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Abstract. In this paper we study the Ostrovsky-Hunter equation for the
case where the flux function f(x, u) may depend on the spatial variable
with certain smoothness. Our main results are that if the flux function
is smooth enough (namely fx(x, u) is uniformly Lipschitz locally in u
and fu(x, u) is uniformly bounded), then there exists a unique entropy
solution. To show the existence, after proving some a priori estimates
we have used the method of compensated compactness and to prove the
uniqueness we have employed the method of doubling of variables.
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1. Introduction
To model numerous physical phenomena such as the propagation of undular
bores in shallow water, the flow of liquids containing gas bubbles, the propa-
gation of waves in an elastic tube filled with a viscous fluid, weakly nonlinear
plasma waves with certain dissipative effects etc. the following nonlinear evo-
lution equation, known as Korteweg-deVries-Burgers equation

ut +
(
f(u)

)
x
− αuxx − βuxxx = 0, α, β ∈ R, f(u) =

u2

2
, (1.1)
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has been extensively investigated in the recent years (see [19, 25, 33] and ref-
erences therein). Also considering the effects of background rotation through
the Coriolis force (κ being the force parameter and C0 is the linear shallow
water speed) (1.1) takes the following form(

ut +
(
f(u)

)
x
− αuxx − βuxxx

)
x

= γu, γ =
κ2

2C0
> 0. (1.2)

To model small-amplitude long waves in a rotating fluid of finite depth [29]
and to study long internal waves in a rotating fluid [22] both the viscous
dissipation term and the high-frequency dispersion term has to be dropped,
i.e. α, β = 0; which leads to(

ut +
(
f(u)

)
x

)
x

= γu, (1.3)

which is known as the Ostrovsky-Hunter equation, as Ostrovsky also indepen-
dently derived them [29]. This equation is also used to model high frequency
waves in a relaxing medium [36]. In the cases described above the flux is
considered to be of Burgers’ type, i.e. f(u) = u2

2 .
Also by including the effects of background rotation in the shallow wa-

ter equation, and then using singular perturbation methods (1.3) has been
derived previously (see [17, 23]). In the recent years enormous amount of
research has been carried out investigating (1.3). Among those works in
[29, 31, 34] the equation (1.3) is also known as the reduced Ostrovsky equa-
tion, in [22] it is called short wave equation, whereas in [4], [5] (1.3) is known
as Ostrovsky-Vakhnenko equation and as Vakhnenko equation in [37]. More-
over, the equation (1.2) is used to model ultra short light pulses in silica
optical fibres (see [2], [27]), in which case f(u) = − 1

6u
3. In this case equation

(1.2) is sometimes referred to as the short-pulse-equation.
In his seminal paper [22], Hunter showed the connection between the

KdV equation (1.2) and the Ostrovsky-Hunter equation (1.3) as the no-
rotation and no-long wave dispersion limits of the same equation. When
the oceanic waves approach shore, the waves usually propagate through a
background with varying properties. It is natural to expect the linear phase
speed of the wave which encoded in the flux function, in such a variable
medium, should have a spatial dependecy. In the context of KdV equation,
Johnson [24] for water waves and Grimshaw [20] for internal waves derived
the variable coefficient equation (see also [21] for a detailed review). Moti-
vated by this, it is immediate to pose the question of design and analysis
of a numerical scheme for the Ostrovsky-Hunter equation with a spatial de-
pendency in the flux function. In [6], we investigated the spatially dependent
Ostrovsky-Hunter equation in the fully-discretized setting to prove conver-
gence of the corresponding numerical method to the unique entropy solution
and we proved its order of convergence. Whereas in this paper, our aim is to
establish well-posedness of the problem in continuous set up. On the other
hand numerical analysis of Ostrovsky-Hunter equation with spatially inde-
pendent flux function the works in [16, 32] can be looked up to.
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The results obtained in this paper are the following. If the function
fx(x, u) is uniformly Lipschitz continuous locally in u, the function fu(x, u)
to be uniformly locally bounded, and the initial data are square integrable and
satisfy zero-mean condition, then there exists an entropy solution via method
of compensated compactness. Furthermore, for two entropy solutions u and
v, with initial data u0 and v0 respectively, we establish the following estimate

‖u(·, t)− v(·, t)‖L1((0,R)) ≤ eCt‖u0(·)− v0(·)‖L1((0,R+Lt)),

for some constants C,L and R to be specified later. The rest of this paper is
organized as follows. In Section 2 we give detailed descriptions of the notations
used, the precise assumptions of the regularity of the flux function and the
initial data. Also, apart from stating our main result as a theorem, we state
the definition of entropy solution to be used. In Section 3 we prove few useful
a priori estimates (namely energy estimate and L∞loc bound) for the purpose
of compensated compactness technique. In Section 4 we first state the two
results due to Murat and Tartar in the form of two lemmas, using which we
will employ a compensated compactness argument to show the existence of
entropy solution of the equation under consideration. Moreover, we establish
an L1 contraction type estimate mentioned above using the technique of
doubling of variables.

