equivalence in the previous corollary is not a trick, but a robust result.

6.4. Generalisations of weak König’s lemma. We study the connection between
Θ-functionals and the functional κ3 defined below, where the latter is based on
Kohlenbach’s axiomsΦn-WKL andΠ1,bn -CA from [35, Sections 5–6].Ourmotivation
for this study is that both Θ and κ give rise to conservative extensions ofWKL0 in
isolation but become strong when combined with �2. We show that κ computes
Θ-functionals but not vice versa, and that Θ-functionals can be viewed as a version
of the classical fan functional with the role of epsilon-delta continuity replaced by
nonstandard continuity.
First of all, we introduce κ3, a higher-order version of Kohlenbach’s Π1,bn -CA
from [35, Sections 5–6]. We first sketch the results regarding κ3 while proofs are
provided below.

(∃κ2→1)(∀Y 2)
[
(∃f1 ≤1 1)(Y (f) = 0)→ Y (κ(Y )) = 0

]
. (κ3)

Two basic facts regarding κ are that over the full type structure, this functional
defines a choice operator for nonempty subsets of Cantor space, and we therefore
cannot prove the existence of any instance of κ in ZF.

Remark 6.13 (Continuity, κ, and ∃3). Note that ∃3 can decide any formula
involving type zero and one quantifiers, i.e., one derives second-order arithmetic
using the former. However, straightforward modifications to (∃3) can bring down
the strength considerably: Consider (∃f ≤1 1)(ϕ(f) = 0) and note that if N 0 is
a modulus of uniform continuity on Cantor space for ϕ, we only need to test 2N

many16 sequences to verify if (∃f ≤1 1)(ϕ(f) = 0) or not. Now, MUC(Ω) from
Section 3.1 provides such a modulus, and it is thus obvious to compute (via a term
of Gödel’s T ) κ from Ω3 as in MUC(Ω). By Theorem 3.2, RCA�0 +WKL + (κ3)
is conservative over RCA20 +WKL, which is much weaker than (∃3). However, the

16In particular, we only need to test if ϕ(� ∗ 00 . . . ) = 0 for all binary �0∗ such that |�| = N .
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combination of ∃2 and κ3 computes ∃3, as shown17 by Kohlenbach in a private
communication.

Secondly, we prove the following theorem to establish the claims from
Remark 6.13. We first show that NUC impliesWT, a weak fragment of Transfer.

Theorem 6.14. The system P+ NUC proves STP and also the following:

(∀stY 2)
[
(∃f1 ≤1 1)(Y (f) = 0)→ (∃stf1 ≤1 1)(Y (f) = 0)

]
(WT)

Proof. The implicationNUC→ STP easily follows from the equivalence between
STP and the normal form (N) as follows: After resolving ≈1, NUC implies that

(∀stg2)(∀f1, h1 ≤1 1)
[
(∀stk)(fk =0 hk)→ g(f) =0 g(h)

]
, (6.18)

and bringing outside the standard universal quantifier in (6.18), we obtain

(∀stg2)(∀f1, h1 ≤1 1)(∃stk)
[
fk =0 hk → g(f) =0 g(h)

]
, (6.19)

Applying idealisation as in Remark 2.10, we obtain:

(∀stg2)(∃stk)(∀f1, h1 ≤1 1)
[
fk =0 hk → g(f) =0 g(h)

]
, (6.20)

and HACint yields (recalling again Remark 2.10) standard Ω3 such that

(∀stg2)(∀f1, h1 ≤1 1)
[
fΩ(g) =0 hΩ(g)→ g(f) =0 g(h)

]
.

Then any standard g2 has an upper bound max|�|=Ω(g)∧(∀i<|�|)(�(i)≤1) g(� ∗ 00 . . . ),
and w1

∗
from (N) is easily defined in terms of this upper bound in exactly the same

way as for Θ(g) in the proof of Theorem 3.4.
For NUC → WT, fix standard Y 2 and let f0 ≤1 1 be such that Y (f0) = 0.
Applying STP yields standard g0 ≤1 1 such that g0 ≈1 f0. By the uniform non-
standard continuity of Y 2, we have 0 = Y (f0) = Y (g0), andWT follows. �
LetMU2(κ) be (κ3) with the leading existential quantifier dropped.

