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ABSTRACT

Aims. We investigate the propagation of transverse magnetohydrodynamic (MHD) wave fronts through a coronal plasma containing
a braided magnetic field.

Methods. We performed a series of three dimensional MHD simulations in which a small amplitude, transverse velocity perturbation
is introduced into a complex magnetic field. We analysed the deformation of the wave fronts as the perturbation propagates through
the braided magnetic structures and explore the nature of Alfvénic wave phase mixing in this regime. We considered the effects of
viscous dissipation in a weakly non-ideal plasma and evaluate the effects of field complexity on wave energy dissipation.

Results. Spatial gradients in the local Alfvén speed and variations in the length of magnetic field lines ensure that small scales form
throughout the propagating wave front due to phase mixing. Additionally, the presence of complex, intricate current sheets associated
with the background field locally modifies the polarisation of the wave front. The combination of these two effects enhances the rate
of viscous dissipation, particularly in more complex field configurations. Unlike in classical phase mixing configurations, the greater
spatial extent of Alfvén speed gradients ensures that wave energy is deposited over a larger cross-section of the magnetic structure.
Further, the complexity of the background magnetic field ensures that small gradients in a wave driver can map to large gradients
within the coronal plasma.

Conclusions. The phase mixing of transverse MHD waves in a complex magnetic field will progress throughout the braided volume.
As aresult, in a non-ideal regime wave energy will be dissipated over a greater cross-section than in classical phase mixing models.
The formation rate of small spatial scales in a propagating wave front is a function of the complexity of the background magnetic field.
As such, if the coronal field is sufficiently complex it remains plausible that phase mixing induced wave heating can contribute to
maintaining the observed temperatures. Furthermore, the weak compressibility of the transverse wave and the observed phase mixing
pattern may provide seismological information about the nature of the background plasma.
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1. Introduction

Over recent years, high spatial and temporal resolution obser-
vations have allowed many authors to identify the existence
of a wide variety of magnetohydrodynamic (MHD) waves
throughout the solar corona (e.g. Aschwanden et al. 1999, 2002;
Verwichte et al. 2010; Threlfall et al. 2013; Duckenfield et al.
2018). Of particular interest to the current study is the evidence
of waves propagating along coronal structures (e.g. De Moortel
et al. 2000; McEwan & De Moortel 2006; Okamoto et al. 2007;
Thurgood et al. 2014; Morton et al. 2015). Whilst estimates of
the energy associated with these waves are not well constrained
(see, for example, Tomczyk et al. 2007; Mclntosh et al. 2011),
it is hypothesised that they may contribute to the heating of the
coronal plasma and/or the acceleration of the fast solar wind. We
refer interested readers to reviews by Erdélyi & Ballai (2007),
Parnell & De Moortel (2012), Arregui (2015), and references
therein.

Whilst the shuffling of magnetic foot points by photospheric
motions may be the source of propagating MHD waves (e.g.
Cranmer & van Ballegooijen 2005; Engvold 2008; Wang et al.
2009; Hillier et al. 2013), flows at the solar surface may also
cause the slow braiding of the coronal magnetic field (Parker
1972). This may lead to the formation of coronal current sheets
and the heating of plasma through Ohmic dissipation and mag-
netic reconnection, even in a weakly non-ideal regime (e.g. Peter
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et al. 2004; Klimchuk 2006; Wilmot-Smith et al. 2011; Reale
et al. 2016; O’Hara & De Moortel 2016). It is hypothesised that
the coronal magnetic field may exist in a permanently stressed
state and, as such, the background structures that are perturbed
by MHD waves may have a complex and highly structured topol-
ogy (e.g. Longcope & Sudan 1994; Longbottom et al. 1998;
Wilmot-Smith 2015; Pontin et al. 2016). Indeed, whilst the small
scale nature of the coronal field is not well-constrained, many
observational studies have highlighted the presence of large,
stressed magnetic structures and posited their association with
impulsive energy release (e.g. Srivastava et al. 2010; Yan et al.
2014; Joshi et al. 2015; Lim et al. 2016).

Many previous authors have modelled the propagation of
waves through a variety of coronal-like plasmas containing a
range of magnetic field configurations. These include consid-
erations of wave behaviour around magnetic null points (e.g.
McLaughlin 2016; McLaughlin et al. 2019; Prokopyszyn et al.
2019), wave interactions with large scale fields (e.g. Ofman &
Thompson 2002; Afanasyev & Zhukov 2018), and oscillations in
randomly structured plasmas (e.g. Pascoe et al. 2011; Yuan et al.
2015, 2016; Magyar et al. 2017). Unlike in uniform media, the
fast and Alfvén modes are not decoupled in inhomogeneous plas-
mas and waves with mixed properties are able to propagate (e.g.
Goossens et al. 2009, 2013). For example, in cylindrical geome-
tries, there is an extensive body of literature investigating the
kink mode and its resonant coupling to azimuthal Alfvén waves
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(Ionson 1978; Goossens et al. 2011). In a more general setting,
Lazzaro et al. (2000), present a method for investigating the
propagation of MHD waves through finely structured plasmas.

The propagation of waves through a plasma with a trans-
verse gradient in the Alfvén speed can lead to phase mixing
(Heyvaerts & Priest 1983) as wave fronts on adjacent mag-
netic field lines travel at different velocities. As such, large
spatial gradients in the perturbed magnetic and velocity fields
can form and will enhance the rate of wave heating dissipation
even in the weakly dissipative coronal plasma (e.g. Pagano &
De Moortel 2017). However, in Cargill et al. (2016), the authors
highlighted concerns of the suitability of the classical phase mix-
ing regime for heating the corona. In particular, they argued that
the typically assumed density profile cannot be self-consistently
sustained without an additional background heating term. Addi-
tionally, they show that the rate of wave energy dissipation
is insufficient unless transport coefficients well in excess of
expected coronal values are implemented.