2. Preliminaries and Notation

Throughout this paper u(x, t) is the conserved quantity and f is the flux
which is dependent on the spatial variable x and u, denoted by f(x, u(x, t)).
For notational consistency, we mention the following chain rule keeping the
notation of fx(x, u) 6= f(x, u)x

∂uf(x, u) = fu(x, u),

∂xf(x, u) = f(x, u)x = fu(x, u)∂xu+ fx(x, u),

∂tu(x, t) = ut(x, t).

We are interested in the initial boundary value problem for (1.3), but with
spatially dependent flux, and hence we augment the equation with the initial
datum

u(x, 0) = u0(x), for x > 0. (2.1)

Keeping that in mind, following the works of [7, 10, 11] and [27] integrat-
ing the equation (1.3) on the interval (0, x) we get the integro-differential
formulation of the problem under consideration and setting γ = 1,

ut + f(x, u)x =
∫ x

0
u(y, t)dy, t > 0, x > 0,

u(x, 0) = u0(x), x > 0,

u(0, t) = 0, t > 0.

(2.2)
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Denoting P (x, t) :=
∫ x

0
u(y, t)dy, we get the following equivalent formulation

ut + f(x, u)x = P (x, t), t > 0, x > 0,

Px = u(x, t), t > 0, x > 0,

P (t, 0) = u(0, t) = 0, t > 0,

u(x, 0) = u0(x), x > 0.

(2.3)

For the initial datum, we assume the following zero-mean condition and in-
tegrability assumption respectively

∞∫
0

u0(x)dx = 0, and (2.4)

u0(x) ∈ L2(R+) ∩ L∞loc(R+) (2.5)
where R+ := (0,∞) will be denoting the unbounded positive half line through-
out the paper. Similarly Π will be used to denote (0,∞)2. Also the flux f is
assumed to satisfy the following hypothesis:
(A1) f(x, ·) is genuinely nonlinear, i.e. fuu(x, u) 6= 0 for a.e. (x, u) ∈ R+ ×R

and lim
x→∞

∂xf(x, u) = lim
x→∞

f(x, u) = lim
x→0

f(x, u) = lim
x→0

∂xf(x, u) = 0 for
all u,

(A2) ∃ a constant C > 0 such that |fxu(x, u)| ≤ C and |fx(x, u)| ≤ C|u| for
all u,

(A3) ∃ a constant L1 > 0 such that |fx(x, u) − fx(x, v)| ≤ L1|u − v|, for all
u, v,

(A4) ∃ a constant L > 0 such that |fu(x, u)| ≤ L, for all u.
Even if the initial data is smooth enough, solutions of (2.3) may develop
discontinuities. Hence solutions must be considered in the weak sense. A
function u is a weak solution of (2.3) if∫∫

Π

uϕt + f(x, u)ϕx + P (x, t)ϕdxdt+

∫
R+

u0(x)ϕ(x, 0) dx = 0, (2.6)

for all test functions ϕ = ϕ(x, t) ∈ C∞c (Π). Moreover, from (2.3) we have
that

u ∈ L∞loc(Π)⇒ P ∈ L∞loc(R+;W 1,∞
loc R+). (2.7)

Following [3] we define entropy solutions as

Definition 1 (Entropy Solution). We say that u ∈ L∞loc

(
Π
)

is an entropy
solution of the initial boundary value problem (2.3), if
(B1) u satisfies (2.6) ;
(B2) for every smooth, non negative test function φ ∈ C2

c (Π) and c ∈ R∫∫
Π

(
|u− c|∂tφ+ sign(u− c)

(
f(x, u)− f(x, c)

)
∂xφ

− sign(u− c)fx(x, c)φ
)
dtdx
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+

∫∫
Π

sign(u− c)Pφdtdx−
∫
R+

sign(c)
(
f(0, uτ0)− f(0, c)

)
φ(0, t)dt

+

∫
R+

|u0(x)− c|φ(x, 0)dx ≥ 0. (2.8)

As an immediate consequence of (2.7) if a map u ∈ L∞loc(Π) satisfies the
following equivalent entropy inequality for every convex entropy/entropy flux
pair (i.e. for η ∈ C2(R) with η′′ ≥ 0, q(x, u) :=

∫ u
0
η′(v)fv(x, v)dv)

∂tη(u) + ∂xq(x, u) + η′(u)fx(x, u)− qx(x, u)− η′(u)P ≤ 0, (2.9)

in the sense of distributions, then by Theorem 1.1 of [14] on the bound-
ary x = 0 strong trace uτ0 exists. By a standard approximation argument
equivalently any convex entropy/entropy flux pair (η, q) in (2.9) can be re-
placed by Kružkov entropy pair namely for c ∈ R, η(u) = |u − c| and
q(x, u) =

∫ u
0

sign(u − c) fv(x, v) dv. The main result of this paper is the
following theorem.

