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1  | INTRODUC TION

Genes of the major histocompatibility complex (MHC) constitute an 
important part of the adaptive immune system in vertebrates. They 
code for proteins that present intracellular (MHC class I; MHCI) and 
extracellular (MHC class II; MHCII) pathogen‐derived antigens to 
T‐cells and hence trigger an immune response against the specific 

pathogens (Janeway, Travers, Walport, & Shlomchik, 2001). The arms 
race between hosts and parasites contributes to the maintenance 
of extensive polymorphism through balancing pathogen‐mediated 
selection (Spurgin & Richardson, 2010) via heterozygote overdom‐
inance (Doherty & Zinkernagel, 1975; Hughes & Nei, 1988, 1989), 
negative frequency‐dependent selection (Bodmer, 1972; Slade & 
McCallum, 1992; Snell, 1968; Takahata & Nei, 1990) and fluctuating 
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Abstract
Genes of the major histocompatibility complex (MHC) are essential in vertebrate 
adaptive immunity, and they are highly diverse and duplicated in many lineages. 
While it is widely established that pathogen‐mediated selection maintains MHC di‐
versity through balancing selection, the role of mate choice in shaping MHC diversity 
is debated. Here, we investigate female mating preferences for MHC class II (MHCII) 
in the bluethroat (Luscinia svecica), a passerine bird with high levels of extra‐pair pa‐
ternity and extremely duplicated MHCII. We genotyped family samples with mixed 
brood paternity and categorized their MHCII alleles according to their functional 
properties in peptide binding. Our results strongly indicate that females select extra‐
pair males in a nonrandom, self‐matching manner that provides offspring with an al‐
lelic repertoire size closer to the population mean, as compared to offspring sired by 
the social male. This is consistent with a compatible genes model for extra‐pair mate 
choice where the optimal allelic diversity is intermediate, not maximal. This golden 
mean presumably reflects a trade‐off between maximizing pathogen recognition 
benefits and minimizing autoimmunity costs. Our study exemplifies how mate choice 
can reduce the population variance in individual MHC diversity and exert strong sta‐
bilizing selection on the trait. It also supports the hypothesis that extra‐pair mating is 
adaptive through altered genetic constitution in offspring.
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selection (Hamilton & Zuk, 1982; Hedrick, 2002; Hedrick, Thomson, 
& Klitz, 1987). In addition to heterozygosity, gene duplications can 
expand intraindividual MHC repertoire and increase the number of 
pathogens that can be combatted (Nei, Gu, & Sitnikova, 1997).

The number of intraindividual MHC loci varies among species 
(e.g., Minias, Pikus, Whittingham, & Dunn, 2018). Duplications of 
MHC loci are presumably selected for when hosts are exposed to 
a broad array of pathogens (Westerdahl, Wittzell, & von Schantz, 
2000). However, there are also costs of having a large number of 
MHC alleles; the risk of autoimmune diseases increases and the 
immune system could be less efficient due to negative selection 
of T‐cells in the thymus (Lenz et al., 2015; Migalska, Sebastian, & 
Radwan, 2019; Nowak, Tarczy‐Hornoch, & Austyn, 1992; Vidović & 
Matzinger, 1988, but see Borghans, Noest, & De Boer, 2003). This 
will lead to a trade‐off in the number of intraindividual MHC alleles, 
and the optimal number could thus be expected to be intermedi‐
ate rather than maximal (Kalbe et al., 2009; Wegner, Kalbe, Kurtz, 
Reusch, & Milinski, 2003; Woelfing, Traulsen, Milinski, & Boehm, 
2009). It is conceivable that selection for an intermediate number of 
MHC alleles, i.e., the golden mean (Woelfing et al., 2009), could be 
especially pronounced in species possessing many MHC loci.