In the classical phase mixing regime, the dissipation time

scale is expected to be proportional to Rtl/ *, where R, is a combi-
nation of the fluid and magnetic Reynolds numbers (Heyvaerts &
Priest 1983). However, an analytic investigation of Alfvén waves
in more complex magnetic field structures presented in Similon
& Sudan (1989), demonstrates that in some geometries, the dis-
sipation time may be proportional to log Ry;. This may provide a
significant enhancement above the classical heating rate and sug-
gests phase mixing may be an important wave energy dissipation
mechanism if the coronal field is sufficiently complex.

In this article, we present the results of numerical models
investigating the propagation of MHD waves through a braided
magnetic field. We investigate the effects of the field complex-
ity, viscous and Ohmic dissipation, and numerical resolution. In
Sect. 2, we outline our numerical model and describe the initial
conditions of the simulations. In Sect. 3 we present our results
and finally, in Sect. 4, we present a discussion of the implications
of this study.

2. Numerical method
2.1. Initial conditions

For the numerical simulations presented within this article, we
seek initial conditions consisting of complex magnetic field
topologies. In order to obtain such fields, we have used the out-
put of a 3D MHD model presented by Reid et al. (2018). Whilst
the results of the simulations presented in the aforementioned
paper are not directly related to the current work, we present a
brief description of the model in order to describe the initial con-
ditions of our experiments.

In Reid et al. (2018), an initially uniform, three dimen-
sional, straight magnetic field is stressed by continuous,
counter-rotational motions imposed on both foot points of three
cylindrical threads. The configuration of the velocity driver is
shown in Fig. 1. These motions generate columns of twisted
field, which, at least initially, remain distinct. The central thread
is twisted at a faster rate than the other two and hence, reaches
the threshold for kink instability sooner. The onset of the insta-
bility generates complex current structures and destabilises the
remaining two magnetic threads.

Ultimately, the constant injection of Poynting flux by the
continuous rotational driving generates distributed current sheets
and a complex field structure throughout the domain. In a non-
ideal regime, viscous and Ohmic heating increases the plasma
temperature during the course of the simulation. We direct the
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Fig. 1. Schematic of rotational driving implemented in Reid et al.
(2018).

interested reader to the analysis presented in Reid et al. (2018)
for further details.

In the present study, we used four simulation times from the
model described above in order to obtain fields with varying field
complexity and different quantities of magnetic twist. In each
case we relaxed the field structure towards a numerical equilib-
rium under the action of a large viscosity. This causes further
plasma heating but allows the wave dynamics (see Results) to
be analysed separately from the velocities associated with the
previous rotational driving. The numerical relaxation continues
until the velocities are small in comparison to the amplitude of
the wave driver (see below).

As in Reid et al. (2018), for the numerical simulations pre-
sented within this paper, we have implemented the Lagrangian-
remap code, Lare3D (Arber et al. 2001). We advance the full, 3D
MHD equations in normalised form given by

Dp

= V.- 1

Dr pV -0, (1)
Dv .

pE =jXB—-VP+ Fyg., 2)
De .

v il = P(V - 0) + Quise.» )
t
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where all variables have their usual meanings. The term F . is
the combination of viscous forces and Q... is the associated
heating. These dissipative terms can be separated into contri-
butions from a real viscosity, v, and two small shock viscos-
ity terms which are included within the following simulations
to ensure numerical stability. Unless otherwise stated v is set to
zero (see Sect. 3.2 for discussion of non-zero viscosity).

Our numerical domain has dimensions of 30 Mm x 30 Mm x
100 Mm (in x, y and z, respectively) and in the majority of the
simulations presented below, we implemented a numerical grid
of 128 x 128 x 512. We also considered a higher resolution case
with 256 X 256 x 1024 grid cells. The equilibrium obtained dur-
ing the relaxation phase is resolution dependent and narrower
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Fig. 2. Configuration of magnetic field lines for the least (s1; left-hand
panel) and most (s5; right-hand panel) complex initial conditions.

X X
Fig. 3. Projections of magnetic field lines onto x—y-plane for the four

field configurations. Upper left: s1, upper right: s2, lower left: s3 and
lower right: s5.

current sheets are present when the more refined grid is used
(see below for more details).

The model presented in Reid et al. (2018) is driven continu-
ously and the field complexity slowly increases during the course
of the simulations. In order to attain various degrees of field com-
plexity, we use the simulation states at 100, 200, 300 and 500
Alfvén times as the initial conditions for the numerical relax-
ation. Hereafter, we refer to these simulations as sl, s2, s3 and
s5 (t5 for the high resolution simulation), respectively. In each
case, the rotational driving is ceased in order to allow the field to
relax.

In Figs. 2 and 3, we show the configuration of the mag-
netic field for various cases following the numerical relaxation.
In Fig. 2, magnetic field lines are traced from the foot points of
each cylinder for the least (s1; left-hand panel) and most (s5;
right-hand panel) twisted simulations. The colour of each field
line identifies the cylinder containing the lower foot point of the
field line. In Fig. 3, we display the projections of magnetic field
lines onto the lower boundary of the domain for each of the four

(a) Current.

(b) Alfvén Speed.

Fig. 4. Initial configuration for the most complex field (s5) simulation.
In the right-hand panel, the Alfvén speed is largest within the volume.

post-relaxation states. In this case, the colour of the field line is
simply for visualisation purposes. In the least braided simulation
(upper left panel), we see that the central and right-hand flux tube
have both become unstable and have merged to form a larger
structure. However, the left-hand flux tube has remained distinct
and we simply observe the helical nature of the constituent field
lines. For the field configurations that have been stressed fur-
ther (see lower row of Fig. 3 and right-hand panel of Fig. 2), the
three cylinders are all inter-connected and no separate structures
remain.