Theorem 2. Assuming (2.4) and (2.5), the Cauchy problem (2.2), or equiv-
alently (2.3) possesses a unique entropy solution u in the sense of Definition
1. Moreover, if u and v are two entropy solutions of (2.2), or equivalently
(2.3) in the sense of Definition 1, the following estimate holds for a given
0 < t ≤ T

‖u(·, t)− v(·, t)‖L1((0,R)) ≤ eCt‖u0(·)− v0(·)‖L1((0,R+Lt)) (2.10)

for almost every T > t > 0, R > 0 and L > 0 being the bound |fu(x, u)| ≤ L,
where the constant C depends on T , R, and L.

Before proceeding to prove this theorem, it is worth mentioning that
Coclite et al. [10], [7] have showed the well-posedness of the initial-boundary
value problem and the Cauchy problem for the Ostrovsky-Hunter Equation
(2.2), but without any spatial dependency in the flux. Throughout the next
section we will extend their results following the papers cited just above.

3. A-Priori Estimates

The existence argument is based on passing to the limit in the following
vanishing viscosity approximation of (2.3) (see [12]). Fix a small number
ε > 0, and let uε = uε(x, t) be the unique classical solution of the following
problem 

∂tuε + ∂xf(x, uε) = Pε + ε∂2
xxuε, t > 0, x > 0

∂xPε = uε, t > 0, x > 0

Pε(0, t) = uε(0, t) = 0, t > 0

uε(x, 0) = uε,0(x), x > 0,

(3.1)
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where uε,0 is a C∞(R+) approximation of u0 such that

‖uε,0‖L2(R+) ≤ ‖u0‖L2(R+),

∫
R+

uε,0(x)dx = 0, (3.2)

and on the viscous source term for x > 0, Pε,0(x) :=
∫ x

0
uε,0(y)dy we assume

that ‖Pε,0‖2L2(R+) =
∫
R+

( ∫ x
0
uε,0(y)dy

)2

dx <∞,∫
R+
Pε,0(x)dx =

∫
R+

( ∫ x
0
uε,0(y)dy

)
dx = 0.

(3.3)

Clearly, (3.1) is equivalent to the integro-differential problem{
∂tuε + ∂xf(x, uε) =

∫ x
0
uε(y, t)dy + ε∂2

xxuε t > 0, x > 0,

uε(x, 0) = uε,0(x) x > 0.
(3.4)

The existence of such solutions can be obtained by fixing a small number
1 > δ > 0 and considering the further approximation of (3.4) (see for the
whole real line [7, 10]; for the half line [8, 9, 12] and the references therein).
We are going to use the following result from previous works of Coclite et al.
(see [7, 13] and references therein).

Theorem 3. Let T > 0. Assuming that conditions (3.2) and (3.3) hold, there
exists a unique classical solution to the Cauchy problem of (3.4) such that

uε ∈ L∞loc

(
(0, T )× R+

)
∩ C

(
(0, T );H l(R+)

)
, for all l ∈ N,

Pε ∈ L∞loc

(
(0, T )× R+

)
∩ L2

(
(0, T )× R+

)
,∫∞

0
uε(x, t)dx = 0, t ≥ 0.

(3.5)

Now let us prove some a priori estimates on uε.

Lemma 4. We have the equivalence of following two equalities∫
R+

uε(x, t)dx = 0; t ≥ 0, (3.6)

‖uε(·, t)‖2L2(R+) + 2ε

t∫
0

‖∂xuε(·, s)‖2L2(R+)ds

= ‖uε,0(·)‖2L2(R+) + 2

t∫
0

[ ∫
R+

[

uε∫
0

vfxv(x, v)dv − uεfx(x, uε)]dx
]
ds; t > 0.

(3.7)

Proof. Let t > 0. First we will prove that (3.6) implies (3.7). Multiplying
equation (3.4) by uε(x, t) we get

uε∂tuε + uεfu(x, uε)(∂xuε) + uεfx(x, uε) = uε

x∫
0

uε(y, t)dy + εuε∂
2
xxuε.