Whenever MHC affects fitness, females would be selected to 
choose a mate that will give rise to an optimal MHC diversity in the 
offspring (Milinski, 2006; Woelfing et al., 2009). Accordingly, genes 
of the MHC have been suggested to be candidate genes underly‐
ing female mate choice (Edwards & Hedrick, 1998; Penn & Potts, 
1999; Yamazaki et al., 1976), but decades of studies of MHC and 
mate choice have rendered equivocal results (Kamiya, O'Dwyer, 
Westerdahl, Senior, & Nakagawa, 2014; Piertney & Oliver, 2006). If 
a female is capable of assessing her own MHC, she should choose 
a mate with a compatible genotype so that the diversity in the off‐
spring will be optimal (Penn & Potts, 1999; Trivers, 1972). A pref‐
erence for maximal MHC‐dissimilar mates has been found in many 
vertebrates (e.g., Freeman‐Gallant, Meguerdichian, Wheelwright, 
& Sollecito, 2003; Landry, Garant, Duchesne, & Bernatchez, 2001; 
Olsson et al., 2003; Strandh et al., 2012; Wedekind, Seebeck, 
Bettens, & Paepke, 1995; Yamazaki et al., 1976), while other studies 
have indicated choice for mates with intermediate dissimilarity (e.g., 
Baratti et al., 2012; Bonneaud, Chastel, Federici, Westerdahl, & Sorci, 
2006; Eizaguirre, Yeates, Lenz, Kalbe, & Milinski, 2009; Forsberg, 
Dannewitz, Petersson, & Grahn, 2007), in line with the theoretical 
framework of an intermediate optimum. On the other hand, if fe‐
males are not capable of self‐referencing, they might choose mates 
with an optimal MHC diversity. Choice of the most MHC‐diverse 
males has also been demonstrated in several taxa (e.g., fish [Reusch, 
Häberli, Aeschlimann, & Milinski, 2001], mammals [Ditchkoff, 
Lochmiller, Masters, Hoofer, & Bussche, 2001; Winternitz, Abbate, 
Huchard, Havlíček, & Garamszegi, 2017] and birds [Bonneaud et 
al., 2006; Dunn, Bollmer, Freeman‐Gallant, & Whittingham, 2013; 
Richardson, Komdeur, Burke, & von Schantz, 2005; Whittingham, 
Freeman‐Gallant, Taff, & Dunn, 2015]), while other studies have sup‐
ported selection for males with an intermediate MHC diversity (e.g., 
Jäger et al., 2007; Slade, Watson, & MacDougall‐Shackleton, 2017). 

In contrast, Dearborn et al. (2016) suggested that the benefits of 
MHC‐based mate choice will be reduced in species with duplicated 
and diverged MHC loci, because diverse multilocus genotypes will 
then be inherited also under random mating. This could possibly ex‐
plain the lack of MHC‐based mate choice found by several studies 
(e.g., Paterson & Pemberton, 1997; Sepil et al., 2015; Westerdahl, 
2004). Extending this argument further, MHC‐based mate choice 
should be less pronounced in species with a high number of MHC 
loci.

Studying species that are socially monogamous but exhibit extra‐
pair paternity offers an opportunity to gain insights into the genetic 
basis of mate choice. While the social male might be chosen for his 
territory quality and parental abilities, the extra‐pair male usually 
contributes only sperm and might be chosen for genetic benefits 
(Mays & Hill, 2004). Optimization of offspring MHC might confer 
such benefits, due to the importance of MHC in the defence against 
fast‐evolving parasites (Milinski, 2006), but whether this holds true 
for species with extreme levels of MHC‐diversity is not known.

Passerine birds are generally characterized by polygenic and 
polymorphic MHC (Westerdahl, 2007). In this study, we investigated 
the significance of MHC‐based mate choice in a passerine spe‐
cies with highly duplicated MHC. The bluethroat (Luscinia svecica, 
Linnaeus, 1758) provides an excellent study system as it is among the 
bird species with the highest intraindividual MHCII diversity known 
to date (minimum 28 loci; Rekdal, Anmarkrud, Johnsen, & Lifjeld, 
2018), and has an extensive extra‐pair mating system (i.e., about 
50% of the nests have extra‐pair offspring; Johnsen & Lifjeld, 2003). 
Intriguingly, immunogenetic benefits of extra‐pair copulations have 
indeed been suggested for this species: Johnsen, Andersen, Sunding, 
and Lifjeld (2000) and Fossøy, Johnsen, and Lifjeld (2008) found a 
higher immune response in extra‐pair offspring than in both their 
maternal and paternal half‐siblings. This suggests a preference for 
compatible genes in extra‐pair mate choice in the bluethroat, which 
implies variable preferences that depend on the chooser's own gen‐
otype. In a previous study of this species, there were no correlations 
between male morphological traits within natural phenotypic vari‐
ation and male success of extra‐pair fertilisations (Johnsen, Lifjeld, 
Andersson, Örnborg, & Amundsen, 2001), which is consistent with a 
lack of directional selection on male secondary sexual traits through 
female choice of extra‐pair males.

We based our analyses on bluethroat nests with known mixed 
paternities and identified genetic sires in order to be able to com‐
pare female choice of social males and extra‐pair males. If females 
chose extra‐pair males based on MHC compatibility, we predicted 
a difference in MHC diversity in the combined genotype of the fe‐
male and her social mate and that of the female and her extra‐pair 
male. Alternatively, if females based their choice on the male MHC 
genotypes alone, irrespective of their own genotype, we expected 
to find a difference between the intraindividual MHC diversity of 
the social male and the extra‐pair male. Female MHC‐based choice 
of extra‐pair males should consequently lead to a difference in MHC 
diversity between within‐pair and extra‐pair offspring. If there was 
selection for maximized diversity, we expected a higher diversity 
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in extra‐pair than in within‐pair offspring. Conversely, if there was 
selection for intermediate diversity, we expected MHC diversity to 
be more concentrated around an intermediate optimum (i.e., lower 
variance; Forsberg et al., 2007; Lenz, Eizaguirre, Scharsack, Kalbe, & 
Milinski, 2009) in extra‐pair offspring.

