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Abstract

In this paper we aim at modeling stochastic transition rates of state
processes in life insurance by using generalized Cox processes. A feature of a
our non-Gaussian model is that it can be used to capture ”regime switching”
effects of data which may be due to regulatory changes in insurance markets
or external ”shocks” caused e.g. by an economical crisis, natural disasters or
epidemics. We propose a method how to estimate the unknown parameters
of our model for stochastic transition rates from insurance data by using
non-linear filtering techniques for Lévy processes. As a result we also obtain
an explicit formula for the unnormalized density of a filtering problem with
singular coefficients.
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1 Introduction

An important challenge in the risk analysis and risk management of life in-
surance companies worldwide has been the accurate modeling of transition
rates as e.g. mortality rates or disability transition rates in the calcula-
tion of insurance premiums. Compared to financial risk of technical interest
rates longevity risk e.g. , which is due to increasing life expectancy of policy
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holders and pensioners, is a source of insurance risk, which has been system-
atically underestimated for many years. A reason for the negligence of this
type of risk in the insurance business has also been due to the use of deter-
ministic models for mortality rates as e.g. the classical Gompertz-Makeham
model. The latter models however, which cannot capture the uncertainty of
the future dynamics of mortality rates, have led to a miscalculation of insur-
ance premiums with respect to defined-benefit pension plans and annuities,
from which many insurance companies have suffered substantial losses.

In order to overcome the deficiencies of deterministic models for transi-
tion rates, there have been various attempts in the literature in recent years
to describe the dynamics of future transition rates rates by using stochastic
models. See e.g.the models of Lee, Carter [28] or Cairns, Blake, Dowd [8] in
the case of mortality rates.

In this paper we want to study a non-Gaussian stochastic model for
stochastic transition rates, which allows for the modeling of ”regime switch-
ing” effects of data or more precisely ”regime switching” effects of the jump
behaviour or the tails of the distribution of data which may be due to differ-
ent types of influence factors as e.g. regulatory changes in insurance markets
or external ”shocks” caused by a financial or political crisis, natural disasters
or epidemics.

To be more specific, we consider in the following a cádlág stochastic
process Zt, 0 ≤ t ≤ T with a finite state space S on some probability space
(Ω,F , P ), which is used as a model for the state of the insured dynamically
in time. Further, we denote by Nik(t) the process which counts the number
of transitions from state i to k of the state process Zt, 0 ≤ t ≤ T in the time
interval (0, t]. In a regular insurance model with a Markovian state process
it is well known that

Nik(t)−
∫ t

0
µik(s)ds, 0 ≤ t ≤ T

is a P -martingale with respect to the natural filtration
{
FZt
}

0≤t≤T , where

µik(s) is the transition rate at time s with respect to a transition from i to
j. See e.g. [25].

One of the deficiencies of such a model as mentioned is that the deter-
ministic transition rates may not capture the actual future transition rates.

Therefore it is reasonable to assume a stochastic model for the transition
rates µik(t), 0 ≤ t ≤ T :

In the sequel, let µik(t, x), 0 ≤ t ≤ T be the transition rate at time
t of an insured aged x years with respect to a transition from state i to
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state j, i, j ∈ S. In particular, the state space S of the insured in the
case of a permanent disability insurance consists of the states ∗ (”alive”), �
(”permanently disabled”) and † (”dead”).

In order to estimate stochastic transition rates from insurance data one
may think of µik(t, x), 0 ≤ t ≤ T as a result of a ”parametrization” of the
deterministic transition rates by means of an unknown ”parametrization
process” Xt,0 ≤ t ≤ T .

More precisely, if S = {∗, �, †} one could assume that

µ∗�(t, x) = Y
(1)
t + 10Y

(2)
t +Y

(3)
t x,

µ∗†(t, x) = µ�†(t, x) = Y
(4)
t + 10Y

(5)
t +Y

(6)
t x,

where Yt = (Y
(1)
t , ..., Y

(6)
t ), 0 ≤ t ≤ T is a generalized Cox process given by

dYt = h(t,Xt)dt+ dBY
t +

∫
R6

ςNλ(dt, dς)

and Xt, 0 ≤ t ≤ T the unknown ”parametrization process” modeled by the
stochastic differential equation (SDE)

dXt = b(Xt)dt+ σ(Xt)dB
X
t (1)

for Borel functions h, b and σ, where BY
t ∈ R6, BX

t ∈ Rd are independent
Brownian motions and where Nλ is the jump measure of a ”generalized Cox
process” with a predictable compensator µ̂ given by

µ̂(dt, dς, ω) = λ(t,Xt, ς)dtν(dς) (2)

for a Lévy measure ν and a Borel function λ.
More generally, we may assume in this paper that stochastic transition

rates µik(t, x), 0 ≤ t ≤ T, i, k ∈ S are described by a stochastic Gompertz-
Makeham model GM(r, s) given by

µik(t, x) = h1,r
ik (t, x) + exp(h2,s

ik (t, x)), (3)

where h1,r
ik (t, x), h2,s

ik (t, x) are time-dependent stochastic polynomials of de-
gree r and s, respectively, that is

h1,r
ik (t, x) =

r∑
l=0

Y
(l)
t xl
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and

h2,s
ik (t, x) =

s∑
l=0

Y
(r+1+l)
t xl

for all i, k ∈ S.
In order to estimate the unknown ”parametrization” process Xt, 0 ≤ t ≤

T from (indirectly) observed insurance data

Yt = (Y
(0)
t , ..., Y

(r)
t , Y

(r+1)
t , ..., Y

(r+s)
t )∗, 0 ≤ t ≤ T, (4)

where ∗ denotes transposition, one can apply non-linear filtering techniques
for Lévy processes as proposed in [32] to the signal process Xt ∈ Rn, 0 ≤
t ≤ T and the observation process Yt ∈ Rm, 0 ≤ t ≤ T :

dXt = b(Xt)dt+ σ(Xt)dB
X
t , (5)

dYt = h(t,Xt)dt+ dBY
t +

∫
Rm

ςNλ(dt, dς), (6)

where m = r + s+ 2.
Using the latter non-Gaussian filtering framework, we want to model

stochastic transition rates, which are subject to regime switching effects of
insurance data. In modeling this phenomenon one could e.g. assume that
the ”parametrization” process Xt, 0 ≤ t ≤ T is described by

dXt = b(Xt)dt+ dBX
t , (7)

where the drift coefficient b : Rn −→ Rn is a discontinuous vector field. An
example of such a discontinuous vector field is

b(t, x) =

{
a1 , if ‖x‖ ≥ τ
a2 else

.

Here the vectors a1, a2 ∈ Rn stand for the different regime switching states
the parametrization process Xt will assume, if it exceeds a certain threshold
τ at time t, that is ‖Xt‖ ≥ τ , or not.

Another example of such a drift coefficient in the case n = 1, which
exhibits the feature of mean-reversion in connection with regime switching
effects is

b(x) =

{
a(b1 − x) , if x ≥ τ
a(b2 − x) else

.

for a, b1, b2 ≥ 0. In this case the parametrization process Xt may be inter-
preted as a mean-reverting process with a mean reversion coefficient a and
different long-run average levels b1, b2 depending on the threshold τ .
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The parameters a, b1, b2 and the threshold τ in the above examples are
a priori unknown and will be estimated from insurance data by using non-
linear filtering techniques.

The non-linear filtering problem for our model is to find the least square
estimate to the (possibly transformed) signal process Xt at time t, given
the history of the observation process up to time t, that is to determine the
conditional expectation

E[f(Xt)
∣∣FYt ] ,

where f is a given Borel function and where FYt is the σ−algebra, generated
by {Ys, 0 ≤ s ≤ t}.

One of the objectives of this paper is the derivation of an explicit rep-
resentation of the unnormalized conditional density with respect to the op-
timal filter of the filter problem (5) and (6), when the drift coefficient b
in (5) is merely (bounded and) Borel measurable. In solving this problem,
we explicitly construct a (weak) solution to a stochastic partial differential
equation given by the Duncan-Mortensen-Zakai or shortly Zakai equation for
the conditional unnormalized density, which can be regarded as a weak so-
lution to a stochastic Fokker-Planck equation with singular coefficients. See
[27] in the deterministic case. Our method relies on a representation formula
of the unnormalized conditional density found in [32] in the case of regular
coefficients and finite Lévy measures, which we want to invoke in connec-
tion with an approximation argument and local time techniques. As a result
we give an explicit representation of the unnormalized conditional density
associated with the least square estimate of the unknown parametrization
process Xt of the generalized Cox process (6) in our model for the dynamics
of stochastic transition rates. In contrast to [32] we do not require in this
paper that b is regular in the sense of Lipschitz continuity or that the Lévy
measure ν in (2) is finite.

We remark that non-linear filtering has been intensively studied in the
literature since the 1960’s. See e.g. Lipster and Shiryaev [29], Kallianpur
[22], Fleming and Rishel [14], Xiong [40] and the references therein. See also
the innovation approach for the conditional density of the filter process by
Fujisaki, Kallianpur and Kunita (see e.g.[22]). As for solutions of the Zakai
equation in the Gaussian case we refer the reader to Zakai [41], Gyöngy,
Krylov [18], [19], Pardoux [35], [36], Kunita [26]. See also [12], [15] or the
works [30], [32], which give a generalization of results in [12], [5] to the
non-Gaussian case.

The main objective of this paper is to introduce a model for the dynamics
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of stochastic transition rates which is able to describe ”regime switching”
effects of the jump or tail distribution behaviour of e.g. observed mortality
rates or transition rates in disability insurance by using the generalized Cox
process (6) in the framework of non-linear filtering for Lévy processes, where
the signal process, that is the parametrization process Xt of (6) is modeled
by a SDE with singular coefficients.

A popular model for stochastic transition rates in the case of mortality
rates was proposed by Lee, Carter [28]. In this discrete-time model the error
terms are Gaussian distributed. A generalization of the Lee-Carter model, at
least for the age range from about 35 to 90 years, is the Gaussian two-factor
stochastic mortality model by Cairns, Blake and Dowd [8], which is used to
describe the different behaviours of mortality rates at lower and higher ages.
Reasons for the success of these models in life insurance is the simplicity of
their implementation and their prediction reliability in forecasting mortality
rates under ”usual” circumstances. However, a disadvantage of these models
is that they cannot capture e.g. the observed skewness and (semi-) heavy
tailed innovation distributions of data coming from cohort effects or short
term catastrophic events as e.g. the Tsunami in 2004. In recent years there
have been therefore several attempts to tackle this problem in the literature.
In order to model heavy-tailed distributions of mortality data Giacometti
et al. [16] generalized the Lee-Carter model by modeling the distributional
behaviour of the error terms by infinitely divisible distributions in the case
of Normal Inverse Gaussian laws. Another model in this direction, which
is based on non-Gaussian distributions for error terms in the framework of
[37], is the paper of Wang et al. [39]. See also the approach in [34] based
on Markov regime switching models or [9], where the authors employ jump
diffusions to describe age-adjusted mortality rates.

Contrary to our model (5) and (6), however, the above mentioned mod-
els cannot be used to model the rather complex phenomenon of the occur-
rence of changing types of jumps or types of heavy-tailedness of distribu-
tions of real data as a result of different types of ”external” shocks. The
reason for this is that these models are finite-dimensional models (in dis-
crete time). Our model can be regarded as an infinite dimensional model
for stochastic transition rates, since one of the unknown parameters is given
by the parametrization process Xt, 0 ≤ t ≤ T which leads to an infinite-
dimensional equation given by the Zakai filtering equation. In this paper we
use the powerful tool of non-linear filtering for Lévy processes to efficiently
estimate this process from constantly updated observations. Therefore we
may expect that our approach is more flexible than those mentioned and
also suitable for the modeling of other types of stochastic transition rates
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beyond mortality rates. In summary, our model is able to capture both
long-term and short-term effects with respect to transition rate data. In
fact, short-term effects are described by jumps (e.g. short-lived spikes) of
the driving process in the model. However, long-term effects in the data
should result in a ”jump”, ”regime switching” or change in the behaviour
of the compensator of the driving noise, which can be modeled by a discon-
tinuous vector field in the drift part of the signal process (which could be
of Ornstein-Uhlenbeck type). So we have to distinguish here between two
different types of ”jumps”, namely the ”jumps” with respect to short-term
and long-term effects.

Our paper is organized as follows:

In Section 2 we introduce the framework of our paper and derive an
explicit representation of the unnormalized conditional density associated
with the least square estimate of the parametrization process Xt, 0 ≤ t ≤ T
by constructing an explicit (weak) solution of a Zakai equation with singular
coefficients. Further, we study the regularity of the obtained solution. Using
the results of Section 2, we finally want to discuss in Section 3 various
specifications of our model and its implementation in life insurance based
on Monte-Carlo simulation.

2 Framework and Main Results

In this Section we want to introduce the mathematical framework of our gen-
eral model for stochastic transition rates and to discuss the estimation of the
unknown parameters or parameter processes of the model from constantly
updated observations in connection with a non-linear filtering problem for
Lévy processes. In solving this problem we derive an explicit representa-
tion of the optimal filter of the filtering problem by constructing a (weak)
Lp−solution of the Zakai equation for the unnormalized conditional density
of the filter process with initial Lévy noise and singular coefficients.

In what follows we consider a Lévy process Lt ∈ Rm, 0 ≤ t ≤ T, that is
a stochastically continuous process with stationary independent increments
starting in zero defined on a filtered complete probability space

(Ω∗,F∗, π∗) , {F∗t }0≤t≤T ,

where {F∗t }0≤t≤T is a π∗−augmented filtration generated by L·.
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We may here assume from now on that Lt, 0 ≤ t ≤ T is a càdlàg process,
that is a process, whose paths are right continuous paths and have existing
left limits.