In all cases, the resultant plasma is highly inhomogeneous
with spatial gradients in the Alfvén speed, gas and magnetic
pressures, density and temperature. The mean, minimum and
maximum values of plasma parameters in the relaxed states are
presented in Table 1. Due to the plasma heating described in
Reid et al. (2018), and because of the viscous heating that occurs
during the relaxation phase, the more complex field simulations
exhibit an increase in the mean temperature. We note that the
very high temperatures observed in the more complex field sim-
ulations (s2—s5 and t5) are typically confined to a few grid points.
These locations have been heated by the most energetic current
sheets and are not representative of the conditions throughout
the remainder of the domain. Despite the inhomogeneity present
within much of the numerical grid, for large values of |y|, the
field remains relatively simple (see Fig. 3) as the plasma was not
exposed to rotational driving in these locations (see Fig. 1).

In each case B < 1, and the relaxed field is approximately
force-free. Since j X B ~ 0, the currents are dominated by the
component parallel to B. As the relaxed, approximately force-
free field is predominantly aligned with the z axis, we have j, ~
Jy < Jj.. This property of the background currents is important
for explaining the modification in wave polarisation discussed
in Sect. 3.1. An isosurface of the initial current associated with
the most complex field (s5) is displayed in the left-hand panel of
Fig. 4.

In the right-hand panel of Fig. 4, we display an isosurface
of the Alfvén speed for the same simulation. The viscous and
Ohmic heating generated by the rotational driving is largest close
to the centre of the domain. As such, the temperature increases
most rapidly here. Therefore, in order to maintain pressure bal-
ance, density is expelled (predominantly along magnetic field
lines) from the centre of the domain and thus the Alfvén speed
is higher here.

Despite this, the Alfvén travel time is not necessarily shorter
in the centre of the x—y-plane, as here, field lines are typically
more twisted, and hence, longer. In Fig. 5, we display the travel
time for a wave propagating at the local Alfvén speed along
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Fig. 5. Alfvén travel time, Q (see Eq. (5)), along magnetic field lines
traced from the upper z boundary.

magnetic field lines traced from the upper z boundary. In par-
ticular we calculate

Zmax ds
Q(x,y) = f ds.
Zmin UA

where s is an infinitesimal field line element. The spatial scales
in the travel time, Q, provide an estimate for the amount of phase
mixing that can be expected as a wave front propagates through
the complex field structures.

In Fig. 6, we show an additional measure of the small scales
within the background field. For each of the four initial condi-
tions (s1, s2, s3 and s5), at each height, z, we integrate the mag-
nitude of gradients in the Alfvén speed over the x—y-plane. In
each case, we caclulate

&)

10 = [ Woalda, ©
A
and normalise by the maximum of I(z) in the s5 simulation.
This quantity acts as a proxy for the rate of deformation (phase
mixing) in the wave front as it propagates along magnetic field
lines. In Fig. 6, we see that this measure predicts more signif-
icant phase mixing in the simulations with more complex field
structures.

In addition to the initial states described above, for the pur-
poses of comparison, we will also consider the behaviour of
waves in a uniform domain with a magnetic field aligned with
the vertical (z) axis. In this case, the initial conditions correspond
to the plasma prior to any rotational driving is applied (see Reid
et al. 2018, or Table 1 for details of plasma parameters).

2.2. Boundary conditions

Following the numerical relaxation, a time-dependent velocity
driver was imposed on the lower z boundary in order to introduce
a transverse wave into the domain. Hereafter, t = O refers to the
start time of this driving in each simulation. In subsequent sec-
tions, we conduct an analysis on different wave drivers (detailed
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Fig. 6. Measure of the field complexity, I (see Eq. (6)), in each of the
four field configurations as a function of z.

below), however, in the most simple case, the imposed velocity
has the form v = (0, v,(?), 0), where

in(2) ifr<
Uy={vos1n(r) ifr<t, )

0 ift >

Here, vy is the amplitude of the driver and 7 is the period of
the driver. For the purpose of these simulations, we set vy =
20kms~! and T ~ 30s. We note that the velocity amplitude is
much smaller than the local Alfvén speed (560kms™! <vy <
1200kms~! with a mean of approximately 700kms~') and
is similar in magnitude to wave amplitudes observed in the
solar atmosphere (e.g. Mclntosh et al. 2011; Morton et al.
2015). Additionally, we observe that the selected wave period is
much shorter than the frequently studied 3—5 min period which
could be excited by p-modes at the photospheric surface (see
Tomczyk & Mclntosh 2009; Morton et al. 2016, for example).
Such a short period was selected in order to ensure that the height
of our domain (100 Mm) will contain several wavelengths of the
propagating pulse. Furthermore, we highlight that, in the current
form, only a single pulse is introduced into the domain. Numer-
ical simulations implementing continuous wave driving will be
the focus of subsequent work.

In Fig. 7, we display the energy injected by the wave driver
described by Eq. (7) (solid curves) for different initial condi-
tions (s1—s5 and the uniform field case). Since there are no flows
through the boundary, this corresponds to the time integral of the
Poynting flux. In these simulations, the mean Poynting flux of
energy into the domain (during the 30 s wave driving period) is
around 50 W m~2. Even if all of the injected energy is dissipated,
this is approximately an order of magnitude below the expected
energy requirements in the quiet Sun (Withbroe & Noyes 1977).
Indeed, in each case, the total energy increase is much less than
0.1% of the initial magnetic and thermal energies.