2  | MATERIAL S AND METHODS

2.1 | Study population and data collection

The present study is based on part of the same data set as used in 
Johnsen et al. (2000) and Fossøy et al. (2008). Blood samples were 
collected from adult and nestling bluethroats from a wild population 
in Øvre Heimdalen, Øystre Slidre, Norway (61°25′N, 8°52′E) during 
the spring and summer of 1998 and 1999. Because about 50% of all 
bluethroat nests in the study population contain one or more extra‐
pair young (EPY), and about 26% of all offspring are EPY (Johnsen 
& Lifjeld, 2003), the genetic parentage of the chicks were decided 
based on microsatellites in the previously published studies (Fossøy 
et al., 2008; Johnsen et al., 2000). In this study, we included 279 
individuals from 38 complete families in which both females, EPY, 
within‐pair young (WPY), social males (WPM) and extra‐pair males 
(EPM) were known and sampled. DNA was extracted using E‐Z 96 
Blood DNA Kit (Omega Bio‐Tek Inc. [D1199‐01]), following the man‐
ufacturer's protocol.

2.2 | Sequencing and allele calling of MHCIIβe2

All DNA samples were amplified in duplicates using the primers 
MHCIIFihy‐E2CF and MHCIIFihy‐E2CR (Canal, Alcaide, Anmarkrud, 
& Potti, 2010) and the sample indexing setup described by Fadrosh 
et al. (2014). Details regarding PCR conditions and thermal profile 
are presented elsewhere (Rekdal et al., 2018). The amplicons were 
sequenced on an Illumina MiSeq instrument using v3 chemistry. The 
workflow used to call the MHCIIβe2 alleles resembles closely the 
pipeline outlined by Rekdal et al. (2018), which is based upon the al‐
lele identification methodology published by Sommer, Courtiol, and 
Mazzoni (2013). The use of replicates and family information facili‐
tated allele calling. Several measures were taken to avoid artefacts. 
In short, this included reducing the number of PCR cycles to 25 to 
minimize artefact formation (Lenz & Becker, 2008), as well as im‐
plementing a strict filtering scheme in the allele calling process. For 
details, see Appendix S1.

We successfully genotyped 24 females and 35 males sampled 
in 1998, 12 females and 21 males sampled in 1999 (one female and 
three males were recaptures from 1998), as well as 98 WPY and 86 
EPY in total from the 38 nests from both years. Because two female 
samples failed, we had only 36 complete trios (female, social male 
and extra‐pair male) left for analysis, but 38 male duos (social and 
extra‐pair male). Five offspring samples also failed during sequenc‐
ing, leaving no WPY genotyped for one nest and no EPY genotyped 
for another. Thus, only 36 nests contained both WPY and EPY and 
were used for paired comparisons of the two groups. Several males 

sired both WPY and EPY in this data set. Every EPM also sired WPY 
in their own nest, although not all of these nests were included in 
this study. All pairs (i.e., combinations of male and female identity) 
were unique.

2.3 | Establishing genotypes for PSS 
alleles and supertypes

In order to consider the functional aspects of the MHC alleles, we 
employed the program CodeML in the package PAML (Yang, 2007) 
to identify sites under positive selection (positively selected sites; 
PSS). These are sites that probably are under pathogen‐mediated 
selection, and thus presumably are important in antigen binding and 
hence the function of MHCII (Hughes & Nei, 1989; Sepil, Moghadam, 
Huchard, & Sheldon, 2012; Yang & Swanson, 2002). CodeML uses a 
codon substitution model on the sequence phylogeny to accomplish 
a likelihood ratio test (LRT), comparing a model with no positive se‐
lection (M7: dN/dS < 1) with a model that allow positive selection at 
amino acid sites (M8: dN/dS > 1). As the M8 model fitted the data 
significantly better than M7 (see Appendix S2), a Bayes Empirical 
Bayes‐procedure (BEB) was used to identify sites under positive se‐
lection (p > 95%) through a maximum likelihood framework. Of the 
12 residues identified as PSS by CodeML, eight have also been de‐
scribed as antigen binding residues in bluethroats (Gohli et al., 2013, 
which again is based on the PBR of human MHCII by Tong et al., 
2006) and in other passerines (Balakrishnan et al., 2010). These eight 
residues were thus selected as the basis for PSS sequences in this 
study: 4, 6, 8, 23, 25, 52, 55 and 66.

The unique PSS sequences were further subdivided into super‐
types based on the physiochemical properties of the amino acid res‐
idues through z‐descriptors (Sandberg, Eriksson, Jonsson, Sjöström, 
& Wold, 1998), aiming to group the PSS sequences with similar an‐
tigen binding properties (Doytchinova & Flower, 2005; Sepil et al., 
2012). The R package adegenet (Jombart, 2008) was employed to 
infer clusters (i.e., supertypes) by k‐means clustering (Doytchinova 
& Flower, 2005). There were 20 supertypes inferred from the PSS 
sequences. Details are given in Appendix S2. The number of unique 
PSS sequences per supertype ranged from four (cluster 5) to 25 
(cluster 8), with an average of 15.6.