(3.8)
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In this equality, consider the term uε
∫ x

0
uε(y, t)dy. We are going to show that

after integration this term vanishes. Clearly the equation (3.6) implies that∫
R+

uε(x, t)
[ x∫

0

uε(y, t)dy
]
dx =

∫
R+

Pε(∂xPε)dx =

∫
R+

∂x[
1

2
P 2
ε ]dx = 0. (3.9)

Using η(u) := 1
2u

2 into (3.8) we get

[u2
ε(x, t)]t + 2[q(x, uε)]x − 2εuε∂

2
xxuε = 2

[ ∫ uε

0

vfxv(x, v)dv − uεfx(x, uε)
]

+ ∂x[
1

2
P 2
ε ].

Integrating this expression over R+ and invoking (3.9) we get

d

dt
‖uε(t, ·)‖2L2(R+) + 2ε‖∂xuε‖2L2(R+) = 2

∫
R+

[ uε∫
0

vfxv(x, v)dv−uεfx(x, uε)
]
dx.

(3.10)
And finally integrating over the (0, t) we obtain

‖uε(·, t)‖2L2(R+) + 2ε

t∫
0

‖∂xuε(·, s)‖2L2(R+)ds

= ‖uε,0(·)‖2L2(R+) + 2

t∫
0

[ ∫
R+

[

uε∫
0

vfxv(x, v)dv − uεfx(x, uε)]dx
]
ds,

which proves (3.7). Now we are going to prove the opposite implication.
Assume that

∫
R+
uε(x, t)dx 6= 0 for some t > 0, which implies

P 2
ε (+∞, t) =

( ∫
R+

uε(x, t)dx
)2

6= 0,

which results in

d

dt
‖uε(t, ·)‖2L2(R+) + 2ε‖∂xuε‖2L2(R+) 6= 2

∫
R+

[ uε∫
0

vfxv(x, v)dv−uεfx(x, uε)
]
dx,

ultimately contradicting our assumption (3.7). This concludes the proof. �

Lemma 5. For each t ≥ 0, (3.6) holds. In particular we have that for a
constant C > 0 coming from (A2), independent of ε

‖uε(·, t)‖2L2(R+) + 2ε

t∫
0

‖∂xuε(·, s)‖2L2(R+)ds ≤ ‖u0‖2L2(R+)

+ Ĉ

t∫
0

‖uε(·, s)‖2L2(R+)ds (3.11)



8 G. M. Coclite, N. Chatterjee and N. H. Risebro

where Ĉ is any constant greater than C.

Proof. From the equation (3.4) we have

∂x
(
∂tuε + ∂xf(x, uε)− ε∂2

xxuε
)

= uε.

Integrating both sides with respect to x we get

∂tuε + ∂xf(x, uε)− ε∂2
xxuε

∣∣∣∞
0

=

∫
R+

uεdx.

Observe that from uε(0, t) = 0 of (3.1) we have ∂tuε(0, t) = 0 which, due to
(A1)

ε∂2
xxuε(0, t) = ∂tuε(0, t) + ∂xf(x, uε)

∣∣∣
x=0
−

0∫
0

uε(y, t)dy = 0. (3.12)

Invoking the property (A1), (3.12) and the smoothness of uε(x, t) from The-
orem 3 we can conclude

∫
R uε(x, t)dx = 0, which proves (3.6). So by Lemma

5 the relation (3.7) holds. To estimate the last term of the relation (3.7) due
to our assumption (A2) for any constant Ĉ ≥ C we get∣∣∣ t∫

0

[ ∫
R+

[

uε∫
0

vfxv(x, v)dv−fxuε(s, x)]dx
]
ds
∣∣∣ ≤ Ĉ t∫

0

‖uε(s, ·)‖2L2(R+)ds. (3.13)

Consequently in (3.7) inserting (3.2) and (3.13) we have:

‖uε(·, t)‖2L2(R+) + 2ε

t∫
0

‖∂xuε(·, s)‖2L2(R+)ds

≤ ‖uε,0‖2L2(R+) + Ĉ

t∫
0

‖uε(·, s)‖2L2(R+)ds

≤ ‖u0‖2L2(R+) + Ĉ

t∫
0

‖uε(·, s)‖2L2(R+)ds,

which concludes the proof. �

Remark 6. It follows from (3.11) that

‖uε(·, t)‖2L2(R+) ≤ ‖uε(·, t)‖
2
L2(R+) + 2ε

t∫
0

‖∂xuε(·, s)‖2L2(R+)ds

≤ ‖u0‖2L2(R+) + Ĉ

t∫
0

‖uε(·, s)‖2L2(R+)ds.