By the Lévy-Itô theorem the Lévy process Lt = (L
(1)
t , ..., L

(m)
t ), 0 ≤ t ≤

T can be uniquely decomposed as

L
(i)
t =

l∑
k=1

aikB
(k)
t + bit+

∫ t+

0

∫
Rm0

zi1{‖z‖≥1}N(ds, dz)

+

∫ t+

0

∫
Rm0

zi1{‖z‖<1}Ñ(ds, dz),

for 0 ≤ t ≤ T , i = 1, ...,m, where Bt = (B
(k)
t )1≤k≤l ∈ Rl, 0 ≤ t ≤

T is a Brownian motion, (aik)1≤i≤m,1≤k≤l ∈ Rm×l, (bi)1≤i≤m ∈ Rm and

Ñ(ds, dz) = N(ds, dz)− dsν(dz) the compensated Poisson random measure
associated with the Lévy process L·. Here ν is a σ−finite measure on the
Borel sets B(Rm0 ), Rm0 := Rm \ {0}, referred to as Lévy measure, which
satisfies the integrability condition∫

Rd0
1 ∧ ‖z‖2 ν(dz) <∞

for the Euclidean norm ‖·‖. See e.g. [38] or [6] for more information on Lévy
processes.

In what follows we want to estimate the unknown ”parametrization”
process Xt, 0 ≤ t ≤ T from the observed insurance data (4) by analyzing
the non-linear filtering problem

dXt = b(Xt)dt+ σ(Xt)dB
X
t , (8)

dYt = h(t,Xt)dt+ dBY
t +

∫
Rm

ςNλ(dt, dς), (9)

for the signal process Xt ∈ Rn and the observation process Yt ∈ Rm, 0 ≤ t ≤
T, n,m ∈ N on a complete probability space (Ω,F , µ) , where the Brownian
motion BY

t ∈ Rn is independent of the Brownian motion BX
t ∈ Rm and the

integer valued random measure Nλ, whose predictable compensator µ̂ with
respect to a augmented filtration F = {Ft}0≤t≤T (generated by BX

· , B
Y
· , Nλ)

is given by
µ̂(dt, dς, ω) = λ(t,Xt, ς)dtν(dς) (10)
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for the Lévy measure ν of Lt ∈ Rm and a Borel function λ. Further the
initial condition X0 in (8) is a random variable, which is independent of
BX
t , B

Y
t and Nλ.

In order to guarantee a unique strong solution to the system (8) and (9),
we require for the time being that the continuous coefficients b : Rn −→
Rn, σ : Rn −→ Rn×n, h : [0, T ]× Rn −→ Rn and λ : [0, T ]× Rn × Rm0 −→ R
fulfill a linear growth and Lipschitz condition, that is

‖b(x)‖+ ‖σ(x)‖+ ‖h(t, x)‖+

∫
Rm0

|λ(t, x, ς)| ν(dς) ≤ C(1 + ‖x‖) (11)

and

‖b(x)− b(y)‖+ ‖σ(x)− σ(y)‖+ ‖h(t, x)− h(t, y)‖

+

∫
Rm0

|λ(t, x, ς)− λ(t, y, ς)| ν(dς)

≤ C ‖x− y‖

(12)

for all x, y, t and a constant C <∞, where ‖·‖ stands for a vector or matrix
norm.

For the convenience of the reader we now want to give a derivation of the
Zakai equation for the unnormalized filter of the non-linear filtering problem
(8), (9). See e.g. [3] or [40] in the case of Wiener noise driven obervation
processes.

For this purpose denote by πt : Ω × B(Rn) −→ [0,∞) the regular con-
ditional probability measure of the signal process Xt given the σ−algebra
FYt , generated by {Ys, 0 ≤ s ≤ t} and the null sets N . Then

E[f(Xt)
∣∣FYt ] = 〈πt, f〉

for all f ∈ Cb(Rn) (space of bounded continuous functions), where 〈πt, f〉 :=∫
Rn f(x)πt(ω, dx).

Suppose that the function λ : [0, T ]×Rn ×Rm0 −→ R is strictly positive
and consider the density process

Λt := exp{
m∑
i=1

∫ t

0
−hi(s,Xs)dB

Y,i
s −

1

2

∫ t

0
‖h(s,Xs)‖2 ds

+

∫ t

0

∫
Rm0
− log λ(s,Xs, ς)Nλ(ds, dς) +

∫ t

0

∫
Rm0

(λ(s,Xs, ς)− 1)dsν(dς)},

(13)
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for 0 ≤ t ≤ T , whereBY
t = (BY,1

s , ..., BY,m
s )∗ and h(t, x) = (h1(t, x), ..., hm(t, x))∗

(∗ transposition). Further, assume that

E[ΛT ] = 1. (14)

Remark 1. Using stopping time localization of Doleans-Dade exponentials,
one obtains e.g. the following sufficient conditions for (14):

sup
0≤t≤T

E

[
exp(6

∫ t

0
‖h(s,Xs)‖2 ds

+ 4

∫ t

0

∫
Rm0

(1− λ−1(s,Xs, ς))λ(s,Xs, ς)dsν(dς)

−
∫ t

0

∫
Rm0

(1− λ−4(s,Xs, ς))λ(s,Xs, ς)dsν(dς)

]
<∞

(15)

E

[∫ T

0

∫
Rm0

∣∣(λ−4(s,Xs, ς)− 1)λ(s,Xs, ς)
∣∣ ν(dς)ds

]

+ E

[∫ T

0
(

∫
Rm0
|(λ(s,Xs, ς)− 1)| ν(dς))2ds

]
<∞

(16)

E

[∫ T

0

∫
Rm0
|λ(s,Xs, ς) log λ(s,Xs, ς)| dsν(dς)

]
<∞ (17)

An example which satisfies the conditions (15), (16) and (17) in the case
m = 1 is given by

ν(dς) = ϕ(ς)dς, (18)

where

ϕ(ς) =

{
1

|ς|1+α , if |ς| ≤ 1

0 else

for α ∈ (0, 1) as well as h is a bounded Borel measurable function and

λ(s, x, ς) = exp(Ψ(x) |ς|) (19)

for a bounded and continuous function Ψ : R −→ R.
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Define now the probability measure π with Radon-Nikodym derivative
on (Ω,Ft ) given by

dπ

dµ

∣∣∣∣
Ft

= Λt.

and require that ∫
Rd0
‖z‖ ν(dz) <∞ (20)

Then by Girsanov’s theorem and the uniqueness of semimartigale charac-
teristics (see e.g. [21]), the observation process Yt, 0 ≤ t ≤ T becomes a
Lévy process being independent of the signal process under the new prob-
ability measure π. More precisely, the system (8), (9) has the following
representation under π :

dXt = b(Xt)dt+ σ(Xt)dB
X
t

dYt = dBt + dLt, (21)

where Y· is a Lévy process independent of X· with

Bt := BY
t −

∫ t

0
(−h(s,Xs))ds, 0 ≤ t ≤ T

the Gaussian part and

Lt =

∫ t

0

∫
Rm0

ςN(ds, dς)

the jump component with respect the Poisson random measure N(ds, dς) :=
Nλ(ds, dς) with compensator dsν(dς).

Since Y· is a Lévy process under π, we also observe that the (augmented)
filtration FYt , 0 ≤ t ≤ T is right-continuous.

The so called unnormalized filter 〈Ψt, ·〉 , 0 ≤ t ≤ T is a stochastic process
taking values in the space of finite Borel measures on Rn, and is given by
the Kallianpur-Striebel-formula, which is a consequence of Bayes’ rule:

Theorem 2. The optimal filter πt has the representation

〈πt, f〉 =
〈Ψt, f〉
〈Ψt, 1〉

with
〈Ψt, f〉 := Eπ[Ztf(Xt)

∣∣FYt ]
11



for all f ∈ Cb(Rn), where Eπ denotes the espectation with respect to π and
where

Zt := Λ−1
t

= exp{
m∑
i=1

∫ t

0
hi(s,Xs)dB

i
s −

1

2

∫ t

0
‖h(s,Xs)‖2 ds

+

∫ t

0

∫
Rm0

log λ(s,Xs, ς)N(ds, dς)

+

∫ t

0

∫
Rm0

(1− λ(s,Xs, ς))dsν(dς)},

(22)

for 0 ≤ t ≤ T under π.

Remark 3. We mention the fact that

Eπ[ξ
∣∣FYt ] = Eπ[ξ |A]

for all Ft−measurable ξ with Eπ[|ξ|] <∞, where

A :=
∨

0≤t≤T
FYt .

See Proposition 3.15 in [2].

We also need the following Lemmata for the derivation of the Zakai
equation:

Lemma 4. Let f ∈ C∞b (Rn) (space of smooth functions on Rn with bounded
partial derivatives). Assume that the coefficients b, σ in (11), (12) are
bounded and that

E

[
exp

(
496

∫ T

0
‖h(s,Xs)‖2 ds+

∫ T

0

∣∣∣∣∣
∫
Rm0

(1− λ32(s,Xs(θ), ς))ν(dς)

∣∣∣∣∣ ds
+ 32

∫ T

0

∣∣∣∣∣
∫
Rm0

(1− λ(s,Xs(θ), ς))ν(dς)

∣∣∣∣∣ ds
)]

<∞,

(23)

E

[(∫ T

0

(∫
Rm0
|log λ(r,Xr(θ), ς)|j ν(dς)

)k
dr

)4]
<∞, (24)
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for all j = 1, 2, 4, 8 ,k = 1, 2, 3 and

E[

∫ T

0

∫
Rm0

∣∣1− λ32(s,Xs(θ), ς)
∣∣ ν(dς)ds]

+ E[(

∫ T

0
(

∫
Rm0

(1− λ(r,Xr(θ), ς))ν(dς))2ds)4]

<∞.

(25)

Then there exists a càdlàg modification of the unnormalized filter 〈Ψ·, f〉 .

Proof. See Appendix.

Remark 5. An example satisfying the assumptions (23)-(25) in Lemma 4
is given by Remark 1.

Lemma 6. Consider F−predictable processes αt, βt, γt(·), 0 ≤ t ≤ T such
that

Eπ[

∫ T

0
(|αs|+ |βs|

2)ds] < ∞,

Eπ[

∫ T

0

∫
Rm0
|γs(ς)|

2 dsν(dς)] < ∞.

Then

Eπ[

∫ t

0
αsds

∣∣FYt ] =

∫ t

0
Eπ[αs

∣∣FYs ] ds,
Eπ[

∫ t

0
βsdBs

∣∣FYt ] =

∫ t

0
Eπ[βs

∣∣FYs ] dBs
Eπ[

∫ T

0

∫
Rm0

γs(ς)Ñ(ds, dς)
∣∣FYt ] =

∫ t

0

∫
Rm0

Eπ[γs(ς)
∣∣FYs ] Ñ(ds, dς)

and

Eπ[

∫ t

0
βsdB

X
s

∣∣FYt ] = 0.

Proof. The proof is essentially based on the independence of the increments
of the process Yt, 0 ≤ t ≤ T under π and can be e.g. found in [3] or [40] in
the case of Brownian motion.
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Using the latter auxiliary result, we obtain the following Zakai equation
for the unnormalized filter of the non-linear filtering problem (8), (9):

Theorem 7. Assume the conditions of Lemma 4 and require that

sup
0≤s≤T

Eπ[|Zs(λ(s,Xs, ς)− 1)|p] <∞ (26)

for all ς and some p > 1. Then the unnormalized filter 〈Ψt, ·〉 , 0 ≤ t ≤ T is
a càdlàg FYt −adapted solution to the Zakai equation, that is to the SPDE

〈Ψt, f〉 = 〈Ψ0, f〉+

∫ t

0
〈Ψs,Lf〉 ds+

∫ t

0
〈Ψs, f · h∗(s, ·)〉 dBs (27)

+

∫ t

0
〈Ψs−, f · (λ(s, ·, ς)− 1)〉 Ñ(ds, dς)

for all f ∈ D ⊂ C∞c ((Rn) (space of compactly supported infinitely often
differentiable functions of Rn), where D is a (countable) dense subset of
L2(Rn) and L the generator of the diffusion process X· given by

Lf(x) =
1

2

n∑
i,j=1

σij(x)
∂2

∂xi∂xj
f(x) +

n∑
i=1

bi(x)
∂

∂xi
f(x) (28)

with σ(x) = (σij(x))1≤i,j≤n and b(x) = (b1(x), ..., bn(x))∗ and where Ñ(ds, dς)

is the compensated Poisson random measure associated with the Lévy process
Yt, 0 ≤ t ≤ T under π.

Proof. It follows from Itô’s Lemma for f ∈ C∞c ((Rn) that

f(Xt) = f(X0) +

∫ t

0
Lf(Xs)ds+

∫ t

0
∇∗f(Xs)σ(Xs)dB

X
s ,

where ∇∗ denotes the transposed gradient. On the other hand we know that
the process Zt, 0 ≤ t ≤ T in Theorem 2 satisfies the SDE

Zt = 1+

m∑
i=1

∫ t

0
Zshi(s,Xs)dB

i
s+

∫ t

0

∫
Rm0

Zs−(λ(s,Xs, ς)−1)Ñ(ds, dς). (29)
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So using integration by parts, we obtain that

Ztf(Xt) = f(X0) +

∫ t

0
ZsLf(Xs)ds+

∫ t

0
Zs∇∗f(Xs)σ(Xs)dB

X
s

+

m∑
i=1

∫ t

0
Zsf(Xs)hi(s,Xs)dB

i
s

+

∫ t

0

∫
Rm0

Zs−f(Xs)(λ(s,Xs, ς)− 1)Ñ(ds, dς).