We designated genotypes for PSS alleles and supertypes for each 
individual based on their nucleotide genotype (Appendices S2 and 
S5), and used the PSS and supertype genotypes in all downstream 
analyses. We also obtained the number and identity of unique PSS 
alleles and supertypes within a pair, for all established pairs (social 
pairs [henceforth WPM‐F], and extra‐pair partners [EPM‐F]).

2.4 | Statistical analyses

2.4.1 | Male diversity

To test for female choice of EPM for maximum male diversity, we 
computed the number of unique PSS alleles, sum of the amino acid 
distance between all pairs of unique PSS alleles, average amino acid 
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distance between all pairs of unique PSS alleles and the number of 
supertypes for the individual males. Paired t tests were run to evalu‐
ate if there were any differences in the mean values of the param‐
eters for WPM and EPM.

If females choose males with an intermediate number of alleles as 
EPM, we expect that the observed values will be more concentrated 
around an optimum in EPM than in WPM. We thus tested if the vari‐
ances in the number of unique PSS alleles and supertypes differed 
between WPM and EPM using Levene's test (Brown‐Forsythe type; 
Brown & Forsythe, 1974) for equality of variances, in the r package 
car (Fox & Weisberg, 2018). The intraindividual number of PSS al‐
leles was further examined by paired t test, testing the distance to 
yearly population mean for WPM and EPM.

We built linear models to test if there were any significant cor‐
relations between the number of PSS alleles in the females and the 
males (WPM/EPM), in all observed pairs.

2.4.2 | Compatibility

If the females choose EPM based on her own genotype in order to 
maximize the MHCII diversity in her offspring, only the unique, non‐
shared alleles of the pair found exclusively within the males would 
be relevant for her choice. For every observed pair, we thus estab‐
lished these parameters: the number of nonshared PSS alleles only 
found within the male, sum of the amino acid distance between all 
pairs of nonshared PSS alleles only found within the male, average 
amino acid distance between all pairs of nonshared PSS alleles only 
found within the male and the number of nonshared supertypes only 
found within the male. Paired t tests were conducted in order to test 
if there were any differences in the abovementioned parameters be‐
tween WPM‐F and EPM‐F within nests. We also employed Welch's 
unequal variances t test to further explore the differences between 
WPM‐F and EPM‐F in the total number of unique PSS alleles found 
within a pair.

As for WPM and EPM, we employed Levene's test to test the 
equality of variances in the observed number of PSS alleles and su‐
pertypes in WPM‐F and EPM‐F. If females choose males who render 
an intermediate number of alleles in the pair as EPMs, we corre‐
spondingly expect a smaller variance in EPM‐F than in WPM‐F. The 
difference between WPM‐F and EPM‐F in their distance to yearly 
population mean number of PSS alleles in the pair was also tested 
using a paired t test as well as Welch's unequal variances t test. 
Further, we ran simulations to test whether the observed numbers 
of PSS alleles within mating pairs differed from a random model. For 
each run in the simulations, we paired each female with a random 
male sampled in the same year, calculated the number of unique PSS 
alleles for the pair and listed its deviation (absolute value) from the 
overall population mean. We then calculated and recorded the mean 
deviation across all 36 females in our sample. This procedure was 
iterated 10,000 times, which yielded a distribution of 10,000 means, 
to which the observed means for social pairs and extra‐pair partners 
could be compared.

2.4.3 | Offspring

Mate choice can also be tracked in the genotypes of offspring. If 
there is selection for females to choose EPM that will maximize 
MHCII diversity in the offspring, we expect EPY to have a higher 
number of PSS alleles or supertypes than WPY. We thus performed 
paired t tests on the number of PSS alleles and the number of su‐
pertypes in WPY and EPY, paired within nests. We also used the r 
package lmerTest (Kuznetsova, Brockhoff, & Christensen, 2017) to 
build a linear mixed model of the correlation between the number 
of PSS alleles (response) and the status of the offspring (WPY/
EPY; fixed effect), with dam and sire identity as random factors 
with random intercepts. We further established a corresponding 
linear mixed model to test if the distance to the population aver‐
age number of PSS alleles was different in WPY and EPY. For the 
mixed models, we square root transformed the response variables 
(i.e., the number of PSS alleles and the distance to population av‐
erage in absolute numbers of PSS alleles) to attain normality. We 
also performed a paired t test to test for a difference in the dis‐
tance to the population average number of PSS alleles between 
WPY and EPY within nests. Similarly as for the adults, we carried 
out tests for equality of variances in the intraindividual number of 
PSS alleles (F‐ratio test; see below) and supertypes (Levene's test) 
between WPY and EPY. Given the results we obtained from the 
adults, we had an expectation of EPY being closer to the popula‐
tion mean in the intraindividual number of PSS alleles than WPY. 
We thus applied one‐sided tests testing this hypothesis (valid for 
two tests: the paired t test testing if EPY had a smaller distance 
to the population average number of PSS alleles than WPY, and a 
one‐sided F‐ratio test testing if EPY had a smaller variance in the 
number of PSS alleles than WPY). We square root transformed 
the intraindividual numbers of PSS alleles for the latter test, as it 
is highly sensitive to deviation from normality. For the variance 
tests and paired t tests in offspring, one WPY and one EPY were 
chosen randomly from each nest and used in the analyses, in order 
to avoid pseudoreplication. The analyses were repeated 10,000 
times, and the resulting mean t‐ and F‐values were used for calcu‐
lation of p‐values.