Thus by an application of Gronwall’s inequality, we have

‖uε(·, t)‖L2(R+) ≤ eĈt‖u0‖L2(R+). (3.14)
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Lemma 7. The family

{uε}ε>0 is bounded in L∞loc(Π). (3.15)

And consequently the family

{Pε}ε>0 is bounded in L∞loc(Π). (3.16)

Proof. By Hölder inequality we have the following estimate

∂tuε + ∂xf(x, uε)− ε∂2
xxuε =

x∫
0

uε(t, y)dy ≤
∣∣∣ x∫

0

uε(t, y)dy
∣∣∣

≤
x∫

0

|uε(t, y)|dy, by Hölder’s inequality,

≤
√
x‖uε(t, ·)‖L2(R+), using (3.14))

≤
√
xeĈt||u0||L2(R+).

Now assume vε and wε be the solutions of the following equations respectively{
∂tvε + ∂xf(x, vε) = ‖u0‖L2(R+)e

Ĉt
√
x+ ε∂2

xxvε, t > 0, x > 0,

vε(0, x) = uε,0(x), x > 0,
(3.17)

{
∂twε + ∂xf(x,wε) = −||u0||L2(R+)e

Ĉt
√
x+ ε∂2

xxwε, t > 0, x > 0,

wε(0, x) = uε,0(x), x > 0.

(3.18)
Then uε, vε, and wε are respectively a solution, a supersolution, and a sub-
solution of the parabolic problem (3.4). Following [18, Theorem 9, Chapter
2] we have that wε ≤ uε ≤ vε. Moreover from [1], {wε}ε>0 and {vε}ε>0 are
uniformly bounded in L∞loc(Π). Define the following two functions:

W := infε>0 wε and V := supε>0 vε.

Clearly therefore W,V ∈ L∞loc(Π) and they satisfy the inequality

W ≤ wε ≤ uε ≤ vε ≤ V.
This proves (3.15).

Now since |Pε(x, t)| =
∣∣∣ ∫ x0 uε(t, y)dy

∣∣∣ ≤ ∫ x0 |uε(t, y)|dy, (3.16) follows
from (3.15). This completes the proof. �

4. Proof of the Main Theorem
In this section we prove Theorem 2. Using the compensated compactness
method, (see [35, 30]) we are going to construct a solution of (2.2) or equiv-
alently of (2.3) by passing to the limit in sequence {uε}ε>0 of the viscosity
approximations (3.1). The compensated compactness method due to Panov
(see Theorem 5 of [30], or Lemma 2.2 of [15]) to be used here can be stated
as the following lemma
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Lemma 8. Let {vε}ε>0 be a family of functions defined on Π. If {vε}ε>0 is
uniformly bounded in L∞loc(Π) and the family {∂tη(vε)+∂xq(x, vε)}ε>0 is com-
pact in H−1

loc (Π) for every convex η ∈ C2(R), where qu(x, u) = η′(u)fu(x, u).
Then there exist a sequence {εk}k∈N ⊂ R+, εk → 0 as k → ∞, and a map
v ∈ L∞loc(Π) such that vεk −→ v a.e. and in Lp(Π) 1 ≤ p <∞, as k →∞.

The following compact embedding result of Murat [28] will be also used,

Lemma 9. Let Ω be a bounded open set of RN , N ≥ 2. Suppose that the
sequence {Lε}ε∈N of distributions is bounded in W−1,∞(Ω). In addition, sup-
pose that Lε = L1,ε+L2,ε; where {L1,ε}ε∈N lies in a compact subset of H−1

loc (Ω)
and {L2,ε}ε∈N lies in a bounded subset of L1

loc(Ω). Then {Lε}ε∈N lies in a
compact subset of H−1

loc (Ω).

First we are going to extract a limit function u from the collection uε
and then we are going to show that this u satisfies (2.8).

Lemma 10. The family {uε}ε>0 has a subsequence {uεk}k∈N and a limit func-
tion u ∈ L∞loc(Π) such that

uεk → u a.e. and in Lploc(Π), 1 ≤ p <∞. (4.1)

Moreover, we have

Pεk → P a.e. and in Lploc(R+;W 1,p
loc (R+)), 1 ≤ p <∞, (4.2)

where

P (x, t) =

x∫
0

u(t, y)dy, t ≥ 0, x ≥ 0.

Moreover, (2.8) is satisfied.

Proof. Let . Multiplying the equation (3.4) by η′(uε), we get

∂tuεη
′(uε) + ∂xf(x, uε)η

′(uε) = Pεη
′(uε) + ε∂2

xxuεη
′(uε),

which can be rewritten as

∂tη(uε) + fuε(x, uε)(uε)xη
′(uε) + fx(x, uε)η

′(uε) = Pεη
′(uε) + ε∂2

xxuεη
′(uε).