Corollary 6.15. From ‘P � NUC→WT’ a term t can be extracted such that

E-PA�∗ � (∀Ω3)
[
MUC(Ω)→ MU2(t(Ω))

]
. (6.21)

Proof. Note thatNUC is equivalent to the normal form (6.20) whileWT implies

(∀stY 2)(∃stg1 ≤1 1)
[
(∃f1 ≤1 1)(Y (f) = 0)→ (Y (g) = 0)

]
.

In the same way as in e.g., the proof of Theorem 4.5 we obtain (6.21). �

Remark 6.16. Following the proof of the theorem, it is straightforward to define
a term of Gödel’s T computing the restriction of κ3 to continuous functionals in
terms of the classical fan functional Φ as in FF(Φ) (and vice versa).

Thirdly, we show that the functional κ computes a special fan functional, but not
vice versa. The former result is not such a surprise since κ3 and ∃2 together compute
∃3 (see Remark 6.13), which in turn computes Θ-functionals by Theorem 3.9.

17The proof amounts to the observation that NN is recursively homeomorphic to a Π02-subset of
Cantor space. Since this set is computable in ∃2, any oracle call to ∃3 can be rewritten to an equivalent
oracle call to κ3, in a uniform way.



38 DAG NORMANNAND SAM SANDERS

Theorem 6.17. Any functional κ such thatMU2(κ) computesΘ such that SFF(Θ).
There is no κ as inMU2(κ) computable in Θ such that SFF(Θ).

Proof. For the first part, if F (κ(F )) = 0, we put Θ(F ) := {κ(F )}. Otherwise,
define F0(f) = F (0 ∗ f)− 1 and F1(f) = F (1 ∗ f)− 1 and put Θ(F ) = Θ(F0) ∪
Θ(F1). By the recursion theorem for Kleene (S1-S9) computability, this definition
makes sense. In order to prove that it defines a total function, we need to know that
for every F there is an n such that each binary sequence s of length n has at least
one extension fs such that F (fs) < n. This is a consequence of the compactness
of Cantor space, and follows fromWKL.
For the second part, we note that the combination of a Θ-functional with ∃2 does
not compute ∃3, as the former are countably based, and the latter is not. Hence, if
Θ3 satisfying SFF(Θ) were to compute κ3, then the combination Θ3 plus ∃2 would
compute the combination κ3 plus ∃2, which computes ∃3 by Remark 6.13, yielding
a contradiction. �
Fourth, inspired by Remark 6.16, we consider CCns which is the modification of

WT to all nonstandard continuous functionals. Indeed, let Y ∈ Cns be the formula
in square brackets in (4.2) restricted to binary sequences, i.e., expressing that Y 2 is
nonstandard continuous on Cantor space.

(∀Y 2 ∈ Cns)
[
(∃f ≤1 1)Y (f) = 0→ (∃stg ≤1 1)Y (g) = 0].

]
(CCns)

As noted above, WT is an instance of Transfer and the move from WT to CCns

may seem like a strange one: one of the main “beginner mistakes” in Nonstandard
Analysis is the illegal Transfer rule ([42, p. 1166]) which is the incorrect application
of Transfer to formulas involving nonstandard parameters; this often leads to con-
tradiction. Despite CCns seemingly being in violation of the illegal Transfer rule, the
former does not yield contradiction, but an old friend. Furthermore, the condition
Y ∈ Cns turns out to be essential, and maximal in a concrete sense.

Theorem 6.18. The system P proves STP ↔ CCns. The system P0 + Π01-TRANS
proves thatWT with the leading ‘st’ dropped is inconsistent.