2.4.4 | For all analyses

Only the male with the highest number of offspring in the respec‐
tive nest was included when there were two EPMs genotyped for 
one nest (relevant in four nests in this data set). All the statisti‐
cal analyses were conducted in r (R Core Team, 2016, see Rekdal, 
Anmarkrud, Lifjeld, & Johnsen, 2019 for scripts and input data), 
while the amino acid distances were calculated by mega7 (Kumar, 
Stecher, & Tamura, 2016). The distance to the population average 
number of PSS alleles was square root transformed to endeavor 
normality in all tests using this variable. Visual inspection of QQ‐
plots and Shapiro–Wilk tests revealed normality for all tests (data 
not shown), with exception of slight deviation from normality in 
the Welch's t test between WPM‐F and EPM‐F in their distance 
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to yearly population mean number of PSS alleles in the pair. We 
approximated the optimal intermediate number of PSS alleles as 
the mean intraindividual number of alleles across all adults sam‐
pled within a year (1998:19.9 PSS alleles per individual, 1999:19.8 
PSS alleles per individual), and the mean number of unique alleles 
within a pair over all possible pairs within a year (1998:32.0 PSS 
alleles per pair, 1999:32.7 PSS alleles per pair). This agrees with 
work on sticklebacks (Gasterosteus aculeatus) showing that the 
estimated optimum number of alleles is close to population aver‐
age (Aeschlimann, Häberli, Reusch, Boehm, & Milinski, 2003). All 
significant tests remained significant after controlling for multiple 
testing using false discovery rate (Benjamini & Hochberg, 1995; 
Q = 0.1).

3  | RESULTS

3.1 | High number of MHCII alleles within 
individuals

The 1,176 nucleotide MHCII sequences translated into 890 unique 
amino acid sequences. When considering only the eight amino acid 
residues recognized as PSS, the sequences grouped into 311 unique 
PSS alleles, which further were divided into 20 supertypes (see 
Table 1 and Appendix S3). Across all adults sampled both years, the 
mean intraindividual number of nucleotide alleles, PSS alleles and su‐
pertypes were 37.7 (SD = 8.28), 19.8 (SD = 4.60) and 12.4 (SD = 2.32), 
respectively. The frequencies of each number of unique PSS alleles 

TA B L E  1   The number of unique MHC class II variants at the different sequence levels, found across all individuals (adults and offspring) 
and within individuals (given as mean values and range)

Sequence level
Number of unique variants across all 
individuals Alleles per individual Alleles per adult

Alleles per 
offspring

Nucleotide 1,176 35.2 (16–58) 37.7 (16–58) 34.1 (19–52)

Translated 890 31.3 (16–47) 33.4 (16–47) 30.3 (18–45)

PSS 311 18.6 (7–32) 19.8 (11–32) 18.0 (7–32)

Supertypes 20 12.0 (5–18) 12.4 (8–18) 11.7 (5–18)

F I G U R E  1   Frequency plots of the 
number of unique MHC class II PSS 
alleles (positively selected sites; left) 
and supertypes (right) found within all 
individual adults (top panel [a, b]), all 
observed partners (middle panel [c, d]) 
and offspring (bottom panel [e, f]). The 
observed values for social and extra‐pair 
males (WPM/EPM [a, b]), social and extra‐
pair partners (WPM‐F/EPM‐F [c, d]) and 
within‐pair and extra‐pair young (WPY/
EPY [e, f]) are visualized as normalized 
curves in light (WPM, WPM‐F, WPY) and 
dark (EPM, EPM‐F, EPY) blue. The mean of 
the normalized curves are given as dashed 
lines and coloured correspondingly
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and supertypes within individual adults, pairs and offspring are visu‐
alized in Figure 1.

3.2 | Do females choose EPM based on male MHCII 
diversity?