The small difference between each of the solid curves arises
due to the differences in the background field complexities and
the weak non-linearity of the wave driver. In particular, for the
same velocity driver, a greater Poynting flux is injected for a
more complex magnetic field. The dashed red curve corresponds
to a modified driver which is described in Sect. 3.5.

In all simulations, the x and y boundaries are periodic and
field lines are able to cross through the corresponding faces (see,
for example, red and purple field lines in the right-hand panel of
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Table 1. Mean, minimum and maximum values of important plasma and magnetic field parameters for the simulations discussed within this study.

Simulation Temperature (MK) Field strength (G) Density (o) Plasma-g8
Min. Mean Max. Min. Mean Max. Min. Mean Max. Min. Mean Max.
Uniform 1.9 1.9 1.9 10.0 10.0 10.0 1.0 1.0 1.0 0.13 0.13 0.13
sl 1.9 2.0 2.4 9.7 10.0 10.4 0.9 1.0 1.1 0.12 0.14 0.16
s2 1.9 2.1 8.7 9.5 10.0 10.8 0.3 1.0 1.3 0.13 0.14 0.23
s3 1.9 2.2 8.3 9.3 10.0 11.0 0.4 1.0 1.3 0.12 0.15 0.24
s5 1.9 2.4 8.3 8.9 10.0 11.7 0.4 1.0 1.4 0.12 0.16 0.27
t5 (High res.) 1.9 2.4 10.3 9.6 10.0 10.7 0.3 1.0 1.4 0.12 0.17 0.24

Notes. The quantities relate to the state of the plasma following the numerical relaxation and prior to the introduction of the wave front.

s1
s2
s3
sb
= = =s5 Non-uniform
Uniform

o
e

o
o

o
o

-

Time Integrated Poynting Flux

o
(M

_______
-

0.0

5
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Fig. 7. Energy injected into the domain by the wave driver. We display
the time integral of the Poynting flux through the z = =50 Mm (lower)
boundary for different initial conditions with the drivers described by
Egs. (7) and (9) (solid and dashed lines, respectively). Here we have
normalised by the maximum of the s5 (solid red) curve.

Fig. 2). For the driven z boundaries, the horizontal velocity com-
ponents are described above, flows through the boundary are not
permitted (v, = 0) and all remaining variables have zero gradi-
ents across the boundaries.

3. Results
3.1. Wave dynamics

In this section, we analyse the behaviour of the propagating wave
in the simulation with the most complex field, the s5 simula-
tion. The wave front introduced by the velocity driver reaches
the upper z boundary after approximately 7. = 145s. We select
this time, T, as the end point of the simulation. The mean propa-
gation speed coupled with the selected driver frequency, ensures
that the height of the numerical domain (100 Mm) is approxi-
mately 5 times the wavelength.

Since the wave front propagates through a non-uniform
plasma, it cannot be identified as a pure Alfvén wave. In partic-
ular, it has mixed properties, is mildly compressible and exhibits
increasingly complex behaviour as the simulation progresses. In
Fig. 8, we display isosurfaces of the magnitude of v, att = 0.3 T,
(left-hand panel) and ¢ = 0.8 T, (right-hand panel). Initially, the
wave front is spatially uniform and polarised in the y direction.
However, the complex nature of the plasma generates fine spatial
variation and transfers energy to the other velocity components.

X ' ' X
(a) t = 0.3T.. (b) t = 0.8T..

Fig. 8. Isosurfaces of the magnitude of v, corresponding to [v,| =~ 0.8 vy.

We now describe the two key processes that are associated with
the formation of these small spatial scales.

Firstly, the non-uniform Alfvén speed contributes to phase
mixing as the wave front propagates at different speeds on
neighbouring field lines. Consequently, as time progresses, small
length scales develop across the magnetic field. Additionally,
the length of field lines vary within the braided region. There-
fore, since the wave propagates along magnetic structures, this
enhances the rate of phase mixing and deformation of the wave
packet.

In the classic case of phase mixing (as described in Heyvaerts
& Priest 1983), magnetic field lines have a constant Alfvén speed
along their length, ensuring that a wave front will always become
increasingly out of phase as time progresses. However, in the
current case, the Alfvén speed varies along field lines and thus
phase mixing does not proceed as outlined in Heyvaerts & Priest
(1983). Indeed, it is possible for a phase mixed Alfvén wave
to become more in phase if it encounters an appropriate Alfvén
speed profile. This continuous phase mixing and reverse phase
mixing ensures that the wave front does not become as distorted
as in the classic case (see the right-hand panel of Fig. 5 in Pascoe
et al. 2010, for example). However, in the current paradigm, the
spatial distribution of gradients in the Alfvén speed ensures that
the phase mixing is spread across a large cross-sectional area of
the wave front.

Secondly, the rotational nature of the driver imposed in Reid
et al. (2018), ensures that, at = 0, in each non-uniform simu-
lation the currents are predominantly aligned in the z direction
(see previous section). Meanwhile, the velocity driver induces
a perturbation of the y component of the magnetic field. The
interaction between this perturbation and the z component of
the background currents generates a Lorentz force acting par-
allel to the x axis. This transfers energy from the initially driven
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Fig. 9. Isosurfaces of the magnitude of v, corresponding to |v,|
0.25 vg.

component of the velocity (v,) to the other horizontal compo-
nent (v,). This has the effect of locally modifying the polarisa-
tion of the wave front. There is also a small transfer of energy to
v, associated with horizontal background currents. However in
the phase-mixing region the mean of |v,| is approximately 2% of
the mean of |v,|, whereas the mean of |v| is approximately 20%
of the mean of [v,|.