Proof. The forward implication is immediate by applying STP to the antecedent
of CCns and using the nonstandard continuity of Y . For the reverse direction,
assume CCns and suppose there is f0 ≤1 1 such that (∀stg ≤1 1)(f0 �≈1 g). Now
fix some Y 2 ∈ Cns and nonstandard N 0, and define the functional Z2 as follows:
Z(f) := 0 if f0N =0 fN andZ(f) := Y (f)+1otherwise. By definition,Z ∈ Cns

has (many) zeros, but no standard one. This contradiction yields CCns → STP.
For the final part, consider the nonstandard functionalY 20 , defined asY0(f) := 0
if f(N) = 0 ∧ (∀i < N)(f(i) �= 0), and 1 otherwise, for nonstandardN 0. Clearly,
there are many g0 such that Y0(g0) = 0, but if Y0(f0) = 0 for standard f0, then
Π01-TRANS implies that the latter is 00 . . ., a contradiction. �
The previous nonstandard proof also gives rise to a relative computability result.
To this end, for Ξ2→(1

∗×1∗) ≤ 1, letMU3(Ξ) be the following formula:

(∀G2, Y 2)[PC(G,Y,Ξ(G)(1))→ [(∃h ≤1 1)(Y (h) = 0)→ (∃h ∈ Ξ(G)(2))Y (h) = 0]],
and where PC(G2, Y 2, Z1

∗
) is the formula expressing partial continuity as follows:

(∀f1 ∈ Z)(∀g1 ≤1 1)(fG(f) = gG(f)→ Y (f) = Y (g)). (6.22)
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The following corollary establishes another nice result, namely, that weakening
Y 2 ∈ C in the definition of the classical fan functional (see Definition 3.6) to
partial continuity as in (6.22), leads to a special fan functional.

Corollary 6.19. From P � [STP ↔ CCns], terms t, s can be extracted such
that

E-PA�∗ � (∀Θ3)
[
SFF(Ω)→ MU3(t(Θ))

]
∧ (∀Ξ3)

[
MU3(Ξ)→ SFF(s(Ξ))

]
. (6.23)

As shown in [62], WWKL0 is equivalent to the statement that every bounded
continuous functional on the unit interval is Riemann integrable. We suspect that
adding a boundedness condition to Y 2 ∈ Cns yields an equivalence to LMP.
Finally, we discuss the differences between κ and Θ-functionals in more detail.

(i) In contrast to Kohlenbach’s axioms and κ, STP and Θ-functionals are not
obviously instances of comprehension. In other words, the latter are (more)
mathematical in nature, while the former are logical in nature, especially in
light of the intuitive interpretation just below Definition 3.1.

(ii) As noted above, instances of Transfer translate to a kind of comprehension
axiom (with a dash of choice). However, the step from WT to CCns seems
to violate Nelson’s illegal Transfer rule, i.e., CCns (and hence STP) seems
orthogonal to Transfer. One thus expects that the functionals resulting from
STP are similarly orthogonal to comprehension.

Mathematical naturalness as in item (6.4) is important and worth pointing out, as it
is essential to, e.g., the Big Five phenomenon of RM, and the latter program is after
all a main topic of this article. The quest for mathematically natural theorems not
provable in major logical systems (like the Paris–Harrington theorem and Peano
arithmetic as can be found in [3, D8.Section 1]) should also be mentioned.
It is more difficult to explain item (6.4): The latter stems from the idea that while
Transfer corresponds (gives rise to/is translated to) to comprehension axioms with
a dash of the axiom of choice, STP is fundamentally different from Transfer, but we
do not know how to make this intuition concrete.

§7. Summary and future research.
7.1. Future research. We discuss some open questions and future research.
Regarding Nonstandard Analysis, we have the following questions.

(i) The axiom STP is equivalent to (4.9), which is just WKLst for all binary
trees; the same holds for WWKLst and LMP. Most theorems from the RM
zoo ([11]) can be similarly modified, but which resulting theorems have a
normal form and have interesting properties? What about RT22, ADS or EM
from [24], or RWKL,RWWKL from18 [6,14]?

(ii) Are there any interesting principles between STP and LMP?
(iii) What is the role of principles close to WWKL, including (nonstandard

versions of) POS from [29] or n-WWKL from [2]?
(iv) Are there other explosions in Nonstandard Analysis?