There were no indications of females choosing males with maxi‐
mized diversity as EPM, as there were no significant differences in 
the mean parameter values between WPM and EPM (paired t tests; 
see Appendix S4). EPMs did also not have a number of PSS alleles 
that was closer to the population mean than that of WPMs (paired t 
tests; t37 = 1.34, p = .19). Correspondingly, the variances in the indi‐
vidual number of PSS alleles and supertypes within WPM and EPM 
were not significantly different (Levene's test for equality of vari‐
ances; F1,74 = 2.93, p = .091 [PSS alleles; Figure 1a] and F1,74 = 0.026, 
p = .87 [supertypes; Figure 1b]).

The numbers of PSS alleles found within the females and EPMs 
were negatively correlated (linear models; R2

adj
 = 0.16, F1,34 = 7.51, 

p  =  .0097), but were uncorrelated between females and WPMs 
(R2

adj
  =  0.012, F1,34  =  1.42, p  =  .24). The corresponding regression 

slopes for EPM and WPM were significantly different (F1,68 = 6.28, 
p =  .015, see Figure 2). In other words, this suggests that females 
with few PSS alleles tended to choose EPM with many PSS alleles 
and vice versa, but this pattern was not found for female choice of 
WPM.

3.3 | Do females choose EPM based on 
compatibility at MHCII?

Females did not consistently choose a more dissimilar extra‐pair 
male than their social male (paired t tests; see Appendix S4). There 
was further no significant difference in the average number of 
unique PSS alleles in the pair between WPM‐F pairs and EPM‐F 
pairs (Welch's t test; t55.3 = 0.69, p =  .49, see Figure 3a). However, 

the number of unique PSS alleles in EPM‐F pairs showed less vari‐
ance than in WPM‐F pairs (Levene's test; F1,70  =  9.54, p  =  .0029; 
Figure 1c), but not so for the number of supertypes (F1,70  =  0.99, 
p = .32; Figure 1d). EPM‐F pairs were also significantly closer to the 
population mean number of unique PSS alleles within pairs than 
WPM‐F pairs (paired t test; t35 = 3.05, p = .0043, effect size = 0.62, 
Welch's t test; t64.4 = 2.65, p = .010, see Figure 3b).

Assuming random mating, we calculated 10,000 averages of the 
number of unique PSS alleles within pairs across all females, and 
their deviations from the population mean. Figure 4 shows the dis‐
tribution of these deviations. We used this distribution to test if the 
observed average number of unique alleles in EPM‐F and WPM‐F 
deviated significantly from a random model. We found that only 
33 of the 10,000 simulated means had a lower value than the ob‐
served EPM‐F (exact test: p = .0068, Figure 4), while the observed 
mean value for WPM‐F was ranked as the 9091st observation when 
sorted ascendingly (exact test: p = .18).

3.4 | Offspring

In line with the results from the adults, we found no support for 
female choice of EPM for maximized diversity in the offspring data: 
there were no differences in mean number of alleles between WPY 
and EPY, neither in the paired t tests (PSS alleles: t35 = 0.12, p = .91, 
supertypes: t35 = –0.45, p = .66) nor in the linear mixed model for PSS 
alleles (t54.7 = −0.26, p = .80, see Figure 3c). Furthermore, in line with 
the above results for mate choice, we found that EPY had a number 
of PSS alleles that was significantly closer to the population average 
than that of WPY (linear mixed model: estimate = 0.31, t49.6 = 2.68, 
p = .0099, see Figure 3d, paired t test: t35 = −2.01, p = .026). Similarly, 
there was a tendency for EPY to have a smaller variance in the in‐
dividual number of PSS alleles than WPY (F ratio test; F36,35 = 1.67, 
p  =  .066, see Figure 1e), but not in the number of supertypes 
(Levene's test; F1,71 = 0.39, p = .54, see Figure 1f).

4  | DISCUSSION

We have shown here that extra‐pair mating in the bluethroat was 
nonrandom with respect to MHCII alleles. The number of unique, 
functional MHCII alleles among extra‐pair parents was consistently 
closer to the population mean, with a significantly reduced variance, 
than that expected from a random model of pair combinations or 
that observed among social parents. Consequently, we found that 
extra‐pair offspring received an allelic repertoire closer to the popu‐
lation mean than was the case for within‐pair offspring. Our study 
therefore supports the hypothesis that females engage in extra‐pair 
mating for genetic benefits and suggests that MHCII genes play a 
significant role in their mating preferences. Our results imply that 
females may be able to differentiate among alleles according to se‐
quence variation at positively selected nucleotides in the peptide‐
binding region of the molecule, and not according to other physical 
properties assumed in the categorization of alleles into supertypes.

F I G U R E  2   The number of unique MHC class II PSS (positively 
selected sites) alleles genotyped within each individual bluethroat 
in all observed pairs, divided in females and their social males (F 
and WPM; light blue), and females and their extra‐pair males (F and 
EPM; dark blue)
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4.1 | MHC‐based mate choice realized through 
extra‐pair copulations

Dearborn et al. (2016) suggested that MHC‐based mate choice may 
be superfluous in species with duplicated and diverged MHC loci, 
since offspring will inherit a diverse MHC genotype irrespective of 
mate choice. In contrast, we found substantial support for MHCII‐
based mate choice in a species possessing extensive MHCII dupli‐
cations. Although we did not find any indications of disassortative 
mating with respect to MHCII, our results suggest that females 
choose extra‐pair males that will render an intermediate number 
of functional MHCII alleles in the pair, leading to an intermediate, 
presumably optimal MHC diversity in extra‐pair offspring.