In Fig. 9, we show isosurfaces of the magnitude of v, at
t = 03T, and t = 0.8T.. We notice that at both times the
spatial extent of the energy conversion is limited to the regions
of most complex field (compare to the lower right-hand panel
of Fig. 3, for example) as these are the locations containing
the most significant background currents. Further, as time pro-
gresses, energy is continuously transferred to the x component
of the velocity, resulting in the increase in volume within the
isosurface observed between the two panels in Fig. 9.

The combination of these two, highly localised, effects
results in the formation of transverse gradients in the perturbed
velocity field. The associated small scales are shown in greater
detail in Figs. 10 and 11. In Fig. 10, we show the profile of v, in
a horizontal cut through the wave packet at t = 0.8 T.. We note
that there is spatial variation throughout the entire cross-section
but the perturbation is more homogeneous at large |y|, where
the magnetic field is less complex. The solid and dashed lines
shown in Fig. 10 correspond to the locations of the respective
lines depicted in Fig. 11. Here, we clearly see the large trans-
verse gradients that form as a result of the complexity of the
background plasma. In Fig. 11, we again highlight the relative
homogeneity of the dashed line (region of less complex field) in
comparison to the solid line (region of more complex field).

The formation of these small spatial scales in the velocity
field can be tracked using the vorticity, w = V X v. The imposed

wave driver injects vorticity as it introduces vertical gradients in
the driven component of the velocity (%"), and hence contributes
to an increase in the w, term. Meanwhile, the formation of small
scales caused by the background field complexity contributes to
the formation of transverse gradients of v, and to a lesser extent
vy. This results in a gradual increase in the magnitude of w,.

We display this behaviour by showing the change in the vol-
ume integrated magnitude of vorticity and of each component in
Fig. 12 as the simulation progresses. We see an initial increase
in w, (red line) as the driver introduces a wave pulse into the
domain. However, at t ~ 29, the driving motion is suspended
and the magnitude of w, component slowly decreases as energy
is transferred from the y component of the velocity (see above).
Meanwhile, there is a steady increase in the z component of vor-
ticity (green line) as phase mixing progresses. This increase is
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Fig. 10. y component of the velocity field in a horizontal cut through
the wave front at t = 0.8 7.
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Fig. 11. y component of the velocity field along the two horizontal lines
shown in Fig. 10.

much greater than the decrease observed in w,, resulting in a net
increase in total vorticity (black line) during the simulation. This
will produce an enhancement in the rate of viscous dissipation as
we shall discuss later. We note that there is also a small increase
in the volume integral of |w,| (blue line) as time progresses. This
is predominantly associated with the localised formation of ver-
tical gradients in v, (see Fig. 9).

In Fig. 13, we display an isosurface of |w| at t=0.3T,
(left-hand panel) and 7 = 0.8 T (right-hand panel) for the s5 sim-
ulation. At both times, we see that the formation of large vortic-
ities is confined to regions of complex field and even within this
sub-section of the domain, the vorticity has a fragmented nature.
This suggests that any viscous heating associated with this wave
will not heat uniformally. Despite this, in contrast with many
classical phase mixing simulations, small spatial scales form
over a larger proportion of the cross-sectional area of the
magnetic structure and not simply in a small region in the
boundary of a coronal loop. Thus, in a non-ideal regime,
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(a) t = 0.3T,. (b) t = 0.8Ts.

Fig. 13. Isosurfaces of the magnitude of w in the s5 simulation.

viscous heating will deposit wave energy throughout the com-
plex field. We will consider the rate of wave energy dissipation
in a subsequent section.

At this stage, it is important to note that the wave dynam-
ics are also associated with the development of small scales in
the magnetic field. As such, for comparable values of resistivity,
n, and viscosity, v, Ohmic and viscous heating are expected to
be equally effective as mechanisms for dissipating wave energy.
However, since the background field is already finely structured,
it is difficult to separate the wave-induced small scales in the
magnetic field from the pre-existing gradients. Therefore, for
simplicity, we have restricted our analysis to the evolution of
small scales in the perturbed velocity field.

3.2. Field complexity

In order to quantify the effects of varying the field complexity, we
now contrast the observed wave dynamics in the s1, s2, s3 and s5
simulations. In Figs. 14 and 15, we show isosurfaces of |v,| and
vy, respectively at ¢t = 0.8 T, for the s2 (left-hand panels) and
s3 (right-hand panels) simulations. These correspond to Figs. 8
and 9 which show the corresponding s5 results and were discussed
above. Similar plots for the s1 simulation show an almost per-
fectly planar wave in the v, component, and very little transfer
of energy to the v, component. From this collection of plots we
see that the rate of phase mixing and, thus deformation of the

X X
(a) s2. (b) s3.

Fig. 14. Isosurfaces of the magnitude of v, corresponding to |v,| = 0.8 vy
atr=0.8T..

X X
(a) s2. (b) s3.

Fig. 15. Isosurfaces of the magnitude of v, corresponding to |v,| =
0.25vg att = 0.8 T.

propagating wave front, is sensitive to the complexity of the mag-
netic field and background Alfvén speed profile.

In particular, we observe that the isosurfaces of [v,| exhibit
greater variation in the more complex field simulations. Not only
are the gradients larger (see Fig. 17 and associated discussion
for more detail), but they also occur over a greater cross-section
of the propagating wave front. This is a result of the expansion
of the braided field region between the simpler and more com-
plex cases (see Fig. 3 for example). Additionally, the transfer
of energy to the v, component is more efficient in the s3 and
s5 simulations than in the simpler cases. Again, the increased
cross-sectional area of stressed field translates to the formation
of a significant v, component, and hence modification of wave
polarisation, over a larger proportion of the domain.