The conditional expectation with respect to FYt applied to the latter equa-
tion combined with Lemma 6 then gives

〈Ψt, f〉 = 〈Ψ0, f〉+ Eπ[

∫ t

0
ZsLf(Xs)ds

∣∣FYt ]
+Eπ[

∫ t

0
Zs∇∗f(Xs)σ(Xs)dB

X
s

∣∣FYt ]
+

m∑
i=1

Eπ[

∫ t

0
Zsf(Xs)hi(s,Xs)dB

i
s

∣∣FYt ]
+Eπ[

∫ t

0

∫
Rm0

Zs−f(Xs)(λ(s,Xs, ς)− 1)Ñ(ds, dς)
∣∣FYt ]

= 〈Ψ0, f〉+

∫ t

0
〈Ψs,Lf〉 ds+

m∑
i=1

∫ t

0
〈Ψt, f · hi(s, ·)〉 dBi

s

+

∫ t

0

∫
Rm0
〈Ψs−, f · (λ(s, ·, ς)− 1)〉 Ñ(ds, dς),

where we used Lemma 4, Remark 3, the continuity of the paths of Xt, 0 ≤
t ≤ T, the continuity of λ and (26) in connection with uniform integrability
under the measure π.

Remark 8. The condition (26) in Theorem 7 holds, if e.g.

sup
0≤s≤T

Eπ[Zprs ] <∞

and
sup

0≤s≤T
Eπ[|λ(s,Xs, ς)− 1|pq] < C

for all ς, some constant C with pr < 2, 1
r + 1

q = 1, r, q > 1 are satisfied. The
latter conditions are e.g. covered by the conditions B1 − B6 in the paper
later on.

15



In addition to the conditions (11), (12) let us from now on also require
that the drift coefficient b is bounded and σ = Id (identity).

Using the independence of the increments of the observation process Y·
under π and the probability density of the signal process Xt, which ex-
ists in this case, our assumptions on b, h, λ and ν imply that there is an
FYt −adapted process Φ(t, ·), 0 ≤ t ≤ T , called unnormalized conditional
density, such that

〈Ψt, f〉 =

∫
Rn
f(x)Φ(t, x)dx, 0 ≤ t ≤ T

for all f ∈ Cb(Rn). Hence we can recast the Zakai equation (27) in terms
of the unnormalized density and find that Φ(t, ·), 0 ≤ t ≤ T satisfies a
stochastic Fokker-Planck-equation, that is the SPDE

dtΦ(t, x) = L∗Φ(s, x)dt+ (30)

Φ(t, x)h∗(s, x)dBt +

∫
Rm0

Φ(t−, x)(λ(s, x, ς)− 1)Ñ(dt, dς)

Φ(0, x) = p0(x),

where L∗ is the adjoint operator of the generator L of Xt and where p0(x)
is the probability density of X0, in a weak sense, that is Φ ∈ L2

loc([0, T ] ×
Rn;L2(Ω)) is FYt −adapted process, which solves the equation∫

Rn
Φ(t, x)f(x)dx (31)

=

∫
Rn
p0(x)f(x)dx+

∫ t

0

∫
Rn

Φ(s, x)Lf(x)dxds

+

∫ t

0

∫
Rn

Φ(s, x)h∗(s, x)f(x)dxdBs

+

∫ t

0

∫
Rm0

∫
Rn

Φ(s−, x)(λ(s, x, ς)− 1)f(x)dxÑ(ds, dς), 0 ≤ t ≤ T

for all f ∈ C∞c ((Rn).
In fact, it was shown in [32] that the Zakai equation for the unnormalized

density (27) has a unique strong solution Φ(t, x) to (30) in Lp(µ), p ≥ 1,
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which is twice continuously differentiable in x, under the following conditions

A1 : The Lévy measure ν is bounded.

A2 : The drift coefficient b is contained in C2+β
b (Rn).

A3 : The initial condition p0 in (30) is positive and belongs to

C2+β
b (Rn).

A4 : The intensity rate λ is strictly positive and λ(·, ·, ς) ∈
C1,2
b (R+ × Rm) ∩ C2+β(R+ × Rm) uniformly in ς.

A5 :

n∑
i=1

∂

∂xi
bi ∈ C2

b (Rn) ∩ C2+β(Rn).

A6 : The observation function h is contained in

C1,2
b (R+ × Rn) ∩ C2+β(R+ × Rn).

A7 : Λt, 0 ≤ t ≤ T in (13) is a martingale,

where C l,rb (R+ × Rd) is the space of l-times in t ∈ (0,∞) and r-times in
x ∈ Rd continuously differentiable, whose partial derivatives are bounded
and have continuous extensions to R+ × Rd (R+ := [0,∞)). The space
Cr+β(U) denotes the space of functions in Cr(U) with all partial derivatives
up to order r being Hölder continuous of order β ∈ (0, 1).

Moreover, the strong solution Φ to (30) has the following explicit repre-
sentation:

Φ(t, x, ω) (32)

= Exϑ[p0(X∗t (θ)) exp(−
n∑
i=1

∫ t

0

∂

∂xi
bi(X

∗
s (θ))ds)

exp{
∫ T

T−t
h∗(s,X∗s−(T−t)(θ))dBs(ω)− 1

2

∫ T

T−t

∥∥∥h(s,X∗s−(T−t)(θ))
∥∥∥2
ds

+

∫ T

T−t

∫
Rm0

log(λ(s,X∗s−(T−t)(θ), ς))Ñ(ds, dς, ω)

+

∫ T

T−t

∫
Rm0

(log(λ(s,X∗s−(T−t)(θ), ς))− (λ(s,X∗s−(T−t)(θ), ς)− 1))dsν(dς)}]

where X∗s (θ) = X∗,xs (θ), 0 ≤ s ≤ T, is the solution to the time-homogeneous
SDE

dX∗t = −b(X∗t )dt+ dB∗t , X
∗
0 = x ∈ Rd (33)

for a Brownian motionB∗· , defined on an auxiliary probability space (Θ,K, ϑ).
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In order to capture ”regime switching effects” in the framework of our
model for the stochastic transition rates µik(t, x), 0 ≤ t ≤ T in (3) and in
view of Monte Carlo simulation techniques with respect to such transition
rates, we now want to extend the representation of Φ (32) under the condi-
tions A1 − A7 to the case, when the drift coefficent b of the signal process
is merely bounded and measurable. In addition, we aim at relaxing the
condition A1 of compound Poisson Lévy measures ν in (32) to that of finite-
variation Lévy measures ν satisfying (20). Furthermore, we will show that
such a Φ solves the Zakai equation (30) in the weak sense.

To this end we need to recall the concept of stochastic integration over
the plane with respect to Brownian local time. See [13]:

Consider elementary functions f∆ : [0, 1]× R −→R given by

f∆(s, x) =
∑

(sj ,xi)∈∆

fijχ(sj ,sj+1](s).χ(xi,xi+1](x) , (34)

where (xi)1≤i≤n , (fij)1≤i≤n,1≤j≤m are finite sequences of real numbers, (sj)1≤j≤m
a partition of [0, 1] and ∆ = {(sj , xi), 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Denote by
{L(t, x)}0≤t≤1,x∈R the local time of a 1−dimensional Brownian motion B.
Then the integral of integration of f∆ with respect to L is defined as∫ 1

0

∫
R
f∆(s, x)L(ds, dx) (35)

=
∑

(sj ,xi)∈∆

fij(L(sj+1, xi+1)− L(sj , xi+1)− L(sj+1, xi) + L(sj , xi)).

The latter integral can be generalized to integrands of the Banach space
(H, ‖·‖) of measurable functions f endowed with the norm

‖f‖ = 2

(∫ 1

0

∫
R

(f(s, x))2 exp(−x
2

2s
)
dsdx√

2πs

)1/2

(36)

+

∫ 1

0

∫
R
|xf(s, x)| exp(−x

2

2s
)
dsdx

s
√

2πs
.

If f is such that f(t, ·) is locally square integrable and f(t, ·) continuous
in t as a map from [0, T ] to L2

loc(R), then f ∈ H and∫ t

0

∫
R
f(s, x)L(ds, dx), 0 ≤ t ≤ T
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exists as well as

E

[∣∣∣∣∫ t

0

∫
R
f(s, x)L(ds, dx)

∣∣∣∣] ≤ ‖f‖
for 0 ≤ t ≤ T. Further, if f(t, x) is differentiable in x, then∫ t

0

∫
R
f(s, x)L(ds, dx) = −

∫ t

0
f ′(s,Bs) ds , 0 ≤ t ≤ T ,

where f ′(s, x) denotes the derivative in x. See [13].

Assume now that B̄t =
(
B̄

(1)
t , ..., B̄

(n)
t

)
, 0 ≤ t ≤ T is a Brownian motion,

whose components B̄
(i)
t are defined on probability spaces (Ωi,Fi, µi), i =

1, ..., n. In what follows we denote by

B̂t := (B̂
(1)
t , ..., B̂

(d)
t ) := B̄T−t , 0 ≤ t ≤ T , (37)

the time-reversed Brownian motion. The process B̂
(i)
t satisfies for each i =

1, ..., d the equation

B̂
(i)
t = B̄

(i)
1 + W̃

(i)
t −

∫ t

0

B̂
(i)
s

T − s
ds , 0 ≤ t ≤ T , a.e., (38)

where W̃
(i)
t , 0 ≤ t ≤ T are independent µi-Brownian motions with respect

to the filtrations F B̂(i)

t generated by B̂
(i)
· , i = 1, ..., n. See [13].

Using the relation (38) one obtains the following decomposition of local
time-space integrals (see [13]):∫ t

0

∫
R
fi(s, x)Li(ds, dx) (39)

=

∫ t

0
fi(s, B̄

(i)
s )dB̄(i)

s +

∫ T

T−t
fi(T − s, B̂(i)

s )dW̃ (i)
s

−
∫ T

T−t
fi(T − s, B̂(i)

s )
B̂

(i)
s

T − s
ds,

0 ≤ t ≤ T, a.e. for fi ∈ H, i = 1, ..., n. Here Li(t, x) is the local time of B̄
(i)
·

on (Ωi, µi), i = 1, ..., n.

In the sequel we also need the following auxiliary result (see also [33]):
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Lemma 9. Let Bt, 0 ≤ t ≤ T be a 1−dimensional Brownian motion. Then

E

[
exp

(
k

∫ T

0

|Bt|
t
dt

)]
<∞

for all k ≥ 0.

Proof. See Appendix.

Let us now assume that the following conditions are satisfied

B1 : The Lévy measure ν fulfills condition (20).

B2 : The drift coefficient b is Borel measurable and bounded.

B3 : The initial condition p0 in (30) is positive and belongs to

C2+β
b (Rn).

B4 : The intensity rate λ is strictly positive and λ(·, ·, ς) ∈
C1,2
b (R+ × Rn) ∩ C2+β(R+ × Rn) uniformly in ς.

B5 : The observation function h is contained in

C1,2
b (R+ × Rn) ∩ C2+β(R+ × Rn).

B6 : λ satisfies (15)-(17), (23)-(25)

and the following integrability conditions

sup
x∈U

E[exp(200{
∫ T

0

∫
Rm0

∣∣(λ(s, B̄x
s , ς)− 1

∣∣ (40)

+
100

max
n=1

∫ T

0

∫
Rm0

∣∣(λ2n(s, B̄x
s , ς)− 1

∣∣ dsν(dς)})]

< ∞

and

sup
x∈U

E

(∫ T

0

∫
Rm0

∣∣log λ(s, B̄x
s , ς)

∣∣i dsν(dς)

)8
 <∞, (41)

for all i = 1, 2, 4, 8 and all bounded U ⊂ Rn.

We mention that condition B2 implies the the existence of a unique
strong solution X∗· to the the SDE (33). See e.g. [42].
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We obtain the following existence result for weak solutions of a singular
stochastic Fokker-Planck equation driven by Lévy noise, that is the SPDE
(30) with the adjoint operator L∗ of the generator L of Xt for merely
bounded and measurable drift coefficients b : Rd −→ Rd:

Theorem 10. Suppose that the conditions B1−B6 hold. Then there exists a
weak solution Φ to the SPDE (30), which is given in law by the unnormalized
density and takes the explicit form

Φ(t, x, ω) (42)

= Eϑ[p0(B̄x
t (θ)) exp(

n∑
i=1

{
∫ t

0
bi(B̄

x
s (θ))dB̄(i)

s +

∫ T

T−t
bi(B̂

x
s (θ))dW̃ (i)

s

−
∫ T

T−t
bi(B̂

x
s (θ))

B̂
(i)
s

T − s
ds})

exp{
∫ T

T−t
h∗(s, B̄x

s−(T−t)(θ))dBs(ω)− 1

2

∫ T

T−t

∥∥∥h(s, B̄x
s−(T−t)(θ))

∥∥∥2
ds

+

∫ T

T−t

∫
Rm0

log(λ(s, B̄x
s−(T−t)(θ), ς))Ñ(ds, dς, ω)

+

∫ T

T−t

∫
Rm0

(log(λ(s, B̄x
s−(T−t)(θ), ς))

−(λ(s, B̄x
s−(T−t)(θ), ς)− 1))dsν(dς)}E(

∫ T

0
−b∗(B̄x

s (θ))dB̄s)],

where Eϑ denotes the expectation with respect to the product measure ϑ =

µ1×...×µn with B̄
(i)
· is a Brownian motion on (Ωi, µi), i = 1, ..., n, B̄x

t (θ) :=
x+ B̄t(θ) and B̂x

t (θ) := x+ B̂t(θ). Further,

E(

∫ t

0
−b∗(B̄x

s (θ)dB̄s)

= exp(

∫ t

0
−b∗(B̄x

s (θ))dB̄s(θ)−
1

2

∫ t

0

∥∥b(B̄x
s (θ)

∥∥2
ds), 0 ≤ t ≤ T

is the Doleans-Dade exponential.