From the definition of q(x, uε) we have quε(x, uε) = η′(uε)fuε(x, uε). Inserting
this into the above expression we get

∂tη(uε) + ∂xq(x, uε) + fx(x, uε)η
′(uε)− qx(x, uε) = Pεη

′(uε) + ε∂2
xxuεη

′(uε).

This can be written as

∂tη(uε) + ∂xq(x, uε) = ε∂2
xxη(uε)︸ ︷︷ ︸
L1
ε

− εη′′(uε)(∂xuε)2︸ ︷︷ ︸
L2
ε

+ η′(uε)Pε︸ ︷︷ ︸
L3
ε

+ qx(x, uε)︸ ︷︷ ︸
L4
ε

− fx(x, uε)η
′(uε)︸ ︷︷ ︸

L5
ε

. (4.3)

From Lemma 5 we have

L1
ε → 0, in H−1

loc (Π), {L2
ε}ε>0 is uniformly bounded in L1

loc(Π).
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To show {L3
ε}ε>0 is uniformly bounded in L1

loc(Π), let K be any bounded
subset of Π. Then, by Lemma 7,

‖η′(uε)Pε‖L1(K) ≤ ‖η′(uε)‖L∞(K)‖Pε‖L∞(K)|K|.

So it remains to show that fx(x, uε)η
′(uε) and qx(x, uε) are uniformly bounded

in L1
loc(Π). To that end observe that

‖fx(x, uε)η
′(uε)‖L1(K) =

∫
K

|fx(x, uε)η
′(uε)|dxdt

(by (A2) and |η′(uε)| ≤ C|uε|)

≤ C̃
∫
K

|uε|2dxdt (for some constant C̃ > 0)

<∞

So {fx(x, uε)η
′(uε)}ε>0 is uniformly bounded in L1

loc(Π). Similarly we have

‖qx(x, uε)‖L1(K) =

∫
K

∣∣∣ uε∫
0

η′(v)fxv(v)dv
∣∣∣dxdt (by (A2))

≤ C
∫
K

∫ uε

0

|η′(v)|dvdxdt

<∞.

Consequently, {qx(x, uε)}ε>0 is uniformly bounded in L1
loc(Π).

Therefore, by Lemma 9 we can conlcude that

{∂tη(uε) + ∂xq(x, uε)}ε>0 lies in a compact subset of H−1
loc (Π). (4.4)

Therefore using the L∞loc bound obtained from Lemma 7, (4.4) and Lemma 8
we can conclude that there exists a subsequence {uεk}k∈N and a limit function
u ∈ L∞loc(Π) such that (4.1) holds. By the Hölder inequality and the definition
of Pε, (4.2) follows from (4.1).

We remark that the entropy inequality (2.9) can be obtained from (4.3)
by the standard argument of letting ε→ 0 and using convexity of η(·). Thus
by [14, Theorem 1.1], strong trace uτ0 for u on x = 0 does exist. Now we are
going to prove (2.8). From the Definition 1 for (3.4) and using (2.9) we get
for Krǔzkov entropy/entropy flux pair (η, q)

∂t|uεk − c|+ ∂x

(
sign(u− c)(f(x, u)− f(x, c))

)
− sign(uεk − c)Pεk − εk∂2

xx|uεk − c| ≤ 0.

Multiplying by a non-negative test function φ ∈ C2
c (Π) and integrating over

Π, we get∫∫
Π

(
|uεk − c|∂tφ+

(
sign(uεk − c)(f(x, u)− f(x, c))

)
∂xφ



12 G. M. Coclite, N. Chatterjee and N. H. Risebro

− sign(uεk − c)fx(x, c)φ+ sign(uεk − c)Pεkφ
)
dt dx

− εk
∫∫
Π

∂x |uεk − c| ∂x φdt dx+

∫
R+

|u0(x)− c|φ(x, 0)dx

+

∫
R+

sign(c)f(0, c)φ(0, t)dt− εk
∫
R+

∂x|uεk(0, t)− c|φ(0, t)dt ≥ 0.

Invoking Lemmas 5, 7, and 10, letting k →∞, we have∫∫
Π

(
|u− c|∂tφ+

(
sign(u− c)(f(x, u)− f(x, c))

)
∂xφ

− sign(u− c)fx(x, c)φ+ sign(u− c)Pφ
)
dt dx

+

∫
R+

|u0(x)− c|φ(x, 0)dx+

∫
R+

sign(c)f(0, c)φ(0, t)dt (4.5)

− limk→∞εk

∫
R+

∂x|uεk(0, t)− c|φ(0, t)dt ≥ 0.