In Fig. 16, we aim to quantify the rate of energy transfer
from the y component of the velocity to the x component. We
calculate

szfpvidV,
1%

the x component of the kinetic energy integrated over the volume
of the domain, V. We show the time evolution of this quantity for
each of the four complex field configurations. Meanwhile, the
uniform field does not induce any transfer of energy between
the transverse velocity components. In Fig. 16, we have nor-
malised by the total kinetic energy injected into the domain by
the wave driver. As such, we see that only a relatively small (of
the order 4% for the most complex field simulation) proportion
of the energy is transfered between the v, and v, components.
However, this is a highly localised process and in some regions
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Fig. 16. Time evolution of the volume integrated x component of the
kinetic energy, K, (see Eq. (8)), for each of the four complex field sim-
ulations.

of the wave front, the magnitude of v, is comparable to the size
of v,. The observational significance of this result will be exam-
ined in subsequent work.

We discussed the cause of this energy transfer previously
and will simply note that the larger the background currents, the
more readily the wave polarisation is modified. Additionally, we
note that each simulation will induce small perturbations in the
field aligned component due to the non-linear ponderomotive
force, which will contribute to the x component of the kinetic
energy in regions of non-zero B,. Since the strength of the per-
turbed magnetic field is small in comparison to the background
field, we expect this to be a relatively weak effect.

In Fig. 17, we compare the phase mixing gradients that form
during the course of the s1 (blue) and s5 (red) simulations. We
show % and %y along horizontal lines through the wave front
in the left-hand and right-hand panels, respectively. The term
shown in the left-hand panel does contribute to the growth in
the magnitude of the vorticity (discussed above). The right-hand
panel, on the other hand, depicts a term that is not directly
tracked by the vorticity. Instead, this contributes to the com-
pression of the plasma and hence may be associated with an
observational signature that is absent from a pure, incompress-
ible Alfvén wave. Whilst detailed analysis of this effect remains
beyond the scope of this work, we note that the plasma compres-
sion observed in these simulations is highly inhomogeneous and
may provide seismological information about the nature of the
background magnetic field.

In both cases, it is clear that the larger gradients (both pos-
itive and negative) form in the more complex field simulation
(red curves). This is indicative of the enhanced phase mix-
ing observed in the s5 simulation. Further, we note that the
magnitude of the largest gradients in the left-hand panel are
greater than those in the right-hand panel (see different scales for
y-axes). This is because the compression of plasma and magnetic
field associated with the right-hand panel generates a total pres-
sure force which limits the formation of very small scales in the
direction of the velocity perturbation.

Additionally, we highlight the relatively small gradients in
the right-hand panel for large |y|. These are particularly appar-
ent in the sl simulation (blue curve) and are a result of the
relatively simply field and Alfvén speed profile present in this
region of the domain. As such we see very little phase mix-
ing and plasma compression at large values of |y|. Thus, by
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comparing the (potentially observable) plasma compression pro-
files, we can deduce information about the relative complexity of
the field at different values of |y|. The observational implications
of this effect will be explored in future work.

3.3. Dissipation

In this section, we seek to quantify the significance of the pre-
viously discussed formation of small spatial scales in relation
to the dissipation of wave energy. In particular, we consider the
effects of non-zero transport coefficients on the evolution of the
simulations. As a non-zero resistivity, i, will cause the dissipa-
tion of energy in the non-potential background field (in addi-
tion to any wave heating), we predominantly focus on the effects
of viscosity, v. With this approach, we do not expect significant
energy to be extracted from the background conditions.

We repeat the previously described simulations with values
of viscosity, v = 103,107 and v = 1073. These correspond
to Reynolds numbers of 103, 10* and 10°, respectively, and act
in addition to the aforementioned shock viscosities (see Sect. 2)
which also provide dissipative effects.

In Fig. 18, we display the volume integral of the magnitude
of the vorticity (also see Fig. 12) for the s5 simulation with var-
ious values of v. For comparison, we also include the results of
a simulation with n = 107, v = 0 (green curve). We see that the
formation of small scales in the velocity field is suppressed by
increasing the frictional effects of viscosity (larger values of v).
The similarity between the red and black dashed curves confirms
that at v = 107>, numerical dissipation and the effects of the
shock viscosities have greater significance for the wave dynam-
ics. As such, the maximum Reynolds number obtained with the
current numerical resolution in these simulations is of the order
10*-10°.

Counterintuitively, increasing the resistivity enhances the
total vorticity observed within the domain (compare green and
red curves). This is not a result of the wave dynamics but instead
is caused by the diffusion and Ohmic dissipation of the back-
ground magnetic field. This process generates small, localised
flows and contributes to the increase of the vorticity. The phase
mixing of the wave front is still suppressed in this case, however
the associated decrease in small scale formation is dominated by
the effects caused by the non-zero n acting on the background
field.

In Fig. 19, we display the cumulative volume integrated vis-
cous heating for the sl1, s2, s3, s5 and uniform simulations for
v = 1073 (left-hand panel) and v = 10~* (right-hand panel). This
heating is associated with these values of v and the shock viscosi-
ties which are not changed between simulations. In the Lare3d
code, numerical dissipation does not contribute to the heating
of plasma. It is important to note that due to the nature of the
wave driver (low amplitude and only a single pulse), very little
energy is injected into the domain. As such, we cannot expect
significant plasma heating to occur in this case (see Sect. 4 for
further discussion). However, continuous driving may provide
sufficient energy in wave heating models (e.g. Karampelas &
Van Doorsselaere 2018) and this possibility will be investigated
in future studies.