Proof. The proof is based on the explicit representation for the unnormal-
ized density Φ in (32) and an approximation argument with respect to the
function b and the Lévy measure ν.
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Consider a sequence of Borel sets Ur, r ≥ 1 of Rm0 with Ur ↗ Rm0 such
that ν(Ur) < ∞ for all r. Define the compound Poisson Lévy measures νr
by

νr(B) =

∫
B

1Ur(ς)ν(dς),

where 1A is the indicator function of a set A. In the sequel we denote by
Nr(ds, dς) the Poisson random measure associated with the Lévy measure
νr, r ≥ 1.

Let us also choose functions br ∈ C∞c (Rn), r ≥ 1 such that

‖br(x)‖ ≤M <∞

for a constant M and all x, r as well as

br(x) −→ b(x) a.e.

for r −→∞.
In the following let us denote by Φr the unique (strong) solution to the

SPDE (30) with respect to the drift coefficent br and by X∗,rt , 0 ≤ t ≤ T
the strong solution to the SDE

dX∗,rt = −br(X∗,rt )dt+ dB∗t , X
∗,r
0 = x ∈ Rn (43)

for all r.
In what follows let x ∈ U for a bounded set U ⊂ Rn.
Using Girsanov’s theorem and the explicit representation of Φr in (32)

for b = br and ν = νr based on the condition B6 we find that

Φr(t, x, ω) (44)

= Eϑ[p0(B̄x
t (θ)) exp(

n∑
i=1

{
∫ t

0

∂

∂xi
bri (B̄

x
s (θ))ds)

exp{
∫ T

T−t
h∗(s, B̄x

s−(T−t)(θ))dBs(ω)− 1

2

∫ T

T−t

∥∥∥h(s, B̄x
s−(T−t)(θ))

∥∥∥2
ds

+

∫ T

T−t

∫
Rm0

log(λ(s, B̄x
s−(T−t)(θ), ς))Ñr(ds, dς, ω)

+

∫ T

T−t

∫
Rm0

(log(λ(s, B̄x
s−(T−t)(θ), ς))

−(λ(s, B̄x
s−(T−t)(θ), ς)− 1))dsνr(dς)}E(

∫ T

0
−(br(B̄x

s (θ)))∗dB̄s)].
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If we apply (39) to B̄
(i)
· on (Ωi, µi) for

fi(s, z)

= bri (x1 + B̄(1)
s (ω1), ...,

xi−1 + B̄(i−1)
s (ωi−1), z, xi + B̄(i+1)

s (ωi+1), ..., xn + B̄(n)
s (ωn))

then we get that

Φr(t, x, ω) (45)

= Eϑ[p0(B̄x
t (θ)) exp(

n∑
i=1

{
∫ t

0
bri (B̄

x
s (θ))dB̄(i)

s +

∫ T

T−t
bri (B̂

x
s (θ))dW̃ (i)

s

−
∫ T

T−t
bri (B̂

x
s (θ))

B̂
(i)
s

T − s
ds})

exp{
∫ T

T−t
h∗(s, B̄x

s−(T−t)(θ))dBs(ω)− 1

2

∫ T

T−t

∥∥∥h(s, B̄x
s−(T−t)(θ))

∥∥∥2
ds

+

∫ T

T−t

∫
Rm0

log(λ(s, B̄x
s−(T−t)(θ), ς))Ñr(ds, dς, ω)

+

∫ T

T−t

∫
Rm0

(log(λ(s, B̄x
s−(T−t)(θ), ς))

−(λ(s, B̄x
s−(T−t)(θ), ς)− 1))dsνr(dς)}E(

∫ T

0
−(br(B̄x

s (θ)))∗dB̄s)].

Then it follows from the mean value theorem that

E[(Φr(t, x, ω)− Φ(t, x, ω))2]

= E[(p0(B̄x
t (θ)))2(Ir1 + Ir2 + Ir3)2

(∫ 1

0
exp(Ir0 + τ(Ir1 + Ir2 + Ir3))dτ

)2
],

where E is an expectation with respect to a probability measure under which
Y· associated with the bounded and measurable drift coefficient b is the Lévy
process of the type in (21) and where

Ir0 := Ir0,1 + Ir0,2 + Ir0,3

with

Ir0,1 :=
n∑
i=1

{
∫ t

0
bri (B̄

x
s (θ))dB̄(i)

s +

∫ T

T−t
bri (B̂

x
s (θ))dW̃ (i)

s

−
∫ T

T−t
bri (B̂

x
s (θ))

B̂
(i)
s

T − s
ds},
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Ir0,2 :=

∫ T

T−t
h∗(s, B̄x

s−(T−t)(θ))dBs(ω)− 1

2

∫ T

T−t

∥∥∥h(s, B̄x
s−(T−t)(θ))

∥∥∥2
ds

+

∫ T

T−t

∫
Rm0

log(λ(s, B̄x
s−(T−t)(θ), ς))Ñr(ds, dς, ω)

+

∫ T

T−t

∫
Rm0

(log(λ(s, B̄x
s−(T−t)(θ), ς))

−(λ(s, B̄x
s−(T−t)(θ), ς)− 1))dsνr(dς)

=

∫ T

T−t
h∗(s, B̄x

s−(T−t)(θ))dBs(ω)− 1

2

∫ T

T−t

∥∥∥h(s, B̄x
s−(T−t)(θ))

∥∥∥2
ds

+

∫ T

T−t

∫
Rm0

log(λ(s, B̄x
s−(T−t)(θ), ς))1Ur(ς)Ñ(ds, dς, ω)

+

∫ T

T−t

∫
Rm0

(log(λ(s, B̄x
s−(T−t)(θ), ς))

−(λ(s, B̄x
s−(T−t)(θ), ς)− 1))1Ur(ς)dsν(dς)

Ir0,3 :=

∫ T

0
−(br(B̄x

s (θ)))∗dB̄s −
1

2

∫ T

0

∥∥br(B̄x
s (θ))

∥∥2
ds

and

Ir1 :=
n∑
i=1

{
∫ t

0
(bri (B̄

x
s (θ))− bi(B̄x

s (θ)))dB̄(i)
s +

∫ T

T−t
(bri (B̂

x
s (θ))− bi(B̂x

s (θ)))dW̃ (i)
s

−
∫ T

T−t
(bri (B̂

x
s (θ))− bi(B̂x

s (θ)))
B̂

(i)
s

T − s
ds},

Ir2

: =

∫ T

T−t

∫
Rm0

log(λ(s, B̄x
s−(T−t)(θ), ς))(Ñr(ds, dς, ω)− Ñ(ds, dς, ω))

+

∫ T

T−t

∫
Rm0

(log(λ(s, B̄x
s−(T−t)(θ), ς))

−(λ(s, B̄x
s−(T−t)(θ), ς)− 1))ds(νr(dς)− ν(dς))

=

∫ T

T−t

∫
Rm0

log(λ(s, B̄x
s−(T−t)(θ), ς))(1Ur(ς)− 1)Ñ(ds, dς, ω)

+

∫ T

T−t

∫
Rm0

(log(λ(s, B̄x
s−(T−t)(θ), ς))

−(λ(s, B̄x
s−(T−t)(θ), ς)− 1))(1Ur(ς)− 1)dsν(dς),
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Ir3 :=

∫ T

0
−((br(B̄x

s (θ)))∗ − (b(B̄x
s (θ)))∗)dB̄s

−1

2

∫ T

0
(
∥∥br(B̄x

s (θ))
∥∥2 −

∥∥b(B̄x
s (θ))

∥∥2
)ds.

It follows from the boundedness of the probability density p0 and Hölder’s
inequality that

E[(Φr(t, x, ω)− Φ(t, x, ω))2] ≤ CJr1Jr2

for a constant C <∞, where

Jr1 := E[(Ir1 + Ir2 + Ir3)4]1/2,

Jr2 := (

∫ 1

0
E[exp(4(Ir0 + τ(Ir1 + Ir2 + Ir3)))]dτ)1/2.

Using Burkholder’s inequality, we find that

Jr1

≤ K1(E[|Ir1 |
4]1/2 + E[|Ir2 |

4]1/2 + E[|Ir3 |
4]1/2)

≤ K2(
n∑
i=1

{E[

∫ T

0
(bri (B̄

x
s (θ))− bi(B̄x

s (θ)))4ds]1/2

+E[

∫ T

T−t
(bri (B̂

x
s (θ))− bi(B̂x

s (θ)))4ds]1/2

+E[(

∫ T

T−t

∣∣∣bri (B̂x
s (θ))− bi(B̂x

s (θ))
∣∣∣ (∣∣∣B̂(i)

s

∣∣∣ /(T − s))ds)4]1/2}

+E[(

∫ T

T−t

∫
Rm0

((log(λ(s, B̄x
s−(T−t)(θ), ς)))

2(1Ur(ς)− 1))2dsν(dς))2]1/2

+E[

∫ T

T−t

∫
Rm0

((log(λ(s, B̄x
s−(T−t)(θ), ς)))

4(1Ur(ς)− 1))4dsν(dς)]1/2

+E[(

∫ T

T−t

∫
Rm0

∣∣∣(log(λ(s, B̄x
s−(T−t)(θ), ς))− (λ(s, B̄x

s−(T−t)(θ), ς)− 1))
∣∣∣

· |(1Ur(ς)− 1)| dsν(dς))4]1/2

+E[

∫ T

0

∥∥br(B̄x
s (θ))− b(B̄x

s (θ))
∥∥4
ds]1/2

+E[

∫ T

0
(
∥∥br(B̄x

s (θ))
∥∥2 −

∥∥b(B̄x
s (θ))

∥∥2
)4ds]1/2)
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for constants K1,K2 <∞. Since

E[(

∫ T

T−t

∣∣∣B̂(i)
s

∣∣∣ /(T − s))ds)l] <∞
for all l ≥ 1 (see Lemma 9) and since by assumption

E

[(∫ T

T−t

∫
Rm0

(log(λ(s, B̄x
s−(T−t)(θ), ς)))

2dsν(dς)
)2
]
<∞,

E

[(∫ T

T−t

∫
Rm0

∣∣∣log(λ(s, B̄x
s−(T−t)(θ), ς))

∣∣∣+
∣∣∣λ(s, B̄x

s−(T−t)(θ), ς)− 1
∣∣∣ dsν(dς)

)4
]

< ∞,

it follows from dominated convergence that

Jr1 −→ 0 for r −→∞.

Further, we obtain by Hölder’s inequality that

Jr2 = (

∫ 1

0
E[exp(4(Ir0 + τ(Ir1 + Ir2 + Ir3)))]dτ)1/2

≤ (

∫ 1

0
E[exp(24Ir0,1)]1/6E[exp(24Ir0,2)]1/6E[exp(24Ir0,3)]1/6

E[exp(6τIr1)]1/6E[exp(6τIr2)]1/6E[exp(6τIr3)]1/6dτ)1/2.

Using localization applied to Doleans-Dade exponentials combined with Lemma
9 once more, we get that

E[exp(24Ir0,1)]

≤ E[exp(K1

∫ T

0

∥∥br(B̄x
s (θ))

∥∥2
ds)]2/3

·E[exp(K2

∫ T

T−t

∣∣∣B̂(i)
s

∣∣∣ /(T − s))ds)]1/3
≤ K3E[exp(K2

∫ T

T−t

∣∣∣B̂(i)
s

∣∣∣ /(T − s))ds)]1/3
≤ K4 <∞
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for constants Ki, i = 1, ..., 4. On the other hand, repeated use of a localiza-
tion argument with respect to Doleans-Dade exponentials yields

E[exp(24Ir0,2)] (46)

≤ E[exp(1128

∫ T

0

∥∥h(s, B̄x
s )
∥∥2
ds

+48

∫ T

0

∫
Rm0

∣∣1− λ(s, B̄x
s , ς)

∣∣ dsν(dς)

+

∫ T

0

∫
Rm0

∣∣1− λ48(s, B̄x
s , ς)

∣∣ dsν(dς))]1/2

< ∞

Similarly to the above estimates we see from our assumptions that

E[exp(24Ir0,3)]

≤ E[exp(K

∫ T

0

∥∥br(B̄x
s )
∥∥2
ds)]1/2

≤ M <∞,

E[exp(6τIr1)]

≤ E[exp(K1

∫ T

0

∥∥br(B̄x
s (θ))− b(B̄x

s (θ))
∥∥2
ds)]2/3

·E[exp(K2

∫ T

T−t

∣∣∣B̂(i)
s

∣∣∣ /(T − s))ds)]1/3
≤ C <∞,

E[exp(6τIr2)] (47)

≤ E[exp(24

∫ T

0

∫
Rm0

∣∣1− λ(s, B̄x
s , ς)

∣∣ dsν(dς)

+

∫ T

0

∫
Rm0

∣∣1− λ12(s, B̄x
s , ς)

∣∣ dsν(dς))]1/2

< R <∞

and

E[exp(6τIr3)]

≤ E[exp(K

∫ T

0
(
∥∥br(B̄x

s

∥∥2
+
∥∥b(B̄x

s )
∥∥2

)ds)]1/2

≤ H <∞.
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Altogether, we obtain that for all bounded sets U ⊂ Rn :

sup
0≤t≤T,x∈U

E[(Φr(t, x)− Φ(t, x))2] −→ 0 (48)

for r −→∞.
Denote by Lr the differential operator in (28) for b = br. Then, using

the Itô-isometry, relation (48) implies that∫
Rn

Φr(t, x)f(x)dx −→
∫
Rn

Φ(t, x)f(x)dx,

∫ t

0

∫
Rn

Φr(s, x)Lrf(x)dxds −→
∫ t

0

∫
Rn

Φ(s, x)Lf(x)dxds,∫ t

0

∫
Rn

Φr(s, x)h∗(s, x)f(x)dxdBs −→
∫ t

0

∫
Rn

Φ(s, x)h∗(s, x)f(x)dxdBs

and ∫ t

0

∫
Rm0

∫
Rn

Φm(s−, x)(λ(s, x, ς)− 1)f(x)dxÑr(ds, dς)

=

∫ t

0

∫
Rm0

∫
Rn

Φm(s−, x)(λ(s, x, ς)− 1)f(x)1Ur(ς)dxÑ(ds, dς)

−→
∫ t

0

∫
Rm0

∫
Rn

Φ(s−, x)(λ(s, x, ς)− 1)f(x)dxÑ(ds, dς)

for r −→ ∞ in L2(Ω) uniformly in t for all f ∈ C∞c (Rn). Thus Φ ∈
L2
loc([0, T ]× Rn;L2(Ω)) is an adapted process, which solves the SPDE (30)

in a weak sense.
Consider now the unique strong solutions Xr

t , 0 ≤ t ≤ T , r ≥ 1 of the
SDE for the signal process (8)

dXr
t = br(Xr

t )dt+ dBX
t , X

r
0 = x

and denote by Y r
t , 0 ≤ t ≤ T the corresponding oberservation process.