18The authors of [6] note that RWKL is robust, and the same seems to hold for its nonstandard
counterpart. In particular, the robustness properties of STP and LMP discussed in Section 4.2.3 also
hold for the associated Ramsey-type versions.
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Topics related to the above items have been studied in [56,71].
Regarding computability theory, the following questions were formulated in [45],
and later solved in [44,46,47].

(v) Do the classes of instances of Λ and Θ have minimal objects in the sense of
Kleene-degrees or other kinds of degrees of complexity?

(vi) Is the hyper-jump computable from ∃2 and (any given instance of) Θ?
(vii) Is Θ definable from Λ and the hyper-jump?
(viii) Is Gandy’s Super-jump ([19]) computable in a natural Θ-functional and

∃2?
Regarding computability theory and Nonstandard Analysis, we have the follow-
ing:

(ix) We have observed that computability via a term of Gödel’s T arises
from proofs in P and vice versa. Is there a natural formulation of S1-S9
computability in Nonstandard Analysis?

Item (7.1) should be viewed in light of Remark 4.8. However, it stands to reason
that the problems mentioned in the latter can be solved by declaring more general
type constructors (than the recursor constants) standard in an extension of P.

7.2. Summary of results. Figure 1 below summarises our results.

TOT Z3

SOT ∃3 Z2

Π11-TRANS S2 Π11-CA0

ATRst Π01-TRANS + STP ∃2 + Θ ATR0

Π01-TRANS + LMP ∃2 + Λ

Π01-TRANS ∃2 ACA0

STP WKLst Θ3 WKL0

WWKLst LMP Λ3 WWKL0

Figure 1. Summary of results.
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By way of a legend, in the right column are the linearly ordered “Big Five,” with
above them full second-order arithmetic Z2 and below them the systemWWKL0 ≡
RCA0 +WWKL. In the middle column, we classify the functionals studied in this
article as follows: RCA�0 plus the existence of the pictured functional is (at least
or exactly) at the level of the corresponding system on the right; (struck out)
arrows denote (non)computability. By ‘Ψ computes Φ’ we mean that all instances
of Ψ can compute (in a uniform way) an instance of Φ. By contrast ‘Ψ does not
compute Φ’ means that there is an instance of Ψ that cannot compute any instance
of Φ.
In the left column, we classify the nonstandard axioms studied in this article as
follows:P0 plus the pictured nonstandard axioms is (at least or exactly) at the level of
the corresponding system on the right; (struck out) arrows denote (non)implication
over P0. The dashed arrows imply implication over P0 + X.
Our results suggest that the RM of Nonstandard Analysis is much more “wild”
than the ‘standard’ counterpart from [64]: For instance, the nonstandard counter-
parts of the Big Five systems andWWKL0 are not even linearly ordered. Similarly,
the higher-order framework is much more “wild” than the second-order counter-
part from [64]: For instance, Θ and Λ-functionals are natural variations of the
usual fan functional with rather extreme computational hardness compared to their
first-order strength. The difference in strength when adding Π01-TRANS to STP and
LMP, or equivalently: when combining ∃2 with Θ-functionals and Λ1, is another
example of “wild” behaviour.
On a historical note, our results in the RM of Nonstandard Analysis should be
viewed in light of the following 1966 anecdote by Friedman regarding Robinson.

I remember sitting in Gerald Sacks’ office at MIT and telling him about this
[version of Nonstandard Analysis based on PA] and the conservative exten-
sion proof. He was interested, and spoke to A. Robinson about it, Sacks told
me that A. Robinson was disappointed that it was a conservative extension.
([17])

In light of the previous quote, we believe Robinson would have enjoyed learning
about the “new” mathematical object that is the special fan functional originat-
ing from Nonstandard Analysis. As it happens, many (if not most) theorems
of second-order arithmetic can be modified to yield similar “special” function-
als with exotic computational properties. Thus, Figure 1 raises many questions,
both in computability theory and Nonstandard Analysis, discussed in the previous
section.
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