In the left-hand panel of Fig. 19, we see that the viscous diss-
pation of wave energy is a little more than twice as efficient in
the s5 simulation (red) line than in the uniform field case (black
line). Indeed, we see that increasing the field complexity gradu-
ally increases the total viscous heating. Despite this, given that
we expect very little heating from a planar Alfvén wave in the
high Reynolds number corona, the increase in energy dissipation
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Fig. 18. Time evolution of |w| integrated over the numerical domain for
the s5 simulation with different transport coefficients. We note that the
early stages of the simulation are omitted here and we have normalised
the integral using the maximum value attained in the ideal s5 simulation
(as in Fig. 12).

due to phase mixing seems insufficient to generate significant
wave heating. However, in the right-hand panel we see that the
relative increase of viscous heating between the uniform and
most braided field cases is enhanced at lower values of v. This
is because the formation of small scales due to phase mixing is
more efficient at lower viscosities for the s5 simulation (no phase
mixing occurs in the uniform field case).

By comparing the two panels of Fig. 19, we see that the vis-
cous heating does not simply scale with the size of v. In partic-
ular, the energy dissipation depicted in the right-hand panel is
not an order of magnitude smaller than in the left-hand panel.
There are two main reasons for this. Firstly, the formation of
small scales in the velocity field is more efficient in the higher
Reynolds number case (right-hand panel) and thus the viscosity
is acting on larger spatial gradients. Secondly, the magnitudes of
the shock viscosities are unchanged between the two sets of sim-
ulations and thus the effects of these terms are more significant
when the real viscosity is reduced.

3.4. Resolution considerations

In the model presented within Reid et al. (2018), the widths of
the current sheets that form are a function of the spatial reso-
lution implemented in the numerical code. In particular, higher
resolution simulations allow the formation of narrower current
sheets and smaller scale inhomogeneties in the plasma as the
numerical dissipation is reduced. In this section we consider
a new initial state, t5, which is obtained using a domain with
256 x 256 x 1024 grid cells. In this case, the same uniform field
is driven with identical rotational motions for 500 Alfvén times.
The plasma is then allowed to relax numerically under the effects
of a high viscosity as with all previously discussed simulations.
For comparison with the lower resolution experiments, impor-
tant characteristics of the initial state are included in Table 1.
Once a numerical equilibrium is obtained, an identical, single
pulse sinusoidal wave is intoduced at the z = —50 Mm (lower)
boundary.

In the higher resolution simulation, the fundamental wave
dynamics remain unchanged, however, the increased intricacy
of the initial conditions induce enhanced phase mixing and allow
even smaller spatial scales to form. In Fig. 20, we quantify this
effect by plotting the time evolution of the volume integral of
the magnitude of the vorticity for the s5 (solid red), t5 (dashed
red) and the uniform field (black) simulations. As in Fig. 12, we
observe an initial rise in the vorticity in all cases as a result of
the gradients introduced by the wave driver. Subsequently, the
progression of phase mixing in the complex field simulations
(but not in the uniform case) enhances the volume integrated
vorticity.

The vorticities in the uniform field case represent the vertical
gradients of v, associated with the Alfvén wave. As such, they
are inversely proportional to the wavelength of the perturbation.
The red curves are a combination of these gradients and the small
scales associated with phase mixing. The increase observed in
the dashed red line in comparison to the solid red line is simply
due to the enhanced phase mixing observed in the high resolution
simulation.

The increased field line and Alfvén speed complexity causes
a greater deformation in the propagating wave front. Addition-
ally, since the effects of numerical dissipation are reduced in the
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t5 simulation, larger gradients in the velocity field (and hence
greater vorticities) are accessible. As a result of the formation
of smaller scales in the t5 experiment (in comparison to the s5
case), we expect an additional increase in the efficiency of wave
energy dissipation compared to the uniform field case in non-
ideal simulations.

3.5. Non-uniform wave driver

In this section, we consider the effects of imposing a transverse
wave driver that is not spatially uniform across the lower bound-
ary of the domain. As waves propagate along magnetic struc-
tures, the complexity of the field ensures that small gradients at
the foot points of field lines can map to large gradients within the
numerical domain. It is reasonable to expect that two field lines
which are well-separated within the lower solar atmosphere may
be excited by different wave drivers. If these field lines converge
towards each other at higher altitudes, then as the wave pack-
ets propagate into the corona, the transverse gradients will be
enhanced.
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‘We consider a modified driver of the form

{vo sin (@) eI ifr <1,

T

0 ift >,

vy = ©)
where 72 = x*> + y>. We set [ = 6 Mm to ensure that the imposed
velocity is approximately O close to the x and y boundaries of
the domain. The form of the imposed wave driver is shown in
Fig. 21 and the total Poynting flux through the lower boundary
of the domain is shown in Fig. 7 (dashed red line). It is imposed
on two initial conditions; the s5 field and, for comparison, the
straight field case.

In Fig. 22, we show the transverse velocity profile in a horiz-
tontal cross-section through the wave front at ¢+ = 0.8 T.. We
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Fig. 22. Transverse velocity profile in a cross-section of the wave packet
at t = 0.8 T, for the non-uniform driver.

show the magnitude of the horizontal velocity perturbation (con-
tour plot) and the direction of these flows (overplotted vectors).
We note that although the wave driver has the same maximum
amplitude as previously, the flows are smaller in this case. This
is because the perturbed plasma has to displace surrounding fluid
that is not moved by the imposed velocity driver. This transfers
wave energy from the centre of the domain to the surrounding
plasma. Additionally, there is some evidence of a return flow
being generated at large |x| as the non-driven plasma moves into
the space vacated by the perturbed fluid.

The small scales observed in Fig. 22 are once again indica-
tive of the phase mixing that progresses as the wave propa-
gates along magnetic field lines. However, since the wave energy
injected by the driver is smaller in this case (compare the dashed
and solid red lines in Fig. 7), the total vorticity is also reduced.
Therefore, in order to compare the growth in small scales due to
phase mixing for the two wave drivers, we normalise the vortic-
ity by the maximum value obtained in the corresponding straight
field simulations.