It is known that
Xr
t −→ Xt for r −→∞

in L2(Ω) for all t. See e.g. [31].
Denote by Zr· , πr the Doleans-Dade exponentials and probability mea-

sures in (22) with respect to br and νr, r ≥ 0, where we set b0 := b, ν0 := ν,
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Z· := Z0
· , πr := π0. Since Xr

· is independent of Y r
· under πr, we find by

means of Girsanov’s theorem applied to the signal process that

Eπr [Z
r
t f(Xr

t )
∣∣FY rt ]

(ω)

= Eϑ[exp{
m∑
i=1

∫ t

0
hi(s, B̄

x
s (θ))dBi,r

s (ω)− 1

2

∫ t

0

∥∥h(s, B̄x
s (θ))

∥∥2
ds

+

∫ t

0

∫
Rm0

log λ(s, B̄x
s (θ), ς)1Ur(ς)N

r(ds, dς, ω)

+

∫ t

0

∫
Rm0

(1− λ(s, B̄x
s (θ), ς))1Ur(ς)dsν(dς)}

f(B̄x
t (θ))E(

∫ T

0
(br(B̄x

s (θ)))∗dB̄s)]

πr−a.e. and therefore µ−a.e., where Br
· and N r are the Brownian motion

and Poisson random measure under πr, respectively.
Let g be a bounded Lipschitz function on R. Then

Eµ[(g(Eπr [Z
r
t f(Xr

t )
∣∣FY rt ]

)]

= Eπ∗ [g(Eϑ[exp{
m∑
i=1

∫ t

0
hi(s, B̄

x
s (θ))dBi

s −
1

2

∫ t

0

∥∥h(s, B̄x
s (θ))

∥∥2
ds

+

∫ t

0

∫
Rm0

log λ(s, B̄x
s (θ), ς)1Ur(ς)N(ds, dς)

+

∫ t

0

∫
Rm0

(1− λ(s, B̄x
s (θ), ς))1Ur(ς)dsν(dς)}

f(B̄x
t (θ))E(

∫ T

0
(br(B̄x

s (θ)))∗dB̄s)])]

where π∗ is a probability measure under which B· is a Brownian motion inde-
pendent of a Poisson random measure N associated with the Lévy measure
ν. By using the same reasoning as above, one sees that

Eµ[(g(Eπr [Z
r
t f(Xr

t )
∣∣FY rt ]

)] −→ Eµ[(g(Eπ[Ztf(Xt)
∣∣FYt ])]

for r −→∞. Hence

Eπr [Z
r
t f(Xr

t )
∣∣FY rt ]

−→ Eπ[Ztf(Xt)
∣∣FYt ]

for r −→∞ in distribution. Similarly, by employing the representation (44),
we have that

Eπr [Z
r
t f(Xr

t )
∣∣FY rt ]

−→
∫
Rn
f(x)Φ(t, x)dx
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for r −→∞ in distribution for all f ∈ C∞c (Rn).
On the other hand, since Xt possesses a probability density, we also

know that there exists an unnormalized density Φ̃ of the corresponding filter
problem. So we obtain that

Eµ[(g(Eπ[Ztf(Xt)
∣∣FYt ])]

= Eµ[(g(

∫
Rn
f(x)Φ̃(t, x)dx)] = Eµ[(g(

∫
Rn
f(x)Φ(t, x)dx)]

for all bounded Lipschitz functions g and f ∈ C∞c (Rn). If we now choose f
such that

f(x) =
1

εn
η(
y − x
ε

)

for a standard mollifier and ε > 0, then we find for ε↘ 0 that

Eµ[(g(Φ̃(t, x))] = Eµ[(g(Φ(t, x))]

x−a.e. Hence, separability implies that for all t

Φ̃(t, x)
law
= Φ(t, x)

x−a.e.

Our next result, which pertains to the regularity of solutions Φ given by
(42) in the case of discontinuous drift coefficients b : R −→ R, requires the
following additional condition:

Eϑ[

∫ T

0

∥∥h(s, B̄x1
s (θ))− h(s, B̄x2

s (θ))
∥∥16

ds (49)

+

∫ T

0

∫
Rm0

∣∣log(λ(s, B̄x1
s (θ), ς))− log(λ(s, B̄x2

s (θ), ς))
∣∣8 ν(dς)ds

+(

∫ T

0

∫
Rm0

∣∣log(λ(s, B̄x1
s (θ), ς))− log(λ(s, B̄x2

s (θ), ς))
∣∣4 ν(dς)ds)2

∫ T

0

∫
Rm0

∣∣log(λ(s, B̄x1
s (θ), ς))− log(λ(s, B̄x2

s (θ), ς))
∣∣2 ν(dς)ds)4

+(

∫ T

0

∫
Rm0

∣∣∣log(λ(s, B̄x1
s (θ), ς))− log(λ(s, B̄x2

s−(T−t)(θ), ς))
∣∣∣ dsν(dς))8

(

∫ T

0

∫
Rm0

∣∣λ(s, B̄x1
s (θ), ς)− λ(s, B̄x2

s (θ), ς)
∣∣ dsν(dς))8]

≤ C(|x1 − x2|16 + |x1 − x2|8)
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for all x1, x2 ∈ R, where C is a constant.

We obtain the following regularity result:

Theorem 11. Retain the conditions of Theorem 10 and suppose that (49)
holds. Further, assume that the drift coefficient b in (8) is a step function
of the form

b(x) =
r∑
i=1

ξi1(ai,bi](x), x ∈ R,

where ξi, ai, bi ∈ R, i = 1, ..., r.
Then for all t a modification of the weak solution Φ(t, ·) to the SPDE (30) in
Theorem 10 is locally Hölder continuous with exponent α for all α ∈ (0, 1/4).

Proof. Using relation (39), we see that Φ can be written as

Φ(t, x, ω) = Eϑ[p0(B̄x
t (θ))I(x)],

where

I(x) := exp{
∫ t

0

∫
R
b(y)LB̄

x
(ds, dy)∫ T

T−t
h∗(s, B̄x

s−(T−t)(θ))dBs(ω)− 1

2

∫ T

T−t

∥∥∥h(s, B̄x
s−(T−t)(θ))

∥∥∥2
ds

+

∫ T

T−t

∫
Rm0

log(λ(s, B̄x
s−(T−t)(θ), ς))Ñ(ds, dς, ω)

+

∫ T

T−t

∫
Rm0

(log(λ(s, B̄x
s−(T−t)(θ), ς))

−(λ(s, B̄x
s−(T−t)(θ), ς)− 1))dsν(dς)}E(

∫ T

0
−b(B̄x

s (θ))dB̄s).

Hence,

E[(Φ(t, x1, ω)− Φ(t, x2, ω))4] (50)

≤ CE[Eϑ[(p0(B̄x1
t (θ))− p0(B̄x2

t (θ)))4(I(x1))4

+(I(x1)− I(x2))4]]
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for a constant C. On the other hand, it follows from the mean value theorem
and Hölder’s inequality that

E[Eϑ[(I(x1)− I(x2))4]]

≤ CE[Eϑ[((I1(x1)− I1(x2))8 + (I2(x1)− I2(x2))8 + (I3(x1)− I3(x2))8)]]
1
2

E[Eϑ[

∫ 1

0
exp(8(I1(x1) + I2(x1) + I3(x1)

+τ(I1(x1)− I1(x2) + I2(x1)− I2(x2) + I3(x1)− I3(x2))))dτ)]]
1
2 ,

where

I1(x) :=

∫ t

0

∫
R
b(y)LB̄

x
(ds, dy),

I2(x)

: =

∫ T

T−t
h∗(s, B̄x

s−(T−t)(θ))dBs(ω)− 1

2

∫ T

T−t

∥∥∥h(s, B̄x
s−(T−t)(θ))

∥∥∥2
ds

+

∫ T

T−t

∫
Rm0

log(λ(s, B̄x
s−(T−t)(θ), ς))Ñ(ds, dς, ω)

+

∫ T

T−t

∫
Rm0

log(λ(s, B̄x
s−(T−t)(θ), ς))− (λ(s, B̄x

s−(T−t)(θ), ς)− 1))dsν(dς)

and

I3(x) :=

∫ T

0
−b(B̄x

s (θ))dB̄s −
1

2

∫ T

0
(b(B̄x

s (θ)))2ds.

Using the above notation, we have that

E[Eϑ[((I3(x1)− I3(x2))8]]

≤ C{Eϑ[(

∫ T

0
b(B̄x1

s (θ))dB̄s −
∫ T

0
b(B̄x2

s (θ))dB̄s)
8]

+Eϑ[(

∫ T

0
(b(B̄x1

s (θ)))2ds−
∫ T

0
(b(B̄x2

s (θ)))2ds)8].

Further , it follows from the Tanaka formula and our assumptions on the
drift coefficient b that∫ T

0
b(B̄x

s (θ))dB̄s

=

r∑
i=1

ξi(L(T, bi − x)− L(T, ai − x))−
r∑
i=1

ξi{(B̄x
s − bi)− − (B̄x

s − ai)−} a.e.
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where (a)− := min(0, a), a ∈ R.So

Eϑ[(

∫ T

0
b(B̄x1

s (θ))dB̄s −
∫ T

0
b(B̄x2

s (θ))dB̄s)
8]

≤ C
r∑
i=1

|ξi|
8 {Eϑ[(L(T, bi − x1)− L(T, bi − x2))8]

+Eϑ[(L(T, ai − x1)− L(T, ai − x2))8]

+Eϑ[((B̄x1
s − bi)− − (B̄x2

s − bi)−)8]

+Eϑ[((B̄x1
s − ai)− − (B̄x2

s − ai)−)8]}.

On the other hand, it is well known that

Eϑ[(L(t1, z1)− L(t2, z2))2l] ≤ Cn,T {|t1 − t2|l + (|z1 − z2|l} (51)

for a constant Cn,T . See e.g. [24]. Thus

Eϑ[(

∫ T

0
b(B̄x1

s (θ))dB̄s −
∫ T

0
b(B̄x2

s (θ))dB̄s)
8]

1
2

≤ C(

r∑
i=1

|ξi|
4)(|x1 − x2|2 + |x1 − x2|4).

Further, we also see from the occupation time formula that

Eϑ[(

∫ T

0
(b(B̄x1

s (θ)))2ds−
∫ T

0
(b(B̄x2

s (θ)))2ds)8]

= Eϑ[(

∫
R

(b(y))2L(T, y − x1)dy −
∫
R

(b(y))2L(T, y − x2)dy)8]

= Eϑ[(

∫
R

(b(y))2(L(T, y − x1)− L(T, y − x2))dy)8]

CbEϑ[

∫
R

(b(y))16(L(T, y − x1)− L(T, y − x2))8dy]

for a constant Cb depending on the compact support of the function b.
Therefore, we see from (51) that

Eϑ[(

∫ T

0
(b(B̄x1

s (θ)))2ds−
∫ T

0
(b(B̄x2

s (θ)))2ds)4]
1
2

≤ Cb(

∫
R

(b(y))16)Eϑ[(L(T, y − x1)− L(T, y − x2))8]dy)
1
2

≤ C(

∫
R

(b(y))16dy)
1
2 |x1 − x2|4 .
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The latter yields

E[Eϑ[((I3(x1)− I3(x2))8]]
1
2 ≤ C{|x1 − x2|2 + |x1 − x2|4}.

Since

I1(x) =

∫ t

0

∫
R
b(y)LB̄

x
(ds, dy) =

r∑
i=1

ξi(L(t, bi − x)− L(t, ai − x))

by definition (see 35), we can employ the same reasoning as above and obtain
that

E[Eϑ[((I1(x1)− I1(x2))8]]
1
2 ≤ C |x1 − x2|2 .