Consequently to show (2.8) it is enough to prove that

limk→∞εk

∫
R+

∂x|uεk(0, t)− c|φ(0, t)dt =

∫
R+

sign(c)f(0, uτ0(t))φ(0, t)dt. (4.6)

In order to prove this we need to employ a particular choice of test func-
tion. Let {Ψm}m∈N ⊂ C∞c (R) be a sequence of non-negative test functions
satisfying 

Ψm(0) = 1, for all m ∈ N,
|Ψ′m| ≤ m, and

Ψm(x) = 0, for all x ≥ 1
m .

(4.7)

Multiplying the equation (3.4) by the test function Ψm(x)φ(x, t) we get after
an integration by parts∫∫

Π

(
uεk∂tφΨm + f(x, uεk)(Ψm∂xφ+ Ψ′mφ) + PεkΨmφ

)
dt dx

−
∫∫
Π

εk∂xuεk(Ψm∂xφ+ Ψ′mφ) dt dx+

∫
R+

u0(x)φ(x, 0)Ψm(x) dx (4.8)

−
∫
R+

f(0, uεk(0, t))φ(0, t) dt− εk
∫
R+

∂xuεk(0, t)φ(0, t) dt = 0.

Employing the strong convergence uεk → u from Lemma 10, passing to the
limit k → ∞, m → ∞ respectively and using the properties of Ψm in the
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above relation (4.8) we get

limk→∞εk

∫
R+

∂xuεk(0, t)φ(0, t)dt = −
∫
R+

f(0, uτ0(t))φ(0, t)dt,

which in turn proves (4.6). Combining (4.5) and (4.6) we have obtained the
desired inequality (2.8).

This completes the proof. �

Consequently we have established the existence of an entropy solution
(in the sense of Definition 1) u(x, t) of the equation (2.2) or equivalently of
(2.3). Now in order to prove the uniqueness of entropy solutions we are going
to prove (2.10), i.e. we will prove Theorem 2.

Proof. (of Theorem 2) Let u and v be two entropy solutions of (2.2) or
equivalently (2.3). We will use the doubling of variables. For Π := (0,∞)2

and Π2 := (0,∞)4 let φ(t, τ, x, y) ∈ C∞c (Π2) be a non-negative test function.
Since u and v are entropy solutions of (2.3), we have∫∫

Π

[
|u(x, t)− v(y, τ)|∂tφ(t, τ, x, y) + [f(x, u(x, t))− f(y, v(y, τ))]

sign(u(x, t)− v(y, τ))∂xφ(t, τ, x, y)

− sign(u(x, t)− v(y, τ))[fx(x, v(y, τ))

− Pu(x, t)]φ(t, τ, x, y)
]
dtdx ≥ 0, (4.9)

and∫∫
Π

[
|v(y, τ)− u(x, t)|∂τφ(t, τ, x, y) + [f(y, v(y, τ))− f(x, u(x, t))]

sign(v(y, τ)− u(x, t))∂yφ(t, τ, x, y)

− sign(v(y, τ)− u(x, t))[fy(y, u(x, t))

− Pv(y, τ)]φ(t, τ, x, y)
]
dτdy ≥ 0.

(4.10)

Then integrating (4.9) with respect to τ , y; (4.10) with respect to t, x; and
adding the two outcomes we obtain,∫∫∫∫

Π2

[
|u(x, t)− v(y, τ)|(∂tφ(t, τ, x, y) + ∂τφ(t, τ, x, y)) + [f(x, u(x, t))

− f(y, v(y, τ))]sign(u(x, t)− v(y, τ))(∂xφ(t, τ, x, y) + ∂yφ(t, τ, x, y))

+ sign(u(x, t)− v(y, τ))(Pu(x, t)− Pv(y, τ))φ(t, τ, x, y)

− sign(u(x, t)− v(y, τ))(fx(x, v(y, τ))

− fy(y, u(x, t)))φ(t, τ, x, y)
]
dtdτdxdy ≥ 0.

(4.11)
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For ρε → δ0 as ε→ 0, where δ0 is the Dirac mass concentrated at 0, where

ρε(z) := ερ(εz), and αε(z) :=

∫ z

−∞
ρε(x)dx, (4.12)

for some non-negative ρ ∈ C∞c ([−1, 1]) with total mass being 1. Now let us
define the particular test function

φε(t, τ, x, y) = ψ
( t+ τ

2
,
x+ y

2

)
ρε

(τ − t
2

)
ρε

(y − x
2

)
, (4.13)

where ψ ∈ C∞c (Π) is a non-negative, test function. Inserting the function
(4.13) into the last inequality (4.11), we get∫∫∫∫