A difference between within‐pair and extra‐pair units is ex‐
pected if females choose social males for other than pure genetic 
benefits, while the extra‐pair males might be chosen on the basis 
of their genes, as they probably only contribute sperm (Johnsen et 
al., 2001; Trivers, 1972). In the context of MHC, few studies on pas‐
serines have tested such differences, and among those which have, 
the results are mixed. Most studies did not find any support for in‐
creased compatibility between the MHC genotypes of the female 
and extra‐pair male, compared to the female and the social male 
(Bollmer, Dunn, Freeman‐Gallant, & Whittingham, 2012; Promerová 
et al., 2011; Richardson et al., 2005). Yet, Winternitz et al. (2015) 
found that in the scarlet rosefinch (Carpodacus erythrinus), the vari‐
ance in intraindividual number of MHC alleles was lower in extra‐
pair offspring than within‐pair offspring, which is consistent with 

F I G U R E  3   Boxplots of the observed 
values (grey, jittered dots) of the number 
of unique MHC class II PSS alleles 
(positively selected sites; a, c) and 
the absolute distance to the optimum 
(given in number of unique PSS alleles 
[nontransformed data]; b, d) within each 
pair in the data set, divided in social pairs 
and extra‐pair partners (WPM‐F/EPM‐F 
[a, b]) and within each offspring, divided 
in within‐pair young and extra‐pair young 
(WPY/EPY [c, d]) WPM−F EPM−F
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F I G U R E  4   Histogram showing 10,000 simulated mean values 
of the distance to the yearly population mean (given in number of 
unique MHC class II PSS [positively selected sites] alleles within a 
pair, square root transformed), allowing each bluethroat female to 
mate with a random male within the data set. The observed mean 
values for social pairs (WPM‐F) and extra‐pair partners (EPM‐F) are 
given as coloured, dashed lines (light blue and dark blue, respectively)
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our results. They did, however, not report any differences in MHC 
compatibility between social and extra‐pair partners.

Other studies have found that paternity loss from social to 
extra‐pair males could be negatively associated with MHC diver‐
sity, based on either the social male's MHC diversity (Promerová 
et al., 2011; Richardson et al., 2005) or MHC similarity in the so‐
cial pair (Freeman‐Gallant et al., 2003) – a pattern also found in a 
primate with high levels of extra‐pair paternity (Schwensow, Fietz, 
Dausmann, & Sommer, 2008). While we have only included pairs 
with confirmed cuckoldry in this study, and hence do not know the 
MHCII compatibility in pairs with pure WPY broods, we cannot test 
predictions concerning overall paternity loss in relation to partner 
compatibility in MHCII genotypes with our data.

4.2 | Intermediate, not maximized MHCII diversity

Our results point to selection for an intermediate optimum num‐
ber of MHCII alleles, rather than maximized MHCII diversity in 
the bluethroat. This is in line with the theoretical framework of 
a trade‐off between recognizing a broad array of pathogens, and 
increased depletion of circulating T‐cells following negative se‐
lection in the thymus and risk of autoimmune diseases with in‐
creased number of MHC alleles (e.g., Gough & Simmonds, 2007; 
Nowak et al., 1992; Woelfing et al., 2009). What level of intrain‐
dividual MHC diversity that constitutes the optimum might vary 
among species due to ecological differences, e.g., according to 
the pathogen load experienced (Minias et al., 2018; O'Connor, 
Cornwallis, Hasselquist, Nilsson, & Westerdahl, 2018; Westerdahl 
et al., 2000). This implies that the more pathogens a species is ex‐
posed to, the stronger the selective force for increased diversity 
will be, driving the optimum towards a higher diversity. Because 
the bluethroat is migratory, insectivorous and fairly promiscuous, 
it probably encounters a multitude of pathogens. While this could 
explain the large number of MHCII loci in the species (Anmarkrud, 
Johnsen, Bachmann, & Lifjeld, 2010; Gohli et al., 2013; Rekdal 
et al., 2018), it is, however, important to emphasize that we did 
not find support for selection for maximized diversity, but rather 
indications of stabilizing selection for a relatively high intermedi‐
ate number of MHCII alleles. Still, stabilizing selection can lead to 
an increase in individual allelic diversity over evolutionary time, 
through a moving intermediate optimum.