Further, it follows from Burkholder’s inequality in connection with the as-
sumptions (41), (49) and the inequality (51) that

E[Eϑ[(I2(x1)− I2(x2))8]]

≤ CEϑ[

∫ T

0

∥∥h(s, B̄x1
s (θ))− h(s, B̄x2

s (θ))
∥∥16

ds

+

∫ T

0

∫
Rm0

∣∣log(λ(s, B̄x1
s (θ), ς))− log(λ(s, B̄x2

s (θ), ς))
∣∣8 ν(dς)ds

+(

∫ T

0

∫
Rm0

∣∣log(λ(s, B̄x1
s (θ), ς))− log(λ(s, B̄x2

s (θ), ς))
∣∣4 ν(dς)ds)2

∫ T

0

∫
Rm0

∣∣log(λ(s, B̄x1
s (θ), ς))− log(λ(s, B̄x2

s (θ), ς))
∣∣2 ν(dς)ds)4

+(

∫ T

0

∫
Rm0

∣∣∣log(λ(s, B̄x1
s (θ), ς))− log(λ(s, B̄x2

s−(T−t)(θ), ς))
∣∣∣ dsν(dς))8

(

∫ T

0

∫
Rm0

∣∣λ(s, B̄x1
s (θ), ς)− λ(s, B̄x2

s (θ), ς)
∣∣ dsν(dς))8

+

∫ T

0

∣∣b(B̄x1
s (θ))− b(B̄x2

s (θ))
∣∣16

ds]

≤ C(|x1 − x2|16 + |x1 − x2|8)

for a constant C.
Finally, using the same arguments as in the proof of Theorem 10, our
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assumptions imply that

sup
x1,x2∈U×U

E[Eϑ[

∫ 1

0
exp(8(I1(x1) + I2(x1) + I3(x1)

+τ(I1(x1)− I1(x2) + I2(x1)− I2(x2) + I3(x1)− I3(x2))))dτ)]]
1
2

≤ M <∞

for bounded sets U ⊂ R, where M is a constant depending on U .
Altogether, we see from the above estimates that

E[(Φ(t, x1, ω)− Φ(t, x2, ω))4] ≤ C |x1 − x2|2

for all x1, x2 on bounded intervals U ⊂ R with a constant C depending on
U .

So it follows from Kolmogorov’s Lemma that for all t there is a continuous
modification of Φ(t, ·), which is locally Hölder continuous with exponent α
for all α ∈ (0, 1/4).

Remark 12. An example which fulfills the assumptions of Theorem 11 is
given by (18), (19) in the case of a truncated α−stable Lévy process with
α ∈ (0, 1), when Ψ ∈ C3

b (R) and h = 0.

3 The Model

As mentioned in the introduction of this paper, we aim at modeling stochas-
tic transition rates µik(t, x), 0 ≤ t ≤ T for states i, k ∈ S of the insured by
the following stochastic Gompertz-Makeham model GM(r, s) given by

µik(t, x) = h1,r
ik (t, x) + exp(h2,s

ik (t, x)), (52)

where h1,r
ik (t, x), h2,s

ik (t, x) are time-dependent stochastic polynomials of de-
gree r and s, respectively, that is

h1,r
ik (t, x) =

r∑
l=0

Y
(l)
t xl

and

h2,s
ik (t, x) =

s∑
l=0

Y
(r+1+l)
t xl
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for all i, k ∈ S.
Here the coefficients of the polynomials

Yt = (Y
(0)
t , ..., Y

(r)
t , Y

(r+1)
t , ..., Y

(r+s)
t )∗, 0 ≤ t ≤ T (53)

are described by a generalized Cox process given by

dYt = h(t,Xt)dt+ dBY
t +

∫
Rm

ςNλ(dt, dς), (54)

where m = r + s+ 2 and where the integer valued random measure Nλ has
a F−predictable compensator of the form

µ̂(dt, dς, ω) = λ(t,Xt, ς)dtν(dς)

for a Lévy measure ν associated with a Lévy process Lt ∈ Rm and a Borel
function λ. Further, the process Xt, 0 ≤ t ≤ T is the strong solution to the
SDE

dXt = b(Xt)dt+ σ(Xt)dB
X
t , (55)

where the Brownian motion BY
t ∈ Rn is independent of the Brownian motion

BX
t ∈ Rm and the integer valued random measure Nλ. Here the initial value

X0 is supposed to be square integrable and to be independent of BX
· , B

Y
· ,

Nλ.
An important feature of our model is the unknown ”parametrization”

process Xt, 0 ≤ t ≤ T , which we use to describe the occurrence of changing
types of jumps or types of heavy-tailedness of distributions of real data.
The phenomenon of (semi-) heavy tailedness- as mentioned- may arise from
data with cohort effects in mortality modeling or short term catastrophic
events as e.g. earthquakes. However, the ”regime switch” itself between
different types of jumps, which may be of long-term nature and due to
regulatory changes in the insurance branch or political decisions with a long-
term impact on the economy, is modeled by the process Xt, 0 ≤ t ≤ T. In
order to capture the ”regime switching” effects of data, we may assume that
Xt, 0 ≤ t ≤ T is the strong solution to a SDE with singular drift coefficient
given by

dXt =


dX̃t = b(Xt)dt+ dBX

t

dỸt = 0 , Ỹ0 = a1

dZ̃t = 0 , Z̃0 = a2

,

X0 = (X̃0, Ỹ0, Z̃0)∗ ∈ R3l
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where

b(x) = (56)

b(x1, ..., xl, a1, a2) =

{
a1 , if ‖(x1, ..., xl)

∗‖ ≥ τ
a2 else

for X̃t := (X
(1)
t , ..., X

(l)
t )∗ and a ”critical” threshold τ > 0. Here, the vectors

a1, a2 ∈ Rl can be interpreted as the different ”regime switching” states of
the jump intensity of the generalized Cox process Yt, 0 ≤ t ≤ T in (54),

depending on whether
∥∥∥X̃t

∥∥∥ ≥ τ or not.

A natural generalization of the model (56) to the case of multiple ”regime
switching” states a1, ..., ar ∈ Rl is the following

b(x) = b(x1, ..., xl, a1, ..., ar) =

r∑
i=1

ai1Γi(x1, ..., xl), (57)

where {Γi}i=1,...,r is a partition of Rl.
An alternative model to the above ones, which is able capture long-term

effects of data, is given by the following ”regime switching” mean-reversion
model

dXt =



dX
(1)
t = b(Xt)dt+ dBX

t

dX
(2)
t = 0, X

(2)
0 = a

dX
(3)
t = 0, X

(3)
0 = b1

dX
(4)
t = 0, X

(4)
0 = b2

dX
(5)
t = 0, X

(5)
0 = τ

, (58)

where

b(x) =

{
a(b1 − x) , if x ≥ τ
a(b2 − x) else

.

for a mean reversion coefficient a ≥ 0 and long-run average levels b1, b2 ≥ 0,
depending on a ”critical” threshold τ > 0.

We mention that a unique strong solution to (58) exists. See also [4],
where the authors consider the latter model in connection with a regime
switching short rate model in finance.

In our model (52), (53) we may e.g. choose the observation function h in
(54) to be a constant. In this case the process Yt, 0 ≤ t ≤ T can be regarded
as a Lévy process with a Lévy measure ν ”parametrized” by the process
Xt, 0 ≤ t ≤ T.
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The unknown process Xt, 0 ≤ t ≤ T or more generally f(Xt), 0 ≤ t ≤ T
for Borel functions f can be estimated from (indirectly and under optimiza-
tion constraints unique) observed insurance data Yt, 0 ≤ t ≤ T by means of
the optimal filter

〈πt, f〉 = E[f(Xt)
∣∣FYt ] , 0 ≤ t ≤ T. (59)

Using the Kallianpur-Striebel formula in Theorem 2 under the condition
(14) , we may also write (59) as

〈πt, f〉 =
〈Ψt, f〉
〈Ψt, 1〉

(60)

with
〈Ψt, f〉 := Eπ[Ztf(Xt)

∣∣FYt ]
for all f ∈ Cb(Rn), where Zt, 0 ≤ t ≤ T is the Doleans-Dade exponential
(22).

Principally, we could now use Monte-Carlo techniques in connection with
Theorem 10 to simulate the unnormalized conditional density (42) and to
compute the optimal filter by means of (60).

An alternative method to the latter one, which we want to discuss in this
Section, is the Monte-Carlo method directly applied to the unnormalized
filter 〈Ψt, ·〉 , 0 ≤ t ≤ T .

In fact, we have the following result in the case of Lipschitz continuous
coefficients b, σ, h and λ :

Proposition 13. Assume that the functions b, σ, h and λ are bounded and
satisfy the conditions (11), (12). In addition, require (15), (16) and (17)
hold. Let Xi

t , 0 ≤ t ≤ T, i ≥ 1 be a sequence of i.i.d. copies of the solution
Xt, 0 ≤ t ≤ T to (55) on our probability space, being independent of Yt, 0 ≤
t ≤ T, and denote by Zit ,0 ≤ t ≤ T the stochastic exponential in (22) based
on Xi

t , 0 ≤ t ≤ T for all i ≥ 1. Let f ∈ Cb(Rn). Then

M l(f) :=
1

l

l∑
i=1

Zitf(Xi
t) −→

l−→∞
〈Ψt, f〉 = Eπ[Ztf(Xt)

∣∣FYt ] a.e. (61)

for all t. Moreover, for all t there exists a constant C <∞ such that

Eπ[(M l(f)− 〈Ψt, f〉)2] ≤ 1

l
C ‖f‖2∞ (62)

for all l ≥ 1.
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Proof. Since X· is independent of Y· under π, we can represent 〈Ψt, f〉 as

〈Ψt, f〉 (ω) (63)

= Eϑ[exp{
m∑
i=1

∫ t

0
hi(s,Xs(θ))dB

i
s(ω)− 1

2

∫ t

0
‖h(s,Xs)‖2 ds

+

∫ t

0

∫
Rm0

log λ(s,Xs(θ), ς)N(ds, dς, ω)

+

∫ t

0

∫
Rm0

(1− λ(s,Xs(θ), ς))dsν(dς)}f(Xt(θ))],

where Eϑ denotes the expectation with respect to Xs(θ), 0 ≤ s ≤ T on a sep-
arate probability space. Using the latter in connection with an expectation
Eω in the direction of the other probability space, we get that

Eπ[(M l(f)− 〈Ψt, f〉)2]

= Eω[Eϑ[(M l(f)− 〈Ψt, f〉)2]]

= Eω[
1

l2
Eϑ[(

l∑
i=1

(Zitf(Xi
t)−

〈
Ψi
t, f
〉
))2]

= Eω[
1

l2

l∑
i=1

Eϑ[((Zitf(Xi
t)−

〈
Ψi
t, f
〉
))2]

=
1

l
Eω[Eϑ[((Z1

t f(X1
t )−

〈
Ψ1
t , f
〉
))2]

≤
4 ‖f‖2∞

l
Eπ[(Zt)

2].

It follows from the conditions (15), (16) and (17) that there is a constant
depending on the sizes of h and λ such that

Eπ[(Zt)
2] ≤ C.

Relation (61) is a consequence of the strong law of large numbers applied to
(63).

Since we are interested to apply Proposition 13 to our model for stochas-
tic transition rates in the case of discontinuous coefficients b in (56), (57) or
(58) and σ = Id, we may approximate the drift coefficient b by a bounded
Lipschitz continuous function b̃. To be more precise, using the notation of
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the previous Section, we mention that under the conditions (40)-(41) we get
for bounded coefficients b that

Eπ[Ztf(Xt)
∣∣FYt ] (ω)

= Eϑ[exp{
m∑
i=1

∫ t

0
hi(s, B̄

x
s (θ))dBi

s(ω)− 1

2

∫ t

0

∥∥h(s, B̄x
s (θ))

∥∥2
ds

+

∫ t

0

∫
Rm0

log λ(s, B̄x
s (θ), ς)N(ds, dς, ω)

+

∫ t

0

∫
Rm0

(1− λ(s, B̄x
s (θ), ς))dsν(dς)}

f(B̄x
t (θ))E(

∫ T

0
(b(B̄x

s (θ)))∗dB̄s)].

Denote by
〈
Ψb
t , ·
〉
, 0 ≤ t ≤ T the unnormalized filter associated with b.

Then, using the mean value theorem, we obtain just as in the proof of
Theorem 10 that

sup
0≤t≤T

Eπ[(
〈

Ψb
t , ·
〉
−
〈

Ψb̃
t , ·
〉

)2] (64)

≤ CEπ[

∫ T

0

∥∥∥b(B̄x
s )− b̃(B̄x

s )
∥∥∥2
ds

+(

∫ T

0

∥∥b(B̄x
s )
∥∥2 −

∥∥∥b̃(B̄x
s )
∥∥∥2
ds)2]

1
2

for a constant C depending on the sizes of b, h and λ. So, if we approximate
b by b̃ in the sense that∫ T

0

∫
Rn

∥∥∥b(y)− b̃(y)
∥∥∥4 1

(2πt)
n
2

exp(−‖y − x‖2 /2t)dydt < 1

r2

for r ≥ 1 sufficiently large, then we see from (62) and (64) that

Eπ[(M l,̃b(f)− 〈Ψt, f〉)2] ≤ C(
1

r
+

1

l
) (65)

for all l ≥ 1 and a constant C, where M l,̃b(f) is the sum in (61) with respect
to b̃.

We remark that the estimate (64) can also be established in the case
of coefficients b in (58), since in this case one can still apply Girsanov’s
theorem.

Finally, we mention that the paths of Zit , 0 ≤ t ≤ T and Xi
t , 0 ≤ t ≤ T

with respect to b̃ can be simulated by using Euler-approximation scheme
applied to the SDE’s (29) and (55).
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3.1 Implementation of the model

Let us show an example of our model for mortality rates where the observa-
tion process evolves with the dynamics of a non-Gaussian jump process. In
fact, we give a summary of an implementation method in this case, which
is discussed in more detail in [1]. Consider now the state space S = {∗, †}.
To carry out our simulations one can collect out data from the human mor-
tality database [20]. In [1] Norwegian life tables for both genders have been
used. The data contains central death rates for the years 1846–2009 for
ages 0, 1, 2, . . . , 110, where the age 110 contains individuals aged 110 and
older. For the time interval [0, T ], 1846 was the first year and 2009 the last
year. Since S = {∗, †} we only need to focus our attention to modelling
the transition rate µ∗†(·, ·). We choose to model µ∗†(·, ·) as the generalized
Gompertz-Makeham model given by,

µ∗†(t, x) = Y
(1)
t + Y

(2)
t x+ β exp

{
Y

(3)
t + Y

(4)
t x+ Y

(5)
t x2

}
, (t, x) ∈ [0, T ]× R+.