In Fig. 23, we show the magnitude of the vorticity, integrated
over the computational domain for the two forms of the driver.
We show the uniform driver acting on the straight field and s5
initial conditions (red and black lines, respectively). For both
of these curves, we normalise by the maximum of the red line.
Additionally, we show the non-uniform driver on these two ini-
tial conditions (dashed and solid blue lines, respectively). For
these two curves, we have normalised by the maximum of the
dashed blue line.

In Fig. 23, we see that once the reduction in the injected vor-
ticity (for the non-uniform driver) is accounted for, the integral
of |w| increases by a greater amount in the non-uniform cases.
This is largely due to the phenomenon described above by which
complex magnetic fields can ensure small gradients in the wave
driver can map to large gradients in the numerical domain. As
such, in a non-ideal regime, wave energy dissipation will be
significantly more efficient for a wave driver that has (possibly
small) spatial gradients.
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Fig. 23. Volume integrated |w| for the two forms of the wave driver in
the s5 and straight field simulations. For the uniform driver cases, we
have normalised by the maximum of the red curve. For the non-uniform
driver cases, we have normalised by the maximum of the dashed blue
curve.

4. Discussion and conclusions

In this article we have presented the results of MHD simulations
of transverse wave packets propagating through complex mag-
netic field configurations. A single sinusoidal pulse was driven
on the lower boundary of the domain for initial equilibria con-
taining varying field complexity.

The presence of an approximately helical component in the
magnetic field induces a localised change in the polarisation of
the wave front, which is sensitive to the complexity of the ini-
tial currents. Additionally, the inhomogeneous Alfvén speed pro-
file associated with the background plasma and magnetic field
generates a complex phase mixing pattern. Enhancing the field
complexity increases the average rate of phase mixing and the
formation of small scales throughout the wave front.

As aresult of these effects, large spatial gradients are induced
in both the perturbed velocity and magnetic fields. However, the
pre-existing field complexity ensures it is relatively difficult to
identify the formation of additional small scales in the magnetic
field as the wave propagates through the numerical domain. On
the other hand, the background flows are very small (in com-
parison to the driver amplitude) and thus we have focussed our
analysis on the evolution of the velocity field. In particular, we
highlight the evolution of the vorticity as a useful measure for
tracking the generation of small scales.

The single pulse examined in the current study contains very
little energy and thus, even in non-ideal regimes, does not lead to
significant plasma heating. The Poynting flux could certainly be
enhanced by adopting a larger amplitude driver or by increasing
the background field strength. Alternatively, a continuous driver
will inject substantially more energy into the domain and the
potential excitation of field line resonances can further increase
the energy input. Since the field exhibits a wide range of natural
field line frequencies, it is relatively easy to excite resonances
regardless of the driving frequency. The additional energy input
and the potential for even more complex dynamics ensures wave
heating is more significant in a continuously driven case. A more
thorough investigation of such simulations will be considered in
subsequent work.

We have discussed the enhanced efficiency of kinetic energy
dissipation in non-ideal regimes within the complex field
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structures. In a relatively low Reynolds number plasma, the
increase in heating is limited in comparison to the dissipation
associated with an Alfvén wave propagating through a uniform
field. However, at higher Reynolds numbers, the enhancement is
greater (compared to an analagous uniform field case) due to the
increased effects of phase mixing for reduced viscosities. Addi-
tionally, the implementation of a non-uniform driver generates
further small scales due to the convergence of initially distant
magnetic field lines within the corona. As such, in the presence
of continuous wave driving, this model may allow significant
heat to be deposited within the solar atmosphere. At present,
this hypothesis remains untested and will be the focus of future
research.

Many classical phase mixing models rely on a prescribed
density profile which are not self-consistently generated by the
heating process. Indeed, Cargill et al. (2016) argued that even
with transport coefficients augmented by many orders of magni-
tude above expected coronal values, the heating profile estab-
lished by phase mixing will not be able to sustain the dense
loops observed within the solar atmosphere. Since, in this model,
the spatial distribution of energy dissipation is not confined to
regions of strong density gradient, it seems that the arguments
presented by Cargill et al. (2016) do not preclude phase mixing
as a coronal heating mechanism in this regime. It is important
to highlight that, in these simulations, wave energy is dissipated
across the entire cross-section of the braided magnetic structure
and not simply in narrow layers within the flux tubes.

Since the transverse wave propagates through a highly inho-
mogeneous domain, it cannot be identied as a pure Alfvén wave.
Indeed, in this regime the wave is weakly compressible and,
as such, given sufficient telescope sensitivity, may be directly
observable in the solar corona. Subsequent work will seek to
identify the necessary wave amplitude for such plasma compres-
sion to be detected with current observational capabilities.

In any case, the wave front becomes highly deformed and
transfers energy to smaller scales which will be beyond the
spatial resolving power of observing instruments. As such, it
remains unclear whether the localised phase mixing pattern and
modification of the wave polarisation have implications for esti-
mating the coronal wave energy budget. In particular, it may be
difficult to accurately estimate the energy associated with obser-
vations of similar waves in the solar atmosphere.

The compressibility of the propagating wave front is not
homogeneous and is sensitive to the nature of the background
field. For example, it is associated with greater density varia-
tion in regions of greater field complexity. Therefore, it is plau-
sible that observations of the weak plasma compression as a
similar wave propagates through coronal field will indicate the
complexity of the background Alfvén speed and/or the nature of
magnetic field lines. As such synthetic observables derived from
the models presented within this article are expected to contain
information about the initial conditions. It remains to be seen
whether any seismological techniques can be employed on the
wave dynamics to infer properties of the background medium.
If so, observations of propagating transverse coronal waves may
be used to infer the complexity of the coronal magnetic field.
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