Π2

[
ρε

(τ − t
2

)
ρε

(y − x
2

){
|u(t, x)− v(τ, y)|∂tψ

( t+ τ

2
,
x+ y

2

)
+
(
f(x, u(t, x))− f(y, v(τ, y))

)
sign(u(t, x)− v(τ, y))

∂xψ
( t+ τ

2
,
x+ y

2

)}
+ γψ

( t+ τ

2
,
x+ y

2

)
ρε

(τ − t
2

)
ρε

(y − x
2

)
sign(u(t, x)− v(τ, y))

(Pu(x, t)− Pv(y, τ))− sign(u(t, x)− v(τ, y))(fx(x, v(τ, y))

− fy(y, u(t, x)))ψ
( t+ τ

2
,
x+ y

2

)
ρε

(τ − t
2

)
ρε

(y − x
2

)]
dtdτdxdy ≥ 0.

(4.14)

By standard limiting argument of doubling of variable technique, passing to
the limit as ε → 0 we obtain from the previous inequality (4.14) that for all
test functions ψ as mentioned above,∫∫

Π

[
|u(t, x)− v(t, x)|∂tψ +

(
f(x, u)− f(x, v))

sign(u(t, x)− v(t, x))
)
∂xψ

]
dtdx

+

∫∫
Π

sign(u(t, x)− v(t, x))((Pu(x, t)− Pv(x, t))ψdtdx

+

∫∫
Π

sign(u(t, x)− v(t, x))
(
fx(x, u(t, x))

− fx(x, v(t, x))
)
ψdtdx ≥ 0.

(4.15)

Following Kružkov’s argument [26] if we consider the sets for T , R > 0

ΩR,T := {(t, x) ∈ [0, T ]× [0, R]; 0 ≤ s ≤ t, 0 ≤ x ≤ R+L(t−s)}, (4.16)
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and define the following non-negative test function

φε(t, x) := [αε(s)− αε(s− t)][1− αε(x−R− L(t− s))],

where αε is defined in (4.12) and L is defined in (A4). Clearly observe that φε
is an approximation of the characteristic function of ΩR,T . From definition
α′ε = ρε ≥ 0. Using φε as the test function in (4.15) and similarly as before
letting ε→ 0, we get

‖u(·, t)− v(·, t)‖L1(0,R) ≤ ‖u0 − v0‖L1(0,R+Lt)

+

∫
ΩR,T

sign(u(x, t)− v(x, t))(Pu − Pv)dxds

+

∫
ΩR,T

sign(u(x, t)− v(x, t))

(
fx(x, u)− fx(x, v)

)
dxds. (4.17)

With

I(s) := [0, R+ L(t− s)], (4.18)

note that∫
ΩR,T

sign(u− v)
(
fx(x, u)− fx(x, v)

)
dxds ≤

t∫
0

∫
I(s)

|fx(x, u)− fx(x, v)|dxds

(Using (A3))

≤
t∫

0

∫
I(s)

L1|u− v|dxds

≤
t∫

0

L1‖u− v‖L1(I(s))ds. (4.19)

Since∫
ΩR,T

sign(u− v)(Pu − Pv)dsdx ≤
t∫

0

∫
I(s)

|Pu − Pv|dsdx

≤
t∫

0

∫
I(s)

(∣∣∣ x∫
0

|u− v|dy
∣∣∣)dsdx

≤
t∫

0

∫
I(s)

(∣∣∣ ∫
I(s)

|u− v|dy
∣∣∣)dsdx
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=

t∫
0

|I(s)| ‖u(·, s)− v(·, s)‖L1(I(s))ds,

(4.20)

and,
|I(s)| = R+ L(t− s) ≤ R+ Lt ≤ R+ LT. (4.21)

We consider the following continuous function:

G(t) := ‖u(·, t)− v(·, t)‖L1(I(t)), t ≥ 0. (4.22)

Then we can combine (4.17), (4.19), (4.20) and (4.21) to obtain

G(t) ≤ G(0) +

∫ t

0

(|I(s)|+ L1)G(s)ds with |I(s)| = R+ L(t− s). (4.23)

Consequently, by Gronwall’s inequality we can conclude:

G(t) ≤ G(0)e
∫ t
0

(|I(s)|+L1)ds, for a.e. 0 < t < T,

i.e.

G(t) ≤ G(0)e(Rt+ 1
2Lt

2)+L1t ≤ G(0)e(R+ 1
2LT )t+L1T , for a.e. 0 < t < T.

Consequently we have the estimate (2.10), namely for a.e. 0 < t < T ,

‖u(·, t)− v(·, t)‖L1((0,R)) ≤ eCt‖u(·, 0)− v(·, 0)‖L1(0,R+Lt) , (4.24)

where the constant C depends on T , R, L1 and L.
This completes the proof. �
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