(66)

Hence, we are considering an observation process with values in R5. In

addition we will impose the condition Y
(1)
t , Y

(2)
t ≥ 0, 0 ≤ t ≤ T , to ensure

that we avoid negative transition rates.
We choose β = e−25. This choice has been made on the basis of per-

forming curve fitting of R+ 3 x 7→ µ∗†(t, x) to the data described above,
and then looking at the coefficients obtained for the last years. Since the
coefficients are so sensitive, and with only jump observations, it is very use-
ful to include a constant to have greater control over the behaviour of the
future paths [0, T ] 3 t 7→ Yt. Without the non-stochastic constant term, it
would be extremely difficult to obtain realistic transition rates for all ages
x ≥ 0, especially with our choice of observation process and the structure of
the transition rates. The reason for this is the sensitivity of the transition
rates with respect to the polynomial terms in the expression for µ∗†(t, ·).

For the dynamics of the observation process Y = (Yt)0≤t≤T we simply
choose

dYt =

∫
Rm0

zNλ(dt, dz), 0 ≤ t ≤ T.

Here, for the predictable compensator of Nλ(dt, dz) we will choose

µ̂(dt, dz, ω) := λ̃(t,Xt)dtν(dz), 0 ≤ t ≤ T, z ∈ Rm0 ,

with λ̃(t,Xt) := ελ‖Xt‖1, where ελ > 0 is a chosen scalar and ‖u‖1 =∑n
i=1 |ui|, u ∈ Rd.
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For practical purposes we will choose a multiplicative form of our Lévy
measure; that is, ν(dz) = ϕ(z)dz. More specifically, we choose ϕ(·) to be
the density function of the probability distribution, i.e. uniform distribution

U([δL1 , δ
U
1 ]× [δL2 , δ

U
2 ]× · · · × [δL5 , δ

U
5 ]), (67)

where (δL1 , δ
U
1 ), (δL2 , δ

U
2 ), . . . , (δL5 , δ

U
5 ) ∈ R2, and δLj < δUj , 1 ≤ j ≤ 5. Since

ϕ(·) is the density of a probability distribution, we have∫
Rm0

ϕ(z)dz = 1.

Now, for the jump component of the observation process, we have

Yt =

∫∫
[0,t]×Rm0

zNλ(ds, dz) =

N1(µ̂(t,Rm0 ,ω))∑
i=1

ζi, (68)

where, N1 = (N1(t))0≤t≤T is a standard homogeneous Poisson process and
(ζi)i∈N are independent and identically distributed, with

ζ1 ∼ U([δL1 , δ
U
1 ]× [δL2 , δ

U
2 ]× · · · × [δL5 , δ

U
5 ]). (69)

This is the reason for choosing a density as in (67). Now we are able to
stay in control of the intervals where our jump sizes occur, and avoid jumps
so extreme that we may end up with unreasonable transition rates. As for
the choice of (δLi , δ

U
i )5

i=1, naturally we choose δL1 , δ
L
2 ≥ 0 to avoid negative

transition rates. It is also nice to choose the lower limits δL1 , δ
L
2 , to be non-

zero to avoid too small transition rates at the lower ages; that is, to choose
δL1 , δ

L
2 > 0. For the upper bounds, we will choose δU1 , δ

U
2 quite small to avoid

unrealisticly large mortality rates for the lower ages. For the other limits
(δLi , δ

U
i )5

i=3, one suggestion could be to look at the coefficients obtained from
a curve fitting procedure, and then go from there.

Now the density process Z = (Zt)0≤t≤T given by (22), may in our case
be represented in the following way:

Zt = exp

{∫ ∫
[0,t]×Rm0

log{λ̃(s,Xs)}N(ds, dz)

+

∫ ∫
[0,t]×Rm0

(1− λ̃(s,Xs))ds ν(dz)

}
, 0 ≤ t ≤ T. (70)
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Now by our choice of λ̃(·, ·), the first integral inside the exponential expres-
sion in (70) is given by∫ ∫

[0,t]×Rm0
log{λ̃(s,Xs)}N(ds, dz) =

∑
0≤s≤t

log(ελ‖Xs‖1)1{∆Ys 6=0}, 0 ≤ t ≤ T.

(71)

We also find that, by our choice of Lévy measure, the second integral in (70)
takes the following form:∫ ∫

[0,t]×Rm0
(1− λ̃(s,Xs))ds ν(dz) =

∫ t

0
(1− ελ‖Xs‖1)ds, 0 ≤ t ≤ T. (72)

In summary,

Zt = exp

{ ∑
0≤s≤t

log(ελ‖Xs‖1)1{∆Ys 6=0} +

∫ t

0
(1− ελ‖Xs‖1)ds

}
, 0 ≤ t ≤ T.

(73)

Here, we can give a ”decision procedure” for the occurrence of jumps
in the following way: First we will find the average distance between two
instances of observation process, for two following years. Then we say, that
if the distance between the two points is a certain amount bigger than the
average distance, a jump has occurred. We thereby define the following:

∆Y =
1

T

T−1∑
j=0

‖∆Yj‖,

where ∆Yj := Yj+1−Yj , j = 0, . . . T −1. Hence ∆Y is the average difference
for Y when having moved one step in time. As jumps are to be sudden large
movements, it is reasonable to say that if ∆Yj < ∆Y, a jump did not occur
from time j to time j+1, j = 0, . . . , T −1. One way of choosing a definition
that determines when a jump occurs, and a way we can do it, is to choose
a constant ε∆ > 0, and say that a jump occurs from time j to time j + 1,
j = 0, . . . , T − 1 if

∆Yj > ∆Y + ε∆. (74)

When we perform simulations we will use the following approximation
for the integral with respect to the Poisson random measure:∫ ∫

[0,t]×Rm0
log{λ̃(s,Xs)}N(ds, dz) ≈

∑
j

log(λ̃(j,Xj))1{‖∆Yj‖>∆Y+ε∆}.
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For our signal process X = (Xt)0≤t≤T we can choose to use the Vasicek
model, with the functions

∀x ∈ Rd×d , σi,j(x) =

{
1 , if i = j = 1 ,

0 , else,
(75)

∀x ∈ Rd , bi(x) =

{
x3(x2 − x1) , if i = 1 ,

0 else.
(76)

Hence our signal process X takes values in R3, and the components of X
are given by

dX
(1)
t = X

(3)
t (X

(2)
t −X

(1)
t )dt+ dB

X,(1)
t , X

(1)
0 := x∗1 ∼ Θ1,

dX
(2)
t = 0, X

(2)
0 := x∗2 ∼ Θ2,

dX
(3)
t = 0, X

(3)
0 := x∗3 ∼ Θ3

. (77)

Alternatively, in view of regime switching effects with respect to a threshold
θ; one may also use the following model

dX
(1)
t =

(
X

(3)
t 1{X(1)

t ≥θ}
+X

(4)
t 1{X(1)

t <θ}

)
(X

(2)
t −X

(1)
t )dt+ dB

X,(1)
t ,

dX
(2)
t = 0,

dX
(3)
t = 0,

dX
(4)
t = 0,

X
(1)
0 := x∗1 ∼ Θ1, X

(2)
0 := x∗2 ∼ Θ2, X

(3)
0 := x∗3 ∼ Θ3, X

(4)
0 := x∗4 ∼ Θ4,

.

(78)

where (Θi)i=1,2,3,4 are a priori distributions, which the initial values (x∗i )i=1,2,3,4

are to be generated from, respectively.

Remark 14. An important reason why one may choose the signal process
as a Brownian motion with discontinuous drift is the possibility for the use
of mean-reverting processes with a regime-switching feature which allows for
the modelling of changes of the behaviour of the compensating process with
respect to long-term effects of data.

As for model (77) we can choose a uniform distribution for the a priori
distributions (Θi)i=1,2,3. More specifically, we generate

(x∗1, x
∗
2, x
∗
3) ∼ U([0, 0.1], [0, 0.1], [0, 0.5]). (79)
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The reason for choosing positive uniform distributions is that numerical
problems may arise if we were to choose, for example, a Gaussian distribution
for the a priori distributions of the Vasicek model parameters. Say, for
example, that we choose a priori distributions, such that we generate the
following initial values, for two paths of (77):{

X1
0 := {x∗,11 , x∗,12 , x∗,13 } = {−1,−2,−3}

X2
0 := {x∗,21 , x∗,22 , x∗,23 } = {−1,−1,−1}.

As long as the initial values are positive in (77) we should obtain a mean-
reversion effect. Thus the chosen distribution in (79) is unproblematic. An-
other suggestion could, for example, be to use Gamma distributions for
(Θi)i=1,2,3. The first path X1,(1) has initial values generated as in (79), and
the second path X2,(2) has initial values generated by

X
2,(1)
0 := x∗,21 ∼ Gamma(1, 2),

X
2,(2)
0 := x∗,22 ∼ Gamma(1, 2),

X
2,(3)
0 := x∗,23 ∼ Gamma(1, 2).

(80)

Before one simulates the actual transition rates, one must go through

a simulation procedure to obtain the Vasicek model parameters X̂
(2)

T
and

X̂
(3)

T
.

1. Extract data. Obtain central mortality rates for years T := {0, 1, . . . , 163}
and ages X := {0, 1, . . . , 110}.

2. Obtain the observation process. By using e.g. a curve fitting tool
w.r.t. (66) in Matlab (see [1]).

3. Generate initial values. Generate the initial values (x∗j )
`
j=1 ⊂ R3

by, for j = 1, . . . , `,

x∗,j1 ∼ U(0, 0.1), x∗,j2 ∼ U(0, 0.1) and x∗,j3 ∼ U(0, 0.05).

4. Simulate paths of the Vasicek model. Simulate ` paths of [0, T ] 3
t 7→ Xj,(1), : j = 1, . . . , `, of the process X(1) with dynamics given by

(77). Here we initialize the numerical scheme with X
j,(i)
0 = x∗,ji , i =

1, 2, 3 , j = 1, . . . , `, and the paths may be simulated by a standard
Euler scheme. See [1] for details.

5. Estimate density process. Simulate the density process at time T
by Algorithm 1 below.

45



6. Compute the unormalized filter. Compute (〈ΨT , fi〉)i=2,3 and
(〈ΨT , 1〉)i=2,3, by a Monte Carlo approximation.

7. Compute the Vasicek model parameters. Obtain the Vasicek

model parameters; that is, the optimal filters (X̂
(i)

T
)i=2,3 by the Kallianpur-

Striebel formula in Theorem 2.

Algorithm 1 Compute value of density process ZT , given by (70).

Input: Time horizon T ; n for choice of mesh; observation process (Yi)
T
i=0;

path of signal process (Xti)
n
i=0; intensity λ̃(t,Xt) = µ̂(dt, dz, ω); jump

threshold ε∆.
1: ∆t← T/n
2: ∆Yi ← Yi − Yi−1, i = 1, . . . , n
3: ∆̄Y ← 1

t

∑T
i=1 ‖∆Yi‖

4: for j = 1, . . . , T do
5: if ‖∆Yj‖ > ∆Y + ε∆ then

6: Ij,1 ← log{λ̃(j,Xj)}
7: end if
8: end for
9: I1 ←

∑T
j=1 Ij,1

10: I2 ← ∆t
{

1
2

(
2− λ̃(0, X0)− λ̃(t,Xtn)

)
+
∑n−1

j=1 λ̃(tj , Xtj )
}

.

Trapezoidal rule
11: ZT ← exp{I1 + I2}
12: return ZT

After having performed the simulation procedure by going through steps

1—7, one obtains the Vasicek model parameters X̂
(2)

T
and X̂

(3)

T
. Then, when

the parameters have been obtained, we can simulate paths of [T , T ] 3 t 7→
X

(1)
t ∈ R, by the Vasicek-SDE dynamics

dX
(1)
t = X̂

(3)

T
(X̂

(2)

T
−X(1)

t )dt+ dB
X,(1)
t , X

(1)
0 := x∗, : 0 ≤ t ≤ T. (81)

Now that we are able to simulate the unknown parametrization process
X at a future time T < t ≤ T , we are able to simulate the model as a
whole. With simulated paths of the signal process, we can simulate the paths
[T , T ] 3 t 7→ Yt of the observation process, and then obtain the stochastic
coefficients in the generalized Gompertz-Makeham model (66). However,
before we can simulate the actual observation process, we must first compute
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the predictable compensator µ̂(·, ·, ·) over the increments in the equidistant
partitioning (T = t0 < t1 < · · · < tn = T ); that is, for 0 ≤ k ≤ n− 1,

µ̂(tk+1,Rm0 , ω)− µ̂(tk,Rm0 , ω) =

∫ ∫
[tk,tk+1]×Rm0

λ(s,Xs, z)ds ν(dz)

=

∫ ∫
[tk,tk+1]×Rm0

λ̃(s,Xs)ε
νϕ(z)dsdz

= εν
∫ tk+1

tk

λ̃(s,Xs)ds

= ενελ
∫ tk+1

tk

‖(X(1)
s , X̂

(2)

T
, X̂

(3)

T
)′‖1ds. (82)

Then we simulate ` paths [T , T ] 3 t 7→ Y j
t , j = 1, ..., `, of the observation

process Y , recursively by

Y j
tk+1

= Y j
tk

+

N1(µ̂(tk+1,Rm0 ,ω)−µ̂(tk,Rm0 ,ω))∑
i=1

ζj,ki , 1 ≤ k ≤ n− 1, 1 ≤ j ≤ `.

where

(ζj,ki )i∈N ⊂ Rm, 1 ≤ k ≤ n− 1, 1 ≤ j ≤ `,

are sequences of i.i.d. stochastic variables. Here, as specified earlier, by the
choice of Lévy measure we have the following:

ζj,k1 ∼ U([δL1 , δ
U
1 ]× [δL2 , δ

U
2 ]× · · · × [δL5 , δ

U
5 ]), 1 ≤ k ≤ n− 1, 1 ≤ j ≤ `.