Fossøy et al. (2008) compared microsatellite multilocus hetero‐
zygosity between within‐pair and extra‐pair units in a bluethroat 
data set including the data used in this study. They found that 
females were less genetically similar to the extra‐pair male than 
the within‐pair male, which presumably explained their results of 
extra‐pair young being more heterozygous than their maternal 
within‐pair half‐siblings. Our results do, however, exhibit a differ‐
ent pattern; instead of increased MHCII diversity, we found that 
extra‐pair partners and extra‐pair young had a number of unique 
PSS alleles that were more concentrated around the population 
mean than their within‐pair counterpart. This deviates from what 
we would expect based on microsatellites from Fossøy et al. (2008), 

and indicates that what we observed on MHCII was not due to ge‐
nome‐wide effects.

We restricted our analyses to MHCII. The bluethroat has rel‐
atively few MHCI loci (i.e., four; O'Connor, Strandh, Hasselquist, 
Nilsson, & Westerdahl, 2016; Rekdal et al., 2018), which might be 
due to less exposure to intra‐ than extracellular pathogens (Minias 
et al., 2018) or some compensatory immunological mechanism 
(e.g., Gangoso et al., 2012; Star et al., 2011). Recent studies have 
identified a link between MHCII composition and individual odor 
in birds, possibly mediated through microbial communities and 
uropygial gland secretions (Leclaire et al., 2019, 2014; Leclaire, 
Strandh, Mardon, Westerdahl, & Bonadonna, 2017; Slade et al., 
2016; Strandh et al., 2012). As there is growing evidence that birds 
are able to use olfaction in MHC‐based mate choice, also in a self‐
referencing manner (reviewed by Caro, Balthazart, & Bonadonna, 
2015), MHCII is a prominent candidate for such a mate choice 
mechanism.

4.3 | Compatibility, not male diversity

Unlike selection for maximized or intermediate diversity in the 
male, in which the same males will be the best choice for all fe‐
males, selection for compatibility implies that the best choice a fe‐
male can make is dependent on her own genotype (Brown, 1997). 
One suggested approach for MHC‐based mate choice is allele 
counting, in which females assess the number of MHC alleles in 
males, and choose mates accordingly (Aeschlimann et al., 2003; 
Reusch et al., 2001). A trend of mating‐up preference by allele 
counting was supported by Griggio, Biard, Penn, and Hoi (2011), 
who found that female house sparrows (Passer domesticus) with 
a low number of MHC alleles preferred high diversity males. We 
found the same tendency in this study; females with a low number 
of MHCII alleles had males with a high number of alleles as extra‐
pair males, and those with many alleles had males with fewer al‐
leles as extra‐pair males (Figure 2).

Importantly, all our tests on the adult bluethroats rendered sig‐
nificant results only when considering MHCII diversity in the pairs 
combined, and not in the male alone. These results are consistent 
with the compatibility framework (Brown, 1997; Trivers, 1972), 
where females choose mates based on their own genotype in 
order to produce offspring with an optimal MHC diversity (Penn & 
Potts, 1999). Indeed, Johnsen et al. (2000) and Fossøy et al. (2008) 
demonstrated an increased immunocompentence in extra‐pair 
offspring as compared to both their maternal and paternal half‐
siblings. Taken together, these studies offer extensive support for 
the compatibility hypothesis, realized through extra‐pair mating in 
the bluethroat.

4.4 | Positive selected sites, not supertypes

The significant results in this study originated from analyses on PSS 
alleles, and not supertypes. The rationale for further grouping the 
PSS sequences into supertypes was to focus on a possible higher unit 
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of selection, due to the overlap in binding repertoires by different 
MHC alleles (Matsumura, Fremont, Peterson, & Wilson, 1992; Sepil 
et al., 2012; Sette et al., 1989; Sette & Sidney, 1998; Trachtenberg et 
al., 2003). However, our results do not indicate any female discrimi‐
nation of MHCII alleles at the level of supertypes. One conceivable 
explanation for the disparate results could be due to information loss 
in the grouping of PSS alleles into supertypes. Another possibility 
could be spurious inference of irrelevant properties of the super‐
types. Supertypes might be functionally important in pathogen rec‐
ognition, but it is possible that females can only discriminated MHCII 
alleles from information encoded in their nucleotide sequences.

5  | CONCLUSION

In conclusion, this study provides substantial support for extra‐pair 
mating preferences associated with MHCII diversity in a passerine 
species with highly polymorphic and duplicated MHCII. The results 
are in agreement with a preference for a golden mean where an in‐
termediate number of alleles in the individual is optimal, given an 
assumed trade‐off between maximizing the range of pathogens that 
can be combatted and minimizing autoimmunity costs associated 
with too many alleles. We note, however, that we currently lack fit‐
ness data to verify that individuals with intermediate level of PSS al‐
leles have higher survival than those at the more extreme ends of the 
allele number distribution. Our study provides additional empirical 
support for the hypothesis that females engage in extra‐pair mating 
nonrandomly. It further suggests that this behaviour is associated 
with the genetic constitution of the immune system and the survival 
prospects of offspring under strong pathogen‐mediated selection 
pressures.
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