An algorithm for simulating paths of the observation process Y is given in
Algorithm 2.

Since we have chosen a 5-dimesional observation process, with a second
degree polynomial in the exponent of (66), the coefficients are extremely
sensitive. And since we have chosen a pure jump observation process, it is
extremely difficult to calibrate the model such that we consistently obtain
reasonable transition rates. This is the main reason for including the con-
stant term β := exp{−25} in (66). In addition, this is why it is so helpfull
to include εν in the Lévy measure ν, so we are able to find a good balance
between the intensity of the jumps and their sizes.

Having estimated paths of the observation process for a future time in-
terval, we finally obtain paths of the future mortality rates µ∗†(·, ·) given by,
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for 1 ≤ j ≤ `, 0 ≤ k ≤ n,

µj∗†(tk, x) = Y
j,(1)
tk

+ Y
j,(2)
tk

x+ exp{−25 + Y
j,(3)
tk

+ Y
j,(4)
tk

x+ Y
j,(5)
tk

x2}, x ≥ 0.

(83)

Algorithm 2 Agorithm for simulating paths t 7→ Yt.

Input: Time horizon T ; n for choice of mesh; path of signal process
(Xti)

n
i=0; intensity λ̃(t,Xt) = µ̂(t., z., ω); Lévy measure ν(z.) := ϕ(z)z.,

ϕ(·) is the density of a uniform distribution U∗.
1: ∆t← T/n
2: µ̃t0 ← 0
3: for j = 0, . . . , n− 1 do

4: µ̃tj+1
= µ̃tj + εν × ∆t

2

{
λ̃(tj , Xtj ) + λ̃(tj+1, Xtj+1)

}
. Trapezoidal

rule
5: generate N ∼ Poisson

(
µ̃tj+1

− µ̃tj
)

6: if N > 0 then
7: generate ζjk ∼ U∗, k = 1, . . . , N

8: Ytj+1 ← Ytj +
∑N

k=1 ζ
j
k

9: else
10: Ytj+1 ← Ytj
11: end if
12: end for
13: return (Ytj )

n
j=0
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4 Appendix

We collect in this Section some results and proofs which we need in the main
text of the article.

Lemma 15. Let Mt, 0 ≤ t ≤ T be stochastically continuous process on
(Ω,F , µ). Suppose that

E[|Mt −Ms|a |Ms −Mu|b] ≤ C |t− u|1+γ

for some constants a, b, C, γ > 0 and all 0 ≤ u ≤ s ≤ t ≤ T . Then Mt, 0 ≤
t ≤ T has a càdlàg modification.

Proof. See e.g. Theorem 6.4.1 in [7] for a proof.

Proof of Lemma 4. Without loss of generality, we consider the case, when
σ = Id.

Since X· is independent of Y· under π, we can represent 〈Ψt, f〉 as

〈Ψt, f〉 (ω) (84)

= Eϑ[exp{
n∑
i=1

∫ t

0
hi(s,Xs(θ))dB

i
s(ω)− 1

2

∫ t

0
‖h(s,Xs)‖2 ds

+

∫ t

0

∫
Rm0

log λ(s,Xs(θ), ς)N(ds, dς, ω)

+

∫ t

0

∫
Rm0

(1− λ(s,Xs(θ), ς))dsν(dς)}f(Xt(θ))],

where Eϑ denotes the expectation with respect to Xs(θ), 0 ≤ s ≤ T on a
separate probability space.

Set

It =

n∑
i=1

∫ t

0
hi(s,Xs(θ))dB

i
s(ω)− 1

2

∫ t

0
‖h(s,Xs)‖2 ds∫ t

0

∫
Rm0

log λ(s,Xs(θ), ς)Ñ(ds, dς, ω)

+

∫ t

0

∫
Rm0

log λ(s,Xs(θ), ς)dsν(dς)

+

∫ t

0

∫
Rm0

(1− λ(s,Xs(θ), ς))dsν(dς).
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Using Hölder’s inequality we see that

E[|〈Ψt, f〉 − 〈Ψs, f〉|2 |〈Ψs, f〉 − 〈Ψu, f〉|2]

= E[Eϑ[|exp(It)(f(Xt(θ))− f(Xs(θ))) + f(Xs(θ))(exp(It)− exp(Is))|2

|exp(Is)(f(Xs(θ))− f(Xu(θ))) + f(Xu(θ))(exp(Is)− exp(Iu))|2]]

≤ C(J1 + J2 + J3 + J4),

where

J1 : = E[Eϑ[exp(2It) exp(2Is)

(f(Xt(θ))− f(Xs(θ)))
2(f(Xs(θ))− f(Xu(θ)))2]],

J2 : = E[Eϑ[exp(2It)f(Xu(θ))2

(f(Xt(θ))− f(Xs(θ)))
2(exp(Is)− exp(Iu))2]],

J3 : = E[Eϑ[f(Xs(θ))
2 exp(2Is)

(f(Xs(θ))− f(Xu(θ)))2(exp(It)− exp(Is))
2]],

J4 : = E[Eϑ[f(Xs(θ))
2f(Xu(θ))2

(exp(It)− exp(Is))
2(exp(Is)− exp(Iu))2]].

Using our assumptions we obtain by Hölder’s inequality in connection
with the independence of Brownian increments that

J1 ≤ CEϑ[(Xt(θ)−Xs(θ))
4(Xs(θ)−Xu(θ))4]1/2

≤ C |t− u|2 .

On the other hand, using the mean value theorem and Burkholder’s inequal-
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ity we see that

E[(exp(Is)− exp(Iu))4]

= E[(

∫ 1

0
(Is − Iu) exp(Is + θ(Is − Iu))dθ)4]

≤ CE[(Is − Iu)8]1/2

≤ C{E[(

∫ s

u
‖h(r,Xr)‖2 dr)4]1/2 + E[(

∫ s

u

∫
Rm0

log λ(r,Xr(θ), ς)ν(dς)dr)8]1/2

+E[(

∫ s

u

∫
Rm0

(1− λ(r,Xr(θ), ς))ν(dς)ds)8]1/2

+

n∑
i=1

E[(

∫ s

u
(hi(r,Xr(θ)))

2dr)4]1/2

+E[

∫ s

u

∫
Rm0

(log λ(r,Xr(θ), ς))
8ν(dς)dr]1/2

+E[(

∫ s

u

∫
Rm0

(log λ(r,Xr(θ), ς))
4ν(dς)dr)2]1/2

+E[(

∫ s

u

∫
Rm0

(log λ(r,Xr(θ), ς))
2ν(dς)dr)4]1/2}.

So

E[(exp(Is)− exp(Iu))4]

≤ C{|s− u|4 + |s− u|2E[(

∫ T

0
(

∫
Rm0

log λ(r,Xr(θ), ς)ν(dς))2dr)4]1/2

+ |s− u|2E[(

∫ T

0
(

∫
Rm0

(1− λ(r,Xr(θ), ς))ν(dς))2ds)4]1/2

+ |s− u|2 + |s− u|
1
4 E[(

∫ T

0
(

∫
Rm0

(log λ(r,Xr(θ), ς))
8ν(dς))2dr)1/2]1/2

+ |s− u|
1
2 E[(

∫ T

0
(

∫
Rm0

(log λ(r,Xr(θ), ς))
4ν(dς))2dr)]1/2

+ |s− u|E[(

∫ T

0
(

∫
Rm0

(log λ(r,Xr(θ), ς))
2ν(dς))2dr)2]1/2}

≤ C |t− u|
1
4 .

We also see by using Lipschitzianity that

Eϑ[(f(Xt(θ))− f(Xs(θ)))
8]1/4 ≤ C |t− u| .
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Hence by our assumptions we get that

J2 ≤ C |t− u|1+ 1
8 .

Similarly, we see that

J3 ≤ C |t− u|1+ 1
8 .

Because of the mean value theorem and the independence of increments
of Lévy processes we obtain from our assumptions that

E[Eϑ[(exp(It)− exp(Is))
2(exp(Is)− exp(Iu))2]]

= E[Eϑ[(

∫ 1

0
(It − Is) exp(Is + θ1(Is − Iu))dθ1)2

(

∫ 1

0
(Is − Iu) exp(Iu + θ1(Is − Iu))dθ1)2]]

≤ CEϑ[E[(It − Is)4(Is − Iu)4]] = CEϑ[E[(It − Is)4]E[(Is − Iu)4]].
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Further, Hölder’s and Burkholder’s inequality implies that

E[(Is − Iu)4]

≤ C{E[(

∫ s

u
‖h(r,Xr)‖2 dr)2] + E[(

∫ s

u

∫
Rm0

log λ(r,Xr(θ), ς)ν(dς)dr)4]

+E[(

∫ s

u

∫
Rm0

(1− λ(r,Xr(θ), ς))ν(dς)ds)4]

+

n∑
i=1

E[(

∫ s

u
(hi(r,Xr(θ)))

2dr)2]

+E[

∫ s

u

∫
Rm0

(log λ(r,Xr(θ), ς))
4ν(dς)dr]

+E[(

∫ s

u

∫
Rm0

(log λ(r,Xr(θ), ς))
2ν(dς)dr)2]}

≤ C{|s− u|2 + |s− u|2E[(

∫ T

0
(

∫
Rm0

log λ(r,Xr(θ), ς)ν(dς))2dr)2]

+ |s− u|2E[(

∫ T

0
(

∫
Rm0

(1− λ(r,Xr(θ), ς))ν(dς))2ds)2] + |s− u|2

+ |s− u|
2
3 E[(

∫ T

0
(

∫
Rm0

(log λ(r,Xr(θ), ς))
4ν(dς))3dr)1/3]

+ |s− u|E[(

∫ T

0
(

∫
Rm0

(log λ(r,Xr(θ), ς))
2ν(dς))2dr)]}

≤ |t− u|
2
3 (K + CL(θ))

θ−a.e., where

L(θ) : = E[(

∫ T

0
(

∫
Rm0

log λ(r,Xr(θ), ς)ν(dς))2dr)2]

+E[(

∫ T

0
(

∫
Rm0

(1− λ(r,Xr(θ), ς))ν(dς))2ds)2]

+E[(

∫ T

0
(

∫
Rm0

(log λ(r,Xr(θ), ς))
4ν(dς))3dr)1/3]

+E[(

∫ T

0
(

∫
Rm0

(log λ(r,Xr(θ), ς))
2ν(dς))2dr)].
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Hence

Eϑ[E[(It − Is)4]E[(Is − Iu)4]]

≤ |t− u|
4
3 Eϑ[(K + CL(θ))2]

≤ C |t− u|
4
3 ·

·(K + Eϑ[E[(

∫ T

0
(

∫
Rm0

log λ(r,Xr(θ), ς)ν(dς))2dr)4]]

+Eϑ[E[(

∫ T

0
(

∫
Rm0

(1− λ(r,Xr(θ), ς))ν(dς))2ds)4]]

+Eϑ[E[(

∫ T

0
(

∫
Rm0

(log λ(r,Xr(θ), ς))
4ν(dς))3dr)2/3]]

+Eϑ[E[(

∫ T

0
(

∫
Rm0

(log λ(r,Xr(θ), ς))
2ν(dς))2dr)2]]).

Altogether, it follows that

E[|〈Ψt, f〉 − 〈Ψs, f〉|2 |〈Ψs, f〉 − 〈Ψu, f〉|2] ≤ C |t− u|1+ 1
8

for a constant C <∞ depending on f , which gives the proof in connection
with Lemma 15.

Proof of Lemma 9. It follows from (39) that∫ t

0

∫
R
sgn(x)L(ds, dx)

=

∫ t

0
sgn(Bs)dBs +

∫ T

T−t
sgn(B̂s)dW̃s −

∫ T

T−t
sgn(B̂s)

B̂s
T − s

ds

=

∫ t

0
sgn(Bs)dBs +

∫ T

T−t
sgn(B̂s)dW̃s −

∫ T

T−t

∣∣∣B̂s∣∣∣
T − s

ds,

where

sgn(x) :=

{
1 , if x > 0
−1 else

.

Since ∫ t

0

∫
R
sgn(x)L(ds, dx) = −2 |Bt|+ 2

∫ t

0
sgn(Bs)dBs
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by means of Tanaka’s formula, we find that

∫ t

0

|Bs|
s
ds =

∫ T

T−t

∣∣∣B̂s∣∣∣
T − s

ds

= −
∫ t

0
sgn(Bs)dBs +

∫ T

T−t
sgn(B̂s)dW̃s + 2 |Bt| .

Using the latter combined with the supermartingale property of Doleans-
Dade exponentials and Hölder’s inequality, we get that

E[exp(k

∫ T

0

|Bt|
t
dt)]

≤ E[exp(−3k

∫ t

0
sgn(Bs)dBs)]

1/3E[exp(3k

∫ T

T−t
sgn(B̂s)dW̃s)]

1/3 ·

·E[exp(6k |Bt|)]1/3

≤ CT,k <∞

for a constant CT,k depending on T and k.
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(eds). École d’ Été de Probabilité de Saint-Flour XIX-1989. Lecture
Notes in Math. 1464, Springer-Verlag, New York, pp. 67-163 (1991).

[37] Renshaw, A.E., Haberman, S.: A cohort-based extension to the Lee-
Carter model for mortality reduction factors. Insurance: Mathematics
and Economics, 38, 556-570 (2006).
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